
[ Team LiB ]

  

• Table of Contents

Graphics Programming with GDI+

By Mahesh Chand

 

Publisher: Addison Wesley

Pub Date: October 17, 2003

ISBN: 0-321-16077-0

Pages: 784

"This is the most comprehensive book about graphics programming using GDI+ so far. This book will be a very useful handbook for everyone 

who does graphics programming for Windows."

-Min Liu, Software Design Engineer of GDI+, Microsoft Corporation

Graphics Programming with GDI+ is the .NET developer's guide to writing graphics applications for Windows and the Web. Through the use 

of detailed examples it provides experienced programmers with a deep understanding of the entire GDI+ API defined in the .NET Framework 

class library. 

The book begins with an introduction to GDI+ and the basics of graphics programming in Windows. The core of the book is a hands-on guide 

to practical topics, including how to use Windows Forms and optimize GDI+ performance. Chapters demonstrate how to develop real-world 

tools such as GDI+Painter, GDI+Editor, ImageViewer, and ImageAnimator. The author provides extensive reusable sample code in C# 

throughout, and complete downloadable source code in C# and Visual Basic .NET is available online, as are color versions of screen shots 

from the book. 

Key topics include:

How GDI+ compares to GDI 

How GDI+ is defined and used in the .NET Framework 

How to draw, paint, and fill graphics objects 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.informit.com/safari/author_bio.asp@ISBN=0321160770


Viewing and manipulating images 

Transforming graphics objects, images, and colors 

Printing in .NET 

How to develop GDI+ Web applications 

How to optimize drawing quality and performance 

Interactive color blending and transparent colors 

GDI interoperability 

Answers to frequently asked GDI+ questions

Graphics Programming in GDI+ is the most in-depth treatment available on writing effective graphics applications for the .NET Framework.

[ Team LiB ]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

  

• Table of Contents

Graphics Programming with GDI+

By Mahesh Chand

 

Publisher: Addison Wesley

Pub Date: October 17, 2003

ISBN: 0-321-16077-0

Pages: 784

   Copyright

   Praise for Graphics Programming with GDI+

   Microsoft .NET Development Series

   Figures

   Tables

   Acknowledgments

   Introduction

    Who Is This Book For?

    Prerequisites

    What's in This Book That I Won't See in Other Books?

    Chapter Organization

    Example Source Code

    Exception and Error Handling in the Samples

    SUMMARY

     Chapter 1.  GDI+: The Next-Generation Graphics Interface

    Section 1.1.  Understanding GDI+

    Section 1.2.  Exploring GDI+ Functionality

    Section 1.3.  GDI+ from a GDI Perspective

    Section 1.4.  GDI+ Namespaces and Classes in .NET

    Summary

     Chapter 2.  Your First GDI+ Application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.informit.com/safari/author_bio.asp@ISBN=0321160770


    Section 2.1.  Drawing Surfaces

    Section 2.2.  The Coordinate System

    Section 2.3.  Tutorial: Your First GDI+ Application

    Section 2.4.  Some Basic GDI+ Objects

    SUMMARY

     Chapter 3.  The Graphics Class

    Section 3.1.  Graphics Class Properties

    Section 3.2.  Graphics Class Methods

    Section 3.3.  The GDI+Painter Application

    Section 3.4.  Drawing a Pie Chart

    SUMMARY

     Chapter 4.  Working with Brushes and Pens

    Section 4.1.  Understanding and Using Brushes

    Section 4.2.  Using Pens in GDI+

    Section 4.3.  Transformation with Pens

    Section 4.4.  Transformation with Brushes

    Section 4.5.  System Pens and System Brushes

    Section 4.6.  A Real-World Example: Adding Colors, Pens, and Brushes to the GDI+Painter Application

    SUMMARY

     Chapter 5.  Colors, Fonts, and Text

    Section 5.1.  Accessing the Graphics Object

    Section 5.2.  Working with Colors

    Section 5.3.  Working with Fonts

    Section 5.4.  Working with Text and Strings

    Section 5.5.  Rendering Text with Quality and Performance

    Section 5.6.  Advanced Typography

    Section 5.7.  A Simple Text Editor

    Section 5.8.  Transforming Text

    SUMMARY

     Chapter 6.  Rectangles and Regions

    Section 6.1.  The Rectangle Structure

    Section 6.2.  The Region Class

    Section 6.3.  Regions and Clipping

    Section 6.4.  Clipping Regions Example

    Section 6.5.  Regions, Nonrectangular Forms, and Controls

    SUMMARY

     Chapter 7.  Working with Images

    Section 7.1.  Raster and Vector Images

    Section 7.2.  Working with Images

    Section 7.3.  Manipulating Images

    Section 7.4.  Playing Animations in GDI+

    Section 7.5.  Working with Bitmaps

    Section 7.6.  Working with Icons

    Section 7.7.  Skewing Images

    Section 7.8.  Drawing Transparent Graphics Objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



    Section 7.9.  Viewing Multiple Images

    Section 7.10.  Using a Picture Box to View Images

    Section 7.11.  Saving Images with Different Sizes

    SUMMARY

     Chapter 8.  Advanced Imaging

    Section 8.1.  Rendering Partial Bitmaps

    Section 8.2.  Working with Metafiles

    Section 8.3.  Color Mapping Using Color Objects

    Section 8.4.  Image Attributes and the ImageAttributes Class

    Section 8.5.  Encoder Parameters and Image Formats

    SUMMARY

     Chapter 9.  Advanced 2D Graphics

    Section 9.1.  Line Caps and Line Styles

    Section 9.2.  Understanding and Using Graphics Paths

    Section 9.3.  Graphics Containers

    Section 9.4.  Reading Metadata of Images

    Section 9.5.  Blending Explained

    Section 9.6.  Alpha Blending

    Section 9.7.  Miscellaneous Advanced 2D Topics

    SUMMARY

     Chapter 10.  Transformation

    Section 10.1.  Coordinate Systems

    Section 10.2.  Transformation Types

    Section 10.3.  The Matrix Class and Transformation

    Section 10.4.  The Graphics Class and Transformation

    Section 10.5.  Global, Local, and Composite Transformations

    Section 10.6.  Image Transformation

    Section 10.7.  Color Transformation and the Color Matrix

    Section 10.8.  Matrix Operations in Image Processing

    Section 10.9.  Text Transformation

    Section 10.10.  The Significance of Transformation Order

    SUMMARY

     Chapter 11.  Printing

    Section 11.1.  A Brief History of Printing with Microsoft Windows

    Section 11.2.  Overview of the Printing Process

    Section 11.3.  Your First Printing Application

    Section 11.4.  Printer Settings

    Section 11.5.  The PrintDocument and Print Events

    Section 11.6.  Printing Text

    Section 11.7.  Printing Graphics

    Section 11.8.  Print Dialogs

    Section 11.9.  Customizing Page Settings

    Section 11.10.  Printing Multiple Pages

    Section 11.11.  Marginal Printing: A Caution

    Section 11.12.  Getting into the Details: Custom Controlling and the Print Controller

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



    SUMMARY

     Chapter 12.  Developing GDI+ Web Applications

    Section 12.1.  Creating Your First ASP.NET Web Application

    Section 12.2.  Your First Graphics Web Application

    Section 12.3.  Drawing Simple Graphics

    Section 12.4.  Drawing Images on the Web

    Section 12.5.  Drawing a Line Chart

    Section 12.6.  Drawing a Pie Chart

    SUMMARY

     Chapter 13.  GDI+ Best Practices and Performance Techniques

    Section 13.1.  Understanding the Rendering Process

    Section 13.2.  Double Buffering and Flicker-Free Drawing

    Section 13.3.  Understanding the SetStyle Method

    Section 13.4.  The Quality and Performance of Drawing

    SUMMARY

     Chapter 14.  GDI Interoperability

    Section 14.1.  Using GDI in the Managed Environment

    Section 14.2.  Cautions for Using GDI in Managed Code

    SUMMARY

     Chapter 15.  Miscellaneous GDI+ Examples

    Section 15.1.  Designing Interactive GUI Applications

    Section 15.2.  Drawing Shaped Forms and Windows Controls

    Section 15.3.  Adding Copyright Information to a Drawn Image

    Section 15.4.  Reading and Writing Images to and from a Stream or Database

    Section 15.5.  Creating Owner-Drawn List Controls

    SUMMARY

     Appendix A.  Exception Handling in .NET

    Section A.1.  Why Exception Handling?

    Section A.2.  Understanding the try...catch Block

    Section A.3.  Understanding Exception Classes

    SUMMARY

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those 

designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed with initial capital 

letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries and is used 

under license from Microsoft.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume 

no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of 

the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more information, please 

contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web:

www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Chand, Mahesh

  Graphics programming with GDI+ / Mahesh Chand.

   p. cm.

 ISBN 0-321-16077-0 (alk. paper)

 1. Computer graphics. 2. User interfaces (Computer systems) I. Title

T385.C4515 2003

006.6—dc22

                                                           2003057705

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, 

electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in the United States of 

America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm


Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0706050403

First printing, October 2003

Dedication

To Mel and Neel

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Praise for Graphics Programming with GDI+

"This is the most comprehensive book about graphics programming using GDI+ so far. A lot of useful sample code 

inside this book reveals that Mr. Chand apparently has done a fair amount of research on GDI+. This book will be a 

very useful handbook for everyone who does graphics programming for Windows."

—Min Liu, Software Design Engineer of GDI+, Microsoft Corporation

"Graphics Programming with GDI+ explores and exploits a wonderful range of GDI+ programming concepts,

techniques, and applications for programmers of beginner to intermediate abilities. Being a prolific contributor to the

Internet community of developers, Mahesh Chand is offering what seems to be a natural extension of what he does

best—sharing his programming skills with other talented programmers. Each chapter compels to the next."

—Jason Hattingh, Director, Greystone Digital FX

"Mahesh does a very good job getting .NET developers up to speed using the GDI+ features supported in the .NET 

Framework. There is good coverage of graphics fundamentals that helps the reader better understand the concepts of 

graphics programming with GDI+, and there are some excellent sample applications that demonstrate the graphics 

topics covered to reinforce the concepts presented."

—Charles G. Parker, President, Parallel Consulting, Inc.

"Graphics Programming with GDI+ is a comprehensive reference for anyone who wants to leverage this technology. It 

presents a clear discussion of the topics in such a manner that is comprehensible to the beginner, but sufficiently 

in-depth to challenge seasoned programmers."

—Deborah J. Bechtold, MCSD, MCDBA

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Microsoft .NET Development Series

John Montgomery, Series Advisor

Don Box, Series Advisor

Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of Microsoft development technologies 

including Microsoft architects and DevelopMentor instructors. The books in this series provide a core resource of information and 

understanding every developer needs in order to write effective applications and managed code. Learn from the leaders how to maximize 

your use of the .NET Framework and its programming languages.

Titles in the Series

Keith Ballinger, .NET Web Services: Architecture and Implementation, 0-321-11359-4

Don Box with Chris Sells, Essential .NET Volume 1: The Common Language Runtime, 0-201-73411-7

Mahesh Chand, Graphics Programming with GDI+, 0-321-16077-0

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, C# Language Specification, 0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell, A First Look at ADO.NET and System.Xml v. 2.0, 0-321-22839-1

Alex Homer, Dave Sussman, Rob Howard, A First Look at ASP.NET v. 2.0, 0-321-22896-0

Microsoft Common Language Runtime Team, The Common Language Runtime Annotated Reference and Specification, 0-321-15493-2

Microsoft .NET Framework Class Libraries Team, The .NET Framework CLI Standard Class Library Annotated Reference, 0-321-15489-4

Microsoft Visual C# Development Team, The C# Annotated Reference and Specification, 0-321-15491-6

James S. Miller and Susann Ragsdale, The Common Language Infrastructure Annotated Standard, 0-321-15493-2

Fritz Onion, Essential ASP.NET with Examples in C#, 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building Applications and Components with Visual Basic .NET, 0-201-73495-8

Chris Sells and Justin Gehtland, Windows Forms Programming in Visual Basic .NET, 0-321-12519-3

Chris Sells, Windows Forms Programming in C#, 0-321-11620-8

Damien Watkins, Mark Hammond, Brad Abrams, Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access for the Internet World, 0-201-74568-2

www.awprofessional.com/msdotnetseries/

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.awprofessional.com/msdotnetseries/default.htm


[ Team LiB ]  

Figures

Figure 1.1: The role of GDI+ 2

Figure 1.2: The managed GDI+ class wrapper 5

Figure 1.3: The GDI+ namespaces in the .NET Framework library 14

Figure 2.1: Color components in GDI+ 29

Figure 2.2: The Cartesian coordinate system 31

Figure 2.3: The GDI+ coordinate system 32

Figure 2.4:
[*] Drawing a line from point (0, 0) to point (120, 80) 33

Figure 2.5:
[*] Creating a Windows application 35

Figure 2.6:
[*] Adding a reference to System.Drawing.dll 36

Figure 2.7:
[*] The System.Drawing namespace in a project 36

Figure 2.8:
[*] Adding the Form_Paint event handler 38

Figure 2.9:
[*] Your first GDI+ application 44

Figure 2.10:
[*] Using Point to draw a line 48

Figure 2.11:
[*] Using PointF to draw a line 49

Figure 2.12:
[*] Using Rectangle to create rectangles 53

Figure 2.13:
[*] Using RectangleF to create rectangles 54

Figure 2.14:
[*] Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle 57

Figure 3.1: Using DrawLine to draw lines 67

Figure 3.2: Using DrawLines to draw connected lines 68

Figure 3.3: Drawing individual rectangles 69

Figure 3.4: Drawing a series of rectangles 70

Figure 3.5: An ellipse 71

Figure 3.6: Drawing ellipses 72

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 3.7: Drawing text 74

Figure 3.8: Drawing text with different directions 76

Figure 3.9: The line chart application 76

Figure 3.10: The line chart application with a chart 77

Figure 3.11: The line chart with rectangles to mark points 78

Figure 3.12: Arcs in an ellipse 82

Figure 3.13: A sample arc application 83

Figure 3.14: The default arc, with start angle of 45 degrees and sweep angle of 90 degrees 84

Figure 3.15: An arc with start angle of 90 degrees and sweep angle of 180 degrees 85

Figure 3.16: An arc with start angle of 180 degrees and sweep angle of 360 degree 86

Figure 3.17: Two curves 87

Figure 3.18: Open and closed curves 87

Figure 3.19: Drawing a curve 88

Figure 3.20:
[*] A curve-drawing application 89

Figure 3.21: Drawing a curve with a tension of 0.0F 91

Figure 3.22: Drawing a curve with a tension of 1.0F 91

Figure 3.23: Drawing a closed curve 94

Figure 3.24: A Bézier curve 95

Figure 3.25: Drawing Bézier curves 96

Figure 3.26:
[*] Drawing a polygon 98

Figure 3.27: Drawing icons 99

Figure 3.28: A path 100

Figure 3.29: Drawing a path 102

Figure 3.30: Four pie shapes of an ellipse 103

Figure 3.31: A pie shape–drawing application 103

Figure 3.32: A pie shape with start angle of 0 degrees and sweep angle of 90 degrees 104

Figure 3.33: A pie shape with start angle of 45 degrees and sweep angle of 180 degrees 104

Figure 3.34: A pie shape with start angle of 90 degrees and sweep angle of 45 degrees 105

Figure 3.35: Drawing an image 107

Figure 3.36: Filling a closed curve 109

Figure 3.37: Filling ellipses 110

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 3.38: Filling a graphics path 112

Figure 3.39: Filling a polygon 115

Figure 3.40: Filling rectangles 115

Figure 3.41: Using MeasureString when drawing text 119

Figure 3.42: The GDI+Painter application 122

Figure 3.43: A pie chart–drawing application 128

Figure 3.44: The Draw Chart button click in action 130

Figure 3.45: The Fill Chart button click in action 131

Figure 4.1: Classes inherited from the Brush class 135

Figure 4.2: Brush types and their classes 135

Figure 4.3: Graphics objects filled by SolidBrush 137

Figure 4.4:
[*] A sample hatch brush application 142

Figure 4.5:
[*] The default hatch style rectangle 146

Figure 4.6:
[*] The LightDownwardDiagonal style with different colors 146

Figure 4.7:
[*] The DiagonalCross style 147

Figure 4.8:
[*] The texture brush application 148

Figure 4.9:
[*] Using texture brushes 151

Figure 4.10:
[*] Clamping a texture 151

Figure 4.11:
[*] The TileFlipY texture option 152

Figure 4.12:
[*] A color gradient 153

Figure 4.13:
[*] A gradient pattern with pattern repetition 153

Figure 4.14:
[*] Our linear gradient brush application 156

Figure 4.15:
[*] The default linear gradient brush output 160

Figure 4.16:
[*] The Vertical linear gradient mode 161

Figure 4.17:
[*] Using a rectangle in a linear gradient brush 162

Figure 4.18:
[*] Using LinearGradientBrush properties 163

Figure 4.19:
[*] Creating and using pens 166

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 4.20:
[*] Displaying pen types 171

Figure 4.21:
[*] Our pen alignment application 172

Figure 4.22:
[*] Drawing with center pen alignment 175

Figure 4.23:
[*] Drawing with inset pen alignment 175

Figure 4.24: Line cap and dash styles 176

Figure 4.25:
[*] Drawing dashed lines with different cap styles 179

Figure 4.26:
[*] Graphics shapes with cap and dash styles 181

Figure 4.27:
[*] Rotation and scaling 183

Figure 4.28: Transformation in TextureBrush 186

Figure 4.29: Transformation in linear gradient brushes 187

Figure 4.30:
[*] Transformation in path gradient brushes 189

Figure 4.31:
[*] Using system pens and system brushes 194

Figure 4.32:
[*] GDI+Painter with pen and brush support 195

Figure 4.33:
[*] GDI+Painter in action 200

Figure 5.1:
[*] Creating colors using different methods 208

Figure 5.2:
[*] Getting brightness, hue, and saturation components of a color 210

Figure 5.3:
[*] Using system colors to draw graphics objects 213

Figure 5.4:
[*] Converting colors 215

Figure 5.5: Fonts available in Windows 217

Figure 5.6: Font icons represent font types 219

Figure 5.7: An OpenType font 220

Figure 5.8: A TrueType font 220

Figure 5.9: Font components 221

Figure 5.10: Font metrics 225

Figure 5.11:
[*] Getting line spacing, ascent, descent, free (extra) space, and height of a font 226

Figure 5.12:
[*] Using the FromHFont method 229

Figure 5.13: Fonts with different styles and sizes 232

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 5.14:
[*] Alignment and trimming options 235

Figure 5.15:
[*] Drawing tabbed text on a form 237

Figure 5.16:
[*] Using FormatFlags to draw vertical and right-to-left text 240

Figure 5.17: Using different TextRenderingHint settings to draw text 243

Figure 5.18:
[*] Using a private font collection 247

Figure 5.19: A simple text editor application 248

Figure 5.20:
[*] Drawing text on a form 251

Figure 5.21:
[*] Using ScaleTransform to scale text 252

Figure 5.22:
[*] Using RotateTransform to rotate text 252

Figure 5.23:
[*] Using TranslateTransform to translate text 253

Figure 6.1: A rectangle 256

Figure 6.2: A rectangle with starting point (1, 2), height 7, and width 6 256

Figure 6.3:
[*] Using Rectangle methods 260

Figure 6.4:
[*] Hit test using the Contains method 262

Figure 6.5: Complementing regions 266

Figure 6.6: Excluding regions 266

Figure 6.7: Applying Union on regions 267

Figure 6.8: Using the Xor method of the Region class 268

Figure 6.9: Using the Intersect method of the Region class 269

Figure 6.10:
[*] Bounds of an infinite region 270

Figure 6.11: ExcludeClip output 272

Figure 6.12:
[*] Using Clip methods 274

Figure 6.13:
[*] Using TranslateClip 274

Figure 6.14: Result of the Xor method 275

Figure 6.15: Result of the Union method 276

Figure 6.16: Result of the Exclude method 276

Figure 6.17: Result of the Intersect method 277

Figure 6.18:
[*] Client and nonclient areas of a form 278

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 6.19:
[*] A nonrectangular form and controls 279

Figure 6.20:
[*] The nonrectangular forms application 280

Figure 6.21:
[*] A circular form 284

Figure 6.22:
[*] A triangular form 284

Figure 7.1:
[*] A zoomed raster image 289

Figure 7.2:
[*] A zoomed vector image 289

Figure 7.3:
[*] A simple image viewer application 295

Figure 7.4:
[*] Browsing a file 299

Figure 7.5:
[*] Viewing an image 300

Figure 7.6:
[*] Reading the properties of an image 304

Figure 7.7:
[*] A thumbnail image 306

Figure 7.8:
[*] Rotate menu items 308

Figure 7.9:
[*] Flip menu items 308

Figure 7.10:
[*] An image with default settings 310

Figure 7.11:
[*] The image of Figure 7.10, rotated 90 degrees 310

Figure 7.12:
[*] The image of Figure 7.10, rotated 180 degrees 311

Figure 7.13:
[*] The image of Figure 7.10, rotated 270 degrees 311

Figure 7.14:
[*] The image of Figure 7.10, flipped in the x direction 312

Figure 7.15:
[*] The image of Figure 7.10, flipped in the y direction 313

Figure 7.16:
[*] The image of Figure 7.10, flipped in both the x and the y directions 314

Figure 7.17:
[*] Fit menu items 315

Figure 7.18:
[*] An image in ImageViewer 318

Figure 7.19:
[*] The image of Figure 7.18 after Fit Width 319

Figure 7.20:
[*] The image of Figure 7.18 after Fit Height 319

Figure 7.21:
[*] The image of Figure 7.18 after Fit Original 320

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 7.22:
[*] The image of Figure 7.18 after Fit All 320

Figure 7.23:
[*] Zoom menu items 321

Figure 7.24:
[*] An image in ImageViewer 323

Figure 7.25:
[*] The image of Figure 7.24 with 25 percent zoom 323

Figure 7.26:
[*] The image of Figure 7.24 with 50 percent zoom 324

Figure 7.27:
[*] The image of Figure 7.24 with 200 percent zoom 324

Figure 7.28:
[*] The image of Figure 7.24 with 500 percent zoom 325

Figure 7.29:
[*] An animated image with three frames 325

Figure 7.30:
[*] An image animation example 327

Figure 7.31:
[*] The first frame of an animated image 329

Figure 7.32:
[*] The second frame of an animated image 330

Figure 7.33:
[*] A bitmap example 333

Figure 7.34:
[*] Changing the pixel colors of a bitmap 336

Figure 7.35:
[*] Viewing icons 338

Figure 7.36:
[*] A skewing application 339

Figure 7.37:
[*] Normal view of an image 341

Figure 7.38:
[*] Skewed image 342

Figure 7.39:
[*] Drawing transparent graphics objects 343

Figure 7.40:
[*] Drawing multiple images 345

Figure 7.41:
[*] Viewing an image in a picture box 348

Figure 7.42:
[*] Saving images with different sizes 349

Figure 7.43:
[*] New image, with width of 200 and height of 200 351

Figure 8.1:
[*] Using BitmapData to set grayscale 359

Figure 8.2:
[*] Changing the pixel format of a partial bitmap 361

Figure 8.3:
[*] Viewing a metafile 363

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 8.4:
[*] A metafile created programmatically 365

Figure 8.5:
[*] Reading metafile records 368

Figure 8.6:
[*] Reading metafile header attributes 371

Figure 8.7:
[*] Applying a color remap table 373

Figure 8.8:
[*] Wrapping images 377

Figure 8.9:
[*] Drawing semitransparent images 380

Figure 8.10:
[*] Applying SetGamma and SetColorKey 381

Figure 8.11:
[*] Using the SetNoOp method 382

Figure 8.12: The relationship among Encoder, EncoderCollection, and Image 385

Figure 9.1: Lines with different starting cap, ending cap, and dash styles 395

Figure 9.2: Line dash style 396

Figure 9.3: Line dash caps 396

Figure 9.4:
[*] Reading line caps 400

Figure 9.5:
[*] Reading line dash styles 401

Figure 9.6:
[*] Getting line dash caps 402

Figure 9.7:
[*] A rectangle, an ellipse, and a curve with different line styles 404

Figure 9.8:
[*] A line with custom caps 404

Figure 9.9:
[*] The line join test application 406

Figure 9.10:
[*] The Bevel line join effect 408

Figure 9.11:
[*] The Miter line join effect 408

Figure 9.12:
[*] The Round line join effect 409

Figure 9.13:
[*] Customized starting and ending caps 409

Figure 9.14:
[*] Setting customized starting and ending caps 411

Figure 9.15:
[*] Adjustable arrow caps 412

Figure 9.16:
[*] A simple graphics path 416

Figure 9.17:
[*] A filled graphics path 416

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 9.18:
[*] A shaped form 417

Figure 9.19:
[*] Three subpaths 422

Figure 9.20:
[*] Nested containers 425

Figure 9.21:
[*] Drawing with different PageUnit values 428

Figure 9.22:
[*] Saving and restoring graphics states 431

Figure 9.23:
[*] Using graphics containers to draw text 433

Figure 9.24:
[*] Using graphics containers to draw shapes 435

Figure 9.25:
[*] Reading the metadata of a bitmap 437

Figure 9.26:
[*] Color blending examples 438

Figure 9.27:
[*] Transparent graphics shapes in an image using alpha blending 439

Figure 9.28:
[*] Mixed blending effects 440

Figure 9.29:
[*] Using linear gradient brushes 443

Figure 9.30:
[*] Using a rectangle in the linear gradient brush 444

Figure 9.31:
[*] Using the SetBlendTriangularShape method 445

Figure 9.32:
[*] Using the SetSigmaBellShape method 446

Figure 9.33:
[*] Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape 447

Figure 9.34:
[*] Setting the center of a gradient 448

Figure 9.35:
[*] A multicolor gradient 450

Figure 9.36:
[*] Using blending in a linear gradient brush 452

Figure 9.37:
[*] Blending using PathGradientBrush 454

Figure 9.38:
[*] Setting the focus scale 455

Figure 9.39:
[*] Blending multiple colors 456

Figure 9.40:
[*] Using the InterpolationColors property of PathGradientBrush 457

Figure 9.41:
[*] Multicolor blending using PathGradientBrush 459

Figure 9.42:
[*] Drawing semitransparent graphics shapes 461

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 9.43:
[*] Drawing semitransparent shapes on an image 463

Figure 9.44:
[*] Using CompositingMode.SourceOver 466

Figure 9.45:
[*] Blending with CompositingMode.SourceCopy 467

Figure 9.46:
[*] A mixed blending example 469

Figure 9.47:
[*] Drawing with SmoothingMode set to Default 472

Figure 9.48:
[*] Drawing with SmoothingMode set to AntiAlias 473

Figure 10.1:
[*] Steps in the transformation process 476

Figure 10.2:
[*] Transformation stages 477

Figure 10.3:
[*] Drawing a line from point (0, 0) to point (120, 80) 477

Figure 10.4:
[*] Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40) 479

Figure 10.5:
[*] Drawing with the GraphicsUnit.Inch option 480

Figure 10.6:
[*] Drawing with the GraphicsUnit.Inch option and a pixel width 481

Figure 10.7:
[*] Combining page and device coordinates 482

Figure 10.8:
[*] Drawing a line and filling a rectangle 487

Figure 10.9:
[*] Rotating graphics objects 488

Figure 10.10:
[*] Using the RotateAt method 490

Figure 10.11:
[*] Resetting a transformation 490

Figure 10.12:
[*] Scaling a rectangle 492

Figure 10.13:
[*] Shearing a rectangle 493

Figure 10.14:
[*] Translating a rectangle 494

Figure 10.15:
[*] Composite transformation 499

Figure 10.16:
[*] Local transformation 500

Figure 10.17:
[*] Rotating images 502

Figure 10.18:
[*] Scaling images 503

Figure 10.19:
[*] Translating images 503

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 10.20:
[*] Shearing images 504

Figure 10.21: An identity matrix 505

Figure 10.22: A matrix whose components have different intensities 506

Figure 10.23: A color matrix with multiplication and addition 506

Figure 10.24:
[*] Translating colors 509

Figure 10.25:
[*] Scaling colors 511

Figure 10.26:
[*] Shearing colors 512

Figure 10.27: RGB rotation space 513

Figure 10.28: RGB initialization 514

Figure 10.29:
[*] Rotating colors 515

Figure 10.30:
[*] Using the transformation matrix to transform text 516

Figure 10.31:
[*] Using the transformation matrix to shear text 517

Figure 10.32:
[*] Using the transformation matrix to reverse text 518

Figure 10.33:
[*] Scale  Rotate  Translate composite transformation 520

Figure 10.34:
[*] Translate  Rotate  Scale composite transformation with Append 521

Figure 10.35:
[*] Translate  Rotate  Scale composite transformation with Prepend 522

Figure 11.1: A simple drawing process 528

Figure 11.2: A simple printing process 528

Figure 11.3: Conceptual flow of the printing process 530

Figure 11.4: A flowchart of the printing process 532

Figure 11.5: Process A 533

Figure 11.6:
[*] Creating a Windows application 534

Figure 11.7:
[*] Your first printing application 535

Figure 11.8:
[*] The printer settings form 547

Figure 11.9:
[*] Reading printer properties 551

Figure 11.10: Print events 553

Figure 11.11:
[*] The print events application 555

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 11.12:
[*] The form with text file printing options 558

Figure 11.13:
[*] A graphics-printing application 563

Figure 11.14:
[*] Drawing simple graphics items 564

Figure 11.15:
[*] Viewing an image 567

Figure 11.16:
[*] Print dialogs in the Visual Studio .NET toolbox 569

Figure 11.17:
[*] The print dialog application 574

Figure 11.18:
[*] Viewing an image and text 579

Figure 11.19:
[*] The print preview dialog 579

Figure 11.20:
[*] The page setup dialog 580

Figure 11.21:
[*] The print dialog 580

Figure 11.22:
[*] The custom page settings dialog 584

Figure 11.23:
[*] The PageSetupDialog sample in action 588

Figure 11.24:
[*] A form for printing multiple pages 591

Figure 11.25:
[*] Print preview of multiple pages 595

Figure 11.26:
[*] Setting a document name 595

Figure 11.27:
[*] Marginal-printing test application 596

Figure 11.28: PrintController-derived classes 600

Figure 11.29:
[*] Print controller test form 601

Figure 11.30:
[*] Print controller output 604

Figure 12.1: Drawing in Windows Forms 608

Figure 12.2: Drawing in Web Forms 608

Figure 12.3:
[*] The FirstWebApp project 610

Figure 12.4:
[*] The default WebForm1.aspx page 611

Figure 12.5:
[*] The HTML view of WebForm1.aspx 611

Figure 12.6:
[*] An ASP.NET document's page properties 612

Figure 12.7:
[*] The WebForm1.aspx design mode after the addition of Web Forms controls 613

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 12.8:
[*] Viewing an image in an Image control 614

Figure 12.9:
[*] Drawing simple graphics objects on the Web 617

Figure 12.10:
[*] Drawing various graphics objects 621

Figure 12.11:
[*] Drawing an image 623

Figure 12.12:
[*] Using LinearGradientBrush and PathGradientBrush 625

Figure 12.13:
[*] Drawing semitransparent objects 626

Figure 12.14:
[*] Entering points on a chart 630

Figure 12.15:
[*] A line chart in ASP.NET 632

Figure 12.16:
[*] A pie chart–drawing application in ASP.NET 633

Figure 12.17:
[*] The Draw Chart button click in action 636

Figure 12.18:
[*] The Fill Chart button click in action 637

Figure 13.1: The Form class hierarchy 641

Figure 13.2:
[*] Drawing on a form 643

Figure 13.3:
[*] Drawing on Windows controls 644

Figure 13.4:
[*] Drawing lines in a loop 651

Figure 13.5:
[*] The same result from two different drawing methods 657

Figure 13.6:
[*] Using DrawRectangle to draw rectangles 658

Figure 13.7:
[*] Using system pens and brushes 661

Figure 15.1:
[*] An interactive GUI application 677

Figure 15.2:
[*] Designing transparent controls 680

Figure 15.3:
[*] Drawing a circular form and Windows controls 682

Figure 15.4:
[*] A graphics copyright application 683

Figure 15.5:
[*] Thumbnail view of an image 684

Figure 15.6:
[*] An image after copyright has been added to it 688

Figure 15.7:
[*] Users table schema 689

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 15.8:
[*] Reading and writing images in a database form 690

Figure 15.9:
[*] Displaying a bitmap after reading data from a database 694

Figure 15.10:
[*] An owner-drawn ListBox control 699

Figure 15.11:
[*] An owner-drawn ListBox control with images 701

Figure A.1:
[*] An error generated from Listing A.1 705

Figure A.2:
[*] An exception-handled error message 706

[*] A color version of this figure is available on the Addison-Wesley Web site at 

www.awprofessional.com/titles/0321160770.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.awprofessional.com/titles/0321160770
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Tables

Table 1.1: System.Drawing classes 15

Table 1.2: System.Drawing.Design classes 19

Table 1.3: System.Drawing.Design interfaces 20

Table 1.4: System.Drawing.Drawing2D classes 20

Table 1.5: System.Drawing.Imaging classes 22

Table 1.6: System.Drawing.Printing classes 23

Table 1.7: System.Drawing.Text classes 25

Table 2.1: Color properties 45

Table 2.2: Color methods 46

Table 2.3: Rectangle and RectangleF properties 51

Table 2.4: Rectangle and RectangleF methods 55

Table 3.1: Graphics properties 62

Table 3.2: Graphics draw methods 64

Table 3.3: Icon properties 98

Table 3.4: Icon methods 99

Table 3.5: Graphics fill methods 108

Table 3.6: Some miscellaneous Graphics methods 116

Table 4.1: HatchStyle members 139

Table 4.2: TextureBrush properties 147

Table 4.3: LinearGradientMode members 154

Table 4.4: LinearGradientBrush properties 155

Table 4.5: LinearGradientBrush methods 155

Table 4.6: PathGradientBrush properties 164

Table 4.7: WrapMode members 164

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Table 4.8: Pen properties 168

Table 4.9: Pen methods 169

Table 4.10: PenType members 169

Table 4.11: PenAlignment members 171

Table 4.12: LineCap members 177

Table 4.13: DashCap members 177

Table 4.14: DashStyle members 178

Table 4.15: TextureBrush methods 184

Table 4.16: SystemPens properties 190

Table 4.17: SystemBrushes properties 191

Table 5.1: SystemColors properties 210

Table 5.2: Common TypeConverter methods 214

Table 5.3: ColorTranslator methods 216

Table 5.4: FontStyle members 223

Table 5.5: FontFamily properties 223

Table 5.6: FontFamily methods 224

Table 5.7: GraphicsUnit members 227

Table 5.8: Font properties 228

Table 5.9: StringAlignment members 233

Table 5.10: StringTrimming members 233

Table 5.11: StringFormatFlags members 238

Table 5.12: StringDigitSubstitute members 240

Table 5.13: TextRenderingHint members 242

Table 6.1: Region methods 265

Table 6.2: CombineMode members 273

Table 7.1: Number of bits and possible number of colors per pixel 290

Table 7.2: Image class properties 293

Table 7.3: Image class methods 294

Table 7.4: ImageFormat properties 301

Table 7.5: RotateFlipType members 307

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Table 7.6: PictureBoxSizeMode members 348

Table 8.1: ImageLockMode members 355

Table 8.2: PixelFormat members 356

Table 8.3: BitmapData properties 358

Table 8.4: MetafileHeader methods 369

Table 8.5: MetafileHeader properties 370

Table 8.6: ColorPalette.Flags values 375

Table 8.7: WrapMode members 376

Table 8.8: ColorAdjustType members 378

Table 8.9: The clear methods of ImageAttributes 383

Table 8.10: Encoder fields 386

Table 8.11: EncoderParameter properties 387

Table 8.12: ImageCodecInfo properties 388

Table 9.1: System.Drawing.Drawing2D classes 394

Table 9.2: Line cap styles 395

Table 9.3: Pen Class Members for Setting Line Caps and Styles 397

Table 9.4: CustomLineCap properties 405

Table 9.5: LineJoin members 405

Table 9.6: PathPointType members 415

Table 9.7: GraphicsPath properties 418

Table 9.8: Some GraphicsPath methods 420

Table 9.9: GraphicsUnit members 427

Table 9.10: Id values 436

Table 9.11: Format of Type property values 436

Table 9.12: CompositingQuality members 464

Table 9.13: SmoothingMode members 471

Table 9.14: PixelOffsetMode members 473

Table 10.1: Matrix properties 484

Table 10.2: Transformation-related members defined in the Graphics class 495

Table 11.1: Duplex members 540

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Table 11.2: Other PrinterSettings properties 543

Table 11.3: PrinterResolutionKind members 545

Table 11.4: PrintDocument properties 551

Table 11.5: PrintDocument methods 552

Table 11.6: PrintPageEventArgs properties 554

Table 11.7: PrintDialog properties 570

Table 11.8: PageSetupDialog properties 571

Table 11.9: Some PrintPreviewDialog properties 573

Table 11.10: PageSettings properties 582

Table 11.11: PaperSourceKind members 583

Table 11.12: PrintRange members 590

Table 13.1: ControlStyle members 652

Table 14.1: DllImportAttribute field members 665

Table 14.2: CallingConvention members 666

Table 15.1: DrawItemEventArgs properties 695

Table 15.2: MeasureItemEventArgs properties 696

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Acknowledgments

First of all, I would like to thank a great team at Addison-Wesley, including Stephane Thomas, John D. Ruley, Michael Mullen, Stephanie 

Hiebert, and Tyrrell Albaugh, all of whom were very helpful from time to time.

Technical reviewers played a vital role in improving the technical aspects of this book. Their comments and suggestions made me think from 

various different programming perspectives. I would like to thank technical reviewers Charles Parker, Min Liu, Gilles Khouzam, Jason 

Hattingh, Chris Garrett, Jeffery Galinovsky, Darrin Bishop, and Deborah Bechtold.

I would also like to thank John O'Donnell for his contribution to the printing chapter of the book (Chapter 11).

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Introduction

By introducing the .NET Framework to the programming world, Microsoft has changed the perspective and vision of programming and 

programmers. Unlike previous programming environments, the .NET Framework is designed with the future of software development in mind. 

Besides introducing the new C# language and significant additions to Visual Basic .NET and other languages, the .NET Framework provides 

many new tools and utilities that make a programmer's life easier.

Languages, tools, and utilities aside, the .NET Framework library is the real power of the .NET Framework. It's an object-oriented class 

library that defines an interface to interact with various programming technologies. Any programming language that is designed to work with 

the .NET Framework can access the library, which makes a programmer's life easier because the methods and properties defined in the 

library are the same, regardless of the language.

Each class defined in the .NET Framework library belongs to a particular namespace—a logical unit that is used to separate a particular

programming interface from others. For example, the System.Windows.Forms namespace defines classes that are used for Windows Forms 

development. System.Data and its subnamespaces define classes that are used for database development (ADO.NET).

GDI+ is the next-generation graphics device interface, defined in System.Drawing and its subnamespaces. This book focuses on how to write 

graphical Windows and Web applications using GDI+ and C# for the Microsoft .NET Framework.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Who Is This Book For?

This book is designed for intermediate developers who want to write graphics applications for the .NET Framework using GDI+ and C#. Here 

are the topics we will cover:

What GDI+ is all about, and how it differs from GDI

How GDI+ works, and where it is defined in the .NET Framework library

How to draw text, lines, curves, rectangles, ellipses, and other graphics shapes in GDI+

How to fill rectangles, ellipses, and other closed curves with different colors, styles, and textures

Painting and drawing in .NET

Viewing and manipulating images

How Windows Forms and Web Forms are related to drawing

How to write Web-based graphics applications

Printing in .NET

Transforming graphics objects, colors, and images

Interactive color blending and transparent colors

Using GDI in .NET applications

Precautions to take when writing GDI+ applications

Optimizing the performance of GDI+ applications

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Prerequisites

There are some things you should know before beginning this book:

Language: This book is written in C#, but developers who want to use GDI+ with other .NET Framework languages—including

Visual Basic .NET—can also use this book. Because C# and VB.NET share the same .NET Framework library, there isn't much

difference aside from the language syntaxes. Knowledge of C# or VB.NET is not a requirement, however. If you are a C++

developer, you should have no difficulty using this book.

Framework: I used Visual Studio .NET to develop and test the samples in this book. Knowledge of Visual Studio .NET and basics 

of the .NET Framework is a requirement.

Basics of graphics programming: A basic understanding of graphics programming is a plus but is not mandatory.

GDI programming experience: Experience with GDI programming is a plus but is not mandatory.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

What's in This Book That I Won't See in Other Books?

This book is written by an experienced author who has been watching every .NET move closely since the birth of .NET.

The author works very closely with the .NET community and has extensive experience developing real-world .NET applications.

Besides covering GDI+-related namespaces and classes, this book takes a practical approach, discussing all concepts.

Almost every chapter of the book ends with a real-world application, including FirstWebApp, GDI+Painter, ImageViewer, and many 

more.

One chapter (Chapter 13) is dedicated to GDI+ performance techniques, discussing what to do and what not to do, when we're 

writing graphics applications in .NET using GDI+.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Chapter Organization

Before we start, let's take a quick tour of this book. It has 15 chapters and one appendix. Here's a brief introduction:

Chapter 1: GDI+: The Next-Generation Graphics Interface

GDI+ is a new and improved version of GDI. This chapter introduces the GDI+ library, its advantages over previous versions, new features 

and additions to the library, and how it is related to the .NET Framework.

Chapter 2: Your First GDI+ Application

In the .NET Framework Library, GDI+ functionality is defined in the System.Drawing namespace and its subnamespaces. This chapter 

discusses the contents of these namespaces. After finishing this chapter, you will understand which functionality is defined where and when 

to which namespace.

Chapter 3: The Graphics Class

The Graphics class plays a major role in GDI+. Whenever you need to draw a graphics object, you must use the Graphics class. This chapter 

discusses Graphics class methods and properties, and how to use them. After completing this chapter, you'll have a pretty good idea how to 

draw and fill various graphics objects.

Chapter 4: Working with Brushes and Pens

Brushes and pens are used to fill and draw graphics objects. GDI+ provides many classes for working with brushes and pens. This chapter 

describes how to work with them.

Chapter 5: Colors, Fonts, and Text

This chapter discusses the color-, font-, and text-related classes provided by the .NET Framework class library in more detail.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Chapter 6: Rectangles and Regions

Rectangles and regions can be very useful—and very tricky. This chapter covers them in detail.

Chapter 7: Working with Images

The .NET Framework divides GDI+ functionality between two namespaces: System.Drawing and System.Drawing.Imaging. This chapter 

covers the basic imaging-related functionality defined in the System.Drawing namespace.

Chapter 8: Advanced Imaging

This chapter discusses more imaging functionality, including the System.Drawing.Imaging namespace and how to work with metafiles in the 

.NET Framework. We will also see how to maintain the quality and rendering speed of images in GDI+.

Chapter 9: Advanced 2D Graphics

This chapter discusses advanced two-dimensional graphics programming using GDI+. Advanced 2D techniques and tools include blending, 

matrices, graphics paths, and gradient brushes.

Chapter 10: Transformation

This chapter examines GDI+ transformation. Transformation can be applied not only to graphics shapes, curves, and images, but also to 

image colors.

Chapter 11: Printing

Printing functionality in the .NET Framework library is defined in the System.Drawing.Printing namespace. This chapter explores this 

namespace and how to write printing applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Chapter 12: Developing GDI+ Web Applications

GDI+ can also be used in Web applications. This chapter discusses how to use GDI+ in Web applications with ASP.NET.

Chapter 13: GDI+ Best Practices and Performance Techniques

This chapter concentrates on GDI+ best practices and GDI+-related tips and tricks to improve the quality and performance of drawing.

Chapter 14: GDI Interoperability

This chapter demonstrates how GDI can be used with GDI+ in managed applications.

Chapter 15: Miscellaneous GDI+ Examples

In this chapter we have some fun with GDI+. Among the topics in this chapter are designing interactive GUI applications, creating shaped 

forms, and adding custom text in images.

Appendix A: Exception Handling in .NET

This appendix introduces exception and error handling in .NET.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

Example Source Code

Complete source code for the examples in this book (in both C# and Visual Basic .NET) is available for download at 

www.awprofessional.com/titles/0321160770.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.awprofessional.com/titles/0321160770
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Exception and Error Handling in the Samples

The .NET Framework supports structured exception handling that's similar to C++ exception handling. The examples in this book do not 

include exception handling code. Adding exception handling code to every code snippet would have been confusing and redundant. Instead, 

we discuss exception and error handling concepts in Appendix A. It is highly recommended that you read Appendix A and apply exception and 

error handling techniques in your applications.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

This introduction explained the book's organization and answered basic questions about the book. In Chapter 1, you will learn the basics of 

GDI+. Topics we will cover include

What is GDI+, and why it is a better programming interface than its predecessors?

How is GDI+ designed and used in the .NET Framework?

What are the major advantages of GDI+ over GDI?

How do you write your first graphics application in .NET using GDI+?

What are some of the basic graphics concepts?

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 1. GDI+: The Next-Generation Graphics 

Interface

Welcome to the graphics world of GDI+, the next-generation graphics device interface. GDI+ is the gateway to interact with graphics device 

interfaces in the .NET Framework. If you're going to write .NET applications that interact with graphics devices such as monitors, printers, or 

files, you will have to use GDI+.

This chapter will introduce GDI+. First we will discuss the theoretical aspects of GDI+, which you should know before starting to write a 

graphics application.

After reading this chapter, you should understand the following topics:

What GDI+ is

How GDI+ is defined

How to use GDI+ in your applications

What's new in GDI+

What the major programming differences between GDI and GDI+ are

Which major namespaces and classes in the .NET Framework library expose the functionality of GDI+

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



1.1 Understanding GDI+

If you want to write efficient and optimized graphics applications, it's important to understand the GDI+ class library. In this section we will 

discuss how GDI+ is defined, and how it can be used in managed and unmanaged applications.

1.1.1 Definition

GDI+ is a library that provides an interface that allows programmers to write Windows and Web graphics applications that interact with 

graphical devices such as printers, monitors, or files.

All graphical user interface (GUI) applications interact with a hardware device (a monitor, printer, or scanner), that can represent the data in a 

human-readable form. However, there is no direct communication between a program and a device; otherwise, you would have to write user 

interface code for each and every device with which your program interacts!

To avoid this monumental task, a third component sits between the program and device. It converts and passes data sent by the program to 

the device and vice versa. This component is the GDI+ library. Typing a simple "Hello World" on the console, drawing a line or a rectangle, 

and printing a form are examples in which a program sends data to GDI+, which converts it for use by a hardware device. Figure 1.1

illustrates this process.

Figure 1.1. The role of GDI+

Now let's see how GDI+ works. Suppose your program draws a line. A line is displayed as a set of pixels drawn in sequence from the starting 

location to the ending location. To draw a line on a monitor, the monitor needs to know where to draw the pixels. Instead of telling the monitor 

to draw pixels, your program calls the DrawLine method of GDI+, and GDI+ draws the line from point A to point B. GDI+ reads the point A and 

point B locations, converts them to a sequence of pixels, and tells the monitor to display the sequence of pixels.

GDI+ allows you to write device-independent managed applications and is designed to provide high performance, ease of use, and 

multilingual support.

1.1.2 What Is GDI+?

The previous section defined GDI+. But how is it implemented? GDI+ is a set of C++ classes that are located in a class library called 

Gdiplus.dll. Gdiplus.dll is a built-in component of the Microsoft Windows XP and Windows Server 2003 operating systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Tip

You can use GDI+ on Windows operating systems other than XP. You just need to install GDI+ on the computer, which 

means that Gdiplus.dll must be copied to the system directory. Installing the .NET SDK, Visual Studio .NET, or .NET 

redistributable copies Gdiplus.dll automatically.

Comparing GDI+ to GDI, as we do later in this chapter, is a natural way to introduce GDI+. Note, however, that prior knowledge of GDI is not 

a prerequisite for learning GDI+ or using this book. This book is about GDI+ development in the .NET Framework, which provides new 

classes and a new way to write graphics applications. Prior experience with GDI will aid your understanding of the basic concepts, but it is not 

necessary.

GDI Interoperability

You can use GDI in managed applications with GDI+. GDI interoperability allows you to use GDI functionality in managed 

applications with GDI+, but you need to take some precautions. We will discuss GDI interoperability in Chapter 14.

1.1.3 The GDI+ Library in the .NET Framework

The previous section said that the GDI+ library is a set of C++ classes that can be used from both managed and unmanaged code. Before we 

discuss how GDI+ is represented in the .NET Framework library, let's review the concepts of managed and unmanaged code.

1.1.3.1 Managed and Unmanaged Code

Code written in the Microsoft .NET development environment is divided into two categories: managed and unmanaged. In brief, code written 

in the .NET framework that is being managed by the common language runtime (CLR) is called managed code. Code that is not being 

managed by the CLR is called unmanaged code.

Managed code enjoys many rich features provided by the CLR, including automatic memory management and garbage collection, 

cross-language integration, language independence, rich exception handling, improved security, debugging and profiling, versioning, and 

deployment. With the help of a garbage collector (GC), the CLR automatically manages the life cycle of objects. When the GC finds that an 

object has not been used after a certain amount of time, the CLR frees resources associated with that object automatically and removes the 

object from the memory. You can also control the life cycle of objects programmatically.

You can write both managed and unmanaged applications using Microsoft Visual Studio .NET. You can use Visual C++ 7.0 to write 

unmanaged code in Visual Studio .NET. Managed Extensions to C++ (MC++) is the way to write C++ managed code. Code written using C# 

and Visual Basic .NET is managed code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



1.1.3.2 GDI+ in Managed Code

GDI+ exposes its functionality for both managed and unmanaged code. As noted earlier, GDI+ is a set of unmanaged C++ classes. 

Programmers targeting unmanaged code can use these C++ classes to write their graphics applications.

Note

This book targets only managed code development. Unmanaged GDI+ development will not be discussed.

The .NET Framework library provides managed classes that are a nice wrapper around GDI+ C++ classes. The GDI+ managed classes 

provided by the .NET Framework library are defined in the System.Drawing.dll and System.Drawing.Design.dll assemblies. Figure 1.2 shows 

a conceptual diagram of the communication between managed Windows and Web applications and display devices through managed GDI+. 

As the diagram shows, the managed GDI+ classes defined in the System.Drawing namespace and its subnamespace are a wrapper around 

the GDI+ C++ classes defined in the Gdiplus.dll unmanaged library.

Figure 1.2. The managed GDI+ class wrapper

The managed GDI+ classes provided in the .NET Framework library are defined in the System.Drawing namespace and its five 

subnamespaces: System.Drawing.Design, System.Drawing.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and 

System.Drawing.Text. We will discuss these namespaces and their classes in more detail in Section 1.4.

1.1.3.3 GDI+ Revisited

In brief,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



GDI+ is a component that sits between an application and graphical devices. It converts data into a form compatible with a 

graphical device, which presents the data in human-readable form.

GDI+ is implemented as a set of C++ classes that can be used from unmanaged code.

In the .NET Framework library, GDI+ classes are exposed through System.Drawing (and its subnamespaces), which provides a 

managed class wrapper around the GDI+ C++ classes.

In this book we will be using GDI+ through the namespaces provided by the .NET Framework library. If you want to learn more about GDI+ 

C++ classes, search for GDI+ references on MSDN. On the GDI+ references page (go to http://msdn.microsoft.com/library, expand Graphics 

and Multimedia, and then click on GDI+), you can find all GDI+ classes, functions, constants, enumerations, and structures.

1.1.4 What's New in GDI+ for GDI Programmers?

GDI+ provides significant improvements over its predecessor, GDI. In this section we will take a quick look at these improvements.

GDI+ provides some nice features for 2D vector graphics. One of the many nice features is support for floating point coordinates. For 

example, the PointF, SizeF, and RectangleF classes represent a floating point, size, and rectangle, respectively. Other objects that use Point, 

Size, and Rectangle objects also have overloaded methods that can use the PointF, SizeF, and RectangleF objects.

The alpha component, which represents the opacity of a color, is a new addition to the Color structure. Alpha blending, anti-aliasing, and color 

blending are other new additions to the library. We will discuss these topics in more detail in Chapters 5 and 9.

Texture and gradient brushes are another new addition. Some other additions to the basic primitives are compound lines, cardinal splines, 

scalable regions, inset pens, high-quality filtering and scaling, and many new line styles and line cap options.

Imaging is another area where GDI developers will find many new additions in GDI+. Some of the additions are native support for image file 

formats such as .jpeg, .png, .gif, .bmp, .tiff, .exif, and .icon; support for encoding and decoding raster formats; native image processing 

support; brightness, contrast, and color balance; and support for transformations, including rotation and cropping.

In color management, support for sRGB, ICM2, and sRGB64 is a new addition. Typography support includes the ClearType, texture, and 

gradient-filled texts, as well as support for Unicode and Windows 2000 scripts.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.msdn.microsoft.com/library


[ Team LiB ]  

1.2 Exploring GDI+ Functionality

Microsoft's managed GDI+ documentation divides its functionality into three categories: 2D vector graphics, imaging, and typography. This 

book divides the GDI+ functionality into five categories:

2D vector graphics1.

Imaging2.

Typography3.

Printing4.

Design5.

1.2.1 2D Vector Graphics Programming

Vector graphics concerns the drawing of shapes that can be specified by sets of points on a coordinate system. Such shapes are called 

primitives; examples include lines, curves, rectangles, and paths. In managed GDI+, a class object or structure represents a graphics 

primitive. Each class or structure provides members that can be used to get and set a primitive's properties. For example, the Point structure 

provides X and Y properties that represent the x- and y-coordinate values of a point. The Point structure also provides methods, including 

Ceiling, Round, and Truncate. We will discuss these methods in more detail in Chapter 2.

In the .NET Framework library, 2D vector programming is divided into two categories: general and advanced. General 2D vector graphics 

programming functionality is defined in the System.Drawing namespace; advanced functionality is defined in the System.Drawing.Drawing2D

namespace.

The major 2D vector programming classes defined in the System.Drawing namespace are Pen, Pens, Brush (and Brush-derived classes), 

Brushes, Font (and Font-related classes), Point, Rectangle, and Size. We will discuss these classes and their members in more detail in other 

chapters according to how they are categorized.

The System.Drawing.Drawing2D namespace provides blending, color blending, graphics paths, custom line caps, hatch and linear gradient 

brushes, and matrices. We will discuss these classes and their members in more detail in Chapter 9.

1.2.2 Imaging

Imaging involves viewing and manipulating images. In managed GDI+, imaging functionality is divided into two categories: basic and 

advanced. The basic functionality is defined in the Image class, which also serves as the base class of the Bitmap and Metafile classes. The 

Image class provides members to load, create, and save images.

The Bitmap and Metafile classes define functionality for displaying, manipulating, and saving bitmaps and metafiles. Chapters 7 and 8 cover 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



imaging functionality in more detail.

1.2.3 Typography

Typography refers to the design and appearance of text. GDI+ provides classes to create and use fonts. Some of the font-related classes are 

Font, FontFamily, and FontConverter. GDI+ also provides classes to read all installed fonts on a system. You can also add custom fonts to the 

font collection. We will cover the capabilities of GDI+ with respect to fonts and typography in Chapter 5.

1.2.4 Printing

GDI+ provides easy-to-use classes that encapsulate Windows printing functionality. The printing classes defined in the .NET Framework 

class library provide access to and control over available printers, printer sources, paper and paper sources, pages, printer resolution, and so 

on. GDI+ printing functionality is defined in the System.Drawing.Printing namespace. Chapter 11 is dedicated to printing functionality.

1.2.5 Design

The GDI+ class library also provides classes that extend design-time user interface (UI) logic and drawing functionality. These classes are 

defined in the System.Drawing.Design namespace. Examples of extended UI functionality include creating custom toolbox items, type-specific 

value editors, and type converters.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

1.3 GDI+ from a GDI Perspective

This section is for GDI programmers. To build on your existing knowledge, we will compare and contrast GDI and GDI+. If you've never 

worked with GDI, we recommend that you skip this section.

We have already mentioned the first and major difference between the two versions: Whereas GDI+ exposes its functionality as both 

unmanaged and managed classes (through the System.Drawing namespace), GDI is unmanaged only. Besides this major difference, some 

of the important changes in GDI+ are as follows:

No handles or device contexts

Object-oriented approach

Graphics object independence

Method overloading

Separate methods for draw and fill

Regions and their styles

1.3.1 Elimination of Handles and Device Contexts

As a GDI programmer, you must be familiar with the device context. A device context is a structure that stores information about a particular 

display device, such as a printer or monitor. This structure specifies how the graphics objects will be drawn on the output device. The device 

context also stores information about the properties of graphics objects, such as the quality of rendering and so on. To draw an object on a 

device, first an application needs to get a handle to the device context (HDC), which is used by GDI to send information to the device.

In GDI+, the concept of device context and handle to the device context is replaced by the Graphics object. The Graphics class provides

methods and properties to draw various graphics objects; these methods and properties are very easy to use compared to the earlier device

context–based programming model.

Suppose that you need to draw a line from point (20, 20) to point (200, 200). In GDI, first an application creates an HDC using the BeginPaint

function, which takes a window handle and a PAINTSTRUCT structure. Alternatively, you can call the GetDC function. To draw a line, the 

application must create a pen object and draw a line using this pen. An application can obtain a pen object by making a call to the CreatePen

function, which returns a handle to the pen.

Before starting to draw, the application needs to call the SelectObject function, which takes the device context and pen handle as arguments. 

Now the application can draw any graphics object. The application calls the EndPaint function to end the drawing process. For example, the 

code snippet in Listing 1.1 draws a line using the MoveToEx and LineTo functions.

Listing 1.1 C++ code to draw a line

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



LRESULT APIENTRY MainWndProc(

    HWND hwnd, UINT message, WPARAM wParam,

    LPARAM lParam)

{

        PAINTSTRUCT ps;

        switch (message)

        {

            case WM_PAINT:

                HDC         handle;

                PAINTSTRUCT pstruct;

                HPEN        hPen;

                ...

                ....

                handle = BeginPaint(hWnd, &pstruct);

                hPen = CreatePen(PS_SOLID, 5,

                        RGB(255, 255, 0));

                SelectObject(handle, hPen);

                MoveToEx(handle, 20, 20, NULL);

                LineTo(handle, 200, 200);

                EndPaint(hWnd, &pstruct);

            ..................

            .....................

        }

}

Now let's see the same example in GDI+: First you need a Graphics object associated with a form, which is usually available on the form's 

Form_Paint event or OnPaint method. Once you've got the Graphics object associated with a form, you can call its draw and fill methods to 

draw and fill various graphics objects, such as lines, rectangles, and curves. For example, the code written in Listing 1.2 is the form's paint 

method. As this code shows, first we get a Graphics object associated with the form by using PaintEventArgs.Graphics. After that we create a 

Pen object and pass it as an argument to the DrawLine method. The DrawLine method takes a Pen object and the starting and ending points 

of a line, and draws a line on the form. Notice also in Listing 1.2 that there is no MoveTo call.

Listing 1.2 GDI+ code in C# to draw a line

private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

Graphics g = e.Graphics;

Pen pn = new Pen(Color.Red, 3);

g.DrawLine(pn, 20, 20, 200, 200);

}

Note

There are other ways to get a Graphics object in your application. We will look at these options in more detail in Chapter 3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



1.3.2 Object-Oriented Approach

If you compare Listings 1.1 and 1.2, it's easy to see that the GDI+ model is more flexible, easier to use, and more object-oriented. GDI 

provides functions to draw graphics objects; GDI+ provides objects. Each graphics primitive is an object. For example, in GDI+, a pen is 

represented by a Pen object, as opposed to the HPEN structure in GDI.

1.3.3 Graphics Object Independence

In GDI, first you select a brush, path, image, or font and pass this object a device context. Then you use the device context handle to draw a 

graphics object, which means all the objects drawn using that device context will have the same effects.

Unlike GDI, GDI+ provides an object-independent model, which means that pens, brushes, images, or fonts can be created and used 

independently and can be changed at any time. In addition, an application can even use different pens to draw different graphics objects on 

the same form, which is not true in the case of a device context.

1.3.4 Method Overloading

GDI+ methods provide many overloaded forms to provide more flexibility to developers. For example, the DrawRectangle method has three 

overloaded forms:

public void DrawRectangle(Pen, Rectangle);1.

public void DrawRectangle(Pen, int, int, int, int);2.

public void DrawRectangle(Pen, float, float, float, float);3.

These forms allow developers to draw a rectangle from a rectangle object, four integer values, or floating point values. The DrawRectangle

method draws a rectangle specified by a coordinate pair, a width, and a height. The DrawImage method, used to draw images, has no fewer 

than 30 overloaded forms. We will discuss these methods in more detail and see them in action in Chapter 3.

1.3.5 Draw and Fill Methods

Drawing and filling are analogous to writing and painting. When you write, you use a pen to "draw" symbols made up of lines and curves. 

Painting means you take a brush, dip it into a color, and fill in areas with the color.

In GDI, both actions (fill and draw) are done in one step. For example, consider drawing and filling a rectangle. First an application creates a 

pen and a brush and calls SelectObject to select that pen and brush. Then the application calls the Rectangle method, which draws and fills 

the rectangle. Listing 1.3 shows a code snippet that draws and fills a rectangle.

Listing 1.3 GDI code to draw and fill a rectangle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



hBrush = CreateHatchBrush(HS_CROSS, RGB(255, 0, 0));

hPen = CreatePen(PS_SOLID, 3, RGB(255, 0, 0));

SelectObject(hdc, hBrush);

SelectObject(hdc, hPen);

Rectangle(hdc, 20, 20, 200, 200);

In GDI+, the Graphics class provides separate draw and fill methods. For example, the DrawRectangle method takes a Pen object and draws 

an outline of a rectangle, and the FillRectangle method takes a Brush object and fills the rectangle with the specified brush, as Listing 1.4

shows.

Listing 1.4 GDI+ code to draw and fill a rectangle

Graphics g = e.Graphics;

Pen pn = new Pen(Color.Red, 3);

HatchBrush htchBrush = new HatchBrush(HatchStyle.Cross,

Color.Red, Color.Blue);

g.DrawRectangle(pn, 50, 50, 100, 100);

g.FillRectangle(htchBrush, 20, 20, 200, 200);

We will discuss the draw and fill methods in more detail in Chapter 4.

1.3.6 Regions and Their Styles

Regions are another area where a GDI developer may find minor changes in GDI+. GDI provides several functions for creating elliptical, 

round, and polygonal regions. As a GDI programmer, you are probably familiar with the CreateRectRgn, CreateEllipticRgn, 

CreateRoundRectRgn, CreatePolygonRgn, and CreatePolyPolygonRgn functions.

In GDI+, the Region class represents a region. The Region class constructor takes an argument of type GraphicsPath, which can have a 

polygon, a circle, or an ellipse to create a polygonal, round, or elliptical region, respectively. We will discuss regions in more depth in Chapter 

6.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

1.4 GDI+ Namespaces and Classes in .NET

In the .NET Framework library, six namespaces define managed GDI+: System.Drawing, System.Drawing.Design, 

System.Drawing.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and System.Drawing.Text. Figure 1.3 shows these 

namespaces. To use any of the classes defined in these namespaces, you must include them in your application.

Figure 1.3. The GDI+ namespaces in the .NET Framework library

Note

The .NET Framework class library is also referred as the .NET runtime class library or base class library (BCL).

This section will provide an overview of GDI+ namespaces, their contents, and why and when to use them. These classes and their members 

will be discussed in more detail in subsequent chapters, according to how they're categorized.

Note

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If you are already aware of the .NET Framework library's GDI+ objects and class hierarchy, you may want to skip the rest of 

this chapter.

1.4.1 The System.Drawing Namespace

The System.Drawing namespace defines basic GDI+ functionality. This namespace contains the Graphics class, which provides methods for 

filling and drawing graphics objects. It also provides classes that encapsulate GDI+ primitives such as rectangles, points, brushes, and pens. 

Brush and its derived classes are used to fill interiors of graphics objects such as ellipses, rectangles, and polygons with the specified color 

and pattern. The Pen class is used to draw lines and curves with a specified color.

Table 1.1 briefly describes the classes of the System.Drawing namespace. We will not discuss these classes in depth here; they are 

discussed in more detail in later chapters.

The System.Drawing namespace also contains some structures that we will be using throughout this book. These structures are 

CharacterRange, Color, Point, PointF, Rectangle, RectangleF, Size, and SizeF.

In addition, this namespace defines some delegates and enumerations, which we will discuss in later chapters.

Table 1.1. System.Drawing classes

Class Description

Bitmap Encapsulates a bitmap, which is an image (with its properties) stored in pixel format.

Brush An abstract base class that cannot be instantiated directly. The Brush class provides functionality used by its 

derived brush classes and represents a brush graphics object. A brush is used to fill the interior of a graphical 

shape with a specified color.

Brushes Represents brushes with all the standard colors. This class has a static member for each standard color. For 

example, Brushes.Blue represents a blue brush.

ColorConverter Provides methods and properties to convert colors from one type to another.

ColorTranslator Provides various methods to translate colors from one type to another.

Font Provides members to define the format of font text, name, face, size, and styles. The Font class also provides 

methods to create a Font object from a window handle to a device context or window handle.

FontConverter Provides members that convert fonts from one type to another.

FontFamily Defines a group of typefaces having a similar basic design and certain variations in styles.

Graphics A key class that encapsulates drawing surfaces. Among many other things, the Graphics class provides 

members to draw and fill graphical objects.

Icon Represents a Windows icon. The Icon class provides members to define the size, width, and height of an icon.

IconConverter Provides members to convert an Icon object from one type to another.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Class Description

Image Provides members to define the size, height, width, and format of an image. The Image class also provides 

methods to create Image objects from a file, a window handle, or a stream; and to save, rotate, and flip images. It 

is an abstract base class, and its functionality is used through its derived classes: Bitmap, Icon, and Metafile.

ImageAnimator Provides methods to start and stop animation, and to update frames for an image that has time-based frames.

ImageConverter Provides members to convert Image objects from one type to another.

ImageFormatConverter Defines members that can be used to convert images from one format to another.

Pen Defines a pen with a specified color and width. A pen is used to draw graphical objects such as a line, a 

rectangle, a curve, or an ellipse.

Pens Provides static members for all the standard colors. For example, Pens.Red represents a red pen.

PointConverter Defines members that can be used to convert Point objects from one type to another.

RectangleConverter Defines members that can be used to convert Rectangle objects from one type to another.

Region Represents a region in GDI+, which describes the interior of a graphics shape.

SizeConverter Defines members that can be used to convert size from one type to another.

SolidBrush Inherited from the Brush class. This class defines a solid brush of a single color.

StringFormat Provides members to define text format, including alignment, trimming and line spacing, display manipulations, 

and OpenType features.

SystemBrushes Defines static properties. Each property is a SolidBrush object with a Windows display element such as Highlight, 

HighlightText, or ActiveBorder.

SystemColors Defines static properties of a Color structure.

SystemIcons Defines static properties for Windows systemwide icons.

SystemPens Defines static properties. Each property is a Pen object with the color of a Windows display element and a width 

of 1.

TextureBrush Inherited from the Brush class. This class defines a brush that has an image as its texture.

ToolboxBitmapAttribute Defines the images associated with a specified component.

1.4.2 The System.Drawing.Design Namespace

As its name suggests, the System.Drawing.Design namespace provides additional functionality to develop design-time controls such as 

custom toolbox items, graphics editors, and type converters. The classes of the System.Drawing.Design namespace are described briefly in 

Table 1.2.

Besides the classes discussed in Table 1.2, the System.Drawing.Design namespace also defines a few interfaces, delegates, and 

enumerations. Table 1.3 lists the interfaces defined in this namespace.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



1.4.3 The System.Drawing.Drawing2D Namespace

The System.Drawing.Drawing2D namespace defines functionality to develop advanced two-dimensional and vector graphics applications. 

This namespace provides classes for graphics containers, blending, advanced brushes, matrices, and transformation. Table 1.4 briefly 

describes these classes.

Besides the classes discussed in Table 1.4, the System.Drawing.Drawing2D namespace provides dozens of enumerations. We will discuss 

these enumerations when we use them in examples in later chapters.

1.4.4 The System.Drawing.Imaging Namespace

Basic imaging functionality is defined in the System.Drawing namespace. The System.Drawing.Imaging namespace provides functionality for 

advanced imaging. Before an application uses classes from this namespace, it must reference the System.Drawing.Imaging namespace.

Table 1.5 briefly describes the classes of the System.Drawing.Imaging namespace. These classes and their use are discussed in more detail 

in Chapter 8.

1.4.5 The System.Drawing.Printing Namespace

The System.Drawing.Printing namespace defines printing-related classes and types in GDI+. Before an application uses classes from this 

namespace, it must include the namespace.

Table 1.6 briefly discusses the classes provided by the System.Drawing.Printing namespace. These classes and their use are discussed in 

more detail in Chapter 11.

1.4.6 The System.Drawing.Text Namespace

The System.Drawing.Text namespace contains only a few classes related to advanced GDI+ typography functionality. Before an application 

uses classes from this namespace, it must include the namespace. Table 1.7 describes these classes; they will be discussed in more detail in 

Chapter 5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 1.2. System.Drawing.Design classes

Class Description

BitmapEditor User interface (UI) for selecting bitmaps using a Properties window.

CategoryNameCollection Collection of categories.

FontEditor UI for selecting and configuring fonts.

ImageEditor UI for selecting images in a Properties window.

PaintValueEventArgs Provides data for the PaintValue event.

PropertyValueUIItem Provides information about the property value UI for a property.

ToolboxComponentsCreatedEventArgs Provides data for the ComponentsCreated event, which occurs when components are added to 

the toolbox.

ToolboxComponentsCreatingEventArgs Provides data for the ComponentsCreating event, which occurs when components are added to 

the toolbox.

ToolboxItem Provides a base implementation of a toolbox item.

ToolboxItemCollection Collection of toolbox items.

UITypeEditor Provides a base class that can be used to design value editors.

Table 1.3. System.Drawing.Design interfaces

Interface Description

IPropertyValueUIService Manages the property list of the Properties window.

IToolboxService Provides access to the toolbox.

IToolboxUser Tests the toolbox for toolbox item support capabilities and selects the current tool.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 1.4. System.Drawing.Drawing2D classes

Class Description

AdjustableArrowCap Represents an adjustable arrow-shaped line cap. Provides members to define the properties to fill, and to set the 

height and width of an arrow cap.

Blend Gradient blends are used to provide smoothness and shading to the interiors of shapes. A blend pattern contains 

factor and pattern arrays, which define the position and percentage of color of the starting and ending colors. The 

Blend class defines a blend pattern, which uses LinearGradientBrush to fill the shapes. The Factors and Positions

properties represent the array of blend factors and array of positions for the gradient, respectively.

ColorBlend Defines color blending in multicolor gradients. The Color and Position properties represent the color array and 

position array, respectively.

CustomLineCap Encapsulates a custom, user-defined line cap.

GraphicsContainer Represents the data of a graphics container. A graphics container is created by Graphics.BeginContainer followed 

by a call to Graphics.EndContainer.

GraphicsPath In GDI+, a path is a series of connected lines and curves. This class provides properties to define the path's fill 

mode and other properties. This class also defines methods to add graphics shapes to a path. For instance, the 

AddArc and AddCurve methods add an arc and a curve, respectively, to the path. Wrap, Transform, Reverse, and 

Reset are some of the associated methods.

GraphicsPathIterator A path can contain subpaths. This class provides the ability to find the number of subpaths and iterate through 

them. Count and SubpathCount return the number of points and the number of subpaths in a path, respectively.

GraphicsState Represents the state of a Graphics object.

HatchBrush Hatch brushes are brushes with a hatch style, a foreground color, and a background color. This class represents a 

hatch brush in GDI+.

LinearGradientBrush Represents a brush with a linear gradient.

Matrix Encapsulates a 3x3 matrix that represents a geometric transformation. This class defines methods for inverting, 

multiplying, resetting, rotating, scaling, shearing, and translating matrices.

PathData Contains the data in the form of points and types that makes up a path. The Points property of the class represents 

an array of points, and the Types property represents the types of the points in a path.

PathGradientBrush Represents a brush with a graphics path. PathGradientBrush contains methods and properties for blending, 

wrapping, scaling, and transformation. This class encapsulates a Brush object that fills the interior of a GraphicsPath

object with a gradient.

RegionData Represents the data stored by a Region object. The Data property of this class represents the data in the form of an 

array of bytes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 1.5. System.Drawing.Imaging classes

Class Description

BitmapData Often we don't want to load and refresh all data of a bitmap because rendering each pixel is not only a slow 

process, but also consumes system resources. With the help of the BitmapData class and its LockBits and 

UnlockBits methods, we can lock the required data of a bitmap in memory and work with that instead of 

working with all the data.

ColorMap Defines a map for converting colors. ColorMap is used by the ImageAttributes class.

ColorMatrix Defines a 5x5 matrix that contains coordinates for the ARGB space. ColorMatrix is used by the ImageAttributes

class.

ColorPalette Defines an array of colors that make up a color palette. ColorPalette is used by the ImageAttributes class.

Encoder Represents an encoder, which represents a globally unique identifier (GUID) that identifies the category of an 

image encoder parameter. Encoder is used by the EncoderParameter class.

EncoderParameter An encoder parameter, which sets values for a particular category of an image. This class is used in the Save 

method with the help of EncoderParameters.

EncoderParameters An array of EncoderParameter objects.

FrameDimension Provides properties to get the frame dimensions of an image.

ImageAttributes Contains information about how image colors are manipulated during rendering (for more information, see 

Chapter 7).

ImageCodecInfo Retrieves information about the installed image codecs.

ImageFormat Specifies the format of an image.

Metafile Defines a graphic metafile, which contains graphics operations in the form of records that can be recorded 

(constructed) and played back (displayed).

MetafileHeader Stores information about a metafile.

MetaHeader Contains information about a Windows-format (WMF) metafile.

PropertyItem Encapsulates a metadata property to be included in an image file.

WmfPlaceableFileHeader Defines a placeable metafile.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 1.6. System.Drawing.Printing classes

Class Description

Margins Specifies the margins of a printed page. The Bottom, Left, Right, and Top properties are used 

to get and set the bottom, left, right, and top margins, respectively, of a page in hundredths of 

an inch.

MarginsConverter Provides methods to convert margins, including CanConvertFrom, CanConvertTo, 

ConvertFrom, and ConvertTo.

PageSettings Specifies settings of a page, including properties such as Bounds, Color, Landscape, Margins, 

PaperSize, PaperSource, PrinterResolution, and PrinterSettings.

PaperSize Specifies the paper size. Its properties include Height, Width, PaperName, and Kind. The Kind

property is the type of paper, represented by the PaperKind enumeration, which has 

members that represent A3, envelopes, sheets, ledgers, and so on.

PaperSource Specifies the paper tray from which the printer gets paper, with properties Kind and 

SourceName. SourceName is a type of PaperSource enumeration, which defines members 

based on the Kind property.

PreviewPageInfo Provides print preview information for a single page. The Image property returns the image of 

the printed page, and the PhysicalSize property returns the size of the printed page in 1/1000 

inch.

PreviewPrintController Displays a document on a screen as a series of images for each page. The UseAntiAlias

property gets and sets the anti-aliasing when displaying the print preview.

PrintController Controls how a document is printed. The class provides four methods: OnStartPage, 

OnStartPrint, OnEndPage, and OnEndPrint.

PrintDocument Starts the printing process. Creates an instance of this class, sets the printing properties that 

describe how to print, and calls the Print method to start the process.

PrinterResolution Provides properties to return a printer resolution. The Kind, X, and Y properties return the 

printer resolution, horizontal resolution in dots per inch (dpi), and vertical printer resolution in 

dpi, respectively.

PrinterSettings Provides methods and properties for setting how a document is printed, including the printer 

that prints it. Some of the common properties are MinimumPage, MaximumPage, Copies, 

MaximumCopies, PrinterName, and so on.

PrinterSettings.PaperSizeCollection Collection of PaperSize objects.

PrinterSettings.PaperSourceCollection Collection of PaperSource objects.

PrinterSettings.PrinterResolutionCollection Collection of PrinterResolution objects.

PrinterUnitConvert Specifies a series of conversion methods that are useful when interoperating with the Win32 

printing application program interface (API).

PrintEventArgs Provides data for the BeginPrint and EndPrint events.

PrintingPermission Controls access to printers.

PrintingPermissionAttribute Allows declarative printing permission checks.

PrintPageEventArgs Provides data for the PrintPage event.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Class Description

QueryPageSettingsEventArgs Provides data for the QueryPageSettings event.

StandardPrintController Specifies a print controller that sends information to a printer.

Table 1.7. System.Drawing.Text classes

Class Description

FontCollection Abstract base class for installed and private font collections. It provides a method to get a list of the font families 

contained in the collection. Two derived classes from the FontCollection class are InstalledFontCollection and 

PrivateFontCollection.

InstalledFontCollection Represents the fonts installed on the system.

PrivateFontCollection Represents a collection of font families built from font files that are provided by the client application.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Summary

GDI+ is an improved version of Microsoft's graphics device interface (GDI) API. In this chapter we learned how GDI+ is designed for use in 

both managed and unmanaged code. System.Drawing and its helper namespaces defined in the .NET Framework library provide a managed 

class wrapper to write managed GDI+ applications. We also learned the basics and definition of GDI+ and what major improvements are 

offered by GDI+ in comparison to GDI. At the end of this chapter, we took a quick look at the System.Drawing namespace and its 

subnamespaces, and classes defined in these namespaces.

Now that you've learned the basics of GDI+, the next step is to write a fully functional graphics application. In Chapter 2 you will learn how to 

write your first graphics application using GDI+ in a step-by-step tutorial format.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 2. Your First GDI+ Application

In this chapter we move to the more practical aspects of writing graphics applications using GDI+ in the .NET Framework. This chapter is the 

foundation chapter and discusses vital concepts, including the life cycle of a graphics application. After reading this chapter, you should 

understand the basics of the GDI+ coordinate system, basic graphics structures used by GDI+, drawing surfaces, and how to write a graphics 

application using GDI+.

To write a graphics application, a good understanding of drawing surfaces and coordinate systems is necessary. We will begin by discussing 

these concepts and how they are represented in GDI+. Then you'll learn step-by-step how to write a graphics application in the .NET 

Framework using GDI+. We will cover the following topics:

How to add a reference to the GDI+ library

How to get a drawing surface in the program

How to create pens and brushes

How to use pens and brushes to draw graphics objects

At the end of this chapter we will discuss some basic graphics structures and their members. These structures are used in examples 

throughout this book and include the following:

Color

Point and PointF

Rectangle and RectangleF

Size and SizeF

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

2.1 Drawing Surfaces

Every drawing application (regardless of the operating system), consists of three common components: a canvas, a brush or pen, and a 

process.

The canvas is the space on which objects will be drawn. For example, in a Windows application, a Windows Form is a canvas.1.

A brush or a pen represents the texture, color, and width of the objects to be drawn on the canvas.2.

The process describes how objects are drawn on the canvas.3.

To draw graphics objects you need to have a pen or a brush, which defines the texture, color, and width of the drawing. For example, if you 

draw a line or a rectangle, you need to create a pen with a color and width.

The process component of the drawing application includes making a call to draw the line or rectangle on the form.

Each drawing surface has four common properties: width, height, resolution, and color depth.

The width and height properties of a surface determine the size of the surface, and they are specified by the number of pixels 

horizontally and vertically, respectively.

The resolution property of a surface is a measurement of the output quality of graphics objects or images in dots per inch (dpi). 

For example, a resolution of 72 dpi means that 1 inch of the surface holds 72 horizontal and 72 vertical pixels. For monitors and 

LCDs, the resolution is frequently specified in terms of the total number of pixels horizontally and vertically rather than a pixel 

density. Thus a monitor resolution of 1280x1024 means that the screen of the monitor can hold 1,280 horizontal pixels and 1,024 

vertical pixels.

The color depth of a surface is the number of colors used to represent each pixel.

Definition: Pixel

A pixel is the smallest element that participates in the drawing process to display graphics objects or images on the screen. 

The pixel density is often represented by a value in dots per inch (dpi).

The quality of a pixel is directly proportional to the color depth. The Color structure represents a color in GDI+. It has four components: alpha, 

red, green, and blue. The RGB (red-green-blue) components of a color represent the number of possible colors (see Figure 2.1). Each 

component in RGB has 256 (2
8
) color combinations. Hence all three components of GDI+ color represent 256x256x256 possible colors. The 

alpha component determines the transparency of the color, which affects how the color mixes with other colors.

Figure 2.1. Color components in GDI+

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



To see the proper colors defined in the GDI+ color structure, a drawing surface must support at least a 24-bit color system (for the RGB 

components of a color structure), which means that each pixel of the surface must be able to hold 24 bits (8 bits each for the R, G, and B 

components, as noted already). Surfaces with less than 24 bits per pixel may not display graphics objects and images exactly as defined in a 

drawing application. We will discuss colors in more detail in Chapter 5.

Note

The color depth of a surface is different from the color depth of a particular display device, such as a monitor or a printer. 

Most monitors can support over a million colors, and some printers may support only black and white.

GDI+ provides three types of drawing surfaces: forms, printers, and bitmaps.

2.1.1 Forms as a Surface

When you write a Windows application that draws something on a form, the form acts as a drawing surface and supports all the properties 

required by a drawing surface.

2.1.2 Printers as a Surface

When you print from an application, the printer acts as a drawing surface. You can set a printer's resolution and color depth, as well as the 

height and width of the paper. We will discuss printer-related functionality in Chapter 11.

2.1.3 Bitmaps as a Surface

When you create images in memory and save them as a bitmap, the bitmap functions as a drawing surface. You can set the image width, 

height, resolution, and color depth properties. Bitmap surfaces are commonly used for writing graphics Web applications. Drawing works a 

little differently in Web applications. For example, if you want to draw a line and a rectangle in a Web page using GDI+, you need to create an 

image, use this image as a surface for the line and rectangle objects, set its surface-related properties, and then send the image to the 

browser. We will discuss Web graphics applications in more detail in Chapter 12.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

2.2 The Coordinate System

Understanding the coordinate system is another important part of graphics programming. The coordinate system represents the positions of 

graphic objects on a display device such as a monitor or a printer.

2.2.1 The Cartesian Coordinate System

The Cartesian coordinate system (shown in Figure 2.2) divides a two-dimensional plane into four regions, also called quadrants, and two 

axes: x and y. The x-axis is represented by a horizontal line and the y-axis by a vertical line. An ordered pair of x and y positions defines a point 

in a plane. The origin of the plane is a point with x = 0 and y = 0 values, and the quadrants divide the plane relative to the origin.

Figure 2.2. The Cartesian coordinate system

To find out which point falls in which quadrant, we compare the point's x- and y-positions relative to the origin:

Quadrant I: x > 0 and y > 0

Quadrant II: x < 0 and y > 0

Quadrant III: x < 0 and y < 0

Quadrant IV: x > 0 and y < 0

A point with positive x and y values will fall in quadrant I. A point with +y and –x values will fall in quadrant II. A point with –x and –y values will fall 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



in quadrant III, and a point with +x and –y values will fall in quadrant IV. For example, a point at coordinates (2, –3) will fall in quadrant IV, and

a point at coordinates (–3, 2) will fall in quadrant II.

2.2.2 The Default GDI+ Coordinate System

Unlike the Cartesian coordinate system, the default GDI+ coordinate system starts with the origin in the upper left corner. The default x-axis 

points to the right, and the y-axis points down. As Figure 2.3 shows, the upper left corner starts with points x = 0 and y = 0. Points to the left of 

x = 0 are negative values in the x-direction, and points above y = 0 are negative values in the y-direction.

Figure 2.3. The GDI+ coordinate system

Because the default GDI+ coordinate system starts with (x = 0, y = 0) in the upper left corner of the screen, by default you can see only the 

points that have positive x and y values. Objects with either –x or –y values will not be visible on the screen. However, you can apply 

transformations to move objects with negative values into the visible area.

GDI+ provides three types of coordinate systems: world coordinates, page coordinates, and device coordinates.

The coordinate system used in an application is called world coordinates. Suppose that your application draws a line from point 

A (0, 0) to point B (120, 80), as shown in Figure 2.4. If you don't apply any transformation, the line will be displayed at the right

location. Now suppose you want to draw a line from point A (–40, –50) to point B (–10, –20). The line drawn using these two points

will not be displayed on the screen because the GDI+ coordinate system starts at point (0, 0). However, you can transform the

coordinates such that (–40, –50) is the starting point at the top left corner of the surface.

Figure 2.4. Drawing a line from point (0, 0) to point (120, 80)

1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The new coordinate system is called page coordinates. The process of converting world coordinates to page coordinates is 

called the world transformation.

2.

You can also control the actual size of graphics objects. For example, if you want to draw a line in inches instead of pixels, you 

can simply draw a line from point A (1, 1) to point B (1, 2), thereby creating a line that is 1 inch long. The new coordinates are 

called device coordinates. The process of converting page coordinates to device coordinates is called the page transformation.

3.

We will discuss coordinate systems and transformation in more detail in Chapter 10.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

2.3 Tutorial: Your First GDI+ Application

In this section you'll learn how to write your first GDI+ application, step-by-step. You will create a Windows application and draw a few simple 

objects, such as lines, rectangles, and ellipses, on a Windows Form.

Here are the steps we will cover:

Creating a Windows application1.

Adding references to the GDI+ library2.

Obtaining the graphics surface3.

Setting the graphics surface properties (optional)4.

Drawing or filling graphics shapes5.

Releasing objects6.

Building and running the application7.

2.3.1 Creating a Windows Application

The first step of this tutorial is to create a Windows application using Visual Studio .NET.

Open Visual Studio .NET, select File | New | Project, and then choose Visual C# Projects under Project Types and Windows 

Application under Templates, as shown in Figure 2.5.

Figure 2.5. Creating a Windows application

1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Enter the application name, "FirstGDI+App", and click OK.2.

Note

Clicking the OK button creates a Windows application with a form and opens the Form Designer, in which you can build 

Windows applications.

2.3.2 Adding a Reference to GDI+

As mentioned in Chapter 1, GDI+ functionality resides in the System.Drawing.dll namespace and is defined in the System.Drawing namespace. 

Hence the System.Drawing namespace must be included in the application. Visual Studio .NET automatically adds a reference to this 

namespace, which you can see in the beginning of the class. If the namespace is not defined there, you must add a reference manually. To 

add a reference to the GDI+ library, you use the Add Reference dialog.

Open the Add Reference dialog by selecting Project | Add Reference.1.

Select the System.Drawing.dll assembly from the libraries listed under the .NET tab.2.

Click the Select button to add the library to the Selected Components list, as shown in Figure 2.6.

Figure 2.6. Adding a reference to System.Drawing.dll

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Click the OK button to add the System.Drawing namespace reference to your project.4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Go to the Solution Explorer window and expand the References node. The System.Drawing namespace is listed there Figure 

2.7).

Figure 2.7. The System.Drawing namespace in a project

Note

Visual Studio .NET version 1.0 (or later) automatically adds a reference to the System.Drawing.dll library. In that case, 

you may not need to add a reference to the library.

5.

After adding a reference to System.Drawing.dll, you must import System.Drawing and other related namespaces, depending on the 

classes your application will use. For now, we will import the System.Drawing and System.Drawing.Drawing2D namespaces. We 

add the following two lines to the top of our class:

using System.Drawing;

using System.Drawing.Drawing2D;

6.

You can also qualify a namespace reference by directly adding it as a prefix of the class. For example, if you don't want to use the using

statements defined here, you can define a class as follows:

System.Drawing.Graphics g = e.Graphics;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

If you create a Windows application using VS.NET, only the line using System.Drawing.Drawing2D needs to be written 

because using System.Drawing will already be there.

2.3.3 Getting a Graphics Object in an Application

After adding a GDI+ library reference to the project, the next step is to decide on a drawing surface. In a Windows application, a form is a 

drawing surface. Every form has a Graphics object associated with it, which provides the drawing functionality.

In the .NET Framework, the Graphics class represents a GDI+ Graphics object, which defines methods and properties to draw and fill graphics 

objects. Whenever an application needs to draw anything, it must go through the Graphics object.

Caution

There is no way to create a Graphics object using the new operator. For example, if you write the following code, you will get 

a compiler error:

Graphics g = new Graphics ()

There are several ways to obtain a Graphics object associated with a form. Three of them are described in the following sections.

2.3.3.1 Using the Paint Event of a Form

You can get a Graphics object corresponding to a form using the PaintEventArgs property of the form's paint event. For example, the following 

code gets a Graphics object from PaintEventArgs:

private void form1_Paint(object sender, PaintEventArgs e)

{

        Graphics g = e.Graphics;

}

You can add the form's paint event handler using the Properties window. As Figure 2.8 shows, we add Form1_Paint (the default name) as the 

paint event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 2.8. Adding the Form_Paint event handler

Tip

Double-clicking in the paint event drop-down menu in the Properties window also adds the event handler.

2.3.3.2 Overriding the OnPaint Method

Another way to get a Graphics object associated with a form is to override the OnPaint method of the form, which uses PaintEventArgs in a 

manner similar to the Form1_Paint event. The following code snippet overrides the OnPaint method of a form:

protected override void OnPaint(PaintEventArgs e)

{

  Graphics g = e.Graphics;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



2.3.3.3 Using Other Methods

Sometimes you don't want to use the OnPaint method. For example, you might want to draw something on a button or a menu click event 

handler. The Form class provides the CreateGraphics method, which returns a Graphics object. The following code snippet creates a Graphics

object using the CreateGraphics method and calls a method of the Graphics class:

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

g.Dispose();

As this snippet shows, we call the Clear method of the Graphics class, which sets the background color of the surface as the background color 

of the form.

Caution

When you create a Graphics object using the CreateGraphics method, you must dispose of that object explicitly by calling the 

Dispose method to release the resources associated with it.

You can also use the FromImage, FromHwnd, and FromHdc static methods of the Graphics class to create Graphics objects from images, 

window handles, and window handles to device contexts, respectively. We will discuss these methods in more detail in Chapter 3 (Section 

3.2.3.3 ).

The following code creates a Bitmap object and calls the static FromImage method, using a Bitmap object as an input parameter, which returns 

a Graphics object.

Bitmap bmp =

    new Bitmap(600,400,PixelFormat.Format32bppArgb);

Graphics g = Graphics.FromImage(bmp);

The following code creates a Graphics object from a window handle. In this example, this refers to a Windows Form. You can even pass 

Form1.Handle if your form is Form1.

Graphics g = Graphics.FromHwnd(this.Handle);

2.3.4 Creating Pens and Brushes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Once you have a Graphics object, the next step is to decide what you're going to draw on the surface. You may need one or more of the three 

objects: pen, brush, or image. In this chapter we will concentrate on pens and brushes only. Images are discussed in Chapters 7 and 8.

In GDI+ the Pen and Brush classes represent a pen and a brush, respectively. The abstract Brush class functionality is accessed through its 

derived classes: SolidBrush and HatchBrush, among others. Pens are used when you need to draw lines, rectangles, and curve boundaries. 

Brushes are used when you need to fill graphics objects. Chapter 4 discusses pens and brushes in detail.

The Pen class constructor takes as arguments the color and width of the pen. The following code creates a red pen with a width of 3 pixels and 

a black pen with a width of 1 pixel. The Pens class provides static members, each of which represents a pen with a particular color.

Pen redPen = new Pen(Color.Red, 3);

Pen blackPen = Pens.Black;

The SolidBrush class represents a solid brush in GDI+. This class's constructor takes a color as an argument. The following code creates a 

green solid brush.

SolidBrush greenBrush = new SolidBrush(Color.Green);

2.3.5 Drawing Graphics Shapes

Once you have the surface, pens, and/or brushes, you can draw lines, shapes, curves, or images. The Graphics class provides draw and fill 

methods to draw and fill graphics shapes, curves, or images. For example, the FillRectangle method draws a rectangle with a filled color, and 

DrawRectangle draws the boundary of a rectangle with the specified pen. Draw methods take a pen as an argument, and fill methods take a 

brush.

We override the OnPaint method and write the code in Listing 2.1 on this method. As Listing 2.1 shows, we first set the smoothing mode of the 

Graphics object by setting its SmoothingMode property. The SmoothingMode enumeration is defined in the System.Drawing.Advanced2D

namespace and is used to set the quality of a graphics object. In our code, we set the smoothing mode to anti-aliasing. We will discuss this in 

more detail in Chapters 8 and 9.

After that we create a rectangle, two pens, and a solid brush. In the next code snippet, we call the DrawRectangle, FillEllipse, and DrawLine

methods. The DrawRectangle method draws the boundaries of a rectangle, the FillEllipse method fills an ellipse with the specified brush, and 

the DrawLine method draws a line using the specified pen. Chapter 3 will discuss the fill and draw methods in more detail.

Listing 2.1 Drawing lines, rectangles, and ellipses

protected override void OnPaint(PaintEventArgs e)

{

  // Obtain the Graphics object

  Graphics g = e.Graphics;

  // Set the smoothing mode of the surface

  g.SmoothingMode = SmoothingMode.AntiAlias;

  // Create a rectangle with height 100 and width 100

  Rectangle rect = new Rectangle(20, 20, 100, 100);

  // Create two Pen objects, one red and one black

  Pen redPen = new Pen(Color.Red, 3);

  Pen blackPen = Pens.Black;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  // Create a SolidBrush object

  SolidBrush greenBrush = new SolidBrush(Color.Green);

  // Draw shapes and lines

  g.DrawRectangle(redPen, rect);

  g.FillEllipse(greenBrush, rect);

  g.DrawLine(blackPen, 0, 250, this.Width, 250);

  g.FillEllipse(Brushes.Blue, 70, 220, 30, 30);

  g.FillEllipse(Brushes.SkyBlue, 100, 210, 40, 40);

  g.FillEllipse(Brushes.Green, 140, 200, 50, 50);

  g.FillEllipse(Brushes.Yellow, 190, 190, 60, 60);

  g.FillEllipse(Brushes.Violet, 250, 180, 70, 70);

  g.FillEllipse(Brushes.Red, 320, 170, 80, 80);

}

2.3.6 Releasing Objects

When you are done using objects, you must release them. In the .NET Framework library, most objects provide a Dispose method, which can 

be used to dispose of an object. The Dispose method makes sure that all resources allocated for an object are released.

The following code snippet creates Pen and SolidBrush objects as redPen and greenBrush, respectively:

Pen redPen = new Pen(Color.Red, 3);

SolidBrush greenBrush = new SolidBrush(Color.Green);

When you are done with these objects, call the Dispose method to release the resources allocated with them. For example, the following code 

snippet disposes of the redPen and greenBrush objects:

redPen.Dispose();

greenBrush.Dispose();

Now we will Dispose of the previously created objects using the Dispose method to the objects we created in Listing 2.1, as shown in Listing 2.2. 

(Boldface lines are the new lines added to the listing.)

Listing 2.2 Using Dispose calls

protected override void OnPaint(PaintEventArgs e)

{

  // Obtain the Graphics object

  Graphics g = e.Graphics;

  // Set the composite quality and smoothing mode

  // of the surface

  g.SmoothingMode = SmoothingMode.AntiAlias;

  // Create a rectangle from point (20, 20) to (100, 100)

  Rectangle rect = new Rectangle(20, 20, 100, 100);

  // Create two Pen objects, one red and one black

  Pen redPen = new Pen(Color.Red, 3);

  Pen blackPen = Pens.Black;

  // Create a SolidBrush object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  SolidBrush greenBrush = new SolidBrush(Color.Green);

  // Draw shapes and lines

  g.DrawRectangle(redPen, rect);

  g.FillEllipse(greenBrush, rect);

  g.DrawLine(blackPen, 0, 250, this.Width, 250);

  g.FillEllipse(Brushes.Blue, 70, 220, 30, 30);

  g.FillEllipse(Brushes.SkyBlue, 100, 210, 40, 40);

  g.FillEllipse(Brushes.Green, 140, 200, 50, 50);

  g.FillEllipse(Brushes.Yellow, 190, 190, 60, 60);

  g.FillEllipse(Brushes.Violet, 250, 180, 70, 70);

  g.FillEllipse(Brushes.Red, 320, 170, 80, 80);

  // Dispose of objects

  greenBrush.Dispose();

  // blackPen.Dispose();

  redPen.Dispose();

  g.Dispose();
}

Disposing of Objects

In the .NET Framework, the garbage collector is responsible for managing resources associated with an object. When you 

dispose of an object, the garbage collector collects the object right away and frees all the resources associated with that object. 

If you don't dispose of an object, the garbage collector will keep track of the objects, and if an object is not used for a certain 

amount of time, it will dispose of it automatically.

It is always best programming practice to dispose of any objects that you create explicitly (using the new operator).

2.3.7 Building and Running the Application

The final step in creating an application is to build and run it. To do this, in Visual Studio .NET you can simply select Debug | Start (F5) or 

Debug | Start Without Debugging (Ctrl+F5).

The output of the application looks like Figure 2.9. The application draws a line, a rectangle, and some ellipses with different colors.

Figure 2.9. Your first GDI+ application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Congratulations! You have finished the first step toward becoming a GDI+ expert. Now you can write simple graphics applications in Visual 

Studio .NET.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

2.4 Some Basic GDI+ Objects

In previous sections we discussed the steps required to write a simple graphics application using Visual Studio .NET. Before we move on to 

the next chapter, let's discuss some basic GDI+ objects, such as the color-, point-, and rectangle-related structures provided by the .NET 

Framework library. Understanding these structures is very important because they are used throughout the book.

2.4.1 The Color Structure

You may have noticed that we used the Color structure in our previous example. The Color structure represents a GDI+ ARGB 

(alpha-red-green-blue) color. This class contains a static property for almost every possible color. For example, Color.Black and Color.Red

represent black and red, respectively. Besides these static properties, this structure has the additional properties defined in Table 2.1.

IsKnownColor, IsNamedColor and IsSystemColor represent members of the KnownColor enumeration, which again defines almost every color 

as a member.

Table 2.2 describes the methods of the Color structure.

Table 2.1. Color properties

Property Description

Red, Blue, Green, Aqua, Azure, and 

so on

A specified color static property for almost every color.

A Returns the alpha component value in a Color structure. We discuss alpha in color-related sections 

in later chapters.

R Returns the red component value in a Color structure.

G Returns the green component value in a Color structure.

B Returns the blue component value in a Color structure.

IsEmpty Indicates whether a Color structure is uninitialized.

IsKnownColor Indicates whether a color is predefined.

IsNamedColor Indicates whether a color is predefined.

IsSystemColor Indicates whether a color is a system color.

Name Returns the name of the color.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 2.2. Color methods

Method Description

FromArgb Creates a Color structure from the four 8-bit ARGB component (alpha-red-green-blue) values.

FromKnownColor Creates a Color structure from the specified predefined color.

FromName Creates a Color structure from the specified name of a predefined color.

GetBrightness Returns the hue-saturation-brightness (HSB) brightness value of this Color structure.

GetHue Returns the HSB hue value, in degrees, of this Color structure.

GetSaturation Returns the HSB saturation value of this Color structure.

ToArgb Returns the 32-bit ARGB value of this Color structure.

ToKnownColor Returns the KnownColor value of this Color structure.

2.4.2 The Point and PointF Structures

In GDI+, the Point structure represents an ordered pair of integer x- and y-coordinates that define a point in a two-dimensional plane. The Point

structure's constructor initializes a new instance of the Point structure. The Point constructor has three overloaded forms that allow you to 

create a Point object from an integer, a Size object, or two integers as follows:

public Point(int);1.

public Point(Size);2.

public Point(int, int);3.

The following code snippet creates Point objects using all three forms of the constructor:

Point pt1 = new Point(10);

Point pt2 = new Point( new Size(20, 20) );

Point pt3 = new Point(30, 30);

The PointF structure is similar to the Point structure, but it uses floating point values instead of integers. Unlike the Point structure, PointF has 

only one constructor, which takes two floating point values as x- and y-coordinates.

PointF pt3 = new PointF(30.0f, 30.0f);

Both the Point and the PointF structures define three properties: IsEmpty, X, and Y. The IsEmpty property returns true if a point is empty, which 

means that both X and Y values are zero; otherwise it returns false. The X and Y properties return the x- and y-coordinates of a point, 

respectively. The Empty static field of the Point structure creates a new point with X and Y values set to zero.

Listing 2.3 creates a point with zero X and Y values using Point.Empty and assigns new coordinate values using the X and Y properties. This 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



example creates a Graphics object using the Graphics.FromHwnd method and returns the graphics surface for a form. The 

Graphics.FromHwnd method creates a Graphics object from a window handle, which we pass as this.Handle. The DrawLine method draws a 

line starting from the first point to the second point using the defined pen. You can test this code on a button or a menu click event handler.

Listing 2.3 Creating Point objects

// Create a new Point object

Point pt = new Point(50, 50);

// Create a new point using Point.Empty

Point newPoint = Point.Empty;

// Set X and Y properties of Point

newPoint.X = 100;

newPoint.Y = 200;

// Create a Graphics object from the

// current form's handle

Graphics g = Graphics.FromHwnd(this.Handle);

// Create a new pen with color blue

// and width = 4

Pen pn = new Pen(Color.Blue, 4);

// Draw a line from point pt to

// new point

g.DrawLine(pn, pt, newPoint);

// Dispose of Pen and Graphics objects

pn.Dispose();

g.Dispose();

Figure 2.10 shows the output of Listing 2.3. The program draws a line from point 1 to point 2. The "Point" text in this figure is a menu item.

Figure 2.10. Using Point to draw a line

Like the Point structure, PointF can also use Empty, X, and Y properties, as shown in Listing 2.4. You can test this code on a button or a menu 

click event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 2.4 Creating PointF objects

// Create a new PointF object

PointF pt = new PointF(50.0F, 50.0F);

// Create a new point using PointF.Empty

PointF newPoint = PointF.Empty;

// Set X and Y properties of PointF

newPoint.X = 100.0F;

newPoint.Y = 200.0F;

// Create a Graphics object from the

// current form's handle

Graphics g = Graphics.FromHwnd(this.Handle);

// Create a new pen with color blue

// and width = 4

Pen pn = new Pen(Color.Blue, 4);

// Draw a line from point pt to

// new point

g.DrawLine(pn, pt, newPoint);

// Dispose of Pen and Graphics objects

pn.Dispose();

g.Dispose();

Figure 2.11 shows the output of Listing 2.4. It is identical to Figure 2.10.

Figure 2.11. Using PointF to draw a line

The Point structure also defines methods to convert from PointF to Point. The Ceiling method of the Point structure converts a PointF object to 

a Point object by rounding off the values of the PointF object to the next higher integer values. The Round method converts a PointF object to 

Point by rounding floating values to the nearest integer values. The Truncate method converts a PointF object to Point by truncating the floating 

values to integers. Listing 2.5 shows how to use the Ceiling, Round, and Truncate methods. You can test this code on a button or a menu click 

event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 2.5 Using the Ceiling, Round, and Truncate methods of Point

// Create three points

PointF pt1 = new PointF(30.6f, 30.8f);

PointF pt2 = new PointF(50.3f, 60.7f);

PointF pt3 = new PointF(110.3f, 80.5f);

// Call Ceiling, Round, and Truncate methods

// and return new points

Point pt4 = Point.Ceiling(pt1);

Point pt5 = Point.Round(pt2);

Point pt6 = Point.Truncate(pt3);

// Display results

MessageBox.Show("Value of pt4: " +pt4.ToString());

MessageBox.Show("Value of pt5: " +pt5.ToString());

MessageBox.Show("Value of pt6: " +pt6.ToString());

The Point structure also defines addition, equality, inequality, subtraction, Point-to-Size, and Point-to-PointF conversion operators. Listing 2.6

shows how to add and subtract a Size object from a Point object, convert from Point to PointF, and convert from a Point object to a Size object. 

You can test this code on a button or a menu click event handler.

Listing 2.6 Some Point and PointF conversions

/ Create a Size object

Size sz = new Size(12, 12);

// Create a Point object

Point pt = new Point(20, 20);

// Add point and size and copy to point

pt = pt+sz;

MessageBox.Show("Addition :"+ pt.ToString());

// Subtract point and size

pt = pt-sz;

MessageBox.Show("Subtraction :"+ pt.ToString());

// Create a PointF object from Point

PointF ptf = pt;

MessageBox.Show("PointF :"+ pt.ToString());

// Convert Point to Size

sz = (Size)pt;

MessageBox.Show("Size :"+ sz.Width.ToString()

+","+ sz.Height.ToString() );

2.4.3 The Rectangle and RectangleF Structures

The Rectangle and RectangleF structures represent a rectangle in GDI+. A Rectangle structure stores the top left corner and height and width 

of a rectangular region. You can create a Rectangle object from Point and Size objects or by using four integer values as starting and ending 

coordinates of the rectangle.

The Rectangle and RectangleF structures provide properties that can be used to get the height, width, and position of the rectangle. Table 2.3

describes the properties of the Rectangle and RectangleF structures.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 2.7 Using Rectangle properties

// Create Point, Size, and Rectangle objects

Point pt = new Point(10, 10);

Size sz = new Size(60, 40);

Rectangle rect1 = Rectangle.Empty;

Rectangle rect2 = new Rectangle(20, 30, 30, 10);

// Set Rectangle properties

if (rect1.IsEmpty)

{

   rect1.Location = pt;

   rect1.Width = sz.Width;

   rect1.Height = sz.Height;

}

// Get Rectangle properties

string str = "Location:"+ rect1.Location.ToString();

str += ", X:" +rect1.X.ToString();

str += ", Y:"+ rect1.Y.ToString();

str += ", Left:"+ rect1.Left.ToString();

str += ", Right:"+ rect1.Right.ToString();

str += ", Top:"+ rect1.Top.ToString();

str += ", Bottom:"+ rect1.Bottom.ToString();

MessageBox.Show(str);

Table 2.3. Rectangle and RectangleF properties

Property Description

Bottom Returns the y-coordinate of the bottom edge.

Height Represents the rectangle's height.

IsEmpty Returns true if all of the rectangle's values (starting point, height, and width) are zero; otherwise returns false.

Left Returns the x-coordinate of the left edge.

Location Represents the coordinates of the upper left corner.

Right Returns the x-coordinate of the right edge.

Size Represents the size of a rectangle.

Top Returns the y-coordinate of the top edge.

Width Represents the width of a rectangle.

X Represents the x-coordinate of the upper left corner.

Y Represents the y-coordinate of the upper left corner.

Listing 2.8 uses three different methods to create three Rectangle objects. The first method creates a Rectangle object by using a Point and a 

Size. The second and third methods create a Rectangle by using four integer values as the starting x- and y-coordinates and the width and 

height of the rectangle. After creating the rectangles, the program creates pen and brush objects using the Pen and SolidBrush classes and 

calls the fill and draw methods of Graphics to draw and fill the rectangles. Finally, we dispose of the objects. You can test this code on a 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



button or a menu click event handler.

Listing 2.8 Creating Rectangle objects

// Create a Graphics object

Graphics g = this.CreateGraphics();

int x = 40;

int y = 40;

int height = 120;

int width = 120;

// Create a Point object

Point pt = new Point(80, 80);

// Create a Size object

Size sz = new Size(100, 100);

// Create a rectangle from Point and Size

Rectangle rect1 = new Rectangle(pt, sz);

// Create a rectangle from integers

Rectangle rect2 =

    new Rectangle(x, y, width, height);

// Create a rectangle from direct integers

Rectangle rect3 =

    new Rectangle(10, 10, 180, 180);

// Create pens and brushes

Pen redPen = new Pen(Color.Red, 2);

SolidBrush greenBrush =

    new SolidBrush(Color.Blue);

SolidBrush blueBrush =

    new SolidBrush(Color.Green);

// Draw and fill rectangles

g.DrawRectangle(redPen, rect3);

g.FillRectangle(blueBrush, rect2);

g.FillRectangle(greenBrush, rect1);

// Dispose of the objects

redPen.Dispose();

blueBrush.Dispose();

greenBrush.Dispose();

g.Dispose();

Figure 2.12 shows the output from Listing 2.8: three different rectangles.

Figure 2.12. Using Rectangle to create rectangles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



You can create a RectangleF object in a similar way. The only difference is that RectangleF takes floating point arguments instead of integers, 

SizeF instead of Size, and PointF instead of Point. Listing 2.9 creates RectangleF objects from SizeF, PointF, Size, and Point objects. You can 

test this code on a button or a menu click event handler.

Listing 2.9 Creating RectangleF objects

// Create a Graphics object

Graphics g = this.CreateGraphics();

float x = 40.0f;

float y = 40.0f;

float height = 120.0f;

float width = 120.0f;

// Create a PointF object

PointF pt = new PointF(80.0f, 80.0f);

// Create a SizeF object

SizeF sz = new SizeF(100.0f, 100.0f);

// Create a rectangle from PointF and SizeF

RectangleF rect1 = new RectangleF(pt, sz);

// Create a rectangle from integers

RectangleF rect2 =

   new RectangleF(x, y, width, height);

// Create a rectangle from direct integers

RectangleF rect3 =

   new RectangleF(10.0f, 10.0f, 180.0f, 180.0f);

// Create pens and brushes

Pen redPen = new Pen(Color.Red, 2);

SolidBrush greenBrush =

   new SolidBrush(Color.Blue);

SolidBrush blueBrush =

   new SolidBrush(Color.Green);

// Draw and fill rectangles

g.DrawRectangle(redPen, rect3.X, rect3.Y,

   rect3.Width, rect3.Height);

g.FillRectangle(blueBrush, rect2);

g.FillRectangle(greenBrush, rect1);

// Dispose of objects

redPen.Dispose();

blueBrush.Dispose();

greenBrush.Dispose();

g.Dispose();

Figure 2.13 shows the output from Listing 2.9: three different rectangles, as in Figure 2.12.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 2.13. Using RectangleF to create rectangles

Table 2.4. Rectangle and RectangleF methods

Method Description

Ceiling Converts a RectangleF object to a Rectangle object by rounding the RectangleF values to the next higher integer values.

Contains Determines if the specified point is contained within the rectangular region of a rectangle.

FromLTRB Creates a rectangle with the specified edge locations.

Inflate Creates and returns an inflated copy of a rectangle.

Intersect Replaces a rectangle with the intersection of itself and another rectangle.

IntersectsWith Determines if a specified rectangle intersects with rect.

Offset Adjusts the location of a specified rectangle by the specified amount.

Round Converts a RectangleF object to a Rectangle object by rounding the RectangleF values to the nearest integer values.

Truncate Converts a RectangleF object to a Rectangle object by truncating the RectangleF values.

Union Returns a rectangle that contains the union of two Rectangle structures.

Like the Point and PointF structures, Rectangle and RectangleF define Ceiling, Round, and Truncate methods. These methods are described 

in Table 2.4. Listing 2.10 shows how to use these methods.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 2.10 Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle

// Create a Graphics object

Graphics g = this.CreateGraphics();

// Create PointF, SizeF, and RectangleF objects

PointF pt = new PointF(30.8f, 20.7f);

SizeF sz = new SizeF(60.0f, 40.0f);

RectangleF rect2 =

   new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);

RectangleF rect1 = new RectangleF(pt, sz);

Rectangle rect3 = Rectangle.Ceiling(rect1);

Rectangle rect4 = Rectangle.Truncate(rect1);

Rectangle rect5 = Rectangle.Round(rect2);

// Draw rectangles

g.DrawRectangle(Pens.Black, rect3);

g.DrawRectangle(Pens.Red, rect5);

// Intersect rectangles

Rectangle isectRect =

   Rectangle.Intersect(rect3, rect5);

// Fill new rectangle

g.FillRectangle(

   new SolidBrush(Color.Blue), isectRect);

// Create a Size object

Size inflateSize = new Size(0, 40);

// Inflate rectangle

isectRect.Inflate(inflateSize);

// Draw new rectangle

g.DrawRectangle(Pens.Blue, isectRect);

// Set Rectangle properties

rect4 = Rectangle.Empty;

rect4.Location = new Point(50, 50);

rect4.X = 30;

rect4.Y = 40;

// Union two rectangles

Rectangle unionRect =

   Rectangle.Union(rect4, rect5);

// Draw new rectangle

g.DrawRectangle(Pens.Green, unionRect);

// Dispose of the Graphics object

g.Dispose();

Figure 2.14 shows the output from Listing 2.10.

Figure 2.14. Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



2.4.4 The Size and SizeF Structures

The Size and SizeF structures represent the size of a rectangular area. Like Point/PointF and Rectangle/RectangleF, Size and SizeF also each 

have an Empty static field, which creates a Size object with zero height and zero width. The only difference between Size and SizeF is that Size

uses integer values and SizeF uses floating point values.

You can create Size and SizeF objects by passing the width and height of the Point and PointF objects as constructor arguments, respectively. 

Listing 2.11 shows different ways to create Size and SizeF objects.

Listing 2.11 Creating Size and SizeF objects

Point pt1 = new Point(20, 40);

PointF pt2 = new PointF(50.0f, 80.0f);

Size sz1 = new Size(pt1);

SizeF sz2 = new SizeF(pt2);

Size sz3 = new Size(100, 150);

SizeF sz4 = new SizeF(12.5f, 87.6f);

The Height and Width properties represent the height and width, respectively, of the area represented by the Size and SizeF structures. The 

IsEmpty property returns true if Size has zero height and zero width; otherwise it returns false.

Like the Point/PointF and Rectangle/RectangleF structures, Size and SizeF have Ceiling, Truncate, and Round static methods. Each method 

can convert a SizeF object to a Size object: the Ceiling method, by rounding the values of the Size structure to the next higher integer values; 

the Round method, by rounding the values of the Size structure to the nearest integer values; and the Truncate method, by truncating the 

values to the next lower integer values.

Listing 2.12 shows the use of the Ceiling, Round and Truncate methods. You can test this code on a button or a menu click event handler.

Listing 2.12 Using the Ceiling, Round, and Truncate methods of Size and SizeF

PointF pt1 = new PointF(30.6f, 30.8f);

PointF pt2 = new PointF(50.3f, 60.7f);

PointF pt3 = new PointF(110.3f, 80.5f);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



SizeF sz1 = new SizeF(pt1);

SizeF sz2 = new SizeF(pt2);

SizeF sz3 = new SizeF(pt3);

Size sz4 = Size.Ceiling(sz1);

Size sz5 = Size.Round(sz2);

Size sz6 = Size.Truncate(sz3);

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

SUMMARY

Before you write a graphics application, a basic understanding of drawing surfaces and coordinate systems is a must. This chapter began 

with the basics of the drawing surfaces and the coordinate system, describing how drawing surfaces and coordinate systems are represented 

in GDI+ and how the GDI+ coordinate system differs from other coordinate systems.

Before using any GDI+-related classes defined in the .NET Framework library, you must reference System.Drawing and its subnamespaces. 

In this chapter you learned how to add references to the GDI+ library and how to import the GDI+-related namespaces into your application. 

After adding a reference to the GDI+ library and namespaces to the application, the next step is to get the Graphics object. There are several 

ways to get a Graphics object in an application. This chapter discussed three different ways, and then showed how to use the Graphics class 

methods to draw and fill lines, rectangles, and ellipses. You also learned to dispose of objects when you're finished with them.

Finally, we covered some basic GDI+ structures—including Color, Rectangle, RectangleF, Point, PointF, Size, and SizeF—describing their

members and how to use them in your applications.

You should now be able to write simple graphics applications using GDI+.

Chapter 3 is all about the Graphics class and will demonstrate how quickly you can write real-world applications. By the end of Chapter 3, you 

will be able to write your own 2D paint application similar to Microsoft's PaintBrush, using your newly acquired GDI+ skills.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 3. The Graphics Class

Graphics objects are the heart of GDI+. They are represented by the Graphics class, which defines methods and properties to draw and fill 

graphics objects. Whenever an application needs to draw or paint something, it has to use the Graphics object. Hence, understanding the 

Graphics class, its methods, and its properties is very important. We will use Graphics methods and properties in all the chapters that follow.

Specifically, in this chapter we will discuss the methods and properties of the Graphics class, and how to use them in real-world applications, 

including line charts, pie charts, and our GDI+Painter application. GDI+Painter is similar to the PaintBrush application, which allows you to 

draw simple graphics objects such as lines, rectangles, and circles and save the images as bitmaps.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

3.1 Graphics Class Properties

The Graphics class provides a long list of properties (see Table 3.1) and methods. We will discuss and use these properties and methods in 

this and following chapters.

Table 3.1. Graphics properties

Property Description

Clip Gets and sets a Region type that limits the drawing region of the Graphics object.

ClipBounds Returns a RectangleF structure that bounds the clipping region of this Graphics object. Supports read-only access.

CompositingMode Returns a value of type CompositingMode enumeration representing how composite images are drawn to the 

Graphics object.

CompositingQuality Gets and sets the rendering quality (directly proportional to the visual quality of the output and inversely proportional 

to the rendering time) of composite images, represented by the CompositingQuality enumeration.

DpiX Returns the horizontal resolution (dots per inch) of a Graphics object.

DpiY Returns the vertical resolution (dots per inch) of a Graphics object.

InterpolationMode Gets and sets the interpolation mode (which determines intermediate values between two endpoints), represented 

by the InterpolationMode enumerator.

IsClipEmpty Returns a value indicating whether the clipping region of a Graphics object is empty. When there is no clipping, this 

property returns false.

IsVisibleClipEmpty Returns a value indicating whether the visible clipping region of a Graphics object is empty.

PageScale Gets and sets a value for scaling between world units and page units for this Graphics object.

PageUnit Gets and sets a value that represents the unit of measure for page coordinates.

PixelOffsetMode Gets and sets a value for the pixel offset mode (PixelOffsetMode enumeration).

RenderingOrigin Represents the rendering origin of a Graphics object for dithering and hatch brushes.

SmoothingMode Gets and sets the smoothing mode of a Graphics object (SmoothingMode enumeration). Does not affect text. 

Smoothing modes include high quality, high speed, and anti-aliasing.

TextContrast Gets and sets the gamma correction value for rendering anti-aliased and ClearType text values, ranging from 0 to 

12. The default is 4.

TextRenderingHint Gets and sets the text rendering quality (TextRenderingHint enumeration). Affects only text drawn on the Graphics

object.

Transform Gets and sets the world transformation matrix (transformation is the process of converting graphics objects from one 

state to another). The transformation state is represented by a transformation matrix.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

VisibleClipBounds Gets and sets the visible clipping region of the Graphics object (the intersection of the clipping region of the Graphics

object and the clipping region of the window).

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

3.2 Graphics Class Methods

We can divide Graphics class methods into three categories: draw, fill, and miscellaneous. Draw methods are used to draw lines, curves, and 

outer boundaries of closed curves and images. Fill methods fill the interior area of graphics objects. There are also a few miscellaneous

methods that fall in neither category—for example, MeasureString and Clear.

3.2.1 Draw Methods

The draw methods of the Graphics class are used to draw lines, curves, and outer boundaries of closed curves and images. Table 3.2 lists the 

draw methods of the Graphics class.

3.2.1.1 Drawing Lines

The DrawLine method draws a line beween two points specified by a pair of coordinates. DrawLines draws a series of lines using an array of 

points.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 3.2. Graphics draw methods

Method Description

DrawArc Draws an arc (a portion of an ellipse specified by a pair of coordinates, a width, a height, and start and end angles).

DrawBezier Draws a Bézier curve defined by four Point structures.

DrawBeziers Draws a series of Bézier splines from an array of Point structures.

DrawClosedCurve Draws a closed cardinal spline defined by an array of Point structures.

DrawCurve Draws a cardinal spline through a specified array of Point structures.

DrawEllipse Draws an ellipse defined by a bounding rectangle specified by a pair of coordinates, a height, and a width.

DrawIcon Draws an image represented by the specified Icon object at the specified coordinates.

DrawIconUnstretched Draws an image represented by the specified Icon object without scaling the image.

DrawImage Draws the specified Image object at the specified location and with the original size.

DrawImageUnscaled Draws the specified Image object with its original size at the location specified by a coordinate pair.

DrawLine Draws a line connecting two points specified by coordinate pairs.

DrawLines Draws a series of line segments that connect an array of Point structures.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie shape specified by a coordinate pair, a width, a height, and two radial lines.

DrawPolygon Draws a polygon defined by an array of Point structures.

DrawRectangle Draws a rectangle specified by a coordinate pair, a width, and a height.

DrawRectangles Draws a series of rectangles specified by an array of Rectangle structures.

DrawString Draws the specified text string at the specified location using the specified Brush and Font objects.

DrawLine has four overloaded methods. The first argument of all DrawLine methods is a Pen object, with texture, color, and width attributes. 

The rest of the arguments vary. You can use two points with integer or floating point values, or you can pass four integer or floating point 

values directly:

public void DrawLine(Pen, Point, Point);1.

public void DrawLine(Pen, PointF, PointF);2.

public void DrawLine(Pen, int, int, int, int);3.

public void DrawLine(Pen, float, float, float, float);4.

To draw a line, an application first creates a Pen object, which defines the color and width. The following line of code creates a red pen with a 

width of 1:

Pen redPen = new Pen(Color.Red, 1);

After that we define the endpoints of the line:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



float x1 = 20.0F, y1 = 25.0F;

float x2 = 200.0F, y2 = 100.0F;

Finally, we use the pen and points as input to DrawLine:

Graphics.DrawLine(redPen, x1, y1, x2, y2);

Listing 3.1 shows how to use the different overloaded methods. We create four pens with different colors and widths. After that we call 

DrawLine with different values—including integer, floating point, and Point structures—to draw four different lines. Three of them start at point

(20, 20).

Listing 3.1 Drawing lines

private void Form1_Paint(object sender,

     System.Windows.Forms.PaintEventArgs e)

{

     // Create four Pen objects with red,

     // blue, green, and black colors and

     // different widths

     Pen redPen = new Pen(Color.Red, 1);

     Pen bluePen = new Pen(Color.Blue, 2);

     Pen greenPen = new Pen(Color.Green, 3);

     Pen blackPen = new Pen(Color.Black, 4);

     // Draw line using float coordinates

     float x1 = 20.0F, y1 = 20.0F;

     float x2 = 200.0F, y2 = 20.0F;

     e.Graphics.DrawLine(redPen, x1, y1, x2, y2);

     // Draw line using Point structure

     Point pt1 = new Point(20, 20);

     Point pt2 = new Point(20, 200);

     e.Graphics.DrawLine(greenPen, pt1, pt2);

     // Draw line using PointF structure

     PointF ptf1 = new PointF(20.0F, 20.0F);

     PointF ptf2 = new PointF(200.0F, 200.0F);

     e.Graphics.DrawLine(bluePen, ptf1, ptf2);

     // Draw line using integer coordinates

     int X1 = 60, Y1 = 40, X2 = 250, Y2 = 100;

     e.Graphics.DrawLine(blackPen, X1, Y1, X2, Y2);

    // Dispose of objects

     redPen.Dispose();

     bluePen.Dispose();

     greenPen.Dispose();

     blackPen.Dispose();

}

The output from Listing 3.1 is shown in Figure 3.1. We've drawn four lines starting at point (20, 20).

Figure 3.1. Using DrawLine to draw lines

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.2 Drawing Connected Lines

Sometimes we need to draw multiple connected straight line segments. One way to do this is to call the DrawLine method multiple times.

The Graphics class also provides the DrawLines method, which can be used to draw multiple connected lines. This method has two 

overloaded forms. One takes an array of Point structure objects, and the other takes an array of PointF structure objects:

public void DrawLines(Pen, Point[]);1.

public void DrawLines(Pen, PointF[]);2.

To draw lines using DrawLines, an application first creates a Pen object, then creates an array of points, and then calls DrawLines. The code in 

Listing 3.2 draws three line segments.

Listing 3.2 Using DrawLines to draw connected lines

PointF[] ptsArray =

{

        new PointF( 20.0F, 20.0F),

        new PointF( 20.0F, 200.0F),

        new PointF(200.0F, 200.0F),

        new PointF(20.0F, 20.0F)

};

e.Graphics.DrawLines(redPen, ptsArray);

The code in Listing 3.2 draws what is shown in Figure 3.2.

Figure 3.2. Using DrawLines to draw connected lines

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.3 Drawing Rectangles

The next basic drawing object is a rectangle. When you draw a rectangle through your applications, you need to specify only the starting 

point, height, and width of the rectangle. GDI+ takes care of the rest.

The Graphics class provides the DrawRectangle method, which draws a rectangle specified by a starting point, a width, and a height. The 

Graphics class also provides the DrawRectangles method, which draws a series of rectangles specified by an array of Rectangle structures.

DrawRectangle has three overloaded methods. An application can use a Rectangle structure or coordinates of integer or float types to draw a 

rectangle:

public void DrawRectangle(Pen, Rectangle);1.

public void DrawRectangle(Pen, int, int, int, int);2.

public void DrawRectangle(Pen, float, float, float, float);3.

To draw a rectangle, an application first creates a pen and a rectangle (location, width, and height), and then it calls DrawRectangle. Listing 

3.3 draws rectangles using the different overloaded forms of DrawRectangle.

Listing 3.3 Using DrawRectangle to draw rectangles

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create pens and points

      Pen redPen = new Pen(Color.Red, 1);

      Pen bluePen = new Pen(Color.Blue, 2);

      Pen greenPen = new Pen(Color.Green, 3);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      float x = 5.0F, y = 5.0F;

      float width = 100.0F;

      float height = 200.0F;

      // Create a rectangle

      Rectangle rect = new Rectangle(20, 20, 80, 40);

      // Draw rectangles

      e.Graphics.DrawRectangle(bluePen,

        x, y, width, height);

      e.Graphics.DrawRectangle(redPen,

        60, 80, 140, 50);

      e.Graphics.DrawRectangle(greenPen, rect);

      // Dispose of objects

      redPen.Dispose();

      bluePen.Dispose();

      greenPen.Dispose();

}

Figure 3.3 shows the output from Listing 3.3.

Figure 3.3. Drawing individual rectangles

The DrawRectangles method draws a series of rectangles using a single-pen. It is useful when you need to draw multiple rectangles using 

the same pen (if you need to draw multiple rectangles using different pens, you must use multiple calls to DrawRectangle). A single call to 

DrawRectangles is faster than multiple DrawRectangle calls. DrawRectangles takes two parameters—a pen and an array of Rectangle or 

RectangleF structures—as shown in Listing 3.4.

Listing 3.4 Using DrawRectangles to draw a series of rectangles

Pen greenPen = new Pen(Color.Green, 4);

RectangleF[] rectArray

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 new RectangleF( 5.0F, 5.0F, 100.0F, 200.0F),

    new RectangleF(20.0F, 20.0F, 80.0F, 40.0F),

    new RectangleF(60.0F, 80.0F, 140.0F, 50.0F)

};

e.Graphics.DrawRectangles(greenPen, rectArray);

greenPen.Dispose()

Figure 3.4 shows the output from Listing 3.4. As you can see, it's easy to draw multiple rectangles using the DrawRectangles method.

Figure 3.4. Drawing a series of rectangles

3.2.1.4 Drawing Ellipses and Circles

An ellipse is a circular boundary within a rectangle, where each opposite point has the same distance from a fixed point, called the center of 

the ellipse. An ellipse within a square is called a circle. Figure 3.5 shows an ellipse with its height, width, and center indicated.

Figure 3.5. An ellipse

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



To draw an ellipse, you need to specify the outer rectangle. GDI+ takes care of the rest. DrawEllipse draws an ellipse defined by a rectangle 

specified by a pair of coordinates, a height, and a width (an ellipse with equal height and width is a circle). DrawEllipse has four overloaded 

methods:

public void DrawEllipse(Pen, Rectangle);1.

public void DrawEllipse(Pen, RectangleF);2.

public void DrawEllipse(Pen, int, int, int, int);3.

public void DrawEllipse(Pen, float, float, float, float);4.

To draw an ellipse, an application creates a pen and four coordinates (or a rectangle), and then calls DrawEllipse. Listing 3.5 draws ellipses 

with different options.

Listing 3.5 Drawing ellipses

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create pens

      Pen redPen = new Pen(Color.Red, 6 );

      Pen bluePen = new Pen(Color.Blue, 4 );

      Pen greenPen = new Pen(Color.Green, 2);

      // Create a rectangle

      Rectangle rect =

        new Rectangle(80, 80, 50, 50);

      // Draw ellipses

      e.Graphics.DrawEllipse(greenPen,

        100.0F, 100.0F, 10.0F, 10.0F );

      e.Graphics.DrawEllipse(redPen, rect );

      e.Graphics.DrawEllipse(bluePen, 60, 60, 90, 90);

      e.Graphics.DrawEllipse(greenPen,

        40.0F, 40.0F, 130.0F, 130.0F );

      // Dispose of objects

      redPen.Dispose();

      greenPen.Dispose();

      bluePen.Dispose();

}

Figure 3.6 shows the output from Listing 3.5.

Figure 3.6. Drawing ellipses

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.5 Drawing Text

This section briefly discusses the drawing of text. Chapter 5 covers this topic in more detail.

The DrawString method draws a text string on a graphics surface. It has many overloaded forms. DrawString takes arguments that identify the 

text, font, brush, starting location, and string format.

The simplest form of DrawString looks like this:

public void DrawString(string, Font, Brush, PointF);

where string is the text that you want to draw, Font and Brush are the font and brushes used to draw the text, and PointF is the starting point of 

the text.

Listing 3.6 uses the DrawString method to draw "Hello GDI+ World!" on a form.

Listing 3.6 Drawing text

private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

    e.Graphics.DrawString("Hello GDI+ World!",

        new Font("Verdana", 16),

        new SolidBrush(Color.Red),

        new Point(20, 20));

}

Note

You might notice in Listing 3.6 that we create Font, SolidBrush, and Point objects directly as parameters of the DrawString

method. This method of creating objects means that we can't dispose of these objects, so some cleanup is left for the 

garbage collector.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 3.7 shows the output from Listing 3.6.

Figure 3.7. Drawing text

The DrawString method has several overloaded forms, as shown here:

public void DrawString(string, Font, Brush, RectangleF);

public void DrawString(string, Font, Brush, PointF, StringFormat);

public void DrawString(string, Font, Brush, RectangleF, StringFormat);

public void DrawString(string, Font, Brush, float, float);

public void DrawString(string, Font, Brush, float, float, StringFormat);

Now let's see another example of drawing text—this time using the StringFormat class, which defines the text format. Using StringFormat, you 

can set flags, alignment, trimming, and other options for the text. (Chapter 5 discusses this functionality in more detail.) Listing 3.7 shows 

different ways to draw text on a graphics surface. In this example the FormatFlags property is set to StringFormatFlags.DirectionVertical, 

which draws vertical text.

Listing 3.7 Using DrawString to draw text on a graphics surface

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create brushes

      SolidBrush blueBrush = new SolidBrush(Color.Blue);

      SolidBrush redBrush = new SolidBrush(Color.Red);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      SolidBrush greenBrush = new SolidBrush(Color.Green);

      // Create a rectangle

      Rectangle rect = new Rectangle(20, 20, 200, 100);

      // The text to be drawn

      String drawString = "Hello GDI+ World!";

      // Create a Font object

      Font drawFont = new Font("Verdana", 14);

      float x = 100.0F;

      float y = 100.0F;

      // String format

      StringFormat drawFormat = new StringFormat();

      // Set string format flag to direction vertical,

      // which draws text vertically

      drawFormat.FormatFlags =

        StringFormatFlags.DirectionVertical;

      // Draw string

      e.Graphics.DrawString("Drawing text",

        new Font("Tahoma", 14), greenBrush, rect);

      e.Graphics.DrawString(drawString,

        new Font("Arial", 12), redBrush, 120, 140);

      e.Graphics.DrawString(drawString, drawFont,

        blueBrush, x, y, drawFormat);

      // Dispose of objects

      blueBrush.Dispose();

      redBrush.Dispose();

      greenBrush.Dispose();

      drawFont.Dispose();

}

Figure 3.8 shows the output from Listing 3.7.

Figure 3.8. Drawing text with different directions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.6 Creating a Line Chart Application

As promised, the examples in this book not only show the use of GDI+, but also encourage you to use GDI+ practices in real-world 

applications, We will create one more real-world application, a line chart application. In this example we will use all the functionality we have 

discussed so far. Our line chart application will draw lines when a user clicks on a form.

We create a Windows application and add a check box and a button. Then we change the Text properties of the button and the check box to 

call them Clear All and Rectangle, respectively. Then we add code to draw two lines and some numbers (using the DrawString method). The 

initial screen of the line chart application looks like Figure 3.9.

Figure 3.9. The line chart application

When you click on the form, the application draws a line. The first line starts from the bottom left corner, where the values of our x- and y-axes 

are both 0. After a few clicks, the chart looks like Figure 3.10. Every time you click on the form, the application draws a line from the previous 

point to the current point and draws a small ellipse representing the current point.

Figure 3.10. The line chart application with a chart

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Clear All button removes the lines and initializes the first point to (0, 0). Now if you check the Rectangle box and click on the form, the 

chart looks like Figure 3.11. When you click the left mouse button for the first time, the application draws a line from point (0, 0) to the point 

where you clicked the button.

Figure 3.11. The line chart with rectangles to mark points

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's see the code. First we declare starting and ending points. These points will be used to draw a line when you click the left mouse 

button. The default values of both points are shown in the following code fragment, which represents position (0, 0) on the screen:

private Point startPoint = new Point(50, 217);

private Point endPoint = new Point(50, 217);

The next step is to draw vertical and horizontal axis lines with index numbers. We do this on the form's paint event handler with the help of the 

DrawString method. Listing 3.8 provides code for the form-paint event handler. As the listing shows, we simply draw a vertical line, a 

horizontal line, and the marks on these lines.

Listing 3.8 Drawing lines and marks

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      Graphics g = e.Graphics;

      Font vertFont =

        new Font("Verdana", 10, FontStyle.Bold);

      Font horzFont =

        new Font("Verdana", 10, FontStyle.Bold);

      SolidBrush vertBrush = new SolidBrush(Color.Black);

      SolidBrush horzBrush = new SolidBrush(Color.Blue);

      Pen blackPen = new Pen(Color.Black, 2);

      Pen bluePen = new Pen(Color.Blue, 2);

      // Drawing a vertical and a horizontal line

      g.DrawLine(blackPen,50,220,50, 25);

      g.DrawLine(bluePen,50,220,250,220);

      // x-axis drawing

      g.DrawString("0",horzFont,horzBrush,30, 220);

      g.DrawString("1",horzFont,horzBrush,50,220);

      g.DrawString("2",horzFont,horzBrush,70,220);

      g.DrawString("3",horzFont,horzBrush,90,220);

      g.DrawString("4",horzFont,horzBrush,110,220);

      g.DrawString("5",horzFont,horzBrush,130,220);

      g.DrawString("6",horzFont,horzBrush,150,220);

      g.DrawString("7",horzFont,horzBrush,170,220);

      g.DrawString("8",horzFont,horzBrush,190,220);

      g.DrawString("9",horzFont,horzBrush,210,220);

      g.DrawString("10",horzFont,horzBrush,230,220);

      // Drawing vertical strings

      StringFormat vertStrFormat = new StringFormat();

      vertStrFormat.FormatFlags =

        StringFormatFlags.DirectionVertical;

      g.DrawString("-",horzFont,horzBrush,

        50, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        70, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        90, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        110, 212, vertStrFormat);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      g.DrawString("-",horzFont,horzBrush,

        130, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        150, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        170, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        190, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        210, 212, vertStrFormat);

      g.DrawString("-",horzFont,horzBrush,

        230, 212, vertStrFormat);

      // y-axis drawing

      g.DrawString("100-",vertFont,vertBrush, 20,20);

      g.DrawString("90 -",vertFont,vertBrush, 25,40);

      g.DrawString("80 -",vertFont,vertBrush, 25,60);

      g.DrawString("70 -",vertFont,vertBrush, 25,80);

      g.DrawString("60 -",vertFont,vertBrush, 25,100);

      g.DrawString("50 -",vertFont,vertBrush, 25,120);

      g.DrawString("40 -",vertFont,vertBrush, 25,140);

      g.DrawString("30 -",vertFont,vertBrush, 25,160);

      g.DrawString("20 -",vertFont,vertBrush, 25,180);

      g.DrawString("10 -",vertFont,vertBrush, 25,200);

      // Dispose of objects

      vertFont.Dispose();

      horzFont.Dispose();

      vertBrush.Dispose();

      horzBrush.Dispose();

      blackPen.Dispose();

      bluePen.Dispose();

}

Note

The idea in Listing 3.8 is to show an extensive use of the DrawString method. Alternatively and preferably, you could 

replace DrawString with the DrawLine and/or DrawLines method.

Now on the mouse-down event handler, we draw a line from the starting point (0, 0) to the first mouse click. We store the mouse click position 

as the starting point for the next line. When we click again, the new line will be drawn from the current starting position to the point where the 

mouse was clicked. Listing 3.9 shows the mouse-down click event handler. We create a new Graphics object using the CreateGraphics

method. After that we create two Pen objects. We store the previous point as the starting point and the current point as the ending point. The X

and Y properties of MouseEventArgs return the x- and y-values of the point where the mouse was clicked.

Now we check to see if the Rectangle check box is checked. If so, we draw a rectangle to mark the connecting point of the two lines. If not, 

we draw an ellipse as the connecting point.

Listing 3.9 The mouse-down event handler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Form1_MouseDown(object sender,

      System.Windows.Forms.MouseEventArgs e)

{

      if (e.Button == MouseButtons.Left)

      {

        // Create a Graphics object

        Graphics g1 = this.CreateGraphics();

        // Create two pens

        Pen linePen = new Pen(Color.Green, 1);

        Pen ellipsePen = new Pen(Color.Red, 1);

        startPoint = endPoint;

        endPoint = new Point(e.X, e.Y);

        // Draw the line from the current point

        // to the new point

        g1.DrawLine(linePen, startPoint, endPoint);

        // If Rectangle check box is checked,

        // draw a rectangle to represent the point

        if(checkBox1.Checked)

        {

          g1.DrawRectangle(ellipsePen,

            e.X-2, e.Y-2, 4, 4);

        }

        // Draw a circle to represent the point

        else

        {

          g1.DrawEllipse(ellipsePen,

            e.X-2, e.Y-2, 4, 4);

        }

        // Dispose of objects

        linePen.Dispose();

        ellipsePen.Dispose();

        g1.Dispose();

      }

}

The Clear All button removes all the lines by invalidating the form's client area and sets the starting and ending points back to their initial 

values. Code for the Clear All button click event handler is given in Listing 3.10.

Listing 3.10 The Clear All button click event handler

private void button1_Click(object sender,

      System.EventArgs e)

{

      startPoint.X = 50;

      startPoint.Y = 217;

      endPoint.X = 50;

      endPoint.Y = 217;

      this.Invalidate(this.ClientRectangle);

}

3.2.1.7 Drawing Arcs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



An arc is a portion of an ellipse. For example, Figure 3.12 shows an ellipse that has six arcs. An arc is defined by a bounding rectangle (just as 

an ellipse), a start angle, and a sweep angle. The start angle is an angle in degrees measured clockwise from the x-axis to the starting point 

of the arc. The sweep angle is an angle in degrees measured clockwise from the startAngle parameter to the ending point of the arc. So an 

arc is the portion of the perimeter of the ellipse between the start angle and the start angle plus the sweep angle.

Figure 3.12. Arcs in an ellipse

The DrawArc method draws an arc on a graphics surface. DrawArc takes a pen, a pair of coordinates, a width, and a height. There are many 

DrawArc overloaded methods. An application can use a Rectangle or RectangleF object and integer or float coordinates:

public void DrawArc(Pen, Rectangle, float, float);

public void DrawArc(Pen, RectangleF, float, float);

public void DrawArc(Pen, int, int, int, int, int, int);

public void DrawArc(Pen, float, float, float, float, float, float);

The Pen object determines the color, width, and style of the arc; Rectangle or RectangleF represents the bounding rectangle; and the last two 

parameters are the start angle and sweep angle.

To draw an arc, the application creates Pen and Rectangle objects and defines start and sweep angles. Then it calls the DrawArc method.

Let's create an application that will draw an arc to match the values of the start and sweep angles. We create a Windows application, adding 

add two text boxes and a button control. The final form looks like Figure 3.13.

Figure 3.13. A sample arc application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We define two floating variables on the class level to store the start and sweep angles:

private float startAngle = 45.0f;

private float sweepAngle = 90.0f;

Now let's draw an arc on the form's paint event handler. Listing 3.11 draws an arc. We first create a pen and a rectangle, and we use them in 

the DrawArc method with start and sweep angles.

Listing 3.11 The paint event handler

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

     Pen redPen = new Pen(Color.Red, 3);

      Rectangle rect =

          new Rectangle(20, 20, 200, 200);

      e.Graphics.DrawArc(redPen,

        rect, startAngle, sweepAngle);

     redPen.Dispose();

}

Now we add code for the Reset Angles button. Listing 3.12 simply sets the start and sweep angles by reading values from the text boxes and 

calls the Invalidate method, which forces GDI+ to call the form's paint event handler.

Listing 3.12 The Reset Angles button click event handler

private void ResetAnglesBtn_Click(object sender,

      System.EventArgs e)

{

      startAngle =

        (float)Convert.ToDouble(textBox1.Text);

      sweepAngle =

        (float)Convert.ToDouble(textBox2.Text);

      Invalidate();

}

Figure 3.14 shows the default output from the application.

Figure 3.14. The default arc, with start angle of 45 degrees and sweep angle of 90 degrees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's change the start and sweep angles to 90 and 180 degrees, respectively, and click the Reset Angles button. The new output looks 

like Figure 3.15.

Figure 3.15. An arc with start angle of 90 degrees and sweep angle of 180 degrees

Let's change angles one more time. This time our start angle will be 180 degrees, and the sweep angle will be 360 degrees. The new output 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



looks like Figure 3.16.

Figure 3.16. An arc with start angle of 180 degrees and sweep angle of 360 degree

3.2.1.8 Drawing Splines and Curves

A curve is a sequence of adjoining points with a tension. The tension of a curve provides its smoothness and removes corners. A cardinal 

spline is a sequence of multiple joined curves. Basically, in a curve there is no straight line between two points. To illustrate, Figure 3.17 shows 

two curves.

Figure 3.17. Two curves

There are two types of curves: open and closed. A closed curve is a curve whose starting point is the ending point. A curve that is not a 

closed curve is called an open curve. In Figure 3.18 the first curve is an open curve, and the second curve is a closed curve.

Figure 3.18. Open and closed curves

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.9 Drawing Open Curves

Programmatically, a curve is an array of connected points with a tension. A curve has a starting point and an ending point. Between these two 

points can be many intermediate points. The Graphics class provides two methods for drawing curves: DrawCurve and DrawClosedCurve. 

The DrawCurve method draws a curve specified by an array of Point structures. The DrawClosedCurve draws a closed curve specified by an 

array of Point structures. Both DrawCurve and DrawClosedCurve have overloaded methods.

DrawCurve has the following overloaded forms:

public void DrawCurve(Pen, Point[]);

public void DrawCurve(Pen, PointF[]);

public void DrawCurve(Pen, Point[], float);

public void DrawCurve(Pen, PointF[], float);

public void DrawCurve(Pen, PointF[], int, int);

public void DrawCurve(Pen, Point[], int, int, float);

public void DrawCurve(Pen, PointF[], int, int, float);

The simplest form of DrawCurve is

public void DrawCurve(Pen pen, Point[] points);

where points is an array of points.

To test the DrawCurve methods, we create a Windows application and add Listing 3.13 to the form's paint event handler. It creates an array of 

points and draws a curve using the DrawCurve method.

Listing 3.13 Drawing a curve

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create a pen

      Pen bluePen = new Pen(Color.Blue, 1);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // Create an array of points

      PointF pt1 = new PointF( 40.0F, 50.0F);

      PointF pt2 = new PointF(50.0F, 75.0F);

      PointF pt3 = new PointF(100.0F, 115.0F);

      PointF pt4 = new PointF(200.0F, 180.0F);

      PointF pt5 = new PointF(200.0F, 90.0F);

      PointF[] ptsArray =

      {

        pt1, pt2, pt3, pt4, pt5

      };

      // Draw curve

      e.Graphics.DrawCurve(bluePen, ptsArray);

      // Dispose of object

      bluePen.Dispose();

}

Figure 3.19 shows the output from our Listing 3.13.

Figure 3.19. Drawing a curve

Note

The default tension is 0.5 for this overloaded version of DrawCurve.

The second form of DrawCurve is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



public void DrawCurve(Pen pen,

   Point[] points,

   float tension

);

Here the tension parameter determines the shape of the curve. If the value of tension is 0.0F, the method draws a straight line between the 

points. The value of tension should vary between 0.0F and 1.0F.

Now let's update the example in Listing 3.13. We add a text box, a label, and a button to the form. We change the properties of these 

controls, and the form looks like Figure 3.20.

Figure 3.20. A curve-drawing application

Now we will update our sample code to draw a curve using the tension value entered in the text box. We add a float type variable, tension, at 

the class level:

private float tension = 0.5F;

Then we update the form's paint event handler as shown in Listing 3.14. We provide tension as the third argument to the DrawCurve method.

Listing 3.14 Drawing a curve with tension

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // Create a pen

      Pen bluePen = new Pen(Color.Blue, 1);

      // Create an array of points

      PointF pt1 = new PointF( 40.0F, 50.0F);

      PointF pt2 = new PointF(50.0F, 75.0F);

      PointF pt3 = new PointF(100.0F, 115.0F);

      PointF pt4 = new PointF(200.0F, 180.0F);

      PointF pt5 = new PointF(200.0F, 90.0F);

      PointF[] ptsArray =

      {

        pt1, pt2, pt3, pt4, pt5

      };

      // Draw curve

      e.Graphics.DrawCurve(bluePen, ptsArray, tension);

      // Dispose of object

      bluePen.Dispose();

}

Now we add code for the Apply button, which simply reads the text box's value and sets it as the tension, as in Listing 3.15.

Listing 3.15 The Apply button click event handler

private void ApplyBtn_Click(object sender,

System.EventArgs e)

{

   tension = (float)Convert.ToDouble(textBox1.Text);

   Invalidate();

}

If you enter "0.0" in the text box and hit Apply, the output looks like Figure 3.21, and if you enter the value "1.0" in the text box and hit Apply, 

the output looks like Figure 3.22.

Figure 3.21. Drawing a curve with a tension of 0.0F

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 3.22. Drawing a curve with a tension of 1.0F

You can also add an offset and specify a number of segments for the curve:

public void DrawCurve(

   Pen pen,

   PointF[] points,

   int offset,

   int numberOfSegments

);

The offset specifies the number of elements to skip in the array of points. The first element after the skipped elements in the array of points 

becomes the starting point of the curve.

The numberOfSegments property specifies the number of segments, after the starting point, to draw in the curve. It must be at least 1. The 

offset plus the number of segments must be less than the number of elements in the array of the points.

The following method skips the first element of the array of points and starts drawing a curve from the second point in the array, stopping after 

three segments:

int offset = 1;

int segments = 3;

e.Graphics.DrawCurve(bluePen, ptsArray,

     offset, segments);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The final version of DrawCurve takes a pen, points array, offset, number of segments, and tension:

public void DrawCurve(

   Pen pen,

   Point[] points,

   int offset,

   int numberOfSegments,

   float tension

);

Here's an example:

int offset = 1;

int segments = 3;

e.Graphics.DrawCurve(bluePen, ptsArray,

     offset, segments, tension);

3.2.1.10 Drawing Closed Curves

As stated earlier, a closed curve is a curve whose starting and ending points are the same. The Graphics class provides the 

DrawClosedCurve method to draw closed curves. It has the following overloaded forms:

public void DrawClosedCurve(Pen, Point[]);

public void DrawClosedCurve(Pen, PointF[]);

public void DrawClosedCurve(Pen, Point[], float, FillMode);

public void DrawClosedCurve(Pen, PointF[], float, FillMode);

The simplest form of DrawClosedCurve takes two parameters: a pen and an array of points. Listing 3.16 creates an array of points and a pen 

and calls the DrawClosedCurve method.

Listing 3.16 Drawing closed curves

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create a pen

      Pen bluePen = new Pen(Color.Blue, 1);

      // Create an array of points

      PointF pt1 = new PointF( 40.0F, 50.0F);

      PointF pt2 = new PointF(50.0F, 75.0F);

      PointF pt3 = new PointF(100.0F, 115.0F);

      PointF pt4 = new PointF(200.0F, 180.0F);

      PointF pt5 = new PointF(200.0F, 90.0F);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      PointF[] ptsArray =

      {

        pt1, pt2, pt3, pt4, pt5

      };

      // Draw curve

      e.Graphics.DrawClosedCurve(bluePen, ptsArray);

      // Dispose of object

      bluePen.Dispose();

}

Figure 3.23 shows the output from Listing 3.16. The result is a closed curve.

Figure 3.23. Drawing a closed curve

The second form of DrawClosedCurve takes as arguments the tension of the curve and FillMode. We have already discussed tension. FillMode

specifies how the interior of a closed path is filled and clipped. The FillMode enumeration represents the fill mode of graphics objects. It has 

two modes: Alternate (the default mode) and Winding.

As the documentation says,

To determine the interiors of a closed curve in the Alternate mode, draw a line from any arbitrary start point in the path 

to some point obviously outside the path. If the line crosses an odd number of path segments, the starting point is 

inside the closed region and is therefore part of the fill or clipping area. An even number of crossings means that the 

point is not in an area to be filled or clipped. An open figure is filled or clipped by using a line to connect the last point to 

the first point of the figure.

The Winding mode considers the direction of the path segments at each intersection. It adds one for every clockwise 

intersection, and subtracts one for every counterclockwise intersection. If the result is nonzero, the point is considered 

inside the fill or clip area. A zero count means that the point lies outside the fill or clip area.

We will clarify these definitions with examples in the discussion of paths in Chapter 9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 3.17 uses DrawClosedCurve to draw a closed curve with a tension and fill mode.

Listing 3.17 Drawing a closed curve with a tension and fill mode

// Draw curve

float tension = 0.5F;

e.Graphics.DrawClosedCurve(bluePen, ptsArray,

tension, FillMode.Alternate);

3.2.1.11 Drawing Bézier Curves

The Bézier curve, developed by Pierre Bézier in the 1960s for CAD/CAM operations, has become one of the most used curves in drawing. A

Bézier curve is defined by four points: two endpoints and two control points. Figure 3.24 shows an example of a Bézier curve in which A and B

are the starting and ending points and C and D are two control points.

Figure 3.24. A Bézier curve

The Graphics class provides the DrawBezier and DrawBeziers methods for drawing Bézier curves. DrawBezier draws a Bézier curve defined

by four points: the starting point, two control points, and the ending point of the curve. The following example draws a Bézier curve with

starting point (30, 20), ending point (140, 50), and control points (80, 60) and (120, 18).

e.Graphics.DrawBezier(bluePen, 30, 20,

    80, 60, 120, 180, 140, 50);

DrawBeziers draws a series of Bézier curves from an array of Point structures. To draw multiple beziers, you need 3x + 1 points, where x is the 

number of Bézier segments.

Listing 3.18 draws Bézier curves using both DrawBezier and DrawBeziers.

Listing 3.18 Drawing Bézier curves

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics ;

  // Create pens

  Pen bluePen = new Pen(Color.Blue, 1);

  Pen redPen = new Pen(Color.Red, 1);

  // Create points for curve

  PointF p1 = new PointF(40.0F, 50.0F);

  PointF p2 = new PointF(60.0F, 70.0F);

  PointF p3 = new PointF(80.0F, 34.0F);

  PointF p4 = new PointF(120.0F, 180.0F);

  PointF p5 = new PointF(200.0F, 150.0F);

  PointF p6 = new PointF(350.0F, 250.0F);

  PointF p7 = new PointF(200.0F, 200.0F);

  PointF[] ptsArray =

  {

    p1, p2, p3, p4, p5, p6, p7

  };

  // Draw a Bézier

  e.Graphics.DrawBezier(bluePen, 30, 20,

    80, 60, 120, 180, 140, 50);

  // Draw Béziers

  e.Graphics.DrawBeziers(redPen, ptsArray);

  // Dispose of objects

  redPen.Dispose();

  bluePen.Dispose();

}

Figure 3.25 shows the output from Listing 3.18.

Figure 3.25. Drawing Bézier curves

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.12 Drawing a Polygon

A polygon is a closed shape with three or more straight sides. Examples of polygons include triangles and rectangles.

The Graphics class provides a DrawPolygon method to draw polygons. DrawPolygon draws a polygon defined by an array of points. It takes 

two arguments: a pen and an array of Point or PointF strucures.

To draw a polygon, an application first creates a pen and an array of points and then calls the DrawPolygon method with these parameters. 

Listing 3.19 draws a polygon with five points.

Listing 3.19 Drawing a polygon

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics ;

  // Create pens

  Pen greenPen = new Pen(Color.Green, 2);

  Pen redPen = new Pen(Color.Red, 2);

  // Create points for polygon

  PointF p1 = new PointF(40.0F, 50.0F);

  PointF p2 = new PointF(60.0F, 70.0F);

  PointF p3 = new PointF(80.0F, 34.0F);

  PointF p4 = new PointF(120.0F, 180.0F);

  PointF p5 = new PointF(200.0F, 150.0F);

  PointF[] ptsArray =

  {

    p1, p2, p3, p4, p5

  };

  // Draw polygon

  e.Graphics.DrawPolygon(greenPen,ptsArray);

  // Dispose of objects

  greenPen.Dispose();

  redPen.Dispose();

}

Figure 3.26 shows the output from Listing 3.19.

Figure 3.26. Drawing a polygon

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.13 Drawing Icons

The DrawIcon and DrawIconUnstretched methods are used to draw icons. DrawIcon draws an image represented by a specified object at the

specified coordinates—stretching the image to fit, if necessary. DrawIconUnstretched draws an image represented by an Icon object without 

scaling the image.

DrawIcon and DrawIconUnstretched take two arguments: an Icon object and upper left corner coordinates of a rectangle. To draw an icon 

using these methods, an application first creates an icon and either a Rectangle object or coordinates to the upper left corner at which to draw 

the icon.

An Icon object represents a Windows icon. An application creates an Icon object using its constructor, which takes arguments of string, Icon, 

Stream, and Type. Table 3.3 describes the properties of the Icon class.

Table 3.4 describes some of the methods of the Icon class.

Table 3.3. Icon properties

Property Description

Handle Represents the window handle of an icon.

Height Represents the height of an icon.

Size Represents the size of an icon.

Width Represents the width of an icon.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 3.4. Icon methods

Method Description

Clone Clones an Icon object, creating a duplicate image.

Save Saves an Icon object to the output stream.

ToBitmap Converts an Icon object to a Bitmap object.

Listing 3.20 draws icons. The application first creates two Icon objects, then creates a Rectangle object and calls DrawIcon and 

DrawIconUnstretched.

Listing 3.20 Drawing icons

Icon icon1 = new Icon("mouse.ico");

Icon icon2 = new Icon("logo.ico");

int x = 20;

int y = 50;

e.Graphics.DrawIcon(icon1, x, y);

Rectangle rect = new Rectangle(100, 200, 400, 400);

e.Graphics.DrawIconUnstretched(icon2, rect);

Figure 3.27 shows the output from Listing 3.20.

Figure 3.27. Drawing icons

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.1.14 Drawing Graphics Paths

A graphics path is a combination of multiple graphics shapes. For example, the graphics path in Figure 3.28 is a combination of lines, an 

ellipse, and a rectangle.

Figure 3.28. A path

The GraphicsPath class represents graphics paths. It provides methods to add graphics objects. For example, the AddLine, AddRectangle, 

AddEllipse, AddArc, AddPolygon, AddCurve, and AddBezier methods add a line, a rectangle, an ellipse, an arc, a polygon, a curve, and a

Bézier curve, respectively.

GraphicsPath is defined in the System.Drawing.Drawing2D namespace. You must import this namespace using the following line:

using System.Drawing.Drawing2D;

The Graphics class provides a DrawPath method, which draws a graphics path. It takes two arguments: Pen and GraphicsPath.

To draw a graphics path, first we create a GraphicsPath object, then we add graphics shapes to the path by calling its Add methods, and finally 

we call DrawPath. For example, the following code creates a graphics path, adds an ellipse to the path, and draws it.

GraphicsPath graphPath = new GraphicsPath();

graphPath.AddEllipse(50, 50, 100, 150);

g.DrawPath(greenPen, graphPath);

Let's add more shapes to the graph. Listing 3.21 creates a graphics path; adds some lines, an ellipse, and a rectangle; and draws the path.

Listing 3.21 Drawing a graphics path

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

  // Create a pen

  Pen greenPen = new Pen(Color.Green, 1);

  // Create a graphics path

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  GraphicsPath path = new GraphicsPath();

  // Add a line to the path

  path.AddLine(20, 20, 103, 80);

  // Add an ellipse to the path

  path.AddEllipse(100, 50, 100, 100);

  // Add three more lines

  path.AddLine(195, 80, 300, 80);

  path.AddLine(200, 100, 300, 100);

  path.AddLine(195, 120, 300, 120);

  // Create a rectangle and call

  // AddRectangle

  Rectangle rect =

    new Rectangle(50, 150, 300, 50);

  path.AddRectangle(rect);

  // Draw path

  e.Graphics.DrawPath(greenPen, path);

  // Dispose of object

  greenPen.Dispose();

}

Figure 3.29 shows the output from Listing 3.21.

Figure 3.29. Drawing a path

3.2.1.15 Drawing Pie Shapes

A pie is a slice of an ellipse. A pie shape also consists of two radial lines that intersect with the endpoints of the arc. Figure 3.30 shows an 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



ellipse with four pie shapes.

Figure 3.30. Four pie shapes of an ellipse

The Graphics class provides the DrawPie method, which draws a pie shape defined by an arc of an ellipse. The DrawPie method takes a Pen

object, a Rectangle or RectangleF object, and two radial angles.

Let's create an application that draws pie shapes. We create a Windows application and add two text boxes and a button control to the form. 

The final form looks like Figure 3.31.

Figure 3.31. A pie shape–drawing application

The Draw Pie button will draw a pie shape based on the values entered in the Start Angle and Sweep Angle text boxes. Listing 3.22 shows 

the code for the Draw Pie button click event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 3.22 Drawing a pie shape

private void DrawPieBtn_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Get the current value of start and sweep

      // angles

      float startAngle =

        (float)Convert.ToDouble(textBox1.Text);

      float sweepAngle =

        (float)Convert.ToDouble(textBox2.Text);

      // Create a pen

      Pen bluePen = new Pen(Color.Blue, 1);

      // Draw pie

      g.DrawPie( bluePen, 20, 20, 100, 100,

        startAngle, sweepAngle);

      // Dispose of objects

      bluePen.Dispose();

      g.Dispose();

}

Now let's run the pie shape–drawing application and enter values for the start and sweep angles. Figure 3.32 shows a pie for start and sweep 

angles of 0.0 and 90 degrees, respectively.

Figure 3.32. A pie shape with start angle of 0 degrees and sweep angle of 90 degrees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 3.33 shows a pie for start and sweep angles of 45.0 and 180.0 degrees, respectively.

Figure 3.33. A pie shape with start angle of 45 degrees and sweep angle of 180 degrees

Figure 3.34 shows a pie for start and sweep angles of 90.0 and 45.0 degrees, respectively.

Figure 3.34. A pie shape with start angle of 90 degrees and sweep angle of 45 degrees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

We will see a real-world pie chart application in Section 3.4.

3.2.1.16 Drawing Images

The Graphics class also provides functionality for drawing images, using DrawImage and DrawImageUnscaled. DrawImage draws an Image

object with a specified size, and DrawImageUnscaled draws an Image object without scaling it. The DrawImage method has many overloaded 

forms.

Note

Here we discuss simple images. Chapters 7 and 8 discuss the Image class, its members, and imaging-related functionality 

in detail.

An application creates an Image object by calling the Image class's static FromFile method, which takes a file name as an argument. After that 

you create the coordinates of a rectangle in which to draw the image and call DrawImage. Listing 3.23 draws an image on the surface with a 

size of ClientRectangle.

Listing 3.23 Drawing an image

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      try

      {

       // Create an image from a file

        Image newImage =

          Image.FromFile("dnWatcher.gif");

          // Draw image

          e.Graphics.DrawImage(newImage,

          this.ClientRectangle);

                newImage.Dispose();

      }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      catch (Exception ex)

      {

        MessageBox.Show(ex.Message.ToString());

      }

}

Figure 3.35 shows the output from Listing 3.23.

Figure 3.35. Drawing an image

3.2.2 Fill Methods

So far we have seen only the draw methods of the Graphics class. As we discussed earlier, pens are used to draw the outer boundary of 

graphics shapes, and brushes are used to fill the interior of graphics shapes. In this section we will cover the Fill methods of the Graphics

class. You can fill only certain graphics shapes; hence there are only a few Fill methods available in the Graphics class. Table 3.5 lists them.

3.2.2.1 The FillClosedCurve Method

FillClosedCurve fills the interior of a closed curve. The first parameter of FillClosedCurve is a brush. It can be a solid brush, a hatch brush, or a 

gradient brush. Brushes are discussed in more detail in Chapter 4. The second parameter is an array of points. The third and fourth 

parameters are optional. The third parameter is a fill mode, which is represented by the FillMode enumeration. The fourth and last optional 

parameter is the tension of the curve, which we discussed in Section 3.2.1.10.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The FillMode enumeration specifies the way the interior of a closed path is filled. It has two modes: alternate or winding. The values for 

alternate and winding are Alternate and Winding, respectively. The default mode is Alternate. The fill mode matters only if the curve intersects 

itself (see Section 3.2.1.10).

To fill a closed curve using FillClosedCurve, an application first creates a Brush object and an array of points for the curve. The application can 

then set the fill mode and tension (which is optional) and call FillClosedCurve.

Listing 3.24 creates an array of PointF structures and a SolidBrush object, and calls FillClosedCurve.

Listing 3.24 Using FillClosedCurve to fill a closed curve

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  // Create an array of points

      PointF pt1 = new PointF( 40.0F, 50.0F);

      PointF pt2 = new PointF(50.0F, 75.0F);

      PointF pt3 = new PointF(100.0F, 115.0F);

      PointF pt4 = new PointF(200.0F, 180.0F);

      PointF pt5 = new PointF(200.0F, 90.0F);

      PointF[] ptsArray =

      {

        pt1, pt2, pt3, pt4, pt5

      };

      // Fill a closed curve

      float tension = 1.0F;

      FillMode flMode = FillMode.Alternate;

      SolidBrush blueBrush = new SolidBrush(Color.Blue);

      e.Graphics.FillClosedCurve(blueBrush, ptsArray,

        flMode, tension);

      // Dispose of object

      blueBrush.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 3.5. Graphics fill methods

Method Description

FillClosedCurve Fills the interior of a closed cardinal spline curve defined by an array of Point structures.

FillEllipse Fills the interior of an ellipse defined by a bounding rectangle specified by a pair of coordinates, a width, and a height.

FillPath Fills the interior of a GraphicsPath object.

FillPie Fills the interior of a pie section defined by an ellipse specified by a pair of coordinates, a width, a height, and two radial 

lines.

FillPolygon Fills the interior of a polygon defined by an array of points specified by Point structures.

FillRectangle Fills the interior of a rectangle specified by a pair of coordinates, a width, and a height.

FillRectangles Fills the interiors of a series of rectangles specified by Rectangle structures.

FillRegion Fills the interior of a Region object.

Figure 3.36 shows the output from Listing 3.24.

Figure 3.36. Filling a closed curve

3.2.2.2 The FillEllipse Method

FillEllipse fills the interior of an ellipse. It takes a Brush object and rectangle coordinates.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



To fill an ellipse using FillEllipse, an application creates a Brush and a rectangle and calls FillEllipse. Listing 3.25 creates three brushes and 

calls FillEllipse to fill an ellipse with a brush.

Listing 3.25 Filling ellipses

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics ;

  // Create brushes

  SolidBrush redBrush = new SolidBrush(Color.Red);

  SolidBrush blueBrush = new SolidBrush(Color.Blue);

  SolidBrush greenBrush = new SolidBrush(Color.Green);

  // Create a rectangle

  Rectangle rect =

    new Rectangle(80, 80, 50, 50);

  // Fill ellipses

  g.FillEllipse(greenBrush,

    40.0F, 40.0F, 130.0F, 130.0F );

  g.FillEllipse(blueBrush, 60, 60, 90, 90);

  g.FillEllipse(redBrush, rect );

  g.FillEllipse(greenBrush,

    100.0F, 90.0F, 10.0F, 30.0F );

  // Dispose of objects

  blueBrush.Dispose();

  redBrush.Dispose();

  greenBrush.Dispose();

}

Figure 3.37 shows the output from Listing 3.25.

Figure 3.37. Filling ellipses

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.2.3 The FillPath Method

FillPath fills the interior of a graphics path. To do this, an application creates Brush and GraphicsPath objects and then calls FillPath, which 

takes a brush and a graphics path as arguments. Listing 3.26 creates GraphicsPath and SolidBrush objects and calls FillPath.

Listing 3.26 Filling a graphics path

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create a solid brush

      SolidBrush greenBrush =

        new SolidBrush(Color.Green);

      // Create a graphics path

      GraphicsPath path = new GraphicsPath();

      // Add a line to the path

      path.AddLine(20, 20, 103, 80);

      // Add an ellipse to the path

      path.AddEllipse(100, 50, 100, 100);

      // Add three more lines

      path.AddLine(195, 80, 300, 80);

      path.AddLine(200, 100, 300, 100);

      path.AddLine(195, 120, 300, 120);

      // Create a rectangle and call

      // AddRectangle

      Rectangle rect =

        new Rectangle(50, 150, 300, 50);

      path.AddRectangle(rect);

      // Fill path

      e.Graphics.FillPath(greenBrush, path);

      // Dispose of object

      greenBrush.Dispose();

}

Figure 3.38 shows the output from Listing 3.26. As the figure shows, the fill method fills all the covered areas of a graphics path.

Figure 3.38. Filling a graphics path

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.2.4 The FillPie Method

FillPie fills a pie section with a specified brush. It takes four parameters: a brush, the rectangle of the ellipse, and the start and sweep angles. 

The following code calls FillPie.

g.FillPie(new SolidBrush(Color.Red),

0.0F, 0.0F, 100, 60, 0.0F, 90.0F);

We will discuss the FillPie method in the pie chart application in Section 3.4.

3.2.2.5 The FillPolygon Method

FillPolygon fills a polygon with the specified brush. It takes three parameters: a brush, an array of points, and a fill mode. The FillMode

enumeration defines the fill mode of the interior of the path. It provides two fill modes: Alternate and Winding. The default mode is Alternate.

In our application we will use a hatch brush. So far we have seen only a solid brush. A solid brush is a brush with one color only. A hatch 

brush is a brush with a hatch style and two colors. These colors work together to support the hatch style. The HatchBrush class represents a 

hatch brush. We will discuss hatch brushes in more detail in Chapter 4.

The code in Listing 3.27 uses FillPolygon to fill a polygon using the Winding mode.

Listing 3.27 Filling a polygon

Graphics g = e.Graphics ;

// Create a solid brush

SolidBrush greenBrush =

     new SolidBrush(Color.Green);

// Create points for polygon

PointF p1 = new PointF(40.0F, 50.0F);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



PointF p2 = new PointF(60.0F, 70.0F);

PointF p3 = new PointF(80.0F, 34.0F);

PointF p4 = new PointF(120.0F, 180.0F);

PointF p5 = new PointF(200.0F, 150.0F);

PointF[] ptsArray =

{

     p1, p2, p3, p4, p5

};

// Draw polygon

e.Graphics.FillPolygon(greenBrush, ptsArray);

// Dispose of object

greenBrush.Dispose();

Figure 3.39 shows the output from Listing 3.27. As you can see, the fill method fills all the areas of a polygon.

Figure 3.39. Filling a polygon

3.2.2.6 Filling Rectangles and Regions

FillRectangle fills a rectangle with a brush. This method takes a brush and a rectangle as arguments. FillRectangles fills a specified series of 

rectangles with a brush, and it takes a brush and an array of rectangles. These methods also have overloaded forms with additional options. 

For instance, if you're using a HatchStyle brush, you can specify background and foreground colors. Chapter 4 discusses FillRectangle and its 

options in more detail.

Note

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The HatchBrush class is defined in the System.Drawing.Drawing2D namespace.

The source code in Listing 3.28 uses FillRectangle to fill two rectangles. One rectangle is filled with a hatch brush, the other with a solid brush.

Listing 3.28 Filling rectangles

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      // Create brushes

      SolidBrush blueBrush = new SolidBrush(Color.Blue);

      // Create a rectangle

      Rectangle rect = new Rectangle(10, 20, 100, 50);

      // Fill rectangle

      e.Graphics.FillRectangle(new HatchBrush

        (HatchStyle.BackwardDiagonal,

        Color.Yellow, Color.Black),

        rect);

      e.Graphics.FillRectangle(blueBrush,

        new Rectangle(150, 20, 50, 100));

      // Dispose of object

      blueBrush.Dispose();

}

Figure 3.40 shows the output from Listing 3.28.

Figure 3.40. Filling rectangles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



FillRegion fills a specified region with a brush. This method takes a brush and a region as input parameters. Listing 3.29 creates a Region object 

from a rectangle and calls FillRegion to fill the region.

Listing 3.29 Filling regions

Rectangle rect = new Rectangle(20, 20, 150, 100);

Region rgn = new Region(rect);

e.Graphics.FillRegion(new SolidBrush(Color.Green)

, rgn);

Note

Chapter 6 discusses rectangles and regions in more detail.

3.2.3 Miscellaneous Graphics Class Methods

The Graphics class provides more than just draw and fill methods. Miscellaneous methods are defined in Table 3.6. Some of these methods 

are discussed in more detail later.

3.2.3.1 The Clear Method

The Clear method clears the entire drawing surface and fills it with the specified background color. It takes one argument, of type Color. To 

clear a form, an application passes the form's background color. The following code snippet uses the Clear method to clear a form.

form.Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 3.6. Some miscellaneous Graphics methods

Method Description

AddMetafileComment Adds a comment to a Metafile object.

Clear Clears the entire drawing surface and fills it with the specified background color.

ExcludeClip Updates the clip region to exclude the area specified by a Rectangle structure.

Flush Forces execution of all pending graphics operations and returns immediately without waiting for the operations 

to finish.

FromHdc Creates a new Graphics object from a device context handle.

FromHwnd Creates a new Graphics object from a window handle.

FromImage Creates a new Graphics object from an Image object.

GetHalftonePalette Returns a handle to the current Windows halftone palette.

GetHdc Returns the device context handle associated with a Graphics object.

GetNearestColor Returns the nearest color to the specified Color structure.

IntersectClip Updates the clip region of a Graphics object to the intersection of the current clip region and a Rectangle

structure.

IsVisible Returns true if a point is within the visible clip region.

MeasureCharacterRanges Returns an array of Region objects, each of which bounds a range of character positions within a string.

MeasureString Measures a string when drawn with the specified Font object.

MultiplyTransform Multiplies the world transformation and the Matrix object.

ReleaseHdc Releases a device context handle obtained by a previous call to the GetHdc method.

ResetClip Resets the clip region to an infinite region.

ResetTransform Resets the world transformation matrix to the identity matrix.

Restore Restores the state of a Graphics object to the state represented by a GraphicsState object. Takes 

GraphicsState as input, removes the information block from the stack, and restores the Graphics object to the 

state it was in when it was saved.

RotateTransform Applies rotation to the transformation matrix.

Save Saves the information block of a Graphics object. The information block stores the state of the Graphics object. 

The Save method returns a GraphicsState object that identifies the information block.

ScaleTransform Applies the specified scaling operation to the transformation matrix.

SetClip Sets the clipping region to the Clip property.

TransformPoints Transforms an array of points from one coordinate space to another using the current world and page 

transformations.

TranslateClip Translates the clipping region by specified amounts in the horizontal and vertical directions.

TranslateTransform Prepends the specified translation to the transformation matrix.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



3.2.3.2 The MeasureString Method

MeasureString measures a string when it is drawn with a Font object and returns the size of the string as a SizeF object. You can use SizeF to 

find out the height and width of string.

MeasureString can also be used to find the total number of characters and lines in a string. It has seven overloaded methods. It takes two 

required parameters: the string and font to measure. Optional parameters you can pass include the width of the string in pixels, maximum 

layout area of the text, string format, and combinations of these parameters.

Note

Chapter 5 discusses string operations in detail.

Listing 3.30 uses the MeasureString method to measure a string's height and width and draws a rectangle and a circle around the string. This 

example also shows how to find the total number of lines and characters of a string.

Listing 3.30 Using the MeasureString method

Graphics g = Graphics.FromHwnd(this.Handle);

g.Clear(this.BackColor);

string testString = "This is a test string";

Font verdana14 = new Font("Verdana", 14);

Font tahoma18 = new Font("Tahoma", 18);

int nChars;

int nLines;

// Call MeasureString to measure a string

SizeF sz = g.MeasureString(testString, verdana14);

string stringDetails = "Height: "+sz.Height.ToString()

+ ", Width: "+sz.Width.ToString();

MessageBox.Show("First string details: "+ stringDetails);

g.DrawString(testString, verdana14, Brushes.Green,

new PointF(0, 100));

g.DrawRectangle(new Pen(Color.Red, 2), 0.0F, 100.0F,

sz.Width, sz.Height);

sz = g.MeasureString("Ellipse", tahoma18,

new SizeF(0.0F, 100.0F), new StringFormat(),

out nChars, out nLines);

stringDetails = "Height: "+sz.Height.ToString()

+ ", Width: "+sz.Width.ToString()

+ ", Lines: "+nLines.ToString()

+ ", Chars: "+nChars.ToString();

MessageBox.Show("Second string details: "+ stringDetails);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



g.DrawString("Ellipse", tahoma18, Brushes.Blue,

new PointF(10, 10));

g.DrawEllipse( new Pen(Color.Red, 3), 10, 10,

sz.Width, sz.Height);g.Dispose()

Figure 3.41 shows the output from Listing 3.30.

Figure 3.41. Using MeasureString when drawing text

3.2.3.3 The FromImage, FromHdc, and FromHwnd Methods

As we discussed earlier, an application can use Graphics class members to get a Graphics object. The Graphics class provides three methods 

to create a Graphics object: FromHwnd, FromHdc, and FromImage.

FromImage takes an Image object as input parameter and returns a Graphics object. We will discuss FromImage in more detail in Chapters 7

and 8. The following code snippet creates a Graphics object from an Image object. Once a Graphics object has been created, you can call its 

members.

Image img = Image.FromFile("Rose.jpg");

Graphics g = Graphics.FromImage(img);

// Do something

g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Note

Make sure you call the Dispose method of the Graphics object when you're finished with it.

FromHdc creates a Graphics object from a window handle to a device context. The following code snippet shows an example in which 

FromHdc takes one parameter, of type IntPtr.

IntPtr hdc = e.Graphics.GetHdc();

Graphics g= Graphics.FromHdc(hdc);

// Do something

e.Graphics.ReleaseHdc(hdc);

g.Dispose();

Note

You need to call the ReleaseHdc method to release resources allocated by a window handle to a device context, and also 

make sure you call the Dispose method of the Graphics object when you're finished with it.

FromHwnd returns a Graphics object for a form. The following method takes a window handle.

Graphics g = Graphics.FromHwnd(this.Handle);

To draw on a form, an application can pass this handle. Once an application has a Graphics object, it can call any Graphics class method to 

draw graphics objects.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

3.3 The GDI+Painter Application

Almost every chapter of this book will show a real-world example to illustrate the concepts discussed in it. In this chapter we create an 

application, GDI+Painter, that you can use to draw and fill simple graphics objects. If you wish, you can add more functionality to the 

application. Once you are done drawing graphics shapes, the program allows you to save your drawing in bitmap format. You can modify the 

program to save a drawing in .jpeg or .gif format.

The program is a Windows Forms application and looks like Figure 3.42. It has three draw buttons (line, ellipse, and rectangle) and two fill 

buttons (rectangle and ellipse). The Save Image button allows you to save the image.

Figure 3.42. The GDI+Painter application

Click on a button and the program draws the selected item on the form. Here's how it works:

First we define some private class-level variables:

// Variables

private Bitmap bitmap = null;

private Bitmap curBitmap = null;

private bool dragMode = false;

private int drawIndex = 1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private int curX, curY, x, y;

private int diffX, diffY;

private Graphics curGraphics;

private Pen curPen;

private SolidBrush curBrush;

private Size fullSize;

Note

Please download GDI+Painter application source code from online (www.awprofessional.com/titles/0321160770).

The next step is to initialize objects. On the form-load event handler, we create a bitmap and a Graphics object from the bitmap, which 

represents the entire form. We set its background color to the form's background color by calling the Graphics.Clear method. We also create a 

Pen object and a Brush object when the form loads. Listing 3.31 gives the form-load event handler code.

Listing 3.31 The form-load event handler

private void Form1_Load(object sender,

  System.EventArgs e)

{

      // Get the full size of the form

      fullSize = SystemInformation

        .PrimaryMonitorMaximizedWindowSize;

      // Create a bitmap using full size

      bitmap = new Bitmap(fullSize.Width,

        fullSize.Height);

      // Create a Graphics object from Bitmap

      curGraphics = Graphics.FromImage(bitmap);

      // Set background color as form's color

      curGraphics.Clear(this.BackColor);

      // Create a new pen and brush as

      // default pen and brush

      curPen = new Pen(Color.Black);

      curBrush = new SolidBrush(Color.Black);

}

When we click on a button, we find out which button was selected and save it in the drawIndex variable. Listing 3.32 gives code for the button 

click event handler for all buttons.

Listing 3.32 Saving a selected button

private void LineDraw_Click(object sender,

      System.EventArgs e)

    {

      drawIndex = 1;

    }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.awprofessional.com/titles/0321160770


    private void RectDraw_Click(object sender,

      System.EventArgs e)

    {

        drawIndex = 2;

    }

    private void EllipseDraw_Click(object sender,

      System.EventArgs e)

    {

      drawIndex = 3;

    }

    private void FilledEllipse_Click(object sender,

      System.EventArgs e)

    {

      drawIndex = 5;

}

When we start drawing on the form, we save the starting point on the mouse-down events and the ending point on the mouse-up events (see 

Listing 3.33). From these two points we can determine the area of the rectangle we're trying to draw. We use this rectangle in draw and fill 

methods.

On a mouse-move event, we calculate the difference between the ending and starting points that are used to draw the rectangle. Notice also 

that on mouse down we set dragMode to true, and on mouse up we set dragMode to false. On the basis of the area covered by user 

selection, we draw or fill objects on mouse up, which gives the user a visible drawing effect. You will also see the RefreshFormBackground

method, which we will discuss shortly.

Listing 3.33 The mouse-down event handler

private void Form1_MouseDown(object sender,

  System.Windows.Forms.MouseEventArgs e)

{

      // Store the starting point of

      // the rectangle and set the drag mode

      // to true

      curX = e.X;

      curY = e.Y;

      dragMode = true;

}

private void Form1_MouseMove(object sender,

  System.Windows.Forms.MouseEventArgs e)

{

  // Find out the ending point of

  // the rectangle and calculate the

  // difference between starting and ending

  // points to find out the height and width

  // of the rectangle

  x = e.X;

  y = e.Y;

  diffX = e.X - curX;

  diffY = e.Y - curY;

  // If dragMode is true, call refresh

  // to force the window to repaint

  if (dragMode)

  {

    this.Refresh();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  }

}

private void Form1_MouseUp(object sender,

  System.Windows.Forms.MouseEventArgs e)

{

  diffX = x - curX;

  diffY = y - curY;

  switch (drawIndex)

  {

    case 1:

    {

      // Draw a line

      curGraphics.DrawLine(curPen,

        curX, curY, x, y);

      break;

    }

    case 2:

    {

      // Draw an ellipse

      curGraphics.DrawEllipse(curPen,

        curX, curY, diffX, diffY);

      break;

    }

    case 3:

    {

      // Draw a rectangle

      curGraphics.DrawRectangle(curPen,

        curX, curY, diffX, diffY);

      break;

    }

    case 4:

    {

      // Fill the rectangle

      curGraphics.FillRectangle(curBrush,

        curX, curY, diffX, diffY);

      break;

    }

    case 5:

    {

      // Fill the ellipse

      curGraphics.FillEllipse(curBrush,

        curX, curY, diffX, diffY);

      break;

    }

  }

  // Refresh

  RefreshFormBackground();

  // Set drag mode to false

  dragMode = false;

}

Now we add code to the form's paint event handler, which draws and fills the object. Listing 3.34 gives the code for the OnPaint method.

Listing 3.34 The OnPaint method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

    {

      Graphics g = e.Graphics;

      // If dragMode is true, draw the selected

      // graphics shape

      if (dragMode)

      {

        switch (drawIndex)

        {

          case 1:

          {

            g.DrawLine(curPen, curX, curY, x, y);

            break;

          }

          case 2:

          {

            g.DrawEllipse(curPen,

              curX, curY, diffX, diffY);

            break;

          }

          case 3:

          {

            g.DrawRectangle(curPen,

              curX, curY, diffX, diffY);

            break;

          }

          case 4:

          {

            g.FillRectangle(curBrush,

              curX, curY, diffX, diffY);

            break;

          }

          case 5:

          {

            g.FillEllipse(curBrush,

              curX, curY, diffX, diffY);

            break;

          }

        }

    }

}

Here's a little trick. You may have noticed that we used the RefreshFormBackground method. This method sets the current drawing as the 

background of the form. Listing 3.35 gives code for the method.

Listing 3.35 The RefreshFormBackground method

private void RefreshFormBackground()

{

      curBitmap = bitmap.Clone(

        new Rectangle(0, 0, this.Width, this.Height),

        bitmap.PixelFormat);

      this.BackgroundImage = curBitmap;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

The Save Image button allows us to save the image by simply calling the Save method of Bitmap. The Save method takes a file name and 

format. We use SaveFileDialog to select the file name. Listing 3.36 gives code for the Save Image button.

Listing 3.36 The Save Image button click handler

private void SaveBtn_Click(object sender,

  System.EventArgs e)

{

      // Save file dialog

      SaveFileDialog saveFileDlg = new SaveFileDialog();

      saveFileDlg.Filter =

      "Image files (*.bmp)|*.bmp|All files (*.*)|*.*" ;

      if(saveFileDlg.ShowDialog() == DialogResult.OK)

      {

        // Create bitmap and call Save method

        // to save it

        Bitmap tmpBitmap = bitmap.Clone

          (new Rectangle(0, 0,

          this.Width, this.Height),

          bitmap.PixelFormat);

        tmpBitmap.Save(saveFileDlg.FileName,

          ImageFormat.Bmp);

      }

}

In the end we release all objects, which we can do on the form-closed event (see Listing 3.37).

Listing 3.37 The form-closed event handler

private void Form1_Closed(object sender, System.EventArgs e)

{

 // Dispose of all public objects

 curPen.Dispose();

 curBrush.Dispose();

 curGraphics.Dispose();

}

In Chapter 4 we will add functionality to select different pens and brushes to draw and fill graphics shapes.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



3.4 Drawing a Pie Chart

Let's look at one more real-world application. In this example we will develop an application that draws pie charts based on a data feed. Pie

charts are useful when you need to represent statistical data in a graphical way—for example, the percentage of users visiting a Web site

from different countries, or the percentage grades in different subjects. In our example we will use the DrawPie and FillPie methods.

First we create a Windows application and add four buttons, a text box, and a list box control. We change the text and names of the text box, 

and our final form looks like Figure 3.43. In the Enter Share text box we will enter a number to represent the share of total items. For 

example, add five values in the share box: 10, 20, 30, 40, 50. The total is 150. The percentage of the share with value 10 is 10/150.

Figure 3.43. A pie chart–drawing application

Listing 3.38 adds variables. You may notice the structure sliceData, which has two public variables: share and clr. The share variable 

represents the share of a slice, and clr is its color.

Listing 3.38 The sliceData structure

// User-defined variables

private Rectangle rect =

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 new Rectangle(250, 150, 200, 200);

public ArrayList sliceList = new ArrayList();

struct sliceData

{

 public int share;

 public Color clr;

};

private Color curClr = Color.Black;

int shareTotal = 0;

The Select Color button allows us to select the color for a share. As Listing 3.39 shows, we use ColorDialog to select a color.

Listing 3.39 Selecting a color

private void ColorBtn_Click(object sender, System.EventArgs e)

{

 ColorDialog clrDlg = new ColorDialog();

 if (clrDlg.ShowDialog() == DialogResult.OK)

 {

   curClr = clrDlg.Color;

 }

}

The Add Slice button adds the data to an array to be added to the list for calculation. As Listing 3.40 shows, all data is added to an array. This 

code also adds the entered data to the ListBox control.

Listing 3.40 Adding pie chart data

private void button1_Click(object sender, System.EventArgs e)

{

 int slice = Convert.ToInt32(textBox1.Text);

 shareTotal += slice;

 sliceData dt;

 dt.clr = curClr;

 dt.share = slice;

 sliceList.Add(dt);

 listBox1.Items.Add(

 "Share:"+slice.ToString()+" ," + curClr.ToString() );

}

The Draw Chart and Fill Chart button clicks are used to draw the outer boundary and fill the chart, respectively. These buttons call the 

DrawPieChart method with a Boolean variable, as shown in Listing 3.41.

Listing 3.41 The Draw Pie and Fill Pie button click handlers

private void DrawPie_Click(object sender, System.EventArgs e)

{

 DrawPieChart(false);

}

private void FillChart_Click(object sender, System.EventArgs e)

{

 DrawPieChart(true);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

The DrawPieChart method actually draws the pie chart, as shown in Listing 3.42. Depending on which button—Fill Chart or Draw Chart—was

clicked, we call FillPie or DrawPie, respectively. We also read each sliceData variable of the array and calculate the percentage of a share in 

the entire chart, represented by an angle.

Listing 3.42 The DrawPieChart method

private void DrawPieChart(bool flMode)

{

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

Rectangle rect = new Rectangle(250, 150, 200, 200);

float angle = 0;

float sweep = 0;

foreach(sliceData dt in sliceList)

{

sweep = 360f * dt.share / shareTotal;

if(flMode)

g.FillPie(new SolidBrush(dt.clr), rect, angle, sweep);

else

g.DrawPie(new Pen(dt.clr), rect, angle, sweep);

angle += sweep;

}

g.Dispose();

}

Let's see this application in action. We add shares 10, 20, 30, 40, and 50 with different colors. The Draw Chart button click draws a pie chart, 

with the output shown in Figure 3.44.

Figure 3.44. The Draw Chart button click in action

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Fill Chart button fills the chart, with the output shown in Figure 3.45.

Figure 3.45. The Fill Chart button click in action

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

SUMMARY

In this chapter we have seen that the Graphics object plays a major role in drawing and represents a canvas to draw graphics curves, 

shapes, and images.

We started this chapter by discussing the Graphics class properties. Then we discussed various Graphics class methods, which are divided 

into three categories: draw, fill, and miscellaneous. We saw how to use the draw methods to draw lines, rectangles, ellipses, curves, images, 

paths, and other graphics objects. We also discussed differences between the draw and fill methods and how to use the fill methods to fill 

rectangles, ellipses, curves, and graphics paths. We then discussed miscellaneous methods, covering the Clear, MeasureString, FromImage, 

FromHdc, and FromHwnd methods.

This chapter also presented a couple of real-world applications, showing how to write an application to draw line and pie charts. We also used 

various methods and properties of the Graphics class to write a PaintBrush-like application, GDI+Painter. Using this application, you can draw 

lines, rectangles, and ellipses and save the resulting image as a bitmap file.

Having completed this chapter, you should have a good understanding of the Graphics class, its methods and properties, and how to use 

those methods and properties to write real-world applications.

Pens and brushes are two of the most frequently used objects in the graphics world. In this chapter we discussed pens and brushes briefly. 

Chapter 4 is dedicated to pens and brushes. You will learn how to create different kinds of pens and brushes to write interactive graphics 

applications. At the end of Chapter 4 we will add different pen and brush options to GDI+Painter, making it more interactive.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 4. Working with Brushes and Pens

Brushes and Pens are the two most frequently used objects in graphics applications. Pens are used to draw the outlines of graphics objects 

such as lines and curves; brushes are used to fill the graphic objects' interior areas (e.g., filling a rectangle or an ellipse). In this chapter we 

will discuss how to create and use various types of brushes and pens.

We begin by discussing brushes, brush types, their methods and properties, and how to create and use them in GDI+.

GDI+ provides the Pen and Pens classes to represent pens. In this chapter we will discuss how to create different kinds of pens using the Pen

class and its properties, and how to use the Pen class methods. We will also discuss how to add line caps, dash caps, line dash styles, and 

line cap styles. In Sections 4.3 and 4.4 we will discuss the transformation of pens and brushes.

The SystemPens and SystemBrushes classes represent the system pens and brushes, respectively. In Section 4.5 we will discuss how to use 

these classes to work with system pens and brushes.

At the end of this chapter we will add color, pen, and brush options to the GDI+Painter application that we created in Chapter 3.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

4.1 Understanding and Using Brushes

In the .NET Framework library, brush-related functionality is defined in two namespaces: System.Drawing and System.Drawing.Drawing2D. 

The System.Drawing namespace defines general brush-related classes and functionality, and the System.Drawing.Drawing2D namespace 

defines advanced 2D brush-related functionality. For example, the Brush, SolidBrush, TextureBrush, and Brushes classes are defined in the 

System.Drawing namespace; and the HatchBrush and GradientBrush classes are defined in the System.Drawing.Drawing2D namespace.

Before using brushes, obviously you must include the corresponding namespace to your application. Alternatively, you can use the 

namespace as a prefix to the class; for example, System.Drawing.Brush represents the Brush class if you do not wish to include the 

System.Drawing namespace in your application.

The code snippet in Listing 4.1 creates a red SolidBrush object and uses it to draw a rectangle. This code is written on a form's paint event 

handler. The first line gets the Graphics object of the form, and the second line creates a brush using the SolidBrush class, which later is used 

to fill a rectangle. The last line disposes of the SolidBrush object.

Listing 4.1 Creating a solid brush

Graphics g = e.Graphics;

SolidBrush redBrush = new SolidBrush(Color.Red);

Rectangle rect = new Rectangle(150, 80, 200, 140);

g.FillRectangle(redBrush, rect);

redBrush.Dispose();

4.1.1 The Brush Class

In the .NET Framework library, the Brush class is an abstract base class, which means you cannot create an instance of it without using its 

derived classes. All usable classes are inherited from the abstract Brush class. Figure 4.1 shows all the Brush-derived classes that can be 

used in your GDI+ applications.

Figure 4.1. Classes inherited from the Brush class

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Applications generally call fill methods of the appropriate Graphics class, which in turn use brushes to fill GDI+ objects (such as an ellipse, an 

arc, or a polygon) with a certain kind of brush. GDI+ provides four different kinds of brushes: solid, hatch, texture, and gradient. Figure 4.2

shows the brush types and their classes.

Figure 4.2. Brush types and their classes

4.1.2 The Brushes Class

The Brushes class is a sealed class (it cannot be inherited). Brushes provides more than 140 static members (properties), and each of these 

members represents a brush with a particular color (including all the standard colors). For instance, the Brushes.Pink, Brushes.Red, and 

Brushes.Green members represent Brush objects with the colors pink, red, and green, respectively.

4.1.3 Solid Brushes

A solid brush is a brush that fills an area with a single solid color. We create a SolidBrush object by calling its constructor and passing a Color

structure as the only parameter. The Color structure represents a color. It has a static property for every possible color. For example, Color.Red

represents the color red. The code snippet in Listing 4.2 creates three SolidBrush objects with three different colors: red, green, and blue.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 4.2 Creating a SolidBrush object

SolidBrush redBrush = new SolidBrush(Color.Red);

SolidBrush greenBrush = new SolidBrush(Color.Green);

SolidBrush blueBrush = new SolidBrush(Color.Blue);

SolidBrush has only one property of interest: Color, which represents the color of the brush.

Listing 4.3 uses red, green, and blue solid brushes and fills an ellipse, a pie, and a rectangle using the FillEllipse, FillPie, and FillRectangle

methods of the Graphics class, respectively.

Listing 4.3 Using the SolidBrush class

private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

    Graphics g = e.Graphics;

    // Create three SolidBrush objects

    // using the colors red, green, and blue

    SolidBrush redBrush = new SolidBrush(Color.Red);

    SolidBrush greenBrush = new SolidBrush(Color.Green);

    SolidBrush blueBrush = new SolidBrush(Color.Blue);

    // Fill ellipse using red brush

    g.FillEllipse(redBrush, 20, 40, 100, 120);

    // Fill rectangle using blue brush

    Rectangle rect = new Rectangle(150, 80, 200, 140);

    g.FillRectangle(blueBrush, rect);

    // Fill pie using green brush

    g.FillPie(greenBrush,

      40, 20, 200, 40, 0.0f, 60.0f );

    // Dispose of objects

    redBrush.Dispose();

    greenBrush.Dispose();

    blueBrush.Dispose();

}

The output of Listing 4.3 draws an ellipse, a rectangle, and a pie, as Figure 4.3 shows.

Figure 4.3. Graphics objects filled by SolidBrush

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



4.1.4 Hatch Brushes

Hatch brushes are brushes with a hatch style, a foreground color, and a background color. Hatches are a combination of rectangle lines and 

the area between the lines. The foreground color defines the color of lines; the background color defines the color between lines.

The HatchBrush class constructor takes HatchStyle as its first parameter and Color as the second parameter. Second and third Color

parameters represent the foreground and background colors. The following code snippet shows the constructor signatures:

Note

The HatchBrush class is defined in the System.Drawing.Drawing2D namespace. An application needs to provide a 

reference to System.Drawing.Drawing2D before using this class. Alternatively, an application can refer to the HatchBrush

class as System.Drawing.Drawing2D.HatchBrush.

public HatchBrush(HatchStyle, Color);

public HatchBrush(HatchStyle, Color, Color);

The following code creates a hatch brush with a dashed-vertical hatch style, blue background, and red foreground:

HatchBrush hBrush1 = new HatchBrush

(HatchStyle.DashedVertical, Color.Blue, Color.Red);

We can use this hatch brush to fill graphics objects such as rectangles or ellipses. For example, the following code line fills an ellipse using 

hBrush1:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



g.FillEllipse(hBrush1, 20, 40, 100, 120);

HatchBrush has three properties: BackgroundColor, Foreground-Color, and HatchStyle. BackgroundColor returns the color of spaces between 

the hatch lines, and ForegroundColor represents the color of the hatch lines.

HatchStyle returns the hatch brush style of type HatchStyle enumeration, whose members are described in Table 4.1.

Let's create a Windows application that looks like Figure 4.4. The combo box will list some of the available hatch styles. The Pick... buttons let 

you select background and foreground colors of the hatch brush, and the Apply Style button creates a hatch brush based on the selection 

and uses it to draw a rectangle.

Figure 4.4. A sample hatch brush application

First we add one HatchStyle-type and two Color-type class-level variables that represent the current selected hatch style, foreground, and 

background color of a hatch brush, respectively. These variables are defined as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 4.1. HatchStyle members

Member Description

BackwardDiagonal A pattern of lines on a diagonal from upper right to lower left.

Cross Horizontal and vertical lines that cross.

DarkDownwardDiagonal Diagonal lines that slant to the right from top points to bottom points, are spaced 50 percent closer together 

than in ForwardDiagonal, and are twice the width of ForwardDiagonal lines.

DarkHorizontal Horizontal lines that are spaced 50 percent closer together than in Horizontal and are twice the width of 

Horizontal lines.

DarkUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points, are spaced 50 percent closer together 

than BackwardDiagonal, and are twice the width of BackwardDiagonal lines.

DarkVertical Vertical lines that are spaced 50 percent closer together than Vertical and are twice the width of Vertical lines.

DashedDownwardDiagonal Dashed diagonal lines that slant to the right from top points to bottom points.

DashedHorizontal Dashed horizontal lines.

DashedUpwardDiagonal Dashed diagonal lines that slant to the left from top points to bottom points.

DashedVertical Dashed vertical lines.

DiagonalBrick A hatch with the appearance of layered bricks that slant to the left from top points to bottom points.

DiagonalCross Forward diagonal and backward diagonal lines that cross.

Divot A hatch with the appearance of divots.

DottedDiamond Forward diagonal and backward diagonal lines, each of which is composed of dots that cross.

DottedGrid Horizontal and vertical lines, each of which is composed of dots that cross.

ForwardDiagonal A pattern of lines on a diagonal from upper left to lower right.

Horizontal A pattern of horizontal lines.

HorizontalBrick A hatch with the appearance of horizontally layered bricks.

LargeCheckerBoard A hatch with the appearance of a checker-board with squares that are twice the size of SmallCheckerBoard.

LargeConfetti A hatch with the appearance of confetti that is composed of larger pieces than SmallConfetti.

LargeGrid Horizontal and vertical lines that cross and are spaced 50 percent farther apart than in Cross.

LightDownwardDiagonal Diagonal lines that slant to the right from top points to bottom points.

LightHorizontal Horizontal lines that are spaced 50 percent closer together than Horizontal lines.

LightUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points and are spaced 50 percent closer together 

than BackwardDiagonal lines.

LightVertical Vertical lines that are spaced 50 percent closer together than Vertical lines.

Max Hatch style SolidDiamond.

Min Hatch style Horizontal.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Member Description

NarrowHorizontal Horizontal lines that are spaced 75 percent closer together than Horizontal lines (or 25 percent closer 

together than LightHorizontal lines).

NarrowVertical Vertical lines that are spaced 75 percent closer together than Vertical lines (or 25 percent closer together 

than LightVertical lines).

OutlinedDiamond Forward diagonal and backward diagonal lines that cross.

PercentXX Percent hatch. The "XX" number after "Percent" represents the ratio of foreground color to background color 

as XX:100. The values of XX are 05, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, and 90.

Plaid A hatch with the appearance of a plaid material.

Shingle A hatch with the appearance of diagonally layered shingles that slant to the right from top points to bottom 

points.

SmallCheckerBoard A hatch with the appearance of a checkerboard.

SmallConfetti A hatch with the appearance of confetti.

SmallGrid Horizontal and vertical lines that cross and are spaced 50 percent closer together than Cross lines.

SolidDiamond A hatch with the appearance of a checkerboard placed diagonally.

Sphere A hatch with the appearance of spheres laid adjacent to one another.

Trellis A hatch with the appearance of a trellis.

Vertical A pattern of vertical lines.

Wave Horizontal lines that are composed of tildes.

Weave A hatch with the appearance of a woven material.

WideDownwardDiagonal Diagonal lines that slant to the right from top points to bottom points, have the same spacing as in 

ForwardDiagonal, and are triple the width of ForwardDiagonal lines.

WideUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points, have the same spacing as in 

BackwardDiagonal, and are triple the width of BackwardDiagonal lines.

ZigZag Horizontal lines that are composed of zigzags.

private HatchStyle style = new HatchStyle();

private Color forClr = Color.Blue;

private Color backClr = Color.Red;

On the form's load event handler (see Listing 4.4), we fill the combo box with different hatch styles and set the background color properties of 

our two text boxes to the current colors.

Listing 4.4 The form's load event handler

private void Form1_Load(object sender,

      System.EventArgs e)

    {

      // Fill combo box with hatch styles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      FillHatchStyles();

      // Set foreground and background colors

      // of text boxes

      textBox1.BackColor = forClr;

      textBox2.BackColor = backClr;

}

The FillHatchStyles method adds different styles to the combo box (see Listing 4.5). We have added only a few styles; many more are 

available (see Table 4.1).

Listing 4.5 The FillHatchStyles method

private void FillHatchStyles()

{

      // Add hatch styles

      comboBox1.Items.Add(

        HatchStyle.BackwardDiagonal.ToString());

      comboBox1.Items.Add(

        HatchStyle.Cross.ToString());

      comboBox1.Items.Add(

        HatchStyle.DashedVertical.ToString());

      comboBox1.Items.Add(

        HatchStyle.DiagonalCross.ToString());

      comboBox1.Items.Add(

        HatchStyle.HorizontalBrick.ToString());

      comboBox1.Items.Add(

        HatchStyle.LightDownwardDiagonal.ToString());

      comboBox1.Items.Add(

        HatchStyle.LightUpwardDiagonal.ToString());

      comboBox1.Text =

        HatchStyle.BackwardDiagonal.ToString();

}

The Pick... buttons in our combo box (see Figure 4.4) call the ColorDialog method and save the selected foreground and background colors, 

respectively. These methods also set the background color of the respective text boxes, as Listing 4.6 shows.

Listing 4.6 The Pick... button click event handler

private void ForeColorBtn_Click(object sender,

      System.EventArgs e)

{

      // Use ColorDialog to select a color

      ColorDialog clrDlg = new ColorDialog();

      if (clrDlg.ShowDialog() == DialogResult.OK)

      {

         // Save color as foreground color,

         // and fill text box with this color

         forClr = clrDlg.Color;

         textBox1.BackColor = forClr;

      }

}

private void BackColorBtn_Click(object sender,

      System.EventArgs e)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // Use ColorDialog to select a color

      ColorDialog clrDlg = new ColorDialog();

      if (clrDlg.ShowDialog() == DialogResult.OK)

      {

        // Save color as background color,

        // and fill text box with this color

        backClr = clrDlg.Color;

        textBox2.BackColor = backClr;

      }

}

The last step is to apply the selected styles and colors, create a hatch brush, and use this brush to draw a rectangle. This is all done on the 

Apply Style button click event handler, which is shown in Listing 4.7. As you can see from this listing, first we create a HatchStyle object based 

on the user selection in the combo box. Then we create a HatchBrush object using the hatch style, background, and foreground colors. After 

that we simply fill a rectangle with the hatch brush.

Listing 4.7 The Apply Style button click event handler

private void ApplyBtn_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Read current style from combo box

      string str = comboBox1.Text;

      // Find out the style and set it as the

      // current style

      switch(str)

      {

        case "BackwardDiagonal":

          style = HatchStyle.BackwardDiagonal;

          break;

        case "DashedVertical":

          style = HatchStyle.DashedVertical;

          break;

        case "Cross":

          style = HatchStyle.Cross;

          break;

        case "DiagonalCross":

          style = HatchStyle.DiagonalCross;

          break;

        case "HorizontalBrick":

          style = HatchStyle.HorizontalBrick;

          break;

        case "LightDownwardDiagonal":

          style = HatchStyle.LightDownwardDiagonal;

          break;

        case "LightUpwardDiagonal":

          style = HatchStyle.LightUpwardDiagonal;

          break;

        default:

          break;

      }

      // Create a hatch brush with selected

      // hatch style and colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      HatchBrush brush =

          new HatchBrush(style, forClr, backClr);

      // Fill rectangle

      g.FillRectangle(brush, 50, 100, 200, 200);

      // Dispose of objects

      brush.Dispose();

      g.Dispose();

}

If you compile and run the application and then click the Apply Style button, the default rectangle looks like Figure 4.5.

Figure 4.5. The default hatch style rectangle

Let's select LightDownwardDiagonal for the hatch style, change the foreground and background colors, and click the Apply Style button. Now 

the output looks like Figure 4.6.

Figure 4.6. The LightDownwardDiagonal style with different colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Let's change the hatch style and colors one more time. This time we pick DiagonalCross as our hatch style. Now the output looks like Figure 

4.7.

Figure 4.7. The DiagonalCross style

4.1.5 Texture Brushes

Texture brushes allow us to use an image as a brush and fill GDI+ objects with the brush. Texture brushes are useful when you need to fill a 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



graphics object with images in a pattern such as tile. In this section we will discuss how to create and use texture brushes in GDI+.

In the .NET Framework library, the TextureBrush class represents a texture brush. Table 4.2 describes the properties of the TextureBrush

class.

Let's create an application using texture brushes. We create a Windows application. We also add a context menu to the form, along with five 

context menu items. The final form looks like Figure 4.8.

Figure 4.8. The texture brush application

Table 4.2. TextureBrush properties

Property Description

Image Returns the Image object associated with a TextureBrush object.

Transform Represents a Matrix object that defines a local geometric transformation for the image.

WrapMode Represents a WrapMode enumeration that indicates the wrap mode for a texture brush.

Note

The WrapMode enumeration represents the wrap mode for a texture brush. It has five members: Clamp, Tile, TileFlipX, 

TileFlipY, and TileFlipXY. These members are described later, in Table 4.7.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Now we add a class-level variable of TextureBrush type to the application:

private TextureBrush txtrBrush = null;

The next step is to create a texture brush from an image and fill a rectangle with that brush. We create an Image object on the form's load 

event handler from the file smallRoses.gif, which is used to create a TextureBrush object. On the form's paint event handler, we call the 

FillRectangle method to fill the rectangle with the texture. Listing 4.8 shows the form's load and paint event handler. Note that our rectangle is 

the ClientRectangle of the form.

Listing 4.8 Creating a texture brush and filling a rectangle

private void Form1_Load(object sender,

      System.EventArgs e)

{

      // Create an image from a file

      Image img = new Bitmap("smallRoses.gif");

      // Create a texture brush from an image

      txtrBrush = new TextureBrush(img);

      img.Dispose();

}

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

        Graphics g = e.Graphics;

        // Fill a rectangle with a texture brush

        g.FillRectangle(txtrBrush, ClientRectangle);

}

Note

See Chapter 7 for details on the Image class.

Now we can add event handlers for the context menu items as shown in Listing 4.9. As you can see from this code, we simply set the 

WrapMode property of the texture brush.

Listing 4.9 TextureBrush's context menu event handlers

private void Clamp_Click(object sender,

      System.EventArgs e)

{

      txtrBrush.WrapMode = WrapMode.Clamp;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      this.Invalidate();

   }

   private void Tile_Click(object sender,

     System.EventArgs e)

   {

      txtrBrush.WrapMode = WrapMode.Tile;

      this.Invalidate();

   }

   private void TileFlipX_Click(object sender,

     System.EventArgs e)

   {

     txtrBrush.WrapMode = WrapMode.TileFlipX;

     this.Invalidate();

   }

   private void TileFlipY_Click(object sender,

     System.EventArgs e)

   {

     txtrBrush.WrapMode = WrapMode.TileFlipY;

     this.Invalidate();

   }

   private void TileFlipXY_Click(object sender,

     System.EventArgs e)

   {

     txtrBrush.WrapMode = WrapMode.TileFlipXY;

     this.Invalidate();

   }

Finally, we need to load the context menu on the right mouse click event handler. As Listing 4.10 shows, we simply set the ContextMenu

property of the form.

Listing 4.10 The right mouse button click event handler

   private void Form1_MouseDown(object sender,

     System.Windows.Forms.MouseEventArgs e)

   {

     if(e.Button == MouseButtons.Right)

     {

       this.ContextMenu = contextMenu1;

     }

}

Now let's run the application. Figure 4.9 shows default (tiled) output from the program. The entire client rectangle is filled with the texture.

Figure 4.9. Using texture brushes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If we right-click on the form and select the Clamp menu item, we get Figure 4.10.

Figure 4.10. Clamping a texture

Now let's select the TileFlipY option, which generates Figure 4.11. You can try other options on your own!

Figure 4.11. The TileFlipY texture option

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



4.1.6 Gradient Brushes

Linear gradient brushes allow you to blend two colors together, generating an indefinite range of shades. The Blend class defines a custom 

falloff for the gradient.

Note

Chapter 9 discusses the Blend class and alpha blending in more detail.

In a gradient, we begin with a starting color and shift to an ending color, with gradual blending in the space between them. In addition to the 

starting and ending colors, we can specify the direction of the gradient. For example, Figure 4.12 starts with green in the left bottom corner 

and ends with red in the top right corner. (You may not notice these colors exactly in a black-and-white image.)

Figure 4.12. A color gradient

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



You can also specify a range for pattern repetition. For example, you can specify that the gradient will occur from point (0, 0) to point (20, 20) 

and after that will repeat the same pattern, as in Figure 4.13.

Figure 4.13. A gradient pattern with pattern repetition

4.1.6.1 Linear Gradient Brushes

The LinearGradientBrush class has eight forms of overloaded constructors. Each constructor takes a starting point, an ending point, and two 

gradient colors. The orientation and linear gradient mode are optional.

The following code snippet creates a linear gradient brush using the colors red and green:

Rectangle rect1 = new Rectangle(20, 20, 50, 50);

LinearGradientBrush lgBrush = new LinearGradientBrush

   (rect1, Color.Red, Color.Green, LinearGradientMode.Horizontal);

Here the mode parameter is represented by the LinearGradientMode enumeration, which specifies the direction of a linear gradient. The 

members of the LinearGradientMode enumeration are described in Table 4.3.

Now let's look at the properties and methods of the LinearGradient-Brush class, which are defined in Tables 4.4 and 4.5, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Note

Chapters 9 and 10 discuss blending and transformation, respectively, in more detail.

4.1.6.2 Linear Gradient Brushes Example

Now let's create an application that uses linear gradient brushes. We create a Windows application, add three label controls, a combo box, 

two text boxes, four buttons, and two check boxes. We also change the Text property and other properties of these controls. The final form 

looks like Figure 4.14.

Figure 4.14. Our linear gradient brush application

The combo box will list the linear gradient modes. The Pick... buttons allow the user to pick starting and ending colors for the gradient 

process. The Other Rectangle check box uses a rectangle to specify the range of the gradient. We will discuss the Gamma Correction and 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Properties options later in this section.

Table 4.3. LinearGradientMode members

Member Description

BackwardDiagonal Specifies a gradient from upper right to lower left.

ForwardDiagonal Specifies a gradient from upper left to lower right.

Horizontal Specifies a gradient from left to right.

Vertical Specifies a gradient from top to bottom.

Table 4.4. LinearGradientBrush properties

Property Description

Blend Represents the Blend object that specifies gradient position and factors.

GammaCorrection Represents gamma correction. If it is enabled, the value is true; if not, it is false.

InterpolationColors Represents a ColorBlend object that defines a multicolor gradient.

LinearColors Represents the starting and ending colors of a gradient.

Rectangle Returns a rectangle that defines the starting and ending points of a gradient.

Transform Represents a Matrix object that defines the transformation.

WrapMode Represents a WrapMode enumeration that indicates the wrap mode.

Table 4.5. LinearGradientBrush methods

Method Description

MultiplyTransform Multiplies a Matrix object that represents the transformation.

ResetTransform Resets the Transform property to identity.

RotateTransform Rotates the transformation.

ScaleTransform Scales the transformation.

SetSigmaBellShape Creates a gradient falloff based on a bell-shaped curve.

TranslateTransform Translates the transformation by the specified dimensions.

Next we add some class-level variables as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private LinearGradientBrush lgBrush = null;

private LinearGradientMode mode =

  new LinearGradientMode();

private Color startColor = Color.Red;

private Color endColor = Color.Green;

After defining the variables, we add the code from Listing 4.11 on the form's load event handler. As the code shows, we add all gradient 

modes on the AddGradientMode method. We also set the default background color of text boxes.

Listing 4.11 Adding available linear gradient modes

private void Form1_Load(object sender,

System.EventArgs e)

{

  AddGradientMode();

  textBox1.BackColor = startColor;

  textBox2.BackColor = endColor;

}

private void AddGradientMode()

{

  // Adds linear gradient mode styles to the

  // combo box

  comboBox1.Items.Add(

  LinearGradientMode.BackwardDiagonal);

  comboBox1.Items.Add(

     LinearGradientMode.ForwardDiagonal);

  comboBox1.Items.Add(LinearGradientMode.Horizontal);

  comboBox1.Items.Add(LinearGradientMode.Vertical);

  comboBox1.Text =

     LinearGradientMode.BackwardDiagonal.ToString();

}

Next we add code for the Pick... buttons, which allow the user to provide color selections for the starting and ending colors. We also set the 

color of relative text boxes, as shown in Listing 4.12.

Listing 4.12 The Pick... button click event handler

private void StartClrBtn_Click(object sender,

      System.EventArgs e)

{

      // Use ColorDialog to select a color

      ColorDialog clrDlg = new ColorDialog();

      if (clrDlg.ShowDialog() == DialogResult.OK)

      {

        // Save color as foreground color,

        // and fill text box with this color

        startColor = clrDlg.Color;

        textBox1.BackColor = startColor;

      }

    }

    private void EndClrBtn_Click(object sender,

      System.EventArgs e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    {

      // Use ColorDialog to select a color

      ColorDialog clrDlg = new ColorDialog();

      if (clrDlg.ShowDialog() == DialogResult.OK)

      {

        // Save color as background color,

        // and fill text box with this color

        endColor = clrDlg.Color;

        textBox2.BackColor = endColor;

      }

}

The last step is to write code for the Apply Settings button. This button reads various settings, including the selected gradient mode in the 

combo box, the starting and ending colors, another rectangle, and gamma correction. As Listing 4.13 shows, the code creates a linear 

gradient brush using a rectangle, two colors, and the gradient mode selection. After creating the brush, it calls the FillRectangle method.

Listing 4.13 The Apply Settings button click event handler

private void ApplyBtn_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Read current style from combo box

      string str = comboBox1.Text;

      // Find out the mode and set it as the

      // current mode

      switch(str)

      {

        case "BackwardDiagonal":

          mode = LinearGradientMode.BackwardDiagonal;

          break;

        case "ForwardDiagonal":

        mode = LinearGradientMode.ForwardDiagonal;

          break;

        case "Horizontal":

          mode = LinearGradientMode.Horizontal;

          break;

        case "Vertical":

          mode = LinearGradientMode.Vertical;

          break;

      default:

          break;

      }

      // Create rectangle

      Rectangle rect = new Rectangle(50, 140, 200, 220);

      // Create linear gradient brush and set mode

      if(checkBox1.Checked)

      {

        Rectangle rect1 = new Rectangle(20, 20, 50, 50);

        lgBrush = new LinearGradientBrush

          (rect1, startColor, endColor, mode);

      }

      else

      {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        lgBrush = new LinearGradientBrush

          (rect, startColor, endColor, mode);

      }

      // Gamma correction check box is checked

      if(checkBox1.Checked)

      {

        lgBrush.GammaCorrection = true;

      }

      // Fill rectangle

      g.FillRectangle(lgBrush, rect);

      // Dispose of objects

      if(lgBrush != null)

          lgBrush.Dispose();

      g.Dispose();

}

When you run the application, the result looks like Figure 4.15.

Figure 4.15. The default linear gradient brush output

To generate a different output, let's change the linear gradient mode to Vertical. We'll also change the colors, with the results shown in Figure 

4.16.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 4.16. The Vertical linear gradient mode

Let's change the colors and gradient mode again, this time selecting the Other Rectangle check box. This option sets a range of the 

gradient. If the output is out of range, the gradient repeats itself. The new output looks like Figure 4.17.

Figure 4.17. Using a rectangle in a linear gradient brush

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Gamma Correction

Gamma correction is a process that controls the brightness of images and graphics objects. Some graphics objects that are 

not properly corrected after color processing can look too dark or bleached out. Gamma correction helps correct this problem 

by managing the ratio of red, green, and blue components.

You can also use the LinearGradientBrush class properties and methods to change brush properties programmatically. Listing 4.14 creates a 

linear gradient brush from two points (starting point and ending point), and sets the LinearColors and GammaCorrection properties. The 

correction provides more uniform intensity in the gradient. We write this code on the Properties button click event handler.

Listing 4.14 Using the LinearColors and GammaCorrection properties of LinearGradientBrush

private void button1_Click(object sender,

  System.EventArgs e)

{

  Graphics g = this.CreateGraphics();

  // Create points

  Point pt1 = new Point(40, 30);

  Point pt2 = new Point(80, 100);

  Color [] lnColors = {Color.Black, Color.Red};

  // Create a linear gradient brush

  LinearGradientBrush lgBrush = new LinearGradientBrush

    (pt1, pt2, Color.Red, Color.Green);

  // Set linear colors and gamma correction

  lgBrush.LinearColors = lnColors;

  lgBrush.GammaCorrection = true;

  // Draw rectangle

  g.FillRectangle(lgBrush, 50, 140, 200, 200);

  // Dispose of objects

  lgBrush.Dispose();

  g.Dispose();

}

Figure 4.18 shows the output from the Properties button click.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 4.18. Using LinearGradientBrush properties

4.1.6.3 Path Gradient Brushes

A graphics path is a collection of lines and curves. In GDI+, the PathGradientBrush object fills a graphics paths with a gradient. Like 

LinearGradientBrush, PathGradientBrush is a combination of two colors, but instead of starting with one color and ending with another, 

PathGradientBrush starts from the center of a graphics path and ends at the outside boundary of the path. In between, you can apply blend 

factors, positions, and style effects using the PathGradientBrush class members.

Table 4.6 describes the properties of the PathGradientBrush class.

Table 4.7 describes the members of the WrapMode enumeration.

Like LinearGradientBrush, PathGradientBrush has five transformation methods: MultiplyTransform, ResetTransform, RotateTransform, 

ScaleTransform, and TranslateTransform.

This class also has the methods SetBlendTriangularShape and SetSigmaBellShape. SetBlendTriangularShape creates a gradient with a 

center color and a linear falloff to one surrounding color. SetSigmaBellShape creates a gradient falloff between the center color and the first 

surrounding color according to a bell-shaped curve.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



We will discuss PathGradientBrush, its properties, and its methods in more detail in Chapter 9 (Section 9.5).

Table 4.6. PathGradientBrush properties

Property Description

Blend A Blend object specifies the positions and factors that define a custom falloff point for a gradient. The Blend property 

takes a Blend object.

CenterColor The center color of the path gradient.

CenterPoint The center point of the path gradient.

FocusScales The focus point for the gradient falloff.

InterpolationColors A ColorBlend object defines a multicolor linear gradient, and this property can be used to set a ColorBlend object for the 

brush.

Rectangle Represents a bounding rectangle for the brush. Outside of this boundary, the brush pattern repeats itself.

SurroundColors Defines an array of colors for an array of points in the path.

Transform Specifies a transformation matrix.

WrapMode Defines how a texture or gradient is tiled when it is larger than the area being filled, using a WrapMode enumeration.

Table 4.7. WrapMode members

Member Description

Clamp Clamps the texture or gradient to the object boundary.

Tile Tiles the gradient or texture.

TileFlipX Reverses the texture or gradient horizontally and then tiles it.

TileFlipXY Reverses the texture or gradient horizontally and vertically and then tiles it.

TileFlipY Reverses the texture or gradient vertically and then tiles it.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

4.2 Using Pens in GDI+

Pens are another key object in GDI+. As mentioned earlier, pens are used to draw lines and curves and the outlines of graphics shapes. A 

pen draws lines and curves with a specified width and style. The Pen object provides members to set the width and style of a pen. Pens can 

have various kinds of dashed lines and line fill styles. Actually, the process of drawing a line creates a region in the shape of a widened line, 

and that region is filled with a brush. The dashed lines of pens are represented by dash styles. The fill styles of lines can be solids or 

textures depending on the brush used to create a Pen object.

In this section we will discuss how to create and use pens in GDI+; the Pen and Pens classes; and how to create dash styles, cap styles, and 

line styles for pens.

4.2.1 Creating Pens

The Pen class represents a pen in GDI+. Using the Pen class constructor, an application can create a Pen object from a Brush or Color object 

with a specified width for the pen.

Listing 4.15 creates pens using Brush and Color objects with and without a specified width.

Listing 4.15 Using the Pen class constructor to create Pen objects

private void menuItem2_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object and set it clear

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a solid brush and a hatch brush

      SolidBrush blueBrush =

        new SolidBrush(Color.Blue);

      HatchBrush hatchBrush =

        new HatchBrush(HatchStyle.DashedVertical,

        Color.Black, Color.Green);

      // Create a pen from a solid brush with

      // width 3

      Pen pn1 = new Pen( blueBrush, 3);

      // Create a pen from a hatch brush

      Pen pn2 = new Pen(hatchBrush, 8);

      // Create a pen from a Color structure

      Pen pn3 = new Pen(Color.Red);

      // Draw a line, ellipse, and rectangle

      g.DrawLine(pn1,

        new Point(10, 40), new Point(10, 90));

      g.DrawEllipse(pn2, 20, 50, 100, 100);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      g.DrawRectangle(pn3, 40, 90, 100, 100);

      // Dispose of objects

      pn1.Dispose();

      pn2.Dispose();

      pn3.Dispose();

      blueBrush.Dispose();

        hatchBrush.Dispose();

      g.Dispose();

}

Figure 4.19 shows the output from Listing 4.15.

Figure 4.19. Creating and using pens

The Pens class has static properties for all standard colors, which return appropriately colored Pen objects. The following code snippet creates 

three Pen objects using the Pens class.

Pen pn1 = Pens.Red;

Pen pn2 = Pens.Blue;

Pen pn3 = Pens.Green;

4.2.2 Pen Class Properties and Methods

The Pen class provides properties to set brush, color, and width programmatically after a Pen object is created. Table 4.8 describes the 

properties of the Pen class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Table 4.9 describes the methods of the Pen class.

4.2.3 Pen Types

A pen can draw solid lines, filled lines, texture, and even gradient lines—all depending on the brush you use to create the pen. For example, if

you use a texture brush to create a pen and then use this pen to create lines, the lines will be texture lines.

The only way to set a pen's type is to create a brush and use that brush to create the pen. The PenType property of the Pen class represents 

the type of the pen's lines. This property is represented by the PenType enumeration.

Note

The PenType property is a read-only property.

Table 4.10 describes the members of the PenType enumeration.

4.2.4 Pens Example

Now let's create a sample application. In Listing 4.16 we create three pens from three different brushes: a solid brush, a texture brush, and a 

linear gradient brush. After that we create three pens from these brushes, and then we read the type of each pen and display the types in a 

message box.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 4.8. Pen class properties

Property Description

Alignment Alignment for a pen—a type of PenAlignment enumeration, which is defined in Table 4.11.

Brush Brush object attached with a pen. Setting the Color property after Brush will replace the color of the current 

brush with the specified color.

Color Color of a pen. Setting the Brush property after Color will update the color of a pen to the color of the brush.

CompoundArray Specifies values of a compound pen, which draws compound lines made up of parallel lines and spaces.

CustomEndCap, 

CustomStartCap, DashCap

A line drawn by a pen can have custom starting and ending caps. The CustomEndCap and 

CustomStartCap properties represent the ending and starting caps, respectively, of lines drawn by a pen. 

DashCap is used for dashed lines.

DashOffset The distance from the start of a line to the beginning of a dash pattern.

DashPattern An array of custom dashes and spaces.

DashStyle The style used for dashed lines.

EndCap, StartCap Ending and starting cap of a line.

LineJoin The join style for the ends of two consecutive lines.

MiterLimit Limit of the thickness of the join on a mitered corner.

PenType The style of lines of a pen. This property is represented by the PenType enumeration.

Transform The geometric transformation of a pen.

Width The width of a pen.

Table 4.9. Pen class methods

Property Description

Clone Creates an exact copy of a pen.

MultiplyTransform Multiplies the transformation matrix of a pen by Matrix.

ResetTransform Resets the geometric transformation matrix of a pen to identity.

RotateTransform Rotates the local geometric transformation by the specified angle.

ScaleTransform Scales the local geometric transformation by the specified factors.

SetLineCap Sets the values that determine the style of cap used to end lines drawn by a pen.

TranslateTransform Translates the local geometric transformation by the specified dimensions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 4.10. PenType members

Member Description

HatchFill A hatch fill

LinearGradient A linear gradient fill

PathGradient A path gradient fill

SolidColor A solid fill

TextureFill A bitmap texture fill

Listing 4.16 Getting pen types

private void GetPenTypes_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create three different types of brushes

      Image img = new Bitmap("roses.jpg");

      SolidBrush redBrush = new SolidBrush(Color.Red);

      TextureBrush txtrBrush =

        new TextureBrush(img);

      LinearGradientBrush lgBrush =

        new LinearGradientBrush(

        new Rectangle(10, 10, 10, 10),

        Color.Red, Color.Black, 45.0f);

      // Create pens from brushes

      Pen pn1 = new Pen(redBrush, 4);

      Pen pn2 = new Pen(txtrBrush, 20);

      Pen pn3 = new Pen(lgBrush, 20);

      // Drawing objects

      g.DrawEllipse(pn1, 100, 100, 50, 50);

      g.DrawRectangle(pn2, 80, 80, 100, 100);

      g.DrawEllipse(pn3, 30, 30, 200, 200 );

      // Get pen types

      string str = "Pen1 Type: "+

        pn1.PenType.ToString() + "\n";

      str += "Pen2 Type: "+

        pn2.PenType.ToString() + "\n";

      str += "Pen3 Type: "+

        pn3.PenType.ToString();

      MessageBox.Show(str);

      // Dispose of objects

      pn1.Dispose();

      pn2.Dispose();

      pn3.Dispose();

      redBrush.Dispose();

      txtrBrush.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      lgBrush.Dispose();

      img.Dispose();

      g.Dispose();

}

Figure 4.20 shows the output from Listing 4.16.

Figure 4.20. Displaying pen types

4.2.5 Pen Alignment

The alignment of a pen represents its position respective to a line. The PenAlignment enumeration specifies the alignment of a pen—meaning

the center point of the pen width relative to the line. Table 4.11 describes the members of the PenAlignment enumeration.

To see alignment in action, let's create a sample application. We create a Windows application, and add a combo box, three labels, two 

buttons, and a numeric up-down control. We change the control properties, and the final form looks like Figure 4.21.

Figure 4.21. Our pen alignment application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 4.11. PenAlignment members

Member Description

Center The pen is centered.

Inset The pen is inside the line.

Left The pen is left of the line.

Outset The pen is outside of the line.

Right The pen is right of the line.

The Pen Alignment combo box lists the alignments of a pen. Pen Width represents the width of the pen, and Pen Color lets you pick the 

color of the pen. The Pen Color button click event handler simply sets the color of the pen and stores the selected color in a Color type 

variable at the class level, as shown in Listing 4.17.

Listing 4.17 The Pen Color button click event handler

private Color penColor = Color.Red;

private void ColorBtn_Click(object sender,

      System.EventArgs e)

{

      // Use ColorDialog to select a color

      ColorDialog clrDlg = new ColorDialog();

      if (clrDlg.ShowDialog() == DialogResult.OK)

      {

      // Save color as background color,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // and fill text box with this color

      penColor = clrDlg.Color;

      ColorBtn.BackColor = penColor;

     }

}

Listing 4.18 (on the form's load event handler) loads all alignments to the combo box.

Listing 4.18 Adding pen alignments to the combo box

private void Form1_Load(object sender,

      System.EventArgs e)

{

      AddPenAlignments();

}

private void AddPenAlignments()

{

              // Add pen alignment

      comboBox1.Items.Add(PenAlignment.Center);

      comboBox1.Text =

        PenAlignment.Center.ToString();

      comboBox1.Items.Add(PenAlignment.Inset);

      comboBox1.Items.Add(PenAlignment.Left);

      comboBox1.Items.Add(PenAlignment.Outset);

      comboBox1.Items.Add(PenAlignment.Right);

}

Finally, in Listing 4.19 we write code for the Draw Graphics button click event handler. We set the Width and Color properties of the pen after 

reading values from the form's controls. Then we look for the current alignment set by the user in the combo box and set the Alignment

property of the pen. In the end, we use this pen to draw a rectangle. We also fill one more rectangle with a linear gradient brush.

Listing 4.19 Creating a pen with alignment

private void DrawBtn_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object and set it clear

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a solid brush and a hatch brush

      Pen pn1 = new Pen(Color.Blue, 3);

      pn1.Width = (float)numericUpDown1.Value;

      pn1.Color = ColorBtn.BackColor;

      // Find out current pen alignment

      string str = comboBox1.Text;

      switch(str)

      {

      case "Center":

        pn1.Alignment = PenAlignment.Center;

        break;

      case "Inset":

        pn1.Alignment = PenAlignment.Inset;

        break;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      case "Left":

        pn1.Alignment = PenAlignment.Left;

        break;

      case "Outset":

        pn1.Alignment = PenAlignment.Outset;

        break;

      case "Right":

        pn1.Alignment = PenAlignment.Right;

        break;

      default:

        break;

      }

      // Create a pen from a hatch brush

      // Draw a rectangle

      g.DrawRectangle(pn1, 80, 150, 150, 150);

      // Create a brush

      LinearGradientBrush brush =

        new LinearGradientBrush(

        new Rectangle(10, 10, 20, 20), Color.Blue,

        Color.Green, 45.0f);

      g.FillRectangle(brush, 90, 160, 130, 130);

      // Dispose of objects

      pn1.Dispose();

      g.Dispose();

}

Figure 4.22 shows the output from Listing 4.19. The pen width is 10 and alignment is center.

Figure 4.22. Drawing with center pen alignment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If we set the alignment as inset, we get Figure 4.23.

Figure 4.23. Drawing with inset pen alignment

4.2.6 LineCap, DashCap, and DashStyle

Pens offer more options than what we have seen so far. A line's caps are the starting and ending points of the line. For example, you may 

have seen lines with arrows and circles. Figure 4.24 shows some lines with their cap and dash styles.

Figure 4.24. Line cap and dash styles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Using Pen properties and methods, you can draw lines with cap and dash styles. Here we will discuss line cap and line dash styles only 

briefly (for more details, see Chapter 9).

Note

We can divide line caps into two types: anchor and nonanchor. The width of an anchor cap is bigger than the width of the 

line; the width of a nonanchor cap is the same as the width of the line.

The LineCap property of the Pen class represents the cap style used at the beginning and ending of lines drawn by the pen. You can 

determine the current cap style of a line by calling the GetLineCap method, which returns a LineCap enumeration. You can also apply a line 

cap style using the SetLineCap method. This method takes an argument of LineCap enumeration type. Table 4.12 describes the members of 

the LineCap enumeration.

The SetLineCap method takes the line cap style for the beginning, ending, and dash cap of the line. The first and second parameters of 

SetLineCap are of type LineCap. The third parameter is of type DashCap enumeration.

Table 4.12. LineCap members

Member Description

AnchorMask A mask used to check whether a line cap is an anchor cap

ArrowAnchor An arrow-shaped anchor cap

Custom A custom line cap

DiamondAnchor A diamond anchor cap

Flat A flat line cap

NoAnchor No anchor

Round A round line cap

RoundAnchor A round anchor cap

Square A square line cap

SquareAnchor A square anchor cap

Triangle A triangular line cap

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 4.13. DashCap members

Member Description

Flat A square cap that squares off both ends of each dash

Round A circular cap

Triangle A triangular cap

The DashCap enumeration specifies the type of graphics shape used on both ends of each dash in a dashed line. Table 4.13 describes the 

members of the DashCap enumeration.

The DashStyle enumeration specifies the style of a dashed line drawn by the pen. Table 4.14 describes the members of the DashStyle

enumeration.

Table 4.14. DashStyle members

Member Description

Custom A user-defined custom dash style

Dash A line consisting of dashes

DashDot A line consisting of a repeating dash-dot pattern

DashDotDot A line consisting of a repeating dash-dot-dot pattern of

Dot A line consisting of dots

Solid A solid line

Listing 4.20 shows how to use various styles and properties of the Pen class to draw different kinds of dashed lines with different kinds of 

starting and ending caps. We use the DashStyle, SetLineCap, StartCap, and EndCap members of the Pen class to set the line dash style, line 

cap style, start cap style, and end cap style, respectively.

Listing 4.20 Using the Pen class to draw dashed lines

private void menuItem4_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create three pens

      Pen redPen = new Pen(Color.Red, 6);

      Pen bluePen = new Pen(Color.Blue, 7);

      Pen greenPen = new Pen(Color.Green, 7);

      redPen.Width = 8;

      // Set line styles

      redPen.DashStyle = DashStyle.Dash;

      redPen.SetLineCap(LineCap.DiamondAnchor,

      LineCap.ArrowAnchor, DashCap.Flat);

      greenPen.DashStyle = DashStyle.DashDotDot;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      greenPen.StartCap = LineCap.Triangle;

      greenPen.EndCap = LineCap.Triangle;

      greenPen.DashCap = DashCap.Triangle;

      greenPen.DashStyle = DashStyle.Dot;

      greenPen.DashOffset = 3.4f;

      bluePen.StartCap = LineCap.DiamondAnchor;

      bluePen.EndCap = LineCap.DiamondAnchor;

      greenPen.SetLineCap(LineCap.RoundAnchor,

        LineCap.Square, DashCap.Round);

      // Draw lines

      g.DrawLine(redPen, new Point(20, 50),

        new Point(150, 50));

      g.DrawLine(greenPen, new Point(30, 80),

        new Point(200, 80));

      g.DrawLine(bluePen, new Point(30, 120),

        new Point(250, 120));

      // Release resources. If you don't release

      // using Dispose, the GC (garbage collector)

      // takes care of it for you.

      redPen.Dispose();

      greenPen.Dispose();

      g.Dispose();

}

Figure 4.25 shows the output from Listing 4.20.

Figure 4.25. Drawing dashed lines with different cap styles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



4.2.7 Drawing Other Graphics Shapes by Applying Cap and Dashed Line Styles

In the previous section we saw how to draw lines using cap and dash styles. But these styles are not limited to lines only. You can draw other 

graphics shapes, such as rectangles, ellipses, and curves, using the line cap and dash styles.

As in the previous section, here we will create a pen, set its line cap and line dash styles, and use it—but this time, drawing graphics shapes,

rather than simple lines.

Listing 4.21 creates several pens and uses them to draw an arc, Bézier curve, rectangle, and ellipse with the help of the DrawArc, DrawBezier, 

DrawRectangle, and DrawEllipse methods of the Graphics class (see Chapter 3 for details).

Listing 4.21 Using different pens to draw various graphics objects

private void menuItem6_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      Pen redPen = new Pen(

        new SolidBrush(Color.Red), 4);

      Pen bluePen = new Pen(

        new SolidBrush(Color.Blue), 5);

      Pen blackPen = new Pen(

        new SolidBrush(Color.Black), 3);

      // Set line styles

      redPen.DashStyle = DashStyle.Dash;

      redPen.SetLineCap(LineCap.DiamondAnchor,

        LineCap.ArrowAnchor, DashCap.Flat);

      bluePen.DashStyle = DashStyle.DashDotDot;

      bluePen.StartCap = LineCap.Triangle;

      bluePen.EndCap = LineCap.Triangle;

      bluePen.DashCap = DashCap.Triangle;

      blackPen.DashStyle = DashStyle.Dot;

      blackPen.DashOffset = 3.4f;

      blackPen.SetLineCap(LineCap.RoundAnchor,

        LineCap.Square, DashCap.Round);

      // Draw objects

      g.DrawArc(redPen, 10.0F, 10.0F, 50,

        100, 45.0F, 90.0F);

      g.DrawRectangle(bluePen, 60, 80, 140, 50);

      g.DrawBezier(blackPen, 20.0F, 30.0F,

        100.0F, 200.0F, 40.0F, 400.0F,

        100.0F, 200.0F);

      g.DrawEllipse(redPen, 50, 50, 200, 100 );

      // Dispose of objects

      redPen.Dispose();

      bluePen.Dispose();

      blackPen.Dispose();

      g.Dispose();

}

Figure 4.26 shows the output of Listing 4.21. All of the elements drawn have line cap and dash styles.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 4.26. Graphics shapes with cap and dash styles

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

4.3 Transformation with Pens

Transformation is the process of changing graphics objects from one state to another. Rotation, scaling, reflection, translation, and shearing 

are examples of transformation.

The Pen class provides methods for transformation and rotation. The RotateTransform method rotates a transformation by an angle. This 

method takes a rotation angle of type float. The second argument, MatrixOrder, is an optional parameter that provides an order for matrix 

transformation operations. The MatrixOrder enumeration defines the matrix order, which has two members: Append and Prepend. The matrix 

order is the order in which a matrix is multiplied with other matrices.

The difference between Append and Prepend is the order of the operation. For example, if two operations are participating in a process, the 

second operation will be performed after the first when the matrix order is Append; when the order is Prepend, the second operation will be 

performed before the first.

The MultiplyTransform method multiplies a transformation matrix by a pen. Its first argument is a Matrix object, and the optional second 

argument is the matrix order of type MatrixOrder enumeration.

Note

The Matrix class is discussed in more detail in Chapter 10.

The TranslateTransform method of the Pen class translates a transformation by the specified dimension. This method takes two float type 

values for translation in x and y, and an optional third parameter of type MatrixOrder.

Listing 4.22 uses the ScaleTransform and RotateTransform methods to apply rotation on pens and rectangles.

Listing 4.22 Applying transformation on pens

private void menuItem5_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a Pen object

      Pen bluePen = new Pen(Color.Blue, 10);

      Pen redPen = new Pen(Color.Red, 5);

      // Apply rotate and scale transformations

      bluePen.ScaleTransform(3, 1);

      g.DrawEllipse(bluePen, 20, 20, 100, 50);

      g.DrawRectangle(redPen, 20, 120, 100, 50);

      bluePen.RotateTransform(90, MatrixOrder.Append);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      redPen.ScaleTransform(4, 2, MatrixOrder.Append);

      g.DrawEllipse(bluePen, 220, 20, 100, 50);

      g.DrawRectangle(redPen, 220, 120, 100, 50);

      // Dispose of objects

      redPen.Dispose();

      bluePen.Dispose();

      g.Dispose();

}

Figure 4.27 shows the output from Listing 4.22. The first ellipse and rectangle are drawn normally. The second ellipse and rectangle are 

drawn after rotation and scaling have been applied to their pens.

Figure 4.27. Rotation and scaling

Chapter 10 discusses rotation, scaling, and other transformation methods in more detail.

Note

You need to reference the System.Drawing.Drawing2D namespace in order to run the code in the listings of this section 

because the Matrix class and the MatrixOrder enumeration are defined in this namespace.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

4.4 Transformation with Brushes

The TextureBrush, LinearGradientBrush, and PathGradientBrush classes also provide transformation methods. Brush transformation is not 

used very often, but it may be useful in some cases, as the following example will show.

A transformation on a TextureBrush object is a transformation of the image used as the texture. TextureBrush provides the methods 

MultiplyTransform, ResetTransform, RotateTransform, ScaleTransform, and TranslateTransform (see Table 4.15).

The TextureBrush class also provides a Transform property, which can be used to apply a transformation on a texture brush.

Table 4.15. TextureBrush methods

Method Description

MultiplyTransform Multiplies the Matrix object that represents the local geometric transformation of a texture brush by the specified 

Matrix object in the specified order.

ResetTransform Resets the Transform property of a texture to identity.

RotateTransform Rotates the local geometric transformation of a texture brush by the specified amount.

ScaleTransform Scales the local geometric transformation of a texture brush by the specified amount.

TranslateTransform Translates the local geometric transformation of a texture brush by the specified dimensions in the specified order.

Listing 4.23 uses the Translate, MultiplyTransform, ScaleTransform, and RotateTransform methods of the Pen class to apply rotation on pens, 

and draws a line and rectangles.

Listing 4.23 Transformation in texture brushes

private void TextureBrush_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a TextureBrush object

      TextureBrush txtrBrush = new TextureBrush(

        new Bitmap("smallRoses.gif"));

      // Create a transformation matrix

      Matrix M = new Matrix();

      // Rotate the texture image by 90 degrees

      txtrBrush.RotateTransform(90,

        MatrixOrder.Prepend);

      // Translate

      M.Translate(50, 0);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // Multiply the transformation matrix

      // of txtrBrush by translateMatrix

      txtrBrush.MultiplyTransform(M);

      // Scale operation

      txtrBrush.ScaleTransform(2, 1,

        MatrixOrder.Prepend);

      // Fill a rectangle with texture brush

      g.FillRectangle(txtrBrush, 240, 0, 200, 200);

      // Reset transformation

      txtrBrush.ResetTransform();

      // Fill rectangle after resetting transformation

      g.FillRectangle(txtrBrush, 0, 0, 200, 200);

      // Dispose of objects

      txtrBrush.Dispose();

      g.Dispose();

}

Figure 4.28 shows the output from Listing 4.23, with the original image on the left and the transformed image on the right.

Figure 4.28. Transformation in TextureBrush

A transformation on a linear gradient brush is a transformation of the colors of the brush. The LinearGradientBrush class provides all common 

transformation methods and Transform properties. Listing 4.24 shows how to use transformation in linear gradient brushes.

Listing 4.24 Transformation in linear gradient brushes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void LinearGradientBrush_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a LinearGradientBrush object

      Rectangle rect = new Rectangle(20, 20, 200, 100);

      LinearGradientBrush lgBrush =

          new LinearGradientBrush(

          rect, Color.Red, Color.Green, 0.0f, true);

      Point[] ptsArray = {new Point(20, 50),

          new Point(200,50), new Point(20, 100)};

      Matrix M = new Matrix(rect, ptsArray);

      // Multiply transformation

      lgBrush.MultiplyTransform(M, MatrixOrder.Prepend);

      // Rotate transformation

      lgBrush.RotateTransform(45.0f, MatrixOrder.Prepend);

      // Scale transformation

      lgBrush.ScaleTransform(2, 1, MatrixOrder.Prepend);

      // Draw a rectangle after transformation

      g.FillRectangle(lgBrush, 0, 0, 200, 100);

      // Reset transformation

      lgBrush.ResetTransform();

      // Draw a rectangle after reset transformation

      g.FillRectangle(lgBrush, 220, 0, 200, 100);

      // Dispose of objects

      lgBrush.Dispose();

      g.Dispose();

}

Figure 4.29 shows the output from Listing 4.24. The second rectangle results from various transformation operations, and the first rectangle is 

a result of a call to ResetTransform.

Figure 4.29. Transformation in linear gradient brushes

PathGradientBrush provides similar mechanisms to transform path gradient brushes. As Listing 4.25 shows, we create a PathGradientBrush

object and set its CenterColor and SurroundColors properties. Then we create a Matrix object and call its methods to apply various 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



transformation operations, such as translation, rotation, scaling, and shearing, and we apply the Matrix object to the PathGradientBrush object 

by calling its MultiplyTransform method.

Listing 4.25 Transformation in path gradient brushes

private void PathGradientBrush_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a GraphicsPath object

      GraphicsPath path = new GraphicsPath();

      // Create a rectangle and add it to path

      Rectangle rect = new Rectangle(20, 20, 200, 200);

      path.AddRectangle(rect);

      // Create a path gradient brush

      PathGradientBrush pgBrush =

          new PathGradientBrush(path.PathPoints);

      // Set its center and surrounding colors

      pgBrush.CenterColor = Color.Green;

      pgBrush.SurroundColors = new Color[] {Color.Blue};

      // Create matrix

      Matrix M = new Matrix();

      // Translate

      M.Translate(20.0f, 10.0f, MatrixOrder.Prepend);

      // Rotate

      M.Rotate(10.0f, MatrixOrder.Prepend);

      // Scale

      M.Scale(2, 1, MatrixOrder.Prepend);

      // Shear

      M.Shear(.05f, 0.03f, MatrixOrder.Prepend);

      // Apply matrix to the brush

      pgBrush.MultiplyTransform(M);

      // Use brush after transformation

      // to fill a rectangle

      g.FillRectangle(pgBrush, 20, 100, 400, 400);

      // Dispose of objects

      pgBrush.Dispose();

      g.Dispose();

}

Figure 4.30 shows the output from Listing 4.25. The original rectangle started at point (10, 10) with height and width 200 each, but after 

various transformation methods have been applied, the output rectangle is totally different.

Figure 4.30. Transformation in path gradient brushes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

4.5 System Pens and System Brushes

System pens and system brushes are pens and brushes that are used to create system colors. In this section we will discuss how to create 

and use system pens and brushes.

There are two ways to create system pens and brushes. First, you can create pens and brushes using the SystemColors class. SystemColors

represents the system colors in GDI+, providing static properties for system colors, such as ActiveBorder and ControlText. The second way to 

create system pens and brushes uses the SystemPens and SystemBrushes classes.

For performance reasons, it is a good idea to use the SystemPens and SystemBrushes classes rather than creating pens and brushes by 

using the SystemColors class.

4.5.1 System Pens

The SystemPens class represents a pen created with the system colors. This class has a static property for each system color that represents 

the system pen with that particular color. Table 4.16 lists the properties of the SystemPens class.

The SystemPens class also provides a method—FromSystemColor—that creates a Pen object from a Color structure. To create a system pen, 

we pass a SystemColors object. The following code shows how to use the FromSystemColor method:

Table 4.16. SystemPens properties

Property Description

ActiveCaptionText Pen with active window's title bar color

Control Pen with control color

ControlDark Pen with the shadow color of a 3D element.

ControlDarkDark Pen with the dark shadow color of a 3D element.

ControlLight Pen with the light color of a 3D element.

ControlLightLight Pen with the highlight color of a 3D element.

ControlText Pen with the control text color

GrayText Pen with disabled color

Highlight Pen with highlighting

HighlightText Pen with highlighted text color

InactiveCaptionText Pen with inactive title bar color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

InfoText Pen with the color of the text of a ToolTip

MenuText Pen with the color of a menu's text

WindowFrame Pen with the color of a window frame

WindowText Pen with the color of the text in the client area of a window

Pen pn = SystemPens.FromSystemColor(

         SystemColors.HotTrack);

4.5.2 System Brushes

The SystemBrushes class represents a Brush object using the system colors. All properties of SystemBrushes are static read-only properties. 

Table 4.17 describes these properties.

Table 4.17. SystemBrushes properties

Property Description

ActiveBorder Brush object with the color of the active window's border

ActiveCaption Brush object with the background color of the active window's title bar

ActiveCaptionText Brush object with the color of the text in the active window's title bar

AppWorkspace Brush object with the color of the application workspace

Control Brush object with the face color of a 3D element

ControlDark Brush object with the shadow color of a 3D element

ControlDarkDark Brush object with the dark shadow color of a 3D element

ControlLight Brush object with the light color of a 3D element

ControlLightLight Brush object with the highlight color of a 3D element

ControlText Brush object with the color of text in a 3D element

Desktop Brush object with the color of the desktop

Highlight Brush object with the color of the background of selected items

HighlightText Brush object with the color of the text of selected items

HotTrack Brush object with the color used to designate a hot-tracked item

InactiveBorder Brush object with the color of an inactive window's border

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

InactiveCaption Brush object with the color of the background of an inactive window's title bar

Info Brush object with the color of the background of a ToolTip

Menu Brush object with the color of a menu's background

ScrollBar Brush object with the color of the background of a scroll bar

Window Brush object with the color of the background in the client area of a window

WindowText Brush object with the color of the text in the client area of a window

Note

The MSDN documentation states that the SystemBrushes properties return a SolidBrush object, but that statement is not 

quite accurate. These properties return a Brush object that must be cast to a SolidBrush object. If you run the code without 

casting them, the compiler throws an error.

The SystemBrushes class also provides a FromSystemColor method, which creates a Brush object from a specified system color. The 

following code shows how to use the FromSystemColor method:

SolidBrush brush =

   (SolidBrush)SystemBrushes.FromSystemColor

   (SystemColors.ActiveCaption);

Disposing of System Pens and Brushes

You cannot dispose of system pens and brushes. If you try to dispose of them, GDI+ generates an error because these 

objects belong to the system.

Listing 4.26 uses SystemBrushes and SystemPens objects to draw two lines and a rectangle.

Listing 4.26 Using the SystemBrushes and SystemPens classes

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

{

      Graphics g = e.Graphics;

      // Create a pen using SystemPens

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      Pen pn = SystemPens.FromSystemColor(

        SystemColors.HotTrack);

      // Create a brush using SystemBrushes

      SolidBrush brush =

        (SolidBrush)SystemBrushes.FromSystemColor

        (SystemColors.ActiveCaption);

      // Draw lines and rectangles

      g.DrawLine(pn, 20, 20, 20, 100);

      g.DrawLine(pn, 20, 20, 100, 20);

      g.FillRectangle(brush, 30, 30, 50, 50);

      // YOU CAN'T DISPOSE OF SYSTEM PENS AND

      // BRUSHES. IF YOU TRY, GDI+ WILL GENERATE

      // AN ERROR.

      //pn.Dispose();

      //brush.Dispose();

}

Figure 4.31 shows the output from Listing 4.26.

Figure 4.31. Using system pens and system brushes

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

4.6 A Real-World Example: Adding Colors, Pens, and Brushes to the 

GDI+Painter Application

In Chapter 3 we created the GDI+Painter application, which allows us to draw simple objects, such as a line, a rectangle, and an ellipse. In 

this section we will extend the functionality of GDI+Painter by adding support for brushes and pens. After completing this section, you will be 

able to select a pen color and its width, color transparency, and brush color.

Figure 4.32 shows the modified version of GDI+Painter without any objects..

Figure 4.32. GDI+Painter with pen and brush support

Transparency is a component of the color in GDI+. In the .NET Framework library, the Color structure represents a color. It has four 

components: alpha (A), red (R), green (G), and blue (B). The alpha component of the Color structure represents the transparency of a color. 

The alpha component values vary from 0 to 255, where 0 is fully transparent and 255 is fully opaque. To create a transparent brush or pen, 

we create a color using the alpha value and use the color to create a pen or a brush. We will discuss colors and alpha transparency in more 

detail in Chapter 5 (ARGB is the focus of Section 5.2).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The following code snippet shows how to create a color with transparency. We use the same method to add transparency to our application.

Color clr = Color.FromArgb(Convert.ToInt16

    (TransCounter.Value.ToString()),

    PenBtn.BackColor.R,

    PenBtn.BackColor.G, PenBtn.BackColor.B);

In our modified version of GDI+Painter, the width selector numeric up-down control allows you to select the width of the pen. A pen is used 

when we draw the outlines of graphics shapes. A brush is used when we draw filled graphics shapes.

The Pen color and Brush color buttons launch ColorDialog, which lets us select a color and set the color of the button itself, which later is used 

by the program when creating a Pen or Brush object. Listing 4.27 shows the code for these two button click event handlers. This code also 

sets the background color of the respective buttons to set the current selected color of our brush and pen.

Listing 4.27 Selecting pen and brush colors

private void PenSettings_Click(object sender,

System.EventArgs e)

{

     ColorDialog colorDlg = new ColorDialog();

     colorDlg.ShowDialog();

     PenBtn.BackColor = colorDlg.Color;

}

private void BrushSettings_Click(object sender,

System.EventArgs e)

{

     ColorDialog colorDlg = new ColorDialog();

     colorDlg.ShowDialog();

     BrushBtn.BackColor = colorDlg.Color;

}

When we draw a graphics shape, we set the color, width, and transparency of the pen and brush according to the selection. The last two 

changes in our revised version of GDI+Painter are on the mouse-up event handler and the form's paint event handler, respectively.

The modified mouse-up event handler is shown in Listing 4.28. In it, we use the color buttons to create our current pen and brush from the 

selected colors.

Listing 4.28 The mouse-up event handler

private void Form1_MouseUp(object sender,

     System.Windows.Forms.MouseEventArgs e)

{

     // Set the pen's color

     curPen.Color = Color.FromArgb(Convert.ToInt16(

       TransCounter.Value.ToString()),

       PenBtn.BackColor.R, PenBtn.BackColor.G,

       PenBtn.BackColor.B);

     // Set the pen's width

     curPen.Width = (float)PenWidthCounter.Value;

     // Set the brush's color

     curBrush.Color = Color.FromArgb(Convert.ToInt16(

       TransCounter.Value.ToString()),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



       BrushBtn.BackColor.R, BrushBtn.BackColor.G,

       BrushBtn.BackColor.B);

     diffX = x - curX;

     diffY = y - curY;

     switch (drawIndex)

     {

       case 1:

       {

         // Draw a line

         curGraphics.DrawLine(curPen,

           curX, curY, x, y);

         break;

     }

       case 2:

     {

       // Draw an ellipse

       curGraphics.DrawEllipse(curPen,

         curX, curY, diffX, diffY);

       break;

     }

     case 3:

     {

       // Draw a rectangle

       curGraphics.DrawRectangle(curPen,

         curX, curY, diffX, diffY);

       break;

     }

     case 4:

     {

       // Fill rectangle

       curGraphics.FillRectangle(curBrush,

         curX, curY, diffX, diffY);

       break;

     }

     case 5:

     {

       // Fill ellipse

       curGraphics.FillEllipse(curBrush,

         curX, curY, diffX, diffY);

       break;

     }

    }

    // Refresh

    RefreshFormBackground();

    // Set dragMode to false

    dragMode = false;

}

The same procedure is applied to the form's paint event handler, shown in Listing 4.29. This code sets the Color and Width properties of our 

pen and the Color property of our brush according to the current values.

Listing 4.29 The form's paint event handler

private void Form1_Paint(object sender,

      System.Windows.Forms.PaintEventArgs e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



{

      // Set current pen's color

      curPen.Color = Color.FromArgb(

        Convert.ToInt16(

        TransCounter.Value.ToString()),

        PenBtn.BackColor.R,

        PenBtn.BackColor.G,

        PenBtn.BackColor.B);

      // Set pen's width

      curPen.Width = (float)PenWidthCounter.Value;

      // Set current brush's color

      curBrush.Color = Color.FromArgb(

        Convert.ToInt16(

        TransCounter.Value.ToString()),

        BrushBtn.BackColor.R,

        BrushBtn.BackColor.G,

        BrushBtn.BackColor.B);

      Graphics g = e.Graphics;

      // If dragMode is true, draw selected

      // graphics shape

      if (dragMode)

      {

        switch (drawIndex)

        {

          case 1:

          {

            g.DrawLine(curPen, curX, curY, x, y);

            break;

          }

          case 2:

          {

            g.DrawEllipse(curPen,

              curX, curY, diffX, diffY);

            break;

          }

          case 3:

          {

            g.DrawRectangle(curPen,

              curX, curY, diffX, diffY);

            break;

          }

          case 4:

          {

            g.FillRectangle(curBrush,

              curX, curY, diffX, diffY);

            break;

          }

          case 5:

          {

            g.FillEllipse(curBrush,

              curX, curY, diffX, diffY);

            break;

          }

        }

      }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If you run the revised GDI+Painter application, you can set the colors of the brush and the pen, the pen's width, and the transparency of both 

the pen and the brush. Figure 4.33 shows lines, rectangles, and ellipses drawn with different sizes and transparency.

Figure 4.33. GDI+Painter in action

4.6.1 Improvements in GDI+Painter

You can improve the functionality of the GDI+Painter application (or your own applications) even more: As we have discussed in our

examples, you can add a brush selection feature. You can allow users to select a brush type, style, and other properties. If users pick a

gradient brush, they can select colors. You can also allow users to select cap and line styles. For solid brushes, users should be able to pick a

color; for texture brushes, they should be able to pick an image; and for hatch and gradient brushes, they should be able to pick styles,

background, foreground, and other color properties. You can even add transformation and other options—all of which we've discussed in this

chapter.

On the basis of this example, you can write your own graphics tool library with support for many more options than the standard Windows 

PaintBrush application!

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

In this chapter we learned how to work with pens and brushes by using classes from the GDI+ .NET Framework class library. The chapter 

began by showing how to represent various kinds of brushes in GDI+. We learned the classes for the different brushes and how to use their 

properties and methods.

After covering brushes, the discussion moved on to pens and how to represent them using GDI+ classes. We learned pen-related classes 

and their properties and methods, and how to add various styles to pens, such as cap, line, and dash styles. We also discussed system pens 

and brushes, and how to use GDI+ classes to represent and use system pens and brushes.

At the end of the chapter we added options for pens and brushes to the GDI+Painter application. You should now have a pretty good idea of 

how to use pens and brushes in your own applications.

After pens and brushes, the next most frequently used graphics objects are text, fonts, and colors. We will discuss these in Chapter 5.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 5. Colors, Fonts, and Text

Three types of objects that are used to build graphics-intensive applications are colors, fonts, and text. In this chapter you will learn about the 

representation of colors, fonts, and text in the .NET Framework class library. We will cover the following topics:

Basics of colors, fonts, and text and how they are represented in Windows

Namespaces, classes, and other objects provided by the .NET Framework library to work with colors, fonts, and text

System fonts, colors, brushes, and pens

Color conversions and translations

System and private font collections

Formatting text using hinting, tab stops, and other methods

Setting the quality and performance of text rendering

Writing a simple text editor application

Text transformation operations such as scaling, rotation, and translation

Advanced typography

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.1 Accessing the Graphics Object

There are several ways an application can use the code from this chapter. It can execute code using the OnPaint method or Form_Paint

event, or it can use code with a button or menu click event handler. If an application executes code with Form_Paint or OnPaint, you will need 

to include the following line at the beginning of the method.

Graphics g = e.Graphics;

If an application executes code from a button or menu click event handler or elsewhere, you will need to create a Graphics object using 

CreateGraphics or another method (see Chapter 3 for details) and call the Dispose method to dispose of objects when you're finished with 

them. The following code snippet gives an example:

Graphics g = this.CreateGraphics();

// YOUR CODE HERE

// Dispose of GDI+ objects

g.Dispose();

Note

To test code from this chapter, we will create a Windows application with code written on the menu item click event handlers.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.2 Working with Colors

In this section we will examine color representation in GDI+ and how to use color-related functionality in real-world applications.

In GDI+, a color is represented by a 32-bit structure made up of four components: alpha (A), red (R), green (G), and blue (B), referred to as 

ARGB mode. Components' values range from 0 to 255. The alpha component (the first 8 bits) of the color represents transparency, which 

determines how a color is blended with the background. An alpha value of 0 represents a fully transparent color, and a value of 255 

represents a fully opaque color; intermediate values produce results between these extremes. Real-world examples of alpha use include 

drawing translucent graphics shapes and images. Chapter 9 discusses the alpha component in more detail (see Section 9.6).

5.2.1 Color Spaces

It's hard for human beings—as perceptual entities—to describe and represent colors. Color spaces provide a common frame of reference 

that helps represent colors. A color space contains components called color channels. For example, RGB space is a three-dimensional 

space with red, green, and blue color channels. To limit our discussion, we will cover the RGB (red-green-blue), HSV (hue-saturation-value), 

and HLS (hue-lightness-saturation) color spaces.

The RGB color space is the most commonly used namespace in computer programming because it closely matches the structure of most

display hardware—which commonly includes separate red, green, and blue subpixel structures. It can be thought of as a cube in which length

indicates the intensity of red, width indicates the intensity of green, and height indicates the intensity of blue. The corner indicated by (0, 0, 0)

is black, and the opposite corner (255, 255, 255) is white. Every other color available is represented somewhere between those corners.

The HSV, sometimes called HSB (hue-saturation-brightness), and HLS color spaces can be thought of as single and double cones. The hue 

component represents the position on the cone as an angular measurement. The 0-, 120-, and 240-degree values of hue represent the 

colors red, green, and blue, respectively.

The saturation component describes the color intensity. A saturation value of 0 means gray (colorless), and the maximum value of 

saturation indicates pure color and brightness for the values specified by the hue and value components.

The value, or brightness, component represents the brightness of the color. A value of 0 indicates the color black (no brightness), and a 

maximum value indicates that the color is brightest (closest to white).

The Color structure provided by the .NET Framework library is based on the RGB color space. In Section 5.2.2 we will discuss how to use it in 

our applications.

5.2.2 The Color Structure

The Color structure represents ARGB colors in GDI+. This class has a static member property for almost every possible color. For example, 

Color.Black and Color.Red represent the colors black and red, respectively. Besides these static properties, this structure includes read-only

properties—A, R, G, and B—that represent the alpha, red, green, and blue components, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The IsEmpty property checks whether a Color structure has been initialized (if not, there is no color). The KnownColor enumeration contains 

more than 300 colors, and each color is represented by its name. For example, Blue and Black members represent the colors blue and black, 

respectively. KnownColor also defines color combinations, such as LimeGreen and LightBlue. You can also find system colors such as 

ActiveBorder, ActiveCaption, Control, ControlText, Highlight, and InactiveBorder, using the IsSystemColor enumeration. The Name property 

represents the name of the color, which is a read-only property. The Transparent property is a static property that represents a transparent 

color.

The Color structure also provides some methods. The FromArgb method creates a color from the four ARGB components. This method has 

different overloaded forms with which an application can create a Color object from an alpha value only; from an alpha value with a Color

object only; from three values (red, green, and blue); and from all four values (alpha, red, green, and blue).

The FromKnownColor and FromName methods create a Color object from a predefined color or from the name of a predefined color, 

respectively. The FromKnownColor method takes only one argument, of KnownColor enumeration. The FromName method takes one 

argument of string type as the color name. All members defined in the KnownColor enumeration are valid names for this method.

Note

All three "from" methods (FromArgb, FromKnownColor, and FromName) are static.

The ToArgb and ToKnownColor methods convert an ARGB or KnownColor value, respectively, to a Color structure.

Listing 5.1 illustrates different ways to create Color objects and use them in an application to draw various graphics objects, including a filled 

ellipse with a red brush, a filled rectangle with a blue brush, and a line with a green pen. The application first creates four Color objects via the 

FromArgb, FromName, FromKnownColor, and Empty methods. The FromArgb method creates a translucent pure red Color object, using 

parameters 120, 255, 0, and 0. The FromName method creates a Color object from the string "Blue". The FromKnownColor method creates a 

color object from the known color Green.

Listing 5.1 Using the methods and properties of the Color structure

private void ColorStructMenu_Click(object sender,

      System.EventArgs e)

{

      // Create Graphics object

      Graphics g = this.CreateGraphics();

      // Create Color object from ARGB

      Color redColor = Color.FromArgb(120, 255, 0, 0);

      // Create Color object form color name

      Color blueColor = Color.FromName("Blue");

      // Create Color object from known color

      Color greenColor =

        Color.FromKnownColor(KnownColor.Green);

      // Create empty color

      Color tstColor = Color.Empty;

      // See if a color is empty

      if(tstColor.IsEmpty)

      {

        tstColor = Color.DarkGoldenrod;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      }

      // Create brushes and pens from colors

      SolidBrush redBrush = new SolidBrush(redColor);

      SolidBrush blueBrush = new SolidBrush(blueColor);

      SolidBrush greenBrush = new SolidBrush(greenColor);

      Pen greenPen = new Pen(greenBrush, 4);

      // Draw GDI+ objects

      g.FillEllipse(redBrush, 10, 10, 50, 50);

      g.FillRectangle(blueBrush, 60, 10, 50, 50);

      g.DrawLine(greenPen, 20, 60, 200, 60);

      // Check property values

      MessageBox.Show("Color Name :"+ blueColor.Name +

        ", A:"+blueColor.A.ToString() +

        ", R:"+blueColor.R.ToString() +

        ", B:"+blueColor.B.ToString() +

        ", G:"+blueColor.G.ToString() );

      // Dispose of GDI+ objects

      redBrush.Dispose();

      blueBrush.Dispose();

      greenBrush.Dispose();

      greenPen.Dispose();

      g.Dispose();

}

Figure 5.1 shows the output from Listing 5.1.

Figure 5.1. Creating colors using different methods

The GetBrightness, GetHue, and GetSaturation methods return a color's brightness, hue, and saturation component values, respectively. 

Listing 5.2 reads the hue, saturation, and brightness components of a color and displays their values on the form by using the DrawString

method.

Listing 5.2 Getting brightness, hue, and saturation of a color

private void HSBMenu_Click(object sender,

      System.EventArgs e)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // Create a Graphics object

      Graphics     g = this.CreateGraphics();

      // Create a color

      Color clr = Color.FromArgb(255, 200, 0, 100);

      // Get hue, saturation, and brightness components

      float h = clr.GetHue();

      float s = clr.GetSaturation();

      float v = clr.GetBrightness();

      string str = "Hue: "+ h.ToString() + "\n" +

              "Saturation: "+ s.ToString() + "\n" +

              "Brightness: "+ v.ToString();

      // Display data

      g.DrawString(str, new Font("verdana", 12),

        Brushes.Blue, 50, 50);

      // Dispose of object

      g.Dispose();

}

Figure 5.2 shows the output from Listing 5.2. The values of hue, saturation, and brightness in this particular color are 330, 1, and 0.3921569, 

respectively.

Figure 5.2. Getting brightness, hue, and saturation components of a color

5.2.3 System Colors

The SystemColors class represents the Windows system colors; it provides 26 read-only properties, each of which returns a Color object. Table 

5.1 lists the properties of the SystemColors class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The following code snippet uses the SystemColors class to set colors of a few Windows controls. In this code we set the background colors of 

a text box, a radio button, and a button to inactive border, active caption, and control dark system colors, respectively.

textBox1.BackColor = SystemColors.InactiveBorder;

radioButton1.BackColor = SystemColors.ActiveCaption;

button1.BackColor = SystemColors.ControlDarkDark;

If you're wondering whether you can create a brush or a pen from the SystemColors class to fill and draw shapes, curves, and text, the 

answer is, absolutely. The following code snippet uses SystemColors to create SolidBrush and Pen objects. This code creates a solid brush 

and a pen from active caption system and highlight text system colors, respectively.

Table 5.1. SystemColors properties

Property Description

ActiveBorder Active window border color

ActiveCaption Active window title bar background color

ActiveCaptionText Active window title bar text color

AppWorkspace Multiple-document interface (MDI) workspace background color

Control Control background color

ControlDark 3D control shadow color

ControlDarkDark 3D control dark shadow color

ControlLight 3D control highlight color

ControlLightLight 3D control light highlight color

ControlText Text color of controls

Desktop Windows desktop color

GrayText Disabled text color

Highlight Highlighted text background color

HighlightText Highlighted text color

HotTrack Hot track color

InactiveBorder Inactive window border color

InactiveCaption Inactive window caption bar color

InactiveCaptionText Inactive window caption bar text color

Info ToolTip background color

InfoText ToolTip text color

Menu Menu background color

MenuText Menu text color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

ScrollBar Background color of scroll bars

Window Background color of window

WindowFrame Thin window frame color

WindowText Window text color

SolidBrush brush =

new SolidBrush(SystemColors.ActiveCaption);

Pen pn = new Pen(SystemColors.HighlightText);

For performance reasons, GDI+ provides SystemPens and SystemBrushes classes, which should be used instead of creating a brush or pen 

from the SystemColors class. For example, the following method is advisable for creating system brushes and pens. This code snippet 

creates a solid brush and a pen from active caption and highlight text system colors, respectively.

SolidBrush brush1 =

(SolidBrush)SystemBrushes.FromSystemColor

(SystemColors.ActiveCaption);

Pen pn1 = SystemPens.FromSystemColor

(SystemColors.HighlightText);

Listing 5.3 uses the SystemBrushes and SystemPens classes to create a SolidBrush object and three Pen objects, which are used later to 

draw and fill graphics objects. The solid brush is created from the active caption system color, and the three pens are created from highlight 

text, control light light, and control dark system colors, respectively. Later the brush and pens are used to draw two lines, a rectangle, and an 

ellipse.

Listing 5.3 Using SystemPens and SystemBrushes

private void SystemColorsMenu_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      // Create brushes and pens

      SolidBrush brush1 =

        (SolidBrush)SystemBrushes.FromSystemColor

        (SystemColors.ActiveCaption);

      Pen pn1 = SystemPens.FromSystemColor

        (SystemColors.HighlightText);

      Pen pn2 = SystemPens.FromSystemColor

        (SystemColors.ControlLightLight);

      Pen pn3 = SystemPens.FromSystemColor

        (SystemColors.ControlDarkDark);

      // Draw and fill graphics objects

      g.DrawLine(pn1, 10, 10, 10, 200);

      g.FillRectangle(brush1, 60, 60, 100, 100);

      g.DrawEllipse(pn3, 20, 20, 170, 170);

      g.DrawLine(pn2, 10, 10, 200, 10);

      // Dispose of object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      g.Dispose();

}

Figure 5.3 shows the output from Listing 5.3. System colors were used to draw two lines, an ellipse, and a rectangle.

Figure 5.3. Using system colors to draw graphics objects

Note

When you create pens using SystemPens, you cannot modify the width or other properties of the pen. The code will 

compile but will throw an unhandled exception when executed. If you create a pen using SystemColors, however, you can 

modify its width like this:

Pen pn = new Pen(SystemColors.HighlightText);

Pn.Width = 4;

5.2.4 The ColorConverter and ColorTranslator Classes

The ColorConverter class is used to convert colors from one data type to another. This class is inherited from the TypeConverter class, which 

defines the functionality for conversion of types and accessing values and properties of types. The TypeConverter class serves as a base 

class for many conversion classes, and ColorConverter and FontConverter are two of them. We will discuss FontConverter in more detail later 

in this chapter. Some of the common methods of the TypeConverter class (which are available in the ColorConverter class) are described in 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 5.2.

Table 5.2. Common TypeConverter methods

Method Description

CanConvertFrom Takes a type as a parameter and returns true if the converter can convert an object to the type of the 

converter; otherwise returns false.

CanConvertTo Takes a type as a parameter and returns true if the converter can convert an object to a given type; 

otherwise returns false.

ConvertFrom Converts an object to the type of the converter and returns the converted object.

ConvertTo Converts a specified object to a new type and returns the object.

GetStandardValues Returns a collection of standard values (collection type) for the data type for which this type converter is 

designed.

GetStandardValuesSupported Identifies whether this object supports a standard set of values.

Listing 5.4 uses the ColorConverter class methods to convert colors. We store a color in a string and call the ConvertFromString method, which 

returns the Color object. Later we will use the Color objects to create two brushes that we will use to fill a rectangle and an ellipse.

Listing 5.4 Using the ColorConverter class to convert colors

private void ColorConvert_Click(object sender,

     System.EventArgs e)

{

     Graphics g = this.CreateGraphics();

     g.Clear(this.BackColor);

     string str = "#FF00FF";

     ColorConverter clrConverter = new ColorConverter();

     Color clr1 =

         (Color)clrConverter.ConvertFromString(str);

     // Use colors

     SolidBrush clr2 = new SolidBrush(clr1);

     SolidBrush clr3 = new SolidBrush(clr1);

     // Draw GDI+ objects

     g.FillEllipse(clr2, 10, 10, 50, 50);

     g.FillRectangle(clr3, 60, 10, 50, 50);

     // Dispose of objects

     clr2.Dispose();

     clr3.Dispose();

     g.Dispose();

}

Figure 5.4 shows the output from Listing 5.4.

Figure 5.4. Converting colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The ColorTranslator class provides methods to translate colors to and from HTML, OLE, and Win32 color values. These methods are useful 

when you're using legacy color structures that pre-date the .NET Framework. For example, you may have legacy code that gives the HTML 

color representation of a color. Table 5.3 describes the methods of the ColorTranslator class. All of the methods are static.

Listing 5.5 uses the ColorTranslator class to translate colors from Win32 and HTML colors. Later these colors will be used to create brushes.

Listing 5.5 Translating colors

private void ColorTranslator_Click(object sender,

    System.EventArgs e)

{

     Graphics g = this.CreateGraphics();

     // Translate colors

     Color win32Color =

        ColorTranslator.FromWin32(0xFF0033);

     Color htmlColor =

         ColorTranslator.FromHtml("#00AAFF");

     // Use colors

     SolidBrush clr1 = new SolidBrush(win32Color);

     SolidBrush clr2 = new SolidBrush(htmlColor);

     // Draw GDI+ objects

     g.FillEllipse(clr1, 10, 10, 50, 50);

     g.FillRectangle(clr2, 60, 10, 50, 50);

     // Dispose of objects

     clr1.Dispose();

     clr2.Dispose();

     g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 5.3. ColorTranslator methods

Method Description

FromHtml Translates from an HTML color representation to a Color structure.

FromOle Translates from an OLE color value to a Color structure.

FromWin32 Translates from a Windows color value to a Color structure.

ToHtml Translates from a Color structure to an HTML color representation.

ToOle Translates from a Color structure to an OLE color.

ToWin32 Translates from a Color structure to a Windows color.

In a manner similar to the "from" methods just discussed, you can translate a Color structure into Win32, HTML, and OLE values using the 

ToWin32, ToHtml, and ToOle methods, respectively.

Note

You can also transform colors using transformation methods. Some of the transformation methods are for scaling, 

translating, rotating, and shearing. We cover this functionality in Chapter 10.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.3 Working with Fonts

In this section we will concentrate on fonts. The discussion starts with a description of the types of fonts in the Windows operating system, 

followed by a little background material on fonts. After these basic concepts are covered, the discussion turns to how fonts are handled in 

GDI+ and .NET.

5.3.1 Font Types in Windows

Windows supports two types of fonts: GDI fonts and device fonts. Device fonts are native to output devices such as a monitor or a printer. GDI 

fonts are stored in files on your system—normally in the Windows\Fonts directory. Each font has its own file. For example, Arial, Arial Black, 

Arial Bold, Arial Italic, Arial Black Italic, Arial Bold Italic, Arial Narrow, Arial Narrow Bold Italic, and Arial Narrow Italic are different fonts in the 

Arial font family, and each one has its own file (see Figure 5.5).

Figure 5.5. Fonts available in Windows

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



GDI fonts can be further divided into four major categories: raster, stroke, TrueType, and OpenType. The raster and stroke fonts are the 

oldest way to display text (they pre-date Windows 3.1!). Raster fonts (also known as bitmap fonts) store each character in pixel format. Each 

raster font is designed for a specific aspect ratio and character size, which are generally not scalable to other sizes. The main advantage of 

raster fonts is high performance because rendering a raster font usually just requires copying it to video memory. Raster fonts support 

boldface, italics, underlining, and strikethrough formatting.

Stroke fonts (also known as vector fonts) are defined as a series of lines and dots—in much the same way that characters are drawn with a

pen plotter. Stroke fonts are thus quite scalable (they can be increased or decreased to any size), and they can be used with output devices

of any resolution. Examples of stroke fonts include Modern, Roman, and Script. Like raster fonts, stroke fonts support boldface, italics,

underlining, and strikethrough formatting.

Next we come to TrueType fonts, which were developed by Apple and Microsoft and are supported by many manufacturers. TrueType fonts 

are also called outline fonts because the individual characters are defined by filled outlines of straight lines and curves. Altering the 

coordinates that define the outlines provides great scalability. The original 13 TrueType fonts were

Courier New1.

Courier New Bold2.

Courier New Italic3.

Courier New Bold Italic4.

Times New Roman5.

Times New Roman Bold6.

Times New Roman Italic7.

Times New Roman Bold Italic8.

Arial9.

Arial Bold10.

Arial Italic11.

Arial Bold Italic12.

Symbol13.

Adobe and Microsoft announced yet another format in 1997, called OpenType. It is a combination of TrueType and the Type 1 outline format 

of Adobe's page-description language. Windows 2000 installs 82 fonts, including TrueType fonts, OpenType fonts, and other types. The 

TrueType fonts are represented by a "T" icon, and OpenType fonts are represented by an "O" icon in Windows Explorer, as shown in Figure 

5.6.

Figure 5.6. Font icons represent font types

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The file extension of both TrueType and OpenType fonts is .ttf. If you double-click on the Verdana OpenType font file, it displays the 

information shown in Figure 5.7.

Figure 5.7. An OpenType font

The Arial Black Italic TrueType font file, on the other hand, looks like Figure 5.8.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 5.8. A TrueType font

In 1998, Microsoft announced a new display technology called ClearType. ClearType increases the readability and smoothness of text on 

existing LCDs (liquid crystal displays), such as laptop screens, flat-screen monitors, and Pocket PC screens. In normal displays, a pixel has 

only two states: on and off. ClearType technology adds additional information to a pixel besides the on and off states. With ClearType, the 

words on the display device look almost as sharp and clear as those on the printed page.

Note

To learn more about Microsoft's ClearType technology, visit http://www.microsoft.com/typography/cleartype/default.htm.

5.3.1.1 Attributes or Styles

In typography, the combination of a typeface name (sometimes referred to as a face name) and a point size (sometimes referred to as the 

em size) represents a font. A typeface name is a combination of a font family and the font style (also referred to as font attributes). Each 

typeface belongs to a font family such as Times New Roman, Arial, or Courier. The Courier family, for example, includes the typefaces 

Courier New, Courier New Bold, and Courier New Italic.

Generally, when we talk about a font, we are referring to more than just one component. A typical font is a combination of three components: 

font family, font style, and font size. Figure 5.9 shows the components of a typical font.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.microsoft.com/typography/cleartype/default.htm


Figure 5.9. Font components

A complete example of a font is "Times New Roman, size 10, Bold|Italic". Here the font family is Times New Roman, the size is 10-point, and 

the style is both bold and italic.

5.3.1.2 Font Height and Line Spacing

The size of a font is expressed in points, where a point is usually 1/72 (0.013888) inch. The measurement of the size of a font is a little 

confusing because characters have different heights. If all alphabetic characters had the same height, it would be easier to calculate the size 

of a font. For example, consider the characters b and q. Technically they have the same height (or size), but they are situated in different 

locations along a straight line. In other words, the character's size may not be the same as the point size, also called em size. The font size is 

related to the line spacing. We will discuss line spacing in more detail in Section 5.3.4.

5.3.2 Fonts in .NET

Before we use fonts and draw text, let's see what classes GDI+ provides related to text and fonts, and how to use them.

Typography Namespaces

In the .NET framework library, two namespaces define the font-related functionality: System.Drawing and 

System.Drawing.Text. The System.Drawing namespace contains general typography functionality, and System.Drawing.Text

contains advanced typography functionality. Before using any of the typography-related classes in your application, you must 

include the appropriate namespace. We will discuss advanced typography in Section 5.6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The Font class provides functionality for fonts, including methods and properties to define functionalities such as font style, size, name, and 

conversions. Before we discuss the Font class, we will introduce the FontStyle enumeration and the FontFamily class, which we will use to 

create Font objects.

5.3.3 The FontStyle Enumeration

The FontStyle enumeration defines the common styles of a font. The members of FontStyle are described in Table 5.4.

5.3.4 The FontFamily Class

The FontFamily class provides methods and properties to work with font families. Table 5.5 describes the properties of the FontFamily class.

Table 5.4. FontStyle members

Member Description

Bold Bold text

Italic Italic text

Regular Normal text

Strikeout Text with a line through the middle

Underline Underlined text

Table 5.5. FontFamily properties

Property Description

Families Returns an array of all the font families associated with the current graphics context.

GenericMonospace Returns a monospace font family.

GenericSansSerif Returns a sans serif font family.

GenericSerif Returns a serif font family.

Name Returns the name of a font family.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

The GetFamilies method of the FontCollection class returns all families, as we will discuss in Section 5.6.

Table 5.6 describes the methods of the FontFamily class.

Table 5.6 introduces some new terms, including base line, ascent, and descent. Let's see what they mean. Figure 5.10 shows a typical font in 

Windows. As you can see, although the letters b and q are the same size, their starting points and ending points (top and bottom locations)

are different. The total height of a font—including ascent, descent, and extra space—is called the line spacing. Ascent is the height above 

the base line, and descent is the height below the base line. As Figure 5.10 shows, two characters may have different positions along the 

base line. For some fonts, the extra value is 0, but for others it is not.

Figure 5.10. Font metrics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 5.6. FontFamily methods

Method Description

GetCellAscent Returns the cell ascent, in font design units, of a font family.

GetCellDescent Returns the cell descent, in font design units, of a font family.

GetEmHeight Returns the height, in font design units, of the em square for the specified style.

GetFamilies Returns an array that contains all font families available for a graphics object. This method takes an argument of 

Graphics type.

GetLineSpacing Returns the amount of space between two consecutive lines of text for a font family.

GetName Returns the name, in the specified language, of a font family.

IsStyleAvailable Before applying a style to a font, you may want to know whether the font family in question supports that style. This 

method returns true if a font style is available. For example, the following code snippet checks whether or not the Arial 

font family supports italics:

FontFamily ff = new FontFamily("Arial");

if(ff.IsStyleAvailable(FontStyle.Italic))

// do something

For some fonts, line spacing is the sum of ascent and descent. Listing 5.6 creates a new font; uses get methods to get the values of line 

spacing, ascent, and descent; and calculates the extra space by subtracting ascent and descent from the line space. The following list 

identifies the get methods of a FontFamily object:

GetCellAscent returns the cell ascent, in font design units.

GetCellDescent returns the cell descent, in font design units.

GetEmHeight returns the em height, in font design units.

GetLineSpacing returns the line spacing for a font family.

In addition to these get methods, the Font class provides GetHeight, which returns the height of a Font object.

As Listing 5.6 shows, we use GetLineSpacing, GetLineAscent, GetLineDescent, and GetEmHeight to get line spacing, ascent, descent, and 

font height, respectively, and then we display the output in a message box.

Listing 5.6 Getting line spacing, ascent, descent, and font height

private void Properties_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      // Create a Font object

      Font fnt = new Font("Verdana", 10);

      // Get height

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      float lnSpace = fnt.GetHeight(g);

      // Get line spacing

      int cellSpace =

        fnt.FontFamily.GetLineSpacing(fnt.Style);

      // Get cell ascent

      int cellAscent =

        fnt.FontFamily.GetCellAscent(fnt.Style);

      // Get cell descent

      int cellDescent =

        fnt.FontFamily.GetCellDescent(fnt.Style);

      // Get font height

      int emHeight =

        fnt.FontFamily.GetEmHeight(fnt.Style);

      // Get free space

      float free = cellSpace - (cellAscent + cellDescent);

      // Display values

      string str = "Cell Height:" + lnSpace.ToString() +

        ", Line Spacing: "+cellSpace.ToString() +

        ", Ascent:"+ cellAscent.ToString() +

        ", Descent:"+ cellDescent.ToString() +

        ", Free:"+free.ToString() +

        ", EM Height:"+ emHeight.ToString() ;

      MessageBox.Show(str.ToString());

      // Dispose of objects

      fnt.Dispose();

      g.Dispose();

}

Figure 5.11 shows the output from Listing 5.6. We get cell height, line spacing, ascent, descent, free (extra) space, and em height.

Figure 5.11. Getting line spacing, ascent, descent, free (extra) space, and height of a font

5.3.5 The GraphicsUnit Enumeration

You can define the unit of measure of a font when you construct a Font object. The Font class constructor takes an argument of type 

GraphicsUnit enumeration, which specifies the unit of measure of a font. The default unit of measure for fonts is the point (1/72 inch). You can 

get the current unit of a font by using the Unit property of the Font class. The following code snippet returns the current unit of the font:

Font fnt = new Font("Verdana", 10);

MessageBox.Show(fnt.Unit.ToString());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The members of the GraphicsUnit enumeration are described in Table 5.7.

Table 5.7. GraphicsUnit members

Member Unit of Measure

Display 1/75 inch

Document 1/300 inch

Inch 1 inch

Millimeter 1 millimeter

Pixel 1 pixel

Point 1/72 inch

World The world unit (we'll discuss world coordinates in Chapter 10)

5.3.6 The Font Class

The Font class combines a font and methods and properties to define functionalities such as font style, size, name, and conversions. Table 5.8

describes the properties of the Font class.

The following code creates a Font object of font family Arial with size 16 and uses the Font class properties to find out the details of the Font

object.

Font arialFont = new Font( "Arial", 16,

FontStyle.Bold|FontStyle.Underline|FontStyle.Italic);

MessageBox.Show("Font Properties = Name:"+arialFont.Name

+" Size:"+arialFont.Size.ToString()

+" Style:"+ arialFont.Style.ToString()

+" Default Unit:"+ arialFont.Unit.ToString()

+" Size in Points:"+ arialFont.SizeInPoints.ToString());

The Font class provides three static methods: FromHdc, FromHfont, and FromLogFont. These methods create a Font object from a window 

handle to a device context, a window handle, and a GDI LOGFONT structure, respectively. The GetHeight method returns the height of a Font

object. The ToHfont and ToLogFont methods convert a Font object to a window handler and a GDI LOGFONT structure, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 5.8. Font properties

Property Description

Bold Returns true if the font is bold.

FontFamily Every font belongs to a font family. This property returns the FontFamily object associated with a Font object.

GdiCharSet Returns a string containing all characters.

GdiVerticalFont Returns true if a font is derived from a GDI vertical font; otherwise returns false.

Height Returns the height of a font.

Italic Returns true if a font is italic.

Name Returns the face name of a font.

Size Returns the em size of a font in font design units.

SizeInPoints Returns the size, in points, of a font.

Strikeout Returns true if a font specifies a horizontal line through the font.

Style Returns style information for a font, which is a type of FontStyle enumeration.

Underline Returns true if a font is underlined.

Unit Returns the unit of measure for a font.

In the following example, you must import the GDI library by adding the following code at the beginning of your class before using any GDI 

fonts, because we will be using GetStockObject:

[System.Runtime.InteropServices.DllImportAttribute("gdi32.dll")]

private static extern IntPtr GetStockObject(int fnObj);

Listing 5.7 creates a font from a GDI handle and draws a string on the form. The FromHfont method creates a Font object from a GDI handle.

Listing 5.7 Using the FromHfont method

private void FromHfontMenu_Click(object sender,

      System.EventArgs e)

{

      // Create the Graphics object

      Graphics g = this.CreateGraphics();

      // Create a brush

      SolidBrush brush = new SolidBrush(Color.Red);

      // Get a handle

      IntPtr hFont = GetStockObject(0);

      // Create a font from the handle

      Font hfontFont = Font.FromHfont(hFont);

      // Draw text

      g.DrawString("GDI HFONT", hfontFont,

        brush, 20, 20);

      // Dispose of objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      brush.Dispose();

      hfontFont.Dispose();

      g.Dispose();

}

Figure 5.12 shows the output from Listing 5.7.

Figure 5.12. Using the FromHFont method

5.3.7 Constructing a Font Object

A Font object belongs to the FontFamily class, so before we construct a Font object, we need to construct a FontFamily object. The following 

code snippet creates two FontFamily objects, belonging to the Verdana and Arial font families, respectively.

// Create font families

FontFamily verdanaFamily = new FontFamily("Verdana");

FontFamily arialFamily = new FontFamily("Arial");

The Font class provides more than a dozen overloaded constructors, which allow an application to construct a Font object in different ways, 

either from string names of a font family and size or from a FontFamily object with font style and optional GraphicsUnit values.

The simplest way to create a Font object is to pass the font family name as the first argument and the point size as the second argument of the 

Font constructor. The following code snippet creates a Times New Roman 12-point font:

Font tnwFont = new Font("Times New Roman", 12);

The following code snippet creates three fonts in different styles belonging to the Verdana, Tahoma, and Arial font families, respectively:

// Create font families

FontFamily verdanaFamily = new FontFamily("Verdana");

FontFamily arialFamily = new FontFamily("Arial");

// Construct Font objects

Font verdanaFont = new Font( verdanaFamily, 14,

   FontStyle.Regular, GraphicsUnit.Pixel);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Font tahomaFont = new Font( new FontFamily("Tahoma"), 10,

   FontStyle.Bold|FontStyle.Italic, GraphicsUnit.Pixel);

Font arialFont = new Font(arialFamily, 16, FontStyle.Bold,

   GraphicsUnit.Point);

Font tnwFont = new Font("Times New Roman", 12);

Note

As the code example here shows, you can use the FontStyle and GraphicsUnit enumerations to define the style and units of 

a font, respectively.

If you don't want to create and use a FontFamily object in constructing a font, you can pass the font family name and size directly when you 

create a new Font object. The following code snippet creates three fonts from the Verdana, Arial, and Tahoma font families, respectively, with 

different sizes and styles:

// Construct Font objects

Font verdanaFont = new Font( "Verdana", 12);

Font arialFont = new Font( arialFamily, 10);

Font tahomaFont = new Font( "Arial", 14,

  FontStyle.Underline|FontStyle.Italic);

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

5.4 Working with Text and Strings

As we discussed in Chapter 3, the DrawString method of the Graphics class can be used to draw text on a graphics surface. The DrawString

method takes a string, font, brush, and starting point.

Listing 5.8 creates three different fonts and draws text on a form using the DrawString method. Each DrawString method uses a different color 

and font to draw the string.

Listing 5.8 Drawing text on a graphics surface

private void DrawText_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      // Create font families

      FontFamily verdanaFamily = new FontFamily("Verdana");

      FontFamily arialFamily = new FontFamily("Arial");

      // Construct Font objects

      Font verdanaFont = new Font( "Verdana", 10);

      Font arialFont =

        new Font( arialFamily, 16, FontStyle.Bold);

      Font tahomaFont = new Font( "Tahoma", 24,

        FontStyle.Underline|FontStyle.Italic);

      // Create Brush and other objects

      PointF pointF = new PointF(30, 10);

      SolidBrush solidBrush =

        new SolidBrush(Color.FromArgb(255, 0, 0, 255));

      // Draw text using DrawString

      g.DrawString("Drawing Text", verdanaFont,

        new SolidBrush(Color.Red), new PointF(20,20) );

      g.DrawString("Drawing Text", arialFont,

        new SolidBrush(Color.Blue), new PointF(20, 50) );

      g.DrawString("Drawing Text", tahomaFont,

        new SolidBrush(Color.Green), new PointF(20, 80) );

      // Dispose of objects

      solidBrush.Dispose();

      g.Dispose();

}

Figure 5.13 shows the output from Listing 5.8. The first text is 10-point Verdana; the second, 14-point Arial Bold; and the third, 24-point 

Tahoma Italic.

Figure 5.13. Fonts with different styles and sizes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

See Chapter 3 (Section 3.2.1.5) for more overloaded forms of the DrawString method.

5.4.1 Drawing Formatted Text

The DrawString method can also be used to draw formatted text. To format text, the .NET Framework library provides the StringFormat class, 

which can be passed as a parameter of the DrawString methods. The StringFormat class provides members to set alignment, line spacing, 

digit substitution, trimming, and tab stops. These classes are defined in the System.Drawing namespace.

5.4.1.1 Alignment and Trimming

The Alignment and Trimming properties of the StringFormat class are used to set and get alignment and trimming of text. The Alignment

property takes a value of type StringAlignment enumeration, and the Trimming property takes a value of type StringTrimming enumeration.

The LineAlignment property represents the line alignment of text, which also takes a value of type StringAlignment enumeration.

The StringAlignment enumeration specifies the alignment of a text string. Table 5.9 describes the members of the StringAlignment

enumeration.

The StringTrimming enumeration specifies how to trim characters from a string that does not completely fit into a layout shape. Table 5.10

describes the members of the StringTrimming enumeration.

Listing 5.9 uses Alignment and Trimming properties to align and trim text strings and draws the text to a form. We use two StringFormat objects: 

strFormat1 and strFormat2. For strFormat1, we set the alignment to Center, line alignment to Center, and trimming to EllipsisCharacter. For 

strFormat2, we set the alignment to Far, string alignment to Near, and trimming to Character. Then we use strFormat1 and strFormat2 as 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



parameters of the DrawString method to apply a string format to the text.

Table 5.9. StringAlignment members

Member Description

Center Text is aligned in the center of a rectangle.

Far Text is aligned as far as possible from the origin position of a rectangle.

Near Text is aligned as close as possible to the origin position of a rectangle.

Table 5.10. StringTrimming members

Member Description

Character Text is trimmed to the nearest character.

EllipsisCharacter Text is trimmed to the nearest character, and an ellipsis is inserted at the end of a trimmed line.

EllipsisPath The center is removed from trimmed lines and replaced by an ellipsis.

EllipsisWord Text is trimmed to the nearest word, and an ellipsis is inserted at the end of a trimmed line.

None No trimming.

Word Text is trimmed to the nearest word.

Listing 5.9 Using the Trimming and Alignment properties of StringFormat

private void menuItem11_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      string text = "Testing GDI+ Text and Font" +

        " functionality for alignment and trimming.";

      // Create font families

            FontFamily arialFamily = new FontFamily("Arial");

      // Construct Font objects

      Font verdanaFont =

        new Font( "Verdana", 10, FontStyle.Bold);

      Font arialFont = new Font( arialFamily, 16);

      // Create rectangles

      Rectangle rect1 = new Rectangle(10, 10, 100, 150);

      Rectangle rect2 = new Rectangle(10, 165, 150, 100);

      // Construct string format and alignment

      StringFormat strFormat1 = new StringFormat();

      StringFormat strFormat2 = new StringFormat();

      // Set alignment, line alignment, and trimming

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // properties of string format

      strFormat1.Alignment = StringAlignment.Center;

      strFormat1.LineAlignment = StringAlignment.Center;

      strFormat1.Trimming =

        StringTrimming.EllipsisCharacter;

      strFormat2.Alignment = StringAlignment.Far;

      strFormat2.LineAlignment = StringAlignment.Near;

      strFormat2.Trimming = StringTrimming.Character;

      // Draw GDI+ objects

      g.FillEllipse(new SolidBrush(Color.Blue), rect1);

      g.DrawRectangle( new Pen(Color.Black), rect2);

      g.DrawString(text, verdanaFont,

        new SolidBrush(Color.White) , rect1, strFormat1);

      g.DrawString(text, arialFont,

        new SolidBrush(Color.Red), rect2, strFormat2);

      // Dispose of objects

      arialFont.Dispose();

      arialFont.Dispose();

      verdanaFont.Dispose();

      arialFamily.Dispose();

      g.Dispose();

}

Figure 5.14 shows the output from Listing 5.9. Text inside the rectangle is trimmed to fit.

Figure 5.14. Alignment and trimming options

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



5.4.2 Using Tab Stops

Along with the properties discussed in the preceding section, the StringFormat class provides some methods. The GetTabStops and 

SetTabStops methods can be used to get and set tab stops, respectively. Each of these methods takes two arguments: firstTabOffset and 

tabStops. The first parameter, firstTabOffset, is a float value that represents the number of spaces between the beginning of a line of text and 

the first tab stop. The second parameter, tabStops, is an array of float values that represents the number of spaces between tabs.

An application can use the SetTabStops method to generate tabular output on a graphics surface. For example, Listing 5.10 uses SetTabStops

to generate a tabular data report. In this example we create a StringFormat object and set its tab stops using the SetTabStops method, and 

then we call the DrawString method.

In Listing 5.10 we create a table that lists the grades of a student in tabular format. The table has four columns: ID, Math, Physics, and 

Chemistry. These columns list the grades obtained by a student. As the listing shows, we create a StringFormat object and set the tab stops 

using the SetTabStops method.

Listing 5.10 Using tab stops to draw tabular data on a graphics surface

private void menuItem12_Click(object sender,

      System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  // Some text data

  string text = "ID\tMath\tPhysics\tChemistry \n";

  text = text +

    "————-\t————-\t————-\t————-\n";

  text = text + "1002\t76\t89\t92\n";

  text = text + "1003\t53\t98\t90\n";

  text = text + "1008\t99\t78\t65\n";

  // Create a font

  Font verdanaFont =

    new Font( "Verdana", 10, FontStyle.Bold);

  Font tahomaFont =

    new Font( "Tahoma", 16);

  // Create brushes

  SolidBrush blackBrush = new SolidBrush(Color.Black);

  SolidBrush redBrush = new SolidBrush(Color.Red);

  // Create a rectangle

  Rectangle rect = new Rectangle(10, 50, 350, 250);

  // Create a StringFormat object

  StringFormat strFormat = new StringFormat();

  // Set tab stops of string format

  strFormat.SetTabStops(5, new float[]

   {80, 100, 80, 80});

  // Draw string

  g.DrawString("Student Grades Table",

    tahomaFont,

    blackBrush, new Rectangle

    (10, 10, 300, 100));

  g.DrawString("=============",

    tahomaFont, blackBrush,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



    new Rectangle(10, 23, 300, 100));

  // Draw string with tab stops

  g.DrawString(text, verdanaFont,

    redBrush, rect, strFormat);

  // Dispose of GDI+ objects

  tahomaFont.Dispose();

  redBrush.Dispose();

  blackBrush.Dispose();

  g.Dispose();

}

Figure 5.15 shows the output from Listing 5.10. It's easy to present text data in a tabular form by simply using the StringFormat class and its 

properties.

Figure 5.15. Drawing tabbed text on a form

5.4.3 The FormatFlags Property

The FormatFlags property is useful when an application needs to draw text strings in different layouts—such as drawing vertical text.

FormatFlags takes a value of the StringFormatFlags enumeration. Table 5.11 describes the members of the StringFormatFlags enumeration.

Note

An application can apply more than one StringFormatFlags member by using bitwise combinations.

As Listing 5.11 shows, our sample code draws two strings. One string is drawn from right to left, and the other is vertical. Using FormatFlags is 

pretty simple. An application creates a StringFormat object, sets its FormatFlags property, and then uses the StringFormat object in the 

DrawString method. Note that an application can use more than one instance of FormatFlags for the same StringFormat object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 5.11. StringFormatFlags members

Member Description

DirectionRightToLeft Draws text right to left in a given rectangle using the DrawString method.

DirectionVertical Draws vertical text in a given rectangle using the DrawString method. The default alignment is left (use the 

Alignment property to change the text alignment).

DisplayFormatControl Causes control characters such as the paragraph mark to be shown in the output with a representative glyph 

(e.g., ¶).

FitBlackBox Specifies that no part of any glyph will overhang the bounding rectangle.

LineLimit Specifies that only complete lines will be laid out in the formatting rectangle.

MeasureTrailingSpaces By default, the boundary rectangle returned by the MeasureString method excludes any space at the end of each 

line. Set this flag to include that space in the measurement.

NoClip By default, clipping is on, which means that any text outside of the formatting rectangle is not displayed. NoClip

disables clipping.

NoFontFallback By default, if the specified font is not found, an alternative font will be used. NoFontFallback disables that option 

and displays an open square for the missing character(s).

NoWrap By default, wrapping is on. NoWrap disables wrapping.

Listing 5.11 Using FormatFlags to format string text

private void menuItem16_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      // Create a rectangle

      Rectangle rect = new Rectangle(50, 50, 350, 250);

      // Create two StringFormat objects

      StringFormat strFormat1 = new StringFormat();

      StringFormat strFormat2 = new StringFormat();

      // Set format flags of StringFormat objects

      // with direction right to left

      strFormat1.FormatFlags =

        StringFormatFlags.DirectionRightToLeft;

      // Set direction vertical

      strFormat2.FormatFlags =

       StringFormatFlags.DirectionVertical;

      // Set alignment

      strFormat2.Alignment = StringAlignment.Far;

      // Draw rectangle

      g.DrawRectangle(new Pen(Color.Blue), rect);

      string str =

            "Horizontal Text: This is horizontal "

            + "text inside a rectangle";

      // Draw strings

      g.DrawString(str,

        new Font("Verdana", 10, FontStyle.Bold),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        new SolidBrush(Color.Green),

        rect, strFormat1);

      g.DrawString("Vertical: Text String",

        new Font("Arial", 14),

        new SolidBrush(Color.Red),

        rect, strFormat2);

        // Dispose of GDI+ objects

      g.Dispose();

}

Figure 5.16 shows the output from Listing 5.11. One text string is drawn from right to left (aligned right) in the drawing rectangle, and the other 

text string is drawn vertically on the left-hand side. An application can even use Alignment, Trimming, and other properties to align and trim 

text.

Figure 5.16. Using FormatFlags to draw vertical and right-to-left text

Note

Using the Alignment property will remove the effect of StringFormatFlags.DirectionRightToLeft;.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



5.4.4 Setting Digital Substitution

The SetDigitSubstitution method can be used to substitute digits in a string on the basis of a user's local area. SetDigitSubstitution takes a 

parameter of the StringDigitSubstitute enumeration, the members of which are described in Table 5.12.

Table 5.12. StringDigitSubstitute members

Member Description

National Provides substitution digits based on the national language of the user's locale.

None Disables substitutions.

Traditional Provides substitution digits based on user's native script or language.

User Provides a user-defined substitution.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.5 Rendering Text with Quality and Performance

In Chapter 3 (Section 3.1) I said that we would discuss some of the Graphics class members in later chapters. Here we will discuss the 

TextRenderingHint property of the Graphics class.

Note

The TextRenderingHint enumeration is defined in the System.Drawing.Text namespace.

The TextRenderingHint property of the Graphics class defines the quality of text rendered on graphics surfaces. The quality also affects 

drawing performance. For best performance, select low-quality rendering. Better quality will produce slower rendering. For LCD displays, 

ClearType text provides the best quality.

The TextRenderingHint property takes a value of type TextRenderingHint enumeration. The members of the TextRenderingHint enumeration 

are described in Table 5.13.

Listing 5.12 uses the TextRenderingHint property to draw text with different options. This code draws four different text strings using different 

text rendering hint options.

Listing 5.12 Using TextRenderingHint to set the quality of text

private void menuItem17_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      SolidBrush redBrush = new SolidBrush(Color.Red);

      Font verdana16 = new Font("Verdana", 16);

      string text1 = "Text with SingleBitPerPixel";

      string text2 = "Text with ClearTypeGridFit";

      string text3 = "Text with AntiAliasing";

      string text4 = "Text with SystemDefault";

      // Set TextRenderingHint property of surface

      // to single bit per pixel

      g.TextRenderingHint =

        TextRenderingHint.SingleBitPerPixel;

      // Draw string

      g.DrawString(text1, verdana16, redBrush,

        new PointF(10, 10));

      // Set TextRenderingHint property of surface

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      // to ClearType grid fit

      g.TextRenderingHint =

        TextRenderingHint.ClearTypeGridFit;

      // Draw string

      g.DrawString(text2, verdana16, redBrush,

        new PointF(10, 60));

      // Set TextRenderingHint property of surface

      // to AntiAlias

      g.TextRenderingHint = TextRenderingHint.AntiAlias;

      // Draw string

      g.DrawString(text3, verdana16, redBrush,

        new PointF(10, 100));

      // Set TextRenderingHint property of surface

      // to SystemDefault

      g.TextRenderingHint =

        TextRenderingHint.SystemDefault;

      // Draw string

      g.DrawString(text4, verdana16, redBrush,

        new PointF(10, 150));

      // Dispose of objects

      redBrush.Dispose();

      g.Dispose();

}

Table 5.13. TextRenderingHint members

Member Description

AntiAlias Characters are rendered by anti-aliasing without hinting. AntiAlias offers good quality, but slow performance.

AntiAliasGridFit Characters are anti-aliased with hinting. AntiAliasGridFit offers good quality and high performance.

ClearTypeGridFit Characters are drawn by a ClearType bitmap with hinting. This is the highest-quality setting, with slow 

performance. It takes advantage of ClearType font features, if available.

SingleBitPerPixel Characters are drawn with each glyph's bitmap. Hinting is not used.

SingleBitPerPixelGridFit Characters are drawn with each glyph's bitmap. Hinting is used to improve character appearance on stems and 

curvature.

SystemDefault Characters are drawn with each glyph's bitmap, with the system's default rendering hint.

Figure 5.17 shows the output from Listing 5.12. Different TextRenderingHint options result in text with higher or lower quality. (How clearly this

shows up will vary on different displays—and it may be hard to see in print.)

Figure 5.17. Using different TextRenderingHint settings to draw text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



5.6 Advanced Typography

Besides the text functionality defined in the System.Drawing namespace, the .NET Framework class library defines more advanced 

typography functionality in the System.Drawing.Text namespace. As usual, before using any of the System.Drawing.Text classes or other 

objects, you need to add a namespace reference to the project.

The System.Drawing.Text namespace provides three font collection classes: FontCollection, InstalledFontCollection, and 

PrivateFontCollection. The FontCollection class works as a base class for the other two classes and provides a property (Families) that returns 

an array containing a list of all font families in the collection.

The InstalledFontCollection class represents all the fonts installed on the system. The Families property returns a collection of all font families 

available on the system.

Note

Before using any of the System.Drawing.Text namespace classes, an application must add a reference to the namespace 

with the "using" directive:

using System.Drawing.Text;

Alternatively, you can qualify a class using the namespace as a prefix.

5.6.1 Getting All Installed Fonts on a System

As stated in the previous section, the InstalledFontCollection class represents all available font families on a system. The Families property 

returns an array of FontFamily type.

Listing 5.13 returns all available fonts on a system. To test this application, add a combo box to a form and write this code on the form-load 

event handler or a button or menu click event handler. using System.Drawing.Text Before executing this code, an application must add the 

following line:

using System.Drawing.Text

Listing 5.13 Using InstalledFontCollection to get all installed fonts on a system

// Create InstalledFontCollection object

InstalledFontCollection

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  sysFontCollection = new InstalledFontCollection();

// Get the array of FontFamily objects

FontFamily[] fontFamilies = sysFontCollection.Families;

// Read all font familes and add to the combo box

for(int i = 0; i < fontFamilies.Length; ++i)

{

   comboBox1.Items.Add(fontFamilies[i].Name);

}

5.6.2 Private Font Collection

The PrivateFontCollection class is used to create a private collection of fonts, for use only by your application. A private collection may include 

the fonts available on a system, as well as fonts that are not installed on the system. Such a collection is useful when you want to use 

third-party fonts. The AddFontFile method is used to add a font file to the collection. The AddMemoryFont method reads fonts from system 

memory and adds them to the collection. The IsStyleAvailable method, which takes a FontStyle enumeration value, indicates whether a style 

is available.

Normally all system fonts are installed in your Windows\Fonts directory. On our test machine, all fonts are installed in the directory 

C:\WinNT\Fonts. You can also browse and add fonts from other locations to a private font collection by passing the full path of the font file in the 

AddFontFile method. For example, the following code snippet adds four fonts to a private font collection.

// Create a private font collection

PrivateFontCollection pfc =

    new PrivateFontCollection();

// Add font files to the private font collection

pfc.AddFontFile("tekhead.ttf");

pfc.AddFontFile("DELUSION.TTF");

pfc.AddFontFile("HEMIHEAD.TTF");

pfc.AddFontFile("C:\\WINNT\\Fonts\\Verdana.ttf");

In this code we add four fonts to the private font collection. Verdana is available on all machines. The other three fonts can be downloaded 

from http://www.fontfreak.com (click Enter on site's home page to access naviagation area).

You can even add styles to an existing font. In Listing 5.14 we add four fonts to the private font collection with the AddFontFile method. Then 

we see if these font families have different styles. If not, we add new styles to the font families and draw text using the new fonts. In the end, 

we print out the font name on the form.

Listing 5.14 Using the PrivateFontCollection class

private void menuItem2_Click(object sender,

      System.EventArgs e)

{

      Graphics g = this.CreateGraphics();

      PointF pointF = new PointF(10, 20);

      string fontName;

      // Create a private font collection

      PrivateFontCollection pfc =

        new PrivateFontCollection();

      // Add font files to the private font collection

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.fontfreak.com/default.htm


      pfc.AddFontFile("tekhead.ttf");

      pfc.AddFontFile("DELUSION.TTF");

      pfc.AddFontFile("HEMIHEAD.TTF");

      // MAKE SURE YOU HAVE THE Verdana.ttf FILE IN THE SPECIFIED

      // FOLDER, OR CHANGE THE FOLDER LOCATION

pfc.AddFontFile("C:\\WINNT\\Fonts\\Verdana.ttf");

      // Return all font families from the collection

      FontFamily[] fontFamilies = pfc.Families;

      // Get font families one by one,

      // add new styles, and draw

      // text using DrawString

      for(int j = 0; j < fontFamilies.Length; ++j)

      {

        // Get the font family name

        fontName = fontFamilies[j].Name;

        if(fontFamilies[j].IsStyleAvailable(

          FontStyle.Italic) &&

          fontFamilies[j].IsStyleAvailable(

          FontStyle.Bold) &&

          fontFamilies[j].IsStyleAvailable(

          FontStyle.Underline) &&

          fontFamilies[j].IsStyleAvailable(

          FontStyle.Strikeout) )

        {

          // Create a font from the font name

          Font newFont = new Font(fontName,

            20, FontStyle.Italic | FontStyle.Bold

            |FontStyle.Underline, GraphicsUnit.Pixel);

          // Draw string using the current font

          g.DrawString(fontName, newFont,

            new SolidBrush(Color.Red), pointF);

          // Set location

          pointF.Y += newFont.Height;

        }

      }

      // Dispose of object

      g.Dispose();

}

Note

You may need to change the directory path in Listing 5.14 to match your machine.

To test Listing 5.14, create a Windows application and insert the sample code on the form-paint, a button click, or a menu click event handler, 

and run the application. Figure 5.18 shows the ouput of the application. All the available fonts in the private font collection are listed.

Figure 5.18. Using a private font collection

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.7 A Simple Text Editor

Now let's see how to write a simple text editor in just a few minutes, using the functionality we have discussed in this chapter so far.

First we create a Windows application and add some controls to the form. As Figure 5.19 shows, we add two label controls and set their Text

properties to Available Fonts and Size, respectively. Then we add a combo box, a NumericUpDown control, and two button controls with the 

Text properties set to Color and Apply, respectively. We will use the combo box control to display all installed fonts, the NumericUpDown

control to set the size of text, and the Color button to set the text color. We also add a RichTextBox control to the form and size it 

appropriately.

Figure 5.19. A simple text editor application

Now we add the following line to our application:

using System.Drawing.Text;

We also add two private variables of types Color and int, respectively, as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private Color textColor;

private int textSize;

Finally, we double-click on the form and insert the code from Listing 5.15 on the form-load event handler, thereby setting the NumericUpDown

control's Value property to 10 and adding all installed fonts to the combo box control.

Listing 5.15 The form-load event handler

private void Form1_Load(object sender,

      System.EventArgs e)

{

      numericUpDown1.Value = 10;

      // Create InstalledFontCollection object

      InstalledFontCollection

        sysFontCollection =

        new InstalledFontCollection();

      // Get the array of FontFamily objects

      FontFamily[] fontFamilies =

        sysFontCollection.Families;

      // Read all font familes and

      // add to the combo box

      foreach (FontFamily ff in fontFamilies)

      {

        comboBox1.Items.Add(ff.Name);

      }

      comboBox1.Text = fontFamilies[0].Name;

}

The Color button click event handler simply calls ColorDialog, which allows the user to pick the text color (see Listing 5.16).

Listing 5.16 Getting color from ColorDialog

private void button1_Click(object sender,

      System.EventArgs e)

{

      // Create a color dialog and let

      // the user select a color.

      // Save the selected color.

      ColorDialog colorDlg = new ColorDialog();

      if(colorDlg.ShowDialog() == DialogResult.OK)

      {

        textColor = colorDlg.Color;

      }

}

The Apply button reads the selected font name from the combo box and the size from the NumericUpDown control. Then it creates a Font

object using the font family name and size. Finally, we set the ForeColor and Font properties of the RichTextBox control (see Listing 5.17).

Listing 5.17 Setting the font and foreground color of RichTextBox

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void button2_Click(object sender,

      System.EventArgs e)

{

      // Get size of text from

      // the numeric up-down control

      textSize = (int)numericUpDown1.Value;

      // Get current font name from the list

      string selFont = comboBox1.Text;

      // Create new font from the current selection

      Font textFont = new Font(selFont, textSize);

      // Set color and font of rich-text box

      richTextBox1.ForeColor = textColor;

      richTextBox1.Font = textFont;

}

By extending this simple application and the RichTextBox features, you can develop a complete text editor with features that include open 

and save, find, change font styles, and so on. We'll leave this to you as an exercise!

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

5.8 Transforming Text

Transformation is a process of moving objects from one place to another by applying a series of operations such as scaling, rotation, and 

translation. In this section we will see how to transform text using the Graphics object.

Transformation using Graphics class methods and properties is pretty simple. The Graphics class provides the methods ScaleTransform, 

RotateTransform, TranslateTransform and others.

Note

See Chapter 10 for detailed information about transformations and how to use various transformation techniques.

Let's look at a simple yet useful example of text transformation. First we draw some text on a form using the code in Listing 5.18.

Listing 5.18 Drawing text on a form

Graphics g = e.Graphics;

string str = "Colors, fonts, and text are common elements "+

"of graphics programming. In this chapter, you learned " +

" about the colors, fonts, and text representations in the "+

".NET Framework class library. You learned how to create "+

"these elements and use them in GDI+.";

g.DrawString(str, new Font("Verdana", 10),

new SolidBrush(Color.Blue), new Rectangle(50,20,200,300) );

Figure 5.20 shows the output of Listing 5.18. The text is drawn normally.

Figure 5.20. Drawing text on a form

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's scale the text using the ScaleTransform method by writing the following line before the DrawString method call. Scaling changes the 

text size by application of a scaling factor. For example, the following code line doubles the size of text. This code must be added before the 

DrawString method call:

g.ScaleTransform(2, 1);

Now our text on the form looks like Figure 5.21. It is scaled to twice the regular size.

Figure 5.21. Using ScaleTransform to scale text

Now let's rotate the text, which we can do by calling the RotateTransform method, which takes a rotation angle. We rotate the text 45 degrees 

by adding the following line before the DrawString method call:

g.RotateTransform(45.0f,

System.Drawing.Drawing2D.MatrixOrder.Prepend);

Now the text on the form looks like Figure 5.22. It is rotated from its previous position.

Figure 5.22. Using RotateTransform to rotate text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Finally, let's call TranslateTransform, which takes two values related to the x- and y-axes. We add the following line after RotateTransform:

g.TranslateTransform(-20, -70);

and our final form looks like Figure 5.23. The text has been moved (or "translated") from its previous position.

Figure 5.23. Using TranslateTransform to translate text

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

We started this chapter by discussing the basics of colors, fonts, and text-related functionality and classes defined in the .NET Framework. In 

the colors section, we covered how to use the Color class and its members, including system colors. We also discussed color spaces, and 

how to translate colors from one to another.

In the fonts section, we discussed how to use the Font class and related classes to create various types of fonts with different sizes and 

colors. We also discussed how to control the font families, including system and private font collections, and use them in our application.

The text section covered some uses of fonts and strings. We discussed how to format text, including aligning, tab stops, trimming, and 

hinting. We also discussed how to improve the quality and speed of text rendering by using various settings. Then we created a text editor 

illustrating how to use color-, font-, and text-related functionality in a real-world application.

At the end of the chapter we discussed some text transformation techniques, including scaling, rotation, and translation of text from one 

position to another.

Chapter 3 mentioned rectangles and regions only briefly, but regions and rectangles play a major role in application development and 

rendering performance. In Chapter 6 we will discuss rectangles and regions in detail.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 6. Rectangles and Regions

In previous chapters we discussed rectangles and how to draw and fill them using the draw and fill methods of the Graphics class. In this 

chapter we will discuss additional functionality of rectangles and regions.

We will cover the following key topics:

.NET Framework objects that work with rectangles and regions and their members

Graphics class members that work with rectangles and regions

Writing applications using objects

The Rectangle structure and its members

The Region class and its members

Invalidating and clipping regions

Examples of real-world applications using regions and rectangles

A rectangle has three properties: starting point, height, and width. Figure 6.1 shows these properties where the starting point is the top left.

Figure 6.1. A rectangle

Suppose you wanted to draw a rectangle from point (1, 2) with height 7 and width 6. The final rectangle would look like Figure 6.2.

Figure 6.2. A rectangle with starting point (1, 2), height 7, and width 6

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The filled rectangle occupies the entire area within the range of its height and width.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



6.1 The Rectangle Structure

In Chapter 2 we discussed the Rectangle and RectangleF structures, and how to use their properties and methods. In this chapter we will 

discuss the functionality that we missed in Chapter 2. To refresh your memory, let's take a quick look at the Rectangle structure.

A Rectangle object stores the top left corner and height and width of a rectangular region. In this section we will see how to create and use the 

Rectangle structure.

6.1.1 Constructing a Rectangle Object

There are several ways to create a Rectangle object. For example, you can create a Rectangle object from four integer values representing 

the starting point and size of the rectangle, or from Point and Size structures. Listing 6.1 creates Rectangle objects from Size, Point, and direct 

values. As this code shows, a Rectangle constructor can take a Point and a Size object or, alternatively, the starting point (as separate 

variables x and y), width, and height.

Listing 6.1 Constructing Rectangle objects

int x = 20;

int y = 30;

int height = 30;

int width = 30;

// Create a starting point

Point pt = new Point(10, 10);

// Create a size

Size sz = new Size(60, 40);

// Create a rectangle from a point

// and a size

Rectangle rect1 = new Rectangle(pt, sz);

Rectangle rect2 =

new Rectangle(x, y, width, height);

6.1.2 Constructing a RectangleF Object

You can also create a RectangleF object in several ways: from four floating point numbers with the starting and ending points and height and 

width of the rectangle, or from a point and a size. RectangleF is a mirror of Rectangle, including properties and methods. The only difference 

is that RectangleF takes floating point values. For example, instead of Size and Point, RectangleF uses SizeF and PointF. Listing 6.2 creates 

RectangleF objects in two different ways.

Listing 6.2 Constructing RectangleF objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



// Create a starting point

PointF pt = new PointF(30.8f, 20.7f);

// Create a size

SizeF sz = new SizeF(60.0f, 40.0f);

// Create a rectangle from a point and

// a size

RectangleF rect1 = new RectangleF(pt, sz);

// Create a rectangle from floating points

RectangleF rect2 =

new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);

6.1.3 Rectangle Properties and Methods

The Rectangle structure provides properties that include Bottom, Top, Left, Right, Height, Width, IsEmpty, Location, Size, X, and Y. Listing 6.3

creates two rectangles (rect1 and rect2), reads these properties, and displays their values in a message box.

Listing 6.3 Using the the Rectangle structure properties

private void PropertiesMenu_Click(object sender,

      System.EventArgs e)

{

      // Create a point

      PointF pt = new PointF(30.8f, 20.7f);

      // Create a size

      SizeF sz = new SizeF(60.0f, 40.0f);

      // Create a rectangle from a point and

      // a size

      RectangleF rect1 = new RectangleF(pt, sz);

      // Create a rectangle from floating points

      RectangleF rect2 =

        new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);

      // If rectangle is empty,

      // set its Location, Width, and Height

      // properties

      if (rect1.IsEmpty)

      {

        rect1.Location = pt;

        rect1.Width = sz.Width;

        rect1.Height = sz.Height;

      }

      // Read properties and display

      string str =

        "Location:"+ rect1.Location.ToString();

      str += "X:"+rect1.X.ToString() + "\n";

      str += "Y:"+ rect1.Y.ToString() + "\n";

      str += "Left:"+ rect1.Left.ToString() + "\n";

      str += "Right:"+ rect1.Right.ToString() + "\n";

      str += "Top:"+ rect1.Top.ToString() + "\n";

      str += "Bottom:"+ rect1.Bottom.ToString();

      MessageBox.Show(str);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

As we discussed in Chapter 2, the Rectangle structure provides methods that include Round, Truncate, Inflate, Ceiling, Intersect, and Union.

The Round method converts a RectangleF object to a Rectangle object by rounding off the values of RectangleF to the nearest 

integer.

The Truncate method converts a RectangleF object to a Rectangle object by truncating the values of RectangleF.

The Inflate method creates a rectangle inflated by the specified amount.

The Ceiling method converts a RectangleF object to a Rectangle object by rounding to the next higher integer values.

The Intersect method replaces a rectangle by its intersection with a supplied rectangle.

The Union method gets a rectangle that contains the union of two rectangles.

Listing 6.4 shows how to use the Round, Truncate, Inflate, Ceiling, Intersect, and Union methods.

Listing 6.4 Using the Rectangle structure methods

private void MethodsMenu_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      // Create a point and a size

      PointF pt = new PointF(30.8f, 20.7f);

      SizeF sz = new SizeF(60.0f, 40.0f);

      // Create two rectangles

      RectangleF rect1 = new RectangleF(pt, sz);

      RectangleF rect2 =

        new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);

      // Ceiling a rectangle

      Rectangle rect3 = Rectangle.Ceiling(rect1);

      // Truncate a rectangle

      Rectangle rect4 = Rectangle.Truncate(rect1);

      // Round a rectangle

      Rectangle rect5 = Rectangle.Round(rect2);

      // Draw rectangles

      g.DrawRectangle(Pens.Black, rect3);

      g.FillRectangle(Brushes.Red, rect5);

      // Intersect a rectangle

      Rectangle isectRect =

        Rectangle.Intersect(rect3, rect5);

      // Fill rectangle

      g.FillRectangle(

        new SolidBrush(Color.Blue), isectRect);

      // Inflate a rectangle

      Size inflateSize = new Size(0, 40);

      isectRect.Inflate(inflateSize);

      // Draw rectangle

      g.DrawRectangle(Pens.Blue, isectRect);

      // Empty rectangle and set its properties

      rect4 = Rectangle.Empty;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      rect4.Location = new Point(50, 50);

      rect4.X = 30;

      rect4.Y = 40;

      // Union rectangles

      Rectangle unionRect =

        Rectangle.Union(rect4, rect5);

      // Draw rectangle

      g.DrawRectangle(Pens.Green, unionRect);

      // Displose of objects

      g.Dispose();

}

Figure 6.3 shows the output of Listing 6.3.

Figure 6.3. Using Rectangle methods

6.1.3.1 The Contains Method and Hit Test

The Contains method is used to determine whether a rectangle or point is inside the current rectangle. If a point is inside the current 

rectangle, the Contains method returns true; otherwise it returns false. One of the common uses of Contains is to find out if a mouse button 

was clicked inside a rectangle.

6.1.3.2 Hit Test Example

To see proper use of the Contains method, let's create a Windows application and draw a rectangle on the form. Whether the user clicks 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



inside or outside of the rectangle, we will have the application generate an appropriate message.

First we define a class-level Rectangle variable as follows:

Rectangle bigRect = new Rectangle(50, 50, 100, 100);

Then we use the form's paint event handler because we want to render graphics whenever the form needs to refresh. The form's paint event 

handler code looks like this:

private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

   SolidBrush brush = new SolidBrush(Color.Green);

   e.Graphics.FillRectangle(brush, bigRect);

   brush.Dispose();

}

Our last step is to determine whether the user clicked inside the rectangle. We track the user's mouse-down event and write code for the left 

mouse button click event handler. The MouseEventArgs enumeration provides members to find out which mouse button is clicked. The 

MouseButtons enumeration has members that include Left, Middle, None, Right, Xbutton1, and Xbutton2, which represent the mouse buttons.

We check to see if the mouse button clicked was the left button, then create a rectangle, and (if the mouse button was clicked) generate a 

message. Listing 6.5 shows the code for this process.

Listing 6.5 Determining whether a mouse was clicked inside a rectangle

private void Form1_MouseDown(object sender,

System.Windows.Forms.MouseEventArgs e)

{

  if(e.Button == MouseButtons.Left)

  {

    if (bigRect.Contains( new Point(e.X, e.Y)) )

      MessageBox.Show("Clicked inside rectangle");

    else

      MessageBox.Show("Clicked outside rectangle");

  }

}

When you run the application and click on the rectangle, the output looks like Figure 6.4.

Figure 6.4. Hit test using the Contains method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Contains method also allows us to find out whether a rectangle fits inside another rectangle. Listing 6.6 checks whether smallRect is within 

bigRect.

Listing 6.6 Checking if one rectangle is within another

Point pt = new Point(0, 0);

Size sz = new Size(200, 200);

Rectangle bigRect = new Rectangle(pt, sz);

Rectangle smallRect = new Rectangle(30, 20, 100, 100);

if (bigRect.Contains(smallRect) )

  MessageBox.Show("Rectangle "+smallRect.ToString()

  +" is inside Rectangle "+ bigRect.ToString() );

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

6.2 The Region Class

A region describes the interior of a closed graphics shape, or form. A form has two areas: a nonclient area and a client area. The nonclient 

area (which does not allow for user-drawn graphics objects) includes the title bar—and, depending on the application, horizontal and vertical

scroll bars. This area cannot be used to draw graphics objects. The client area is used to draw controls and graphics objects.

In the .NET Framework library, the Region class object represents a region. If you have ever developed a complex .NET graphics application 

that requires a lot of rendering, you may have used this object a lot.

6.2.1 Constructing a Region Object

The Region class provides five overloaded forms. Using these forms, you can construct a Region object from a Rectangle, RectangleF, 

GraphicsPath, or RegionData object, or with no parameters. The following code snippet creates Region objects in different ways using different 

arguments.

// Create two rectangles

Rectangle rect1 =

   new Rectangle(20, 20, 60, 80);

RectangleF rect2 =

   new RectangleF(100, 20, 60, 100);

// Create a graphics path

GraphicsPath path = new GraphicsPath();

// Add a rectangle to the graphics path

path.AddRectangle(rect1);

// Create a region from rect1

Region rectRgn1 = new Region(rect1);

// Create a region from rect2

Region rectRgn2 = new Region(rect2);

// Create a region from GraphicsPath

Region pathRgn = new Region(path);

The Region class has no properties. After constructing a region, an application can use the Graphics class's FillRegion method to fill the region.

Table 6.1 describes the methods of the Region class briefly. They are discussed in detail in Section 6.2.2 through 6.2.4

6.2.2 The Complement, Exclude, and Union Methods

We saw the Region class methods in Table 6.1. Now let's use these methods in our applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The Complement method updates the portion of a Region object (specified by a rectangle or a region) that does not intersect the specified 

region. It takes an argument of type Rectangle, RectangleF, GraphicsPath, or Region and updates the region. Listing 6.7 creates two Region

objects and draws rectangles with different pens. The Complement method updates only the portion of the first region that falls within the 

second region.

Listing 6.7 Using the Complement method of the Region class

// Create Graphics object

Graphics g = this.CreateGraphics();

// Create two rectangles

Rectangle rect1 = new Rectangle(20, 20, 60, 80);

Rectangle rect2 = new Rectangle(50, 30, 60, 80);

// Create two regions

Region rgn1 = new Region(rect1);

Region rgn2 = new Region(rect2);

// Draw rectangles

g.DrawRectangle(Pens.Green, rect1);

g.DrawRectangle(Pens.Black, rect2);

// Complement can take Rectangle, RectangleF,

// Region, or GraphicsPath as an argument

rgn1.Complement(rgn2);

// rgn1.Complement(rect2);

g.FillRegion(Brushes.Blue, rgn1);

// Dispose of object

g.Dispose();

Figure 6.5 shows the output from Listing 6.7. Our code updates a portion of rgn1 that doesn't intersect with rgn2. It is useful when you need to 

update only a specific part of a region. For example, suppose you're writing a shooting game application and your program updates the 

targets only after gunfire. In this scenario you need to update only the target region, not the entire form.

Figure 6.5. Complementing regions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 6.1. Region methods

Method Description

Clone Creates an exact copy of a region.

Complement Updates a region to the portion of a rectangle that does not intersect with the region.

Exclude Updates a region to the portion of its interior that does not intersect with a rectangle.

FromHrgn Creates a new Region object from a handle to the specified existing GDI region.

GetBounds Returns a RectangleF structure that represents a rectangle that bounds a region.

GetHrgn Returns a window handle for a region.

GetRegionData Returns a RegionData object for a region. RegionData contains information describing a region.

GetRegionScans Returns an array of RectangleF structures that approximate a region.

Intersect Updates a region to the intersection of itself with another region.

IsEmpty Returns true if a region is empty; otherwise returns false.

IsInfinite Returns true if a region has an infinite interior; otherwise returns false.

IsVisible Returns true if the specified rectangle is contained within a region.

MakeEmpty Marks a region as empty.

MakeInfinite Marks a region as infinite.

Transform Applies the transformation matrix to the region.

Translate Offsets the coordinates of a region by the specified amount.

Union Updates a region to the union of itself and the given graphics path.

Xor Updates a region to the union minus the intersection of itself with the given graphics path.

The Exclude method updates the part of a region that does not interact with the specified region or rectangle. Like Complement, Exclude takes 

an argument of type Rectangle, RectangleF, GraphicsPath, or Region and updates the region. Listing 6.8 creates two Region objects and 

draws rectangles with different pens, then calls Exclude.

Listing 6.8 Using the Exclude method of the Region class

Rectangle rect1 = new Rectangle(20, 20, 60, 80);

Rectangle rect2 = new Rectangle(50, 30, 60, 80);

Region rgn1 = new Region(rect1);

Region rgn2 = new Region(rect2);

g.DrawRectangle(Pens.Green, rect1);

g.DrawRectangle(Pens.Black, rect2);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



rgn1.Exclude(rgn2);

g.FillRegion(Brushes.Blue, rgn1);

Figure 6.6 shows the output from Listing 6.8. Only the excluded part of the region is updated.

Figure 6.6. Excluding regions

From the code of Listing 6.8, replacing the line

rgn1.Exclude(rgn2);

with

rgn1.Union(rgn2);

produces Figure 6.7, which updates the union of both regions (or rectangles). Like Exclude and Complement, the Union method can take 

Rectangle, RectangleF, GraphicsPath, or Region as an argument.

Figure 6.7. Applying Union on regions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



6.2.3 The Xor and Intersect Methods

The Xor method updates the union of both regions (or rectangles) except the intersection area of the rectangle itself. Replacing Exclude with 

Xor, as shown in Listing 6.9, generates Figure 6.8.

Figure 6.8. Using the Xor method of the Region class

Listing 6.9 Using the Xor method of the Region class

// Create Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create rectangles

Rectangle rect1 = new Rectangle(20, 20, 60, 80);

Rectangle rect2 = new Rectangle(50, 30, 60, 80);

// Create regions

Region rgn1 = new Region(rect1);

Region rgn2 = new Region(rect2);

// Draw rectangles

g.DrawRectangle(Pens.Green, rect1);

g.DrawRectangle(Pens.Black, rect2);

// Xor two regions

rgn1.Xor(rgn2);

// Fill the region after Xoring

g.FillRegion(Brushes.Blue, rgn1);

// Dispose of object

g.Dispose();

The Intersect method is the reverse of Xor. It updates only the intersection region of two regions or rectangles. For example, if you replace line

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



rgn1.Xor(rgn2);

with the following code:

rgn1.Intersect(rgn2);

the new output will look like Figure 6.9.

Figure 6.9. Using the Intersect method of the Region class

6.2.4 GetBounds and Other Methods

The IsEmpty method takes a Graphics object as an argument and returns true if a region is empty. Otherwise it returns false. IsInfinite returns 

true if a region is infinite (otherwise it returns false), and it takes a Graphics object as the only argument.

The MakeEmpty and MakeInfinite methods make a region empty or infinite, respectively. An infinite region completely covers the area of a 

control.

The GetBounds method returns the bounds of a region. This method also takes a Graphics object as an argument.

The code in Listing 6.10 uses these methods. It makes rgn2 infinite and fills it with a red pen, which fills the entire form with red.

Listing 6.10 Using GetBounds and other methods of the Region class

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create rectangles and regions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Rectangle rect1 =

   new Rectangle(20, 20, 60, 80);

Rectangle rect2 =

   new Rectangle(50, 30, 60, 80);

Region rgn1 = new Region(rect1);

Region rgn2 = new Region(rect2);

// If region is not empty, empty it

if (! rgn1.IsEmpty(g))

   rgn1.MakeEmpty();

// If region is not infinite, make it infinite

if (! rgn2.IsInfinite(g))

   rgn2.MakeInfinite();

// Get bounds of the infinite region

RectangleF rect = rgn2.GetBounds(g);

// Display

   MessageBox.Show(rect.ToString());

// Fill the region

g.FillRegion(Brushes.Red, rgn2);

// Dispose of object

g.Dispose();

An infinite region's starting coordinates are negative numbers, and its height and width are large positive numbers, as Figure 6.10 shows. 

Using FillRegion on an infinite region fills the entire form.

Figure 6.10. Bounds of an infinite region

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

6.3 Regions and Clipping

As we discussed in Chapter 3, the Graphics class provides methods to clip regions. Using these methods, an application can restrict where 

graphics objects are drawn. One major use of clipping regions is to repaint only part of a control. In some cases painting an entire form is 

costly in terms of time and memory resources. Clipping plays a vital role by painting only the desired area. The Graphics class provides the 

SetClip, ResetClip, IntersectClip, ExcludeClip, and TranslateClip methods to use in clipping operations.

ExcludeClip excludes the area specified by an argument of type Rectangle or a Region and updates the clipping region. Listing 6.11 fills a 

rectangle, excluding one small rectangle and a region.

Listing 6.11 Using ExcludeClip to clip regions

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create rectangles

Rectangle rect1 = new Rectangle(20, 20, 60, 80);

Rectangle rect2 = new Rectangle(100, 100, 30, 40);

// Create a region

Region rgn1 = new Region(rect2);

// Exclude clip

g.ExcludeClip(rect1);

g.ExcludeClip(rgn1);

// Fill rectangle

g.FillRectangle(Brushes.Red, 0, 0, 200, 200);

// Dispose of object

g.Dispose();

Figure 6.11 shows output from Listing 6.11. The small rectangle and small region are not updated.

Figure 6.11. ExcludeClip output

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



SetClip sets the clipping region of a Graphics object. This method has many overloaded forms and takes parameters of type Rectangle, 

RectangleF, Region, GraphicsPath, and Graphics with or without the CombineMode enumeration. The CombineMode enumeration defines 

how different clipping regions can be combined (see Table 6.2).

The ResetClip method resets the clipping region to infinity. Listing 6.12 uses the SetClip, ResetClip, and IntersectClip methods.

Listing 6.12 Using the SetClip, ResetClip, and IntersectClip methods

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create rectangles and regions

Rectangle rect1 = new Rectangle(20, 20, 200, 200);

Rectangle rect2 = new Rectangle(100, 100, 200, 200);

Region rgn1 = new Region(rect1);

Region rgn2 = new Region(rect2);

// Call SetClip

g.SetClip(rgn1, CombineMode.Exclude);

// Call IntersectClip

g.IntersectClip(rgn2);

// Fill rectangle

g.FillRectangle(Brushes.Red, 0, 0, 300, 300);

// Call ResetClip

g.ResetClip();

// Draw rectangles

g.DrawRectangle(Pens.Green, rect1);

g.DrawRectangle(Pens.Yellow, rect2);

// Dispose of object

g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 6.2. CombineMode members

Member Description

Complement The existing region is replaced by the result of the existing region being removed from the new region.

Exclude The existing region is replaced by the result of the new region being removed from the existing region.

Intersect Two clipping regions are combined, and the result is their intersection.

Replace One clipping region replaces the other.

Union Two clipping regions are combined, and the result is their union.

Xor Two clipping regions are combined, and the result is their union minus their intersection.

Note

The CombineMode enumeration is defined in the System.Drawing.Drawing2D namespace.

Figure 6.12 shows the output from Listing 6.12.

Figure 6.12. Using Clip methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



TranslateClip translates the clipping region as specified. Listing 6.13 uses the TranslateClip method to translate a region by 20 and 30 points.

Listing 6.13 Using TranslateClip to translate a region

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a RectangleF rectangle

RectangleF rect1 =

new RectangleF(20.0f, 20.0f, 200.0f, 200.0f);

// Create a region

Region rgn1 = new Region(rect1);

// Call SetClip

g.SetClip(rgn1, CombineMode.Exclude);

float h = 20.0f;

float w = 30.0f;

// Call TranslateClip with h and w

g.TranslateClip(h, w);

// Fill rectangle

g.FillRectangle(Brushes.Green, 20, 20, 300, 300);

Figure 6.13 shows the output from Listing 6.13.

Figure 6.13. Using TranslateClip

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

6.4 Clipping Regions Example

Listing 6.14 uses Xor to clip regions.

Listing 6.14 Using the Xor method

Pen pen = new Pen(Color.Red, 5);

SolidBrush brush = new SolidBrush(Color.Red);

Rectangle rect1 = new Rectangle(50, 0, 50, 150);

Rectangle rect2 = new Rectangle(0, 50, 150, 50);

Region region = new Region(rect1);

region.Xor(rect2);

g.FillRegion(brush, region);

Figure 6.14 shows the output from Listing 6.14.

Figure 6.14. Result of the Xor method

Now if we replace Xor with Union:

region.Union(rect2);

the new output looks like Figure 6.15.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 6.15. Result of the Union method

Now let's replace Union with Exclude:

region.Exclude(rect2);

The output looks like Figure 6.16.

Figure 6.16. Result of the Exclude method

If we use the Intersect method:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



region.Intersect(rect2);

the output looks like Figure 6.17.

Figure 6.17. Result of the Intersect method

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



6.5 Regions, Nonrectangular Forms, and Controls

When we're writing Windows applications with drawing functionality, it becomes important to understand the roles of regions, client areas, and 

nonclient areas. This section will describe an exciting and wonderful use of regions.

Figure 6.18 shows a typical rectangular form. As you can see, the title bar area usually contains the title of the form, as well as minimize, 

maximize, and close buttons. This is the nonclient area; the rest of the form is the client area. Graphics objects can be drawn only in the client 

area. The combination of both client and nonclient areas is the default region of a form.

Figure 6.18. Client and nonclient areas of a form

What exactly is a region? A region is a collection of pixels that represents part of a control. GDI+ is responsible only for drawing the region 

associated with a window (a form or control). The default region of a window includes both client and nonclient areas, so GDI+ draws the 

entire window.

However, you can force the operating system to display only part of a window. This is where regions are useful.

6.5.1 The Application

This section will show you the importance of regions and how you can use them in real-world applications.

Have you ever thought about writing nonrectangular forms or controls? How about writing circular, triangular, or polygonal forms, buttons, 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



labels, or text boxes? Our example is a Windows application in which the user can select the shape of the form. The user will have options to 

change the default rectangular form to a circular, triangular, or polygonal form. You will also learn how to create nonrectangular controls such 

as buttons.

How can we write nonrectangular forms and controls? GDI+ draws only the regions associated with a form or a control. But setting a 

nonrectangular region should do the trick. This is what we will do in our application. One of the nonrectangular forms of the final application 

might look like Figure 6.19. As you can see, this technique can be used to build cool-looking Windows applications.

Figure 6.19. A nonrectangular form and controls

6.5.2 Coding

In Windows Forms, every control, including a form, is derived from the Control class. The Region property of the control class represents the 

region of control. If you set the Region property of a control, only the area covered by that region will be visible to the user. Section 6.5.2.1

through 6.5.2.6 describe the steps involved in writing code for nonrectangular shapes.

6.5.2.1 Step 1: Create the Application

We create a Windows application, put three controls on the form, and change the Text properties of the buttons. We also add a context menu 

and four menu items, as Figure 6.20 shows. In addition, we add menu and button click event handlers.

Figure 6.20. The nonrectangular forms application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



6.5.2.2 Step 2: Add the Shape Class

Now we add a class to the project. Our class name is Shape, as Listing 6.15 shows. We add two methods to this class: GetPolyRegion and 

GetRectRegion. Both of these methods return a Region object. The GetPolyRegion method takes an array of Point objects as its only 

argument. We create a graphics path from the points by calling AddPolygon. After that we create a region from the path and return it. See 

Chapters 3 and 9 for more about the GraphicsPath class. Similarly, we create a region from a rectangle in the GetRectRegion method.

Listing 6.15 The Shape class

// The Shape class contains the functionality

// of shaped controls

public class Shape

{

    public Shape()

    {

    }

    public Region GetPolyRegion(Point[] pts)

    {

        // Create a graphics path

        GraphicsPath path =

            new GraphicsPath(FillMode.Alternate);

        path.AddPolygon(pts);

        // Create a Region object from the path

        // and set it as the form's region

        Region rgn = new Region(path);

        return rgn;

    }

    public Region GetRectRegion(Rectangle rct)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    {

        // Create a graphics path

        GraphicsPath path =

            new GraphicsPath(FillMode.Alternate);

        path.AddEllipse(rct);

        // Create a Region object from the path

        // and set it as the form's region

        Region rgn = new Region(path);

        return rgn;

    }

}

6.5.2.3 Step 3: Load the Context Menu

Now we load the context menu on the right mouse click of the form. In Listing 6.16, we set the ContextMenu property of the form as the 

context menu control.

Listing 6.16 The mouse-down click event handler

private void Form1_MouseDown(object sender,

System.Windows.Forms.MouseEventArgs e)

{

  if(e.Button == MouseButtons.Right)

  {

    this.ContextMenu = this.contextMenu1;

  }

}

6.5.2.4 Step 4: Call the Shape Class Methods

Now we call GetRectRegion and GetPolyRegion from the context menu click event handlers to get the region for a rectangle or a polygon. 

After getting a Region object corresponding to a rectangle or a polygon, we just need to set the Region property of the form. Listing 6.17 shows 

the code for the context menu click event handlers.

Listing 6.17 Menu item click event handlers

private void CircleMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a rectangle

    Rectangle rect =

        new Rectangle(50, 0, 300, 300);

    // Create a Shape object and call

    // the GetRectRegion method

    Shape shp = new Shape();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    this.Region = shp.GetRectRegion(rect);

    this.BackColor = Color.BurlyWood;

}

private void RectMenu_Click(object sender,

    System.EventArgs e)

{

    // A Points array for a rectangle

    // Same points as the original form

    Point[] pts =

    {

        new Point(0, 0),

        new Point(0, originalSize.Height),

        new Point(originalSize.Width, originalSize.Height),

        new Point(originalSize.Width, 0)

    };

    // Create a Shape object and call

    // the GetPolyRegion method

    Shape shp = new Shape();

    this.Region = shp.GetPolyRegion(pts);

    // Set background color

    this.BackColor = Color.DarkGoldenrod;

}

private void TriangleMenu_Click(object sender,

    System.EventArgs e)

{

    // Add three lines to the path representing

    // three sides of a triangle

    Point[] pts =

    {

        new Point(50, 0),

        new Point(0,300),

        new Point(300, 300),

        new Point(50, 0)

    };

    this.BackColor = Color.CornflowerBlue;

    // Create a Shape object and call

    // the GetPolyRegion method

    Shape shp = new Shape();

    this.Region = shp.GetPolyRegion(pts);

}

The code in Listing 6.18 for the Close menu item simply closes the form.

Listing 6.18 The Close menu click event handler

private void CloseMenu_Click(object sender,

System.EventArgs e)

{

  this.Close();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



6.5.2.5 Step 5: Display Nonrectangular Shapes

Using similar methods, you can set the Region property of controls such as Button or TextBox to display nonrectangular shapes. If you don't 

want to use the Shape class, you can directly set the Region property of a control. Listing 6.19 sets the Region properties of three buttons. We 

write this code on the form's load event handler.

Listing 6.19 Setting the Region properties of buttons

originalSize = this.Size;

// Create a Region object from the path

GraphicsPath path1 =

    new GraphicsPath(FillMode.Alternate);

path1.AddEllipse(new Rectangle(30, 30,

AudioBtn.Width -60, AudioBtn.Height-60));

AudioBtn.Region = new Region(path1);

GraphicsPath path2 =

    new GraphicsPath(FillMode.Alternate);

path2.AddEllipse(new Rectangle(30, 30,

VideoBtn.Width -60, VideoBtn.Height-60));

VideoBtn.Region = new Region(path2);

GraphicsPath path3 =

    new GraphicsPath(FillMode.Alternate);

path3.AddEllipse(new Rectangle(20, 20,

VideoBtn.Width -40, VideoBtn.Height-40));

AnimationBtn.Region = new Region(path3);

6.5.2.6 Step 6: Build and Run

The last step is to run the application and right-click on the form. Figure 6.21 shows the result of selecting the Circle menu option.

Figure 6.21. A circular form

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 6.22 shows the result of selecting the Triangle menu option.

Figure 6.22. A triangular form

Using this technique, you can build Windows forms and controls of virtually any shape.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

SUMMARY

In this chapter we discussed some common uses of rectangles and regions. You learned several ways to create Rectangle and RectangleF

objects, and how to use the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods in your applications. After that you saw an 

example of a hit test. Then we discussed the Region class and its members, and how to use Complement, Union, Exclude, Xor, and other 

methods of the Region class. We also saw a sample of clipping regions. At the end of this chapter we saw an interesting sample application 

that uses regions to create nonrectangular forms and controls.

Imaging is a vital part of graphics. GDI+ provides rich imaging functionality. We will cover this functionality in Chapter 7.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 7. Working with Images

In viewing and manipulating images, GDI+ provides significant improvements over its predecessor, GDI. In this chapter we will discuss the 

following topics:

Basic imaging-related classes defined in the .NET Framework library

The difference between raster and vector images

The Image class, its properties, and its methods

Writing an image viewer application

Opening and viewing images

Retrieving image properties

Creating thumbnails

Rotating and flipping images

Zooming in and out on images

Saving and skewing images

Changing the resolution and scaling of images

Playing animated images

The Bitmap class, its properties, and its methods

Using the Icon class to work with icons

Drawing transparent images

Using the PictureBox control to draw images

As we said earlier, the graphics-related functionality in the .NET Framework class library is defined in the System.Drawing namespace and its 

helper namespaces. The imaging functionality is divided into two categories by separation into two namespaces. Basic imaging functionality is 

defined in the System.Drawing namespace; advanced imaging functionality is defined in the System.Drawing.Imaging namespace. This 

chapter covers the former; Chapter 8 will focus on the latter.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

7.1 Raster and Vector Images

The graphics world divides images into two types: raster and vector.

A raster image (also called bitmap) is a collection of one or more pixels. Each pixel of the image can be controlled individually, which means 

that each pixel of the image can have a different color or shade. In a raster image that contains a line and a rectangle, the line and rectangle 

are each a sequence of pixels. Raster images require higher resolutions and anti-aliasing for a smooth appearance and are best suited for 

photographs and images with shading.

A vector image is a collection of one or more vectors. Mathematically, a vector is a combination of a magnitude and a direction, which can be 

used to represent the relationships between points, lines, curves, and filled areas. In vector images, a vector is the entity to be controlled. 

Each vector can have a separate color or shade. So a vector image with a line and a rectangle is a set of vectors in which each vector has 

different properties, such as color or shade. Vector graphics are mathematically described and appear smooth at any size or resolution, and 

they are often used by mechanical and architectural engineers.

Vector images can be transformed from one state to another without any loss of data. Transforming raster images, however, may cause data 

loss or reduce the quality of images. For example, in the zoomed raster image shown in Figure 7.1, the outer boundary of the image is blurry.

Figure 7.1. A zoomed raster image

In the zoomed vector image of Figure 7.2, however, the outer boundary of the image is sharper.

Figure 7.2. A zoomed vector image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



7.1.1 Raster Image Formats

A bitmap is usually stored in an array of bits that specify the color of each pixel in a rectangular array of pixels. The bitmap's height and width 

are measured in pixels. The number of bits per pixel specifies the number of colors that can be assigned to that pixel, according to the 

equation

Nc=2
Bp

where

Nc = the number of colors that each pixel can display

Bp = the number of bits per pixel

For example, if Bp = 8, then Nc = 2
8
 = 256 colors. If Bp = 24, then Nc = 2

24
 = 16,777,216 colors. Table 7.1 shows the number of bits and 

number of possible colors that can be assigned to a pixel.

Bitmaps with 1 bit per pixel are called monochrome images. Monochrome images generally store two colors: black and white.

7.1.2 Graphics File Formats

There are many bitmap image formats, including the following:

BMP

GIF

JPEG

EXIF

PNG

TIFF

7.1.2.1 BMP

BMP is a standard Windows format to store device-independent and application-independent bitmap images. The number of bits per pixel (1, 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



4, 8, 16, 24, 32, or 64) for a given BMP file is specified in a file header. BMP files with 24 bits per pixel are common.

Table 7.1. Number of bits and possible number of colors per pixel

Bits Colors

1
2
1
 = 2

2
2
2
 = 4

4
2
4
 = 16

8
2
8
 = 256

16
2
16

 = 65,536

24
2
24

 = 16,777,216

7.1.2.2 GIF

Graphics Interchange Format (GIF) is a common format for images that appear on Web pages. GIF uses Lempel-Ziv-Welch (LZW) 

compression to minimize file size. No information is lost in the compression process; a decompressed image is exactly the same as the 

original. GIF files can use a maximum of 8 bits per pixel, so they are limited to 256 colors.

7.1.2.3 JPEG

Joint Photographic Experts Group (JPEG) is another popular format used on Web pages. JPEG can store 24 bits per pixel, so it is capable 

of displaying more than 16 million colors. Some information is lost during JPEG conversion, but it usually doesn't affect the perceived quality 

of the image. JPEG is not a file format; it is a compression scheme. JPEG File Interchange Format (JFIF) is a file format commonly used for 

storing and transferring images that have been compressed according to the JPEG scheme.

7.1.2.4 EXIF

Exchangeable Image File (EXIF) is a file format used by digital cameras. It was originally developed by the Japan Electronic Industry 

Development Association. The EXIF file contains an image compressed according to the JPEG specification.

7.1.2.5 PNG

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Portable Network Graphics (PNG) format provides the advantages of the GIF format but supports greater color depth. PNG files can store 

colors with 8, 24, 32, or 48 bits per pixel, and grayscales with 1, 2, 4, 8, or 16 bits per pixel. PNG also supports alpha channel, so it's a 

suitable format for storing images that support a high number of colors with transparency.

7.1.2.6 TIFF

Tag Image File Format (TIFF or TIF) can store images with arbitrary color depth, using a variety of compression algorithms. The TIFF format 

can be extended as needed by the approval and addition of new tags. This format is used by engineers when they need to add information in 

the image itself.

Almost all image file formats can also store metadata related to the image, such as scanner manufacturer, host computer, type of 

compression, orientation, samples per pixel, and so on.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

7.2 Working with Images

Before we write any imaging code, let's explore the .NET Framework library and see what kind of imaging support it offers. The Bitmap class 

provides functionality to work with raster images, and the Metafile class provides functionality to work with vector images. Both classes are 

inherited from the Image class. In this chapter we will discuss the Image and Bitmap classes and their members. The Metafile class will be 

discussed in Chapter 8.

We'll start this discussion with the Image class, which is defined in the System.Drawing namespace. Understanding this class is important 

because we will be using its members in our samples throughout this chapter and the next.

The Image class is an abstract base class for the Bitmap, Metafile, and Icon classes. Some common Image class properties (all read-only) are 

described in Table 7.2.

The Pixel Format

The pixel format (also known as color depth) defines the number of bits within each pixel. The format also defines the order 

of color components within a single pixel of data. In the .NET Framework library, the PixelFormat enumeration represents the 

pixel format.

Besides the properties discussed in Table 7.2, the Image class provides methods, which are described in Table 7.3.

7.2.1 An Image Viewer Application

Now we will write an application that will use some of the properties and methods of the Image class. You will learn how to open, view, 

manipulate, and save images. The application is a simple image viewer.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 7.2. Image class properties

Property Description

Flags Gets or sets attribute flags for an image.

FrameDimensionsList Returns an array of GUIDs that represent the dimensions of frames within an image.

Height, Width Returns the height and width of an image.

HorizontalResolution Returns the horizontal resolution, in pixels per inch, of an image.

Palette Gets or sets the color palette used for an image.

PhysicalDimension Returns the width and height of an image.

PixelFormat Returns the pixel format for an image.

PropertyIdList Returns an array of the property IDs stored in an image.

PropertyItems Returns an array of PropertyItem objects for an image.

RawFormat Returns the format of an image.

Size Returns the width and height of an image.

VerticalResolution Returns the vertical resolution, in pixels per inch, of an image.

To begin:

Use Visual Studio .NET to create a Windows application project called ImageViewer.1.

Add a MainMenu control and some menu items to the form.2.

Change the text of the menu items to File, Open File, Save File, and Exit, and the name of these menu items to FileMenu, 

OpenFileMenu, SaveFileMenu, and ExitMenu, respectively. The final form looks like Figure 7.3.

Figure 7.3. A simple image viewer application

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Write menu click event handlers for the OpenFileMenu, SaveFileMenu, and ExitMenu items by simply double-clicking on them.4.

The OpenFileMenu click event handler will allow us to browse and select one image and display it, the SaveFileMenu click event handler will 

save the image as a new file name, and the ExitMenu click event handler will simply close the application.

Before we write code for these menu event handlers, let's see how to create an Image object from a file and how to display it using the 

DrawImage method of the Graphics class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 7.3. Image class methods

Method Description

FromFile, FromHbitmap, 

FromStream

Creates an Image object from a file, a window handle, and a stream, respectively.

GetBounds Returns the bounding rectangle for an image.

GetEncoderParameterList Returns parameters supported by an image encoder.

GetFrameCount Returns the total number of frames available in an image. Some images include multiple frames. Each 

frame is a separate layer with different properties. For example, an animated GIF can have multiple frames 

with different text and other properties.

GetPixelFormatSize Returns the color depth.

GetPropertyItem Returns the property item.

GetThumbnailImage Returns the thumbnail for an image.

IsAlphaPixelFormat Returns true if the pixel format for an Image object contains alpha information.

IsCanonicalPixelFormat Returns true if the pixel format is canonical. This is a reserved format.

IsExtendedPixelFormat Returns true if the pixel format is extended. This is a reserved format.

RemovePropertyItem Removes the property item.

RotateFlip Rotates and/or flips an image.

Save Saves an image in a specified format.

SaveAdd Takes one parameter of type EncoderParameters that defines parameters required by the image encoder 

that is used by the saveadd operation.

SelectActiveFrame Selects a frame specified by the dimension and index. The first parameter of this method is the frame 

dimension, which can be used to identify an image by its time, resolution, or page number. The second 

parameter is the frame index of the active frame. Calling this method causes all changes made to the 

previous frame to be discarded.

SetPropertyItem Sets the value of a property item.

7.2.2 Creating an Image Object

The Image class provides three static methods to create an Image object: FromFile, FromHbitmap, and FromStream.

FromFile creates an Image object from a file.1.

FromHbitmap creates an Image object from a window handle to a bitmap.2.

FromStream creates an Image object from a stream of bytes (in a file or a database).3.

For example, in the following line, FromFile constructs an Image object. Here curFileName is a string variable that holds the file name:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Image curImage = Image.FromFile(curFileName);

We will see how to create Image objects from streams and bitmaps in later chapters.

7.2.3 Drawing an Image

After creating an Image object, you'll want to view the image. GDI+ and Windows Forms offer many ways to view images. You can use a Form, 

PictureBox, or Button control as a container to view images. In most of our samples, we will draw an image on a graphics surface (a form).

Tip

You can also use a picture box to view images. The PictureBox control is easy to use, but using a form as a viewer 

provides more control and flexibility. For instance, use a PictureBox control when you do not need to manipulate or resize 

images. If you need to manipulate images using operations such as zooming in and zooming out, scaling, and skewing, use 

a Form object as the container because it is easy to change the size of Form. Later in this chapter you will see how to use a 

picture box to draw images.

As we saw in Chapter 3, the DrawImage method of the Graphics class is used to draw an image. It has 30 overloaded forms. The simplest 

form of DrawImage takes an Image object and the starting point where it will be drawn. You can also specify the area of a rectangle in which 

the image will be drawn. GraphicsUnit and ImageAttributes are optional parameters, which we will discuss later in this chapter.

The following code snippet creates an Image object from a file, and draws the image using the DrawImage method. The starting point of the 

image is (10, 10). You can put this code on the form's paint event handler.

Graphics g = e.Graphics;

Image curImage = Image.FromFile(curFileName);

g.DrawImage(curImage, 10, 10);

The following code will fit an image into a rectangle that starts at point (10, 10) and has a width of 100 and a height of 100.

Graphics g = e.Graphics;

Image curImage = Image.FromFile(curFileName);

Rectangle rect = new Rectangle(20, 20, 100, 100);

g.DrawImage(curImage, rect);

If you want to fill the entire form with an image, you can use the ClientRectangle property of the form as the default rectangle.

Graphics g = e.Graphics;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Image curImage = Image.FromFile(curFileName);

g.DrawImage(curImage, this.ClientRectangle);

Before we write code for the menu items event handler, we define string and Image type variables in the application scope. Add the following 

at the beginning of the class:

// User-defined variables

private string curFileName = null;

private Image curImage = null;

Listing 7.1 shows the code for the OpenFileMenu click event handler. We use OpenFileDialog to browse images and save the file name in the 

string variable after the user selects a file. Thus we create an Image object from the selected file by using Image.FromFile. We also call 

Invalidate, which forces the form to repaint and call the paint event handler, where we will be viewing the image.

Listing 7.1 The OpenFileMenu click event handler

private void OpenFileMenu_Click(object sender,

    System.EventArgs e)

{

    // Create OpenFileDialog

    OpenFileDialog opnDlg = new OpenFileDialog();

    // Set a filter for images

    opnDlg.Filter =

        "All Image files|*.bmp;*.gif;*.jpg;*.ico;"+

        "*.emf;,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+

        "*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+

        "Meta Files(*.emf;*.wmf;*.png)|*.emf;*.wmf;*.png";

    opnDlg.Title = "ImageViewer: Open Image File";

    opnDlg.ShowHelp = true;

    // If OK, selected

    if(opnDlg.ShowDialog() == DialogResult.OK)

    {

        // Read current selected file name

        curFileName = opnDlg.FileName;

        // Create the Image object using

        // Image.FromFile

        try

        {

            curImage = Image.FromFile(curFileName);

        }

        catch(Exception exp)

        {

            MessageBox.Show(exp.Message);

        }

    }

    // Repaint the form, which forces the paint

    // event handler

    Invalidate();

}

Now we write the Graphics.DrawImage method on the form's paint event handler. You can write a paint event handler from the Properties

window of the form by double-clicking on the paint event available in the events list. Listing 7.2 shows our code, which simply calls 

DrawImage, using the default rectangle coordinates as AutoScrollPosition, and the image's width and height.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 7.2 The paint event handler of the form

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

          Graphics g = e.Graphics;

          if(curImage != null)

          {

               // Draw image using the DrawImage method

               g.DrawImage(curImage,

                    AutoScrollPosition.X,

                    AutoScrollPosition.Y,

                    curImage.Width,

                    curImage.Height );

          }

}

Now we're ready to view images. Compile and run the application, use the Open File menu item to select an image file, and the program will 

view it. In Figure 7.4, we open a file called 031.jpg.

Figure 7.4. Browsing a file

Clicking the Open button brings up the file for viewing, as shown in Figure 7.5.

Figure 7.5. Viewing an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



7.2.4 Saving Images

Now we move to the Save File menu item. It allows you to save images in different file formats.

The Image class provides the Save method, which is used to save images to a specified format. The Save method takes a file name (as string

type) or a stream (a Stream object), and a specified format of type ImageFormat class. Table 7.4 describes the properties of the ImageFormat

class.

Note

The Emf and Wmf properties in the ImageFormat enumeration do not save a real metafile, but save the bitmap as one 

metafile record. It will still be a bitmap.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 7.4. ImageFormat properties

Property Description

Bmp Specifies BMP format.

Emf Specifies EMF (Enhanced Metafile Format). We will discuss this format in Chapter 8.

Exif Specifies EXIF format.

Gif Specifies GIF format.

Guid Specifies a GUID structure that represents the ImageFormat object.

Icon Specifies Windows icon format.

Jpeg Specifies JPEG format.

MemoryBmp Specifies memory bitmap format.

Png Specifies PNG format.

Tiff Specifies TIFF format.

Wmf Specifies WMF (Windows Metafile Format). We will discuss this format in Chapter 8.

Now we add code for the SaveFileMenu click event handler, as shown in Listing 7.3. We use SaveFileDialog, which lets us specify the file 

name and saves an image using the format specified in the dialog. We read the extension of the file name entered by the user, and on that 

basis we pass the ImageFormat property in the Save method.

Note

The ImageFormat enumeration is defined in the System.Drawing.Imaging namespace. Don't forget to add a reference to this 

namespace in your application.

Listing 7.3 Using the Save method to save images

private void SaveFileMenu_Click(object sender,

    System.EventArgs e)

{

    // If image is created

    if(curImage == null)

        return;

    // Call SaveFileDialog

    SaveFileDialog saveDlg = new SaveFileDialog();

    saveDlg.Title = "Save Image As";

    saveDlg.OverwritePrompt = true;

    saveDlg.CheckPathExists = true;

    saveDlg.Filter =

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        "Bitmap File(*.bmp)|*.bmp|" +

        "Gif File(*.gif)|*.gif|" +

        "JPEG File(*.jpg)|*.jpg|" +

        "PNG File(*.png)|*.png" ;

    saveDlg.ShowHelp = true;

    // If selected, save

    if(saveDlg.ShowDialog() == DialogResult.OK)

    {

        // Get the user-selected file name

        string fileName = saveDlg.FileName;

        // Get the extension

        string strFilExtn =

            fileName.Remove(0, fileName.Length - 3);

        // Save file

        switch(strFilExtn)

        {

            case "bmp":

                curImage.Save(fileName, ImageFormat.Bmp);

                break;

            case "jpg":

                curImage.Save(fileName, ImageFormat.Jpeg);

                break;

            case "gif":

                curImage.Save(fileName, ImageFormat.Gif);

                break;

            case "tif":

                curImage.Save(fileName, ImageFormat.Tiff);

                break;

            case "png":

                curImage.Save(fileName, ImageFormat.Png);

                break;

            default:

                break;

            }

    }

}

Now we write code for the ExitMenu click event handler. This menu simply closes the application. Hence we call the Form.Close method on 

this event handler, as shown in Listing 7.4.

Listing 7.4 The ExitMenu click event handler

private void ExitMenu_Click(object sender,

    System.EventArgs e)

{

    this.Close();

}

7.2.5 Retrieving Image Properties

Table 7.2 listed the Image class properties. Now we will read and display the properties of an image. We add a Properties menu item to the 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



main menu and write the code in Listing 7.5 as this menu click event handler. We read the size, format, resolution, and pixel format of an 

image.

Listing 7.5 Getting image properties

private void PropertiesMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        // Viewing image properties

        string imageProperties = "Size:"+ curImage.Size;

        imageProperties += ",\n RawFormat:"+

            curImage.RawFormat.ToString();

        imageProperties += ",\n Vertical Resolution:"

            + curImage.VerticalResolution.ToString();

        imageProperties += ",\n Horizontal Resolution:"

            + curImage.HorizontalResolution.ToString();

        imageProperties += ",\n PixelFormat:"+

            curImage.PixelFormat.ToString();

        MessageBox.Show(imageProperties);

    }

}

Figure 7.6 shows the properties of an image.

Figure 7.6. Reading the properties of an image

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

7.3 Manipulating Images

In the previous section we covered how to read, view, and save images. In this section we will manipulate images and cover the following 

topics:

Creating image thumbnails

Rotating

Flipping and zooming in and out (magnifying and demagnifying) images

7.3.1 Creating a Thumbnail of an Image

A thumbnail is a small representation of an image. The Image class provides a method called GetThumbnailImage, which is used to create a 

thumbnail. This method's first two parameters are the width and height of the thumbnail image. The third parameter is 

Image.GetThumbnailImageAbort, which is not used in GDI+ version 1.0 but must be passed in for compatibility. The fourth parameter must be 

of type IntPtr.Zero. This parameter is not used in the current version. If both the width and height parameters are 0, GDI+ will return the 

embedded thumbnail if there is one in the image; otherwise a system-defined size is used. For most JPEG images from digital cameras, it is 

better to pass both zeros in for both parameters to get the embedded thumbnail.

To test the thumbnail code, we add a menu named Options to the MainMenu control, as well as a Create Thumbnail menu item. We add 

Create Thumbnail as a submenu item or on a button click event handler, as Listing 7.6 shows. We create an Image.GetThumbnailImageAbort

parameter, and then we call GetThumbnailImage with one-fourth the width and height of the original size, followed by the DrawImage method.

Listing 7.6 Creating and drawing a thumbnail image

private void ThumbnailMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        // Callback

        Image.GetThumbnailImageAbort tnCallBack =

            new Image.GetThumbnailImageAbort(tnCallbackMethod);

        // Get the thumbnail image

        Image thumbNailImage = curImage.GetThumbnailImage

            (100, 100, tnCallBack, IntPtr.Zero);

        // Create a Graphics object

        Graphics tmpg = this.CreateGraphics();

        tmpg.Clear(this.BackColor);

        // Draw thumbnail image

        tmpg.DrawImage(thumbNailImage, 40, 20);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        // Dispose of Graphics object

        tmpg.Dispose();

    }

}

// Must be called, but not used

public bool tnCallbackMethod()

{

    return false;

}

Now we run the application and open Neel01.jpg. If we click the Create Thumbnail menu item, the new thumbnail image looks like Figure 7.7.

Figure 7.7. A thumbnail image

7.3.2 Rotating and Flipping Images

Rotating and flipping are common operations in many imaging programs. Rotation rotates an image at an angle that is a multiple of 90. 

Flipping reflects an image on an axis.

The RotateFlip method allows us to rotate and flip images. The value of RotateFlip is of type RotateFlipType enumeration, which defines the 

direction of rotation and flipping. The members of the RotateFlipType enumeration (listed in Table 7.5) are easy to understand.

To rotate and/or flip an image, call RotateFlip and pass in any of the values in Table 7.5. The following code snippets show different rotation 

and flip options.

Rotating 90 degrees:

curImage.RotateFlip(RotateFlipType.Rotate90FlipNone);

Rotating 180 degrees:

curImage.RotateFlip(RotateFlipType.Rotate180FlipNone);

Rotating 270 degrees:

curImage.RotateFlip(RotateFlipType.Rotate270FlipNone);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Flipping on the x-axis only, with no rotation:

curImage.RotateFlip(RotateFlipType.RotateNoneFlipX);

Flipping on the y-axis only, with no rotation:

curImage.RotateFlip(RotateFlipType.RotateNoneFlipY);

Flipping on the x- and y-axes, with no rotation:

curImage.RotateFlip(RotateFlipType.RotateNoneFlipXY);

Rotating 180 degrees and flipping on the x-axis:

curImage.RotateFlip(RotateFlipType.Rotate180FlipX);

7.3.3 Adding Rotate and Flip Options to the Image Viewer

Now let's add rotate and flip options to the ImageViewer application.

We add four submenus to the Options menu—Rotate, Flip, Fit, and Zoom. We will cover the Rotate and Flip options in this section, and Fit

and Zoom in Sections 7.3.4 and 7.3.5, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 7.5. RotateFlipType members

Member Description

Rotate180FlipNone 180-degree rotation without flipping

Rotate180FlipX 180-degree rotation with a horizontal flip

Rotate180FlipXY 180-degree rotation with horizontal and vertical flips

Rotate180FlipY 180-degree rotation with a vertical flip

Rotate270FlipNone 270-degree rotation without flipping

Rotate270FlipX 270-degree rotation with a horizontal flip

Rotate270FlipXY 270-degree rotation with horizontal and vertical flips

Rotate270FlipY 270-degree rotation with a vertical flip

Rotate90FlipNone 90-degree rotation without flipping

Rotate90FlipX 90-degree rotation with a horizontal flip

Rotate90FlipXY 90-degree rotation with horizontal and vertical flips

Rotate90FlipY 90-degree rotation with a vertical flip

RotateNoneFlipNone No rotation and no flipping

RotateNoneFlipX No rotation, with a horizontal flip

RotateNoneFlipXY No rotation, with horizontal and vertical flips

RotateNoneFlipY No rotation, with a vertical flip

We add three items to the Rotate submenu: 90, 180, and 270 (see Figure 7.8). These items rotate an image 90, 180, and 270 degrees, 

respectively. You can add as many items as you want. You can even allow users to enter an arbitrary angle.

Figure 7.8. Rotate menu items

Now we add three items to the Flip submenu: FlipX, FlipY, and FlipXY (see Figure 7.9). These items flip an image about the x-, y-, and 

xy-axes, respectively. You can add more items if you wish.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 7.9. Flip menu items

Within our program we give the menu items meaningful names. For example, the 90, 180, and 270 menu items are represented by 

Rotate90Menu, Rotate180Menu, and Rotate270Menu, respectively. And we use FlipXMenu, FlipYMenu, and FlipXYMenu to represent the 

FlipX, FlipY, and FlipXY menu items, respectively.

The next step is to write code for the menu item event handlers. To add them, we simply double-click on the menu items. The code for the 

Rotate menu items is given in Listing 7.7. We check whether the Image object has been created and then call RotateFlip with the appropriate 

value. We also call Invalidate to redraw the image with the new settings.

Listing 7.7 Rotate menu item event handlers

// Rotate 90 degrees

private void Rotate90Menu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curImage.RotateFlip(

            RotateFlipType.Rotate90FlipNone);

        Invalidate();

    }

}

// Rotate 180 degrees

private void Rotate180Menu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curImage.RotateFlip(

            RotateFlipType.Rotate180FlipNone);

        Invalidate();

    }

}

// Rotate 270 degrees

private void Rotate270Menu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        curImage.RotateFlip(

            RotateFlipType.Rotate270FlipNone);

        Invalidate();

    }

}

Now let's run and test the application. We open an image, and it looks like Figure 7.10.

Figure 7.10. An image with default settings

Selecting Rotate | 90 generates the image shown in Figure 7.11.

Figure 7.11. The image of Figure 7.10, rotated 90 degrees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Selecting Rotate | 180 generates the image shown in Figure 7.12.

Figure 7.12. The imageof Figure 7.10, rotated 180 degrees

Selecting Rotate | 270 generates the image shown in Figure 7.13.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 7.13. The image of Figure 7.10, rotated 270 degrees

We also add code for the Flip menu item click event handlers, as shown in Listing 7.8. We simply call RotateFlip with an appropriate value.

Listing 7.8 Flip menu item event handlers

// Flip X

private void FlipXMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curImage.RotateFlip(

            RotateFlipType.RotateNoneFlipX);

        Invalidate();

    }

}

// Flip Y

private void FlipYMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curImage.RotateFlip(

            RotateFlipType.RotateNoneFlipY);

        Invalidate();

    }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

// Flip X and Y both

private void FlipXYMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curImage.RotateFlip(

            RotateFlipType.RotateNoneFlipXY);

        Invalidate();

    }

}

Now if we flip the image shown in Figure 7.10, we can see the difference. The FlipX option generates the image shown in Figure 7.14.

Figure 7.14. The image of Figure 7.10, flipped in the x-direction

The FlipY option generates the image shown in Figure 7.15.

Figure 7.15. The image of Figure 7.10, flipped in the y-direction

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The FlipXY option generates the image shown in Figure 7.16.

Figure 7.16. The image of Figure 7.10, flipped in both the x-and the y-directions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



7.3.4 Fitting Images

An application that manipulates images often needs to fit them within the height and/or width of a drawing surface. A fit-width option sets the 

width of an image to the width of the surface (a form or a control), and a fit-height option sets the height of an image to the height of the 

surface. The fit-all option sets both the height and the width of an image to the height and width of the surface.

Let's add fit options to our ImageViewer application. We add four menu items to the Fit submenu: Fit Height, Fit Width, Fit Original, and Fit 

All, which will fit the height, width, original size of the image, and both height and width, respectively (see Figure 7.17).

Figure 7.17. Fit menu items

To implement the fit options, we need to add Rectangle and Size variables at the application level, as follows:

private Rectangle curRect;

private Size originalSize = new Size(0,0);

We will use curRect to store the current rectangle of the image and originalSize for the original size of the image.

Now we need to modify the OpenFileMenu click event handler. The new code is given in Listing 7.9. We activate autoscrolling by setting the 

AutoScroll and AutoScrollMinSize properties of the form to true. We create a rectangle from the current size of the image. We also save the 

current size of the image by setting the Width and Height properties of originalSize.

Listing 7.9 Modified Open File menu click event handler

private void OpenFileMenu_Click(object sender,

        System.EventArgs e)

{

    // Create OpenFileDialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    OpenFileDialog opnDlg = new OpenFileDialog();

    // Set a filter for images

    opnDlg.Filter =

         "All Image files|*.bmp;*.gif;*.jpg;*.ico;"+

         "*.emf;,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+

         "*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+

         "Meta Files(*.emf;*.wmf;*.png)|*.emf;*.wmf;*.png";

    opnDlg.Title = "ImageViewer: Open Image File";

    opnDlg.ShowHelp = true;

    // If OK, selected

    if(opnDlg.ShowDialog() == DialogResult.OK)

    {

        // Read current selected file name

        curFileName = opnDlg.FileName;

        // Create the Image object using

        // Image.FromFile

        try

        {

            curImage = Image.FromFile(curFileName);

        }

        catch(Exception exp)

        {

            MessageBox.Show(exp.Message);

        }

        // Activate scrolling

        this.AutoScroll = true;

        this.AutoScrollMinSize = new Size

            ((int)(curImage.Width),

            (int)(curImage.Height));

        // Repaint the form, which forces the paint

        // event handler

        this.Invalidate();

    }

    // Create current rectangle

    curRect = new Rectangle(0, 0,

        curImage.Width, curImage.Height);

    // Save original size of the image

    originalSize.Width = curImage.Width;

    originalSize.Height = curImage.Height;

}

The paint event handler must also be modified. The new code is given in Listing 7.10. We use the curRect rectangle to view the image.

Listing 7.10 Modified paint event handler

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    Graphics g = e.Graphics;

    if(curImage != null)

    {

        // Draw image using the DrawImage method

        g.DrawImage(curImage, new Rectangle

            (this.AutoScrollPosition.X,

            this.AutoScrollPosition.Y,

            (int)(curRect.Width),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



           (int)(curRect.Height)));

    }

}

The last step is to add event handler code for the Fit Height, Fit Width, Fit Original, and Fit All menu options, as shown in Listing 7.11. For 

the Fit Width option, we set the width of the current rectangle to the width of the form; for the Fit Height option, we set the height of the 

current rectangle to the height of the form; for the Fit All option, we set both the height and width of the current rectangle to the height and 

width of the form; and for Fit Original, we set the current rectangle's height and width to the height and width of the original file saved as 

originalSize.

Listing 7.11 Fit menu item event handlers

private void FitWidthMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curRect.Width = this.Width;

        Invalidate();

    }

}

private void FitHeightMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curRect.Height = this.Height;

        Invalidate();

    }

}

private void FitOriginalMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curRect.Height = originalSize.Height;

        curRect.Width = originalSize.Width;

        Invalidate();

    }

}

private void FitAllMenu_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curRect.Height = this.Height;

        curRect.Width = this.Width;

        Invalidate();

    }

}

Now we compile and run the application, and we view an image. The original image looks like Figure 7.18.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 7.18. An image in ImageViewer

The Fit Width option generates the image shown in Figure 7.19.

Figure 7.19. The image of Figure 7.18 after Fit Width

The Fit Height option generates the image shown in Figure 7.20.

Figure 7.20. The image of Figure 7.18 after Fit Height

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Aspect Ratio

To see an image correctly, you may want to maintain its aspect ratio (the ratio of height to width). To do so, you need to 

modify the code so that when you select Fit Width or Fit Height, the width and the height are changed according to the 

original ratio.

The Fit Original option generates the image shown in Figure 7.21.

Figure 7.21. The image of Figure 7.18 after Fit Original

The Fit All option generates the image shown in Figure 7.22.

Figure 7.22. The image of Figure 7.18 after Fit All

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



7.3.5 Zooming In and Out

Before we finish our ImageViewer application, let's add one more option: zooming.

Adding zoom-in and zoom-out features requires only one operation: multiplying the height and width of the image by a zoom factor. The 

zoom factor is the ratio of the current size of the image to the desired new size of the image. For example, suppose that we want to zoom in 

an image by 200 percent. We must multiply the current size of the image by 200 percent, or 2 (200/100 = 2 times). If we want to zoom out an 

image by 25 percent, we need to multiply the size of the image by 25 percent, or 0.25 (25/100 = 0.25 times).

Now let's add the zoom features to our application. As is typically done, we add five items to the Zoom submenu: 25, 50, 100, 200, and 500

(see Figure 7.23). In our code we use Zoom25, Zoom50, Zoom100, Zoom200, and Zoom500, respectively, to represent these menu items, and 

we add the appropriate menu item click event handlers by double-clicking on the menu items.

Figure 7.23. Zoom menu items

Now we add a double variable that represents the zoom factor. The default zoom factor is 1.0. We add the following line to the class at the 

application level:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private double curZoom = 1.0;

Next we modify the OpenFileMenu click event handler slightly. We change the AutoScrollMinSize property as follows:

this.AutoScrollMinSize = new Size

    ((int)(curImage.Width * curZoom),

    (int)(curImage.Height * curZoom));

We multiply the image height and width by the zoom factor to represent an image with an appropriate zoom setting.

The next step is to modify the paint event handler. Here we need to multiply the height and width of the image by the zoom factor. The new 

DrawImage method, shown here, calls the paint event handler of Listing 7.10:

// Draw image using the DrawImage method

g.DrawImage(curImage, new Rectangle

    (this.AutoScrollPosition.X,

    this.AutoScrollPosition.Y,

    (int)(curRect.Width * curZoom),

    (int)(curRect.Height * curZoom)));

The last step is to add Zoom menu item click event handlers and calculate the zoom factor. Listing 7.12 shows the code for the Zoom menu 

item click event handlers. We calculate the zoom factor by dividing the zoom value by 100. We also call the Invalidate method to repaint the 

image with the new zoom setting.

Listing 7.12 Zoom menu item event handlers

private void Zoom25_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curZoom = (double)25/100;

        Invalidate();

    }

}

private void Zoom50_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curZoom = (double)50/100;

        Invalidate();

    }

}

private void Zoom100_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curZoom = (double)100/100;

        Invalidate();

    }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

private void Zoom200_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curZoom = (double)200/100;

        Invalidate();

    }

}

private void Zoom500_Click(object sender,

    System.EventArgs e)

{

    if(curImage != null)

    {

        curZoom = (double)500/100;

        Invalidate();

    }

}

Using the method just described, we can zoom an image in and out to any percentage. Let's run the application and open an image. Our 

original image looks like Figure 7.24.

Figure 7.24. An image in ImageViewer

The Zoom | 25 option generates the image shown in Figure 7.25.

Figure 7.25. The image of Figure 7.24 with 25 percent zoom

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Zoom | 50 option generates the image shown in Figure 7.26.

Figure 7.26. The image of Figure 7.24 with 50 percent zoom

The Zoom | 200 option generates the image shown in Figure 7.27.

Figure 7.27. The image of Figure 7.24 with 200 percent zoom

The Zoom | 500 option generates the image shown in Figure 7.28.

Figure 7.28. The image of Figure 7.24 with 500 percent zoom

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Congratulations! You have successfully written an image viewer application that can be used for various purposes. Now we will discuss some 

additional imaging options.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

7.4 Playing Animations in GDI+

So far we have been dealing with static image formats, such as BMP. Each of these formats holds image data for a single picture. Other

formats—such as GIF, AVI (Audio Video Interleaved), and MPEG (Moving Picture Experts Group)—contain image data that, when played

back in quick succession, gives the illusion of movement. These images are called animated images. GIF is one of the common formats 

used for animated images. An animated image is a series of images, also called frames (e.g., see Figure 7.29).

Figure 7.29. An animated image with three frames

You can create animated images by using graphics tools such as Macromedia Fireworks or CorelDRAW, but GDI+ doesn't support the 

creation of animated images. When you create animated images, you must specify the order of frames and the time interval between them.

The GDI+ library provides the ImageAnimator class to deal with animated file formats using time-based frames. At this time, GDI+ supports 

only multiframe GIFs and TIFFs. ImageAnimator has four static methods: Animate, CanAnimate, StopAnimate, and UpdateFrames.

The Animate method displays a framed image as an animation. This method takes parameters of type Image and EventHandler. 

Image is the image you want to animate. The event is triggered when the currently displayed frame is changed.

1.

The CanAnimate method returns true when an image has timebased frames.2.

The StopAnimate method terminates an animation. It takes parameters of type Image and EventHandler.3.

The UpdateFrames method will move to the next frame and render it the next time the image is drawn.4.

Now let's write an application that will play animated images. We create a Windows application and add a MainMenu control and two button 

controls to the form. We also add two menu items: Open File and Exit. We change the text and names of the menu items and button controls 

as shown in Figure 7.30.

Figure 7.30. An image animation example

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We add two variables of type Image and string as follows:

private Image curImage = null;

private string curFileName = null;

The Open File menu item allows us to browse images, and the Exit menu item closes the form. Listing 7.13 gives the code for the click event 

handlers for these two menu items.

Listing 7.13 The Open File and Exit menu item click event handlers

private Image curImage;

private void OpenFileMenu_Click(object sender,

    System.EventArgs e)

{

    // Create OpenFileDialog

    OpenFileDialog opnDlg = new OpenFileDialog();

    opnDlg.Filter = "Animated Gifs|*.gif;";

    // If OK, selected

    if(opnDlg.ShowDialog() == DialogResult.OK)

    {

        // Read current selected file name

        curFileName = opnDlg.FileName;

    }

}

private void ExitMenu_Click(object sender,

    System.EventArgs e)

{

    this.Close();

}

Now we rename the two buttons Start Animation and Stop Animation, respectively, and write click event handlers by double-clicking on 

them. The code for the StartAnimationBtn event handler is given in Listing 7.14. We create an Image object by calling FromImage, which takes 

an image file as its only argument. Then we use the CanAnimate method to check if the image can be animated. If it can, we call Animate, 

which plays the animation.

Listing 7.14 The StartAnimationBtn click event handler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void StartAnimationBtn_Click(object sender,

System.EventArgs e)

{

    curImage = Image.FromFile(curFileName);

    if( ImageAnimator.CanAnimate(curImage) )

    {

        ImageAnimator.Animate(curImage,

        new EventHandler(this.OnFrameChanged));

    }

    else

    MessageBox.Show("Image doesn't have frames");

}

On the StopAnimationBtn click event handler, we check whether there is an Image object, and we call StopAnimate to stop the animation as 

shown in Listing 7.15.

Listing 7.15 The StopAnimationBtn click event handler

private void StopAnimationBtn_Click(object sender,

System.EventArgs e)

{

    if(curImage != null)

    {

        ImageAnimator.StopAnimate(curImage,

        new EventHandler(this.OnFrameChanged));

    }

}

Now we add OnPaint and OnFrameChanged methods to the application. The code for these methods is given in Listing 7.16. In the OnPaint

method, we call the UpdateFrames method of ImageAnimator and then call DrawImage to draw the image. In the OnFrameChanged method, 

we repaint the form by calling Invalidate.

Listing 7.16 The OnPaint and OnFrameChanged methods

protected override void OnPaint(PaintEventArgs e)

{

    if(curImage != null)

    {

        ImageAnimator.UpdateFrames();

        e.Graphics.DrawImage(curImage, new Point(0, 0));

    }

}

private void OnFrameChanged(object o, EventArgs e)

{

    this.Invalidate();

}

Now compile and run the application. You can browse animated images on your system or download the files from online and select a file. 

The Start Animation button will start playing the animation. The Stop Animation button will stop the animation.

Figure 7.31 shows the first frame of the animation sample provided with this book (download code from online).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 7.31. The first frame of an animated image

Figure 7.32 shows the second frame of the sample.

Figure 7.32. The second frame of an animated image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

7.5 Working with Bitmaps

A bitmap stores data for an image and its attributes in pixel format. The Bitmap class, which is inherited from the Image class, encapsulates a 

graphics bitmap in GDI+. Because the Bitmap class is inherited from the Image class, it offers all the methods and properties that we 

discussed in the previous section. The Bitmap class defines additional functionality. In this section we will learn about the members of the 

Bitmap class and how to use them.

7.5.1 Creating a Bitmap Object

The Bitmap class provides about a dozen overloaded forms of the constructors. You can create a Bitmap object from a bitmap file, or from 

Image, Stream, string, or Type objects. When you create a Bitmap object, you can also specify the size of the bitmap, the resolution of the 

Graphics object, and the pixel format of the bitmap.

The code snippet in Listing 7.17 creates Bitmap objects from an Image and file name with or without the size of the Bitmap included.

Listing 7.17 Creating Bitmap objects from different sources

// Creating an Image object

Image curImage = Image.FromFile("myfile.gif");

// Creating a Bitmap object from a file name

Bitmap curBitmap1 = new Bitmap("myfile.gif");

// Creating a Bitmap object from an Image object

Bitmap curBitmap2 = new Bitmap(curImage);

// Creating a Bitmap object with size and image

Bitmap curBitmap3 =

new Bitmap(curImage, new Size(200, 100) );

// Creating a Bitmap object with no images

Bitmap curBitmap4 = new Bitmap(200, 100);

Besides the constructor, the Bitmap class provides two static methods—FromHicon and FromResource—which can be used to create a

Bitmap object from a window handle to an icon and from a Windows resource (.res file), respectively.

7.5.2 Viewing a Bitmap

Viewing a bitmap using the Bitmap class is similar to viewing an image. After constructing a Bitmap object, you just pass it as a parameter to 

DrawImage. The following code snippet creates a Bitmap object from a file and views the bitmap by calling the DrawImage method of a 

Graphics object associated with a form. You can write this code on a menu or a button click event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Graphics g = this.CreateGraphics();

Bitmap bitmap = new Bitmap("myfile.jpg");

g.DrawImage(bitmap, 20, 20);

g.Dispose();

7.5.3 The Bitmap Class Methods and Properties

The Bitmap class doesn't define any properties beyond those defined in the Image class. However, Bitmap does provide additional methods. 

Among them are FromHicon, FromResource, GetHbitmap, GetHicon, GetPixel, LockBits, MakeTransparent, SetPixel, SetResolution, and 

UnlockBits.

The FromHicon and FromResource methods create a Bitmap object from a window handle to an icon and from a Windows resource, 

respectively. The GetHbitmap and GetHicon methods create a Windows HBITMAP structure and a window handle to an icon.

The GetPixel and SetPixel methods get and set the color of the specified pixel of an image. These methods are useful when an application 

needs to blur images, change the color of specific pixels, change the contrast of pixels, and so on. You can blur an image by reducing the 

color depth of pixels. We will use GetPixel and SetPixel in examples in this chapter and the next.

The following line of code returns the color of a pixel at positions x = 10 and y = 10:

Color curColor = curBitmap.GetPixel(10, 10);

The following code snippet uses SetPixel to change all pixels between point (50, 50) and point (60, 60) to red:

for (int i = 50; i < 60; i++)

{

    for (int j = 50; j < 60; j++)

    {

        curBitmap.SetPixel(i, j, Color.Red);

    }

}

SetResolution sets the resolution of a bitmap. This method takes two parameters of type float, which represent the horizontal resolution and 

vertical resolution in dots per inch.

MakeTransparent makes the default color transparent to a bitmap. This method takes either no arguments or a single argument of type Color:

Color curColor = curBitmap.GetPixel(10, 10);

curBitmap.MakeTransparent();

or

curBitmap.MakeTransparent(curColor);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



To test the methods and properties of Bitmap, we create a Windows application and add Open File and Exit menu items as in the previous 

examples. Then we add controls for a group box, text boxes, a button, a check box, and some labels. The final form looks like Figure 7.33. 

We can set the resolution and transparency of the bitmap from here.

Figure 7.33. A bitmap example

We add the following application-level variables to the application:

// Variables

private Bitmap curBitmap;

private float imgHeight;

private float imgWidth;

private string curFileName;

As usual, we browse images on the Open File menu item click event handler and close the form on the Exit menu item click event handler. 

We also create a Bitmap object from the selected file and store the height and width of the image, as Listing 7.18 shows.

Listing 7.18 The Open File and Exit menu item event handlers

private void OpenBmpMenu_Click(object sender,

    System.EventArgs e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



{

    OpenFileDialog openDlg = new OpenFileDialog();

    openDlg.Filter =

        "All Bitmap files|*.bmp;*.gif;*.jpg;";

    string filter = openDlg.Filter;

    openDlg.Title = "Open Bitmap File";

    openDlg.ShowHelp = true;

    if(openDlg.ShowDialog() == DialogResult.OK)

    {

        curFileName = openDlg.FileName;

        curBitmap = new Bitmap(curFileName);

        imgHeight = curBitmap.Height;

        imgWidth = curBitmap.Width;

    }

    Invalidate();

}

private void ExitMenu_Click(object sender,

    System.EventArgs e)

{

    this.Close();

}

Now we write code on the paint event handler to view the bitmap (see Listing 7.19).

Listing 7.19 The paint event handler

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    Graphics g = e.Graphics;

    if(curBitmap != null)

    {

        g.DrawImage(curBitmap,

            AutoScrollPosition.X, AutoScrollPosition.Y,

            imgWidth, imgHeight);

    }

}

The code for the Apply Settings button click event handler is given in Listing 7.20. It reads values for horizontal and vertical resolution from 

two text boxes and sets values for a bitmap using the SetResolution method. It also uses the MakeTransparent and SetPixel methods.

Listing 7.20 The Apply Settings button click event handler

private void ApplyBtn_Click(object sender,

    System.EventArgs e)

{

    if(curBitmap == null)

        return;

    float hDpi = 90;

    float vDpi = 90;

    // Create dpi settings

    if(textBox1.Text.ToString() != "")

              hDpi = Convert.ToInt32(textBox1.Text);

    if(textBox1.Text.ToString() != "")

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



         vDpi = Convert.ToInt32(textBox2.Text);

    curBitmap.SetResolution(hDpi, vDpi);

    // If Transparent check box is checked

    if(checkBox1.Checked)

    {

        Color curColor =

            curBitmap.GetPixel(10, 10);

        curBitmap.MakeTransparent();

    }

    // Set pixel colors to red

    for (int i = 50; i < 60; i++)

    {

        for (int j = 50; j < 60; j++)

        {

            curBitmap.SetPixel(i, j, Color.Red);

        }

    }

    // Redraw

    Invalidate();

}

If we run the application and click the Apply Settings button (see Figure 7.34), a small red rectangle appears, showing that the color of that 

part of the image has been changed to red.

Figure 7.34. Changing the pixel colors of a bitmap

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The LockBits and UnlockBits methods are used to lock and unlock a bitmap into system memory. LockBits takes three parameters—of type

Rectangle, ImageLockMode enumeration, and PixelFormat enumeration—and returns an object of type BitmapData. The rectangle is the 

portion of the bitmap that will be locked in system memory.

ImageLockMode provides the access level on the data. Its members include ReadOnly, ReadWrite, UserInputBuffer, and WriteOnly. The 

PixelFormat enumeration defines the format of color data for each pixel.

Note

We will discuss these methods and enumerations in more detail in Chapter 8.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

7.6 Working with Icons

The Icon class represents a Windows icon, which is a small transparent bitmap. Just like the Bitmap class, this class is inherited from the 

Image class.

An application can create an Icon object from a stream, string, icon, icon file, or type by using the Icon class constructors with the size of the 

icon as an optional parameter. The Icon class provides four read-only properties—Handle, Height, Size, and Width—which return a window

handle to the icon, height, size, and width of an icon, respectively.

Listing 7.21 creates an Icon object from an icon file and sets the icon of a form using the Form class's Icon property.

Listing 7.21 Creating an icon and setting a form's Icon property

private void Form1_Load(object sender,

    System.EventArgs e)

{

    // Create an icon

    Icon curIcon = new Icon("mouse.ico");

    // Set form's icon

    this.Icon = curIcon;

    // Get icon properties

    float h = curIcon.Height;

    float w = curIcon.Height;

    Size sz = curIcon.Size;

}

The FromHandle method of the Icon class creates an Icon object from a window handle to an icon (HICON). The Save method saves an Icon

object to a stream, and the ToBitmap method converts an Icon object to a Bitmap object. Listing 7.22 creates a Bitmap object from an Icon

object using ToBitmap and draws the bitmap using DrawImage.

Listing 7.22 Creating a bitmap from an icon and displaying it

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    // Create an icon

    Icon curIcon = new Icon("mouse.ico");

    // Create a bitmap from an icon

    Bitmap bmp = curIcon.ToBitmap();

    // Draw bitmap

    Graphics g = e.Graphics;

    g.Clear(this.BackColor);

    g.DrawImage(bmp, 10, 10);

    g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 7.35 shows the output from Listings 7.21 and 7.22.

Figure 7.35. Viewing icons

Sometimes you will need to convert a Bitmap object into an Icon object. The following code snippet shows how to do this:

Icon curIcon;

curIcon = Icon.FromHandle(bmp.GetHicon());

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

7.7 Skewing Images

So far, we have seen that we can draw various images on graphics surfaces by using DrawImage. We have also seen how to implement 

rotate, flip, fit-height, fit-width, and zoom features. An imaging application may need to provide even more features, including scaling, 

skewing, and high-performance rendering. Using GDI+, we can do all of this very easily. We will discuss some of these issues in this chapter 

and some of them in Chapter 8.

The DrawImage method has about two dozen overloaded forms—one of which lets us provide the destination points for an image. The

original image will be drawn after its coordinates are mapped to the destination points—a process called skewing. We will see an example in 

a moment. First let's examine the necessary form of DrawImage.

To translate an image from its original coordinates to the mapped coordinates, an application needs to create an array of new coordinates and 

call DrawImage, passing this array as the second parameter. For example, the following code snippet creates an array of points and passes it 

to the DrawImage method.

Point[] pts =

{

    new Point(X0, Y0),

    new Point(X1, Y1),

    new Point(X2, Y2)

};

g.DrawImage(curImage, pts);

Now let's create a Windows application and add a MainMenu control with an Open File menu item. Let's also add a button to the form. Our 

final form will look like Figure 7.36.

Figure 7.36. A skewing application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now we add the following variables to the application:

private Bitmap curBitmap = null;

private bool skewImage = false;

Point[] pts =

{

    new Point(150, 20),

    new Point(20, 50),

    new Point(150, 300)

};

The complete code is given in Listing 7.23. The Open File menu item click event handler opens an image and creates a Bitmap object from the 

selected file. The paint event handler views the image. If skewImage is true, the paint event handler calls the DrawImage method with an array 

of points. The Skew Image button click event handler simply sets skewImage to true.

Listing 7.23 Skew Image button click event handler

private void OpenFileMenu_Click(object sender,

    System.EventArgs e)

{

    OpenFileDialog openDlg = new OpenFileDialog();

    openDlg.Filter =

        "All Bitmap files|*.bmp;*.gif;*.jpg;";

    string filter = openDlg.Filter;

    openDlg.Title = "Open Bitmap File";

    openDlg.ShowHelp = true;

    if(openDlg.ShowDialog() == DialogResult.OK)

    {

        curBitmap = new Bitmap(openDlg.FileName);

    }

    Invalidate();

}

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    // Create a Graphics object

    Graphics g = e.Graphics;

    g.Clear(this.BackColor);

    if(curBitmap != null)

    {

        if(skewImage)

        {

            g.DrawImage(curBitmap, pts);

        }

        else

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        {

            g.DrawImage(curBitmap, 0, 0);

        }

    }

    // Dispose of object

    g.Dispose();

}

private void SkewImageBtn_Click(object sender,

    System.EventArgs e)

{

    skewImage = true;

    Invalidate();

}

If you run the application and open an image, the normal view looks like Figure 7.37.

Figure 7.37. Normal view of an image

If you click Skew Image, the new output looks like Figure 7.38.

Figure 7.38. Skewed image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

7.8 Drawing Transparent Graphics Objects

Sometimes we need to draw objects on top of images—and these objects may need to be transparent. As we discussed earlier, color in GDI+

has four components: alpha, red, green, and blue. The value of each component varies from 0 to 255. The alpha component represents the

transparency in GDI+ color. Zero represents a fully transparent color; 255, a fully opaque color.

An application must create transparent pens and brushes to draw transparent graphics objects. An application can use the Color.FromArgb

method to specify the ratio of all four components in a color. For example, the following code snippet creates a fully opaque green pen and 

brush.

Pen solidPen =

  new Pen(Color.FromArgb(255, 0, 255, 0), 10);

SolidBrush solidColorBrush =

  new SolidBrush(Color.FromArgb(255, 0, 255, 0));

The following code snippet creates semitransparent colors and brushes.

Pen transPen =

  new Pen(Color.FromArgb(128, 0, 255, 0), 10);

SolidBrush semiTransBrush =

  new SolidBrush(Color.FromArgb(60, 0, 255, 0));

Listing 7.24 views an image and draws lines and a rectangle with different transparencies.

Listing 7.24 Drawing transparent graphics objects

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    Graphics g = e.Graphics;

    // Create an image from a file

    Image curImage = Image.FromFile("myphoto.jpg");

    // Draw image

    g.DrawImage(curImage, 0, 0,

        curImage.Width, curImage.Height);

    // Create pens with different opacity

    Pen opqPen =

        new Pen(Color.FromArgb(255, 0, 255, 0), 10);

    Pen transPen =

        new Pen(Color.FromArgb(128, 0, 255, 0), 10);

    Pen totTransPen =

        new Pen(Color.FromArgb(40, 0, 255, 0), 10);

    // Draw Graphics object using transparent pens

    g.DrawLine(opqPen, 10, 10, 200, 10);

    g.DrawLine(transPen, 10, 30, 200, 30);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    g.DrawLine(totTransPen, 10, 50, 200, 50);

    SolidBrush semiTransBrush =

        new SolidBrush(Color.FromArgb(60, 0, 255, 0));

    g.FillRectangle(semiTransBrush, 20, 100, 200, 100);

}

Figure 7.39 shows the output from Listing 7.24.

Figure 7.39. Drawing transparent graphics objects

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

7.9 Viewing Multiple Images

Sometimes we need to draw multiple images on the same spot, one on top of the other. In the previous section we discussed how to draw 

transparent graphics objects on top of images. In this section we will discuss how to draw images (transparent or opaque) on top of other 

images.

Drawing transparent images is different from drawing transparent graphics objects such as lines, rectangles, or ellipses. To draw transparent 

graphics objects, we simply create a transparent color and use this color when we create a pen or a brush.

Drawing transparent images is controlled by the color matrix (represented by the ColorMatrix class), which defines the transparency of the 

image. Acolor matrix is applied to an image when we call DrawImage. The DrawImage method takes an argument of type ImageAttributes. 

The SetColorMatrix method of ImageAttributes sets a color matrix to the ImageAttributes type. Passing ImageAttributes to DrawImage applies 

the color matrix to the image. Chapter 8 discusses this process in more detail.

As usual, we create a Windows application. In this application we will draw a large image, and a small image on top of the large image. To 

make this application more interesting, we add a transparency control to the application so that we can adjust the transparency of the top 

image. The final form looks like Figure 7.40.

Figure 7.40. Drawing multiple images

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's add a TrackBar control to the form. We set the Maximum and Minimum properties of TrackBar to 10 and 0, respectively. Then we 

write a TrackBar control scroll event so that when we scroll the track bar, it can manage the transparency of the image.

Note

We have defined a float type variable in the class as follows: float tpVal = 1.0f;

Now we convert the TrackBar value to a floating value so that we can use it in the ColorMatrix class to set the color of the image, as Listing 7.25

shows. The ColorMatrix class constructor takes an array, which contains the values of matrix items. The Item property of this class represents 

a cell of the matrix and can be used to get and set cell values. Besides the Item property, the ColorMatrix class provides 25 MatrixXY

properties, which represent items of the matrix at row (x + 1) and column (y + 1). MatrixXY properties can be used to get and set an item's 

value. See Chapter 10 (Section 10.7.1) for more details.

Listing 7.25 The TrackBar scroll event handler

private void trackBar1_Scroll(object sender,

System.EventArgs e)

{

    tpVal = (float)trackBar1.Value/10;

    this.Invalidate();

}

We will now view both images on the form's paint event, as Listing 7.26 shows. We create an Image object and view the first image. Then we 

create a ColorMatrix object with transparency and set it with the ImageAttribute property. Later we attach the ImageAttribute property to the 

second image when we draw it using the DrawImage method.

Listing 7.26 Viewing multiple images on the form-load event

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    // Create an Image object (first image) from a file

    curImage = Image.FromFile("roses.jpg");

    // Draw first image

    e.Graphics.DrawImage(curImage,

        AutoScrollPosition.X, AutoScrollPosition.Y,

        curImage.Width, curImage.Height );

    // Create an array of ColorMatrix points

    float[][] ptsArray =

    {

        new float[] {1, 0, 0, 0, 0},

        new float[] {0, 1, 0, 0, 0},

        new float[] {0, 0, 1, 0, 0},

        new float[] {0, 0, 0, tpVal, 0},

        new float[] {0, 0, 0, 0, 1}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    };

    // Create a ColorMatrix object

    ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

    // Create image attributes

    ImageAttributes imgAttributes = new ImageAttributes();

    // Set color matrix

    imgAttributes.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Bitmap);

    // Create second Image object from a file

    Image smallImage = Image.FromFile("smallRoses.gif");

    // Draw second image with image attributes

    e.Graphics.DrawImage(smallImage,

        new Rectangle(100, 100, 100, 100),

        0, 0, smallImage.Width, smallImage.Height,

        GraphicsUnit.Pixel, imgAttributes );

}

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

7.10 Using a Picture Box to View Images

So far in our sample applications, we have used a form as the drawing surface for images. You can also use a PictureBox control to view 

images. Picture boxes are easy to use, and this control optimizes the rendering process with a built-in double buffering feature. A picture box 

is recommended for viewing (but not manipulating) images when you know the exact size of the image.

The PictureBox class is defined in the System.Windows.Forms namespace. The Image property, which takes an Image object, sets the image 

to the picture box that you want to display. You can also set the position and clipping, using the SizeMode property. SizeMode, which is of 

type PictureBoxSizeMode enumeration, specifies how an image is positioned within a picture box. The members of the PictureBoxSizeMode

enumeration are defined in Table 7.6.

To view an image in a PictureBox control, we simply create an Image object using any of the Image class methods and set the 

PictureBox.Image property to that image.

Listing 7.27 views an image in a picture box. To test this code, create a Windows application, add a PictureBox control to the form by dragging it 

from the toolbox, and add code to the form-load event handler.

Listing 7.27 Viewing an image in a picture box

Image curImage = Image.FromFile("roses.jpg");

pictureBox1.Image = curImage;

pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;

Figure 7.41 shows the output from Listing 7.27.

Figure 7.41. Viewing an image in a picture box

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 7.6. PictureBoxSizeMode members

Member Description

AutoSize The picture box is automatically set to the same size as the image.

CenterImage The image is displayed in the center of the picture box.

Normal The image is placed in the upper left corner of the picture box and clipped if it is larger than the control.

StretchImage The image is stretched or shrunk to fit the size of the picture box.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



7.11 Saving Images with Different Sizes

Sometimes we need to save an image with a different size than it originally had. As we discussed earlier, the Save method of the Image class 

is used to save images. This method also allows us to specify the size of a saved image.

To make our program even more interesting, we will determine the size of the saved image at runtime. Create a Windows application and add 

two text boxes, two tables, and a button control to the form. The text boxes are used to specify the height and width of the saved image, and 

the button is used to save the image with the new size, as shown in Figure 7.42.

Figure 7.42. Saving images with different sizes

First we specify an Image private variable:

private Image curImage;

Then we create and view the image at the form's paint event handler, as shown in Listing 7.28.

Listing 7.28 Viewing an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

    curImage = Image.FromFile("roses.jpg");

    e.Graphics.DrawImage(curImage,

        AutoScrollPosition.X, AutoScrollPosition.Y,

        curImage.Width, curImage.Height );

}

On the Save Image button click, we ask the user to specify a file name and we call the Save method of the Image class, which saves an image 

in the given format. As Listing 7.29 shows, we also read the size of the new image from textBox1 and textBox2 and specify the size when we 

create a new Bitmap object from the existing image.

Listing 7.29 Saving an image with the given size

private void SaveImageBtn_Click(object sender,

System.EventArgs e)

{

    if(curImage == null)

    return;

    int height = Convert.ToInt16(textBox1.Text);

    int width = Convert.ToInt16(textBox2.Text);

    SaveFileDialog saveDlg = new SaveFileDialog();

    saveDlg.Title = "Save Image As";

    saveDlg.OverwritePrompt = true;

    saveDlg.CheckPathExists = true;

    saveDlg.Filter =

        "Bitmap File(*.bmp)|*.bmp|Gif File(*.gif)|*.gif| " +

        "JPEG File(*.jpg)|*.jpg";

    saveDlg.ShowHelp = true;

    if(saveDlg.ShowDialog() == DialogResult.OK)

    {

        string fileName = saveDlg.FileName;

        string extn =

            fileName.Substring(fileName.Length - 3, 3);

        Bitmap newImage = new Bitmap(curImage,

            new Size(width, height));

        if(extn.Equals("bmp"))

            newImage.Save(fileName,ImageFormat.Bmp);

        else if(extn.Equals("gif"))

            newImage.Save(fileName,ImageFormat.Gif);

        else if(extn.Equals("jpg"))

            newImage.Save(fileName,ImageFormat.Jpeg);

    }

}

Now we save an image with a width of 200 and a height of 200. The results are shown in Figure 7.43.

Figure 7.43. New image, with width of 200 and height of 200

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

SUMMARY

GDI+ provides a significant improvement in imaging over GDI. In this chapter we discussed the basic imaging capabilities of GDI+, as defined 

in the System.Drawing namespace. We focused mainly on the Image and Bitmap classes, and by now you should understand how to use the 

.NET Framework to work with images. We saw how to open, view, save, and manipulate images. We also saw some interesting functionality, 

including creating thumbnail images, rotating and flipping, zooming in and out, skewing and stretching, and animation.

In addition, we covered some advanced imaging features, including drawing transparent images and setting bitmap resolution and color. 

Throughout this chapter, we developed a real-world application that you can use in your programming career.

Imaging functionality doesn't end here. Advanced imaging functionality, which is defined in the System.Drawing.Imaging namespace, will be 

the focus of Chapter 8. Some of the topics yet to be discussed are bitmaps, metafiles, color maps, encoding and decoding images, and 

details of the color matrix.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 8. Advanced Imaging

In Chapter 7 we discussed the imaging functionality defined in the System.Drawing namespace. This chapter will cover the advanced imaging 

functionality defined in the System.Drawing.Imaging namespace. We will explore how to implement this functionality in our applications. The 

topics will include

Understanding LockBits and UnlockBits

Working with metafiles and metafile enhancements

Working with the color matrix, color map, and color palette

Using the Encoder and EncoderCollection classes

An overview of tagged data in TIFF files

Converting metafiles

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

8.1 Rendering Partial Bitmaps

In Chapter 7 we saw that the Bitmap class provides the LockBits and UnlockBits methods, but we didn't get to use them. LockBits and 

UnlockBits lock and unlock bitmap pixels in system memory. Each call to LockBits should be followed by a call to UnlockBits.

Why might you want to lock bitmap pixels? Rendering (painting) bitmaps and images is a resource-consuming operation, and it is one of the 

most frequently performed graphics operations. Suppose you want to change the color or intensity level of a bitmap. You could always loop 

though the bitmap pixel by pixel and use SetPixel to modify its properties, but that is a huge time- and resource-consuming operation.

Note

The code used in this chapter uses classes defined in the System.Drawing.Imaging namespace, so be sure to add a 

reference to this namespace in your applications.

A better option would be to use LockBits and UnlockBits. These methods allow you to control any part of the bitmap by specifying a range of 

pixels, eliminating the need to loop through each pixel of the bitmap.

To use this option, first call LockBits, which returns the BitmapData object. BitmapData specifies the attributes of a bitmap. Before we examine 

the members of the BitmapData class, let's take a look at the LockBits and UnlockBits methods. The LockBits method is defined as follows:

public BitmapData LockBits( Rectangle rect,

ImageLockMode flags, PixelFormat format);

LockBits takes three parameters of type Rectangle, ImageLockMode enumeration, and PixelFormat enumeration, and it returns an object of 

type BitmapData. The rectangle defines the portion of the bitmap to be locked in system memory.

UnlockBits takes a single parameter of type BitmapData, which was returned by LockBits. This method is defined as follows:

public void UnlockBits(BitmapData bitmapdata);

The ImageLockMode enumeration used in LockBits provides the access level to the data. Table 8.1 describes the members of 

ImageLockMode.

The pixel format defines the number of bits of memory associated with one pixel of data, as well as the order of the color components within a 

single pixel. Generally the number of bits per pixel is directly proportional to the quality of the image because the pixel can store more colors.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 8.1. ImageLockMode members

Member Description

ReadOnly The locked portion of the bitmap is for reading only.

ReadWrite The locked portion of the bitmap is for reading or writing.

UserInputBuffer The buffer used for reading or writing pixel data is allocated by the user.

WriteOnly The locked portion of the bitmap is for writing only.

The PixelFormat enumeration represents the pixel, which is useful when you need to change the format of a bitmap or a portion of it. The 

members of the PixelFormat enumeration are described in Table 8.2.

8.1.1 Drawing Grayscale or Other Color Images

To demonstrate the use of LockBits and UnlockBits, we will change the pixels of a bitmap using the GetPixel and SetPixel methods. As we 

discussed in Chapter 7, an application can use GetPixel and SetPixel to get and set the colors of each pixel of a bitmap. To set a bitmap color 

to grayscale or other colors, an application reads the current color using GetPixel, calculates the grayscale value, and calls SetPixel to apply 

the new color.

In the following code snippet we read the color of a pixel; calculate the grayscale value by applying a formula to the red, green, and blue 

components; and call SetPixel to set the pixel's new grayscale color.

Color curColor = curBitmap.GetPixel(i, j);

int ret = (curColor.R + curColor.G + curColor.B) / 3;

curBitmap.SetPixel(i, j, Color.FromArgb(ret, ret, ret));

Listing 8.1 draws an image with its original color settings and later redraws it in grayscale. The Width and Height properties of the Bitmap class 

are used to loop through each pixel of the bitmap, and SetPixel is used to set the pixel's color to grayscale.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 8.2. PixelFormat members

Member Description

Alpha The pixel data contains alpha values that are not premultiplied.

DontCare No pixel format is specified.

Format1bppIndexed 1 bit per pixel, using indexed color. The color table therefore has two colors in it.

Format4bppIndexed 4 bits per pixel, using indexed color.

Format8bppIndexed 8 bits per pixel, using indexed color.

Format16bppArgb1555 16 bits per pixel, giving 32,768 colors; 5 bits each are used for red, green, and blue, and 1 bit is used for alpha.

Format16bppGrayScale 16 bits per pixel, giving 65,536 shades of gray.

Format16bppRgb555 16 bits per pixel; 5 bits each are used for red, green, and blue. The last bit is not used.

Format16bppRgb565 16 bits per pixel; 5 bits are used for red, 6 bits for green, and 5 bits for blue.

Format24bppRgb 24 bits per pixel; 8 bits each are used for red, green, and blue.

Format32bppArgb 32 bits per pixel; 8 bits each are used for alpha, red, green, and blue. This is the default GDI+ color combination.

Format32bppPArgb 32 bits per pixel; 8 bits each are used for alpha, red, green, and blue. The red, green, and blue components are 

premultiplied according to the alpha component.

Format32bppRgb 32 bits per pixel; 8 bits each are used for red, green, and blue. The last 8 bits are not used.

Format48bppRgb 48 bits per pixel; 16 bits each are used for red, green, and blue.

Format64bppArgb 64 bits per pixel; 16 bits each are used for alpha, red, green, and blue.

Format64bppPArgb 64 bits per pixel; 16 bits each are used for alpha, red, green, and blue. The red, green, and blue components are 

premultiplied according to the alpha component.

Gdi GDI colors.

Indexed Color-indexed values, which are an index to colors in the system color table, as opposed to individual color values.

Max The maximum value for this enumeration.

PAlpha The format contains premultiplied alpha values.

Undefined The format is undefined.

Listing 8.1 Using SetPixel to change the color scale of a bitmap

// Create a Graphics object from a button

// or menu click event handler

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Bitmap object

Bitmap curBitmap = new Bitmap("roses.jpg");

// Draw bitmap in its original color

g.DrawImage(curBitmap, 0, 0, curBitmap.Width,

curBitmap.Height);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



// Set each pixel to grayscale using GetPixel

// and SetPixel

for (int i = 0; i < curBitmap.Width; i++)

{

    for (int j = 0; j < curBitmap.Height; j++)

    {

        Color curColor = curBitmap.GetPixel(i, j);

        int ret = (curColor.R + curColor.G + curColor.B) / 3;

            curBitmap.SetPixel(i, j,

            Color.FromArgb(ret, ret, ret));

    }

}

// Draw bitmap again with gray settings

g.DrawImage(curBitmap, 0, 0, curBitmap.Width,

    curBitmap.Height);

// Dispose of object

g.Dispose();

8.1.2 Using BitmapData to Change Pixel Format

In the previous section we discussed how to set the pixel format of a bitmap by reading pixels one by one. You can also set the pixel format 

by using the BitmapData class and its members.

The BitmapData object specifies the attributes of a bitmap, including size, pixel format, starting address of the pixel data in memory, and 

length of each scan line (stride). These properties are described in Table 8.3. All of the properties have both get and set types.

Now let's set the color of pixels in a bitmap by using LockBits and UnlockBits. This approach is faster than using the SetPixel method. Listing 

8.2 uses LockBits and UnlockBits to set a bitmap pixel format. First we create an Image object from a file, followed by a Bitmap object from the 

Image object. Then we call LockBits, which returns a BitmapData object. Next we call PixelFormat to set the pixel format. You can use any of 

the PixelFormat enumeration values. Finally, we call UnlockBits to unlock the locked bits. Notice that the lockedRect rectangle in the LockBits

method is the size of the bitmap.

Listing 8.2 Using LockBits and UnlockBits to set the grayscale of a bitmap

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    Image img = Image.FromFile("roses.jpg");

    Bitmap curImage =

          new Rectangle(0,0,curImage.Width,curImage.Height);

     Rectangle lockedRect =

        new Rectangle(0, 0, curImage.Width, curImage.Height);

    BitmapData bmpData = curImage.LockBits(lockedRect,

        ImageLockMode.ReadWrite,

        PixelFormat.Format24bppRgb);

    // Set the format of BitmapData pixels

    bmpData.PixelFormat = PixelFormat.Max;

    // Unlock the locked bits

    curImage.UnlockBits(bmpData);

    // Draw image with new pixel format

    e.Graphics.DrawImage(curImage, 0, 0,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        curImage.Width, curImage.Height);

}

Table 8.3. BitmapData properties

Property Description

Height Represents the pixel height.

PixelFormat Represents the format of the pixels using the PixelFormat enumeration.

Scan0 Represents the address of the first pixel data in the bitmap.

Stride Represents stride (also called scan width).

Width Represents the pixel width.

Figure 8.1 shows the output from Listing 8.2. The entire bitmap is grayscale.

Figure 8.1. Using BitmapData to set grayscale

If a bitmap is huge and we want to change the format of only a few pixels, LockBits and UnlockBits really help. Using these methods, we can 

lock and render only the part of a bitmap we want to work on instead of rendering the entire bitmap. Suppose we want to change the pixel 

format of only the section of the bitmap starting at point (50, 50) and ending at point (200, 200). We simply change the rectangle passed to 

LockBits.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Listing 8.3 locks only that portion of the image specified by a rectangle.

Listing 8.3 Changing the pixel format of a partial bitmap

private void Form1_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    Image img = Image.FromFile("roses.jpg");

    Bitmap curImage =

        new Bitmap(img, new Size(img.Width, img.Height));

    // Call LockBits, which returns a BitmapData object

    Rectangle lockedRect = new Rectangle(50,50,200,200);

    /* Rectangle lockedRect =

        new Rectangle(0,0,curImage.Width,curImage.Height);

        */

    BitmapData bmpData = curImage.LockBits(lockedRect,

        ImageLockMode.ReadWrite,

        PixelFormat.Format24bppRgb);

    // Set the format of BitmapData pixels

    bmpData.PixelFormat = PixelFormat.Max;

    // Unlock the locked bits

    curImage.UnlockBits(bmpData);

    // Draw image with new pixel format

    e.Graphics.DrawImage(curImage, 0, 0,

        curImage.Width, curImage.Height);

}

Figure 8.2 shows the output from Listing 8.3. You may not see any difference between this illustration and Figure 8.1, but if you run the sample 

code yourself, you will notice that the color of only a small rectangle in the image is changed.

Figure 8.2. Changing the pixel format of a partial bitmap

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



GetPixel/SetPixel versus LockBits/UnlockBits

Comparing the two samples used in Listings 8.1 and 8.2 shows that the LockBits/UnlockBits method is significantly faster than 

the GetPixel/SetPixel method. To draw the same image, the GetPixel/SetPixel method takes about 150 milliseconds, and the 

LockBits/UnlockBits method takes about 50 milliseconds.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

8.2 Working with Metafiles

Metafiles contain information about how an image was created—including lists of graphics operations—rather than storing the image in pixel

format. Graphics operations in a metafile are stored as records, which can be controlled (recorded and played back) individually.

The Metafile class provides functionality to work with different metafile formats including Windows Metafile Format (WMF), Enhanced Metafile 

Format (EMF), and an extension to Enhanced Metafile Format (EMF+). The Metafile class provides about 40 overloaded forms of its 

constructor.

Loading and viewing a metafile is similar to viewing a bitmap. An application can load a metafile from a stream, string, or IntPtr instance with 

different formats and locations. The simplest way to load and view a metafile is to pass the file name in the Metafile constructor and call 

DrawImage.

GDI+ and Metafiles

Even though GDI+ is capable of reading both WMF and EMF files, it creates only EMF files. EMF files that contain GDI+ 

records are called EMF+ files.

The Metafile class is derived from the Image class and has no methods and properties besides those inherited from the Image class.

Let's create an application to test metafile functionality. We will create a Windows application and add a MainMenu control to the form. Then 

we'll add a menu item to MainMenu to test the code in this and subsequent sections.

As Listing 8.4 shows, first we create a Graphics object using this.CreateGraphics. Then we create a Metafile object from a file and use 

DrawImage to view it.

Listing 8.4 Viewing a metafile

private void ViewFile_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Metafile object from a file name

    Metafile curMetafile = new Metafile("mtfile.wmf");

    // Draw metafile using DrawImage

    g.DrawImage(curMetafile, 0, 0) ;

    // Dispose of object

    g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 8.3 shows the output from Listing 8.4.

Figure 8.3. Viewing a metafile

8.2.1 Metafile Class Method

As mentioned already, the Metafile class provides a long list of overloaded constructors. It also provides three methods: GetHenhmetafile, 

GetMetafileHeader, and PlayRecord.

GetHenhmetafile returns a window handle to a metafile. GetMetafileheader, which has five overloaded forms, returns a metafile header in the 

form of a MetafileHeader object. PlayRecord plays (reads and displays) an extended metafile.

8.2.2 Creating Metafiles Programmatically

The Metafile object can create a metafile programmatically. Three simple steps are required to create a metafile:

Creating a Metafile object with a file name1.

Using FromImage to create a Graphics object from the Metafile object2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Adding graphics lines and shapes3.

Now let's create a metafile programmatically. In Listing 8.5 we use GetHdc to get the handle to a device context (HDC), and we use this 

handle to create a metafile called newFile.wmf. After creating the metafile, we use the FillRectangle, FillEllipse, and DrawString methods to add 

a rectangle, an ellipse, and a string, respectively. Calling these methods adds records describing the respective objects to the metafile. 

Finally, we release the objects.

Listing 8.5 Creating a metafile

private void CreateMetaFile_Click(object sender,

    System.EventArgs e)

{

    Metafile curMetafile = null;

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    // Get HDC

    IntPtr hdc = g.GetHdc();

    // Create a rectangle

    Rectangle rect = new Rectangle(0, 0, 200, 200);

    // Use HDC to create a metafile with a name

    try

    {

        curMetafile =

            new Metafile("newFile.wmf", hdc);

    }

    catch(Exception exp)

    {

        MessageBox.Show(exp.Message);

        g.ReleaseHdc(hdc);

        g.Dispose();

        return;

    }

    // Create a Graphics object from the Metafile object

    Graphics g1 = Graphics.FromImage(curMetafile);

    // Set smoothing mode

    g1.SmoothingMode = SmoothingMode.HighQuality;

    // Fill a rectangle on the Metafile object

    g1.FillRectangle(Brushes.Green, rect);

    rect.Y += 110;

    // Draw an ellipse on the Metafile object

    LinearGradientBrush lgBrush =

        new LinearGradientBrush(

        rect, Color.Red, Color.Blue, 45.0f);

    g1.FillEllipse(lgBrush, rect);

    // Draw text on the Metafile object

    rect.Y += 110;

    g1.DrawString("MetaFile Sample",

        new Font("Verdana", 20),

        lgBrush, 200, 200,

        StringFormat.GenericTypographic);

    // Release objects

    g.ReleaseHdc(hdc);

    g1.Dispose();

    g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Running the code in Listing 8.5 will create a new metafile in your application's folder. Figure 8.4 shows the image described by the metafile.

Figure 8.4. A metafile created programmatically

As mentioned earlier, after creating a metafile, you can view it as you would any other image, using the DrawImage method of the Graphics

class.

Tip

Using the same approach, you can easily create a metafile editor similar to GDI+Painter, in which you can draw graphics 

objects and save them as metafiles. You can even change the GDI+Painter application code to do so.

8.2.3 Enhanced Metafiles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Using enhanced metafiles, you can add personalized data to a metafile as defined in the MSDN documentation:

The enhanced Windows metafile (EMF) format contains a comment mechanism for embedding data within the 

metafile. This comment mechanism is used to embed GDI+ records within an EMF file. Applications that cannot read 

or recognize the comment data skip the comment records and render the records they do understand. If the EMF+ file 

is played back by GDI+, then the GDI+ records are used to render the metafile; otherwise, the GDI records (if present) 

are used.

There are three types of EMFs: EMF only, EMF+ dual, and EMF+ only. The EmfType enumeration is used to find out the type of EMF 

programmatically. This enumeration provides three members: EmfOnly, EmfPlusDual, and EmfPlusOnly. The EmfOnly and EmfPlusDual

types of records can be played by both GDI and GDI+; EmfPlusOnly types of records can be played only by GDI+.

You can use the Metafile object constructors to specify the type of EMF you want to create. The following code creates an EMF+ dual metafile:

Metafile curMetafile =

new Metafile(hdc, EmfType.EmfPlusDual,

"emfPlusDual.emf");

8.2.4 How Metafiles Work

The EnumerateMetafile method can be used to read and play back records of a metafile one by one. Each record is sent to 

Graphics.EnumerateMetafileProc, which is used to read the data for a record. This method has many overloaded forms.

Graphics.EnumerateMetafileProc takes five parameters and is defined as follows:

public delegate bool Graphics.EnumerateMetafileProc(

   EmfPlusRecordType recordType,

   int flags,

   int dataSize,

   IntPtr data,

   PlayRecordCallback callbackData

);

GDI/GDI+ Record

Each metafile record describes a command that is capable of drawing, filling, or changing the graphics state of a surface. For 

example, clearing a graphics object, drawing a rectangle, filling an ellipse, creating a graphics container, and ending a 

graphics container are all examples of records. After creating a metafile programmatically, if you call DrawRectangle, one 

record will be added to the metafile. When you play back the metafile, GDI+ reads the record (DrawRectangle) and draws a 

rectangle.

The EmfPlusRecordType enumeration defines the available metafile record types.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Whereas recordType is of type EmfPlusRecordType enumeration and specifies the type of metafile, the flags parameter is a set of flags that 

specify attributes of the record. The dataSize parameter represents the number of bytes in the record data, and data is an array of bytes that 

contains the record data. The callbackData parameter is a PlayRecordCallback delegate supplied by the .NET Framework to play a record of 

metafile data.

Listing 8.6 reads records from a metafile and displays data for these records individually. In the EnumMetaCB callback, we check whether the 

record type is FillEllipse, FillRects, DrawEllipse, or DrawRects and display the corresponding data.

Listing 8.6 Reading metafile records

private void EnumerateMetaFile_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Metafile object from a file

    Metafile curMetafile = new Metafile("mtfile.wmf");

    // Set EnumerateMetafileProc property

    Graphics.EnumerateMetafileProc enumMetaCB =

        new Graphics.EnumerateMetafileProc(EnumMetaCB);

    // Enumerate metafile

    g.EnumerateMetafile(curMetafile,

        new Point(0, 0), enumMetaCB);

    // Dispose of objects

    curMetafile.Dispose();

    g.Dispose();

}

private bool EnumMetaCB(EmfPlusRecordType recordType,

    int flags, int dataSize,

    IntPtr data, PlayRecordCallback callbackData)

{

    string str = "";

    // Play only EmfPlusRecordType.FillEllipse records

    if (recordType == EmfPlusRecordType.FillEllipse

        || recordType == EmfPlusRecordType.FillRects

        || recordType == EmfPlusRecordType.DrawEllipse

        || recordType == EmfPlusRecordType.DrawRects )

    {

        str = "Record type:"+ recordType.ToString()+

            ", Flags:"+ flags.ToString()+

            ", DataSize:"+ dataSize.ToString()+

            ", Data:"+data.ToString() ;

        MessageBox.Show(str);

    }

    return true;

}

Figure 8.5 shows the output from Listing 8.6. Our program displays the record type, flag, data size, and data. The record in this example 

contains only FillRectangle methods. If more records are used to create a metafile, you will see messages for the various record types.

Figure 8.5. Reading metafile records

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



8.2.5 Reading a Metafile Header

A metafile header contains attributes such as type, size, and version of a metafile. It is represented by the MetafileHeader class. 

GetMetafileHeader returns a metafile header and has many overloaded methods.

The MetafileHeader class has the eight methods listed in Table 8.4.

Table 8.4. MetafileHeader methods

Method Description

IsDisplay Returns true if a metafile is device-dependent.

IsEmf Returns true if a metafile is in the Windows EMF format.

IsEmfOrEmfPlus Returns true if a metafile is in the Windows EMF or EMF+ format.

IsEmfPlus Returns true if a metafile is in the Windows EMF+ format.

IsEmfPlusDual Returns true if a metafile is in the dual EMF format, which supports both the enhanced and the enhanced plus format.

IsEmfPlusOnly Returns true if a metafile supports only the Windows EMF+ format.

IsWmf Returns true if a metafile is in the Windows WMF format.

IsWmfPlaceable Returns true if a metafile is in the Windows placeable WMF format.

Properties of the MetafileHeader class represent various attributes of metafiles, including size, version, and type, as Table 8.5 shows. All of 

these properties are read-only.

Reading metafile attributes is simple: Create a Metafile object, get its header attributes using GetMetafileHeader, and display the value of 

these attributes in a message box. Listing 8.7 reads metafile header attributes, including type, bounds, size, and version.

Listing 8.7 Reading metafile header attributes

private void MetafileHeaderInfo_Click(object sender,

    System.EventArgs e)

{

    // Create a Metafile object

    Metafile curMetafile = new Metafile("mtfile.wmf");

    // Get metafile header

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    MetafileHeader header = curMetafile.GetMetafileHeader();

    // Read metafile header attributes

    string mfAttributes = "";

    mfAttributes += "Type :"+ header.Type.ToString();

    mfAttributes += ", Bounds:"+ header.Bounds.ToString();

    mfAttributes += ", Size:"+ header.MetafileSize.ToString();

    mfAttributes += ", Version:"+ header.Version.ToString();

    // Display message box

    MessageBox.Show(mfAttributes);

    // Dispose of object

    curMetafile.Dispose();

}

Table 8.5. MetafileHeader properties

Property Description

Bounds Gets the bounds of a metafile in the form of a rectangle.

DpiX Gets the horizontal resolution, in dots per inch, of a metafile in the form of a rectangle.

DpiY Gets the vertical resolution, in dots per inch, of a metafile in the form of a rectangle.

EmfPlusHeaderSize Gets the size, in bytes, of an enhanced metafile plus header file.

LogicalDpiX Gets the logical horizontal resolution, in dots per inch, of a metafile.

LogicalDpiY Gets the logical vertical resolution, in dots per inch, of a metafile.

MetafileSize Gets the size, in bytes, of a metafile.

Type Gets the type of a metafile.

Version Gets the version number of a metafile.

WmfHeader Gets the WMF header of a metafile.

Figure 8.6 shows the output from Listing 8.7.

Figure 8.6. Reading metafile header attributes

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

8.3 Color Mapping Using Color Objects

The System.Drawing.Imaging namespace provides three color objects that can be used to apply color mappings to images. These three 

objects are ColorMap, ColorMatrix, and ColorPalette. In this section we will discuss the use and importance of these objects.

8.3.1 The Color Remap Table

A color remap table is used to convert the existing colors of an image to new colors by applying a color mapping to them. The ColorMap class 

represents a color remap table. It defines the mapping between existing colors and the new colors to which they will be converted. When the 

map is applied to an image, any pixel of the old color is converted to the new color.

The ColorMap class has only two properties—NewColor and OldColor—both of type Color. OldColor represents an existing color, and 

NewColor represents the new color to which the existing color will be converted.

A color map is applied to an image through the ImageAttributes parameter of DrawImage. The ImageAttributes class provides the 

SetRemapTable method, which is used to apply a ColorMap object array to the image attributes.

Note

Each ColorMap object maps a single color. To map multiple colors, you must create multiple ColorMap objects.

To see ColorMap in action, we create a Windows application and add a MainMenu control to the form. We also add three menu items to the 

main menu and use their menu item click event handlers to test our code.

Listing 8.8 gives code for the ColorMap menu click event handler. As usual, we create Graphics and Image objects. We will map the red, 

yellow, and blue colors to green, navy, and aqua, respectively. We create three ColorMap objects and a ColorMap array from these objects, 

and we set their OldColor and NewColor properties to the desired colors. Then we create an ImageAttributes object and apply the ColorMap

array to it by calling the SetRemapTable method. After that the ImageAttributes object is used as a parameter of DrawImage.

Listing 8.8 Applying the color remap table

private void ColorMap_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    g.Clear(this.BackColor);

    // Create an Image object

    Image image = new Bitmap("Sample.bmp");

    // Create ImageAttributes

    ImageAttributes imageAttributes =

        new ImageAttributes();

    // Create three ColorMap objects

    ColorMap colorMap1 = new ColorMap();

    ColorMap colorMap2 = new ColorMap();

    ColorMap colorMap3 = new ColorMap();

    // Set the ColorMap objects' properties

    colorMap1.OldColor = Color.Red;

    colorMap1.NewColor = Color.Green;

    colorMap2.OldColor = Color.Yellow;

    colorMap2.NewColor = Color.Navy;

    colorMap3.OldColor = Color.Blue;

    colorMap3.NewColor = Color.Aqua;

    // Create an array of ColorMap objects

    // because SetRemapTable takes an array

    ColorMap[] remapTable =

    {

        colorMap1,

        colorMap2,

        colorMap3

    };

    imageAttributes.SetRemapTable(remapTable,

        ColorAdjustType.Bitmap);

    // Draw image

    g.DrawImage(image, 10, 10, image.Width, image.Height);

    // Draw image with color map

    g.DrawImage(

        image,

        new Rectangle(150, 10, image.Width, image.Height),

        0, 0, image.Width, image.Height,

        GraphicsUnit.Pixel,

        imageAttributes);

    // Dispose of objects

    image.Dispose();

    g.Dispose();

}

Figure 8.7 shows the output from Listing 8.8. The original image is on the left; the image on the right shows remapped colors. On your system 

you will notice that the red, yellow, and blue colors are converted to green, navy, and aqua.

Figure 8.7. Applying a color remap table

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



8.3.2 The Color Matrix

The ColorMatrix class defines a 5x5 matrix that contains coordinates for the ARGB (alpha, red, green, and blue) space (from 0,0 to 4,4). The 

Item property of this class represents a cell of the matrix and can be used to get and set cell values. Besides the Item property, the ColorMatrix

class provides 25 MatrixXY properties, which represent items of the matrix at the xth row and yth column. The MatrixXY properties can be 

used to get and set item values.

You can use an array of points to initialize a ColorMatrix object, or you can assign values directly to the ColorMatrix properties. The following 

code snippet creates an array of points that is used as an argument to the ColorMatrix constructor, and then sets the values of Matrix34 and 

Matrix11.

float[][] ptsArray ={

   new float[] {1, 0, 0, 0, 0},

   new float[] {0, 1, 0, 0, 0},

   new float[] {0, 0, 1, 0, 0},

   new float[] {0, 0, 0, 0.5f, 0},

   new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

if( clrMatrix.Matrix34 <= 0.5) //3rd row, 4th col

{

  clrMatrix.Matrix34 = 0.8f;

  clrMatrix.Matrix11 = 0.3f; //1st row, 1st col

}

The SetColorMatrix method of the ImageAttributes class uses a color matrix. We will see how to use a color matrix in your applications in the 

sample applications that follow. Chapter 10 discusses ColorMatrix in more detail.

8.3.3 The Color Palette

A color palette defines an array of colors that make up a color palette. The colors in the palette are limited to 32-bit ARGB colors (8 bits each 

for the alpha, red, green, and blue components). The color palette can be used to increase the color intensity without increasing the number 

of colors used. This process creates a halftone, and it offers increased contrast at a cost of decreased resolution.

The ColorPalette class defines an array of colors that make up a color palette. This class has only two properties: Entries and Flags. The 

Entries property returns an array of colors, and the Flags property represents how the color information is interpreted. Table 8.6 lists valid 

values for the Flags property.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 8.6. ColorPalette.Flags values

Value Description

0x00000001 The color values in the array contain alpha information.

0x00000002 The colors in the array are grayscale values.

0x00000004 The colors in the array are halftone values.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

8.4 Image Attributes and the ImageAttributes Class

Images represented by the Image class and its inherited classes can also store attributes. The ImageAttributes class represents the attributes 

of an image. DrawImage can take a parameter of type ImageAttributes, which represents how the colors are applied to an image when it is 

rendered. The ImageAttributes class has no properties, but it provides many useful methods. Let's take a look at the methods provided by the 

ImageAttributes class.

8.4.1 The SetWrapMode Method

Sometimes we need to fill a graphics shape with a texture that's smaller or larger than the graphics shape. The wrap mode—represented by

the WrapMode enumeration—specifies how a texture is tiled when it is larger or smaller than the area being filled. The members of the

WrapMode enumeration are described in Table 8.7.

SetWrapMode is used to set the wrap mode of a texture or gradient. This method takes three parameters: a wrap mode (WrapMode), a color 

(Color), and a clamp (Boolean). The last two parameters are optional. If the clamp value is true, the texture will be clamped to the image 

boundary; otherwise there is no clamping.

Listing 8.9 uses this method. First we create an ImageAttributes object and set the wrap mode using SetWrapMode. Then we create an Image

object using FromFile, followed by a call to DrawImage with an argument of the ImageAttributes object. DrawImage draws an image on the 

form, rendered using the colors defined by ImageAttributes.

Table 8.7. WrapMode members

Member Description

Clamp Clamps the texture or gradient to the object boundary.

Tile Tiles the gradient or texture.

TileFlipX Reverses the texture or gradient horizontally and then tiles it.

TileFlipXY Reverses the texture or gradient horizontally and vertically and then tiles it.

TileFlipY Reverses the texture or gradient vertically and then tiles it.

Listing 8.9 Using the SetWrapMode method of ImageAttributes

private void SetWrapMode_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    g.Clear(this.BackColor);

    // Create ImageAttributes object

    ImageAttributes ImgAttr = new ImageAttributes();

    // Set wrap mode to tile

    ImgAttr.SetWrapMode(WrapMode.Tile);

    // Create an image

    Image curImage = Image.FromFile("dnWatcher.gif");

    // Draw image

    Rectangle rect = new Rectangle(0, 0, 400, 400);

    g.DrawImage(curImage, rect, 0, 0, 400, 400,

        GraphicsUnit.Pixel, ImgAttr);

    // Dispose of object

    g.Dispose();

}

Figure 8.8 shows the output from Listing 8.9. If the image is smaller than the surface, images are wrapped.

Figure 8.8. Wrapping images

Note

The WrapMode enumeration is defined in the System.Drawing.Drawing2D namespace. Don't forget to add the namespace 

reference to the project.

8.4.2 The SetGamma Method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The SetGamma method sets the gamma value, which represents the brightness of a graphics shape, for all graphics objects, including 

images, brushes, and pens. Gamma values range from 0.1 to 5.0 (normally 0.1 to 2.2), with 0.1 being the brightest and 5.0 the darkest.

This method takes a floating type parameter as gamma value and a second optional parameter of the ColorAdjustType enumeration type. 

Using the ColorAdjustType enumeration from the Imaging namespace, you can even specify which GDI+ objects use this color adjustment. 

For example, if you want to apply gamma values on text only, you can do so using ColorAdjustType.Text, which is described in Table 8.8. The 

following code snippet sets the gamma value of ImageAttributes.

ImageAttributes ImgAttr = new ImageAttributes();

imageAttr.SetGamma(2.0f, ColorAdjustType.Default);

Now you can use this ImageAttributes object as a parameter of the DrawImage method.

8.4.3 The SetColorMatrix Method

A color matrix represents how colors are represented in an Image object. As we saw in Section 8.3.2, the ColorMatrix object represents a 

color matrix. SetColorMatrix applies a color matrix to an image. This method takes a parameter of the ColorMatrix class, with two optional 

parameters of ColorMatrixFlag and ColorAdjustType enumerations.

Table 8.8. ColorAdjustType members

Member Description

Any Reserved

Bitmap For Bitmap objects only

Brush For Brush objects only

Count The number of types specified (used internally by GDI+)

Default For all objects that do no have their own color adjustment information

Pen For Pen objects only

Text For text only

Often we don't want all graphics objects to be affected by a color adjustment. Suppose we have some graphics shapes, an image, and some 

text, and we want only the image to be affected by the color adjustment specified by the SetColorMatrix method. The ColorAdjustType

enumeration allows us to specify which graphics objects use the color adjustment information. Table 8.8 describes the members of the 

ColorAdjustType enumeration.

ColorMatrixFlag specifies the types of images and colors that will be affected by the color adjustment settings. The ColorMatrixFlag

enumeration has three members: AltGrays, Default, and SkipGrays. AltGrays is not available for use except by the .NET Framework 

internally, so basically ColorMatrixFlag provides the option of affecting gray colors or not. The Default value means that all colors will be 

affected; SkipGrays means that gray shades will not be affected. (You may want to skip some of the gray shades that are used when you're 

smoothing images.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



In Listing 8.10 we create ColorMatrix and ImageAttributes objects. Then we call SetColorMatrix to add a color matrix to 

ImageAttributes.ImageAttributes.SetColorMatrix takes ColorMatrix as its first argument.

Listing 8.10 Drawing semitransparent images

private void SetColorMatrix_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    Rectangle rect = new Rectangle(20, 20, 200, 100);

    Bitmap bitmap = new Bitmap("MyPhoto.jpg");

    // Create an array of matrix points

    float[][] ptsArray =

    {

        new float[] {1, 0, 0, 0, 0},

        new float[] {0, 1, 0, 0, 0},

        new float[] {0, 0, 1, 0, 0},

        new float[] {0, 0, 0, 0.5f, 0},

        new float[] {0, 0, 0, 0, 1}

    };

    // Create a color matrix

    ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

    // Set ColorMatrix properties

    if( clrMatrix.Matrix34 <= 0.5)

    {

        clrMatrix.Matrix34 = 0.8f;

        clrMatrix.Matrix11 = 0.3f;

    }

    // Create image attributes

    ImageAttributes imgAttributes = new ImageAttributes();

    // Set color matrix

    imgAttributes.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Bitmap);

    g.FillRectangle(Brushes.Red, rect);

    rect.Y += 120;

    g.FillEllipse(Brushes.Black, rect);

    // Draw image

    g.DrawImage(bitmap,

        new Rectangle(0, 0, bitmap.Width, bitmap.Height),

        0, 0, bitmap.Width, bitmap.Height,

        GraphicsUnit.Pixel, imgAttributes);

    // Dispose of object

    g.Dispose();

}

Figure 8.9 shows the output from Listing 8.10. A rectangle and a circle are drawn, and then an image with lower color resolution, as specified 

by ImageAttributes.

Figure 8.9. Drawing semitransparent images

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



8.4.4 The SetNoOp and SetColorKey Methods

The SetNoOp method sets the NoOp correction value for Graphics objects. When NoOp is set, no adjustments to the color will be made during 

the rendering process.

SetColorKey sets the low and high color values for graphics objects and shapes. The SetColorKey method takes a parameter of type 

ColorAdjustType enumeration (see Table 8.8) that specifies the type of the graphics objects and shapes to be affected by SetColorKey.

Listing 8.11 applies gamma effect and sets color key values using the SetColorKey method.

Listing 8.11 Applying SetGamma and SetColorKey

private void SetNoOp_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create two colors

    Color lClr = Color.FromArgb(245,0,0);

    Color uClr = Color.FromArgb(255,0,0);

    // Create ImageAttributes object

    ImageAttributes ImgAttr = new ImageAttributes();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Set color key

    ImgAttr.SetColorKey(lClr, uClr,

        ColorAdjustType.Default);

    // Set gamma

    ImgAttr.SetGamma(2.0f, ColorAdjustType.Default);

    // Set NoOp

    // ImgAttr.SetNoOp(ColorAdjustType.Default);

    // Create an Image object

    Image curImage = Image.FromFile("dnWatcher.gif");

    // Draw image

    Rectangle rect = new Rectangle(0, 0, 400, 400);

    g.DrawImage(curImage, rect, 0, 0, 400, 400,

        GraphicsUnit.Pixel, ImgAttr);

    // Dispose of object

    g.Dispose();

}

Figure 8.10 shows the output from Listing 8.11.

Figure 8.10. Applying SetGamma and SetColorKey

Now if we uncomment the following line in Listing 8.11:

//ImgAttr.SetNoOp(ColorAdjustType.Default);

the output will look like Figure 8.11. Using SetNoOp cancels all image attribute effects.

Figure 8.11. Using the SetNoOp method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



8.4.5 The SetThreshold Method

The SetThreshold method sets the transparency range (threshold) for a specified category. This method takes one parameter representing a 

threshold value ranging between 0.0 and 1.0, and an optional second parameter of type ColorAdjustType. The value of the threshold 

specifies a cutoff point for each component of color. For example, suppose that the threshold is set to 0.8 and the value of the red component 

is 240. Because the value of the red component (240) is greater than 0.8, the red component will be changed to 255 (full intensity).

imageAttr.SetThreshold(0.8f, ColorAdjustType.Default);

8.4.6 The SetBrushRemapTable Method

We have already discussed how the SetRemapTable method sets a remap table to the specified ColorMap object. The OldColor and 

NewColor properties of ColorMap represent old and new colors, respectively. SetBrushRemapTable converts only the colors of brushes. The 

ColorMap class also provides both OldColor and NewColor properties.

Listing 8.12 creates a ColorMap object, sets its OldColor and NewColor properties, and then calls SetBrushRemapTable with the ColorMap

object.

Listing 8.12 Using SetBrushRemapTable

private void SetBrushRemapTable_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    ColorMap[] clrMapTable = new ColorMap[1];

    clrMapTable[0] = new ColorMap();

    clrMapTable[0].OldColor = Color.Red;;

    clrMapTable[0].NewColor = Color.Green;

    ImageAttributes ImgAttr = new ImageAttributes();

    ImgAttr.SetBrushRemapTable(clrMapTable);

    Image curImage = Image.FromFile("Sample.bmp");

    g.DrawImage(curImage, 0, 0);

    Rectangle rect = new Rectangle(0, 0, 400, 400);

    g.DrawImage(curImage, rect, 0, 0, 400, 400,

        GraphicsUnit.Pixel, ImgAttr);

    // Dispose of object

    g.Dispose();

}

8.4.7 The Clear Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The ImageAttributes class provides a "clear" method for almost every set method we have discussed in this section. The clear methods take 

either no parameter or an optional parameter of ColorAdjustType enumeration. These clear methods are listed in Table 8.9.

Table 8.9. The clear methods of ImageAttributes

Method Description

ClearBrushRemapTable Clears color remap table for brush.

ClearColorKey Clears color key values for the graphics objects specified by the ColorAdjustType enumeration.

ClearColorMatrix Clears color adjust matrix to all zeros.

ClearGamma Clears gamma effect for the graphics objects specified by the ColorAdjustType enumeration.

ClearNoOp Clears NoOp setting for all graphics objects.

ClearOutputChannel Clears output channel selection for graphics objects specified by the ColorAdjustType enumeration.

ClearOutputChannelColorProfile Clears output channel selection and color profile file for graphics objects specified by the 

ColorAdjustType enumeration.

ClearRemapTable Clears color remap table for graphics objects specified by the ColorAdjustType enumeration.

ClearThreshold Clears threshold value for graphics objects specified by the ColorAdjustType enumeration.

Suppose that we wanted to clear the color key values for all graphics objects. We would use the ClearColorKey method as follows:

imageAttr.ClearColorKey(ColorAdjustType.Default);

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

8.5 Encoder Parameters and Image Formats

In Chapter 7 we discussed how the Save method of the Image class can be used to save images in different formats. This is what our code in 

Chapter 7 looked like to save an image as a TIFF file:

curImage.Save(fileName, ImageFormat.Tiff);

In fact, the Save method does much more than just save an image in different formats. An overloaded Save method can take an argument of 

type EncoderParameters, which represents an encoder. An encoder is responsible for converting a file from one format to another, and a 

decoder reverses it. The encoder is responsible for saving an image to a format defined by codec parameters.

Two forms of the Save method with EncoderParameters are

public void Save(Stream, ImageCodecInfo, EncoderParameters);

public void Save(string, ImageCodecInfo, EncoderParameters);

Another method is SaveAdd. This method adds information to an Image object. EncoderParameters determines how the new information is 

incorporated into the existing image.

The SaveAdd method has two overloaded forms. The first form adds a frame to the file or stream specified in a previous call to the Save

method. This method can be used to save selected frames from a multiple-frame image to another multiple-frame image.

public void SaveAdd(EncoderParameters);

The second form, which takes two parameters (Image and EncoderParameters) adds a frame to the file or stream specified in a previous call 

to the Save method.

public void SaveAdd(Image, EncoderParameters);

8.5.1 The Encoder, EncoderCollection, and Image Relationship

Unfortunately, mostly because of inadequate documentation and samples in MSDN, it is a little difficult to understand how encoder and 

decoder parameters relate to images. To help clear this up, look at Figure 8.12, which shows how the different elements relate to each other.

Figure 8.12. The relationship among Encoder, EncoderCollection, and Image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As you can see, the Save method of the Image class consumes EncoderParameters, which is a collection of type EncoderParameter. An 

EncoderParameter object represents an encoder. We use the Encoder property to attach an Encoder object to the EncoderParameter object.

8.5.2 The Encoder and EncoderParameter Classes

An Encoder object encapsulates a globally unique identifier (GUID) that identifies the category of an image encoder parameter represented by 

EncoderParameter. This Encoder object is attached to an EncoderParameter object through its Encoder property.

An Encoder object is created by use of the Encoder class constructor, which takes one parameter of type Guid.

The Encoder class provides one property, Guid, and a set of static fields, which represent the encoder properties. The Guid property of the 

Encoder class returns a GUID attached to an encoder. Table 8.10 describes the fields.

EncoderParameter represents an array of values that is used to pass values to an image encoder. The EncoderParameter constructor takes 

an argument of Encoder object type. Table 8.11 describes the properties of the EncoderParameter class.

The EncoderParameters class represents an array of EncoderParameter objects. You will have to create an EncoderParameters object 

because the Save and SaveAdd methods take a parameter of type EncoderParameters.

Suppose that you want to save a JPEG file to a TIFF file with 24-bit compression. In Listing 8.13 we first create an EncoderParameters object. 

Then we create an array of ImageCodecInfo objects, which provide members to retrieve information about installed image codecs, including 

the codec name, MIME type, format, version, and signature. The properties of the ImageCodecInfo class are listed in Table 8.12. All of these 

properties have both get and set types.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 8.10. Encoder fields

Field Description

ChrominanceTable Specifies chrominance table as the parameter category.

ColorDepth Specifies color depth as the parameter category.

Compression Specifies compression as the parameter category.

LuminanceTable Specifies luminance table as the parameter category.

Quality Specifies quality as the parameter category.

RenderMethod Specifies rendering method as the parameter category.

SaveFlag Specifies save flag as the parameter category.

ScanMethod Specifies scan method as the parameter category.

Transformation Specifies transformation as the parameter category.

Version Specifies version as the parameter category.

Table 8.11. EncoderParameter properties

Property Description

Encoder Represents an encoder associated with this encoder parameter. Both get and set types.

NumberOfValues Returns the number of elements in the array of values stored in an encoder parameter.

Type Returns the type of an encoder parameter.

ValueType Returns the data type of the values stored in an encoder parameter.

GDI+ provides several built-in image encoders and decoders. The ImageCodecInfo class provides two static methods: GetImageEncoders

and GetImageDecoders, which return the built-in GDI+ image encoders and decoders in an array of ImageCodecInfo objects.

MIME Types

MIME stands for "Multipurpose Internet Mail Extensions." It is a standard way of classifying file types on the Internet. By 

specifying a MIME type, applications can easily identify the type of file and can extract more information and attributes about a 

file. Here are some useful links to Web resources that provide information about MIME types:

http://www.mhonarc.org/~ehood/MIME/MIME.html

http://msdn.microsoft.com/library/default.asp?url=/workshop/networking/moniker/overview/appendix_a.asp

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.mhonarc.org/~ehood/MIME/MIME.html
http://www.msdn.microsoft.com/library/default.asp@url=_2Fworkshop_2Fnetworking_2Fmoniker_2Foverview_2Fappendix_a.asp
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types/default.htm
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types/default.htm


Table 8.12. ImageCodecInfo properties

Property Description

Clsid Returns the Guid structure that contains a GUID identifying a specific codec.

CodecName Returns a string containing the name of the codec.

DllName Returns a string containing the path name of the codec's DLL. If there is no DLL, returns null.

FilenameExtension Returns a string containing the file name extension(s) used by the codec. The extensions are separated by semicolons.

Flags Returns a 32-bit combination of flags from the ImageCodecFlags enumeration.

FormatDescription Returns a string describing the codec's file format.

FormatID Returns a Guid structure containing a GUID that identifies the codec's format.

MimeType Returns a string containing the codec's Multipurpose Internet Mail Extensions (MIME) type.

SignatureMasks Returns a two-dimensional array of bytes that can be used as a filter.

SignaturePatterns Returns a two-dimensional array of bytes representing the signature of the codec.

Version Returns the version number of the codec.

In Listing 8.13, after creating an EncoderParameters object, we use the Encoder and EncoderParameter objects to create three encoder 

parameters. These encoder parameters are responsible for changing image color depth, compression, and transformation. We use the 

Encoder class and set its ColorDepth property. Later the Encoder object is used as an argument to EncoderParameter, which subsequently is 

added to EncoderParameters. Then we also set the Transformation and Compression properties to CompressionLZW and 

TransformRotation180, respectively.

When we are done adding EncoderParameter objects to EncoderParameters, we call the Save method of Bitmap with the EncoderParameters

object. Our sample saves the bitmap to a TIFF file with 24 color depth, and LZW compression.

Listing 8.13 Saving an image with encoder properties

private void button1_Click(object sender,

    System.EventArgs e)

{

    ImageCodecInfo imgCodecInfo = null;

    Encoder encoder = null;

    EncoderParameter encoderParam = null;

    EncoderParameters encoderParams =

        new EncoderParameters(3);

    // Create a Bitmap object from a file

    Bitmap curBitmap = new Bitmap("roses.jpg");

    // Define mimeType

    string mimeType = "image/tiff";

    ImageCodecInfo[] encoders;

    encoders = ImageCodecInfo.GetImageEncoders();

    for(int i = 0; i < encoders.Length; ++i)

    {

        if(encoders[i].MimeType == mimeType)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



            imgCodecInfo = encoders[i];

    }

    // Set color depth to 24 pixels

    encoder = Encoder.ColorDepth;

    encoderParam = new EncoderParameter(encoder, 24L);

    encoderParams.Param[0] = encoderParam;

    // Set compression mode to LZW

    encoder = Encoder.Compression;

    encoderParam = new EncoderParameter(encoder,

        (long)EncoderValue.CompressionLZW);

    encoderParams.Param[1] = encoderParam;

    // Set transformation to 180 degrees

    encoder = Encoder.Transformation;

    encoderParam = new EncoderParameter(encoder,

        (long)EncoderValue.TransformRotate180);

    encoderParams.Param[2] = encoderParam;

    // Save file as a TIFF file

    curBitmap.Save("newFile.tif", imgCodecInfo,

        encoderParams);

    // Dispose of object

    curBitmap.Dispose();

}

8.5.3 Retrieving Information from Digital Images or Tagged Data of TIFF Files

The PropertyItems property of the Image class returns an array of PropertyItem objects, which describe the attributes of an image. Each 

instance of PropertyItem has four properties—Id, Len, Type, and Value—which represent the identifier, length, type, and value of the property,

respectively.

One common use of PropertyItem is to read the tagged data of TIFF files or the information from the JPEG images taken from a digital 

camera. Listing 8.14 opens a JPEG file and uses the Image.PropertyItems property to get an array of PropertyItem objects. After that we make 

a loop and read all property item IDs and values.

You can add this code to a button or a menu click event handler. Don't forget to add a reference to the System.Drawing.Imaging namespace.

Listing 8.14 Retrieving information from digital images

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

Image curImage = Image.FromFile("DSCF0105.JPG");

// Return an array of property items using

// Image's PropertyItems property

PropertyItem [] imgProperties = curImage.PropertyItems;

// Total items

string str = imgProperties.Length.ToString();

MessageBox.Show("Properties "+str);

// Read items and display in a message box

for (int i=0; i< imgProperties.Length; i++)

{

    str = string.Empty;

      str = "Id :"+imgProperties[i].Id.ToString();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    str += " ,Value:"

    +BitConverter.ToString(imgProperties[i].Value);

    MessageBox.Show(str);

}

// Dispose of object

g.Dispose();

8.5.4 Converting a Bitmap to Other Formats

Saving a bitmap as a PNG file or any another format is simple if we use ImageCodecInfo settings. We create an ImageCodecInfo object with 

MIME type image/png and use it as the second argument to the Save method of the Bitmap class. Listing 8.15 converts Shapes.bmp to 

Shape0.png.

Listing 8.15 Converting from JPEG to PNG

private void ConvertToPNG_Click(object sender,

    System.EventArgs e)

{

    ImageCodecInfo imgCodecInfo = null;

    // Create a bitmap from a file

    Bitmap curBitmap = new Bitmap("Shapes.bmp");

    int j;

    // Set MIME type. This defines the format of

    // the new file.

    string mimeType = "image/png";

    ImageCodecInfo[] encoders;

    // Get GDI+ built-in image encoders

    encoders = ImageCodecInfo.GetImageEncoders();

    // Compare with our MIME type and copy it to

    // ImageCodecInfo

    for(j = 0; j < encoders.Length; ++j)

    {

        if(encoders[j].MimeType == mimeType)

            imgCodecInfo = encoders[j];

    }

    // Save as PNG file

    curBitmap.Save("Shape0.png",

        imgCodecInfo, null);

    // Dispose of object

    curBitmap.Dispose();

}

Listing 8.15 will save Shapes.bmp to Shape0.png. You can save a file to other formats by changing the MIME type.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

SUMMARY

This chapter covered more advanced imaging concepts. We discussed the System.Drawing.Imaging namespace classes, their members, and 

how to use them. At the beginning of the chapter you learned how to set grayscale images using SetPixel, LockBits, and UnlockBits. In the 

same section we discussed how to set the color of a bitmap.

In the section covering the Metafile class and related functionality, you learned the metafile types supported by GDI+, how to create new 

metafiles, and how to read and enumerate existing metafiles. We also saw how to read metafile header information.

The Graphics class provides methods to set the attributes of images. We covered how to set the colors and other attributes of images using 

the color map table, color matrix, and color palette. In this section we saw some real-world applications, such as drawing transparent images, 

wrapping images, and setting gamma values of images.

This chapter also discussed how to use the Encoder, EncoderParameter, EncoderParameters, and ImageCodecInfo classes and their 

members to encode images. We discussed some real-world scenarios in which you may want to change the color depth and compression of 

images. We also learned how to read tagged data from TIFF files and how to convert among different image formats.

Chapter 9 will concentrate on the System.Drawing.Drawing2D namespace.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 9. Advanced 2D Graphics

In Chapters 7 and 8 we learned how to use advanced imaging functions of the Image, Bitmap, and other classes defined in the 

System.Drawing and System.Drawing.Imaging namespaces. In this chapter we will discuss advanced two-dimensional GDI+ programming. 

The .NET Framework library defines this functionality in a separate namespace: System.Drawing.Drawing2D. Among the advanced 2D 

techniques we will discuss are blending, matrices, graphics paths, and gradient brushes.

Note

Before using any class discussed in this chapter, an application should reference the System.Drawing.Drawing2D

namespace by adding the following line:

using System.Drawing.Drawing2D

Apart from blending, gradient brushes, graphics containers, graphics paths, and matrix-related classes, the System.Drawing.Drawing2D

namespace provides many enumerations. Some of the enumerations we have discussed in previous chapters; the rest will be covered in this 

chapter.

Table 9.1 lists the classes provided by System.Drawing.Drawing2D. Several of these classes were mentioned in previous chapters. We will 

discuss them here in more detail.

Table 9.1. System.Drawing.Drawing2D classes

Class Description

AdjustableArrowCap An adjustable, arrow-shaped line cap.

Blend A blend pattern used by linear gradient brushes.

ColorBlend An array of colors and positions in a multicolor gradient.

CustomLineCap A custom user-defined line cap.

GraphicsContainer The internal data of a graphics container. The BeginContainer and EndContainer methods are used to save the 

state of a Graphics object.

GraphicsPath A graphics path, which contains a series of connected lines and curves.

GraphicsPathIterator A graphics path can have many subpaths. This class provides a way to iterate through them.

GraphicsState Graphics object state, which is returned by the BeginContainer method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Class Description

HatchBrush A hatch brush. Discussed in Chapter 4.

LinearGradientBrush Linear gradient brush. Discussed in Chapter 4.

Matrix A 3x3 affine matrix that represents a geometric transformation.

PathData Contains the graphical data of a graphics path.

PathGradientBrush A brush that fills a graphics path with a gradient.

RegionData Data of a region.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



9.1 Line Caps and Line Styles

In previous chapters we saw how to draw lines and curves using Draw-Line, DrawCurve, and related methods of the Graphics class. In these 

cases we drew only solid lines and curves. Lines and curves can also have styles. For example, you can draw a dotted line with circular caps.

A line has three parts: the line body, starting cap, and ending cap. The line starts with a starting cap and ends with an ending cap. The part 

that connects these two caps is the line body. The caps and body of a line can have different styles. Figure 9.1 shows two lines with different 

starting and ending cap and body styles.

Figure 9.1. Lines with different starting cap, ending cap, and dash styles

The ends of a line can have different caps. Table 9.2 shows some of the available line cap styles.

A line body can have its own style, called the dash style. Figure 9.2 shows four different dash styles.

Figure 9.2. Line dash style

Each line dash style can also have its own cap style, which is called a line dash cap. Figure 9.3 shows three different line dash caps.

Figure 9.3. Line dash caps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.2. Line cap styles

Style Description

Triangle

AnchorMask (or flat or square)

ArrowAnchor

DiamondAnchor

Round

RoundAnchor

SquareAnchor

9.1.1 Line Caps and Styles Specified by the Pen Class

The Pen object specifies the line caps and line styles being used to draw lines. To create a line with caps and styles, we create a Pen object, set 

its line cap and line style properties (or methods) and use the Pen object to draw the lines.

Table 9.3 lists the members of the Pen class that can be used to set line caps and line styles.

9.1.2 Adding Line Caps and Styles

There is no direct way to apply line caps and line styles to a line. We must go through the Pen object. As we covered in previous chapters, to 

draw a line we must have a Pen object specifying the color and width of the pen used when we call the DrawLine method of the Graphics class. 

The Pen object also provides members for attaching line caps and line styles to a pen. After we attach line caps and styles to a pen, we use 

this pen to draw lines.

In Listing 9.1 we create a Pen object with a specified color and width. Then we set the line caps using the StartCap and EndCap properties of 

the Pen class, followed by the DashStyle and DashOffset properties. After that we call DrawLine and dispose of the objects.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.3. Pen Class members for setting line caps and styles

Member Description

StartCap Property that gets or sets the cap style used at the beginning of the line. Takes a LineCap enumeration member.

EndCap Property that gets or sets the cap style used at the end of the line. Takes a LineCap enumeration member.

CustomStartCap Property that gets or sets a custom cap to use at the beginning of the line. Takes a CustomLineCap object.

CustomEndCap Property that gets or sets a custom cap to use at the ending of the line. Takes a CustomLineCap object.

DashCap Property that gets or sets the cap style used at the end of the dashes that make up a dashed line. Takes a DashCap

enumeration, which has only three members: Flat, Round, and Triangle.

DashOffset Property that gets and sets the dash offset—that is, the distance from the start of a line to the beginning of a dash pattern.

DashPattern Property that specifies the length of each dash and space in a dash pattern. Takes an array of floating values. The first 

element of this array sets the length of a dash, the second element sets the length of a space, the third element sets the 

length of a dash, and so on.

DashStyle Dash lines can have their own styles. This property gets and sets dash line styles, which are represented by the 

DashStyle enumeration. The DashStyle enumeration has six members—Custom, Dash, DashDot, DashDotDot, Dot, and 

Solid—that represent lines consisting of a custom pattern, dashes, a dash-dot repeating pattern, a dash-dot-dot 

repeating pattern, dots, and a solid line, respectively.

SetLineCap Method that sets the values of all three parts (the starting line cap, ending line cap, and dash style) of a line.

Listing 9.1 Setting line caps and line styles

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a pen

Pen blackPen = new Pen(Color.Black, 10);

// Set the line caps and line styles

blackPen.StartCap = LineCap.Triangle;

blackPen.EndCap = LineCap.Triangle;

blackPen.DashStyle = DashStyle.Dash;

blackPen.DashOffset = 40;

g.DrawLine(blackPen, 20, 10, 200, 10);

// Dispose of objects

blackPen.Dispose();

g.Dispose();

We will cover line caps and styles in more detail in Sections 9.1.3 through 9.1.5.

9.1.3 Getting and Setting Line Caps and Styles

In the previous sections we discussed the LineCap, DashStyle, and DashCap enumerations, which represent the line cap, line dash style, and 

dash cap, respectively. Now we will write an application and use these enumerations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We create a Windows application and a MainMenu control with three menu items on the form. We call these menu items GetCapStyle, 

LineDashStyle, and LineDashCap, respectively, and write menu click event handlers by double-clicking on them. On the GetCapStyle menu 

item click event handler, we will read different line caps and generate output using these line caps; on the LineDashStyle menu item click 

event handler, we will generate lines with different dash styles; and on the LineDashCap menu item click event handler, we will generate 

output with different line dash caps.

The GetCapStyle menu item click event handler is shown in Listing 9.2. We create a pen and set the starting and ending caps using the 

StartCap and EndCap properties of the Pen object, and then we draw a line.

Listing 9.2 Getting line caps

private void GetCapStyles_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a pen

    Pen blackPen = new Pen(Color.Black, 10);

    // Set line styles

    blackPen.StartCap = LineCap.Triangle;

    blackPen.EndCap = LineCap.Triangle;

    g.DrawLine(blackPen, 20, 10, 200, 10);

    blackPen.StartCap = LineCap.Square;

    blackPen.EndCap = LineCap.AnchorMask;

    g.DrawLine(blackPen, 20, 30, 200, 30);

    blackPen.StartCap = LineCap.ArrowAnchor;

    blackPen.EndCap = LineCap.ArrowAnchor;

    g.DrawLine(blackPen, 20, 50, 200, 50);

    blackPen.StartCap = LineCap.DiamondAnchor;

    blackPen.EndCap = LineCap.DiamondAnchor;

    g.DrawLine(blackPen, 20, 70, 200, 70);

    blackPen.StartCap = LineCap.Flat;

    blackPen.EndCap = LineCap.Flat;

    g.DrawLine(blackPen, 20, 90, 200, 90);

    blackPen.StartCap = LineCap.Round;

    blackPen.EndCap = LineCap.Round;

    g.DrawLine(blackPen, 20, 110, 200, 110);

    blackPen.StartCap = LineCap.RoundAnchor;

    blackPen.EndCap = LineCap.RoundAnchor;

    g.DrawLine(blackPen, 20, 130, 200, 130);

    blackPen.StartCap = LineCap.Square;

    blackPen.EndCap = LineCap.Square;

    g.DrawLine(blackPen, 20, 150, 200, 150);

    blackPen.StartCap = LineCap.SquareAnchor;

    blackPen.EndCap = LineCap.SquareAnchor;

    g.DrawLine(blackPen, 20, 170, 200, 170);

    blackPen.StartCap = LineCap.Flat;

    blackPen.EndCap = LineCap.Flat;

    g.DrawLine(blackPen, 20, 190, 200, 190);

    // Dispose of objects

    blackPen.Dispose();

    g.Dispose();

}

The output of Listing 9.2 looks like Figure 9.4, in which the lines have different caps.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 9.4. Reading line caps

The LineDashStyle menu item click event handler code is given in Listing 9.3. We create a pen and set the dash style and dash offset values 

using the DashStyle and DashOffset properties of the Pen object, and then we draw lines.

Listing 9.3 Getting line dash styles

private void LineDashStyle_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a pen

    Pen blackPen = new Pen(Color.Black, 6);

    // Set line styles

    blackPen.DashStyle = DashStyle.Dash;

    blackPen.DashOffset = 40;

    blackPen.DashCap = DashCap.Triangle;

    g.DrawLine(blackPen, 20, 10, 500, 10);

    blackPen.DashStyle = DashStyle.DashDot;

    g.DrawLine(blackPen, 20, 30, 500, 30);

    blackPen.DashStyle = DashStyle.DashDotDot;

    g.DrawLine(blackPen, 20, 50, 500, 50);

    blackPen.DashStyle = DashStyle.Dot;

    g.DrawLine(blackPen, 20, 70, 500, 70);

    blackPen.DashStyle = DashStyle.Solid;

    g.DrawLine(blackPen, 20, 70, 500, 70);

    // Dispose of objects

    blackPen.Dispose();

    g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Figure 9.5 shows the output from Listing 9.3. The lines have different dash styles.

Figure 9.5. Reading line dash styles

The GetCapStyle menu item click event handler code is given in Listing 9.4. We create a pen and set the dash cap styles using the DashCap

property of the Pen object.

Listing 9.4 Getting dash caps

private void LineDashCap_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a pen

    Pen blackPen = new Pen(Color.Black, 10);

    // Set DashCap styles

    blackPen.DashStyle = DashStyle.DashDotDot;

    blackPen.DashPattern = new float[]{10};

    blackPen.DashCap = DashCap.Triangle;

    g.DrawLine(blackPen, 20, 10, 500, 10);

    blackPen.DashCap = DashCap.Flat;

    g.DrawLine(blackPen, 20, 30, 500, 30);

    blackPen.DashCap = DashCap.Round;

    g.DrawLine(blackPen, 20, 50, 500, 50);

    // Dispose of objects

    blackPen.Dispose();

    g.Dispose();

}

Figure 9.6 shows the output from Listing 9.4. The lines have different dash caps: triangular, flat, and round, respectively.

Figure 9.6. Getting line dash caps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.1.4 Drawing Other Objects with Line Caps and Styles

So far we have applied line caps and line styles only to lines, but these effects can also be applied to other objects, including curves, 

rectangles, and ellipses. However, some of these objects impose limitations. For example, rectangles, ellipses, and closed curves do not 

have starting and ending caps, so the StartCap and EndCap properties of a pen will not affect them.

Let's add one more menu item to MainMenu, called OtherObjects. The code for its menu item click event handler is given in Listing 9.5. We 

create three pens with different colors and widths; set their line cap, dash style, and dash cap properties; and draw a rectangle, an ellipse, 

and a curve.

Listing 9.5 Drawing other objects using line caps, dash styles, and dash caps

private void OtherObjects_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    g.SmoothingMode = SmoothingMode.AntiAlias;

    // Create pen objects

    Pen blackPen = new Pen(Color.Black, 5);

    Pen bluePen = new Pen(Color.Blue, 8);

    Pen redPen = new Pen(Color.Red, 4);

    // Set DashCap styles

    blackPen.StartCap = LineCap.DiamondAnchor;

    blackPen.EndCap = LineCap.SquareAnchor;

    blackPen.DashStyle = DashStyle.DashDotDot;

    blackPen.DashPattern = new float[]{10};

    blackPen.DashCap = DashCap.Triangle;

    // Set blue pen dash style and dash cap

    bluePen.DashStyle = DashStyle.DashDotDot;

    bluePen.DashCap = DashCap.Round;

    // Set red pen line cap and line dash styles

    redPen.StartCap = LineCap.Round;

    redPen.EndCap = LineCap.DiamondAnchor;

    redPen.DashCap = DashCap.Triangle;

    redPen.DashStyle = DashStyle.DashDot;

    redPen.DashOffset = 3.4f;

    // Draw a rectangle

    g.DrawRectangle(blackPen, 20, 20, 200, 100);

    // Draw an ellipse

    g.DrawEllipse(bluePen, 20, 150, 200, 100);

    // Draw a curve

    PointF pt1 = new PointF( 90.0F, 40.0F);

    PointF pt2 = new PointF(130.0F, 80.0F);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    PointF pt3 = new PointF(200.0F, 100.0F);

    PointF pt4 = new PointF(220.0F, 120.0F);

    PointF pt5 = new PointF(250.0F, 250.0F);

    PointF[] ptsArray =

    {

        pt1, pt2, pt3, pt4, pt5

    };

    g.DrawCurve(redPen, ptsArray);

    // Dispose of objects

    blackPen.Dispose();

    g.Dispose();

}

Figure 9.7 shows the output from Listing 9.5. Each graphics object—rectangle, ellipse, and curve—has a different style.

Figure 9.7. A rectangle, an ellipse, and a curve with different line styles

9.1.5 Customizing Line Caps

Sometimes we need to use custom caps. Figure 9.8 shows a line with customized caps of different sizes.

Figure 9.8. A line with custom caps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The CustomLineCap and AdjustableArrowCap classes provide functionality to draw custom line caps. CustomLineCap allows us to define

custom caps, which can be attached to a pen—then an application can use the pen to draw graphics objects.

The CustomLineCap class constructor takes two parameters of type GraphicsPath. The first parameter defines the fill path, which identifies the 

fill for the custom cap. The second parameter defines the stroke path, which defines the outline of the custom cap. The fill path and stroke 

path parameters cannot be used at the same time.

To create a CustomLineCap object, first we create a GraphicsPath object and add items to the path such as a line, ellipse, or rectangle using 

any of the add methods. Then we pass the GraphicsPath object as an argument to CustomLineCap. The following code snippet shows how to 

create a CustomLineCap object:

GraphicsPath path1 = new GraphicsPath();

// Add items to GraphicsPath

CustomLineCap cap1 = new CustomLineCap(null, path1);

Once we have a CustomLineCap object, we can set the CustomStartCap and CustomEndCap properties of the pen to apply custom line caps. 

We will see a full working example of custom line caps in a moment.

Table 9.4 describes the properties of the CustomLineCap class.

9.1.5.1 Line Joins

A line join defines how lines and curves are joined in a graphics path. The LineJoin enumeration represents a line join. Its members are 

described in Table 9.5.

We can set the line join of a pen using its LineJoin property. To see the line joins, we create a Windows application and add a group box, four 

radio buttons, and a button to the form. The final form looks like Figure 9.9.

Figure 9.9. The line join test application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.4. CustomLineCap properties

Property Description

BaseCap The base line cap. LineCap enumeration type.

BaseInset The distance between the cap and the line.

StrokeJoin How lines and curves in the path that will be stroked are joined. LineJoin enumeration type.

WidthScale Width scale of custom line cap. A WidthScale value of 2 means that the cap will be double the pen size that is drawing the 

line cap.

Table 9.5. LineJoin members

Member Description

Bevel Beveled join with a diagonal corner.

Miter Mitered join with a sharp corner or a clipped corner.

MiterClipped Mitered join with a sharp corner or a beveled corner.

Round Circular join with a smooth, circular arc between the lines.

When we select different line join types and hit the Apply LineJoin button, the application draws lines with different joins.

The code for the Apply LineJoin button click event handler and DrawJoinedLines method is given in Listing 9.6. As the listing shows, the 

Apply LineJoin button click event handler calls the DrawJoinedLines method with a LineJoin value determined by the current selection.

Listing 9.6 The Apply LineJoin button click event handler

private void ApplyJoin_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Line join type

    if(BevelRadBtn.Checked)

    {

        DrawJoinedLines(g, LineJoin.Bevel);

    }

    if(MiterRadBtn.Checked)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    {

        DrawJoinedLines(g, LineJoin.Miter);

    }

    if(MiterClippedRadBtn.Checked)

    {

        DrawJoinedLines(g, LineJoin.MiterClipped);

    }

    if(RoundRadBtn.Checked)

    {

        DrawJoinedLines(g, LineJoin.Round);

    }

    // Dispose of object

    g.Dispose();

}

private void DrawJoinedLines(Graphics g,

    LineJoin joinType)

{

    // Set smoothing mode

    g.SmoothingMode = SmoothingMode.AntiAlias;

    // Create a pen with width 20

    Pen redPen = new Pen(Color.Red, 20);

    // Set line join

    redPen.LineJoin = joinType;

    // Create an array of points

    Point[] pts =

        {

            new Point(150, 20),

            new Point(50, 20),

            new Point(80, 60),

            new Point(50, 150),

            new Point(150, 150)

        };

    // Create a rectangle using lines

    Point[] pts1 =

        {

            new Point(200, 20),

            new Point(300, 20),

            new Point(300, 120),

            new Point(200, 120),

            new Point(200, 20)

        };

    // Draw lines

    g.DrawLines(redPen, pts);

    g.DrawLines(redPen, pts1);

    // Dispose of object

    redPen.Dispose();

}

Now if we run the code, the Bevel line join output looks like Figure 9.10.

Figure 9.10. The Bevel line join effect

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Miter line join output looks like Figure 9.11.

Figure 9.11. The Miter line join effect

The Round line join output looks like Figure 9.12.

Figure 9.12. The Round line join effect

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.1.5.2 Stroke Caps

We have already seen how to use the StartCap and EndCap properties of a Pen object to set the starting and ending caps of lines. We have 

also seen how to use the StartCustomCap and EndCustomCap properties to set customized starting and ending caps.

To understand caps better, take a look at Figure 9.13. The rectangle A is a line cap. The starting cap is triangular, and the ending cap is round.

Figure 9.13. Customized starting and ending caps

The GetStrokeCaps and SetStrokeCaps methods of the CustomLineCap class can also be used to get and set the starting and ending caps 

of a custom cap. The SetStrokeCaps method takes two arguments of type LineCap enumeration and sets the caps for the starting and ending 

points of lines. Listing 9.7 creates custom line caps and sets them using the SetStrokeCaps method. After creating custom line caps, we 

create a pen and set its CustomStartCap and CustomEndCap properties, which use the pen to draw a line.

Listing 9.7 Using SetStrokeCaps

private void SetStrokeCapsMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a path for custom line cap. This

    // path will have two lines from points

    // (-3, -3) to (0, 0) and (0, 0) to (3, -3).

    Point[] points =

    {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        new Point(-3, -3),

        new Point(0, 0),

        new Point(3, -3)

    };

    GraphicsPath path = new GraphicsPath();

    path.AddLines(points);

    // Create a custom line cap from the path

    CustomLineCap cap =

        new CustomLineCap(null, path);

    // Set the starting and ending caps of the custom cap

    cap.SetStrokeCaps(LineCap.Round, LineCap.Triangle);

    // Create a Pen object and set its starting and ending

    // caps

    Pen redPen = new Pen(Color.Red, 15);

    redPen.CustomStartCap = cap;

    redPen.CustomEndCap = cap;

    redPen.DashStyle = DashStyle.DashDotDot;

    // Draw the line

    g.DrawLine(redPen,

        new Point(100, 100),

        new Point(400, 100));

    // Dispose of object

    g.Dispose();

}

Figure 9.14 shows the output from Listing 9.7.

Figure 9.14. Setting customized starting and ending caps

9.1.5.3 Adjustable Arrow Caps

Adjustable arrow caps allow you to set the size of the cap's base cap, height, width, and joins. The AdjustableArrowCap class, which is 

inherited from the CustomLineCap class, represents an adjustable arrow-shaped line cap.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The AdjustableArrowCap class constructor takes three parameters: the width of the arrow as a floating value, the height of the arrow as a 

floating value, and a Boolean value (optional) that, if true, indicates that the arrow cap is filled.

The following code snippet creates an AdjustableArrowCap object:

float w = 2;

float h = 5;

bool fill = false;

AdjustableArrowCap myArrow =

   new AdjustableArrowCap(w, h, fill);

Besides having CustomLineCap methods and properties, AdjustableArrowCap provides four properties: Filled, Height, Width, and MiddleInset. 

The Height and Width properties represent the height and the width, respectively, of an arrow cap. The Filled property indicates whether an 

arrow cap is filled. The MiddleInset property represents the distance between the outline of the arrow cap and the fill.

Now let's add an AdjustableArrowCap option to our application. We add one menu item to the form, along with a menu item click event 

handler, as shown in Listing 9.8. We create two AdjustableArrowCap objects and set their BaseCap, BaseInset, StrokeJoin, and WidthScale

properties. Then we create a black Pen object with a width of 15 and set the CustomStartCap and CustomEndCap properties of the pen as 

AdjustableArrowCap objects. Finally, we use this pen to draw a line with DrawLine.

Listing 9.8 Using adjustable arrow caps

private void AdjustableRowCapMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create two AdjustableArrowCap objects

    AdjustableArrowCap cap1 =

        new AdjustableArrowCap(1, 1, false);

    AdjustableArrowCap cap2 =

        new AdjustableArrowCap(2, 1);

    // Set cap properties

    cap1.BaseCap = LineCap.Round;

    cap1.BaseInset = 5;

    cap1.StrokeJoin = LineJoin.Bevel;

    cap2.WidthScale = 3;

    cap2.BaseCap = LineCap.Square;

    cap2.Height = 1;

    // Create a pen

    Pen blackPen = new Pen(Color.Black, 15);

    // Set CustomStartCap and CustomEndCap properties

    blackPen.CustomStartCap = cap1;

    blackPen.CustomEndCap = cap2;

    // Draw line

    g.DrawLine(blackPen, 20, 50, 200, 50);

    // Dispose of objects

    blackPen.Dispose();

    g.Dispose();

}

Figure 9.15 shows the output from Listing 9.8. The end caps have different sizes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 9.15. Adjustable arrow caps

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

9.2 Understanding and Using Graphics Paths

In Chapter 3 we briefly discussed how to create a graphics path, add graphics items to the path, and draw and fill graphics paths using FillPath

and DrawPath.

A graphics path is a set of connected lines, curves, and other simple graphics objects, including rectangles, ellipses, and text. A path works 

as a single graphics object, so an effect applied to the graphics path will be applied to all the components of the path. For example, if a 

graphics path contains a line, a rectangle, and an ellipse and we draw the path using a red pen, all three components (line, rectangle, and 

ellipse) of the graphics path will be drawn with the red pen.

To create and use a graphics path, we create a GraphicsPath object and add its components by using add methods. For example, you can 

use the AddLine, AddRectangle, and AddEllipse methods to add a line, a rectangle, and an ellipse, respectively, to the graphics path. After 

adding components to a path, you can use DrawPath or FillPath to draw and fill it.

By default, all graphics shapes of a path are connected to one another and treated as a single entity with a collection of points and point 

types. But by using StartFigure and CloseFigure, an application can draw more than one image.

9.2.1 Creating a GraphicsPath Object

The GraphicsPath class represents a graphics path in the .NET Framework library. It provides six overloaded constructors, which take as 

arguments a fill mode, array of points, and array of bytes (an array of PathPointTypes enumerations that defines the type of each 

corresponding point in the point array) to construct a GraphicsPath object. The following code snippet uses different overloaded constructors 

to create GraphicsPath objects.

GraphicsPath path1 = new GraphicsPath();

GraphicsPath path2 = new GraphicsPath(FillMode.Winding);

GraphicsPath path3 =

    new GraphicsPath(pts, PathPointTypes, FillMode.Alternate);

In this function, pts represents an array of Point structures, and types represents an array of bytes, which takes the PathPointType

enumeration types, defined as follows:

byte[] types = {

   (byte)PathPointType.Start,

   (byte)PathPointType.Line,

   (byte)PathPointType.DashMode };

The GraphicsPath object includes an array of points and an array of types. Point types that make up shapes include starting points, ending 

points, and Bézier curve points. The PathPointType enumeration defines the type of a point in a graphics path. The members of the 

PathPointType enumeration are described in Table 9.6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Using GraphicsPath's Add Methods

You can create a GraphicsPath object from an array of points with PathPointType values, but I recommend that you use the 

methods of GraphicsPath to add various objects, instead of using PathPointType.

Now let's create a simple graphics path. Listing 9.9 gives the code for a simple graphics path with a line, a rectangle, and an ellipse. To test 

this code, create a Windows application, add a reference to the System.Drawing.Advanced2D namespace, and add the code on the form's 

load, or a button, or a menu item click event handler. The code creates a graphics path using GraphicsPath; adds two lines, a rectangle, and 

an ellipse using AddLine, AddRectangle, and AddEllipse, respectively; and draws the path using a red pen.

Listing 9.9 Creating a simple graphics path

private void Sample_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a graphics path

    GraphicsPath path = new GraphicsPath();

    // Add two lines, a rectangle, and

    // an ellipse

    path.AddLine(20, 20, 200, 20);

    path.AddLine(20, 20, 20, 200);

    path.AddRectangle(new Rectangle(30, 30, 100, 100));

    path.AddEllipse(new Rectangle(50, 50, 60, 60));

    // Draw path

    Pen redPen = new Pen(Color.Red, 2);

    g.DrawPath(redPen, path);

    // Dispose of objects

    redPen.Dispose();

    g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.6. PathPointType members

Member Description

Bezier Default Bézier curve.

Bezier3 Cubic Bézier curve. There is no practical difference between Bezier and Bezier3.

CloseSubpath Ending point of a subpath.

DashMode Dashed segment.

Line Line segment.

PathMarker Path marker, which allows easy traversal of a path by marking the points.

PathTypeMask Mask point, which allows us to show or hide points.

Start Starting point of a graphics path.

Figure 9.16 shows the output from Listing 9.9: two lines, a rectangle, and an ellipse.

Figure 9.16. A simple graphics path

You can also fill a path with FillPath. If you replace the DrawPath line in Listing 9.9 with:

g.FillPath(new SolidBrush(Color.Black), path);

the code will generate a new figure that looks like Figure 9.17.

Figure 9.17. A filled graphics path

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

In a graphics path, all lines and curves are connected, even though you don't connect them explicitly. Objects like 

rectangles and circles may not be connected (unless you connect them explicitly) but they are still part of the path.

9.2.2 Shaped Forms and Graphics Paths

Graphics paths are very useful when you need to create shaped (nonrectangular) forms and controls. Using a graphics path, you can also 

write a form with a text-based shape. For example, you can write a form application that looks like Figure 9.18, which includes a text string, 

two ellipses, and two rectangles.

Figure 9.18. A shaped form

Writing applications with shaped forms is easy if we use graphics paths. First we create a GraphicsPath object and add components (such as 

rectangles, ellipses, or text) to the path. Then we create a Region object from the graphics path and set it as the form's Region property. For 

example, Listing 9.10 adds text, two rectangles, and two ellipses to a graphics path, creates a Region object from this graphics path, and sets it 

as the Region property of the form. The output of this code will generate a form that looks like Figure 9.18.

Listing 9.10 Using graphics paths to create shaped forms

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



GraphicsPath path = new GraphicsPath(FillMode.Alternate);

path.AddString("Close? Right Click!",

    new FontFamily("Verdana"),

    (int)FontStyle.Bold, 50, new Point(0, 0),

    StringFormat.GenericDefault );

path.AddRectangle(new Rectangle(20, 70, 100, 100));

path.AddEllipse(new Rectangle(140, 70, 100, 100));

path.AddEllipse(new Rectangle(260, 70, 100, 100));

path.AddRectangle(new Rectangle(380, 70, 100, 100));

Region rgn = new Region(path);

this.Region = rgn;

To test this code, create a Windows application and add this code to the form's load event handler.

9.2.3 GraphicsPath Properties and Methods

Let's examine the properties and methods of the GraphicsPath class before we start using them. Table 9.7 describes the properties.

The following code snippet reads some of the GraphicsPath properties:

// Getting GraphicsPath properties

FillMode fMode = path.FillMode;

PathData data = path.PathData;

PointF [] pts = path.PathPoints;

byte [] ptsTypes = path.PathTypes;

int count = path.PointCount;

The GraphicsPath class provides more than a dozen add methods to add graphics objects to a path. Among these methods are AddArc, 

AddBezier, AddBeziers, AddCloseCurve, AddCurve, AddEllipse, AddLine, AddLines, AddPath, AddPie, AddPolygon, AddRectangle, 

AddRectangles, and AddString. These methods are used to add an arc, a Bézier, a set of Béziers, a closed curve, a curve, an ellipse, a line,

a set of lines, a path, a pie, a polygon, a rectangle, a set of rectangles, and a string, respectively. Other methods, which don't belong to the 

add category, are described in Table 9.8.

Table 9.7. GraphicsPath properties

Property Description

FillMode Represents the fill mode of a graphics path, which determines how the interior of a graphics path is filled. This property is a 

FillMode enumeration type and has two values: Alternate and Winding.

PathData Returns a PathData object containing path data for a graphics path. The path data of a graphics path is composed of arrays 

of points and types. The Points property of PathData returns an array of points, and the Types property returns an array of 

types of points.

PathPoints Represents all points in a path.

PathTypes Represents types of the corresponding points in the PathPoints array.

PointCount Represents the total number of items in PathPoints.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Alternate and Winding Modes

As defined in the MSDN documentation, the alternate mode specifies that areas are filled according to the even-odd parity 

rule. According to this rule, you can determine whether a test point is inside or outside a closed curve as follows: Draw a line 

from the test point to a point that is distant from the curve. If that line crosses the curve an odd number of times, the test point 

is inside the curve; otherwise the test point is outside the curve.

The winding mode specifies that areas are filled according to the nonzero winding rule, which says that you can determine 

whether a test point is inside or outside a closed curve as follows: Draw a line from a test point to a point that is distant from 

the curve. Count the number of times the curve crosses the test line from left to right, and the number of times the curve 

crosses the test line from right to left. If those two numbers are the same, the test point is outside the curve; otherwise the test 

point is inside the curve.

9.2.4 Subpaths

A graphics path can contain many subpaths. Having subpaths provides better control over individual paths. An application can break a 

graphics path into subpaths by using the StartFigure method. It can close open subpaths by using the CloseFigure or CloseAllFigures

methods. StartFigure starts a new subpath of a path, and CloseFigure closes the opened subpath. CloseAllFigures closes all subpaths of a 

graphics path.

Listing 9.11 uses the StartFigure method to create three subpaths, and the CloseFigure and CloseAllFigures methods to close open figures. 

The first path contains an arc and a line, the second path contains two lines and a curve, and the third path contains two lines.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.8. Some GraphicsPath methods

Method Description

ClearMarkers Clears all markers from a path if any were set with PathPointType.PathMarker.

CloseAllFigures Closes all open figures in a path.

CloseFigure Closes the current figure.

Flatten Approximates each curve in a path with a sequence of connected line segments.

GetLastPoint Returns the last point in the PathPoints array.

Reset Removes all points and types from a path and sets the fill mode to Alternative.

Reverse Reverses the order of points in the PathPoints array of a path.

SetMarkers Sets a marker on a path.

StartFigure Starts a new figure.

Transform Transforms a path by applying a matirix on the path.

Warp Applies a warp transformation.

Widen Replaces a path with curves that enclose the area that is filled when the path is drawn by the specified pen.

Listing 9.11 Creating graphics subpaths

private void SubPathMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a GraphicsPath object

    GraphicsPath path = new GraphicsPath();

    // Create an array of points

    Point[] pts =

    {

        new Point(40, 80),

        new Point(50, 70),

        new Point(70, 90),

        new Point(100, 120),

        new Point(80, 120)

    };

    // Start first figure and add an

    // arc and a line

    path.StartFigure();

    path.AddArc(250, 80, 100, 50, 30, -180);

    path.AddLine(180, 220, 320, 80);

    // Close first figure

    path.CloseFigure();

    // Start second figure, add two lines

    // and a curve, and close all figures

    path.StartFigure();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    path.AddLine(50, 20, 5, 90);

    path.AddLine(50, 150, 150, 180);

    path.AddCurve(pts, 5);

    path.CloseAllFigures();

    // Create third figure and don't close

    // it

    path.StartFigure();

    path.AddLine(200, 230, 250, 200);

    path.AddLine(200, 230, 250, 270);

    // Draw path

    g.DrawPath(new Pen(Color.FromArgb(255, 255, 0, 0), 2)

        , path);

    // path.Reverse();

    // path.Reset();

    // Dispose of object

    g.Dispose();

}

Figure 9.19 shows the output from Listing 9.11. There are three unconnected subpaths.

Figure 9.19. Three subpaths

The Reverse method can be used to reverse the order of points in a path, and the Reset method to remove (empty) all points from a path. The 

following code snippet shows how to use these two methods:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



path.Reverse();

path.Reset();

9.2.5 The Graphics Path Iterator

As mentioned earlier, a graphics path is a set of graphics subpaths. We can determine the number of subpaths and the related data of a 

subpath by using the GraphicsPathIterator class. This class allows us to iterate through all the subpaths of a graphics path.

The Count and SubpathCount properties of GraphicsPathIterator return the total number of points and the number of subpaths in a graphics 

path, respectively. The CopyData method can be used to copy the points of a path and their types. It returns the number of points, which is 

also the number of types copied.

The HasCurves method returns true if a path has curves in it; otherwise it returns false. The NextMarker method moves the iterator to the next 

marker in the path. The NextPathType method returns the starting and ending indices of the next group of data points that all have the same 

type.

The NextSubpath method returns the starting index, ending index, and a Boolean value of true if the subpath is closed (false if the subpath is 

open), and moves to the next subpath. The Rewind method resets the iterator to the beginning of the path.

Listing 9.12 creates and draws a graphics path and uses GraphicsPathIterator to find and show the data for all subpaths.

Listing 9.12 Iterating through subpaths

private void GraphicsPathIterator_Paint(object sender,

    System.Windows.Forms.PaintEventArgs e)

{

    // Get the Graphics object

    Graphics g = e.Graphics;

    // Create a rectangle

    Rectangle rect = new Rectangle(50, 50, 100, 50);

    // Create a graphics path

    GraphicsPath path = new GraphicsPath();

    PointF[] ptsArray =

    {

        new PointF(20, 20),

        new PointF(60, 12),

        new PointF(100, 20)

    };

    // Add a curve, a rectangle, an ellipse, and a line

    path.AddCurve(ptsArray);

    path.AddRectangle(rect);

    rect.Y += 60;

    path.AddEllipse(rect);

    path.AddLine(120, 50, 220, 100);

    // Draw path

    g.DrawPath(Pens.Blue, path);

    // Create a graphics path iterator

    GraphicsPathIterator pathIterator =

         new GraphicsPathIterator(path);

    // Display total points and subpaths

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    string str = "Total points = "

        + pathIterator.Count.ToString();

    str += ", Sub paths = "

          + pathIterator.SubpathCount.ToString();

    MessageBox.Show(str);

    // Rewind

    pathIterator.Rewind();

    // Read all subpaths and their properties

    for(int i=0; i<pathIterator.SubpathCount; i++)

    {

        int strtIdx, endIdx;

        bool bClosedCurve;

        pathIterator.NextSubpath(out strtIdx,

               out endIdx, out bClosedCurve);

        str = "Start Index = " + strtIdx.ToString()

              + ", End Index = " + endIdx.ToString()

             + ", IsClosed = " + bClosedCurve.ToString();

        MessageBox.Show(str);

    }

}

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

9.3 Graphics Containers

Suppose that you have a surface with 100 different graphics objects (text, shapes, and images), and you want to anti-alias just one object, 

perhaps for performance reasons. Without graphics containers, you would have to create a Graphics object and set the SmoothingMode

property to AntiAlias—which would set anti-aliasing for everything drawn on the object. How do you set the smoothing mode of only one

particular object on a surface? That's where containers come in.

The Graphics class provides methods and properties to define the attributes of graphics objects. For example, you can set the rendering 

quality of text using the TextRenderingHint property. The smoothing mode represents the quality of the graphics objects, the compositing 

quality represents the quality of composite images, the compositing mode represents whether pixels from a source image overwrite or are 

combined with background pixels, and the interpolation mode represents how intermediate values between two endpoints are calculated. 

These attributes are set with the SmoothingMode, CompositingMode, CompositingQuality, and InterpolationMode properties—which are

applicable for an entire Graphics object. For example, if you set the SmoothingMode property of a Graphics object to AntiAlias, all graphics 

objects attached to that Graphics object will be anti-aliased.

A graphics container is a temporary graphics object that acts as a canvas for graphics shapes, allowing an application to set a container 

property separately from the main Graphics object. An application can apply properties to a Graphics object within a container, and these 

properties won't be available outside of that container. Thus we can selectively apply properties to Graphics objects.

In Figure 9.20, for example, a Graphics object includes three graphics containers, each with different properties. These properties are not 

available outside of their containers. All graphics objects inside a container may be affected by the container property. It's also possible to 

have nested containers.

Figure 9.20. Nested containers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Graphics containers do not inherit their parent's settings. In Figure 9.20, for example, the Graphics object is a container whose compositing 

quality is set to high, and whose smoothing mode is set to high-speed. The graphics containers won't have high-speed and high-quality 

rendering unless we set them within the container itself. The smoothing mode of graphics container A is set to anti-aliasing; that of graphics 

container B is set to high quality. Graphics container C is a nested container within graphics container A, with interpolation mode set to high.

Before we discuss graphics containers in more detail, let's take a look at graphics states.

9.3.1 Understanding Graphics States

During the life cycle of a Graphics object, the object maintains a list of graphics states. These graphics states fall into various categories 

depending on the operations being applied to the Graphics object. For example, setting the compositing quality of a Graphics object changes 

the object's state.

Graphics states can be divided into three categories:

Quality settings1.

Transformations2.

Clipping region3.

The first state of the Graphics object involves the quality of shapes and images. This state changes when you set the quality of a Graphics

object using the SmoothingMode, TextRenderingHint, CompositingMode, CompositingQuality, and InterpolationMode properties of the 

Graphics class.

Transformation is another state that a Graphics object maintains. Transformation is the process of changing graphics objects from one state 

to another by rotation, scaling, reflection, translation, and shearing.

The Graphics object maintains two transformation states: world and page. The world transformation defines the conversion of world 

coordinates to page coordinates. World coordinates are coordinates that you define in your program, and page coordinates are coordinates 

that GDI+ uses to expose the object coordinates. The page transformation defines the conversion of page coordinates to device 

coordinates. Device coordinates determine how a graphics object will be displayed on a particular display device.

The Graphics class provides the ScaleTransform, RotateTransform, and TranslateTransform methods, as well as the Transform property, to 

support transformations.

Note

Chapter 10 discusses transformations and transformation-related classes, methods, and properties in greater detail.

The world unit (by default) is always defined as a pixel. For example, in the following code snippet a rectangle will be drawn starting at 0 

pixels from the left edge and 0 pixels from the top edge, with width and height of 100 and 50 pixels, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Graphics g = this.CreateGraphics();

g.DrawRectangle(Pens.Green, 0, 0, 100, 50);

Page coordinates may be different from world coordinates, depending on the page unit and page scaling of the Graphics object. For example, 

if the page unit is an inch, the page coordinates will start at point (0, 0), but the width and height of the rectangle will be 100 inches and 50 

inches, respectively.

Table 9.9. GraphicsUnit members

Member Description

Display 1/75 inch as the unit of measure.

Document The document unit (1/300 inch) as the unit of measure.

Inch An inch as the unit of measure.

Millimeter A millimeter as the unit of measure.

Pixel A pixel as the unit of measure.

Point A printer's point (1/72 inch) as the unit of measure.

World The world unit as the unit of measure.

The PageScale and PageUnit properties define a page transformation. The PageUnit property defines the unit of measure used for page 

coordinates, and the PageScale property defines the scaling between world and page units for a Graphics object. The PageUnit property takes 

a value of type GraphicsUnit enumeration, which is defined in Table 9.9.

Listing 9.13 draws three ellipses with the same size but different PageUnit values: Pixel, Millimeter, and Point.

Listing 9.13 Setting page transformation

private void TransformUnits_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object and set its

    // background as form's background

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Draw an ellipse with default units

    g.DrawEllipse(Pens.Red, 0, 0, 100, 50);

    // Draw an ellipse with page unit as pixel

    g.PageUnit = GraphicsUnit.Pixel;

    g.DrawEllipse(Pens.Red, 0, 0, 100, 50);

    // Draw an ellipse with page unit as millimeter

    g.PageUnit = GraphicsUnit.Millimeter;

    g.DrawEllipse(Pens.Blue, 0, 0, 100, 50);

    // Draw an ellipse with page unit as point

    g.PageUnit = GraphicsUnit.Point;

    g.DrawEllipse(Pens.Green, 0, 0, 100, 50);

    // Dispose of object

    g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Figure 9.21 shows the output from Listing 9.13. Although the parameters to DrawEllipse are the same, we get results of different sizes 

because of the different PageUnit settings.

Figure 9.21. Drawing with different PageUnit values

The third state of the Graphics object is the clipping region. A Graphics object maintains a clipping region that applies to all items drawn by that 

object. You can set the clipping region by calling the SetClip method. It has six overloaded forms, which vary in using a Graphics object, 

graphics path, region, rectangle, or handle to a GDI region as the first parameter. The second parameter in all six forms is CombineMode, 

which has six values: Complement, Exclude, Intersect, Replace, Union, and Xor. The Clip property of the Graphics object specifies a Region

object that limits the portion of a Graphics object that is currently available for drawing. The ClipBounds property returns a RectangleF

structure that represents a bounding rectangle for the clipping region of a Graphics object.

Note

Chapter 6 discussed clipping regions and the CombineMode enumeration in detail.

9.3.2 Saving and Restoring Graphics States

The GraphicsState class represents the state of a Graphics object. This class does not have any useful properties or methods, but it is used 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



by the Save and Restore methods of the Graphics object. A call to the Save method saves a GraphicsState object as an information block on 

the stack and returns it. When this object is passed to the Restore method, the information block is removed from the stack and the graphics 

state is restored to the saved state.

You can make multiple calls to Save (even nested), and each time a new state will be saved and a new GraphicState object will be returned. 

When you call Restore, the block will be freed on the basis of the GraphicsState object you pass as a parameter.

Now let's see how this works in our next example. We create a Windows application, add a MainMenu control and its items, and write click 

event handlers for these items. Listing 9.14 creates and saves graphics states using the Save method, then restores them one by one. The 

first saved state stores page units and a rotation transformation; the second state stores a translation transformation. We save the first 

graphics state as gs1. Then we call the TranslateTransform method, which translates and transforms the graphics object. We save the new 

graphics state as gs2. Now we call ResetTransform, which removes all the transformation effects. Then we draw an ellipse. We restore the 

graphics states by calling GraphicsState.Restore methods for both gs1 and gs2, and we fill a rectangle and draw an ellipse, respectively.

Listing 9.14 Saving and restoring graphics states

private void SaveRestoreMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object and set its

    // background as the form's background

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Page transformation

    g.PageUnit = GraphicsUnit.Pixel;

    // World transformation

    g.RotateTransform(45, MatrixOrder.Append);

    // Save first graphics state

    GraphicsState gs1 = g.Save();

    // One more transformation

    g.TranslateTransform(0, 110);

    // Save graphics state again

    GraphicsState gs2 = g.Save();

    // Undo all transformation effects by resetting

    // the transformation

    g.ResetTransform();

    // Draw a simple ellipse with no transformation

    g.DrawEllipse(Pens.Red, 100, 0, 100, 50);

    // Restore first graphics state, which means

    // that the new item should rotate 45 degrees

    g.Restore(gs1);

    g.FillRectangle(Brushes.Blue, 100, 0, 100, 50);

    // Restore second graphics state

    g.Restore(gs2);

    g.DrawEllipse(Pens.Green, 100, 50, 100, 50);

    // Dispose of Graphics object

    g.Dispose();

}

Figure 9.22 shows the output from Listing 9.14. The first ellipse has no transformation effects, but the rectangle and ellipse below do have 

transformation effects.

Figure 9.22. Saving and restoring graphics states

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.3.3 Working with Graphics Containers

Graphics containers were introduced earlier in this chapter. Now let's see how to create and use them in our applications.

9.3.3.1 Creating a Graphics Container

The BeginContainer method of the Graphics class creates a container. Each BeginContainer method is paired with an EndContainer method. 

You can also create nested containers. The following code snippet creates two containers:

GraphicsContainer gContrainer1 = g.BeginContainer();

// Do something here

GraphicsContainer gContrainer2 = g.BeginContainer();

// Do something here

g.EndContainer(gContrainer2);

g.EndContainer(gContrainer1);

9.3.3.2 Using Graphics Containers to Draw Text

As mentioned earlier, graphics containers are temporary canvases. Let's see how to set the quality of different text for different containers. 

Listing 9.15 creates two containers, and each has different properties. The first container sets the TextRenderingHint property to AntiAlias and 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



the TextContrast property to 4. The second container sets TextRenderingHint to AntiAliasGridFit and TextContrast to 12. After creating Font

and SolidBrush objects, we set the TextRenderingHint property of the Graphics object, and then we call DrawString. Finally, we call 

EndContainer to terminate the container scope.

Listing 9.15 Using different graphics containers to draw text

private void DrawTextMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object and set its

    // background as the form's background

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create font and brushes

    Font tnrFont = new Font("Times New Roman", 40,

        FontStyle.Bold, GraphicsUnit.Pixel);

    SolidBrush blueBrush = new SolidBrush(Color.Blue);

    g.TextRenderingHint = TextRenderingHint.SystemDefault;

    // First container boundary starts here

    GraphicsContainer gContrainer1 = g.BeginContainer();

    // Gamma correction value 0 - 12. Default is 4.

    g.TextContrast = 4;

    g.TextRenderingHint = TextRenderingHint.AntiAlias;

    g.DrawString("Text String", tnrFont, blueBrush,

        new PointF(10, 20));

    // Second container boundary starts here

    GraphicsContainer gContrainer2 = g.BeginContainer();

    g.TextContrast = 12;

    g.TextRenderingHint =

        TextRenderingHint.AntiAliasGridFit;

    g.DrawString("Text String", tnrFont, blueBrush,

        new PointF(10, 50));

    // Second container boundary finishes here

    g.EndContainer(gContrainer2);

    // First container boundary finishes here

    g.EndContainer(gContrainer1);

    // Draw string outside of the container

    g.DrawString("Text String", tnrFont, blueBrush,

        new PointF(10, 80));

    // Dispose of Graphics object

    blueBrush.Dispose();

    g.Dispose();

}

Note

The TextRenderingHint enumeration is defined in the System.Drawing.Text namespace. Don't forget to add this namespace 

reference.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 9.23 shows the output from Listing 9.15. Notice the quality difference in the text.

Figure 9.23. Using graphics containers to draw text

9.3.3.3 Using Graphics Containers to Draw Shapes

In the previous section we saw how we can use containers to draw text with different rendering quality and performance. We can draw other 

shapes using SmoothingMode, CompositingQuality, and other properties.

Listing 9.16 uses the AntiAlias, GammaCorrected, and HighSpeed options to draw rectangles and ellipses. We create a container by calling 

BeginContainer, set the smoothing mode to anti-aliasing, and set the compositing quality and gamma correction of the Graphics object. Then 

we draw an ellipse and a rectangle. After that we create a second graphics container by making another call to BeginContainer and set the 

smoothing mode and compositing quality to high speed, and then we draw a new ellipse and rectangle. Finally, we make two calls to the 

EndContainer method to close the containers.

Listing 9.16 Using graphics containers to draw shapes

private void DrawShapesMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object and set its

    // background as the form's background

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create pens

    Pen redPen = new Pen(Color.Red, 20);

    Pen bluePen = new Pen(Color.Blue, 10);

    // Create first graphics container

    GraphicsContainer gContainer1 = g.BeginContainer();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Set its properties

    g.SmoothingMode = SmoothingMode.AntiAlias;

    g.CompositingQuality =

        CompositingQuality.GammaCorrected;

    // Draw graphics objects

    g.DrawEllipse(redPen, 10, 10, 100, 50);

    g.DrawRectangle(bluePen, 210, 0, 100, 100);

    // Create second graphics container

    GraphicsContainer gContainer2 = g.BeginContainer();

    // Set its properties

    g.SmoothingMode = SmoothingMode.HighSpeed;

    g.CompositingQuality = CompositingQuality.HighSpeed;

    // Draw graphics objects

    g.DrawEllipse(redPen, 10, 150, 100, 50);

    g.DrawRectangle(bluePen, 210, 150, 100, 100);

    // Destroy containers

    g.EndContainer(gContainer2);

    g.EndContainer(gContainer1);

    // Dispose of objects

    redPen.Dispose();

    bluePen.Dispose();

    g.Dispose();

}

Figure 9.24 shows the output from Listing 9.16 The first ellipse and rectangle are smoother than the second set.

Figure 9.24. Using graphics containers to draw shapes

Graphics containers are also useful when you need to render large images either with high quality or at high speed. For example, if you have 

two large images and only one is quality-sensitive, you can create two graphics containers and set high quality for the first container and high 

speed for the second.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

9.4 Reading Metadata of Images

If you have ever worked with mechanical and engineering drawings or digital images, you are probably aware of metadata. Metadata is 

information about the image, that's not part of the image itself. When an engineer draws an image, metadata is often added, such as the 

following information: last updated, updated by, date, place, and names. A photograph might include metadata such as image title, 

manufacturer, and model.

In the .NET Framework library, the PropertyItem object is used as a placeholder for metadata. The PropertyItem class provides four properties: 

Id, Len, Type, and Value. All of these properties have both read and write access.

The Id property is a tag, which identifies the metadata item. Table 9.10 describes Id tag values.

The Value property is an array of values whose format is determined by the Type property. The Len property represents the length of the array 

of values in bytes. The Type property represents the data type of values stored in the array. Table 9.11 describes the format of the Type

property values.

Table 9.10. Id values

Hexadecimal Value Description

0x0320 Image title

0x010F Equipment manufacturer

0x0110 Equipment model

0x9003 ExifDTOriginal

0x829A EXIF exposure time

0x5090 Luminance table

0x5091 Chrominance table

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 9.11. Format of Type property values

Numeric Value Description

1 A Byte object

2 An array of Byte objects encoded as ASCII

3 A 16-bit integer

4 A 32-bitinteger

5 An array of two Byte objects that represent a rational number

6 Not used

7 Undefined

8 Not used

9 SLong

10 SRational

An Image object may contain more than one PropertyItem object. The PropertyItems property of the Image class represents an array of 

PropertyItem objects corresponding to an image. The PropertyIdList property of the Image class returns an array of property IDs stored in an 

image object. Listing 9.17 uses the PropertyItems property of the Image class and reads all property items of an image.

Listing 9.17 Reading the metadata of a bitmap

private void Form1_Load(object sender,

    System.EventArgs e)

{

    // Create an image from a file

    Graphics g = this.CreateGraphics();

    Image curImage = Image.FromFile("roses.jpg");

    Rectangle rect = new Rectangle(20, 20, 100, 100);

    g.DrawImage(curImage, rect);

    // Create an array of PropertyItem objects and read

    // items using PropertyItems

    PropertyItem[] propItems = curImage.PropertyItems;

    // Create values of PropertyItem members

    foreach (PropertyItem propItem in propItems)

    {

        System.Text.ASCIIEncoding encoder =

            new System.Text.ASCIIEncoding();

        string str = "ID ="+propItem.Id.ToString("x");

        str += ", Type ="+ propItem.Type.ToString();

        str += ", Length = "+ propItem.Len.ToString();

        str += ", Value ="

            + encoder.GetString(propItem.Value);

        MessageBox.Show(str);

    }

    // Dispose of object

    g.Dispose();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 9.25 shows the output from Listing 9.17.

Figure 9.25. Reading the metadata of a bitmap

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

9.5 Blending Explained

If you have experience working with graphics, you may have heard some terms related to blending. Blending, alpha blending, and color 

blending are a few of these. In general, blending refers to mixing or combining two colors: a source color and a background color. The 

resulting blended color is used to draw graphics shapes, lines, and curves.

In this chapter blending is divided into three categories: color blending, alpha blending, and mixed blending. Color blending, which produces 

what are known as color gradients, involves drawing and filling graphics shapes, lines, and curves starting with a color at one end and 

finishing with another color at the other end. Figure 9.26 shows a good example of color blending.

Figure 9.26. Color blending examples

Alpha blending is used to draw and fill transparent shapes, lines, and curves. Pens and brushes are used to create alpha blending. First we 

create a pen or brush using the alpha component value as the color of a brush or pen, and then we use that brush or pen to fill and draw 

shapes, lines, and curves. Semitransparent or translucent graphics shapes, lines, and curves are examples of alpha blending. For example, 

Figure 9.27 contains three lines with opaque and semitransparent colors, and a string with semitransparent color on top of an image—a

perfect example of alpha blending.

Figure 9.27. Transparent graphics shapes in an image using alpha blending

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

Images in this book are not colored, so you may not see the exact effects described in the text. To see the exact effects, run 

the sample code.

Mixed blending is probably a new concept to most readers. You won't find it mentioned in the MSDN documentation. Mixed blending is a 

combination of color and alpha blending. Figure 9.28 shows an example. If you run the sample code, you will see that the output consists of 

not only a transparent image, but also a color blending sample.

Figure 9.28. Mixed blending effects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.5.1 Color Blending

Gradient brushes play a major role in color blending. LinearGradientBrush and PathGradientBrush both represent brush objects with color 

blending.

As we discussed in Chapter 4, a linear gradient brush is a brush with two colors: a starting color and an ending color. A path gradient brush is 

used to fill graphics paths. Instead of starting a color from one end, the path gradient brush starts a color from the center of the path and ends 

with the second color at the outer boundary of the path.

A blend pattern is a combination of two colors (a starting color and an ending color) defined by factors and positions. The Blend class 

represents a blend pattern in the .NET Framework. It provides two properties: Factors and Positions. The Factors property specifies the 

percentage of the starting color and the ending color to be used at the corresponding position. The Positions property specifies the 

percentages of distance for each gradation of color along the gradient line. The values of Factors and Positions must be between 0 and 1, 

where 0 represents the starting position and 1 represents the ending position. For example, 0.4f specifies that a point is 40 percent of the total 

distance from the starting point.

After creating a Blend object, you can attach it to a linear gradient brush by setting the Blend property of the LinearGradientBrush object. In 

Listing 9.18 we create a Blend object and its Factors and Positions properties, and then we set the Blend property of the LinearGradientBrush

object. We can use this brush to fill graphics shapes.

Listing 9.18 Creating a Blend object and setting its Factors and Positions properties

LinearGradientBrush brBrush = new LinearGradientBrush(

   new Point(0, 0), new Point(50, 20),

   Color.Blue, Color.Red);

Blend blend = new Blend();

float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

float[] posArray   = {0.0f, 0.2f, 0.6f, 1.0f};

blend.Factors = factArray;

blend.Positions = posArray;

brBrush.Blend = blend;

The ColorBlend class defines arrays of colors and positions used for interpolating color blending in a multicolor gradient. The Positions property, 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



an array of floating points (values vary between 0.0 and 1.0), represents the positions of the colors along a gradient line; and the Colors

property, an array of Color objects, represents the color to use at corresponding positions. Each position defined in Positions has a 

corresponding color in the Colors array. Hence if six positions are defined in the Positions array, the Colors array will have six Color objects.

To use a ColorBlend object, create the object and set its Positions and Colors properties, as shown in Listing 9.19. The InterpolationColors

property of the LinearGradientBrush and PathGradientBrush classes uses the ColorBlend object.

Listing 9.19 Creating a ColorBlend object and setting its Colors and Positions properties

LinearGradientBrush brBrush = new LinearGradientBrush(

   new Point(0, 0), new Point(50, 20),

  Color.Blue, Color.Red);

// Create color and points arrays

Color[] clrArray =

{

    Color.Red, Color.Blue, Color.Green,

    Color.Pink, Color.Yellow,

    Color.DarkTurquoise

};

float[] posArray =

{

    0.0f, 0.2f, 0.4f,

    0.6f, 0.8f, 1.0f

};

// Create a ColorBlend object and set its Colors and

// Positions properties

ColorBlend colorBlend = new ColorBlend();

colorBlend.Colors = clrArray;

colorBlend.Positions = posArray;

brBrush.InterpolationColors = colorBlend;

9.5.2 Blending Using LinearGradientBrush Objects

The LinearGradientBrush object represents a linear gradient brush, which lets us specify the starting and ending colors, and the starting and 

ending points, of the gradient pattern.

Note

See Chapter 4 for more detail on brushes and pens.

The linear gradient brushes work differently from solid and hatch brushes. For solid and hatch brushes, an application creates a brush and 

uses the brush to fill graphics shapes; the brush pattern applies to the entire shape. For linear gradient brushes, an application creates a 

linear gradient brush with a rectangle. The rectangle passed in the constructor of the LinearGradientBrush object defines the boundaries of a 

gradient pattern. For example, Listing 9.20 creates a linear gradient brush with starting point (0, 0), ending point (50, 50), starting color red, 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



and ending color green. Then the code fills a rectangle starting at point (0, 0) and ending at point (200, 50):

Listing 9.20 Creating a LinearGradientBrush object

LinearGradientBrush rgBrush =

new LinearGradientBrush

(

    new RectangleF(0, 0, 50, 50),

    Color.Red, Color.Green,

    LinearGradientMode.Horizontal

);

g.FillRectangle(rgBrush, 0, 0, 200, 50);

Figure 9.29 shows the output from Listing 9.20. After point (50, 50) the gradient pattern repeats itself.

Figure 9.29. Using linear gradient brushes

Now let's create one more linear gradient brush using code from Listing 9.21. The brush's range is greater, and the rectangle starts at point 

(50, 50), with height and width 200 and 50, respectively.

Listing 9.21 Setting a brush's rectangle

LinearGradientBrush rgBrush =

new LinearGradientBrush

(

    new RectangleF(0, 0, 200, 200),

    Color.Red, Color.Green,

    LinearGradientMode.Horizontal

);

g.FillRectangle(rgBrush, 50, 50, 200, 50);

As the output of Listing 9.21 shows (see Figure 9.30), the pattern repeats after it crosses point (200, 200).

Figure 9.30. Using a rectangle in the linear gradient brush

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The LinearGradientBrush class also provides two methods—SetBlendTriangularShape and SetSigmaBellShape—which can be used to set

gradient properties. SetBlendTriangularShape creates a gradient with a center color and a linear falloff color. This method takes two

parameters—representing focus and scale—both floating point values that vary from 0 to 1. The focus parameter is optional. Listing 9.22

shows the SetBlendTriangularShape method being used.

Listing 9.22 Using the SetBlendTriangularShape method

private void SetBlendTriangularShapeMenu_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect = new Rectangle(20, 20, 100, 50);

    // Create a linear gradient brush

    LinearGradientBrush rgBrush =

         new LinearGradientBrush(

         rect, Color.Red, Color.Green,

         0.0f, true);

    // Fill rectangle

    g.FillRectangle(rgBrush, rect);

    rect.Y = 90;

    // Set blend triangular shape

    rgBrush.SetBlendTriangularShape(0.5f, 1.0f);

    // Fill rectangle again

    g.FillRectangle(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

Figure 9.31 shows the output from Listing 9.22. The first image starts with red and ends with green; the second image has green as the 

center, and red as both the starting and the ending edge color.

Figure 9.31. Using the SetBlendTriangularShape method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The SetSigmaBellShape method creates a gradient falloff based on a bell-shaped curve. Much like SetBlendTriangularShape, this method

takes two parameters—representing focus and scale (the focus parameter is optional)—whose values vary from 0 to 1. Listing 9.23 shows the 

SetSigmaBellShape method being used.

Listing 9.23 Using the SetSigmaBellShape method

private void SetSigmaBellShapeMenu_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect = new Rectangle(20, 20, 100, 50);

    // Create a linear gradient brush

    LinearGradientBrush rgBrush =

        new LinearGradientBrush(

        rect, Color.Red, Color.Green,

        0.0f, true);

    // Fill rectangle

    g.FillRectangle(rgBrush, rect);

    rect.Y = 90;

    // Set signma bell shape

    rgBrush.SetSigmaBellShape(0.5f, 1.0f);

    // Fill rectangle again

    g.FillRectangle(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

Figure 9.32 shows the output from Listing 9.23. The first image starts with red and ends with green. After the sigma bell shape is set, the 

image's center is green, and its starting and ending edges are red.

Figure 9.32. Using the SetSigmaBellShape method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's compare the effects of SetSigmaBellShape and SetBlendTriangularShape. Listing 9.24 draws three rectangles: one using the 

LinearGradient brush with no effects, one using SetSigmaBellShape, and one using SetBlendTriangularShape.

Listing 9.24 Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape

private void CompBlendTSigmaBell_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect = new Rectangle(0, 0, 40, 20);

    // Create a linear gradient brush

    LinearGradientBrush rgBrush =

        new LinearGradientBrush(

        rect, Color.Black, Color.Blue,

        0.0f, true);

    // Fill rectangle

    g.FillRectangle(rgBrush,

        new Rectangle(10, 10, 300, 100));

    // Set sigma bell shape

    rgBrush.SetSigmaBellShape(0.5f, 1.0f);

    // Fill rectangle again

    g.FillRectangle(rgBrush,

        new Rectangle(10, 120, 300, 100));

    // Set blend triangular shape

    rgBrush.SetBlendTriangularShape(0.5f, 1.0f);

    // Fill rectangle again

    g.FillRectangle(rgBrush,

        new Rectangle(10, 240, 300, 100));

    // Dispose of object

    g.Dispose();

}

Figure 9.33 shows the output from Listing 9.24. The first image is the original image, the second image is a sigma bell shape, and the third 

image is a blend triangular shape. SetBlendTriangularShape produces a glassy effect in the center of the color, and SetSigmaBellShape

produces a faded effect.

Figure 9.33. Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The first parameter of SetBlendTriangularShape and SetSigmaBellShape represents the center of the gradient (color), which varies between 

0.0f and 1.0f, where 0.0f is the starting point and 1.0f is the ending point of the gradient.

Now let's change the center of the gradient by modifying the two relevant lines of Listing 9.24 as follows:

rgBrush.SetSigmaBellShape(0.8f, 1.0f);

rgBrush.SetBlendTriangularShape(0.2f, 1.0f);

The new output looks like Figure 9.34. The center of the gradient in the second and third images is visibly different.

Figure 9.34. Setting the center of a gradient

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.5.3 Adding Multicolor Support to Gradients

So far in this section, we have been using only two colors (the default supported by LinearGradientBrush). What if we want to use more than 

two colors? No problem!

The LinearGradientBrush class provides properties that are useful for blending. Two of these properties are InterpolationColors and Blend. The 

Blend property is represented by the Blend object, and InterpolationColors is represented by the ColorBlend object. To apply multicolor 

gradients, simply create Blend and ColorBlend objects, attach these objects to a LinearGradientBrush object, and use the brush to fill shapes.

Listing 9.25 creates a ColorBlend object, sets its Colors and Positions properties, and sets the InterpolationColors property of the brush.

Listing 9.25 Using the InterpolationColors property of LinearGradientBrush

private void InterpolationColorsMenu_Click

    (object sender, System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a LinearGradientBrush object

    LinearGradientBrush brBrush =

        new LinearGradientBrush(

        new Point(0, 0), new Point(50, 20),

        Color.Blue, Color.Red);

    Rectangle rect =

        new Rectangle(20, 20, 200, 100);

    // Create color and points arrays

    Color[] clrArray =

    {

        Color.Red, Color.Blue, Color.Green,

        Color.Pink, Color.Yellow,

        Color.DarkTurquoise

    };

    float[] posArray =

    {

        0.0f, 0.2f, 0.4f,

        0.6f, 0.8f, 1.0f

    };

    // Create a ColorBlend object and

    // set its Colors and Positions properties

    ColorBlend colorBlend = new ColorBlend();

    colorBlend.Colors = clrArray;

    colorBlend.Positions = posArray;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Set InterpolationColors property

    brBrush.InterpolationColors = colorBlend;

    // Draw shapes

    g.FillRectangle(brBrush, rect);

    rect.Y = 150;

    rect.Width = 100;

    rect.Height = 100;

    g.FillEllipse(brBrush, rect);

    // Dispose of object

    g.Dispose();

}

Figure 9.35 shows the output from Listing 9.25. The gradient has multiple colors.

Figure 9.35. A multicolor gradient

The Blend property of LinearGradientBrush allows you to attach a Blend object to the brush, which represents the positions and factors of the 

blend. Listing 9.26 creates a Blend object and sets its Factors and Positions properties, as well as the Blend property of the brush.

Listing 9.26 Using the Blend property of LinearGradientBrush

private void BlendPropMenu_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Create a linear gradient brush

    LinearGradientBrush brBrush =

        new LinearGradientBrush(

        new Point(0, 0), new Point(50, 20),

        Color.Blue, Color.Red);

    // Create a Blend object

    Blend blend = new Blend();

    float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

    float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};

    // Set Blend's Factors and Positions properties

    blend.Factors = factArray;

    blend.Positions = posArray;

    // Set Blend property of the brush

    brBrush.Blend = blend;

    // Fill a rectangle and an ellipse

    g.FillRectangle(brBrush, 10, 20, 200, 100);

    g.FillEllipse(brBrush, 10, 150, 120, 120);

    // Dispose of object

    g.Dispose();

}

Figure 9.36 shows the output from Listing 9.26. The blend's position and colors are controlled by the Factors property.

Figure 9.36. Using blending in a linear gradient brush

9.5.4 Using Gamma Correction in Linear Gradient Brushes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We use gamma correction when we want to display a drawing accurately on a computer screen. Gamma correction controls the overall 

brightness of an image. Images that are not properly corrected may look either too dark or bleached out. By setting the gamma correction, we 

tell GDI+ to change the brightness and set the best ratios of red to green to blue.

The GammaCorrection property, a Boolean type, is used to apply gamma correction on a linear gradient brush. This property can be true

(enabled) or false (disabled). Brushes with gamma correction have more uniform intensity than brushes with no gamma correction.

Listing 9.27 draws two rectangles. The first has no gamma correction; the second does have gamma correction. If you run this code, you will 

notice that the second rectangle has a more uniform gradation.

Listing 9.27 Applying gamma correction on linear gradient brushes

private void GammaCorrectionMenu_Click(

    object sender, System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect =

        new Rectangle(20, 20, 100, 50);

    // Create a linear gradient brush

    LinearGradientBrush rgBrush =

        new LinearGradientBrush(

        rect, Color.Red, Color.Green,

        0.0f, true);

    // Fill rectangle

    g.FillRectangle(rgBrush, rect);

    rect.Y = 90;

    // Set gamma correction of the brush

    rgBrush.GammaCorrection = true;

    // Fill rectangle

    g.FillRectangle(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

9.5.5 Blending Using PathGradientBrush Objects

As we discussed in Chapter 4 (Section 4.1.6), the PathGradientBrush object is used to fill a graphics path with a gradient. We can specify the 

center and boundary colors of a path.

The CenterColor and SurroundColors properties are used to specify the center and boundary colors. Listing 9.28 uses the CenterColor and 

SurroundColors properties; it sets the center color of the path to red and the surrounding color to green.

Listing 9.28 Blending using PathGradientBrush

private void PathGBBlend_Click(object sender,

    System.EventArgs e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create Blend object

    Blend blend = new Blend();

    // Create point and position arrays

    float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

    float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};

    // Set Factors and Positions properties of Blend

    blend.Factors = factArray;

    blend.Positions = posArray;

    // Set smoothing mode of Graphics object

    g.SmoothingMode = SmoothingMode.AntiAlias;

    // Create path and add a rectangle

    GraphicsPath path = new GraphicsPath();

    Rectangle rect = new Rectangle(10, 20, 200, 200);

    path.AddRectangle(rect);

    // Create path gradient brush

    PathGradientBrush rgBrush =

        new PathGradientBrush(path);

    // Set Blend and FocusScales properties

    rgBrush.Blend = blend;

    rgBrush.FocusScales = new PointF(0.6f, 0.2f);

    Color[] colors = {Color.Green};

    // Set CenterColor and SurroundColors properties

    rgBrush.CenterColor = Color.Red;

    rgBrush.SurroundColors = colors;

    g.FillEllipse(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

If you run the code from Listing 9.28, you will see that the focus is the center of the ellipse, and there is scattering in a faded color toward the 

boundary of the ellipse. The center is red, and the border is green (see Figure 9.37).

Figure 9.37. Blending using PathGradientBrush

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The FocusScales property changes the focus point for the gradient falloff. The following code snippet sets the FocusScales property:

rgBrush.FocusScales = new PointF(0.6f, 0.2f);

After FocusScales is set, the color of the ellipse changes from the center of the ellipse to a rectangle. Figure 9.38 shows the new output.

Figure 9.38. Setting the focus scale

We can even specify multiple surrounding colors. For example, we can create an array of different colors and use them for the 

SurroundColors property of the brush. To do so, we replace the following line of Listing 9.28:

Color[] colors = {Color.Green};

with the following code snippet:

Color[] colors =

{Color.Green, Color.Blue,

Color.Red, Color.Yellow};

rgBrush.SurroundColors = colors;

If you add this code to the application, you will see a totally different output. As Figure 9.39 shows, the new ellipse has four different boundary 

colors.

Figure 9.39. Blending multiple colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Like LinearGradientBrush, the PathGradientBrush class provides Blend and InterpolationColors properties. Listing 9.29 shows the 

InterpolationColors property in use.

Listing 9.29 Using the InterpolationColors property of PathGradientBrush

private void PathGBInterPol_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create color and points arrays

    Color[] clrArray =

        {Color.Red, Color.Blue, Color.Green,

           Color.Pink, Color.Yellow,

            Color.DarkTurquoise};

    float[] posArray =

        {0.0f, 0.2f, 0.4f, 0.6f, 0.8f, 1.0f};

    // Create a ColorBlend object and set its Colors and

    // Positions properties

    ColorBlend colorBlend = new ColorBlend();

    colorBlend.Colors = clrArray;

    colorBlend.Positions = posArray;

    // Set smoothing mode of Graphics object

    g.SmoothingMode = SmoothingMode.AntiAlias;

    // Create a graphics path and add a rectangle

    GraphicsPath path = new GraphicsPath();

    Rectangle rect = new Rectangle(10, 20, 200, 200);

    path.AddRectangle(rect);

    // Create a path gradient brush

    PathGradientBrush rgBrush =

            new PathGradientBrush(path);

    // Set interpolation colors and focus scales

    rgBrush.InterpolationColors = colorBlend;

    rgBrush.FocusScales = new PointF(0.6f, 0.2f);

    Color[] colors = {Color.Green};

    // Set center and surrounding colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    rgBrush.CenterColor = Color.Red;

    rgBrush.SurroundColors = colors;

    // Draw ellipse

    g.FillEllipse(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

Figure 9.40 shows the output from Listing 9.29.

Figure 9.40. Using the InterpolationColors property of PathGradientBrush

You can even apply blending on a path gradient brush using the Blend property. Listing 9.30 creates a Blend object and sets the Blend

property of the brush.

Listing 9.30 Using the Blend property of PathGradientBrush

private void PathGBBlend_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create Blend object

    Blend blend = new Blend();

    // Create point and position arrays

    float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

    float[] posArray   = {0.0f, 0.2f, 0.6f, 1.0f};

    // Set Factors and Positions properties of Blend

    blend.Factors = factArray;

    blend.Positions = posArray;

    // Set smoothing mode of Graphics object

    g.SmoothingMode = SmoothingMode.AntiAlias;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Create path and add a rectangle

    GraphicsPath path = new GraphicsPath();

    Rectangle rect = new Rectangle(10, 20, 200, 200);

    path.AddRectangle(rect);

    // Create path gradient brush

    PathGradientBrush rgBrush =

        new PathGradientBrush(path);

    // Set Blend and FocusScales properties

    rgBrush.Blend = blend;

    rgBrush.FocusScales = new PointF(0.6f, 0.2f);

    Color[] colors =

    {

        Color.Green, Color.Blue,

        Color.Red, Color.Yellow

    };

    // Set CenterColor and SurroundColors

    rgBrush.CenterColor = Color.Red;

    rgBrush.SurroundColors = colors;

    g.FillEllipse(rgBrush, rect);

    // Dispose of object

    g.Dispose();

}

Figure 9.41 shows the output from Listing 9.30. Blending is done with four different colors.

Figure 9.41. Multicolor blending using PathGradientBrush

Just as with LinearGradientBrush, you can use the SetBlendTriangularShape and SetSigmaBellShape methods with PathGradientBrush.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

9.6 Alpha Blending

In GDI+, every color is a combination of ARGB components; each of the alpha, red, green, and blue components is represented by 8 bits. 

The alpha component in a color structure represents the transparency of the color, which varies from 0 to 255. The value 0 represents full 

transparency, and 255 represents full opacity.

The final color of an ARGB color structure is calculated by the following formula:

Final Color = (Source Color x alpha / 255) +

[Background Color x (255 – alpha) / 255]

This formula is applied on each component of the source color and background color.

In alpha blending, an application creates a color with an alpha component and uses this color to create a pen or a brush. This pen or brush is 

used to draw and fill graphics shapes, and it calculates the final color. Alpha blending may sound unfamiliar, but programmatically it is simply 

a method of setting the alpha component (transparency) of a color, and using it to fill and draw graphics shapes.

9.6.1 Brushes, Pens, and Alpha Blending

The process of alpha blending involves three simple steps. First an application creates a color with transparency (the alpha component). The 

following line creates a Color object with alpha component value 40:

Color clr = Color.FromArgb(40, 255, 255, 255);

The second step is to create a brush or pen using that color. The following lines create a transparent pen and a brush:

Pen transPen = new Pen(clr, 10);

SolidBrush semiTransBrush = new SolidBrush(clr);

Finally, the application uses the transparent brush or pen to fill and draw graphics shapes, lines, and curves. The following code uses the Pen

and Brush objects we created in the previous steps to draw a line and to draw and fill a rectangle:

g.DrawLine(transPen, 10, 30, 200, 30);

g.FillRectangle(semiTransBrush, rect);

Listing 9.31 uses this approach to draw lines, a rectangle, an ellipse, and text objects with varying transparency. You can add this code to a 

menu item or a button click event handler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 9.31 Using alpha blending to draw non-opaque or semi-opaque graphics shapes

private void AlphaBPensBrushes_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create pens with semitransparent colors

    Rectangle rect =

        new Rectangle(220, 30, 100, 50);

    Pen transPen =

        new Pen(Color.FromArgb(128, 255, 255, 255), 10);

    Pen totTransPen =

        new Pen(Color.FromArgb(40, 0, 255, 0), 10);

    // Draw line, rectangle, ellipse, and string using

    // semitransparent colored pens

    g.DrawLine(transPen, 10, 30, 200, 30);

    g.DrawLine(totTransPen, 10, 50, 200, 50);

    g.FillRectangle(new SolidBrush(

        Color.FromArgb(40, 0, 0, 255)), rect);

    rect.Y += 60;

    g.FillEllipse(new SolidBrush(

        Color.FromArgb(20, 255, 255, 0)), rect);

    SolidBrush semiTransBrush =

        new SolidBrush(Color.FromArgb(90, 0, 50, 255));

    g.DrawString("Some Photo \nDate: 04/09/2001",

        new Font("Verdana", 14), semiTransBrush,

        new RectangleF(20, 100, 300, 100) );

    // Dispose of object

    g.Dispose();

}

Figure 9.42 shows the output from Listing 9.31. The lines, rectangle, ellipse, and text on this form are semitransparent.

Figure 9.42. Drawing semitransparent graphics shapes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.6.2 Alpha Blending and Images

We often see a semitransparent date and place name on a photo. You can draw transparent graphics shapes on images using the same 

method: Create a graphics shape using semi- or non-opaque colors, and then draw on the image.

Listing 9.32 draws graphics shapes on an image. First we create an Image object and call DrawImage to draw an image. Then we create 

transparent pens and brushes and call fill and draw methods to draw graphics shapes. You can add the code in Listing 9.32 to any menu item 

or button click event handler.

Listing 9.32 Drawing semitransparent graphics shapes on an image

private void AlphaBImages_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Draw an image

    Image curImage =

        Image.FromFile("Neel3.jpg");

    g.DrawImage(curImage, 0, 0,

        curImage.Width, curImage.Height);

    // Create pens and a rectangle

    Rectangle rect =

        new Rectangle(220, 30, 100, 50);

    Pen opqPen =

        new Pen(Color.FromArgb(255, 0, 255, 0), 10);

    Pen transPen =

        new Pen(Color.FromArgb(128, 255, 255, 255), 10);

    Pen totTransPen =

        new Pen(Color.FromArgb(40, 0, 255, 0), 10);

    // Draw lines, rectangle, ellipse, and string

    g.DrawLine(opqPen, 10, 10, 200, 10);

    g.DrawLine(transPen, 10, 30, 200, 30);

    g.DrawLine(totTransPen, 10, 50, 200, 50);

    g.FillRectangle(new SolidBrush(

        Color.FromArgb(140, 0, 0, 255)), rect);

    rect.Y += 60;

    g.FillEllipse(new SolidBrush(

        Color.FromArgb(150, 255, 255, 255)), rect);

    SolidBrush semiTransBrush =

        new SolidBrush(Color.FromArgb(90, 255, 255, 50));

    g.DrawString("Some Photo \nDate: 04/09/2001",

        new Font("Verdana", 14), semiTransBrush,

        new RectangleF(20, 100, 300, 100) );

    // Dispose of object

    g.Dispose();

}

Figure 9.43 shows the output from Listing 9.32. Lines, text, a rectangle, and an ellipse are drawn on top of the image, but you can see through 

them because these shapes are semitransparent.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 9.43. Drawing semitransparent shapes on an image

9.6.3 Compositing Mode and Blending

As mentioned earlier, blending is a process of combining two colors: a source color and a background color. The compositing mode specifies 

how source colors are combined with background colors.

The CompositingMode property of the Graphics class represents the compositing mode of a graphics surface, which applies to all graphics 

shapes for that surface. The CompositingMode enumeration has two members: SourceCopy and SourceOver. SourceCopy specifies that 

when a color is rendered, it overwrites the background color, and SourceOver specifies that when a color is rendered, it is blended with the 

background color using the alpha component.

The following code snippet shows how to set the CompositingMode property of a Graphics object.

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

g.CompositingMode = CompositingMode.SourceCopy;

g.CompositingMode = CompositingMode.SourceOver;

// Dispose of object

g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



CompositingMode may be helpful in scenarios where you need to draw overlapped images. Suppose you draw one rectangle and one ellipse, 

and an area of the ellipse overlaps a small area of the rectangle. You may or may not want to show the overlapped area of the rectangle. The 

compositing mode provides you the option of doing either.

Instead of applying CompositingMode to all of the graphics, you can apply it to selected shapes. One way to do this is to create a temporary 

Graphics object (a new surface), draw all the shapes you need and apply the compositing mode on this object. You can also create graphics 

containers and apply the necessary settings to each graphics container.

The quality of compositing is inversely proportional to the rendering speed: The higher the quality, the slower the rendering. The 

CompositingQuality property of the Graphics object represents the quality of a composition process, which takes a value of type 

CompositingQuality enumeration. The CompositingQuality enumeration is defined in Table 9.12.

Listing 9.33 draws two sets of shapes. Each set has a rectangle and an ellipse. First we create a Bitmap object, and then we create a 

temporary Graphics object using the FromImage method by passing the Bitmap object. We set the CompositingMode property of this Graphics

object to SourceOver, which means that the color rendered overwrites the background color. Then we draw a rectangle and an ellipse.

Table 9.12. CompositingQuality members

Member Description

AssumeLinear Assume linear values. Better than the default quality.

Default Default quality.

GammaCorrected Gamma correction is used.

HighQuality High quality, low speed.

HighSpeed High speed, low quality.

Invalid Invalid quality.

Listing 9.33 Using CompositingMode to draw graphics shapes

private void AlphaBCompGammaCorr_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create two rectangles

    Rectangle rect1 =

        new Rectangle(20, 20, 100, 100);

    Rectangle rect2 =

        new Rectangle(200, 20, 100, 100);

    // Create two SolidBrush objects

    SolidBrush redBrush =

        new SolidBrush(Color.FromArgb(150, 255, 0, 0));

    SolidBrush greenBrush =

        new SolidBrush(Color.FromArgb(180, 0, 255, 0));

    // Create a Bitmap object

    Bitmap tempBmp = new Bitmap(200, 150);

    // Create a Graphics object

    Graphics tempGraphics =

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        Graphics.FromImage(tempBmp);

    // Set compositing mode and compositing

    // quality of Graphics object

    tempGraphics.CompositingMode =

        CompositingMode.SourceOver;

    tempGraphics.CompositingQuality =

        CompositingQuality.GammaCorrected;

    // Fill rectangle

    tempGraphics.FillRectangle(redBrush, rect1);

    rect1.X += 30;

    rect1.Y += 30;

    // Fill ellipse

    tempGraphics.FillEllipse(greenBrush, rect1);

    g.CompositingQuality =

        CompositingQuality.GammaCorrected;

    // Draw image

    g.DrawImage(tempBmp, 0, 0);

    // Fill rectangle

    g.FillRectangle(Brushes.Red, rect2);

    rect2.X += 30;

    rect2.Y += 30;

    // Fill ellipse

    g.FillEllipse(Brushes.Green, rect2);

    // Dispose of objects

    greenBrush.Dispose();

    redBrush.Dispose();

    tempBmp.Dispose();

    g.Dispose();

}

Figure 9.44 shows the output from Listing 9.33. You can clearly see that an ellipse copies over the color of a rectangle.

Figure 9.44. Using CompositingMode.SourceOver

Now we change the value of CompositingMode to SourceCopy by using the following code snippet:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



tempGraphics.CompositingMode =

      CompositingMode.SourceCopy;

Figure 9.45 shows the new output. The color of the rectangle and the color of ellipse do not overlap now, but the color of the rectangle is gone 

and that area is overridden by the ellipse.

Figure 9.45. Blending with CompositingMode.SourceCopy

9.6.4 Mixed Blending

Mixed blending is a combination of both alpha blending and color blending. It is useful when you need to draw transparent and blended

graphics shapes—for example, drawing a transparent image with transparent shapes using a blended linear gradient brush.

Listing 9.34 shows how to mix these two types of blending. Using the InterpolationColors property, we create a LinearGradientBrush object and 

set its Colors and Positions properties to specify the blending colors and positions. After that we create a Bitmap object and apply a color matrix 

using SetColorMatrix. Then we draw a rectangle and an ellipse, and we call DrawImage.

Listing 9.34 Mixed blending example

private void MixedBlending_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a LinearGradientBrush object

    LinearGradientBrush brBrush =

        new LinearGradientBrush(

        new Point(0, 0), new Point(50, 20),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        Color.Blue, Color.Red);

    Rectangle rect =

        new Rectangle(20, 20, 200, 100);

    // Create color and points arrays

    Color[] clrArray =

    {

        Color.Red, Color.Blue, Color.Green,

        Color.Pink, Color.Yellow,

        Color.DarkTurquoise

    };

    float[] posArray =

    {

        0.0f, 0.2f, 0.4f,

        0.6f, 0.8f, 1.0f

    };

    // Create a ColorBlend object and

    // set its Colors and Positions properties

    ColorBlend colorBlend = new ColorBlend();

    colorBlend.Colors = clrArray;

    colorBlend.Positions = posArray;

    // Set InterpolationColors property

    brBrush.InterpolationColors = colorBlend;

    // Create a Bitmap object from a file

    Bitmap bitmap = new Bitmap("MyPhoto.jpg");

    // Create a points array

    float[][] ptsArray =

    {

        new float[] {1, 0, 0, 0, 0},

        new float[] {0, 1, 0, 0, 0},

        new float[] {0, 0, 1, 0, 0},

        new float[] {0, 0, 0, 0.5f, 0},

        new float[] {0, 0, 0, 0, 1}

    };

    // Create a ColorMatrix object using pts array

    ColorMatrix clrMatrix =

        new ColorMatrix(ptsArray);

    // Create an ImageAttributes object

    ImageAttributes imgAttributes =

        new ImageAttributes();

    // Set color matrix of ImageAttributes

    imgAttributes.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Bitmap);

    // Fill rectangle

    g.FillRectangle(brBrush, rect);

    rect.Y += 120;

    // Fill ellipse

    g.FillEllipse(brBrush, rect);

    // Draw image using ImageAttributes

    g.DrawImage(bitmap,

        new Rectangle(0, 0,

        bitmap.Width, bitmap.Height),

        0, 0, bitmap.Width, bitmap.Height,

        GraphicsUnit.Pixel, imgAttributes);

    // Dispose of objects

    brBrush.Dispose();

    bitmap.Dispose();

    g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Figure 9.46 shows the output from Listing 9.34. The rectangle and ellipse are blended (multicolor) and translucent (alpha-blended).

Figure 9.46. A mixed blending example

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

9.7 Miscellaneous Advanced 2D Topics

So far in this chapter, we have covered line caps and line styles, graphics paths, graphics containers, graphics container states, color 

blending and alpha blending, and the use of linear and path gradient brushes. The System.Drawing.Advanced2D namespace contains topics 

that don't fall into any of these categories. In this section we will cover a few of these topics:

Region data

The SmoothingMode enumeration

The PixelOffsetMode enumeration

9.7.1 Region Data

Sometimes we need to get and set a region's data or create a Region object from an array of bytes. A region's data is an array of bytes that 

specify the region. The RegionData class can be used to read or write the array. This class has only one property, Data, which returns an array 

of bytes that describe the region.

Listing 9.35 uses RegionData to read the data of a region.

Listing 9.35 Using RegionData to read the data of a region

// Create a rectangle

Rectangle rect = new Rectangle(20, 20, 200, 200);

Region rgn = new Region(rect);

// Create a RegionData object

RegionData rgnData = rgn.GetRegionData();

// Get data

byte[] btArry = rgnData.Data;

MessageBox.Show("Number of bytes :"

    + rgnData.Data.Length.ToString()

);

9.7.2 The SmoothingMode and PixelOffsetMode Enumerations

SmoothingMode and PixelOffsetMode are two enumerations defined in the Drawing.Drawing2D namespace. In this section we will take a quick 

look at these enumerations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.7.2.1 The SmoothingMode Enumeration

The smoothing mode specifies the rendering quality of graphics drawn on a surface. The SmoothingMode property is used to get and set the 

smoothing mode of a graphics surface, and it takes a value of SmoothingMode enumeration.

SmoothingMode defines anti-aliasing for lines, curves, and images. This property does not affect text; the TextRenderingHint property is used 

for text. SmoothingMode has six members, which are defined in Table 9.13.

To see SmoothingMode in action, let's draw a few graphics shapes. Listing 9.36 draws a rectangle, an ellipse, and a line. The line that sets the 

smoothing mode of the Graphics object is commented out.

Table 9.13. SmoothingMode members

Member Description

AntiAlias Anti-aliased rendering.

Default No anti-aliasing (the default mode).

HighQuality High-quality, low-speed rendering.

HighSpeed High-speed, low-quality rendering.

Invalid Invalid mode. Raises exception.

None Specifies no anti-aliasing.

Listing 9.36 Drawing with the default smoothing mode

private void GeneralMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create three pens

    Pen redPen = new Pen(Color.Red, 6);

    Pen bluePen = new Pen(Color.Blue, 10);

    Pen blackPen = new Pen(Color.Black, 5);

    // Set smoothing mode

    // g.SmoothingMode = SmoothingMode.AntiAlias;

    // Draw a rectangle, an ellipse, and a line

    g.DrawRectangle(bluePen, 10, 20, 100, 50);

    g.DrawEllipse(redPen, 10, 150, 100, 50);

    g.DrawLine(blackPen, 150, 100, 250, 220);

    // Dispose of objects

    redPen.Dispose();

    bluePen.Dispose();

    blackPen.Dispose();

    g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Figure 9.47 shows the output from Listing 9.36. The outer edges of the shapes are not smooth.

Figure 9.47. Drawing with SmoothingMode set to Default

Now let's uncomment the SmoothingMode line in Listing 9.36 and run the program again:

g.SmoothingMode = SmoothingMode.AntiAlias;

Figure 9.48 shows the new output. The shapes have smooth outer edges and look better overall.

Figure 9.48. Drawing with SmoothingMode set to AntiAlias

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



9.7.2.2 The PixelOffsetMode Enumeration

PixelOffsetMode determines how pixels are offset during rendering. By offsetting pixels during rendering, we can improve rendering quality, 

but at the expense of speed. The PixelOffsetMode property of the Graphics class, with the help of SmoothingMode, is used to draw enhanced 

anti-aliasing images. The PixelOffsetMode enumeration is defined in Table 9.14.

The PixelOffsetMode property helps when we want to enhance anti-aliased graphics. Here's how to set this property:

g.SmoothingMode = SmoothingMode.AntiAlias;

g.PixelOffsetMode = PixelOffsetMode.HighQuality;

Table 9.14. PixelOffsetMode members

Member Description

Default The default mode.

Half Pixels are offset by –0.5 units, both horizontally and vertically, for high-speed anti-aliasing.

HighQuality High-quality, low-speed rendering.

HighSpeed High-speed, low-quality rendering.

Invalid Invalid mode.

None No pixel offset.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

The System.Drawing.Drawing2D namespace defines advanced functionality to work with 2D graphics objects. In this chapter we discussed 

the functionality defined in this namespace. We started the chapter by discussing the line caps and line styles. We saw sample code that set 

the line cap, line dash style, and line dash caps.

Next we covered graphics paths and graphics containers. We saw the usefulness of graphics paths and containers, and their advantages 

over nongraphics paths and containers. We also discussed graphics container states.

In the blending section of this chapter, we learned about color blending, alpha blending, and mixed blending. We discussed how to use linear 

gradient and path gradient brushes to draw blended objects. We saw how to use colors to draw alpha-blended graphics objects.

We also discussed other topics and classes defined in the System.Drawing.Advanced2D namespace, including metadata of images, how to 

set gamma correction, region data, and drawing quality.

Chapter 10 will focus on transformations, presenting the basics of transformations, matrices, and matrix operations, and how to apply 

transformation in practice.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 10. Transformation

In Chapter 9 we delved into advanced 2D graphics programming. In this chapter we will explore GDI+ transformations. A transformation is a 

process that changes graphics objects from one state to another. Rotation, scaling, reflection, translation, and shearing are some examples 

of transformation. Transformations can be applied not only to graphics shapes, curves, and images, but even to image colors.

In this chapter we will cover the following topics:

The basics of transformation, including coordinate systems and matrices

Global, local, and composite transformations

Transformation functionality provided by the Graphics class

Transformation concepts such as shearing, rotation, scaling, and translation

The Matrix and ColorMatrix classes, and their role in transformation

Matrix operations in image processing, including rotation, translation, shearing, and scaling

Color transformation and recoloring

Text transformation

Composite transformations and the matrix order

Any drawing process involves a source and a destination. The source of a drawing is the application that created it, and the destination is a 

display or printer device. For example, the process of drawing a simple rectangle starts with a command telling GDI+ to draw on the screen, 

followed by GDI+ iterating through multiple steps before it finally renders a rectangle on the screen. In the same way, transformation involves 

some steps before it actually renders the transformed object on a device. These steps are shown in Figure 10.1, which shows that GDI+ is 

responsible for converting world coordinates to page coordinates and device coordinates before it can render a transformed object.

Figure 10.1. Steps in the transformation process

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

10.1 Coordinate Systems

Before we discuss transformations, we need to understand coordinate systems. GDI+ defines three types of coordinate spaces: world, page, 

and device. When we ask GDI+ to draw a line from point A (x1, y1) to point B (x2, y2), these points are in the world coordinate system.

Before GDI+ draws a graphics shape on a surface, the shape goes through a few transformation stages (conversions). The first stage 

converts world coordinates to page coordinates. Page coordinates may or may not be the same as world coordinates, depending on the 

transformation. The process of converting world coordinates to page coordinates is called world transformation.

The second stage converts page coordinates to device coordinates. Device coordinates represent how a graphics shape will be displayed on 

a device such as a monitor or printer. The process of converting page coordinates to device coordinates is called page transformation. 

Figure 10.2 shows the stages of conversion from world coordinates to device coordinates.

Figure 10.2. Transformation stages

In GDI+, the default origin of all three coordinate systems is point (0, 0), which is at the upper left corner of the client area. When we draw a 

line from point A (0, 0) to point B (120, 80), the line starts 0 pixels from the upper left corner in the x-direction and 0 pixels from the upper left 

corner in the y-direction, and it will end 120 pixels over in the x-direction and 80 pixels down in the y-direction. The line from point A (0, 0) to 

point B (120, 80) is shown in Figure 10.3.

Figure 10.3. Drawing a line from point (0, 0) to point (120, 80)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Drawing this line programmatically is very simple. We must have a Graphics object associated with a surface (a form or a control). We can 

get a Graphics object in several ways. One way is to accept the implicit object provided by a form's paint event handler; another is to use the 

CreateGraphics method. Once we have a Graphics object, we call its draw and fill methods to draw and fill graphics objects. Listing 10.1 draws 

a line from starting point A (0, 0) to ending point B (120, 80). You can add this code to a form's paint event handler.

Listing 10.1 Drawing a line from point (0, 0) to point (120, 80)

Graphics g = e.Graphics;

Point A = new Point(0, 0);

Point B = new Point(120, 80);

g.DrawLine(Pens.Black, A, B);

Figure 10.3 shows the output from Listing 10.1. All three coordinate systems (world, page, and device) draw a line starting from point (0, 0) in 

the upper left corner of the client area to point (120, 80).

Now let's change to the page coordinate system. We draw a line from point A (0, 0) to point B (120, 80), but this time our origin is point (50, 

40) instead of the upper left corner. We shift the page coordinates from point (0, 0) to point (50, 40). The TranslateTransform method of the 

Graphics class does this for us. We will discuss this method in more detail in the discussion that follows. For now, let's try the code in Listing 

10.2.

Listing 10.2 Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

Graphics g = e.Graphics;

g.TranslateTransform(50, 40);

Point A = new Point(0, 0);

Point B = new Point(120, 80);

g.DrawLine(Pens.Black, A, B);

Figure 10.4 shows the output from Listing 10.2. The page coordinate system now starts at point (50, 40), so the line starts at point (0, 0) and 

ends at point (120, 80). The world coordinates in this case are still (0, 0) and (120, 80), but the page and device coordinates are (50, 40) and 

(170, 120). The device coordinates in this case are the same as the page coordinates because the page unit is in the pixel (default) format.

Figure 10.4. Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



What is the difference between page and device coordinates? Device coordinates determine what we actually see on the screen. They can 

be represented in many formats, including pixels, millimeters, and inches. If the device coordinates are in pixel format, the page coordinates 

and device coordinates will be the same (this is typically true for monitors, but not for printers).

The PageUnit property of the Graphics class is of type GraphicsUnit enumeration. In Listing 10.3 we set the PageUnit property to inches. Now 

graphics objects will be measured in inches, so we need to pass inches instead of pixels. If we draw a line from point (0, 0) to point (2, 1), the 

line ends 2 inches from the left side and 1 inch from the top of the client area in the page coordinate system. In this case the starting and 

ending points are (0, 0) and (2, 1) in both world and page coordinates, but the device coordinate system converts them to inches. Hence the 

starting and ending points in the device coordinate system are (0, 0) and (192, 96), assuming a resolution of 96 dots per inch.

Listing 10.3 Setting the device coordinate system to inches

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(Pens.Black, 0, 0, 2, 1);

Figure 10.5 shows the output from Listing 10.3. The default width of the pen is 1 page unit, which in this case gives us a pen 1 inch wide.

Figure 10.5. Drawing with the GraphicsUnit.Inch option

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's create a new pen with a different width. Listing 10.4 creates a pen that's 1 pixel wide (it does so by dividing the number of pixels we

want—in this case 1—by the page resolution, which is given by DpiX). We draw the line again, this time specifying a red color.

Listing 10.4 Using the GraphicsUnit.Inch option with a pixel width

Pen redPen = new Pen(Color.Red, 1/g.DpiX);

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(Pens.Black, 0, 0, 2, 1);

Figure 10.6 shows the output from Listing 10.4.

Figure 10.6. Drawing with the GraphicsUnit.Inch option and a pixel width

We can also combine the use of page and device coordinates. In Listing 10.5 we transform page coordinates to 1 inch from the left and 0.5 

inch from the top of the upper left corner of the client area. Our new page coordinate system has starting and ending points of (1, 0.5) and (3, 

1.5), but the device coordinate system converts them to pixels. Hence the starting and ending points in device coordinates are (96, 48) and 

(288, 144), assuming a resolution of 96 dots per inch.

Listing 10.5 Combining page and device coordinates

Pen redPen = new Pen(Color.Red, 1/g.DpiX);

g.TranslateTransform(1, 0.5f);

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(redPen, 0, 0, 2, 1);

Figure 10.7 shows the output from Listing 10.5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 10.7. Combining page and device coordinates

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

10.2 Transformation Types

There are many types of transformations.

Translation is a transformation of the xy plane that moves a graphics object toward or away from the origin of the surface in the x- or 

y-direction. For example, moving an object from point A (x1, y1) to point B (x2, y2) is a translation operation in which an object is being moved 

(y2 – y1) points in the y-direction.

Rotation moves an object around a fixed angle around the center of the plane.

In the reflection transformation, an object moves to a position in the opposite direction from an axis, along a line perpendicular to the axis. 

The resulting object is the same distance from the axis as the original point, but in the opposite direction.

Simple transformations, including rotation, scaling, and reflection are called linear transformations. A linear transformation followed by 

translation is called an affine transformation.

The shearing transformation skews objects based on a shear factor. In the sample applications discussed throughout this chapter, will see 

how to use these transformations in GDI+.

So far we've looked at only simple transformations. Now let's discuss some more complex transformation-related functionality defined in the 

.NET Framework library.

What Can You Transform?

You have just seen the basics of transforming lines. We can also transform graphics objects such as points, curves, shapes, 

images, text, colors, and textures, as well as colors and images used in pens and brushes.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



10.3 The Matrix Class and Transformation

Matrices play a vital role in the transformation process. A matrix is a multidimensional array of values in which each item in the array 

represents one value of the transformation operation, as we will see in the examples later in this chapter.

In GDI+, the Matrix class represents a 3x2 matrix that contains x, y, and w values in the first, second, and third columns, respectively.

Note

Before using the Matrix class in your applications, you need to add a reference to the System.Drawing.Drawing2D

namespace.

We can create a Matrix object by using its overloaded constructors, which take an array of points (hold the matrix items) as arguments. The 

following code snippet creates three Matrix objects from different overloaded constructors. The first Matrix object has no values for its items. 

The second and third objects have integer and floating point values, respectively, for the first six items of the matrix.

Matrix M1 = new Matrix();

Matrix M2 = new Matrix(2, 1, 3, 1, 0, 4);

Matrix M3 =

  new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);

Table 10.1. Matrix properties

Property Description

Elements Returns an array containing matrix elements.

IsIdentity Returns true if the matrix is an identity matrix; otherwise returns false.

IsInvertible Returns true if a matrix is invertible; otherwise returns false.

OffsetX Returns the x translation value of a matrix.

OffsetY Returns the y translation value of a matrix.

The Matrix class provides properties for accessing and setting its member values. Table 10.1 describes these properties.

The Matrix class provides methods to invert, rotate, scale, and transform matrices. The Invert method is used to reverse a matrix if it is 

invertible. This method takes no parameters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

The Transform property of the Graphics class is used to apply a transformation in the form of a Matrix object. We will discuss 

this property in more detail in Section 10.4.

Listing 10.6 uses the Invert method to invert a matrix. We create a Matrix object and read its original values. Then we call the Invert method and 

read the new values.

Listing 10.6 Inverting a matrix

private void InvertMenu_Click(object sender,

    System.EventArgs e)

{

    string str = "Original values: ";

    // Create a Matrix object

    Matrix X = new Matrix(2, 1, 3, 1, 0, 4);

    // Write its values

    for(int i=0; i<X.Elements.Length; i++)

    {

      str += X.Elements[i].ToString();

      str += ", ";

    }

    str += "\n";

    str += "Inverted values: ";

    // Invert matrix

    X.Invert();

    float[] pts = X.Elements;

    // Read inverted matrix

    for(int i=0; i<pts.Length; i++)

    {

        str += pts[i].ToString();

        str += ", ";

    }

    // Display result

    MessageBox.Show(str);

}

The Multiply method multiplies a new matrix against an existing matrix and stores the result in the first matrix. Multiply takes two arguments. 

The first is the new matrix by which you want to multiply the existing matrix, and the second is an optional MatrixOrder argument that indicates 

the order of multiplication.

The MatrixOrder enumeration has two values: Append and Prepend. Append specifies that the new operation is applied after the preceding 

operation; Prepend specifies that the new operation is applied before the preceding operation during cumulative operations. Listing 10.7

multiplies two matrices. We create two Matrix objects and use the Multiply method to multiply the second matrix by the first. Then we read and 

display the resultant matrix.

Listing 10.7 Multiplying two matrices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void MultiplyMenu_Click(object sender,

    System.EventArgs e)

{

    string str = null;

    // Create two Matrix objects

    Matrix X =

        new Matrix(2.0f, 1.0f, 3.0f, 1.0f, 0.0f, 4.0f);

    Matrix Y =

        new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);

    // Multiply two matrices

    X.Multiply(Y, MatrixOrder.Append);

    // Read the resultant matrix

    for(int i=0; i<X.Elements.Length; i++)

    {

        str += X.Elements[i].ToString();

        str += ", ";

    }

    // Display result

    MessageBox.Show(str);

}

The Reset method resets a matrix to the identity matrix (see Figure 10.21 for an example of an identity matrix). If we call the Reset method and 

then apply a matrix to transform an object, the result will be the original object.

The Rotate and RotateAt methods are used to rotate a matrix. The Rotate method rotates a matrix at a specified angle. This method takes two 

arguments: a floating point value specifying the angle, and (optionally) the matrix order. The RotateAt method is useful when you need to 

change the center of the rotation. Its first parameter is the angle; the second parameter (of type float) specifies the center of rotation. The third 

(optional) parameter is the matrix order.

Listing 10.8 simply creates a Graphics object using the CreateGraphics method and calls DrawLine and FillRectangle to draw a line and fill a 

rectangle, respectively.

Listing 10.8 Drawing a line and filling a rectangle

private void Rotate_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Draw a line

    g.DrawLine(new Pen(Color.Green, 3),

        new Point(120, 50),

        new Point(200, 50));

    // Fill a rectangle

    g.FillRectangle(Brushes.Blue,

        200, 100, 100, 60);

    // Dispose of object

    g.Dispose();

}

Figure 10.8 shows the output from Listing 10.8.

Figure 10.8. Drawing a line and filling a rectangle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's rotate our graphics objects, using the Matrix object. In Listing 10.9 we create a Matrix object, call its Rotate method to rotate the 

matrix 45 degrees, and apply the Matrix object to the Graphics object by setting its Transform property.

Listing 10.9 Rotating graphics objects

private void Rotate_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Matrix object

    Matrix X = new Matrix();

    // Rotate by 45 degrees

    X.Rotate(45, MatrixOrder.Append);

    // Apply Matrix object to the Graphics object

    // (i.e., to all the graphics items

    // drawn on the Graphics object)

    g.Transform = X;

    // Draw a line

    g.DrawLine(new Pen(Color.Green, 3),

        new Point(120, 50),

        new Point(200, 50));

    // Fill a rectangle

    g.FillRectangle(Brushes.Blue,

        200, 100, 100, 60);

    // Dispose of object

    g.Dispose();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Figure 10.9 shows the new output. Both objects (line and rectangle) have been rotated 45 degrees.

Figure 10.9. Rotating graphics objects

Now let's replace Rotate with RotateAt, as in Listing 10.10.

Listing 10.10 Using the RotateAt method

private void RotateAtMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Matrix object

    Matrix X = new Matrix();

    // Create a point

    PointF pt = new PointF(180.0f, 50.0f);

    // Rotate by 45 degrees

    X.RotateAt(45, pt, MatrixOrder.Append);

    // Apply the Matrix object to the Graphics object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // (i.e., to all the graphics items

    // drawn on the Graphics object)

    g.Transform = X;

    // Draw a line

    g.DrawLine(new Pen(Color.Green, 3),

        new Point(120, 50),

        new Point(200, 50));

    // Fill a rectangle

    g.FillRectangle(Brushes.Blue,

        200, 100, 100, 60);

    // Dispose of object

    g.Dispose();

}

This new code generates Figure 10.10.

Figure 10.10. Using the RotateAt method

If we call the Reset method in Listing 10.10 after RotateAt and before g.Transform, like this:

X.RotateAt(45, pt, MatrixOrder.Append);

// Reset the matrix

X.Reset();

// Apply the Matrix object to the Graphics object

// (i.e., to all the graphics items

// drawn on the Graphics object)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



g.Transform = X;

the revised code generates Figure 10.11, which is the same as Figure 10.8. There is no rotation because the Reset method resets the 

transformation.

Figure 10.11. Resetting a transformation

The Scale method scales a matrix in the x- and y-directions. This method takes two floating values (scale factors), for the x- and y-axes, 

respectively. In Listing 10.11 we draw a rectangle with a width of 20 and a height of 30. Then we create a Matrix object and scale it by calling its 

Scale method with arguments 3 and 4 in the x- and y-directions, respectively.

Listing 10.11 Scaling graphics objects

private void Scale_Click(object sender,

    System.EventArgs e)

{

    // Create Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Draw a filled rectangle with

    // width 20 and height 30

    g.FillRectangle(Brushes.Blue,

        20, 20, 20, 30);

    // Create Matrix object

    Matrix X = new Matrix();

    // Apply 3X scaling

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    X.Scale(3, 4, MatrixOrder.Append);

    // Apply transformation on the form

    g.Transform = X;

    // Draw a filled rectangle with

    // width 20 and height 30

    g.FillRectangle(Brushes.Blue,

        20, 20, 20, 30);

    // Dispose of object

    g.Dispose();

}

Figure 10.12 shows the output from Listing 10.11. The first rectangle is the original rectangle; the second rectangle is the scaled rectangle, in 

which the x position (and width) is scaled by 3, and the y position (and height) is scaled by 4.

Figure 10.12. Scaling a rectangle

The Shear method provides a shearing transformation and takes two floating point arguments, which represent the horizontal and vertical 

shear factors, respectively. In Listing 10.12 we draw a filled rectangle with a hatch brush. Then we call the Shear method to shear the matrix by 

2 in the vertical direction, and we use Transform to apply the Matrix object.

Listing 10.12 Shearing graphics objects

private void Shear_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a brush

    HatchBrush hBrush = new HatchBrush

        (HatchStyle.DarkVertical,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        Color.Green, Color.Yellow);

    // Fill a rectangle

    g.FillRectangle(hBrush,

        100, 50, 100, 60);

    // Create a Matrix object

    Matrix X = new Matrix();

    // Shear

    X.Shear(2, 1);

    // Apply transformation

    g.Transform = X;

    // Fill rectangle

    g.FillRectangle(hBrush,

        10, 100, 100, 60);

    // Dispose of objects

    hBrush.Dispose();

    g.Dispose();

}

Figure 10.13 shows the output from Listing 10.12. The first rectangle in this figure is the original; the second is sheared.

Figure 10.13. Shearing a rectangle

The Translate method translates objects by the specified value. This method takes two floating point arguments, which represent the x and y

offsets. For example, Listing 10.13 translates the original rectangle by 100 pixels each in the x- and y-directions.

Listing 10.13 Translating graphics objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Translate_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics obhect

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Draw a filled rectangle

    g.FillRectangle(Brushes.Blue,

        50, 50, 100, 60);

    // Create a Matrix object

    Matrix X = new Matrix();

    // Translate by 100 in the x direction

    // and 100 in the y direction

    X.Translate(100, 100);

    // Apply transformation

    g.Transform = X;

    // Draw a filled rectangle after

    // translation

    g.FillRectangle(Brushes.Blue,

        50, 50, 100, 60);

    // Dispose of object

    g.Dispose();

}

Here we draw two rectangles with a width of 100 and a height of 60. Both rectangles start at (50, 50), but the code generates Figure 10.14. 

Even though the rectangles were drawn with the same size and location, the second rectangle after translation is now located 100 points 

away in the x- and y-directions from the first rectangle.

Figure 10.14. Translating a rectangle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



10.4 The Graphics Class and Transformation

In Chapter 3 we saw that the Graphics class provides some transformation-related members. Before we move to other transformation-related 

classes, let's review the transformation functionality defined in the Graphics class, as described in Table 10.2. We will see how to use these 

members in the examples throughout this chapter.

The Transform property of the Graphics class represents the world transformation of a Graphics object. It is applied to all items of the object. 

For example, if you have a rectangle, an ellipse, and a line and set the Transform property of the Graphics object, it will be applied to all three 

items. The Transform property is a Matrix object. The following code snippet creates a Matrix object and sets the Transform property:

Table 10.2. Transformation-related members defined in the Graphics class

Member Description

MultiplyTransform Method that multiplies the world transformation of a Graphics object and a Matrix object. The Matrix object specifies 

the transformation action (scaling, rotation, or translation).

ResetTransform Method that resets the world transformation matrix of a Graphics object to the identity matrix.

RotateTransform Method that applies a specified rotation to the transformation matrix of a Graphics object.

ScaleTransform Method that applies a specified scaling operation to the transformation matrix of a Graphics object by prepending it 

to the object's transformation matrix.

Transform Property that represents the world transformation for a Graphics object. Both get and set.

TransformPoints Method that transforms an array of points from one coordinate space to another using the current world and page 

transformations of a Graphics object.

TranslateClip Method that translates the clipping region of a Graphics object by specified amounts in the horizontal and vertical 

directions.

TranslateTransform Method that prepends the specified translation to the transformation matrix of a Graphics object.

Matrix X = new Matrix();

X.Scale(2, 2, MatrixOrder.Append);

g.Transform = X;

The transformation methods provided by the Graphics class are MultiplyTransform, ResetTransform, RotateTransform, ScaleTransform, 

TransformPoints, TranslateClip, and TranslateTransform. The MultiplyTransform method multiplies a transformation matrix by the world 

transformation coordinates of a Graphics object. It takes an argument of Matrix type. The second argument, which specifies the order of 

multiplication operation, is optional. The following code snippet creates a Matrix object with the Translate transformation. The 

MultiplyTransform method multiplies the Matrix object by the world coordinates of the Graphics object, translating all graphics items drawn by 

the Graphics object.

Matrix X = new Matrix();

X. Translate(200.0F, 100.0F);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



g.MultiplyTransform(X, MatrixOrder.Append);

RotateTransform rotates the world transform by a specified angle. This method takes a floating point argument, which represents the rotation 

angle, and an optional second argument of MatrixOrder. The following code snippet rotates the world transformation of the Graphics object by 

45 degrees:

g.RotateTransform(45.0F, MatrixOrder.Append);

The ScaleTransform method scales the world transformation in the specified x- and y-directions. The first and second arguments of this 

method are x- and y-direction scaling factors, and the third optional argument is MatrixOrder. The following code snippet scales the world 

transformation by 2 in the x-direction and by 3 in the y-direction:

g.ScaleTransform(2.0F, 3.0F, MatrixOrder.Append);

The TranslateClip method translates the clipping region in the horizontal and vertical directions. The first argument of this method represents 

the translation in the x-direction, and the second argument represents the translation in the y-direction:

e.Graphics.TranslateClip(20.0f, 10.0f);

The TranslateTransform method translates the world transformation by the specified x- and y-values and takes an optional third argument of 

MatrixOrder:

g.TranslateTransform(100.0F, 0.0F, MatrixOrder.Append);

We will use all of these methods in our examples.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

10.5 Global, Local, and Composite Transformations

Transformations can be divided into two categories based on their scope: global and local. In addition, there are composite transformations. A 

global transformation is applicable to all items of a Graphics object. The Transform property of the Graphics class is used to set global 

transformations.

A composite transformation is a sequence of transformations. For example, scaling followed by translation and rotation is a composite 

translation. The MultiplyTransform, RotateTransform, ScaleTransform, and TranslateTransform methods are used to generate composite 

transformations.

Listing 10.14 draws two ellipses and a rectangle, then calls ScaleTransform, TranslateTransform, and RotateTransform (a composite 

transformation). The items are drawn again after the composite transformation.

Listing 10.14 Applying a composite transformation

private void GlobalTransformation_Click(object sender,

      System.EventArgs e)

{

      // Create a Graphics object

      Graphics g = this.CreateGraphics();

      g.Clear(this.BackColor);

      // Create a blue pen with width of 2

      Pen bluePen = new Pen(Color.Blue, 2);

      Point pt1 = new Point(10, 10);

      Point pt2 = new Point(20, 20);

      Color [] lnColors = {Color.Black, Color.Red};

      Rectangle rect1 = new Rectangle(10, 10, 15, 15);

      // Create two linear gradient brushes

      LinearGradientBrush lgBrush1 = new LinearGradientBrush

            (rect1, Color.Blue, Color.Green,

            LinearGradientMode.BackwardDiagonal);

      LinearGradientBrush lgBrush = new LinearGradientBrush

            (pt1, pt2, Color.Red, Color.Green);

      // Set linear colors

      lgBrush.LinearColors = lnColors;

      // Set gamma correction

      lgBrush.GammaCorrection = true;

      // Fill and draw rectangle and ellipses

      g.FillRectangle(lgBrush, 150, 0, 50, 100);

      g.DrawEllipse(bluePen, 0, 0, 100, 50);

      g.FillEllipse(lgBrush1, 300, 0, 100, 100);

      // Apply scale transformation

      g.ScaleTransform(1, 0.5f);

      // Apply translate transformation

      g.TranslateTransform(50, 0, MatrixOrder.Append);

      // Apply rotate transformation

      g.RotateTransform(30.0f, MatrixOrder.Append);

      // Fill ellipse

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      g.FillEllipse(lgBrush1, 300, 0, 100, 100);

      // Rotate again

      g.RotateTransform(15.0f, MatrixOrder.Append);

      // Fill rectangle

      g.FillRectangle(lgBrush, 150, 0, 50, 100);

      // Rotate again

      g.RotateTransform(15.0f, MatrixOrder.Append);

      // Draw ellipse

      g.DrawEllipse(bluePen, 0, 0, 100, 50);

      // Dispose of objects

      lgBrush1.Dispose();

      lgBrush.Dispose();

      bluePen.Dispose();

      g.Dispose();

}

Figure 10.15 shows the output from Listing 10.14.

Figure 10.15. Composite transformation

A local transformation is applicable to only a specific item of a Graphics object. The best example of local transformation is transforming a 

graphics path. The Translate method of the GraphicsPath class translates only the items of a graphics path. Listing 10.15 translates a graphics 

path. We create a Matrix object and apply rotate and translate transformations to it.

Listing 10.15 Translating graphics path items

private void LocalTransformation_Click(object sender,

    System.EventArgs e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a GraphicsPath object

    GraphicsPath path = new GraphicsPath();

    // Add an ellipse and a line to the

    // graphics path

    path.AddEllipse(50, 50, 100, 150);

    path.AddLine(20, 20, 200, 20);

    // Create a blue pen with a width of 2

    Pen bluePen = new Pen(Color.Blue, 2);

    // Create a Matrix object

    Matrix X = new Matrix();

    // Rotate 30 degrees

    X.Rotate(30);

    // Translate with 50 offset in x direction

    X.Translate(50.0f, 0);

    // Apply transformation on the path

    path.Transform(X);

    // Draw a rectangle, a line, and the path

    g.DrawRectangle(Pens.Green, 200, 50, 100, 100);

    g.DrawLine(Pens.Green, 30, 20, 200, 20);

    g.DrawPath(bluePen, path);

    // Dispose of objects

    bluePen.Dispose();

    path.Dispose();

    g.Dispose();

}

Figure 10.16 shows the output from Listing 10.15. The transformation affects only graphics path items (the ellipse and the blue [dark] line).

Figure 10.16. Local transformation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

10.6 Image Transformation

Image transformation is exactly the same as any other transformation process. In this section we will see how to rotate, scale, translate, 

reflect, and shear images. We will create a Matrix object, set the transformation process by calling its methods, set the Matrix object as the 

Transform property or the transformation methods of the Graphics object, and call DrawImage.

Rotating images is similar to rotating other graphics. Listing 10.16 rotates an image. We create a Graphics object using the CreateGraphics

method. Then we create a Bitmap object from a file and call the DrawImage method, which draws the image on the form. After that we create a 

Matrix object, call its Rotate method, rotate the image by 30 degrees, and apply the resulting matrix to the surface using the Transform property. 

Finally, we draw the image again using DrawImage.

Listing 10.16 Rotating images

private void RotationMenu_Click(object sender,

    System.EventArgs e)

{

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    Bitmap curBitmap = new Bitmap(@"roses.jpg");

    g.DrawImage(curBitmap, 0, 0, 200, 200);

    // Create a Matrix object, call its Rotate method,

    // and set it as Graphics.Transform

    Matrix X = new Matrix();

    X.Rotate(30);

    g.Transform = X;

    // Draw image

    g.DrawImage(curBitmap,

        new Rectangle(205, 0, 200, 200),

        0, 0, curBitmap.Width,

        curBitmap.Height,

        GraphicsUnit.Pixel) ;

    // Dispose of objects

    curBitmap.Dispose();

    g.Dispose();

}

Figure 10.17 shows the output from Listing 10.16. The first image is the original; the second image is rotated.

Figure 10.17. Rotating images

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's apply other transformations. Replacing the Rotate method in Listing 10.16 with the following line scales the image:

X.Scale(2, 1, MatrixOrder.Append);

The scaled image is shown in Figure 10.18.

Figure 10.18. Scaling images

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Replacing the Rotate method in Listing 10.16 with the following line translates the image with 100 offset in the x- and y-directions:

X.Translate(100, 100);

The new output is shown in Figure 10.19.

Figure 10.19. Translating images

Replacing the Rotate method in Listing 10.16 with the following line shears the image:

X.Shear(2, 1);

The new output is shown in Figure 10.20.

Figure 10.20. Shearing images

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



You have probably noticed that image transformation is really no different from the transformation of other graphics objects. We recommend 

that you download the source code samples from online to see the detailed code listings.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

10.7 Color Transformation and the Color Matrix

So far we have seen the transformation of graphics shapes from one state to another, but have you ever thought about transforming colors? 

Why would you want to transform an image's colors? Suppose you wanted to provide grayscale effects, or needed to adjust the contrast, 

brightness, or even "redness" of an image. For example, images retrieved from video and still cameras often need correction. In these cases, 

a color matrix is very useful.

As we discussed in earlier chapters, the color of each pixel of a GDI+ image or bitmap is represented by a 32-bit number, of which 8 bits each 

are used for the red, green, blue, and alpha components. Each of the four components is a number from 0 to 255. For red, green, and blue, 0 

represents no intensity and 255 represents full intensity. For the alpha component, 0 represents transparent and 255 represents fully opaque. 

A color vector includes four items: A, R, G, and B. The minimum values for this vector are (0, 0, 0, 0), and the maximum values are (255, 255, 

255, 255).

GDI+ allows the use of values between 0 and 1, where 0 represents the minimum intensity and 1 the maximum intensity. These values are 

used in a color matrix to represent the intensity and opacity of color components. For example, the color vector with minimum values is (0, 0, 

0, 0), and the color vector with maximum values is (1, 1, 1, 1).

In a color transformation we can apply a color matrix on a color vector by multiplying a 4x4 matrix. However, a 4x4 matrix supports only linear 

transformations such as rotation and scaling. To perform nonlinear transformations such as translation, we must use a 5x5 matrix. The 

element of the fifth row and the fifth column of the matrix must be 1, and all of the other entries in the five columns must be 0.

The elements of the matrix are identified according to a zero-based index. The first element of the matrix is M[0][0], and the last element is 

M[4][4]. A 5x5 identity matrix is shown in Figure 10.21. In this matrix the elements M[0][0], M[1][1], M[2][2], and M[3][3] represent the red, blue, 

green, and alpha factors, respectively. The element M[4][4] means nothing, and it must always be 1.

Figure 10.21. An identity matrix

Now if we want to double the intensity of the red component of a color, we simply set M[0][0] equal to 2. For example, the matrix shown in 

Figure 10.22 doubles the intensity of the red component, decreases the intensity of the green component by half, triples the intensity of the 

blue component, and decreases the opacity of the color by half (making it semitransparent).

Figure 10.22. A matrix whose components have different intensities

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



In the matrix shown in Figure 10.22, we multiplied the intensity values. We can also add intensity values by using other matrix elements. For 

example, the matrix shown in Figure 10.23 will double the intensity of the red component and add 0.2 to each of the red, green, and blue 

component intensities.

Figure 10.23. A color matrix with multiplication and addition

10.7.1 The ColorMatrix Class

In this section we will discuss the ColorMatrix class. As you might guess from its name, this class defines a matrix of colors. In the preceding 

sections we discussed the Matrix class. The ColorMatrix class is not very different from the Matrix class. Whereas the Matrix class is used in 

general transformation to transform graphics shapes and images, the ColorMatrix class is specifically designed to transform colors. Before we 

see practical use of the color transformation, we will discuss the ColorMatrix class, its properties, and its methods.

The ColorMatrix class constructor takes an array that contains the values of matrix items. The Item property of this class represents a cell of 

the matrix and can be used to get and set cell values. Besides the Item property, the ColorMatrix class provides 25 MatrixXY properties, which 

represent items of the matrix at row (x + 1) and column (y + 1). MatrixXY properties can be used to get and set an item's value.

Listing 10.17 creates a ColorMatrix object with item (4, 4) set to 0.5 (half opacity). Then it sets the values of item (3, 4) to 0.8 and item (1, 1) to 

0.3.

Listing 10.17 Creating a ColorMatrix object

float[][] ptsArray ={

   new float[] {1, 0, 0, 0, 0},

   new float[] {0, 1, 0, 0, 0},

   new float[] {0, 0, 1, 0, 0},

   new float[] {0, 0, 0, 0.5f, 0},

   new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

if( clrMatrix.Matrix34 <= 0.5)

{

    clrMatrix.Matrix34 = 0.8f;

         clrMatrix.Matrix11 = 0.3f;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

Section 10.8 will describe how to apply color matrices to the transformation of colors.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

10.8 Matrix Operations in Image Processing

Recoloring, the process of changing image colors, is a good example of color transformation. Recoloring includes changing colors, intensity, 

contrast, and brightness of an image. It can all be done via the ImageAttributes class and its methods.

The color matrix can be applied to an image via the SetColorMatrix method of the ImageAttributes class. The ImageAttributes object is used 

as a parameter when we call DrawImage.

10.8.1 Translating Colors

Translating colors increases or decreases color intensities by a set amount (not by multiplying them). Each color component (red, green, and 

blue) has 255 different intensity levels ranging from 0 to 255. For example, assume that the current intensity level for the red component of a 

color is 100. Changing its intensity level to 150 would imply translating by 50.

In a color matrix representation, the intensity varies from 0 to 1. The last row's first four elements represent the translation of red, green, blue, 

and alpha components of a color, as shown in Figure 10.22. Hence, adding a value to these elements will transform a color. For example, the 

t1, t2, t3, and t4 values in the following color matrix represent the red, green, blue, and alpha component translations, respectively:

Color Matrix = {

{1,  0,  0,  0, 0},

{0,  1,  0,  0, 0},

{0,  0,  1,  0, 0},

{0,  0,  0,  1, 0},

{t1, t2, t3, t4, 1}};

Listing 10.18 uses a ColorMatrix object to translate colors. We change the current intensity of the red component to 0.90. First we create a 

Graphics object using the CreateGraphics method, and we create a Bitmap object from a file. Next we create an array of ColorMatrix elements 

and create a ColorMatrix object from this array. Then we create an ImageAttributes object and set the color matrix using SetColorMatrix, which 

takes the ColorMatrix object as its first parameter. After all that, we draw two images. The first image has no effects; the second image shows 

the result of our color matrix transformation. Finally, we dispose of the objects.

Listing 10.18 Using ColorMatrix to translate colors

private void TranslationMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Bitmap object

    Bitmap curBitmap = new Bitmap("roses.jpg");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Color matrix elements

    float[][] ptsArray =

    {

        new float[] {1, 0, 0, 0, 0},

        new float[] {0, 1, 0, 0, 0},

        new float[] {0, 0, 1, 0, 0},

        new float[] {0, 0, 0, 1, 0},

        new float[] {.90f, .0f, .0f, .0f, 1}

    };

    // Create a ColorMatrix object

    ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

    // Create image attributes

    ImageAttributes imgAttribs = new ImageAttributes();

    // Set color matrix

    imgAttribs.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Default);

    // Draw image with no effects

    g.DrawImage(curBitmap, 0, 0, 200, 200);

    // Draw image with image attributes

    g.DrawImage(curBitmap,

        new Rectangle(205, 0, 200, 200),

        0, 0, curBitmap.Width, curBitmap.Height,

        GraphicsUnit.Pixel, imgAttribs) ;

    // Dispose of objects

    curBitmap.Dispose();

    g.Dispose();

}

Figure 10.24 shows the output from Listing 10.18. The original image is on the left; on the right we have the results of our color translation. If 

you change the values of other components (red, blue, and alpha) in the last row of the color matrix, you'll see different results.

Figure 10.24. Translating colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



10.8.2 Scaling Colors

Scaling color involves multiplying a color component value by a scaling factor. For example, the t1, t2, t3, and t4 values in the following color 

matrix represent the red, green, blue, and alpha components, respectively. If we change the value of M[2][2] to 0.5, the transformation 

operation will multiply the green component by 0.5, cutting its intensity by half.

Color Matrix = {

{t1, 0, 0, 0, 0},

{0, t2, 0, 0, 0},

{0, 0, t3, 0, 0},

{0, 0, 0, t4, 0},

{0, 0, 0, 0, 1}};

Listing 10.19 uses the ColorMatrix object to scale image colors.

Listing 10.19 Scaling colors

private void ScalingMenu_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Bitmap object

    Bitmap curBitmap = new Bitmap("roses.jpg");

    // Color matrix elements

    float[][] ptsArray =

    {

         new float[] {1,  0,  0,  0, 0},

         new float[] {0,  0.8f,  0,  0, 0},

         new float[] {0,  0,  0.5f,  0, 0},

         new float[] {0,  0,  0,  0.5f, 0},

         new float[] {0, 0, 0, 0, 1}

    };

    // Create a ColorMatrix object

    ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

    // Create image attributes

    ImageAttributes imgAttribs = new ImageAttributes();

    // Set color matrix

    imgAttribs.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Default);

    // Draw image with no effects

    g.DrawImage(curBitmap, 0, 0, 200, 200);

    // Draw image with image attributes

    g.DrawImage(curBitmap,

        new Rectangle(205, 0, 200, 200),

        0, 0, curBitmap.Width, curBitmap.Height,

        GraphicsUnit.Pixel, imgAttribs) ;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Dispose of objects

    curBitmap.Dispose();

    g.Dispose();

}

Figure 10.25 shows the output from Listing 10.19. The original image is on the left; on the right is the image after color scaling. If you change 

the values of t1, t2, t3, and t4, you will see different results.

Figure 10.25. Scaling colors

10.8.3 Shearing Colors

Earlier in this chapter we discussed image shearing. It can be thought of as anchoring one corner of a rectangular region and stretching the 

opposite corner horizontally, vertically, or in both directions. Shearing colors is the same process, but here the object is the color instead of 

the image.

Color shearing increases or decreases a color component by an amount proportional to another color component. For example, consider the 

transformation in which the red component is increased by one half the value of the blue component. Under such a transformation, the color 

(0.2, 0.5, 1) would become (0.7, 0.5, 1). The new red component is 0.2 + (0.5)(1) = 0.7. The following color matrix is used to shear image 

colors.

float[][] ptsArray = {

 new float[] {1,  0,  0,  0, 0},

 new float[] {0,  1,  0,  0, 0},

 new float[] {.50f,  0,  1,  0, 0},

 new float[] {0,  0,  0,  1, 0},

 new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If we substitute this color matrix into Listing 10.19, the output will look like Figure 10.26.

Figure 10.26. Shearing colors

10.8.4 Rotating Colors

As explained earlier, color in GDI+ has four components: red, green, blue, and alpha. Rotating all four components in a four-dimensional

space is hard to visualize. However, such rotation can be visualized in a three-dimensional space. To do this, we drop the alpha component

from the color structure and assume that there are only three colors—red, green, and blue—as shown in Figure 10.27. The three colors—red,

green, and blue—are perpendicular to each other, so the angle between any two primary colors is 90 degrees.

Figure 10.27. RGB rotation space

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Suppose that the red, green, and blue colors are represented by points (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. If we rotate a color with a 

green component of 1, and red and blue components of 0 each, by 90 degrees, the new color will have a red component of 1, and green and 

blue components of 0 each. If we rotate the color less than 90 degrees, the new color will be located somewhere between green and red.

Figure 10.28 shows how to initialize a color matrix to perform rotations about each of the three components: red, green, and blue.

Figure 10.28. RGB initialization

Listing 10.20 rotates the colors by 45 degrees from the red component.

Listing 10.20 Rotating colors

private void RotationMenu_Click(object sender,

    System.EventArgs e)

{

    float degrees = 45.0f;

    double r = degrees*System.Math.PI/180;

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a Bitmap object from a file

    Bitmap curBitmap = new Bitmap("roses.jpg");

    // Color matrix elements

    float[][] ptsArray =

    {

         new float[] {(float)System.Math.Cos(r),

                     (float)System.Math.Sin(r),

                     0,  0, 0},

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



         new float[] {(float)-System.Math.Sin(r),

                      (float)-System.Math.Cos(r),

                          0,  0, 0},

         new float[] {.50f,  0,  1,  0, 0},

         new float[] {0,  0,  0,  1, 0},

         new float[] {0, 0, 0, 0, 1}

    };

    // Create a ColorMatrix object

    ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

    // Create image attributes

    ImageAttributes imgAttribs = new ImageAttributes();

    // Set ColorMatrix to ImageAttributes

    imgAttribs.SetColorMatrix(clrMatrix,

        ColorMatrixFlag.Default,

        ColorAdjustType.Default);

    // Draw image with no effects

    g.DrawImage(curBitmap, 0, 0, 200, 200);

    // Draw image with image attributes

    g.DrawImage(curBitmap,

        new Rectangle(205, 0, 200, 200),

        0, 0, curBitmap.Width, curBitmap.Height,

        GraphicsUnit.Pixel, imgAttribs) ;

    // Dispose of objects

    curBitmap.Dispose();

    g.Dispose();

}

Figure 10.29 slows the output from Listing 10.20. On the left is the original image; on the right is the image after color rotation.

Figure 10.29. Rotating colors

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

10.9 Text Transformation

In Chapter 5 we discussed how to use the ScaleTransform, RotateTransform, and TranslateTransform methods to transform text. We can also 

use a transformation matrix to transform text.

We create a Matrix object with the transformation properties and apply it to the surface using the Transform property of the Graphics object. 

Listing 10.21 creates a Matrix object and sets it as the Transform property. We then call DrawString, which draws the text on the form. To test 

this code, add the code to a form's paint event handler.

Listing 10.21 Text transformation example

Graphics g = e.Graphics;

string str =

"Colors, fonts, and text are common" +

" elements of graphics programming." +

"In this chapter, you learned " +

" about the colors, fonts, and text" +

" representations in the "+

".NET Framework class library. "+

"You learned how to create "+

"these elements and use them in GDI+.";

// Create a Matrix object

Matrix M = new Matrix(1, 0, 0.5f, 1, 0, 0);

g.RotateTransform(45.0f,

System.Drawing.Drawing2D.MatrixOrder.Prepend);

g.TranslateTransform(-20, -70);

g.Transform = M;

g.DrawString(str,

new Font("Verdana", 10),

new SolidBrush(Color.Blue),

new Rectangle(50,20,200,300) );

Figure 10.30 shows the outcome of Listing 10.21.

Figure 10.30. Using the transformation matrix to transform text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We can apply shearing and other effects by changing the values of Matrix. For example, if we change Matrix as follows:

Matrix M = new Matrix(1, 0.5f, 0, 1, 0, 0);

the new code will generate Figure 10.31.

Figure 10.31. Using the transformation matrix to shear text

We can reverse the text just by changing the value of the Matrix object as follows:

Matrix M = new Matrix(1, 1, 1, -1, 0, 0);

with the results shown in Figure 10.32.

Figure 10.32. Using the transformation matrix to reverse text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

10.10 The Significance of Transformation Order

The Matrix object can store a single transformation or a sequence of transformations. As we learned in Section 10.5, a sequence of 

transformations is called a composite transformation, which is a result of multiplying the matrices of the individual transformations.

In a composite transformation, the order of the individual transformations is very important. Matrix operations are not cumulative. For 

example, the result of a Graphics  Rotate  Translate  Scale  Graphics operation will be different from the result of a 

Graphics  Scale  Rotate  Translate  Graphics operation. The main reason that order is significant is that 

transformations like rotation and scaling are done with respect to the origin of the coordinate system. The result of scaling an object that is 

centered at the origin is different from the result of scaling an object that has been moved away from the origin. Similarly, the result of rotating 

an object that is centered at the origin is different from the result of rotating an object that has been moved away from the origin.

The MatrixOrder enumeration, which is an argument to the transformation methods, represents the transformation order. It has two values: 

Append and Prepend.

Let's write an application to see how transformation order works. We create a Windows application and add a MainMenu control and three 

menu items to the form. The MatrixOrder class is defined in the System.Drawing.Drawing2D namespace, so we also add a reference to this 

namespace.

Listing 10.22 draws a rectangle before and after applying a Scale  Rotate  Translate transformation sequence.

Listing 10.22 Scale  Rotate  Translate transformation order

private void First_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect =

        new Rectangle(20, 20, 100, 100);

    // Create a solid brush

    SolidBrush brush =

        new SolidBrush(Color.Red);

    // Fill rectangle

    g.FillRectangle(brush, rect);

    // Scale

    g.ScaleTransform(1.75f, 0.5f);

    // Rotate

    g.RotateTransform(45.0f, MatrixOrder.Append);

    // Translate

    g.TranslateTransform(150.0f, 50.0f,

        MatrixOrder.Append);

    // Fill rectangle again

    g.FillRectangle(brush, rect);

    // Dispose of objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    brush.Dispose();

    g.Dispose();

}

Figure 10.33 shows the output from Listing 10.22. The original rectangle is in the upper left; on the lower right is the rectangle after composite 

transformation.

Figure 10.33. Scale  Rotate  Translate composite transformation

Now let's change the order of transformation to Translate  Rotate  Scale with Append, as shown in Listing 10.23.

Listing 10.23 Translate  Rotate  Scale transformation order with Append

private void Second_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect =

        new Rectangle(20, 20, 100, 100);

    // Create a solid brush

    SolidBrush brush =

        new SolidBrush(Color.Red);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    // Fill rectangle

    g.FillRectangle(brush, rect);

    // Translate

    g.TranslateTransform(100.0f, 50.0f,

        MatrixOrder.Append);

    // Scale

    g.ScaleTransform(1.75f, 0.5f);

    // Rotate

    g.RotateTransform(45.0f,

        MatrixOrder.Append);

    // Fill rectangle again

    g.FillRectangle(brush, rect);

    // Dispose of objects

    brush.Dispose();

    g.Dispose();

}

Figure 10.34 shows the output from Listing 10.23. The original rectangle is in the same place, but the transformed rectangle has moved.

Figure 10.34. Translate  Rotate  Scale composite transformation with Append

Now let's keep the code from Listing 10.23 and change only the matrix transformation order from Append to Prepend, as shown in Listing 

10.24.

Listing 10.24 Translate  Rotate  Scale transformation order with Prepend

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Third_Click(object sender,

    System.EventArgs e)

{

    // Create a Graphics object

    Graphics g = this.CreateGraphics();

    g.Clear(this.BackColor);

    // Create a rectangle

    Rectangle rect =

        new Rectangle(20, 20, 100, 100);

    // Create a solid brush

    SolidBrush brush =

        new SolidBrush(Color.Red);

    // Fill rectangle

    g.FillRectangle(brush, rect);

    // Translate

    g.TranslateTransform(100.0f, 50.0f,

        MatrixOrder.Prepend);

    // Rotate

    g.RotateTransform(45.0f,

        MatrixOrder.Prepend);

    // Scale

    g.ScaleTransform(1.75f, 0.5f);

    // Fill rectangle again

    g.FillRectangle(brush, rect);

    // Dispose of objects

    brush.Dispose();

    g.Dispose();

}

The new output is shown in Figure 10.35. The matrix order affects the result.

Figure 10.35. Translate  Rotate  Scale composite transformation with Prepend

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

SUMMARY

In this chapter we first discussed the basics of transformation, coordinate systems, the role of coordinate systems in the transformation 

process, and transformation functionality. We learned

How to distinguish among global, local, and composite transformations

How to use the Graphics class transformations in applications

How to translate, scale, shear, and rotate graphics objects

Matrices play a vital role in transformation. We can customize the transformation process and its variables by creating and applying a 

transformation matrix. This chapter showed

How to use the Matrix and ColorMatrix classes, and their role in transformation

How to use the matrix operations for image processing, including translation, scaling, shearing, and rotation

How to use recoloring and color transformation to manipulate the colors of graphics objects

How to perform color transformations

Transformations can be applied not only to graphics images and objects, but also to text strings. Drawing vertical or skewed text is one 

example of text transformation. This chapter explained how to transform text.

Printing also plays an important part in GDI+. In Chapter 11 you will learn various components of the System.Drawing.Printing namespace and 

how to use them.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 11. Printing

Sooner or later you will need to print out application data. Perhaps you have created documents or test data and now you want to see them 

on paper. You may be drawing something and want to print it out. Printing data from a database and printing images are other possibilities. 

With the .NET Framework you will find it easy to create applications that talk your printer's language. This chapter covers printing functionality 

in the .NET Framework. The aim is to give you the knowledge to handle basic (and some not so basic) printing needs.

We'll begin with a brief history of printing, followed by an introduction to the printing classes available in .NET. Toward the end of the chapter 

we will delve deep into printing functionality. After reading this chapter, you should have a good idea of printing functionality defined in the 

.NET Framework, and how to implement this functionality in your applications. Here are some of the topics we will discuss in this chapter:

A brief history of printing in Microsoft Windows

The printing process (i.e., how printing works)

Printing in Microsoft .NET

The System.Drawing.Printing namespace and its classes

Getting and setting page and printer settings

The basic framework of printing-enabled applications

How to print text, images, and graphics objects

How to use various print dialogs and their classes

Writing your own custom printing and page setup dialogs

Printing multipage documents

Understanding the print controller and its related classes

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.1 A Brief History of Printing with Microsoft Windows

If you are running Microsoft Windows today, you can more or less print to any available printer, from a $100 bargain-basement inkjet to a 

$1,000 Tektronix color printer. This versatility is possible only because of software standardization.

When Microsoft DOS was the standard PC desktop operating system, every application had to supply its own printing software or printer 

drivers. If you bought a piece of software from Company X, you had to hope that it supported your printer. Thus, often you had to check which 

printers your new software supported and buy one of those. Either that, or wait until Company X supported your printer, which, more often 

than not, never happened.

Companies tended to produce printer drivers for only a select few of the popular printers on the market, such as the HP LaserJet. Even 

worse, you might have a printer driver for your laser printer when using a drawing package, but if you wanted to use a word processor from a 

different company, it would not be surprising to find that your printer was not supported!

11.1.1 Hewlett-Packard Chooses Standards

During this time, companies like Hewlett-Packard were driving the printer business and introducing standards that could only make things 

better. At this point HP had been in the printer business a long time and had introduced many different types of printers and plotters. It had 

already introduced a standard language (Hewlett-Packard Graphics Language, or HPGL) for drawing graphics on a plotter, which allowed the 

user to issue draw commands like, "Draw a line from point A to point B."

Hewlett-Packard introduced the LaserJet series of laser printers, which became extremely successful because of their high quality and low 

cost. These printers were driven by a language called PCL (Printer Control Language). (Even today, printers manufactured by HP and 

several other companies support PCL.) Even if you don't have the exact printer driver you need, if your printer supports PCL you can at least 

get some output from it.

Moreover, Hewlett-Packard used PCL with all its printers, so if you wrote an application to communicate with the HP LaserJet Series II, you 

could be pretty certain that the code would work with later printers in the range. Although HP is not the only printer manufacturer, it can 

certainly be credited with jump-starting the market.

While companies like Hewlett-Packard were making printing easier, the software problems still existed. If you did not have an appropriate 

printer driver for your application, you would not get anything out of your printer.

When a Printer Has No Driver

Be aware, though, that even today, if you rush out and buy the latest and greatest printer, you may get home and find that the

printer has not come supplied with a printer driver—or the version of Windows you have may not support that particular

printer. So what do you do?

In most cases you can just choose a driver from an earlier model in the same line. For instance you could use an HP 

LaserJet II driver to drive an HP LaserJet 4 printer. This works because Hewlett-Packard uses PCL to control it sprinters, so 

even though the LaserJet II may use an older version of PCL, the LaserJet 4 still supports it. The message here is that when 

you're buying your next printer, make sure the operating system you intend to use supports it!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



With the release of Microsoft Windows in its various forms, the printing crisis was more or less over. Windows provided a standard graphical 

user interface, or GUI, and anything that you could draw on-screen could be printed out. Microsoft provided Windows drivers for the most 

common printers. Over time, as new versions of Windows came out, more and more printers were supported. Now all that the programmers 

had to do was write code for Windows, and they could use that same code to talk to any printer that Windows supported.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

11.2 Overview of the Printing Process

Before we write our first printing application, it's important to understand how printing works in Windows and what role GDI+ plays in the 

process.

GDI+ is an application-level library that allows applications to interact with display devices such as monitors, printers, and scanners through 

the device drivers. Figure 11.1 illustrates the role of GDI+ in the drawing process. The application passes data to GDI+. GDI+ is responsible 

for converting the data into graphics format (pixels) with the help of display drivers and sending it to the display driver, which displays the data 

on a device such as a monitor.

Figure 11.1. A simple drawing process

The printing process, which is very similar to the drawing process, is shown in Figure 11.2. The application sends data to GDI+, which 

communicates with a printer driver that sends data to the printer.

Figure 11.2. A simple printing process

11.2.1 How is Drawing Different from Printing?

The drawing process involves a surface, which is the container for graphics shapes. In Windows applications, a form works as a drawing 

surface. In previous chapters we used the Graphics object associated with a form to access the surface associated with a form.

There are several ways to get the Graphics object associated with a form. The simplest way is to use the form's paint event handler and 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



PaintEventArgs.Graphics property, which returns the Graphics object for the form to which this paint event handler belongs. Another way is to 

use the CreateGraphics method. Listing 11.1 uses PaintEventArgs.Graphics to get the Graphics object associated with a form. Once you have 

the drawing surface (Graphics object), you can use draw and fill methods.

Listing 11.1 Drawing graphics shapes

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics;

  SolidBrush redBrush =

    new SolidBrush(Color.Red);

  Rectangle rect =

    new Rectangle(150, 80, 200, 140);

  g.FillPie(greenBrush, 40, 20, 200,

    40, 0.0f, 60.0f );

  g.FillRectangle(blueBrush, rect);

}

The printing process is somewhat different from the drawing process. In a printing process, a printer works as a drawing surface. In a drawing 

process, we already have a form as a drawing surface. To print something on a printer, however, we need the printer object. The basic steps 

of a printing process are

Step 1. Specify the printer you want to use.

Step 2. Retrieve the printer's surface, which is a Graphics object.

Step 3. Call the draw and fill methods of the Graphics object.

In Sections 11.2.2 and 11.2.3 we will discuss the printing process in more detail.

11.2.2 Conceptual Flow of the Printing Process

Before we discuss the programmatic flow of a printing process, let's look at the conceptual flow. Every printing process involves five basic 

steps, as illustrated in Figure 11.3.

Figure 11.3. Conceptual flow of the printing process

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Step 1. Specify a printer. In this step we select a printer to be used in the printing process. You may want to select a printer from 

multiple printers available to your application.

Step 2. Set the printer properties. In this step we can set properties such as color, paper tray, paper size, and print quality. This 

step is optional; if we do not set printer properties, the process uses default settings.

Step 3. Get the printer surface. Unlike the drawing surface (a form), which is available on the form's paint event handler, the 

printer surface is available only through the print-page event handler. As such, this step requires creating a print-page event 

handler. One parameter of the event handler is of type PrintPageEventArgs, whose Graphics member represents the printer 

surface associated with this print-page event handler. In Section 11.2.3 we will see how to implement the print-page event handler 

programmatically.

Step 4. Draw graphics shapes, lines, curves, text, and images. Once we have the printer surface, everything works in much 

the same way as the drawing process. We can call draw and fill methods to draw lines, curves, shapes, text, and images.

Step 5. Print. After we call the draw and fill methods of the Graphics object associated with a printer, the final step is to print the 

objects.

11.2.3 Programmatic Flow of the Printing Process

The previous section dealt with the conceptual flow of the printing process. In this section we will examine the programmatic flow.

Figure 11.4 is a flowchart displaying the four programmatic steps of the printing process.

Figure 11.4. A flowchart of the printing process

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Step 1. Create a PrintDocument object and specify the printer. This printer will be used as a surface.

Step 2. Set the printer and page properties. We set the PrinterSettings and PageSettings objects for this optional step. If we 

don't set these properties, the default settings of the printer will be used. We will cover PrinterSettings and PageSettings in more 

detail later.

Step 3. Set the print-page event handler. The print-page event handler is responsible for printing. We create a print-page event 

handler by setting the PrintDocument.PrintPage member. Process A (see Figure 11.5) is called from the print-page event handler, 

as illustrated in Figure 11.4.

Figure 11.5. Process A

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Step 4. Print the document. Finally, we call the PrintDocument.Print method, which sends printing objects to the printer.

Process A, which is shown in Figure 11.5, describes how and what to send to the printer. This process is defined as the print-page event 

handler:

public void pd_PrintPage(object sender,

PrintPageEventArgs ev)

The second parameter, PrintPageEventArgs, provides access to the printer surface through its Graphics member. As Figure 11.5 shows, first 

we get the Graphics object from PrintPageEventArgs.

The next step is to set the page and paper setting using the MarginBounds, PageBounds, and PageSettings members of the 

PrintPageEventArgs enumeration. We will discuss these properties in more detail later.

The final step of this process is to call draw and fill methods of the Graphics object as we used to do in the drawing process. We will see a 

working example of this process in Section 11.3.

11.2.4 The System.Drawing.Printing Namespace

In the .NET Framework, printing functionality is defined in the System.Drawing.Printing namespace, which resides in the System.Drawing.dll

assembly. The reference to this assembly is automatically added to an application when we create a new project using Visual Studio .NET. 

To use the printing-related classes, we can simply add the following line to the application:

using System.Drawing.Printing;

Alternatively, we can use the System.Drawing.Printing namespace by adding it to the classes directly.

Note

Before you use any printer-related classes in your application, a printer must be installed on your machine.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

11.3 Your First Printing Application

We just saw how the printing process works in the .NET Framework. Now let's talk about how to write your first simple printing application. In 

this application we will send the text "Hello Printer!" to the printer from a Windows application. To create this application, follow the simple 

steps described here.

Using Visual Studio .NET, create a Windows application project named HelloPrinterSamp, as shown in Figure 11.6.

Figure 11.6. Creating a Windows application

After we create the project, we add the following line to it:

using System.Drawing.Printing;

Then we add controls for a label, a combo box, and a button to the form. We change the Text and Name properties of the form and these 

controls. (See the online source code for more details.) The final form should look like Figure 11.7.

Figure 11.7. Your first printing application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



When you run this application, the combo box will display the available printers on your machine. You can select any printer from this list, and 

when you click the Hello Printer button, it will print "Hello Printer!" on your printer.

We load the available printers on the form's load event handler. The PrinterSettings.InstalledPrinters property returns the installed printers on 

a machine. PrinterSettings.InstalledPrinters.Count returns the total number of printers. In Listing 11.2 we check if printers are installed on the 

machine, read them, and add them to the printer list combo box.

Listing 11.2 Getting all installed printers

private void Form1_Load(object sender,

  System.EventArgs e)

{

  // See if any printers are installed

  if( PrinterSettings.InstalledPrinters.Count <= 0)

  {

    MessageBox.Show("Printer not found!");

    return;

  }

  // Get all available printers and add them to the

  // combo box

  foreach(String printer in

    PrinterSettings.InstalledPrinters)

  {

    printersList.Items.Add(printer.ToString());

  }

}

The next step is to add code to the Hello Printer button click event handler (see Listing 11.3). This code is responsible for printing. We create 

a PrintDocument object and set the PrintDocument.PrinterSettings. PrinterName property to the printer selected from the printer list combo 

box. Then we add a print-page event handler and call the PrintDocument.Print method, which prints the document.

Listing 11.3 The Hello Printer button click event handler

private void HelloPrinterBtn_Click(object sender,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  System.EventArgs e)

{

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Set PrinterName as the selected printer

  // in the printers list

  pd.PrinterSettings.PrinterName =

    printersList.SelectedItem.ToString();

  // Add PrintPage event handler

  pd.PrintPage +=

    new PrintPageEventHandler(pd_PrintPage);

  // Print the document

  pd.Print();

}

The last step is to add the print-page event handler code (see Listing 11.4). This code is responsible for creating a Graphics object for the 

printer. It calls the DrawString method, which is responsible for drawing text. First we create a Graphics object from 

PrintPageEventArgs.Graphics. Then we create Font and SolidBrush objects and call DrawString to draw some text on the printer. The 

DrawString method takes a string that represents the text to be drawn; the font; a brush; and a layout rectangle that represents the starting 

point, width, and height of a rectangle for the text.

Note

See Chapter 3 for more detail on the DrawString method. And for more about solid brushes and fonts, see Chapters 4 and 5, 

respectively.

Listing 11.4 The print-page event handler

// The PrintPage event handler

public void pd_PrintPage(object sender,

  PrintPageEventArgs ev)

{

  // Get the Graphics object

  Graphics g = ev.Graphics;

  // Create a font Arial with size 16

  Font font = new Font("Arial", 16);

  // Create a solid brush with black color

  SolidBrush brush =

    new SolidBrush(Color.Black);

// Draw "Hello Printer!"

g.DrawString("Hello Printer!",

  font, brush,

  new Rectangle(20, 20, 200, 100));

}

Now you can run the application, select a printer from the list, and click the Hello Printer button. You should see "Hello Printer!" on your 

printed page.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

11.4 Printer Settings

Before writing our next printing application, let's examine printer settings. Printer settings specify the properties of a print process, such as 

the paper size, print quality, number of copies, number of pages, and so on. In this section we will first discuss how to access and set printer 

settings using the PrinterSettings class properties. Then we will write an application that allows us to read and set printer settings 

programmatically.

11.4.1 The PrinterSettings Class

The PrinterSettings object is the gateway to reading and setting printer settings. PrinterSettings specifies how a document will be printed 

during a print process.

After creating a PrinterSettings object instance, we usually use the PrintDocument.PrinterSettings or PageSettings.PrinterSettings property to 

access the PrinterSettings objects corresponding to the PrintDocument and PageSettings objects, respectively. We will discuss these in more 

detail in a moment.

The following code snippet creates a PrinterSettings object:

PrinterSettings prs = new PrinterSettings();

The PrinterSettings class provides the following 22 properties: CanDuplex, Collate, Copies, DefaultPageSettings, Duplex, FromPage, 

InstalledPrinters, IsDefaultPrinter, IsPlotter, IsValid, LandscapeAngle, MaximumCopies, MaximumPage, MinimumPage, PaperSizes, 

PaperSources, PrinterName, PrinterResolutions, PrintRange, PrintToFile, SupportsColor, and ToPage. In the sections that follow, we will 

discuss each of these properties in turn.

11.4.1.1 The InstalledPrinters Property

The InstalledPrinters static property returns the names of all available printers on a machine, including printers available on the network. This 

property returns all the printer names in a PrinterSettings.StringCollection object.

Listing 11.5 iterates through all the available printers on a machine.

Listing 11.5 Getting all installed printers on a machine

foreach(String printer in

  PrinterSettings.InstalledPrinters)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  string str = printer.ToString();

}

11.4.1.2 The PaperSizes Property

The PaperSizes property returns the paper sizes supported by a printer. It returns all the paper sizes in a PrinterSettings.PaperSizeCollection

object.

Listing 11.6 iterates through all the available paper sizes.

Listing 11.6 Reading all available paper sizes

PrinterSettings prs = new PrinterSettings();

foreach(PaperSize ps in prs.PaperSizes)

{

  string str = ps.ToString();

}

11.4.1.3 The PrinterResolutions Property

The PrinterResolutions property returns all the resolutions supported by a printer. It returns all the printer resolutions in a 

PrinterSettings.PrinterResolutionCollection object that contains PrinterResolution objects.

Listing 11.7 reads the printer resolutions and adds them to a ListBox control. Here YourPrinterName is the name of the printer you want to 

use. If you do not set a printer name, the default printer will be used.

Listing 11.7 Getting printer resolution

PrinterSettings ps = new PrinterSettings();

// Set the printer name

ps.PrinterName = YourPrinterName;

foreach(PrinterResolution pr in ps.PrinterResolutions)

{

  listBox2.Items.Add(pr.ToString());

}

The PrinterResolution class, which represents the resolution of a printer, is used by the PrinterResolutions and PrinterResolution properties of 

PrinterSettings to get and set printer resolutions. Using these two properties, we can get all the printer resolutions available on a printer. We 

can also use it to set the printing resolution for a page.

The PrinterResolution class has three properties: Kind, X, and Y. The Kind property is used to determine whether the printer resolution is the 

PrinterResolutionKind enumeration type or Custom. If it's Custom, the X and Y properties are used to determine the printer resolution in the 

horizontal and vertical directions, respectively, in dots per inch. If the Kind property is not Custom, the value of X and Y each is –1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



11.4.1.4 The CanDuplex and Duplex Properties

The CanDuplex property is used to determine whether a printer can print on both sides of a page. If so, we can set the Duplex property to true

to print on both sides of a page.

Listing 11.8 determines whether your printer can print on both sides of a page. If your program responds true, you have a very good printer.

Listing 11.8 Using the CanDuplex property

PrinterSettings ps = new PrinterSettings();

MessageBox.Show("Supports Duplex?");

MessageBox.Show("Answer = " + ps.CanDuplex.ToString());

The Duplex enumeration specifies the printer's duplex settings, which are used by PrinterSettings. The members of the Duplex enumeration are 

described in Table 11.1.

11.4.1.5 The Collate Property

The Collate property (both get and set) is used only if we choose to print more than one copy of a document. If the value of Collate is true, an 

entire copy of the document will be printed before the next copy is printed. If the value is false, all copies of page 1 will be printed, then all 

copies of page 2, and so on.

The code snippet that follows sets the Collate property of PrinterSettings to true:

PrinterSettings ps = new PrinterSettings();

ps.Collate=true;

11.4.1.6 The Copies Property

The Copies property (both get and set) allows us to enter the number of copies of a document that we want to print. Not all printers support 

this feature (in which case this setting will be ignored). The MaximumCopies property, which is described in Section 11.4.1.9, tells us how 

many copies the printer can print.

Table 11.1. Duplex members

Member Description

Default Default duplex setting

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Member Description

Horizontal Double-sided, horizontal printing

Simplex Single-sided printing

Vertical Double-sided, vertical printing

Duplex Printing: A Problem

Duplex printing (the ability to print on both sides of a page) is a feature usually found on higher-end laser and inkjet printers. It 

is generally found only on more expensive printers because either the printer needs to be able to print on both sides of a 

sheet, or it must have an internal mechanism to turn the page over and print on the other side.

Let's assume you have a low-end printer and need to print on both sides of the page. To do this, you would need to create a 

custom software solution. Let's also assume that your application is printing a 100-page text document. Because the 

document consists of text alone, this is not too difficult to achieve. You would simply read from a text stream and keep track of 

whether you have the space to print the next line. If not, you would tell the printer to go to another page. In this scenario you 

would end up with 100 single-sided pages.

So how do you get double-sided printing? In the tradition of good programming, you cheat, of course! The solution to this 

problem is to track the page number, and on the first pass print only odd-numbered pages (1, 3, 5, and so on). Once you have 

done this, display a dialog box that tells you to take all the sheets of paper just printed and reload them into the printer so they 

will be fed into the printer upside down. Now you can print the even-numbered pages (2, 4, 6, and so on). Voilà! The user gets

duplex printing functionality from a cheap printer.

The following code sets the Copies property of PrinterSettings:

PrinterSettings ps = new PrinterSettings();

// We want 10 copies of our document

ps.Copies=10;

11.4.1.7 The IsPlotter Property

The IsPlotter property tells us if the printer we're using is actually a plotter that can accept plotter commands.

The following code snippet indicates whether the printer is a plotter:

PrinterSettings ps = new PrinterSettings();

MessageBox.Show(ps.IsPlotter.ToString());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.4.1.8 The PrinterName and IsValid Properties

If we print without setting the PrinterName property, our printout will be sent to the default printer. The PrinterName property allows us to 

specify a printer to use. The IsValid property tells us whether the PrinterName value we have selected represents a valid printer on our system.

Listing 11.9 checks if the printer is valid.

Listing 11.9 Using the IsValid property

PrinterSettings ps = new PrinterSettings();

ps.PrinterName=("Invalid Printer Name");

MessageBox.Show("Is this a valid printer name?");

MessageBox.Show(ps.IsValid.ToString());

11.4.1.9 The MaximumCopies Property

The MaximumCopies property determines how many copies the printer can print. Some printers do not allow us to print more than one copy 

at a time.

Listing 11.10 reads the maximum number of copies that a printer can print.

Listing 11.10 Reading the maximum number of copies

PrinterSettings ps = new PrinterSettings();

MessageBox.Show("Maximum number of copies: ");

MessageBox.Show(ps.MaximumCopies);

11.4.1.10 The SupportsColor Property

The SupportsColor property tells us whether the current printer supports printing in color. It will return true if the printer supports color printing 

and false otherwise.

Listing 11.11 reads the value of the SupportsColor property to find out whether a printer supports colors.

Listing 11.11 Using the SupportsColor property

PrinterSettings ps = new PrinterSettings();

MessageBox.Show("Does this printer support color:");

MessageBox.Show(ps.SupportsColor.ToString());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.4.1.11 Other PrinterSettings Properties

Besides the properties discussed already, the PrinterSettings class provides the additional properties listed in Table 11.2. We will discuss 

these properties in detail in our examples.

11.4.2 The PaperSize Class

Most printers can use papers of more than one size (height and width). The PaperSize class is used to read and set the paper size used by a 

printer.

The PaperSize class represents the size of paper used in printing. This class is used by PrinterSettings through its PaperSizes property to get 

and set the paper sizes for the printer.

Table 11.2. Other PrinterSettings properties

Property Description

DefaultPageSettings Returns the default page settings.

FromPage Returns the page number of the first page to print. Both get and set.

IsDefaultPrinter Returns true if the current printer is the default printer.

LandscapeAngle Returns the angle, in degrees, by which the portrait orientation is rotated to produce the landscape orientation. Valid 

rotation values are 90 and 270 degrees. If landscape is not supported, the only valid rotation value is 0 degrees.

MaximumPage Returns the maximum value of FromPage or ToPage that can be selected in a print dialog. Both get and set.

MinimumPage Returns the minimum value of FromPage or ToPage that can be selected in a print dialog. Both get and set.

PrintRange Returns the page numbers that the user has specified to be printed. Both get and set.

PrintToFile Returns a value indicating whether the printing output is sent to a file instead of a port. Both get and set.

ToPage Returns the page number of the last page to print. Both get and set.

The PaperSize class has four properties: Height, Kind, PaperName, and Width. Height, Width, and PaperName have both get and set access. 

The Height and Width properties are used to get and set the paper's height and width, respectively, in hundredths of an inch. The PaperName

property is used to get and set the name of the type of paper, but it can be used only when the Kind property is set to Custom. The Kind

property returns the type of paper.

We can construct custom paper sizes using the PaperSize class. Listing 11.12 reads the PaperSize properties.

Listing 11.12 Reading PaperSize properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



PrinterSettings ps = new PrinterSettings();

Console.WriteLine("Paper Sizes");

foreach(PaperSize psize in ps.PaperSizes)

{

 string str1 = psize.Kind.ToString();

 string str2 = psize.PaperName.ToString();

 string str3 = psize.Height.ToString();

 string str4 = psize.Width.ToString();

}

11.4.3 The PaperSource Class

The PaperSource class specifies the paper tray from which the printer retrieves the paper for the current printing task. This class is used by 

PrinterSettings through its PaperSources property to get and set the paper source trays that are available on the printer. The PaperSize class 

has two properties: Kind and SourceName. The Kind property returns an enumerated value for the paper source, and SourceName returns the 

name of the paper source as a string.

Listing 11.13 reads all the paper sources and displays them in a message box.

Listing 11.13 Reading paper sources

PrinterSettings ps = new PrinterSettings();

foreach(PaperSource p in ps.PaperSources)

{

 MessageBox.Show(p.SourceName);

}

11.4.4 The PrinterResolutionKind Enumeration

The PrinterResolutionKind enumeration specifies a printer resolution, as described in Table 11.3. This enumeration is used by the 

PrinterResolution, PrinterSettings, and PageSettings classes.

11.4.5 PrinterSettings Collection Classes

Besides the PrinterSettings class, the System.Drawing.Printing namespace provides three PrinterSettings collection classes. These collection 

classes provide members to count total items in a collection, and to add items to and remove items from a collection. These classes are

PrinterSettings.PaperSizeCollection. A printer may support different kinds of papers, including papers of different sizes. This 

class returns a collection including all paper sizes supported by the printer. PaperSizeCollection contains PaperSizes objects.

1.

PrinterSettings.PaperSourceCollection. A printer may support different paper sources (trays). This class represents a 
2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



collection of paper sources (trays) provided by a printer. PaperSourceCollection is available via the PaperSources property and 

contains PaperSource objects.

PrinterSettings.PrinterResolutionCollection. A printer may support different resolutions. This class represents a collection 

of resolutions supported by a printer. PrinterResolutionCollection is accessible via the PrinterResolutions property and contains 

PrinterResolution objects.

3.

Table 11.3. PrinterResolutionKind members

Member Description

Custom Custom resolution

Draft Draft-quality resolution

High High resolution

Low Low resolution

Medium Medium resolution

All of these collection classes provide Count and Item properties. The Count property returns the total number of items in a collection, and the 

Item property returns the item at the specified index. We will use these classes in our samples.

11.4.6 A Printer Settings Example

On the basis of the preceding discussion of printer settings, and of printerrelated classes and their members, let's write an application using 

these classes. In this application we will display available printers, the resolutions they support, available paper sizes, and other printer 

properties. This application will also allow us to set printer properties.

First we create a Windows application and add a combo box, two list boxes, three buttons, six check boxes, and two text boxes to the form. 

The final form looks like Figure 11.8. Then we add a reference to the System.Drawing.Printing namespace.

Figure 11.8. The printer settings form

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Next we write code. The Available Printers combo box displays all available installed printers on the machine in the ListBox control. We load 

all installed printers on the form's load event. As Listing 11.14 shows, we use the InstalledPrinters static property of PrinterSettings, which 

returns all installed printer names. We check if the installed printers count is more than 0 and add the installed printers to the combo box.

Listing 11.14 Reading all available printers

private void Form1_Load(object sender,

  System.EventArgs e)

{

  // See if any printers are installed

  if( PrinterSettings.InstalledPrinters.Count <= 0)

 {

   MessageBox.Show("Printer not found!");

   return;

 }

 // Get all the available printers and add them to the

 // combo box

 foreach(String printer in

   PrinterSettings.InstalledPrinters)

 {

   PrintersList.Items.Add(printer.ToString());

 }

}

The Get Printer Resolution button returns resolutions supported by a printer selected in ListBox1. The PrinterResolutions property of 

PrinterSettings returns the printer resolutions supported by the printer. Listing 11.15 reads all available resolutions for the selected printer in 

ListBox1 and adds them to ListBox2.

Listing 11.15 Reading printer resolutions

private void button2_Click(object sender,

  System.EventArgs e)

{

  // If no printer is selected

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  if(PrintersList.Text == string.Empty)

  {

    MessageBox.Show("Select a printer from the list");

    return;

  }

  // Get the current selected printer from the

  // list of printers

  string str = PrintersList.SelectedItem.ToString();

  // Create a PrinterSettings object

  PrinterSettings ps = new PrinterSettings();

  // Set the current printer

  ps.PrinterName = str;

  // Read all printer resolutions and add

  // them to the list box

  foreach(PrinterResolution pr

        in ps.PrinterResolutions)

  {

    ResolutionsList.Items.Add(pr.ToString());

  }

}

The Get Paper Size button returns the available paper sizes. Again we use the PaperSizes property of PrinterSettings, which returns all 

available paper sizes. Listing 11.16 reads all available paper sizes and adds them to the list box.

Listing 11.16 Reading paper sizes

private void button3_Click(object sender,

  System.EventArgs e)

{

  // If no printer is selected

  if(PrintersList.Text == string.Empty)

  {

    MessageBox.Show("Select a printer from the list");

    return;

  }

  // Create printer settings

  PrinterSettings prs = new PrinterSettings();

  // Get the current selected printer from the

  // list of printers

  string str = PrintersList.SelectedItem.ToString();

  prs.PrinterName = str;

  // Read paper sizes and add them to the list box

  foreach(PaperSize ps in prs.PaperSizes)

  {

    PaperSizesList.Items.Add(ps.ToString());

  }

}

The Get Printer Properties button gets the printer properties and sets the check boxes and text box controls according to the values 

returned. The Get Printer Properties button click event handler code is given in Lising 11.17. We read many printer properties that were 

discussed earlier in this chapter.

Listing 11.17 Reading printer properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void GetProperties_Click(object sender,

  System.EventArgs e)

{

  // If no printer is selected

  if(PrintersList.Text == string.Empty)

  {

    MessageBox.Show("Select a printer from the list");

    return;

  }

  PrinterSettings ps = new PrinterSettings();

  string str = PrintersList.SelectedItem.ToString();

  ps.PrinterName = str;

  // Check if the printer is valid

  if(!ps.IsValid)

  {

    MessageBox.Show("Not a valid printer");

    return;

  }

  // Set printer name and copies

  textBox1.Text = ps.PrinterName.ToString();

  textBox2.Text = ps.Copies.ToString();

  // If printer is the default printer

  if (ps.IsDefaultPrinter == true)

    IsDefPrinterChkBox.Checked = true;

  else

    IsDefPrinterChkBox.Checked = false;

  // If printer is a plotter

  if (ps.IsPlotter)

    IsPlotterChkBox.Checked = true;

  else

    IsPlotterChkBox.Checked = false;

  // Duplex printing possible?

  if (ps.CanDuplex)

    CanDuplexChkBox.Checked = true;

  else

    CanDuplexChkBox.Checked = false;

  // Collate?

  if (ps.Collate)

    CollateChkBox.Checked = true;

  else

    CollateChkBox.Checked = false;

  // Printer valid?

  if (ps.IsValid)

    IsValidChkBox.Checked = true;

  else

   IsValidChkBox.Checked = false;

  // Color printer?

  if (ps.SupportsColor)

    SuppColorsChkBox.Checked = true;

  else

    SuppColorsChkBox.Checked = false;

}

Now let's run the application. By default, the Available Printers combo box displays all available printers. Select a printer from the list, and 

click the Get Printer Resolution button, which displays the printer resolutions supported by the selected printer. Also click on the Get Paper 

Size and Get Printer Properties buttons. The final output of the application is shown in Figure 11.9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 11.9. Reading printer properties

We will be using many PrinterSettings class members throughout this chapter.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.5 The PrintDocument and Print Events

So far we have seen how to print simple text and how to read and set printer settings. In the previous sections we saw that in a printing 

application, we create a PrintDocument object, set its printer name, set the printpage event handler, and then call the Print method. 

PrintDocument offers more than this. In this section we will cover PrintDocument members and print events.

The PrintDocument class is used to tell the printing system how printing will take place. Table 11.4 describes the properties of the 

PrintDocument class.

Besides the properties described in Table 11.4, PrintDocument also provides printing-related methods that invoke print events. These 

methods are described in Table 11.5.

Table 11.4. PrintDocument properties

Property Description

DefaultPageSettings Represents the page settings using a PageSettings object.

DocumentName Returns the name of the document to be displayed in a print status dialog box or printer queue while printing the 

document.

PrintController Returns the print controller that guides the printing process.

PrinterSettings Returns the printer settings represented by a PrinterSettings object.

Table 11.5. PrintDocument methods

Method Description

OnBeginPrint Raises the BeginPrint event, which is called after the Print method and before the first page of the document is 

printed.

OnEndPrint Raises the EndPrint event, which is called when the last page of the document has been printed.

OnPrintPage Raises the PrintPage event, which is called before a page prints.

OnQueryPageSettings Raises the QueryPageSettings event, which is called immediately before each PrintPage event.

Print Starts the document's printing process.

All of these methods allow derived classes to handle the event without attaching a delegate. This is the preferred technique for handling the 

event in a derived class. We will discuss these methods and their events, and how to handle them, in our examples.

11.5.1 Understanding Print Events

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



During the printing process, the printing system fires events according to the stage of a printing process. The three common events are 

BeginPrint, PrintPage, and EndPrint. As their names indicate, the BeginPrint event occurs when the Print method is called, and the EndPrint

event occurs when the last page of the document has been printed. The PrintPage event occurs for each page being printed (as in Figure 

11.10) when the Print method is called and after the BeginPrint event has occurred.

Figure 11.10. Print events

Figure 11.10 shows a flowchart for the print events during a printing process. The BeginPrint event is raised after the Print method is called. 

Then the printing process checks if there are any pages. If there are, the PrintPage event occurs, which is responsible for the actual printing, 

and the control goes back to check if there are more pages to print. When all pages are done printing, the EndPage event is fired.

The PrintEventArgs class provides data for BeginPrint and EndPrint events. This class is inherited from CancelEventArgs, which implements a 

single property called Cancel, that indicates if an event should be canceled (in the current .NET Framework release, PrintEventArgs is reserved 

for future use).

The BeginPrint event occurs when the Print method is called and before the first page prints. BeginPrint takes a PrintEventArgs object as an 

argument. This event is the best place to initialize resources. The PrintEventHandler method, which is used to handle the event code, is 

called whenever the BeginPrint event occurs.

The PrintPage event occurs when the Print method is called and before a page prints. When we create a PrintPageEventHandler delegate, we 

identify a method that handles the PrintPage event. The event handler is called whenever the PrintPage event occurs.

The code snippet that follows creates a PrintPageEventHandler delegate, where pd_PrintPage is an event handler:

PrintDocument pd = new PrintDocument();

pd.PrintPage +=

  new PrintPageEventHandler(pd_PrintPage);

PrintPageEventHandler takes a PrintPageEventArgs object as its second argument, which has the six properties described in Table 11.6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The following code snippet shows how to get the Graphics object from PrintPageEventArgs:

public void pd_PrintPage(object sender,

 PrintPageEventArgs ev)

{

 // Get the Graphics object attached to

 // PrintPageEventArgs

 Graphics g = ev.Graphics;

 // Use g now

}

The EndPrint event occurs when the last page of the document has been printed. It takes a PrintEventArgs object as an argument. This is the 

best place to free your resources. The PrintEventHandler method is called whenever the EndPrint event occurs and is used to handle the 

event code.

Now let's write an application that shows how to use these events. We create a Windows application and add a a combo box and a button to 

the form. We set ComboBox.Name to printersList and the text of the button to PrintEvents Start. The final form looks like Figure 11.11.

Figure 11.11. The print events application

Table 11.6. PrintPageEventArgs properties

Property Description

Cancel Indicates whether the print job should be canceled. Both get and set.

Graphics Returns the Graphics object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

HasMorePages Indicates whether an additional page should be printed. Used in multipage documents before the Print method is called. 

Both get and set.

MarginBounds Returns the portion of the page inside the margins.

PageBounds Returns the total area of the page.

PageSettings Returns page settings for the current page.

Next we add a reference to the System.Drawing.Printing namespace as follows:

using System.Drawing.Printing;

Then we add code on the form's load event handler that adds all installed printers to the combo box (see Listing 11.18).

Listing 11.18 Loading all installed printers

private void Form1_Load(object sender,

  System.EventArgs e)

{

  // See if any printers are installed

  if( PrinterSettings.InstalledPrinters.Count <= 0)

  {

    MessageBox.Show("Printer not found!");

    return;

  }

  // Get all available printers and add them to the

  // combo box

  foreach(String printer in

    PrinterSettings.InstalledPrinters)

  {

    printersList.Items.Add(printer.ToString());

  }

}

Now we write code for the button click event handler. Listing 11.19 creates all three print event handlers, attaches them to a PrintDocument

object, and calls PrintDocument's print methods.

Listing 11.19 Attaching BeginPrint, EndPrint, and PagePrint event handlers

private void PrintEvents_Click(object sender,

  System.EventArgs e)

{

  // Get the selected printer

  string printerName =

  printersList.SelectedItem.ToString();

  // Create a PrintDocument object and set the

  // current printer

  PrintDocument pd = new PrintDocument();

  pd.PrinterSettings.PrinterName = printerName;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  // BeginPrint event

  pd.BeginPrint +=

    new PrintEventHandler(BgnPrntEventHandler);

  // PrintPage event

  pd.PrintPage +=

    new PrintPageEventHandler(PrntPgEventHandler);

  // EndPrint event

  pd.EndPrint +=

    new PrintEventHandler(EndPrntEventHandler);

  // Print the document

  pd.Print();

}

As stated earlier, the BeginPrint event handler can be used to initialize resources before printing starts, and the EndPrint event handler can be 

used to free allocated resources. Listing 11.20 shows all three print event handlers. The PrintPage event handler uses the properties for 

PrintPageEventArgs and calls DrawRectangle and FillRectangle to print the rectangles. This example simply shows how to call these events. 

You can use the PrintPage event handler to draw anything you want to print, as we have seen in previous examples.

Listing 11.20 The BeginPrint, EndPrint, and PagePrint event handlers

public void BgnPrntEventHandler(object sender,

  PrintEventArgs peaArgs)

{

  // Create a brush and a pen

  redBrush = new SolidBrush(Color.Red);

  bluePen = new Pen(Color.Blue, 3);

}

public void EndPrntEventHandler(object sender,

  PrintEventArgs peaArgs)

{

  // Release brush and pen objects

  redBrush.Dispose();

  bluePen.Dispose();

}

public void PrntPgEventHandler(object sender,

  PrintPageEventArgs ppeArgs)

{

  // Create PrinterSettings object

  PrinterSettings ps = new PrinterSettings();

  // Get Graphics object

  Graphics g = ppeArgs.Graphics;

  // Create PageSettings object

  PageSettings pgSettings = new PageSettings(ps);

  // Set page margins

  ppeArgs.PageSettings.Margins.Left = 50;

  ppeArgs.PageSettings.Margins.Right = 100;

  ppeArgs.PageSettings.Margins.Top = 50;

  ppeArgs.PageSettings.Margins.Bottom = 100;

  // Create two rectangles

  Rectangle rect1 = new Rectangle(20, 20, 50, 50);

  Rectangle rect2 =

    new Rectangle(100, 100, 50, 100);

  // Draw and fill rectangles

  g.DrawRectangle(bluePen, rect1);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  g.FillRectangle(redBrush, rect2);

}

As this discussion has shown, the print event can be handy when you need to initialize or free resources.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

11.6 Printing Text

So far we have printed simple text and graphics items from the program itself. How about reading a text file and printing it from our program? 

Do you remember the GDI+ editor from Chapter 5? We can make the editor open a text file and add print functionality to print the text file. In 

this section we will read a text file and print it.

As usual, we create a Windows application and add a reference to the System.Drawing.Printing namespace. We then add a text box and four 

buttons to the form. We also change the Name and Text properties of the button controls. The final form looks like Figure 11.12. As you might 

guess, the Browse Text File button allows us to browse for text files.

Figure 11.12. The form with text file printing options

The code for the Browse Text File button is given in Listing 11.21. This button allows you to browse a file and adds the selected file name to 

the text box. Clicking the Print Text File button prints the selected text file. We use an OpenFileDialog object to open a text file and set 

textBox1.Text as the selected file name. The functionality of the Print Text and Print Events buttons is obvious.

Note

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



C# Corner's FAQ (http://www.c-sharpcorner.com/faq.asp) includes a long list of .NET how-tos and frequently asked 

questions and contains the code for these simple functionalities.

Listing 11.21 The Browse Text File button click event handler

private void BrowseBtn_Click(object sender,

  System.EventArgs e)

{

  // Create an OpenFileDialog object

  OpenFileDialog fdlg = new OpenFileDialog();

  // Set its properties

  fdlg.Title = "C# Corner Open File Dialog" ;

  fdlg.InitialDirectory = @"c:\" ;

  fdlg.Filter =

  "Text files (*.txt)|*.txt|All files (*.*)|*.*" ;

  fdlg.FilterIndex = 2 ;

  fdlg.RestoreDirectory = true ;

  // Show dialog and set the selected file name

  // as the text of the text box

  if(fdlg.ShowDialog() == DialogResult.OK)

  {

    textBox1.Text = fdlg.FileName ;

  }

}

Now let's add code for the Print Text File button click. First we add two private variables to the application as follows:

private Font verdana10Font;

private StreamReader reader;

Then we proceed as shown in Listing 11.22. The code is pretty simple. First we make sure that the user has selected a file name. Then we 

create a StreamReader object and read the file by passing the file name as the only argument. Next we create a font with font family Verdana 

and size 10 (see Chapter 5 for more on fonts). After that we create a PrintDocument object, add a PrintPage event handler, and call the Print

method. The rest is done by the PrintPage event handler.

Note

The StreamReader class is defined in the System.IO namespace.

Listing 11.22 The Print Text File button click event handler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.c-sharpcorner.com/faq.asp


 private void PrintTextFile_Click(object sender,

  System.EventArgs e)

{

  // Get the file name

  string filename = textBox1.Text.ToString();

  // Check if it's not empty

  if(filename.Equals(string.Empty))

  {

    MessageBox.Show("Enter a valid file name");

    textBox1.Focus();

    return;

  }

  // Create a StreamReader object

  reader = new StreamReader(filename);

  // Create a Verdana font with size 10

  verdana10Font = new Font("Verdana", 10);

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add PrintPage event handler

  pd.PrintPage += new PrintPageEventHandler

    (this.PrintTextFileHandler);

  // Call Print method

  pd.Print();

  // Close the reader

  if(reader != null)

    reader.Close();

}

The code for the PrintPage event handler PrintTextFileHandler is given in Listing 11.23. Here we read one line at a time from the text file, 

using the StreamReader.ReadLine method, and call DrawString, which prints each line until we reach the end of the file. To give the text a 

defined size, we use the verdana10Font.GetHeight method.

Note

See Chapter 3 and 5 for details about the DrawString method and fonts, respectively.

Listing 11.23 Adding a print-page event handler

private void PrintTextFileHandler(object sender,

  PrintPageEventArgs ppeArgs)

{

  // Get the Graphics object

  Graphics g = ppeArgs.Graphics;

  float linesPerPage = 0;

  float yPos = 0;

  int count = 0;

  // Read margins from PrintPageEventArgs

  float leftMargin = ppeArgs.MarginBounds.Left;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  float topMargin = ppeArgs.MarginBounds.Top;

  string line = null;

  // Calculate the lines per page on the basis of

  // the height of the page and the height of

  // the font

  linesPerPage = ppeArgs.MarginBounds.Height /

    verdana10Font.GetHeight(g);

  // Now read lines one by one, using StreamReader

  while(count < linesPerPage &&

    ((line = reader.ReadLine()) != null))

  {

    // Calculate the starting position

    yPos = topMargin + (count *

      verdana10Font.GetHeight(g));

    // Draw text

    g.DrawString(line, verdana10Font, Brushes.Black,

      leftMargin, yPos, new StringFormat());

    // Move to next line

    count++;

  }

  // If PrintPageEventArgs has more pages

  // to print

  if(line != null)

    ppeArgs.HasMorePages = true;

  else

    ppeArgs.HasMorePages = false;

}

You should be able to add code for the Print Text and Print Events buttons yourself. Their functionality should be obvious.

Now run the application, browse a text file, and hit the Print Text File button, and you should be all set.

Note

Using the same method, you can easily add printing functionality to the GDI+ editor. You can add a menu item called Print

to the editor that will print an opened text file.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.7 Printing Graphics

We just saw how to print text files. Now let's talk about how to print images and graphics items such as lines, rectangles, and ellipses. You 

probably have a pretty good idea how printing works. It's all in the magic of the Graphics object available through PrintPageEventArgs. Once 

we have a printer's Graphics object, we call draw and fill methods to print graphics items. In this section we will create an application that 

shows how to print simple graphics objects, including lines, curves, rectangles, and images.

Again, we create a Windows application and add a main menu to the form. We add four menu items to the main menu. The final form looks 

like Figure 11.13. As you might guess, the Draw Items and View Image menu items will draw graphics objects and show an image, 

respectively. The Print Image and Print Graphics Items menu items will print the image and the graphics items, respectively.

Figure 11.13. A graphics-printing application

The next step is to add a reference to the System.Drawing.Printing namespace.

11.7.1 Printing Graphics Items

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Let's write code for the menu items. We'll do the Draw Items first, as in Listing 11.24. This menu item draws two lines, a rectangle, and an 

ellipse. First we create a Graphics object using the Form.CreateGraphics method and call the DrawLine, DrawRectangle, and FillEllipse

methods. See Chapter 3 for more on these methods.

Listing 11.24 Drawing graphics items

private void DrawItems_Click(object sender,

  System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  // Draw graphics items

  g.DrawLine(Pens.Blue, 10, 10, 10, 100);

  g.DrawLine(Pens.Blue, 10, 10, 100, 10);

  g.DrawRectangle(Pens.Yellow, 20, 20, 200, 200);

  g.FillEllipse(Brushes.Gray, 40, 40, 100, 100);

  // Dispose of object

  g.Dispose();

}

Figure 11.14 shows the output from Listing 11.24.

Figure 11.14. Drawing simple graphics items

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now let's write code for Print Graphics Items. We want to print the output shown in Figure 11.14. We create a PrintDocument object, add a 

PrintPage event handler, and call the Print method. The PrintPage event handler draws the graphics items.

Listing 11.25 contains two methods. The PrintGraphicsItems_Click method is a menu click event handler that creates a PrintDocument object, 

sets its PrintPage event, and calls the Print method. The second method, PrintGraphicsItemsHandler, simply calls the draw and fill methods of 

PrintPageEventArgs.Graphics.

Listing 11.25 Printing graphics items

private void PrintGraphicsItems_Click(object sender,

  System.EventArgs e)

{

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add PrintPage event handler

  pd.PrintPage += new PrintPageEventHandler

    (this.PrintGraphicsItemsHandler);

  // Print

  pd.Print();

}

private void PrintGraphicsItemsHandler(object sender,

  PrintPageEventArgs ppeArgs)

{

  // Create a printer Graphics object

  Graphics g = ppeArgs.Graphics;

  // Draw graphics items

  g.DrawLine(Pens.Blue, 10, 10, 10, 100);

  g.DrawLine(Pens.Blue, 10, 10, 100, 10);

  g.DrawRectangle(Pens.Yellow, 20, 20, 200, 200);

  g.FillEllipse(Brushes.Gray, 40, 40, 100, 100);

}

If you run the application and click on Print Graphics Items, the printer will generate output that looks like Figure 11.14.

11.7.2 Printing Images

If you did not skip Chapters 7 and 8, then you already know how the DrawImage method of the Graphics object is used to draw images. 

Similarly, the DrawImage method of PrintPageEventArgs.Graphics prints an image to the printer, which then prints that image onto paper.

Before we add code for the View Image menu item, we need to add two application scope variables as follows:

private Image curImage = null;

private string curFileName = null;

View Image lets us browse for an image and then draws it on the form. As Listing 11.26 shows, we create a Graphics object using 

Form.CreateGraphics. Then we use OpenFileDialog to browse files on the system. Once a file has been selected, we create the Image object 

by using Image.FromFile, which takes the file name as its only parameter. Finally, we use DrawImage to draw the image.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 11.26 Viewing an image

private void ViewImage_Click(object sender,

  System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  // Call OpenFileDialog, which allows us to browse

  // images

  OpenFileDialog openDlg = new OpenFileDialog();

  openDlg.Filter =

    "All Image files|*.bmp;*.gif;*.jpg;*.ico;"+

    "*.emf,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+

    "*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+

    "Meta Files(*.emf;*.wmf)|*.emf;*.wmf";

  string filter = openDlg.Filter;

  // Set InitialDirectory, Title, and ShowHelp

  // properties

  openDlg.InitialDirectory =

    Environment.CurrentDirectory;

  openDlg.Title = "Open Image File";

  openDlg.ShowHelp = true;

  // If OpenFileDialog is OK

  if(openDlg.ShowDialog() == DialogResult.OK)

  {

    // Get the file name

    curFileName = openDlg.FileName;

    // Create an Image object from file name

    curImage = Image.FromFile(curFileName);

  }

  if(curImage != null)

  {

    // Draw image using the DrawImage method

    g.DrawImage(curImage, AutoScrollPosition.X,

      AutoScrollPosition.Y,

      curImage.Width, curImage.Height );

  }

  // Dispose of object

  g.Dispose();

}

Now we run the application and select an image. Figure 11.15 shows the output.

Figure 11.15. Viewing an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

See Chapters 7 and 8 for more on viewing and manipulating images.

Now let's write a Print Image menu item click handler. This option prints an image that we're currently viewing on the form. As in the previous 

example, we create a PrintDocument object, add a PrintPage event handler, and call the Print method. This time, however, instead of using the 

DrawRectangle and DrawLine methods, we use the DrawImage method, which draws the image.

As Listing 11.27 shows, our code creates a PrintDocument object, sets the PrintPage event of PrintDocument and the PrintPage event handler, 

and calls PrintDocument.Print. The PrintPage event handler calls DrawImage.

Listing 11.27 Printing an image

private void PrintImage_Click(object sender,

  System.EventArgs e)

{

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add the PrintPage event handler

  pd.PrintPage += new PrintPageEventHandler

    (this.PrintImageHandler);

  // Print

  pd.Print();

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void PrintImageHandler(object sender,

  PrintPageEventArgs ppeArgs)

{

  // Get the Graphics object from

  // PrintPageEventArgs

  Graphics g = ppeArgs.Graphics;

  // If Graphics object exists

  if(curImage != null)

  {

    // Draw image using the DrawImage method

    g.DrawImage(curImage, 0, 0,

      curImage.Width, curImage.Height );

  }

}

If we run the application, open and view a file, and click the Print Image menu item, we get a printout that looks like Figure 11.15.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

11.8 Print Dialogs

In the beginning of this chapter we said that all printing functionality is defined in the System.Drawing.Printing namespace. That statement is 

not entirely true. Actually, a few printing-related classes are defined in the System.Windows.Forms namespace. These classes are

PrintDialog

PrintPreviewDialog

PrintPreviewControl

PageSetupDialog

These classes are also available as Windows Forms controls in Visual Studio .NET; we can add them to a form by dragging the control from 

the toolbox. The toolbox with the three print dialogs is shown in Figure 11.16.

Figure 11.16. Print dialogs in the Visual Studio .NET toolbox

However, adding and using these controls programmatically is even easier than using the toolbox, as we will soon see. Before you learn how 

to use them, let's explore their functionality.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



11.8.1 The PrintDialog Control

The PrintDialog class represents the PrintDialog control in the .NET Framework library. This class represents a standard Windows printer 

dialog, which allows the user to select a printer and choose which portions of the document to print. Table 11.7 describes the PrintDialog

class properties. By default, all of these properties are false when a PrintDialog object is created, and all the properties have both get and set 

options.

Besides the properties defined in Table 11.7, PrintDialog has one method called Reset. This method resets all options, the last selected 

printer, and the page settings to their default values.

Listing 11.28 creates a PrintDialog object, sets its properties, calls ShowDialog, and prints the document.

Listing 11.28 Creating and using the PrintDialog control

PrintDialog printDlg = new PrintDialog();

PrintDocument printDoc = new PrintDocument();

printDoc.DocumentName = "Print Document";

printDlg.Document = printDoc;

printDlg.AllowSelection = true;

printDlg.AllowSomePages = true;

// Call ShowDialog

if (printDlg.ShowDialog() == DialogResult.OK)

  printDoc.Print();

Table 11.7. PrintDialog properties

Property Description

AllowSelection Indicates whether the From... To... Page option button is enabled.

AllowSomePages Indicates whether the Pages option button is enabled.

Document Identifies the PrintDocument object used to obtain printer settings.

PrinterSettings Identifies the printer settings that the dialog box modifies.

PrintToFile Indicates whether the Print to file check box is checked.

ShowHelp Indicates whether the Help button is displayed.

ShowNetwork Indicates whether the Network button is displayed.

11.8.2 The PageSetupDialog Control

The PageSetupDialog class represents the PageSetupDialog control in the .NET Framework library. This class represents a standard 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Windows page setup dialog that allows users to manipulate page settings, including margins and paper orientation. Users can also set a 

PageSettings object through PageSetupDialog's PageSettings property. Table 11.8 describes the properties of the PageSetupDialog class. All 

of these properties have both get and set options.

As with PrintDialog, the PageSetupDialog class has a Reset method that resets all the default values for the dialog.

Listing 11.29 creates a PageSetupDialog object, sets its properties, calls ShowDialog, and prints the document.

Table 11.8. PageSetupDialog properties

Property Description

AllowMargins Indicates whether the margins section of the dialog box is enabled. By default, true when a PageSetupDialog object is 

created.

AllowOrientation Indicates whether the orientation section of the dialog box (landscape versus portrait) is enabled. By default, true when a 

PageSetupDialog object is created.

AllowPaper Indicates whether the paper section of the dialog box (paper size and paper source) is enabled. By default, true when a 

PageSetupDialog object is created.

AllowPrinter Indicates whether the Printer button is enabled. By default, true when a PageSetupDialog object is created.

Document Identifies the PrintDocument object from which to get page settings. By default, null when a PageSetupDialog object is 

created.

MinMargins Indicates the minimum margins the user is allowed to select, in hundredths of an inch. By default, null when a 

PageSetupDialog object is created.

PageSettings Identifies the page settings to modify. By default, null when a PageSetupDialog object is created.

PrinterSettings Identifies the printer settings that the dialog box will modify when the user clicks the Printer button. By default, null when 

a PageSetupDialog object is created.

ShowHelp Indicates whether the Help button is visible. By default, false when a PageSetupDialog object is created.

ShowNetwork Indicates whether the Network button is visible. By default, true when a PageSetupDialog object is created.

Listing 11.29 Creating and using the PageSetupDialog control

setupDlg = new PageSetupDialog();

printDlg = new PrintDialog();

printDoc = new PrintDocument();

printDoc.DocumentName = "Print Document";

// PageSetupDialog settings

setupDlg.Document = printDoc;

setupDlg.AllowMargins = false;

setupDlg.AllowOrientation = false;

setupDlg.AllowPaper = false;

setupDlg.AllowPrinter = false;

setupDlg.Reset();

if (setupDlg.ShowDialog() == DialogResult.OK)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



{

printDoc.DefaultPageSettings =

  setupDlg.PageSettings;

printDoc.PrinterSettings =

  setupDlg.PrinterSettings;

}

11.8.3 The PrintPreviewDialog Control

The PrintPreviewDialog class represents the PrintPreviewDialog control in the .NET Framework library. This class represents a standard 

Windows print preview dialog, which allows users to preview capabilities before printing. The PrintPreviewDialog class is inherited from the 

Form class, which means that this dialog contains all the functionality defined in Form, Control, and other base classes.

In addition to the properties provided by the base classes, this class has its own properties. Many of these properties are very common and 

are provided by many controls. Table 11.9 describes a few important PrintPreviewDialog class properties. All of these properties have both get 

and set options.

Listing 11.30 creates a PrintPreviewDialog object, sets its properties, calls ShowDialog, and prints the document.

Listing 11.30 Creating and using the PrintPreviewDialog control

// Create a PrintPreviewDialog object

PrintPreviewDialog previewDlg =

  new PrintPreviewDialog();

// Create a PrintDocument object

PrintDocument printDoc =

  new PrintDocument();

// Set Document property

previewDlg.Document = printDoc;

previewDlg.WindowState =

  FormWindowState.Normal;

// Show dialog

previewDlg.ShowDialog();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 11.9. Some PrintPreviewDialog properties

Property Description

Document Identifies the document shown in preview.

HelpButton Indicates whether a help button should be displayed in the caption box of the form. The default value is false.

KeyPreview Indicates whether the form will receive key events before the event is passed to the control that has focus. The default 

value is false.

ShowInTaskbar Indicates whether the form is displayed in the Windows taskbar. The default value is true.

TransparencyKey Identifies the color that will represent transparent areas of the form.

UseAntiAlias Indicates whether printing uses the anti-aliasing features of the operating system.

WindowState Identifies the form's window state.

11.8.4 Print Dialogs in Action

Now let's create a Windows application. In this application you will see how to use the print dialogs in your Windows applications.

We create a Windows application and add a MainMenu control to the form. We also add four menu items and a separator to the MainMenu

control. The final form looks like Figure 11.17.

Figure 11.17. The print dialog application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As usual, our first step is to add some private variables to the project, as follows:

 // Variables

private Image curImage = null;

private string curFileName = null;

private PrintPreviewDialog previewDlg = null;

private PageSetupDialog setupDlg = null;

private PrintDocument printDoc = null;

private PrintDialog printDlg = null;

We also add the following namespaces to the project:

using System.Drawing.Printing;

using System.Drawing.Imaging;

using System.Drawing.Drawing2D;

using System.Drawing.Text;

On our form's load event, we initialize these dialogs. We also create a PrintPage event handler and add it to the PrintDocument object, as 

shown in Listing 11.31.

Listing 11.31 Initializing print dialogs

private void Form1_Load(object sender,

  System.EventArgs e)

{

  // Create print preview dialog

  // and other dialogs

  previewDlg = new PrintPreviewDialog();

  setupDlg = new PageSetupDialog();

  printDlg = new PrintDialog();

  printDoc = new PrintDocument();

  // Set document name

  printDoc.DocumentName = "Print Document";

  // PrintPreviewDialog settings

  previewDlg.Document = printDoc;

  // PageSetupDialog settings

  setupDlg.Document = printDoc;

  // PrintDialog settings

  printDlg.Document = printDoc;

  printDlg.AllowSelection = true;

  printDlg.AllowSomePages = true;

  // Create a PrintPage event handler

  printDoc.PrintPage +=

    new PrintPageEventHandler(this.pd_Print);

}

Now we add the PrintPage event handler, which calls DrawGraphicsItems as shown in Listing 11.32. We pass PrintPageEventArgs.Graphics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



as the only parameter to DrawGraphicsItems.

Listing 11.32 The PrintPage event handler

private void pd_Print(object sender,

PrintPageEventArgs ppeArgs)

{

  DrawGraphicsItems(ppeArgs.Graphics);

}

The DrawGraphicsItems method draws an image and text on the printer or the form, depending on the Graphics object. If we pass 

Form.Graphics, the DrawGraphicsItems method will draw graphics objects on the form, but if we pass PrintPageEventArgs.Graphics, this 

method will send drawings to the printer.

The code for the DrawGraphicsItems method is given in Listing 11.33. This method also sets the smoothing mode and text qualities via the 

SmoothingMode and TextRenderingHint properties. After that it calls DrawImage and DrawText.

Listing 11.33 The DrawGraphicsItems method

private void DrawGraphicsItems(Graphics gObj)

{

  // Set text and image quality

  gObj.SmoothingMode =

    SmoothingMode.AntiAlias;

  gObj.TextRenderingHint =

    TextRenderingHint.AntiAlias;

  if(curImage != null)

  {

    // Draw image using the DrawImage method

    gObj.DrawImage(curImage,

      AutoScrollPosition.X,

      AutoScrollPosition.Y,

      curImage.Width, curImage.Height );

  }

  // Draw a string

  gObj.DrawString("Printing Dialogs Test",

    new Font("Verdana", 14),

    new SolidBrush(Color.Blue), 0, 0);

}

There's just one more thing to do before we write the menu item event handlers. We call DrawGraphicsItems from the form's paint event 

handler, as Listing 11.34 shows. Adding this code will display the drawing on the form.

Listing 11.34 The form's paint event handler

private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

 DrawGraphicsItems(e.Graphics);

}

Now we can write code for the menu items. The Open File menu item just lets us browse images and creates an Image object by calling the 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Image.FromFile method, as Listing 11.35 shows.

Listing 11.35 The Open File menu handler

private void OpenFile_Click(object sender,

  System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  // Create open file dialog

  OpenFileDialog openDlg = new OpenFileDialog();

  // Set filter as images

  openDlg.Filter =

    "All Image files|*.bmp;*.gif;*.jpg;*.ico;"+

    "*.emf,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+

    "*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+

    "Meta Files(*.emf;*.wmf)|*.emf;*.wmf";

  string filter = openDlg.Filter;

  // Set title and initial directory

  openDlg.InitialDirectory =

    Environment.CurrentDirectory;

  openDlg.Title = "Open Image File";

  openDlg.ShowHelp = true;

  // Show dialog

  if(openDlg.ShowDialog() == DialogResult.OK)

  {

    // Get the file name and create

    // Image object from file

    curFileName = openDlg.FileName;

    curImage = Image.FromFile(curFileName);

  }

  // Paint the form, which

  // forces a call to the paint event

  Invalidate();

}

The code for PrintPreviewDialog, PageSetupDialog, and PrintDialog is given in Listing 11.36. We show PrintDialog and call its 

PrintDocument.Print method if the user selects OK on the print dialog. We set PageSetupDialog page and printer settings when the user 

selects OK on the page setup dialog. For the print preview dialog, we set the UseAntiAlias property and call ShowDialog.

Listing 11.36 Print dialogs

private void PrintDialog_Click(object sender,

  System.EventArgs e)

{

  if (printDlg.ShowDialog() == DialogResult.OK)

   printDoc.Print();

}

private void PageSetupDialog_Click(object sender,

  System.EventArgs e)

{

  if (setupDlg.ShowDialog() == DialogResult.OK)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  {

    printDoc.DefaultPageSettings =

      setupDlg.PageSettings;

    printDoc.PrinterSettings =

      setupDlg.PrinterSettings;

  }

}

private void PrintPreview_Click(object sender,

  System.EventArgs e)

{

  previewDlg.UseAntiAlias = true;

  previewDlg.WindowState =

    FormWindowState.Normal;

  previewDlg.ShowDialog();

}

Now when we run the application and browse an image using the Open File menu item, the form looks like Figure 11.18.

Figure 11.18. Viewing an image and text

If we click on Print Preview, our program will display the print preview dialog, as shown in Figure 11.19.

Figure 11.19. The print preview dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As stated earlier, the page setup dialog allows us to set the page properties, including size, sources, orientation, and margins. Clicking on 

Print Setup on the dialog menu brings up the page setup dialog, which is shown in Figure 11.20.

Figure 11.20. The page setup dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Clicking on Print Dialog calls up the standard print dialog, shown in Figure 11.21.

Figure 11.21. The print dialog

We can use these dialogs as we would in any other Windows applications.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

11.9 Customizing Page Settings

We have already discussed PageSetupDialog, which allows us to adjust page settings. This is all taken care of by the dialog internally. But 

what if we need a custom page setup dialog? Sometimes we won't want to use the default dialogs provided by Windows. For example, 

suppose we want to change the text of the dialog or don't want the user to have page selection or anything else that is not available on the 

default Windows dialogs.

The System.Drawing.Printing namespace also defines functionality to manage page settings programmatically.

11.9.1 The PageSettings Class

Page settings are the properties of a page that are being used when a page is printed, including color, page margins, paper size, page 

bounds, and page resolution.

The PageSettings class represents page settings in the .NET Framework library. This class provides members to specify page settings. It is 

used by the PrintDocument.DefaultPageSettings property to specify the page settings of a PrintDocument object. Table 11.10 describes the 

properties of the PageSettings class.

Besides the properties described in Table 11.10, the PageSettings class provides three methods: Clone, CopyToHdevmode, and 

SetHdevmode. The Clone method simply creates a copy of the PageSettings object. CopyToHdevmode copies relevant information from the 

PageSettings object to the specified DEVMODE structure, and SetHdevmode copies relevant information to the PageSettings object from the 

specified DEVMODE structure. The DEVMODE structure is used by Win32 programmers.

11.9.2 Page Margins

The Margins class represents a page margin in the .NET Framework library. It allows you to get the current page margin settings and set new

margin settings. This class has four properties—Left, Right, Top, and Bottom—which represent the left, right, top, and bottom margins,

respectively, in hundredths of an inch. This class is used by the Margins property of the PageSettings class. We will use this class and its 

members in our examples.

Table 11.10. PageSettings properties

Property Description

Bounds Returns the size of the page.

Color Indicates whether the page should be printed in color. Both get and set. The default is determined by the printer.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Property Description

Landscape Indicates whether the page is printed in landscape or portrait orientation. Both get and set. The default is determined by 

the printer.

Margins Identifies the page margins. Both get and set.

PaperSize Identifies the paper size. Both get and set.

PaperSource Identifies the paper source (a printer tray). Both get and set.

PrinterResolution Identifies the printer resolution for the page. Both get and set.

PrinterSettings Identifies the printer settings associated with the page. Both get and set.

11.9.3 Creating a Custom Paper Size

As mentioned earlier, the PaperSize class specifies the size and type of paper. You can create your own custom paper sizes. For example, 

Listing 11.37 creates a custom paper size with a height of 200 and a width of 100.

Listing 11.37 Creating a custom paper size

// Create a custom paper size and add it to the list

PaperSize customPaperSize = new PaperSize();

customPaperSize.PaperName = "Custom Size";

customPaperSize.Height = 200;

customPaperSize.Width = 100;

11.9.4 The PaperKind Enumeration

The PaperKind enumeration, as we saw earlier, is used by the Kind property to specify standard paper sizes. This enumeration has over 100 

members. Among them are A2, A3, A3Extra, A3ExtraTransverse, A3Rotated, A3Transverse, A4, A5, A6, Custom, DCEnvelope, Executive, 

InviteEnvelope, ItalyEnvelope, JapanesePostcard, Ledger, Legal, LegalExtra, Letter, LetterExtra, LetterSmall, Standard10x11 (10x14, 10x17, 

12x11, 15x11, 9x11), Statement, and Tabloid.

11.9.5 The PaperSourceKind Enumeration

The PaperSourceKind enumeration represents standard paper sources. Table 11.11 describes the members of the PaperSourceKind

enumeration.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 11.11. PaperSourceKind members

Member Description

AutomaticFeed Automatically fed paper

Cassette A paper cassette

Custom A printer-specific paper source

Envelope An envelope

FormSource The printer's default input bin

LargeCapacity The printer's large-capacity bin

LargeFormat Large-format paper

Lower The lower bin of a printer

Manual Manually fed paper

ManualFeed Manually fed envelope

Middle The middle bin of a printer

SmallFormat Small-format paper

TractorFeed A tractor feed

Upper The upper bin of a printer

11.9.6 Page Settings in Action

Now let's create an application that will allow us to get and set page settings. In this application we will create a custom dialog.

We start by creating a new Windows application in VS.NET. We add some controls to the form, with the result shown in Figure 11.22. The 

Available Printers combo box displays all available printers. The Size and Source combo boxes display paper sizes and sources, 

respectively. The Paper Orientation section indicates whether paper is oriented in landscape mode or portrait mode. The Paper Margins text 

boxes obviously represent left, right, top, and bottom margins. The Bounds property is represented by the Bounds (Rectangle) text box. The 

Color Printing check box indicates whether the printer supports color printing. The Set Properties button allows us to enter new values in the 

controls.

Figure 11.22. The custom page settings dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The form's load event (see Listing 11.38), loads all the required PageSettings-related settings using the LoadPrinters, LoadPaperSizes, 

LoadPaperSources, and ReadOtherSettings methods.

Listing 11.38 The form's load event handler

private void Form1_Load(object sender,

  System.EventArgs e)

{

  // Load all available printers

  LoadPrinters();

  // Load paper sizes

  LoadPaperSizes();

  // Load paper sources

  LoadPaperSources();

  // Load other settings

  ReadOtherSettings();

}

The LoadPrinters, LoadPaperSizes, LoadPaperSources, and ReadOtherSettings methods are used to load printers, paper sizes, paper 

sources, and other properties, respectively. The LoadPrinters method is given in Listing 11.39. We simply read the InstalledPrinters property of 

PrinterSettings and add printers to the printersList combo box.

Listing 11.39 Loading printers

private void LoadPrinters()

{

  // Load all available printers

  foreach(String printer in

    PrinterSettings.InstalledPrinters)

  {

    printersList.Items.Add(printer.ToString());

  }

  printersList.Select(0, 1);

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The LoadPaperSizes method (see Listing 11.40), loads all available paper sizes to the combo box. We read the PaperSizes property of 

PrinterSettings and add the paper type to the combo box. Then we create a custom paper size and add this to the combo box as well. This 

example will give you an idea of how to create your own custom paper sizes.

Listing 11.40 Loading paper sizes

private void LoadPaperSizes()

{

  PaperSizeCombo.DisplayMember = "PaperName";

  PrinterSettings settings = new PrinterSettings();

  // Get all paper sizes and add them to the combo box list

  foreach(PaperSize size in settings.PaperSizes)

  {

    PaperSizeCombo.Items.Add(size.Kind.ToString());

    // You can even read the paper name and all PaperSize

    // properties by uncommenting these two lines:

    // PaperSizeCombo.Items.Add

      // (size.PaperName.ToString());

    // PaperSizeCombo.Items.Add(size.ToString());

  }

  // Create a custom paper size and add it to the list

  PaperSize customPaperSize =

    new PaperSize("Custom Size", 50, 100);

  // You can also change properties

  customPaperSize.PaperName = "New Custom Size";

  customPaperSize.Height = 200;

  customPaperSize.Width = 100;

  // Don't assign the Kind property. It's read-only.

  // customPaperSize.Kind = PaperKind.A4;

  // Add custom size

  PaperSizeCombo.Items.Add(customPaperSize);

}

The LoadPaperSources method (see Listing 11.41), reads all available paper sources and adds them to the PaperSourceCombo combo box. 

We use the PaperSources property of PrinterSettings to read the paper sources.

Listing 11.41 Loading paper sources

private void LoadPaperSources()

{

  PrinterSettings settings = new PrinterSettings();

  PaperSourceCombo.DisplayMember="SourceName";

  // Add all paper sources to the combo box

  foreach(PaperSource source in settings.PaperSources)

  {

    PaperSourceCombo.Items.Add(source.ToString());

    // You can even add Kind and SourceName

      // by uncommenting the following two lines:

    // PaperSourceCombo.Items.Add

      // (source.Kind.ToString());

    // PaperSourceCombo.Items.Add

      // (source.SourceName.ToString());

  }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



}

The last method, ReadOtherSettings, reads other properties of a printer, such as whether it supports color, margins, and bounds. Listing 11.42

shows the ReadOtherSettings method.

Listing 11.42 Loading other properties of a printer

private void ReadOtherSettings()

{

  // Set other default properties

  PrinterSettings settings = new PrinterSettings();

  PageSettings pgSettings =

    settings.DefaultPageSettings;

  // Color printing

  if(pgSettings.Color)

    ColorPrintingBox.Checked = true;

  else

    ColorPrintingBox.Checked = false;

  // Page margins

  leftMarginBox.Text =

    pgSettings.Bounds.Left.ToString();

  rightMarginBox.Text =

    pgSettings.Bounds.Right.ToString();

  topMarginBox.Text =

    pgSettings.Bounds.Top.ToString();

  bottomMarginBox.Text =

    pgSettings.Bounds.Bottom.ToString();

  // Landscape or portrait

  if(pgSettings.Landscape)

    landscapeButton.Checked = true;

  else

    portraitButton.Checked = true;

  // Bounds

  boundsTextBox.Text =

    pgSettings.Bounds.ToString();

}

Note

Remember that you need to add a reference to the System.Drawing.Printing namespace to your application whenever you 

use classes from this namespace.

Now if we run the application, its form looks like Figure 11.23. Each of the Windows controls displays its intended property.

Figure 11.23. The PageSetupDialog sample in action

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Finally, we want to save settings through the Set Properties button click and write code for a Cancel button. On the Set Properties button 

click, we set the properties using PrinterSettings. Make sure a printer is available in the Available Printers combo box. The Cancel button 

simply closes the dialog.

The code for the Set Properties and Cancel button click event handlers is given in Listing 11.43, in which we set the page settings, color, and 

landscape properties of a page.

Listing 11.43 Saving paper settings

private void SetPropertiesBtn_Click(object sender,

  System.EventArgs e)

{

  // Set other default properties

  PrinterSettings settings = new PrinterSettings();

  PageSettings pgSettings =

    settings.DefaultPageSettings;

  // Color printing?

  if (ColorPrintingBox.Checked )

    pgSettings.Color = true;

  else

    pgSettings.Color = false;

  // Landscape or portrait?

  if(landscapeButton.Checked )

    pgSettings.Landscape = true;

  else

    pgSettings.Landscape = false;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void CancelBtn_Click(object sender,

  System.EventArgs e)

{

  this.Close();

}

The preceding discussion should enable you to customize page settings in the way that you want, instead of using the standard page settings 

dialog provided in the PageSettingsDialog class.

Note

Even though the printing functionality defined in the System.Drawing.Printing namespace allows developers to customize 

the standard Windows dialogs, I recommend that you use the standard Windows dialogs unless you can't live without 

customizing them.

11.9.7 The PrintRange Enumeration

The PrintRange enumeration is used to specify the part of a document to print. This enumeration is used by the PrinterSettings and PrintDialog

classes. Table 11.12 describes the members of the PrintRange enumeration.

You can use the PrintRange property of the PrinterSettings object to set the print range. Here's an example of code that does this:

PrinterSettings.PrintRange = PrintRange.SomePages;

Table 11.12. PrintRange members

Member Description

AllPages All pages are printed.

Selection The selected pages are printed.

SomePages The pages between FromPage and ToPage are printed.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

11.10 Printing Multiple Pages

So far we have discussed printing only an image or a single-page file. Printing multipage files is another important part of printing functionality 

that developers may need to implement when writing printer applications. Unfortunately, the .NET Framework does not keep track of page 

numbers for you, but it provides enough support for you to keep track of the current page, the total number of pages, the last page, and a 

particular page number. Basically, when printing a multipage document, you need to find out the total number of pages and print them from 

first to last. You can also specify a particular page number. If you are using the default Windows printing dialog, then you don't have to worry 

about it because you can specify the pages in the dialog, and the framework takes care of this for you.

To demonstrate how to do this, our next program produces a useful printout showing all the fonts installed on your computer. This program is 

a useful tool for demonstrating the calculation of how many pages to print when you're using graphical commands to print.

We will use the PrintPreview facility to display the output in case you don't have access to a printer. In this example we need to track how 

many fonts have been printed and how far down the page we are. If we're going to go over the end of the page, we drop out of the 

pd_PrintPage event handler and set ev.HasMorePages to true to indicate that we have another page to print.

To see this functionality in action, let's create a Windows application and add a menu with three menu items and a RichTextBox control to the 

form. The final form is shown in Figure 11.24.

Figure 11.24. A form for printing multiple pages

The Display Fonts menu displays available fonts on the machine. Before we add code to this menu, we add the following variables:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private int fontcount;

private int fontposition = 1;

private float ypos = 1;

private PrintPreviewDialog previewDlg = null;

The code for the Display Fonts menu click is given in Listing 11.44. Here we read installed fonts on the system and display them in the rich 

text box. We use InstalledFontCollection to read all installed fonts on a machine. Then we use the InstalledFontCollection.Families property 

and make a loop to read all the font families. We also check if these families support different styles, including regular, bold, italic, and 

underline, and we add some text to the rich text box with the current font.

Note

See Chapter 5 for details about fonts and font collections.

Listing 11.44 Displaying fonts

private void DisplayFonts_Click_1(object sender,

System.EventArgs e)

{

  // Create InstalledFontCollection object

  InstalledFontCollection ifc =

    new InstalledFontCollection();

  // Get font families

  FontFamily[] ffs = ifc.Families;

  Font f;

  // Make sure rich text box is empty

  richTextBox1.Clear();

  // Read font families one by one,

  // set font to some text,

  // and add text to the text box

  foreach(FontFamily ff in ffs)

  {

    if (ff.IsStyleAvailable(FontStyle.Regular))

      f = new Font(ff.GetName(1),

        12, FontStyle.Regular);

    else if(ff.IsStyleAvailable(FontStyle.Bold))

      f = new Font(ff.GetName(1),

        12, FontStyle.Bold);

    else if (ff.IsStyleAvailable(FontStyle.Italic))

      f = new Font(ff.GetName(1),

        12, FontStyle.Italic);

    else

      f = new Font(ff.GetName(1),

        12, FontStyle.Underline);

    richTextBox1.SelectionFont=f;

    richTextBox1.AppendText(

    ff.GetName(1)+"\r\n");

    richTextBox1.SelectionFont=f;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    richTextBox1.AppendText(

      "abcdefghijklmnopqrstuvwxyz\r\n");

    richTextBox1.SelectionFont=f;

    richTextBox1.AppendText(

      "ABCDEFGHIJKLMNOPQRSTUVWXYZ\r\n");

    richTextBox1.AppendText(

      "==============================\r\n");

}

}

The code for the Print Preview and Print menu items is given in Listing 11.45. This code should look familiar to you. We simply create 

PrintDocument and PrintPreviewDialog objects, set their properties, add a print-page event handler, and call the Print and Show methods.

Listing 11.45 The Print Preview and Print menu items

private void PrintPreviewMenuClick(object sender,

  System.EventArgs e)

{

  // Create a PrintPreviewDialog object

  previewDlg = new PrintPreviewDialog();

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add print-page event handler

  pd.PrintPage +=

    new PrintPageEventHandler(pd_PrintPage);

  // Set Document property of PrintPreviewDialog

  previewDlg.Document = pd;

  // Display dialog

  previewDlg.Show();

}

private void PrintMenuClick(object sender,

  System.EventArgs e)

{

  // Create a PrintPreviewDialog object

  previewDlg = new PrintPreviewDialog();

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add print-page event handler

  pd.PrintPage +=

    new PrintPageEventHandler(pd_PrintPage);

  // Print

  pd.Print();

}

The print-page event handler, pd_PrintPage, is given in Listing 11.46. We print fonts using DrawString, and we set 

PrintPageEventArgs.HasMorePages to true. To make sure the text fits, we increase the y-position by 60 units.

Listing 11.46 The print-page event handler

public void pd_PrintPage(object sender,

  PrintPageEventArgs ev)

{

  ypos = 1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  float pageheight = ev.MarginBounds.Height;

  // Create a Graphics object

  Graphics g = ev.Graphics;

  // Get installed fonts

  InstalledFontCollection ifc =

    new InstalledFontCollection();

  // Get font families

  FontFamily[] ffs = ifc.Families;

  // Draw string on the paper

  while(ypos+60 < pageheight &&

    fontposition < ffs.GetLength(0))

  {

    // Get the font name

    Font f =

      new Font(ffs[fontposition].GetName(0),25);

    // Draw string

    g.DrawString(ffs[fontposition].GetName(0), f,

      new SolidBrush(Color.Black),1,ypos);

    fontposition = fontposition+1;

    ypos = ypos + 60;

  }

  if (fontposition < ffs.GetLength(0))

  {

    // Has more pages??

    ev.HasMorePages = true;

  }

}

That's it. If we run the program, the Print menu prints multiple pages, and the Print Preview menu shows the print preview on two pages (see 

Figure 11.25).

Figure 11.25. Print preview of multiple pages

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As you can see, it's pretty easy to create multipage report generators. Now you can use the print options to print documents with multiple 

pages.

11.10.1 The DocumentName Property

If you want to display the name of the document you're printing, you can use the DocumentName property of the PrintDocument object:

pd.DocumentName="A Test Document";

The new result is shown in Figure 11.26.

Figure 11.26. Setting a document name

We have seen that using the DocumentPrintPreview class is fairly straightforward. In reality, all that's happening is that this control is passed 

a graphics class representing each page in a printout.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

11.11 Marginal Printing: A Caution

Although it's exciting to be able to draw graphics on a printout, keep in mind that printers have limits. Never try to print at the extreme edges 

of the page because you cannot be sure that a printer will print in exactly the same place. You could have two printers of the same model and 

manufacturer, and yet when you print you may notice they print in different places. Some printers are more accurate than others, but usually a 

sheet of paper will move slightly as it moves through the printer. Laser printers tend to be able to print closer to the edges of the paper than 

inkjet printers because of the mechanism that is used to transport the sheet of paper through the printer.

To see a marginal-printing sample, let's create a Windows application. We add two buttons to the form. The final form is shown in Figure 

11.27.

Figure 11.27. Marginal-printing test application

Now we add code for the Normal Printing and Marginal Printing button click event handlers, as in Listing 11.47. Each handler creates a 

PrintDocument object, adds a PrintPage event handler, and calls the Print method. The PrintPage event handlers for Normal Printing and 

Marginal Printing are NormalPrinting and MarginPrinting, respectively.

Listing 11.47 The Normal Printing and Marginal Printing button event handlers

private void NormalBtn_Click(object sender,

  System.EventArgs e)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add PrintPage event handler

  pd.PrintPage +=

    new PrintPageEventHandler(NormalPrinting);

  // Print

  pd.Print();

}

private void MarginalBtn_Click(object sender,

  System.EventArgs e)

{

  // Create a PrintDocument object

  PrintDocument pd = new PrintDocument();

  // Add PrintPage event handler

  pd.PrintPage +=

    new PrintPageEventHandler(MarginPrinting);

  // Print

  pd.Print();

}

Now let's look at the NormalPrinting handler (see Listing 11.48). We start with the top location of the text as unit 1. Then we calculate the next 

line's position using the height of the font and draw four lines with the values of the top, left, bottom, and right margins. In the end we draw a 

rectangle with the default bounds of the page.

Listing 11.48 The NormalPrinting event handler

public void NormalPrinting(object sender,

  PrintPageEventArgs ev)

{

  // Set the top position as 1

  float ypos = 1;

  // Get the default left margin

  float leftMargin = ev.MarginBounds.Left;

  // Create a font

  Font font = new Font("Arial",16);

  // Get the font's height

  float fontheight = font.GetHeight(ev.Graphics);

  // Draw four strings

  ev.Graphics.DrawString("Top Margin = "

    + ev.MarginBounds.Top.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString("Bottom Margin = "

    + ev.MarginBounds.Bottom.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString ("Left Margin = "

    + ev.MarginBounds.Left.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString ("Right Margin = "

    + ev.MarginBounds.Right.ToString(),

    font, Brushes.Black,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    leftMargin, ypos);

  ypos = ypos + fontheight;

  // Draw a rectangle with default margins

  ev.Graphics.DrawRectangle(

    new Pen(Color.Black),

    ev.MarginBounds.X,

    ev.MarginBounds.Y,

    ev.MarginBounds.Width,

    ev.MarginBounds.Height);

}

If we run the application, we will see text describing the four margin values printed outside the rectangle.

Next comes code for the MarginPrinting event handler (see Listing 11.49). We use the default margin of the page as the top location for the 

first text. Everything else is the same as in Listing 11.48.

Listing 11.49 The MarginPrinting event handler

public void MarginPrinting(object sender,

  PrintPageEventArgs ev)

{

  // Set the top position as the default margin

  float ypos = ev.MarginBounds.Top;

  // Get the default left margin

  float leftMargin = ev.MarginBounds.Left;

  // Create a font

  Font font = new Font("Arial",16);

  // Get the font's height

  float fontheight = font.GetHeight(ev.Graphics);

  // Draw four strings

  ev.Graphics.DrawString("Top Margin = " +

    ev.MarginBounds.Top.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString("Bottom Margin = " +

    ev.MarginBounds.Bottom.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString ("Left Margin = " +

    ev.MarginBounds.Left.ToString(),

    font, Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  ev.Graphics.DrawString ("Right Margin = "

    + ev.MarginBounds.Right.ToString(),

    font,Brushes.Black,

    leftMargin, ypos);

  ypos = ypos + fontheight;

  // Draw a rectangle with default margins

  ev.Graphics.DrawRectangle(

    new Pen(Color.Black),

    ev.MarginBounds.X,

    ev.MarginBounds.Y,

    ev.MarginBounds.Width,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    ev.MarginBounds.Height);

}

When we run this code, we will see text appearing inside the rectangle printed using the page margin values.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



11.12 Getting into the Details: Custom Controlling and the Print Controller

At this point you must feel like a printer master and have the confidence you need to write a printing application. We have covered almost 

every aspect of printing in .NET, but guess what! There are still a few surprises hidden in System.Drawing.Printing. You will probably never 

use the classes that we're going to discuss in this section, but it's not a bad idea to know about them.

So far in this chapter we've created a PrintDocument object, created a PrintPage event handler, and called the Print method of 

PrintDocument.PrintDocument took care of everything internally for us. Now we will see how to control PrintDocument. For this, we need a 

print controller, which controls how a PrintDocument object handles printing.

The PrintController class represents print controllers in the .NET Framework library. It's an abstract base class, so its functionality comes from 

its three derived classes: PreviewPrintController, StandardPrintController, and PrintControllerWithStatusDialog. PrintController and its derived 

classes are shown schematically in Figure 11.28.

Figure 11.28. PrintController-derived classes

Normally PrintController is used by PrintDocument. When PrintDocument starts printing by calling the Print method, it invokes the print 

controller's OnStartPrint, OnEndPrint, OnStartPage, and OnEndPage methods, which determine how a printer will print the document. Usually 

the OnStartPrint method of PrintController is responsible for obtaining the Graphics object, which is later used by the PrintPage event handler.

The StandardPrintController class is used to send pages to the printer. We set the PrintController property of PrintDocument to 

PrintController.StandardPrintController. PrintControllerWithStatusDialog adds a status dialog to the printing functionality. It shows the name of 

the document currently being printed. To attach PrintControllerWithStatusDialog, we set PrintDocument's PrintController property to 

PrintController.PrintControllerWithStatusDialog.

The PreviewPrintController class is used for generating previews of pages being printed. Besides the methods defined in the PrintController

class, PreviewPrintController provides one property (UseAntiAlias) and one method (GetPreviewPageInfo). The UseAntiAlias property 

indicates whether anti-aliasing will be used when the print preview is being displayed.

The GetPreviewPageInfo method captures the pages of a document as a series of images and returns them as an array called 

PreviewPageInfo. The PreviewPageInfo class provides print preview information for a single page. This class has two properties: Image and 

PhysicalSize. The Image property returns an Image object, which represents an image of the printed page, and PhysicalSize represents the 

size of the printed page in hundredths of an inch.

Let's write a sample application. We create a Windows application, and we add a MainMenu control, an item, and a StatusBar control to the 

form. Our final form looks like Figure 11.29.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 11.29. Print controller test form

Before adding any code to this form, we create a MyPrintController class, which is inherited from StandardPrintController. You can use the 

PreviewPrintController or PrintControllerWithStatusDialog classes in the same way. The code for the MyPrintController class is given in Listing 

11.50. We override all four methods: OnStartPrint, OnStartPage, OnEndPrint, and OnEndPage. On these methods we notify the status bar 

about the status of the printing process. This information could be useful for displaying page numbers or other print status information when 

we're printing multipage documents.

Listing 11.50 The MyPrintController class

// Print controller class

class MyPrintController: StandardPrintController

{

  private StatusBar statusBar;

  private string str = string.Empty;

  public MyPrintController(StatusBar sBar): base()

  {

    statusBar = sBar;

  }

  public override void OnStartPrint

    (PrintDocument printDoc,

    PrintEventArgs peArgs)

  {

    statusBar.Text = "OnStartPrint Called";

    base.OnStartPrint(printDoc, peArgs);

  }

  public override Graphics OnStartPage

    (PrintDocument printDoc,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    PrintPageEventArgs ppea)

  {

    statusBar.Text = "OnStartPage Called";

    return base.OnStartPage(printDoc, ppea);

  }

  public override void OnEndPage

    (PrintDocument printDoc,

    PrintPageEventArgs ppeArgs)

  {

    statusBar.Text = "OnEndPage Called";

    base.OnEndPage(printDoc, ppeArgs);

  }

  public override void OnEndPrint

    (PrintDocument printDoc,

    PrintEventArgs peArgs)

  {

    statusBar.Text = "OnEndPrint Called";

    statusBar.Text = str;

    base.OnEndPrint(printDoc, peArgs);

  }

}

To call the MyPrintController class, we need to set the PrintController property of PrintDocument to invoke MyPrintController's overridden 

methods. Let's write a menu click event handler and set the PrintDocument.PrintController property there. In Listing 11.51 we create a 

PrintDocument object, set its DocumentName and PrintController properties, enable the PrintPage event handler, and call Print to print the 

document.

Listing 11.51 Setting the PrintController property of PrintDocument

private void StandardPrintControllerMenu_Click(

  object sender, System.EventArgs e)

{

  PrintDocument printDoc = new PrintDocument();

  printDoc.DocumentName =

    "PrintController Document";

  printDoc.PrintController =

    new MyPrintController(statusBar1);

  printDoc.PrintPage +=

    new PrintPageEventHandler(PrintPageHandler);

  printDoc.Print();

}

Listing 11.52 gives the code for the PrintPage event handler, which just draws some text on the printer.

Listing 11.52 The PrintPage event handler

void PrintPageHandler(object obj,

  PrintPageEventArgs ppeArgs)

{

  Graphics g = ppeArgs.Graphics;

  SolidBrush brush =

    new SolidBrush(Color.Red);

  Font verdana20Font =

    new Font("Verdana", 20);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  g.DrawString("Print Controller Test",

    verdana20Font,

    brush, 20, 20);

}

If we run the application and print, we will see that the status bar displays the status of the printing process. The first event message is shown 

in Figure 11.30.

Figure 11.30. Print controller output

You can extend this functionality to write your own custom print controllers.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

Printing functionality in the .NET Framework library is defined in the System.Drawing.Printing namespace. In this chapter we discussed almost 

every possible aspect of printing. We began by discussing the history of printing in Microsoft Windows. Then we discussed printing-related 

functionality in the Microsoft .NET Framework.

After a basic introduction to printing in .NET, you learned the basic steps required to write a printing application and how printing differs from 

on-screen drawing. You also learned how to print simple text; graphics objects such as lines, rectangles, and circles; images; text files; and 

other documents.

The PrinterSettings class provides members to get and set printer settings. We discussed how to use this class and its members.

The .NET Framework library provides printing-related standard dialogs. You learned to use the PrintDialog, PrintPreviewDialog, and 

PageSetupDialog classes to provide a familiar Windows look and feel in your applications.

Multipage printing can be a bit tricky. You learned how to write an application with multipage printing functionality.

At the end of this chapter we discussed how to write custom printing and page setup dialogs using PageSettings and related classes. We also

discussed the advanced custom print controller–related classes and how to use them in applications.

More Printing Samples

For more printing-related samples, C# Corner's section on printing (www.c-sharpcorner.com/printing.asp) is a good resource. 

There you will find many useful and handy sample code downloads, including printing a form and its contents, printing a data 

grid, and much more.

Using GDI+ in Web applications is a requirement for Web developers. Chapter 12 will cover the use of GDI+ to draw on the Web.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.c-sharpcorner.com/printing.asp


[ Team LiB ]  

Chapter 12. Developing GDI+ Web Applications

In previous chapters we covered almost every aspect of drawing using Windows Forms. This chapter will introduce you to drawing on the 

Web and show how GDI+ can be used to write powerful graphics Web applications. From a programmer's perspective, GDI+ treats both 

Windows and Web applications in the same way.

This chapter covers the following topics:

A quick introduction to ASP.NET

Developing your first Web application using ASP.NET in Visual Studio .NET

Understanding the process of drawing on the Web

Creating Bitmap and Graphics objects

Drawing simple rectangles and other graphics objects on Web Forms

Drawing images on Web Forms

Setting the alpha value and quality of graphics objects

Using linear and path gradient brushes on the Web

Drawing line charts

Drawing and filling pie charts

If we want to draw a rectangle on the Web, we create a Graphics object and call its DrawRectangle method. However, getting a Graphics

object for a Web page is different from getting one for a Windows Form, as we will discuss in greater detail later.

Another restriction in Web applications is the fact that a browser can display only images. If we wanted to draw a rectangle on a Web page, 

the rectangle would first have to be drawn and converted into an image and then sent to the browser for display.

To draw graphics shapes in a Windows Forms application, we simply call the draw or fill method, and GDI+ draws the shape on the form, as 

Figure 12.1 shows.

Figure 12.1. Drawing in Windows Forms

Drawing in Web Forms involves one extra step. When you call a draw or fill method, GDI+ doesn't communicate directly with the Web Forms. 

Instead, it allows us to save a graphics shape as an image. Later we send the image to the browser for display. This process is shown in 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Figure 12.2.

Figure 12.2. Drawing in Web Forms

After completing this chapter, you will be amazed by the power and flexibility of GDI+ and ASP.NET.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

12.1 Creating Your First ASP.NET Web Application

Discussing ASP.NET in depth is beyond the scope of this book. In this chapter we will take an "as needed" approach, discussing only the 

techniques we will use in our applications. If you are looking for an introductory ASP.NET book, try Essential ASP.NET by Fritz Onion 

(published by Addison-Wesley).

To understand ASP.NET and Visual Studio .NET integration, we will write a simple non-GDI+ Web application. In this application we will add 

some controls to a Web page: a generic button, a text box, and an Image button. After adding these controls, we will write code in the button 

click event handler that will read the contents of the text box as a file name and display the file in the Image button. Let's get started!

12.1.1 Creating a Web Application Project

Creating a new ASP.NET Web application using Visual Studio .NET is simple: First we create a new project by choosing File | New | Project 

| Visual C# Projects and then selecting the ASP.NET Web Application template. As Figure 12.3 shows, we give our application the name 

FirstWebApp. It resides in the GDIPlusGuide folder of localhost, which is the default Web server on our local machine.

Figure 12.3. The FirstWebApp project

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Location box displays the default option of http://localhost and the application name. Here localhost represents the default IIS server 

running on our local machine. The default virtual directory for localhost is C:\Inetpub\wwwroot.

Note

If you are using a remote server for your development, you'll need to provide your server name instead of localhost. You 

can either create the project in the root of the server or create a new folder.

Clicking the OK button creates a new directory, FirstWebApp in the server's virtual directory. It also creates a new Web application and sends 

us to the default WebForm1.aspx page (see Figure 12.4).

Figure 12.4. The default WebForm1.aspx page

From here we can edit our page's HTML. Two modes are available: Design and HTML (see the bottom left corner of Figure 12.4). We click 

the HTML button to edit the code, as shown in Figure 12.5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Figure 12.5. The HTML view of WebForm1.aspx

The HTML view shows us the HTML code of a page, its controls, and its control properties. The HTML editor also lets us edit the HTML 

manually. (Although we can edit the code of a page manually in HTML view, we will not need to do that for the examples in this book.)

If we switch back to the design mode and right-click on the page, we see several options: View HTML Source, Build Style, View in 

Browser, View Code, Synchronize Document Outline, and so on.

We can set the properties of a page by selecting Properties from the context menu (which we bring up with a right mouse-click). The 

Properties menu opens the DOCUMENT Property Pages window (see Figure 12.6). Three tabs are available in this window: General, Color 

and Margins, and Keywords. Most of the properties are self-explanatory. The General tab contains page title, background image, target 

schema, character set, page layout, and client and server language properties.

Figure 12.6. An ASP.NET document's page properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Page Layout property has two options: GridLayout and FlowLayout. We use GridLayout when we want to drop controls to the page 

and reposition them. If we want to add text to the page, we must set the page layout to FlowLayout. After we set the Page Layout property to 

FlowLayout, the editor works as a text editor.

12.1.2 Adding Web Controls to a Web Form

Visual Studio .NET provides a Web Forms control toolbox that's similar to the Windows control toolbox. We can open the toolbox by selecting 

the View | Toolbox main menu item. The Web Forms category of the toolbox contains the server-side controls (controls available on the 

server, for which all processing is done on the server). When a browser requests a control, ASP.NET converts the request into HTML and 

sends it to the browser. The HTML category contains HTML controls. HTML controls are simple HTML tags with all processing done on the 

client side. As a result, HTML controls are often faster than server-side controls.

Let's switch the page back to the Design and GridLayout mode and add a button, a text box, and an Image control to the page by dragging 

these controls from the Web Forms toolbox to WebForm1.aspx. We will use the View Image button to view an image. The ImageUrl property 

of the View Image button represents the image that this control will view.

The page should now look like Figure 12.7 (after you position your controls). As the figure shows, we change the button's text to "View Image" 

by right-clicking on the Properties menu item, which launches the Properties window.

Figure 12.7. The WebForm1.aspx design mode after the addition of Web Forms controls

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



12.1.3 Writing Code on the Button Click Event Handler

The last step of this tutorial is to add an event handler for the button click event, which will set the ImageUrl property of the Image button. This 

is similar to adding a control event in a Windows Forms application. You can double-click on the button to add a button click event handler.

Double-clicking on the button adds a Button1_Click method to the WebForm1.aspx.cs class, which hosts code for the page controls and 

events. Now we write a line of code that sets the ImageUrl property of the Image control as the text of the TextBox control. The button click 

event handler code is given in Listing 12.1.

Listing 12.1 The button click event handler

private void Button1_Click(object sender,

System.EventArgs e)

{

Image1.ImageUrl = TextBox1.Text;

}

Now compile and run the project. In the text box we type "http://www.c-sharpcorner.com/cslogo101.gif" (or any valid image URL) as the URL 

name and click the View Image button. The output of the program looks like Figure 12.8.

Figure 12.8. Viewing an image in an Image control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Now that we have seen how to create a simple Web application using Visual Studio .NET and ASP.NET, in the next section we will move on 

to GDI+ and show how to use GDI+ to write graphics Web applications.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

12.2 Your First Graphics Web Application

Now it's time to use GDI+ in Web applications. First we'll write some code, and then we'll discuss how GDI+ Web applications work.

In this application we will draw a few simple graphics objects, including lines and rectangles. First we create a Web Application using Visual 

Studio .NET. After creating a Web application, we need to add a GDI+-related namespace to the project. We import namespaces as follows:

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Drawing.Imaging;

Note

See Chapter 1 to learn more about GDI+ namespaces and classes. If you use Visual Studio .NET to create your Web 

application, the wizard will add System and System.Drawing namespace references automatically.

Now we add code to draw graphics objects. Listing 12.2 draws two lines and a rectangle. You can write the code on the page-load event 

handler or on a button click event handler.

Listing 12.2 Drawing simple graphics objects on the Web

private void Page_Load(object sender,

   System.EventArgs e)

  {

   // Create pens and brushes

   Pen redPen = new Pen(Color.Red, 3);

   HatchBrush brush =

    new HatchBrush(HatchStyle.Cross,

    Color.Red, Color.Yellow);

   // Create a Bitmap object

   Bitmap curBitmap = new Bitmap(200, 200);

   // Create a Graphics object from Bitmap

   Graphics g = Graphics.FromImage(curBitmap);

   // Draw and fill rectangles

   g.FillRectangle(brush, 50, 50, 100, 100);

   g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);

   g.DrawLine(Pens.White, 10, 10, 10, 180);

   // Save the Bitmap object and send response to the

   // browser

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



   curBitmap.Save(Response.OutputStream,

    ImageFormat.Jpeg);

   // Dispose of Graphics and Bitmap objects

   curBitmap.Dispose();

   g.Dispose();

  }

We will discuss this code in more detail in the following section. If you are using a text editor to write your applications, you can write the code 

given in Listing 12.3.

Listing 12.3 Using a text editor to draw simple graphics

<%@ Import Namespace="System" %>

<%@ Import Namespace="System.Drawing" %>

<%@ Import Namespace="System.Drawing.Drawing2D" %>

<%@ Import Namespace="System.Drawing.Imaging" %>

<script language="C#" runat="server">

void Page_Load(Object sender, EventArgs e)

{

Pen redPen = new Pen(Color.Red, 3);

HatchBrush brush = new HatchBrush(HatchStyle.Cross,

Color.Red, Color.Yellow);

Bitmap curBitmap = new Bitmap(200, 200);

Graphics g = Graphics.FromImage(curBitmap);

g.FillRectangle(brush, 50, 50, 100, 100);

g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);

g.DrawLine(Pens.White, 10, 10, 10, 180);

curBitmap.Save(Response.OutputStream,

 ImageFormat.Jpeg);

g.Dispose();

}

</script>

Now when we run our application, the output generated by Listing 12.2 or 12.3 should look like Figure 12.9.

Figure 12.9. Drawing simple graphics objects on the Web

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



12.2.1 How Does It Work?

Let's break down the code shown in Listings 12.2 and 12.3. We begin by importing GDI+-related namespaces in the application: System, 

System.Drawing, System.Drawing.Drawing2D, and System.Drawing.Drawing.Imaging. If we were using Visual Studio .NET, we would simply 

use the using directive followed by the namespace name.

Next we have a Page_Load event, which is executed when a Web page is loaded. We create a pen and brush using the Pen and HatchBrush

classes.

Pen redPen = new Pen(Color.Red, 3);

HatchBrush brush = new HatchBrush(HatchStyle.Cross,

Color.Red, Color.Yellow);

One important limitation of Web applications is Web browser capability. A Web browser can display only certain objects. For example, all 

graphics objects in a Web browser will be displayed as images. So before a Web browser can display graphics objects, we need to convert 

them into images that can be displayed by the browser. Our next step, then, is to create a Bitmap object. The following line creates a 200x200 

Bitmap object.

Bitmap curBitmap = new Bitmap(200, 200);

You already know that the Graphics object functions as a canvas and provides members to draw lines, shapes, and images. Now we need to 

create a Graphics object from the bitmap:

Graphics g = Graphics.FromImage(curBitmap);

Once we have a Graphics object, we can draw shapes, lines, and images. In the following code we use the DrawLine and FillRectangle

methods to draw lines and a filled rectangle:

g.FillRectangle(brush, 50, 50, 100, 100);

g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);

g.DrawLine(Pens.White, 10, 10, 10, 180);

If you don't know how draw and fill methods work, you may want to look again at Chapter 3.

We're almost done. So far we have created Bitmap and Graphics objects, and we have drawn lines and a rectangle. Because a Web browser 

can display only images (not pixels), we need to convert the bitmap into an image. The Save method of the Bitmap object does the trick for 

us. The following line is responsible for rendering a bitmap and sending it to the browser:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



curBitmap.Save(Response.OutputStream,

  ImageFormat.Jpeg);

Finally, we dispose of the Bitmap and Graphics objects:

curBitmap.Dispose();

g.Dispose();

12.2.2 Understanding the Save Method

The Bitmap class is inherited from the Image class, which defines the Save method. This method saves an image to the specified Stream

object in the specified format. For example, in our code the Save method takes the following two arguments: Response.OutputStream and 

ImageFormat:

curBitmap.Save(Response.OutputStream,

 ImageFormat.Jpeg);

The Response property of the Page class returns the HttpResponse object associated with the page, which allows us to send HTTP response 

data to the client and contains information about the response. The OutputStream property of HttpResponse enables binary output to the 

outgoing HTTP content body. In other words, Page.Response.OutputStream sends the images to the browser in a compatible format. The 

second parameter is of ImageFormat enumeration type and specifies the format of the image. ImageFormat is discussed in more detail in 

Chapter 7 (see Table 7.4).

The Save method also allows us to save an image on a local physical hard drive. The following code saves the bitmap on the C:\\ drive.

curBitmap.Save("C:\\TempImg.gif",

 ImageFormat.Jpeg);

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

12.3 Drawing Simple Graphics

As we discussed in the previous section, from the programming perspective, drawing on the Web is the same as drawing in Windows Forms, 

except for a few small differences. Drawing on the Web is often called "drawing on the fly" (or "graphics on the fly"). The code in Listing 12.4

draws various graphics objects, including lines, text, rectangles, and an ellipse. We create various pens, brushes, and a 300x300 bitmap. 

Then we create a Graphics object from this bitmap by calling Graphics.FromImage. Once we have a Graphics object, we can call its methods 

to draw and fill graphics shapes.

After creating the Graphics object, we set its smoothing mode to AntiAlias, create font and size objects, and call the DrawString, DrawLine, and 

DrawEllipse methods to draw text, lines, and an ellipse, respectively. At this point the bitmap we created contains these objects. The next step 

is to call the Save method and send the image to the browser, which we do with the Bitmap.Save method. Finally, we call the Dispose method 

to dispose of various objects.

Listing 12.4 Drawing graphics objects on the fly

// Construct brush and pens

Pen redPen = new Pen(Color.Red, 3);

HatchBrush brush =

 new HatchBrush(HatchStyle.Cross,

 Color.Yellow, Color.Green);

Pen hatchPen = new Pen(brush, 2);

Pen bluePen = new Pen(Color.Blue, 3);

Bitmap curBitmap = new Bitmap(300, 200);

Graphics g = Graphics.FromImage(curBitmap);

g.SmoothingMode = SmoothingMode.AntiAlias;

string testString =

 "Hello GDI+ On the Web";

Font verdana14 = new Font("Verdana", 14);

Font tahoma18 = new Font("Tahoma", 18);

int nChars;

int nLines;

// Call MeasureString to measure a string

SizeF sz = g.MeasureString(testString, verdana14);

string stringDetails =

  "Height: "+sz.Height.ToString()

 + ", Width: "+sz.Width.ToString();

g.DrawString(testString, verdana14,

 Brushes.Wheat, new PointF(40, 70));

g.DrawRectangle(new Pen(Color.Red, 2),

 40.0F, 70.0F, sz.Width, sz.Height);

sz = g.MeasureString("Ellipse", tahoma18,

 new SizeF(0.0F, 100.0F),

 new StringFormat(),

 out nChars, out nLines);

stringDetails =

 "Height: "+sz.Height.ToString()

 + ", Width: "+sz.Width.ToString()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 + ", Lines: "+nLines.ToString()

 + ", Chars: "+nChars.ToString();

 // Draw lines

g.DrawLine(Pens.WhiteSmoke, 10, 20, 180, 20);

g.DrawLine(Pens.White, 20, 10, 20, 180);

// Fill ellipse

g.FillEllipse(brush, 120, 100, 100, 100);

// Draw string

g.DrawString("Ellipse", tahoma18,

 Brushes.Beige, new PointF(40, 20));

// Draw ellipse

g.DrawEllipse( new Pen(Color.Yellow, 3),

 40, 20, sz.Width, sz.Height);

// Send output to the browser and

// dispose of objects

curBitmap.Save(this.Response.OutputStream,

 ImageFormat.Jpeg);

g.Dispose();

For all practical purposes, Listing 12.4 could be a Windows Forms application. The only new code required creates a Bitmap object and calls 

its Save method to send output to the browser. We use the DrawString method to draw text, the DrawLine method to draw lines, and the 

DrawRectangle method to draw rectangles—just as in any other GDI+ application.

Figure 12.10 shows the output from Listing 12.4. The program draws lines, ellipses, and text.

Figure 12.10. Drawing various graphics objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Note

For more on the Graphics class and its fill and draw methods, see Chapter 3.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

12.4 Drawing Images on the Web

The process of drawing images on the Web is slightly different from that of drawing images on Windows Forms. In Windows Forms we create 

a Bitmap object and call the Graphics.DrawImage method. Drawing on the Web requires a Graphics object. The Bitmap.Save method takes 

care of the rest, as discussed earlier.

To test this, let's create a Web application using Visual Studio .NET and add the code given in Listing 12.5 on the page-load event. This code 

views an image on the browser. First we create a Bitmap object from an image, then we create a Graphics object from the image, and then we 

call the Save method of Bitmap.

Listing 12.5 Drawing images on the Web

// Create a Bitmap object from a file

Bitmap curBitmap =

 new Bitmap("d:\\white_salvia.jpg");

// Create a Graphics object from Bitmap

Graphics g = Graphics.FromImage(curBitmap);

// Send output to the browser

curBitmap.Save(this.Response.OutputStream,

 ImageFormat.Jpeg);

// Dispose of object

g.Dispose();

Notice that we didn't even need to call the DrawImage method. Figure 12.11 shows the output from Listing 12.5.

Figure 12.11. Drawing an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



12.4.1 Setting Image Quality

As we discussed in Chapter 3, the SmoothingMode and TextRenderingHint properties of the Graphics object can be used to set the quality of 

images and text, respectively. GDI+ cannot draw text directly into a Web application. Like lines, curves, and other graphics shapes, text must 

also be rendered as an image for display in the browser. All graphics lines, curves, shapes, text, and images are first converted to an image 

and directed to a browser, so only the SmoothingMode property will be applicable. SmoothingMode has five members: AntiAlias, Default, 

HighQuality, HighSpeed, and None. The following code snippet sets the smoothing mode of the Graphics object:

// Set modes

g.SmoothingMode = SmoothingMode.AntiAlias;

12.4.2 Using LinearGradientBrush and PathGradientBrush

You can use linear and path gradient brushes in Web applications just as we did in Chapter 4. Listing 12.6 uses LinearGradientBrush and 

PathGradientBrush to fill a rectangle and a path. First we create a linear gradient brush and a graphics path, and we add two ellipses to the 

graphics path.

Next we create a path gradient brush, which takes the path as its only parameter, and we set the CenterColor property of the path. Then we 

create Bitmap and Graphics objects and call Graphics.FillPath and Graphics.FillRectangle, which fill a path and rectangle, respectively.

As in the previous examples, finally we call the Bitmap.Save method and dispose of the objects.

Listing 12.6 Using LinearGradientBrush and PathGradientBrush

private void Page_Load(object sender,

  System.EventArgs e)

{

 // Create a linear gradient brush

 LinearGradientBrush lgBrush =

  new LinearGradientBrush(

  new Rectangle(0, 0, 10, 10),

  Color.Yellow, Color.Blue,

 LinearGradientMode.ForwardDiagonal);

 // Create a path

 GraphicsPath path = new GraphicsPath();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 path.AddEllipse(50, 50, 150, 150);

 path.AddEllipse(10, 10, 50, 50);

 // Create a path gradient brush

 PathGradientBrush pgBrush =

  new PathGradientBrush(path);

 pgBrush.CenterColor = Color.Red;

 // Create Bitmap and Graphics objects

 Bitmap curBitmap = new Bitmap(500, 300);

 Graphics g = Graphics.FromImage(curBitmap);

 g.SmoothingMode = SmoothingMode.AntiAlias;

 g.FillPath(pgBrush, path);

 g.FillRectangle(lgBrush, 250, 20, 100, 100);

 curBitmap.Save(this.Response.OutputStream,

  ImageFormat.Jpeg);

 g.Dispose();

}

Figure 12.12 shows the output from Listing 12.6.

Figure 12.12. Using LinearGradientBrush and PathGradientBrush

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



12.4.3 Drawing Transparent Graphics Objects

The alpha component of a color represents its transparency. Alpha component values vary from 0 to 255, where 0 indicates fully transparent 

and 255 indicates opaque. Listing 12.7 draws a rectangle, an ellipse, and text on top of an image.

Listing 12.7 Drawing semitransparent objects

// Create Bitmap and Graphics objects

Bitmap curBitmap = new Bitmap("c:\\flower13.jpg");

Graphics g = Graphics.FromImage(curBitmap);

g.SmoothingMode = SmoothingMode.AntiAlias;

// Create brushes and pens with alpha values

Color redColor = Color.FromArgb(120, 0, 0, 255);

Pen alphaPen = new Pen(redColor, 10);

SolidBrush alphaBrush =

  new SolidBrush(Color.FromArgb(90, 0, 255, 0));

// Draw a rectangle, an ellipse, and text

g.DrawRectangle(alphaPen, 100, 100, 50, 100);

g.FillEllipse(alphaBrush, 50, 50, 100, 100);

g.DrawString("Alpha String",

  new Font("Tahoma", 30),

  new SolidBrush(Color.FromArgb(150, 160, 0, 0)),

  new PointF(20, 20));

curBitmap.Save(this.Response.OutputStream,

   ImageFormat.Jpeg);

g.Dispose();

First we create Bitmap and Graphics objects and set the Graphics smoothing mode. Then we create a color with transparency using the 

Color.FromArgb method, where transparency is the first parameter. Next, using the following code, we create a pen from this semitransparent 

color, which gives us a semitransparent pen:

Color redColor = Color.FromArgb(120, 0, 0, 255);

Pen alphaPen = new Pen(redColor, 10);

We also create a semitransparent brush by passing a semitransparent color as a parameter to SolidBrush, as follows:

SolidBrush alphaBrush =

 new SolidBrush(Color.FromArgb(90, 0, 255, 0));

Now to draw transparent shapes, we simply use the transparent brushes and pens. As Figure 12.13 shows, the graphics shapes are 

semitransparent.

Figure 12.13. Drawing semitransparent objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

12.5 Drawing a Line Chart

Charts are useful for representing numeric data in a graphical way. There are several different types of charts, including pie, line, and bar 

charts. In this section we will learn how to use GDI+ and ASP.NET to draw a line chart from data entered by a user.

A line chart is a set of continuous lines. In the example presented in this section, we will read the size of the chart and data points and draw a 

chart based on the points. Our discussion will focus first on the ChartComp component, and then on the client application.

12.5.1 The ChartComp Component

ChartComp is a class that defines the functionality to add points to the chart and draw the chart. The client application (discussed in Section 

12.5.2) is a Web application that calls the chart's members to add points to the chart and draw it.

The code for the ChartComp class is given in Listing 12.8. The constructor of the class takes the type, color, size, and a page to which this 

chart belongs. The overloaded InsertPoint method adds a point to the array of points, and the DrawChart method draws the points stored in the 

array. DrawChart first draws a rectangle, and then it draws points toward the x- and y-axes.

Listing 12.8 The ChartComp class

// Chart component

class ChartComp

{

 public Bitmap curBitmap;

 public ArrayList ptsArrayList =

  new ArrayList();

 public float X0 = 0, Y0 = 0;

 public float chartX, chartY;

 public Color chartColor = Color.Gray;

 // chartType: 1=Line, 2=Pie, 3=Bar.

 // For future use only.

 public int chartType = 1;

 private int Width, Height;

 private Graphics g;

 private Page curPage;

 struct ptStructure

 {

  public float x;

  public float y;

  public Color clr;

 }

 // ChartComp constructor

 public ChartComp(int cType, Color cColor,

  int cWidth, int cHeight, Page cPage)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 {

  Width = cWidth;

  Height = cHeight;

  chartX = cWidth;

  chartY = cHeight;

  curPage = cPage;

  chartType = cType;

  chartColor = cColor;

  curBitmap = new Bitmap(Width, Height);

  g = Graphics.FromImage(curBitmap);

 }

 // Destructor. Disposes of objects.

 ~ChartComp()

 {

  curBitmap.Dispose();

  g.Dispose();

 }

 // InsertPoint method. Adds a point

 // to the array.

 public void InsertPoint(int xPos,

  int yPos, Color clr)

 {

  ptStructure pt;

  pt.x = xPos;

  pt.y = yPos;

  pt.clr = clr;

  // Add the point to the array

  ptsArrayList.Add(pt);

 }

 public void InsertPoint(int position,

  int xPos, int yPos, Color clr)

 {

  ptStructure pt;

  pt.x = xPos;

  pt.y = yPos;

  pt.clr = clr;

  // Add the point to the array

  ptsArrayList.Insert(position, pt);

 }

 // Draw methods

 public void DrawChart()

 {

  int i;

  float x, y, x0, y0;

  curPage.Response.ContentType="image/jpeg";

  g.SmoothingMode = SmoothingMode.HighQuality;

  g.FillRectangle(new SolidBrush(chartColor),

   0, 0, Width, Height);

  int chWidth = Width-80;

  int chHeight = Height-80;

  g.DrawRectangle(Pens.Black,

   40, 40, chWidth, chHeight);

  g.DrawString("GDI+ Chart", new Font("arial",14),

   Brushes.Black, Width/3, 10);

  // Draw x- and y-axis line, points, positions

  for(i=0; i<=5; i++)

  {

   x = 40+(i*chWidth)/5;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



   y = chHeight+40;

   string str = (X0 + (chartX*i/5)).ToString();

   g.DrawString(str, new Font("Verdana",10),

    Brushes.Blue, x-4, y+10);

   g.DrawLine(Pens.Black, x, y+2, x, y-2);

  }

  for(i=0; i<=5; i++)

  {

   x = 40;

   y = chHeight+40-(i*chHeight/5);

   string str = (Y0 + (chartY*i/5)).ToString();

   g.DrawString(str, new Font("Verdana",10),

    Brushes.Blue, 5, y-6);

   g.DrawLine(Pens.Black, x+2, y, x-2, y);

  }

  // Transform coordinates so that point (0,0)

  // is in the lower left corner

  g.RotateTransform(180);

  g.TranslateTransform(-40, 40);

  g.ScaleTransform(-1, 1);

  g.TranslateTransform(0, -(Height));

  // Draw all points from the array

  ptStructure prevPoint = new ptStructure();

  foreach(ptStructure pt in ptsArrayList)

  {

   x0 = chWidth*(prevPoint.x-X0)/chartX;

   y0 = chHeight*(prevPoint.y-Y0)/chartY;

   x = chWidth*(pt.x-X0)/chartX;

   y = chHeight*(pt.y-Y0)/chartY;

   g.DrawLine(Pens.Black, x0, y0, x, y);

   g.FillEllipse(new SolidBrush(pt.clr),

    x0-5, y0-5, 10, 10);

   g.FillEllipse(new SolidBrush(pt.clr),

    x-5, y-5, 10, 10);

   prevPoint = pt;

  }

  curBitmap.Save(curPage.Response.OutputStream,

   ImageFormat.Jpeg);

 }

}

12.5.2 The Client Application

The client application is a Web page that is used to get input from the user. The main form of the application is shown in Figure 12.14. The 

user can enter his/her chart size, and values for five points, including the color of each one.

Figure 12.14. Entering points on a chart

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The Draw Chart button draws a line chart. Code for the Draw Chart button click is given in Listing 12.9, where we create an object of type 

ChartComp and call its InsertPoint and DrawChart methods. InsertPoint adds a point to the chart. DrawChart draws a line chart from the first 

point to the last point entered by the user.

Listing 12.9 The Draw Chart button click event handler

private void Button1_Click(object sender,

  System.EventArgs e)

{

 // Get the chart background color

 Color clr = Color.FromName(TextBox3.Text);

 // Create a ChartComp object

 ChartComp chart =

  new ChartComp(1, clr, 400, 300, this.Page);

 chart.X0 = 0;

 chart.Y0= 0;

 chart.chartX = Convert.ToInt16(TextBox1.Text);

 chart.chartY = Convert.ToInt16(TextBox2.Text);

 // Add points to the chart

 chart.InsertPoint(Convert.ToInt16(TextBox4.Text),

  Convert.ToInt16(TextBox5.Text),

  Color.FromName(TextBox6.Text) );

 chart.InsertPoint(Convert.ToInt16(TextBox7.Text),

  Convert.ToInt16(TextBox8.Text),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  Color.FromName(TextBox9.Text) );

 chart.InsertPoint(Convert.ToInt16(TextBox10.Text),

  Convert.ToInt16(TextBox11.Text),

  Color.FromName(TextBox12.Text) );

 chart.InsertPoint(Convert.ToInt16(TextBox13.Text),

  Convert.ToInt16(TextBox14.Text),

  Color.FromName(TextBox15.Text) );

 chart.InsertPoint(Convert.ToInt16(TextBox16.Text),

  Convert.ToInt16(TextBox17.Text),

  Color.FromName(TextBox18.Text) );

 // Draw chart

 chart.DrawChart();

}

Now if you use the data entered in Figure 12.14 and click the Draw Chart button, the output will look like Figure 12.15.

Figure 12.15. A line chart in ASP.NET

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

12.6 Drawing a Pie Chart

Do you remember the pie chart application from Chapter 3 (see Figure 3.43)? Now let's write a similar application using ASP.NET. We will 

provide both fill and draw options.

We create a Web Forms application using Visual Studio .NET. We add some text and two buttons to the page. The final Web page looks like 

Figure 12.16. The Draw Chart button will draw a pie chart, and the Fill Chart button will fill the chart with different colors.

Figure 12.16. A pie chart–drawing application in ASP.NET

Now we add some variables (see Listing 12.10). Instead of reading values from the user, we use hard-coded values for the valArray and 

clrArray arrays. The valArray array stores the different portion values of a pie chart, and clrArray stores colors for these portions. If you wish, 

you can modify the page and add some text boxes to allow users to provide these values at runtime.

Listing 12.10 User-defined variables

// User-defined variables

public Bitmap curBitmap;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private Rectangle rect =

 new Rectangle(250, 150, 200, 200);

public ArrayList sliceList = new ArrayList();

private Color curClr = Color.Black;

int[] valArray = {50, 25, 75, 100, 50};

Color[] clrArray = {Color.Red, Color.Green,

 Color.Yellow, Color.Pink, Color.Aqua};

int total = 0;

Now we add a method called DrawPieChart. It will both draw and fill the chart. The code for the DrawPieChart method is given in Listing 12.11. 

We simply read values from the portion and color arrays, and we create SolidBrush and Pen objects, depending on which button is clicked. 

We create a Bitmap object and set the smoothing mode of the page to AntiAlias. We also initialize the values of the angle and sweep variables.

We also have a Boolean variable called flMode. If flMode is true, the DrawPieChart method calls FillPie to fill the pie chart; otherwise it calls 

DrawPie, which draws only the boundaries of the chart. In the end, we save the bitmap, send it to the browser, and dispose of the objects.

Listing 12.11 The DrawPieChart method

private void DrawPieChart(bool flMode)

{

 // Create Bitmap and Graphics objects

 Bitmap curBitmap = new Bitmap(500, 300);

 Graphics g = Graphics.FromImage(curBitmap);

 g.SmoothingMode = SmoothingMode.AntiAlias;

 float angle = 0;

 float sweep = 0;

 // Total

 for (int i=0; i<valArray.Length; i++)

 {

  total += valArray[i];

 }

 // Read color and value from array

 // and calculate sweep

 for (int i=0; i<valArray.Length; i++)

 {

  int val = valArray[i];

  Color clr = clrArray[i];

  sweep = 360f * val / total;

  // If fill mode, fill pie

  if(flMode)

  {

    SolidBrush brush = new SolidBrush(clr);

    g.FillPie(brush, 20.0F, 20.0F, 200,

    200, angle, sweep);

  }

 else // If draw mode, draw pie

 {

   Pen pn = new Pen(clr, 2);

   g.DrawPie(pn, 20.0F, 20.0F, 200,

    200, angle, sweep);

 }

 angle += sweep;

}

// Send output to the browser

curBitmap.Save(this.Response.OutputStream,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 ImageFormat.Jpeg);

// Dispose of objects

curBitmap.Dispose();

g.Dispose();

}

The Draw Chart button click generates the output shown in Figure 12.17 and the Fill Chart button click fills in the chart, with output as shown 

in Figure 12.18.

Figure 12.17. The Draw Chart button click in action

Figure 12.18. The Fill Chart button click in action

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



We call the DrawPieChart method from our Draw Chart and Fill Chart buttons with a single argument—false or true, respectively—as shown

in Listing 12.12.

Listing 12.12 The Draw Chart and Fill Chart button click handlers

private void DrawChart_Click(object sender,

  System.EventArgs e)

{

 DrawPieChart(false);

}

private void FillChart_Click(object sender,

 System.EventArgs e)

{

  DrawPieChart(true);

}

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

SUMMARY

In this chapter we discussed how to use GDI+ drawing functionality in Web applications. We started by discussing the basic process of 

drawing graphics shapes and images on the Web using ASP.NET and GDI+. After that we discussed the drawing process for Web 

applications, and how it differs from the Windows drawing process.

Next we introduced ASP.NET and how to write a simple ASP.NET application using a text editor or Visual Studio .NET. Then we discussed 

how to draw simple graphics objects such as lines, curves, rectangles, and images on the Web. After drawing simple graphics objects, you 

learned how to set the quality and transparency of images.

At the end of the chapter we saw line chart and pie chart applications, as real-world examples of GDI+ on the Web.

Performance is a major factor that developers worry about when dealing with graphics. Chapter 13 is dedicated to GDI+ performance. In it, we 

will discuss how to optimize GDI+ applications for the best performance.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 13. GDI+ Best Practices and Performance 

Techniques

It must be said that code optimization skill and knowledge of performance techniques are best acquired from the shared experiences of other 

developers. With the ever expanding capabilities of Internet communication, the best resources are online forums, newsgroups, and sites 

dedicated to code sharing. A recommended resource for topics covered in this chapter (and indeed throughout this book) is the C# Corner 

site (http://www.c-sharpcorner.com).

Let's start with an introduction of the basic architecture of drawing (rendering or painting) within Windows Forms using GDI+. By the end of 

this chapter, you will be armed with GDI+ tips and tricks that make a significant difference in the efficiency of many performance-oriented 

graphics applications. Note, however, that these tips and tricks may not be applicable for Web applications.

Here are the topics that we will discuss in this chapter:

Understanding the drawing and rendering process

How to write paint event handlers for Windows Forms and controls

Disposing of graphics objects

The OnPaintBackground method

Drawing performance and the role of variables' scope and type

Double buffering

The SetStyle method

Generic tips and tricks for quality and performance

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.c-sharpcorner.com/default.htm


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



13.1 Understanding the Rendering Process

In previous chapters of this book, you learned how to draw graphics shapes, curves, and images. In all of these cases, the Graphics object is 

responsible for the drawing. When we're drawing graphics objects from within a menu or button click event handler, a call to the Invalidate

method becomes imperative. If we don't call this method, the form will not paint itself, but if we write the same code on a form's OnPaint or 

paint event handler, there is no need to invalidate the form. In this section we will find out why that's so.

13.1.1 Understanding the Paint Event

Paint event functionality is defined in the System.Windows.Forms.Control class, which is the base class for Windows Forms controls such as 

Label, ListBox, DataGrid, and TreeView. A paint event is fired when a control is redrawn. The Form class itself is inherited from the Control

class. Figure 13.1 shows the Form class hierarchy.

Figure 13.1. The Form class hierarchy

The PaintEventArgs class provides data for the paint event. It provides two read-only properties: ClipRectangle and Graphics.ClipRectangle

indicates the rectangle in which to paint, and the Graphics property indicates the Graphics object associated with the paint event of a particular 

control (including the form itself). Always be careful when you're dealing with the paint event because it is unpredictable and called 

automatically.

The Control class also provides OnPaint methods, which can be overridden in the derived classes to fire the paint event. The signature of the 

OnPaint method is defined as follows:

protected virtual void OnPaint( PaintEventArgs e);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As this definition shows, OnPaint takes a PaintEventArgs object as its only argument. The Graphics property of PaintEventArgs is used to get 

the Graphics object associated with a control—including the form.

13.1.2 Adding a Paint Event Handler to a Form

Adding a paint event handler for any Control-derived class is pretty simple. We write an event handler that has two parameters, of types object

and PaintEventArgs:

private void MyPaintEventHandler(object sender,

System.Windows.Forms.PaintEventArgs args)

{

}

We can give the event handler whatever name we want. After implementing this event handler, we use the parameter args (which is a 

PaintEventArgs object) to get the Graphics object for the control. The following code delegates the event handler for the Paint event:

this.Paint +=

new System.Windows.Forms.PaintEventHandler

(this.MyPaintEventHandler);

The following code gives the paint event handler for a form:

private void MyPaintEventHandler(object sender,

System.Windows.Forms.PaintEventArgs args)

{

  // Write your code here

}

Now we can use the PaintEventArgs object to get the Graphics object associated with the form and use the Graphics object's methods and 

properties to draw and fill lines, curves, shapes, text, and images. Let's draw a rectangle, an ellipse, and some text on the form, as shown in 

Listing 13.1.

Listing 13.1 Using the paint event handler to draw

private void MyPaintEventHandler(object sender,

  System.Windows.Forms.PaintEventArgs args)

{

  // Drawing a rectangle

  args.Graphics.DrawRectangle(

    new Pen(Color.Blue, 3),

    new Rectangle(10, 10, 50, 50));

  // Drawing an ellipse

  args.Graphics.FillEllipse(

    Brushes.Red,

    new Rectangle(60, 60, 100, 100));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  // Drawing text

  args.Graphics.DrawString(

  "Text",

  new Font("Verdana", 14),

  new SolidBrush(Color.Green), 200, 200) ;

}

Figure 13.2 shows the output from Listing 13.1. Now if the form is covered by another window and the focus returns to the form, the code on 

the paint event handler will repaint the form.

Figure 13.2. Drawing on a form

13.1.3 Adding a Paint Event Handler to Windows Controls

As mentioned earlier, the paint event handler can be added to any Windows control that is inherited from the Control class, such as Button, 

ListBox, or DataGrid. In other words, each Windows control can have a paint event handler and a Graphics object, which represents the control 

as a drawing canvas. That means we can use a button or a list box as a drawing canvas.

Let's add DataGrid and Button controls to a form. We will use the button and the data grid as our drawing canvases. Listing 13.2 adds the paint 

event methods of our Button1 and DataGrid1 controls.

Listing 13.2 Adding a paint event handler for Windows controls

// Adding a button's Paint event handler

this.button1.Paint +=

  new System.Windows.Forms.PaintEventHandler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  (this.TheButtonPaintEventHandler);

// Adding a data grid's Paint event handler

this.dataGrid1.Paint +=

  new System.Windows.Forms.PaintEventHandler

  (this.TheDataGridPaintEventHandler);

Listing 13.3 gives the code for the Button and DataGrid paint event handlers. This code is useful when we need to draw graphics shapes on a 

control itself. For example, a column of a data grid can be used to display images or graphics shapes. In our example we draw an ellipse on 

these controls, instead of drawing on a form. The PaintEventArgs.Graphics object represents the Graphics object associated with a particular 

control. Once you have the Graphics object of a control, you are free to call its draw and fill methods.

Listing 13.3 Drawing on Windows controls

private void TheButtonPaintEventHandler(object sender,

  System.Windows.Forms.PaintEventArgs btnArgs)

{

  btnArgs.Graphics.FillEllipse(

    Brushes.Blue,

    10, 10, 100, 100);

}

private void TheDataGridPaintEventHandler(object sender,

  System.Windows.Forms.PaintEventArgs dtGridArgs)

{

  dtGridArgs.Graphics.FillEllipse(

    Brushes.Blue,

    10, 10, 100, 100);

}

Figure 13.3 shows the output of Listing 13.3. As you can see, a button or a data grid can function as a drawing canvas. The top left-hand 

corner of a control is the (0, 0) coordinate of the canvas associated with that control.

Figure 13.3. Drawing on Windows controls

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



At this stage it is worth pointing out another big advantage that GDI+ has over GDI: the flexibility to have a Graphics object associated with a 

control.

13.1.4 Overriding the OnPaint Method of a Form

We have already seen this in previous chapters. We can override the OnPaint method by defining it as follows:

protected override void OnPaint( PaintEventArgs args)

{

// Add your drawing code here

}

Then we can use the Graphics property of PaintEventArgs to draw lines, shapes, text, and images. Listing 13.4 draws a few graphics shapes 

and text on our form's OnPaint method. To test this code, create a Windows application and add the code to it.

Listing 13.4 Using OnPaint to draw

protected override void OnPaint( PaintEventArgs args )

{

  // Get the Graphics object from

  // PaintEventArgs

  Graphics g = args.Graphics;

  // Draw rectangle

  g.DrawRectangle(

    new Pen(Color.Blue, 3),

    new Rectangle(10, 10, 50, 50));

  // Fill ellipse

  g.FillEllipse(

    Brushes.Red,

    new Rectangle(60, 60, 100, 100));

  // Draw text

  g.DrawString("Text",

    new Font("Verdana", 14),

    new SolidBrush(Color.Green),

    200, 200) ;

}

13.1.5 Using Visual Studio .NET to Add the Paint Event Handler

If you are using Visual Studio .NET, the easiest way to add a paint event handler is to use the Properties windows of a form or control and 

add a paint event handler. We have seen examples of this in previous chapters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



13.1.6 Disposing of Graphics Objects

It is usually good programming practice to dispose of objects when you're finished using them. But it may not always be the best practice. A 

Graphics object must always be disposed of if it was created via the CreateGraphics method or other "CreateFrom" methods. If we use a 

Graphics object on a paint event or the OnPaint method from the PaintEventArgs.Graphics property, we do not have to dispose of it.

Note

Do not dispose of Graphics objects associated with Windows controls such as Button, ListBox, or DataGrid.

If you create objects such as pens and brushes, always dispose of them. Although it is acceptable practice to rely on the garbage collector, 

doing so may often be at the expense of application performance. Garbage collection can be a costly affair because the garbage collector 

checks the memory for objects that haven't been disposed of, and this process absorbs processor time. However, the Dispose method of an 

object tells the garbage collector that the object is finished and ready to be disposed of. Calling the Dispose method eliminates the need to 

have the garbage collector check memory, and thus saves processor time.

In Web pages, it is always good practice to dispose of objects as soon as they are done being used.

13.1.7 The OnPaintBackground Method

The OnPaintBackground method paints the background of a control. This method is usually overridden in the derived classes to handle the 

event without attaching a delegate. Calling the OnPaintBackground method calls OnPaintBackground of the base class automatically, so we 

do not need to call it explicitly.

13.1.8 Scope and Type of Variables and Performance

One of the best programming practices is the efficient use of variables and their scope. Before adding a new variable to a program, think for a 

second and ask yourself, "Do I really need this variable?" If you need a variable, do you really need it right now? The scope of variables and 

use of complex calculations can easily degrade the performance of your applications. Using global scope for pens, brushes, paths, and other 

objects may be useful instead of defining variables in the OnPaint or OnPaintBackground methods.

Let's look at a practical example: Listing 13.5 is written on a form's paint event handler, which creates pens and brushes, and draws 

rectangles and polygons.

Listing 13.5 Variables defined in the form's paint event handler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  // Create brushes and pens

  HatchBrush hatchBrush =

    new HatchBrush(HatchStyle.HorizontalBrick,

    Color.Red, Color.Blue);

  Pen redPen = new Pen(Color.Red, 2);

  Pen hatchPen = new Pen(hatchBrush, 4);

  SolidBrush brush = new SolidBrush(Color.Green);

  // Create points for curve

  PointF p1 = new PointF(40.0F, 50.0F);

  PointF p2 = new PointF(60.0F, 70.0F);

  PointF p3 = new PointF(80.0F, 34.0F);

  PointF p4 = new PointF(120.0F, 180.0F);

  PointF p5 = new PointF(200.0F, 150.0F);

  PointF[] ptsArray ={ p1, p2, p3, p4, p5 };

  float x = 5.0F, y = 5.0F;

  float width =

    this.ClientRectangle.Width - 100;

  float height =

    this.ClientRectangle.Height - 100;

  Point pt1 = new Point(40, 30);

  Point pt2 = new Point(80, 100);

  Color [] lnColors = {Color.Black, Color.Red};

  LinearGradientBrush lgBrush =

    new LinearGradientBrush

    (pt1, pt2, Color.Red, Color.Green);

  lgBrush.LinearColors = lnColors;

  lgBrush.GammaCorrection = true;

  // Draw objects

  e.Graphics.DrawPolygon(redPen, ptsArray);

  e.Graphics.DrawRectangle(hatchPen,

    x, y, width, height);

  e.Graphics.FillRectangle(lgBrush,

    200, 200, 200, 200);

  // Dispose of objects

  lgBrush.Dispose();

  brush.Dispose();

  hatchPen.Dispose();

  redPen.Dispose();

  hatchBrush.Dispose();

}

In this example we define many variables, all of local scope. Throughout the application, the redPen, hatchBrush, hatchPen, brush, and other 

variables remain the same. Programmatically, it doesn't matter whether we define these variables locally or globally; the choice depends 

entirely on the application. It may be better to have variables defined with a global scope. If you repaint the form frequently, defining these 

variables globally may improve performance because time will not be wasted on re-creating the objects for each pass. On the other hand, 

defining objects globally may consume more resources (memory).

It is also good to avoid lengthy calculations in frequently called routines. Here's an example: Listing 13.6 draws a line in a loop. As you can 

see, int x and int y are defined inside the loop.

Listing 13.6 Defining variables inside a loop

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



for (int i = 0; i < 10000; i++)

{

 Pen bluePen = new Pen(Color.Blue);

 int x = 100;

 int y = 100;

 g.DrawLine(bluePen, 0, 0, x, y);

}

We can easily replace the code in Listing 13.6 with Listing 13.7, which is more efficient. If a code statement does the same thing every time a 

control reaches it inside a loop, it is a good idea to move that statement outside the loop to save processing cycles.

Listing 13.7 Defining variables outside a loop

Pen bluePen = new Pen(Color.Blue);

int x = 100;

int y = 100;

for (int i = 0; i < 10000; i++)

{

 g.DrawLine(bluePen, 0, 0, x, y);

}

Sometimes using a floating point data type instead of an integer may affect the quality of a drawing, even though floating point data is costly in 

terms of resources.

A well-designed and well-coded application also plays a vital role in performance. For example, replacing multiple if statements with a single 

case statement may improve performance.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

13.2 Double Buffering and Flicker-Free Drawing

Do you remember the Web drawing method in Chapter 12? Drawing on the Web works differently from drawing in Windows Forms. On the 

Web we have many limitations, one of which is no pixelwise drawing support in the Web browser. So our approach in Chapter 12 was to 

convert our graphics objects into a temporary bitmap image and view the image in a Web browser.

Double buffering is a similar concept. You may have seen one of the frequently asked questions on GDI+ discussion forums: "How do we 

create flicker-free drawings"? The double buffering technique is used to provide faster, smoother drawings by reducing flicker. In this 

technique, all objects are drawn on an off-screen canvas with the help of a temporary image and a Graphics object. The image is then copied 

to the control. If the drawing operation is small and includes drawing only simple objects such as rectangles or lines, there is no need for 

double buffering (it may even degrade performance). If there are many calculations or drawn elements, performance and appearance may be 

greatly improved through the use of double buffering.

To prove the point, let's write an example. Listing 13.8 gives the code for a drawing method that draws several lines.

Listing 13.8 The DrawLines method

private void DrawLines(Graphics g)

{

  float width = ClientRectangle.Width;

  float height = ClientRectangle.Height;

  float partX = width / 1000;

  float partY = height / 1000;

  for (int i = 0; i < 1000; i++)

  {

    g.DrawLine(Pens.Blue,

      0, height - (partY * i),

      partX * i, 0);

    g.DrawLine(Pens.Green,

      0,

      height - (partY * i),

      (width) - partX * i,

      0);

    g.DrawLine(Pens.Red, 0,

      partY * i,

      (width) - partX * i,

      0);

  }

}

To test our application, we will call it from a button click. The code for a button click event handler is given in Listing 13.9.

Listing 13.9 Calling the DrawLines method

// Create a Graphics object for "this"

Graphics g = this.CreateGraphics();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



g.Clear(this.BackColor);

// Draw lines

DrawLines(g);

// Dispose of object

g.Dispose();

Figure 13.4 shows the output from Listing 13.9.

Figure 13.4. Drawing lines in a loop

Now let's draw the same lines using a Bitmap object. We create a temporary Graphics object from a temporary image and call its draw and fill 

methods. Instead of calling DrawLine with respect to a form, we call DrawImage, which draws the image generated by the DrawLine method.

As Listing 13.10 shows, we create a Bitmap object in a buffer and send the entire buffer all at once using DrawImage. We add the code given in 

Listing 13.10 on the Bitmap Draw button click event handler.

Listing 13.10 Using double buffering to draw

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Bitmap object with the size of the form

Bitmap curBitmap = new Bitmap(ClientRectangle.Width,

ClientRectangle.Height);

// Create a temporary Graphics object from the bitmap

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Graphics g1 = Graphics.FromImage(curBitmap);

// Draw lines on the temporary Graphics object

DrawLines(g1);

// Call DrawImage of Graphics and draw bitmap

g.DrawImage(curBitmap, 0, 0);

// Dispose of objects

g1.Dispose();

curBitmap.Dispose();

g.Dispose();

Comparing the two methods given in Listings 13.9 and 13.10 reveals a significant difference in drawing performance. In Listing 13.9, drawing 

begins as soon as we hit the Simple Draw button and continues until it is done. By contrast, when we hit the Bitmap Draw button, drawing 

doesn't start immediately. This method actually draws on an in-memory Bitmap object, and when all drawing is done, it displays the bitmap.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

13.3 Understanding the SetStyle Method

Windows Forms and controls provide built-in support for double buffering, and the SetStyle method of the Control class plays a vital role in 

this process. Before we discuss how to use SetStyle, let's take a look at this method and its members.

The SetStyle method is defined in System.Windows.Forms.Control, which sets the specified style of a control. This method takes two 

arguments. The first argument is of type ControlStyle enumeration, and it represents the style of the control. The second argument is true if we 

want to apply the specified style, false otherwise. The members of the ControlStyle enumeration are described in Table 13.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 13.1. ControlStyle members

Member Description

AllPaintingInWmPaint The WM_ERASEBKGND window message is sent to the message queue whenever a control needs to 

redraw its background. This method tells Windows to ignore the message, reducing flicker. Both OnPaint

and OnPaintBackground are called from the window message WM_PAINT.AllPaintingInWmPaint should 

be used only if UserPaint is set to true.

CacheText Applications can cache text using this option. The control keeps a copy of the text rather than getting it 

from the handle each time it is needed. This style defaults to false.

ContainerControl The control is a container.

DoubleBuffer This method provides built-in support for double buffering. When it is set to true, drawing is performed in 

a buffer and displayed only when complete. When using this option, you must also set the UserPaint and 

AllPaintingInWmPaint bits to true.

EnableNotifyMessage If true, the OnNotifyMessage method is called for every message sent to the control's WndProc method. 

This style defaults to false.

FixedHeight The control has a fixed height.

FixedWidth The control has a fixed width.

Opaque The control is drawn opaque, and the background is not painted.

ResizeRedraw The control is redrawn when it is resized.

Selectable The control can receive focus.

StandardClick The control implements standard click behavior.

StandardDoubleClick The control implements standard double-click behavior. When using this option, you must also set 

StandardClick to true.

SupportsTransparentBackColor The control accepts a Color object with alpha transparency for the background color. The UserPaint bit 

must be set to true, and the control must be derived from the Control class, like this: 

this.SetStyle(ControlStyles.UserPaint, true);

UserMouse The control does its own mouse processing, and mouse events are not handled by the operating system.

UserPaint The control paints itself rather than having the operating system do it. This option applies to classes 

derived from Control.

Let's apply the SetStyle method to achieve double buffering. Double buffering can be enabled programmatically with the following code:

// Activates double buffering

this.SetStyle(ControlStyles.UserPaint, true);

this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);

this.SetStyle(ControlStyles.DoubleBuffer, true);

We can also control the redrawing of controls when a control is resized. Setting ControlStyle.ResizeRedraw to true, as in the code snippet 

that follows, forces controls to be redrawn every time a control (or a form) is resized.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



SetStyle(ControlStyles.ResizeRedraw, true);

Sometimes we will not want a control to be redrawn when it is resized. In this case we can set ResizeRedraw to false.

Note

Many controls, such as PictureBox, are double-buffered automatically, which means we don't need to write any additional 

code when viewing images in a PictureBox control.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

13.4 The Quality and Performance of Drawing

Drawing performance is inversely proportional to drawing quality. GDI+ provides several ways to set the quality of images and text. The 

SmoothingMode and TextRenderingHint properties are used to set image and text quality, respectively. The HighQuality and AntiAlias options 

provide slow drawing performance and better quality; the HighSpeed and None options provide poor quality and fast performance. Before 

using these options, we must decide if we really want to draw anti-aliased objects.

Sometimes anti-aliasing won't affect the quality of a drawing, and it is bad programming practice to use this processor-intensive feature when 

it is not required. In other cases we might need to set anti-aliasing for just one object out of 50. In these cases it is better to set the anti-alias 

option for that object only, instead of the entire canvas.

Sections 13.4.1 through 13.4.6 describe some more tips and tricks that may help improve an application's performance.

13.4.1 Repaint Only the Required Area

Avoiding unwanted repainting is a good technique to increase painting performance. GDI+ provides many techniques for painting only 

required objects. Using regions and clipping rectangles may help in some cases. If you need to draw a single object with anti-aliasing on, just 

set anti-aliasing for that object instead of for the entire surface (form). Using regions is one of the best techniques for repainting only a 

required area. For better performance, you should know what area you need to redraw and invalidate only that area, thereby using regions 

instead of repainting the entire form. See Chapter 6 for details of how to invalidate and clip specific regions.

13.4.2 Use Graphics Paths

Graphics paths may be useful when we need to redraw certain graphics items. For example, suppose we have hundreds of graphics items, 

including lines, rectangles, images, and text associated with a surface but we need to redraw only the rectangles. We can create a graphics 

path with all rectangles and just redraw that path, instead of the entire surface.

We may also want to use graphics paths when drawing different shapes, depending on the complexity of the application. For example, Listing 

13.11 uses draw methods to draw two lines, two rectangles, and an ellipse. We can write this code on a button or a menu click event handler.

Listing 13.11 Drawing simple graphics objects

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a black pen

Pen blackPen = new Pen(Color.Black, 2);

// Draw objects

g.DrawLine(blackPen, 50, 50, 200, 50);

g.DrawLine(blackPen, 50, 50, 50, 200);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



g.DrawRectangle(blackPen, 60, 60, 150, 150);

g.DrawRectangle(blackPen, 70, 70, 100, 100);

g.DrawEllipse(blackPen, 90, 90, 50, 50);

// Dispose of objects

blackPen.Dispose();

g.Dispose();

Listing 13.12 draws the same graphics objects. The only difference is that this code uses a graphics path.

Listing 13.12 Using a graphics path to draw graphics objects

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a black pen

Pen blackPen = new Pen(Color.Black, 2);

// Create a graphics path

GraphicsPath path = new GraphicsPath();

path.AddLine(50, 50, 200, 50);

path.AddLine(50, 50, 50, 200);

path.AddRectangle(new Rectangle(60, 60, 150, 150));

path.AddRectangle(new Rectangle(70, 70, 100, 100));

path.AddEllipse(90, 90, 50, 50);

g.DrawPath(blackPen, path);

// Dispose of objects

blackPen.Dispose();

g.Dispose();

Both Listings 13.11 and 13.12 generate the output shown in Figure 13.5. There is no straightforward rule for when to use graphics paths. The 

choice depends on the complexity of your application.

Figure 13.5. The same result from two different drawing methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



In the preceding example we saw how to replace multiple drawing statements with a single graphics path drawing statement. But graphics 

paths have some limitations. For example, we can't draw each element (line, rectangle, or an ellipse) of a graphics path with a separate pen 

or brush. We have to draw or fill them individually.

13.4.3 Select Methods Carefully

Drawing lines and drawing rectangles are probably the most common operations. If you are drawing more than one line or rectangle using the 

same colors, you should use the DrawLine/DrawLines and DrawRectangle/DrawRectangles methods, respectively. For example, Listing 13.13

draws three rectangles using the same brush.

Listing 13.13 Using DrawRectangle to draw rectangles

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics;

  // Create a black pen

  Pen blackPen = new Pen(Color.Black, 2);

  // Create a rectangle

  float x = 5.0F, y = 5.0F;

  float width = 100.0F;

  float height = 200.0F;

  Rectangle rect = new Rectangle(20,20, 80, 40);

  // Draw rectangles

  g.DrawRectangle(blackPen, x, y, width, height);

  g.DrawRectangle(blackPen, 60, 80, 140, 50);

  g.DrawRectangle(blackPen, rect);

  // Dispose of object

  blackPen.Dispose();

}

Figure 13.6 shows the output from Listing 13.13. Three rectangles have been drawn.

Figure 13.6. Using DrawRectangle to draw rectangles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



You can replace the code in Listing 13.13 with Listing 13.14, which uses DrawRectangles to draw the same number of rectangles. Now we 

use an array of rectangles.

Listing 13.14 Using DrawRectangles to draw rectangles

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

  Graphics g = e.Graphics;

  // Create a black pen

  Pen blackPen = new Pen(Color.Black, 2);

  RectangleF[] rectArray =

  {

    new RectangleF( 5.0F, 5.0F, 100.0F, 200.0F),

    new RectangleF(20.0F, 20.0F, 80.0F, 40.0F),

    new RectangleF(60.0F, 80.0F, 140.0F, 50.0F)

  };

  g.DrawRectangles(blackPen, rectArray);

  // Dispose of object

  blackPen.Dispose();

}

If we run this code, the output looks exactly like Figure 13.6.

13.4.4 Avoid Using Frequently Called Events

It is always good practice to write minimal code on events that are called frequently because that code will be executed whenever the event is 

called. The Paint event is specifically designed for painting purposes and is called when redrawing is necessary. It is always advisable to 

write your painting (or redrawing)-related code for this event only. Writing code for other events, such as mouse-move or keyboard events, 

may cause serious problems or may not invalidate areas as necessary.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



13.4.5 Use System Brushes and Pens

You can always create system pens and system brushes with system colors by using the SystemColors class, but for performance reasons it 

is advisable to use SystemPens and SystemBrushes instead of SystemColors. For example, the following code creates SolidBrush and Pen

objects using SystemColors. The brush and pen have the ActiveCaption and ControlDarkDark system colors, respectively.

SolidBrush brush =

 (SolidBrush)SystemBrushes.FromSystemColor

 (SystemColors.ActiveCaption);

Pen pn = SystemPens.FromSystemColor

 (SystemColors.ControlDarkDark);

We can create the same brush and pen by using the static methods of SystemBrushes and SystemPens, as the following code snippet 

illustrates:

SolidBrush brush =

 (SolidBrush)SystemBrushes.ActiveCaption;

Pen pn = SystemPens.ControlDarkDark;

Never dispose of system pens and brushes. Any attempt to do so will result in an unhandled exception. For example, adding the following two 

lines to the code will throw an exception:

pn.Dispose();

brush.Dispose();

Listing 13.15 shows the complete code of a form's paint event handler.

Listing 13.15 Using system pens and brushes

private void Form1_Paint(object sender,

  System.Windows.Forms.PaintEventArgs e)

{

   Graphics g = e.Graphics;

   // AVOID

   /*SolidBrush brush =

     (SolidBrush)SystemBrushes.FromSystemColor

     (SystemColors.ActiveCaption);

   Pen pn = SystemPens.FromSystemColor

     (SystemColors.ControlDarkDark);

     */

   SolidBrush brush =

     (SolidBrush)SystemBrushes.ActiveCaption;

   Pen pn = SystemPens.ControlDarkDark;

   g.DrawLine(pn, 20, 20, 20, 100);

   g.DrawLine(pn, 20, 20, 100, 20);

   g.FillRectangle(brush, 30, 30, 50, 50);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



   // DON'T

   // pn.Dispose();

   // brush.Dispose();

}

Figure 13.7 shows the output from Listing 13.15. The lines and rectangle are drawn with system colors.

Figure 13.7. Using system pens and brushes

13.4.6 Avoid Automatic Scaling of Images

Automatic scaling could result in performance degradation. If possible, avoid automatic scaling. The DrawImage method takes a Bitmap

object and a rectangle with upper left corner position and specified width and height. If we pass only the upper left corner position, GDI+ may 

scale the image, which decreases performance. For example, the code

e.Graphics.DrawImage(image, 10, 10;

can be replaced with the following code:

e.Graphics.DrawImage(image,

10, 10, image.Width,

 image.Height);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

SUMMARY

Quality and performance are two basic requirements of all graphics applications. Although an increase in one demands a sacrifice in the 

other, a good developer will employ good design and coding techniques to provide an optimal solution. In this chapter we discussed some 

techniques that may be helpful in writing optimal solutions for graphics applications.

We learned about the paint event mechanism and different ways to fire the paint event automatically, as well as manually. We also discussed 

double buffering, and how it can be achieved with or without the SetStyle method. In addition, we learned a few good programming 

techniques and covered some topics that may help you implement some good, performance-oriented coding and design practices.

As a GDI developer, you may want to use some of the "cool" techniques of GDI that are not supported by GDI+. Chapter 14 is dedicated to 

GDI interoperability. In it, we will discuss how you can mix GDI and GDI+ to take advantage of interoperability.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Chapter 14. GDI Interoperability

Although GDI+ is a vastly improved API, a few features that are appreciated by GDI developers are not available in GDI+, such as raster 

operations. However, all is not lost. GDI+ interoperability provides a way to interact with GDI in managed applications, which can be used 

alongside GDI+ to provide the best of both worlds.

This chapter is written particularly for developers who want to use GDI in their managed applications. If you have no interest in GDI, feel free 

to skip this chapter. It will always be here, should the GDI need arise!

To Learn More about COM and .NET Interoperability

If you know GDI and want to use it in managed applications, this chapter will give you an idea of how to do that. However, 

COM interoperability is a broad topic. If you want to explore COM interoperability more, some good books are available on the 

market. One such book is COM and .NET Interoperability by Andrew Troelsen (published by APress).

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



14.1 Using GDI in the Managed Environment

One important feature of the .NET runtime is COM and Win32 interoperability. With runtime interoperability services, developers can use both 

COM and Win32 libraries in managed applications. The classes related to these services are defined in the System.Runtime.InteropServices

namespace.

We can use COM libraries in managed applications by simply adding a reference to the COM library using the Add Reference option of 

VS.NET or the Type Library Importer (Tlbimp.exe) .NET tool. Both of these options allow developers to convert a COM library to a .NET 

assembly, which can then be treated as other .NET assemblies. The graphical user interface (GUI) functionality of Windows is defined in a 

Win32 library called Gdi32.dll. Using Win32 libraries in managed code is a little more difficult than using COM libraries. However, there is 

nothing to worry about because the System.Runtime.InteropServices.DllImportAttribute class allows developers to use functionality defined in 

unmanaged libraries such as Gdi32.dll.

14.1.1 The DllImportAttribute Class

The DllImportAttribute class allows developers to import Win32 SDK functionality into managed applications. The DllImportAttribute constructor 

is used to create a new instance of the DllImportAttribute class with the name of the DLL containing the method to import. For example, the 

GDI functionality is defined in Gdi32.dll. So if we want to use GDI functions in our application, we need to import them using DllImportAttribute. 

The following code imports the Gdi32.dll library:

[System.Runtime.InteropServices.DllImportAttribute

("gdi32.dll")]

After adding this code, we're ready to use the functions defined in the Gdi32.dll library in our .NET application.

Now let's take a look at a simple program that uses the MoveFile function of Win32 defined in the KERNEL32.dll library. The code in Listing 

14.1 first imports the library and then calls the MoveFile function to move a file from one location to another.

Listing 14.1 Using the Win32 MoveFile function defined in KERNEL32.dll

[System.Runtime.InteropServices.DllImportAttribute

("KERNEL32.dll")]

public static extern bool MoveFile

(String src, String dst);

private void Move_Click(object sender,

System.EventArgs e)

{

    MoveFile("C:\\output.jpeg",

        "f:\\NewOutput.jpeg");

}

As with KERNEL32.dll, we can import other Win32 libraries to use them in .NET applications. The DllImportAttribute class provides six field 

members, which are described in Table 14.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The CallingConvention enumeration specifies the calling convention required to call methods implemented in unmanaged code. Its members 

are defined in Table 14.2.

The DllImportAttribute class has two properties: TypeId and Value. TypeId gets a unique identifier for an attribute when the attribute is 

implemented in the derived class, and Value returns the name of the DLL with the entry point.

Table 14.1. DllImportAttribute field members

Method Description

CallingConvention Required to call methods implemented in unmanaged code; represented by the CallingConvention enumeration.

CharSet Controls name mangling and indicates how to marshal String arguments to the method.

EntryPoint Identifies the name or ordinal of the DLL entry point to be called.

ExactSpelling Indicates whether the name of the entry point in the unmanaged DLL should be modified to correspond to the CharSet

value specified in the CharSet field.

PreserveSig Specifies that the managed method signature should not be transformed into an unmanaged signature that returns an 

HRESULT structure, and may have an additional argument (out or retval) for the return value.

SetLastError Specifies that the callee will call the Win32 API SetLastError method before returning from the named method.

Table 14.2. CallingConvention members

Member Description

Cdecl The caller cleans the stack. This property enables calling functions with varargs.

FastCall For future use.

StdCall The callee cleans the stack. This is the default convention for calling unmanaged functions from managed code.

ThisCall The first parameter is the this pointer and is stored in the ECX register. Other parameters are pushed onto the stack. This 

calling convention is used to call methods in classes exported from an unmanaged DLL.

Winapi Uses the default platform-calling convention. For example, on Windows it's StdCall, and on Windows CE it's Cdecl.

14.1.2 Using the BitBlt Function

One of the most frequently asked questions on discussion forums and newsgroups related to GDI in managed code has to do with the use of 

BitBlt. Is this because developers want to implement sprites and scrolling-type actions in their applications? If you want to use the BitBlt

function, you are probably aware of what it does. For the uninitiated, however, we should explain that this function performs a bit-block 

transfer of the color data corresponding to a rectangle of pixels from one device context to another. It is defined as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



BOOL BitBlt(

  HDC hdcDest, // handle to destination device context

  int nXDest,  // x-coordinate of destination upper left corner

  int nYDest,  // y-coordinate of destination upper left corner

  int nWidth,  // width of destination rectangle

  int nHeight, // height of destination rectangle

  HDC hdcSrc,  // handle to source device context

  int nXSrc,   // x-coordinate of source upper left corner

  int nYSrc,   // y-coordinate of source upper left corner

  DWORD dwRop  // raster operation code

);

More details of BitBlt are available in the GDI SDK documentation. Just type "BitBlt" in MSDN's index to find it.

First we need to import the BitBlt method and the Gdi32.dll library using the DllImportAttribute class.

[System.Runtime.InteropServices.DllImportAttribute

("Gdi32.dll")]

public static extern bool BitBlt(

    IntPtr hdcDest,

    int nXDest,

    int nYDest,

    int nWidth,

    int nHeight,

    IntPtr hdcSrc,

    int nXSrc,

    int nYSrc,

    System.Int32 dwRop

);

Now we just call BitBlt. The code in Listing 14.2 uses the BitBlt function. As the function definition shows, we need source and destination 

device contexts. There is no concept of device context in managed code, but to maintain GDI interoperability, the Graphics class's GetHdc

method is used to create a device context for a Graphics object (a surface). GetHdc returns an IntPtr object.

In Listing 14.2, first we create a Graphics object by using CreateGraphics and we draw a few graphics items. From this Graphics object we 

create a Bitmap object, and we create one more Graphics object as the destination surface by using the FromImage method of the Graphics

object. Next we call BitBlt with destination and source device contexts as parameters. Finally, we make sure to call ReleaseHdc, which 

releases device context resources. The Save method saves a physical copy of the image. We also call the Dispose method of Graphics

objects.

Listing 14.2 Using the BitBlt function

private void Form1_Load(object sender,

    System.EventArgs e)

{

    Graphics g1 = this.CreateGraphics();

    Graphics g2 = null;

    try

    {

      g1.SmoothingMode =

          SmoothingMode.AntiAlias;

      g1.DrawLine(new Pen(Color.Black, 2),

          10, 10, 150, 10);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      g1.DrawLine(new Pen(Color.Black, 2),

          10, 10, 10, 150);

      g1.FillRectangle(Brushes.Blue,

          30, 30, 70, 70);

      g1.FillEllipse(new HatchBrush

          (HatchStyle.DashedDownwardDiagonal,

          Color.Red, Color.Green),

          110, 110, 100, 100 );

      Bitmap curBitmap = new Bitmap(

          this.ClientRectangle.Width,

          this.ClientRectangle.Height, g1);

      g2 = Graphics.FromImage(curBitmap);

      IntPtr hdc1 = g1.GetHdc();

      IntPtr hdc2 = g2.GetHdc();

      BitBlt(hdc2, 0, 0,

          this.ClientRectangle.Width,

          this.ClientRectangle.Height,

          hdc1, 0, 0, 13369376);

      g1.ReleaseHdc(hdc1);

      g2.ReleaseHdc(hdc2);

      curBitmap.Save("f:\\BitBltImg.jpg",

          ImageFormat.Jpeg);

   }

   catch (Exception exp)

   {

       MessageBox.Show(exp.Message.ToString());

   }

   finally

   {

        g2.Dispose();

        g1.Dispose();

   }

}

14.1.3 Using GDI Print Functionality

We discussed .NET printing functionality in Chapter 11, but what about using GDI printing in managed code? One reason for using GDI may 

be speed and familiarity with GDI or having more control over the printer.

Until now we have been selecting objects such as fonts and lines and then drawing on a page, which is then printed out. Keep in mind that all 

the fonts you can use within the .NET environment have to be TrueType fonts. Before TrueType came along, there was something called 

PCL (Printer Control Language), also known as bitmap fonts. So what's the difference?, you may ask. It's simple: A PCL or bitmap font is 

made up of patterns of dots that represent each letter.

The problem is that a different PCL font was required for every size of letter needed, such as 12, 14, and so on. Different PCL fonts were 

needed even for italic and bold versions! As you can imagine, it was necessary to have lots of PCL fonts to maintain the flexibility we take for 

granted today.

TrueType fonts, on the other hand, are a lot more flexible. The reason is that the fonts are mathematical representations of each letter rather 

than a pattern of dots. If I decide I need a Times New Roman font at size 20, the font is simply recalculated rather than just a different pattern 

of dots being loaded.

What happens if your printer does not support the TrueType font you have selected? The only way to print it is to send what you want to print 

to the printer as graphics, which can be time-consuming if you're creating large printouts.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The code in Listing 14.3 does a few new things. For one, it uses Win32 APIs to talk directly to the printer, which gives us the best possible 

speed. Finally, it demonstrates the use of PCL5 commands to draw a box on the page.

Using the code in Listing 14.3, you would be able to create detailed pages consisting of multiple fonts and graphics. The nice thing is that they 

can all be created by just sending text to the printer rather than using graphics commands.

You may want to change the printer before you test this code. The following line of code specifies the printer:

PrintDirect.OpenPrinter("\\\\192.168.1.101\\hpl",

            ref lhPrinter,0);

Listing 14.3 Using GDI print functionality in a managed application

// PrintDirect.cs

// Shows how to write data directly to the

// printer using Win32 APIs.

// This code sends Hewlett-Packard PCL5 codes

// to the printer to print

// out a rectangle in the middle of the page.

using System;

using System.Text;

using System.Runtime.InteropServices;

[StructLayout( LayoutKind.Sequential)]

public struct DOCINFO

{

        [MarshalAs(UnmanagedType.LPWStr)]

            public string pDocName;

        [MarshalAs(UnmanagedType.LPWStr)]

            public string pOutputFile;

        [MarshalAs(UnmanagedType.LPWStr)]

            public string pDataType;

}

public class PrintDirect

{

        [ DllImport( "winspool.drv",

              CharSet=CharSet.Unicode,ExactSpelling=false,

        CallingConvention=CallingConvention.StdCall )]

        public static extern long OpenPrinter(string pPrinterName,

            ref IntPtr phPrinter, int pDefault);

        [ DllImport( "winspool.drv",

              CharSet=CharSet.Unicode,ExactSpelling=false,

        CallingConvention=CallingConvention.StdCall )]

        public static extern long StartDocPrinter(IntPtr hPrinter,

            int Level, ref DOCINFO pDocInfo);

        [ DllImport( "winspool.drv",

              CharSet=CharSet.Unicode,ExactSpelling=true,

        CallingConvention=CallingConvention.StdCall)]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        public static extern long StartPagePrinter(

            IntPtr hPrinter);

        [ DllImport( "winspool.drv",

              CharSet=CharSet.Ansi, ExactSpelling=true,

        CallingConvention=CallingConvention.StdCall)]

        public static extern long WritePrinter(IntPtr hPrinter,

            string data, int buf, ref int pcWritten);

        [ DllImport( "winspool.drv" ,

              CharSet=CharSet.Unicode,ExactSpelling=true,

        CallingConvention=CallingConvention.StdCall)]

        public static extern long EndPagePrinter(IntPtr

            hPrinter);

        [ DllImport( "winspool.drv" ,

            CharSet=CharSet.Unicode, ExactSpelling=true,

        CallingConvention=CallingConvention.StdCall)]

        public static extern long EndDocPrinter(IntPtr hPrinter);

        [ DllImport( "winspool.drv",

              CharSet=CharSet.Unicode,ExactSpelling=true,

        CallingConvention=CallingConvention.StdCall )]

        public static extern long ClosePrinter(IntPtr

            hPrinter);

}

public class App

{

    public static void Main()

    {

        System.IntPtr lhPrinter =

            new System.IntPtr();

        DOCINFO di = new DOCINFO();

        int pcWritten=0;

        string st1;

        // Text to print with a form-feed character

        st1="This is an example of printing " +

            "directly to a printer\f";

        di.pDocName="my test document";

        di.pDataType="RAW";

        // The "\x1b" means an ASCII escape character

        st1="\x1b*c600a6b0P\f";

        // lhPrinter contains the handle for the printer opened.

        // If lhPrinter is 0, then an error has occurred.

        PrintDirect.OpenPrinter("\\\\192.168.1.101\\hpl",

            ref lhPrinter,0);

        PrintDirect.StartDocPrinter(lhPrinter,1,ref di);

        PrintDirect.StartPagePrinter(lhPrinter);

        try

        {

           // Moves the cursor 900 dots (3 inches at

           // 300 dpi) in from the left margin, and

           // 600 dots (2 inches at 300 dpi) down

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



           // from the top margin

           st1="\x1b*p900x600Y";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Using the print model commands for rectangle

           // dimensions, "600a" specifies a rectangle

           // with a horizontal size, or width, of 600 dots,

           // and "6b" specifies a vertical

           // size, or height, of 6 dots. "0P" selects the

           // solid black rectangular area fill.

           st1="\x1b*c600a6b0P";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Specifies a rectangle with width of

           // 6 dots, height of 600 dots, and a

           // fill pattern of solid black

           st1="\x1b*c6a600b0P";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Moves the current cursor position to

           // 900 dots from the left margin and

           // 1200 dots down from the top margin

           st1="\x1b*p900x1200Y";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Specifies a rectangle with a width

           // of 606 dots, a height of 6 dots, and a

           // fill pattern of solid black

           st1="\x1b*c606a6b0P";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Moves the current cursor position to 1500

           // dots in from the left margin and

           // 600 dots down from the top margin

           st1="\x1b*p1500x600Y";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Specifies a rectangle with a width of 6 dots,

           // a height of 600 dots, and a

           // fill pattern of solid black

           st1="\x1b*c6a600b0P";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

           // Send a form-feed character to the printer

           st1="\f";

           PrintDirect.WritePrinter(lhPrinter,

               st1, st1.Length, ref pcWritten);

       }

       catch (Exception e)

       {

           Console.WriteLine(e.Message);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



       }

       PrintDirect.EndPagePrinter(lhPrinter);

       PrintDirect.EndDocPrinter(lhPrinter);

       PrintDirect.ClosePrinter(lhPrinter);

   }

}

Using this code will enable us to drive a printer at its maximum output rate.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

14.2 Cautions for Using GDI in Managed Code

We just saw how we can take advantage of services provided by the .NET runtime, which include the flexibility of mixing GDI with GDI+ and 

using GDI functionality in managed applications.

14.2.1 No GDI Calls between GetHdc and ReleaseHdc

GDI+ currently has no support for raster operations. When we use R2_XOR pen operations, we use the Graphics.GetHdc() method to get the 

handle to the device context. During the operation when your application uses the HDC, the GDI+ should not draw anything on the Graphics

object until the Graphics.ReleaseHdc method is called. Every GetHdc call must be followed by a call to ReleaseHdc on a Graphics object, as in 

the following code snippet:

IntPtr hdc1 = g1.GetHdc();

// Do something with hdc1

g1.ReleaseHdc(hdc1);

g2 = Graphics.FromImage(curBitmap);

IntPtr hdc1 = g1.GetHdc();

IntPtr hdc2 = g2.GetHdc();

BitBlt(hdc2, 0, 0,

    this.ClientRectangle.Width,

    this.ClientRectangle.Height,

    hdc1, 0, 0, 13369376);

g2.DrawRectangle(Pens.Red, 40, 40, 200, 200);

g1.ReleaseHdc(hdc1);

g2.ReleaseHdc(hdc2);

If we make a GDI+ call after GetHdc, the system will throw an "object busy" exception. For example, in the preceding code snippet we make a 

DrawRectangle call after GetHdc and before ReleaseHdc. As a result we will get an exception saying, "The object is currently in use 

elsewhere."

14.2.2 Using GDI on a GDI+ Graphics Object Backed by a Bitmap

After a call to GetHdc, we can simply call a Graphics object from a bitmap that returns a new HBITMAP structure. This bitmap does not contain 

the original image, but rather a sentinel pattern, which allows GDI+ to track changes to the bitmap. When ReleaseHdc is called, changes are 

copied back to the original image. This type of device context is not suitable for raster operations because the handle to device context is 

considered write-only, and raster operations require it to be read-only. This approach may also degrade the performance because creating a 

new bitmap and saving changes to the original bitmap operations may tie up all your resources.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

With the help of .NET runtime interoperability services, we can use the functionality of the Win32 libraries in managed code. The 

DllImportAttribute class is used to import a Win32 DLL into managed code. In this chapter we saw how to use this class to import Gdi32.dll

functions in managed code. We also saw how to use printing and BitBlt functions in managed code.

GDI+ can also be used to write simple and fun drawing applications. This is what we will discuss in Chapter 15. There you will see how GDI+ 

can be useful for writing fun applications.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

Chapter 15. Miscellaneous GDI+ Examples

In this chapter we will write some miscellaneous GDI+ samples that you may find useful when writing real-world applications. We will cover 

the following topics:

Designing interactive GUI applications

Writing Windows applications using shaped forms

Adding custom text in images

Reading and writing images to and from databases

Resizing the graphics of a form when the form is resized

Creating owner-drawn ListBox and ComboBox controls

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

15.1 Designing Interactive GUI Applications

In this section we will see some of the Windows Forms control properties that are used in designing interactive Windows GUI applications. 

Before writing our sample application, we will discuss some common properties of the Control class.

15.1.1 Understanding the Control Class

The Control class provides the basic functionality and serves as the base class for Windows forms and controls. Although this class has many 

properties and methods, we will concentrate on only a few of them.

The ForeColor and BackColor properties determine the foreground and background colors of controls, respectively. Both properties are of type 

Color, and they implement get and set property options.

The Font property represents the font of the text displayed by a control. The DefaultBackColor, DefaultFont, and DefaultForeColor static 

properties of the Control class implement the get option only, and they return the default background color, font, and foreground color of a 

control, respectively.

The BackgroundImage property allows us to both get and set the background image of a control. This property is of type Image. Images with 

translucent or transparent colors are not supported by Windows Forms as background images.

15.1.2 The Application

Now let's write an application that will use all of the properties we just named.

First we create a Windows application and name it ButtonViewer. Then we add controls (for three buttons, one text box, and one panel) to the 

form by dragging them from the Visual Studio .NET toolbox. After adding controls to the form, we reposition and resize them, and we change 

their Text and Name properties. The final form looks like Figure 15.1.

Figure 15.1. An interactive GUI application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



As Figure 15.1 shows, two of the buttons are named Browse and Close, respectively, and one button has no text. The Browse button allows 

us to browse an image file, and the Close button closes the application. The TextBox control displays the file name selected by a click of the 

Browse button. The third button (shown larger and without text in Figure 15.1) displays the image selected by the Browse button.

Now let's change the background color, foreground color, styles, and fonts of these controls. To do so, we add code in the form's load event 

handler, as shown in Listing 15.1. As the code indicates, we set the control's BackColor, ForeColor, FlatStyle, BorderStyle, and Font properties. 

(See Chapter 5 for details on fonts and colors.)

Listing 15.1 Setting a control's BackColor, ForeColor, and Font properties

private void Form2_Load(object sender, System.EventArgs e)

{

  // Button 1

  button1.ForeColor = Color.Yellow;

  button1.BackColor = Color.Maroon;

  button1.FlatStyle = FlatStyle.Flat;

  button1.Font = new Font ("Verdana",

    10, FontStyle.Bold);

  // Close and Browse buttons

  btnClose.ForeColor = Color.Yellow;

  btnClose.BackColor = Color.Black;

  btnClose.FlatStyle = FlatStyle.Flat;

  btnClose.Font = new Font ("Ariel",

    10, FontStyle.Italic);

  btnBrowse.ForeColor = Color.White;

  btnBrowse.BackColor = Color.Black;

  btnBrowse.FlatStyle = FlatStyle.Flat;

  btnBrowse.Font = new Font ("Ariel",

    10, FontStyle.Bold);

  // Text box 1

  textBox1.BorderStyle = BorderStyle.FixedSingle;

  textBox1.BackColor = Color.Blue;

  textBox1.ForeColor = Color.Yellow;

  textBox1.Font = new Font("Tahoma", 10,

  FontStyle.Strikeout|FontStyle.Bold|

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    FontStyle.Italic);

  // Panel 1

  panel1.BorderStyle = BorderStyle.FixedSingle;

  panel1.BackColor = Color.Red;

}

The Close button click handler simply calls the Form.Close method, as shown in Listing 15.2.

Listing 15.2 The Close button click event handler

private void btnClose_Click(object sender,

System.EventArgs e)

{

 this.Close();

}

The Browse button click event handler (see Listing 15.3) uses an OpenFileDialog control to browse for an image and sets the selected image 

as the background image of the button. It also sets the file name as text of the text box control. Finally, it calls the Invalidate method to repaint 

the form.

Listing 15.3 The Browse button click event handler

private void btnBrowse_Click(object sender,

  System.EventArgs e)

{

 OpenFileDialog fdlg = new OpenFileDialog();

 fdlg.Title = "C# Corner Open File Dialog" ;

 fdlg.InitialDirectory = @"c:\" ;

 fdlg.Filter = "Image Files(*.BMP;*.JPG;*.GIF)|" +

  "*.BMP;*.JPG;*.GIF|All files (*.*)|*.*";

 fdlg.FilterIndex = 2 ;

 fdlg.RestoreDirectory = true ;

 if(fdlg.ShowDialog() == DialogResult.OK)

 {

  button1.BackgroundImage =

    Image.FromFile(fdlg.FileName) ;

  textBox1.Text = fdlg.FileName;

 }

 Invalidate();

}

15.1.3 Drawing Transparent Controls

How can I draw transparent controls? This is one of the commonly asked questions on discussion forums.

Drawing transparent controls involves two steps. First we set a form's style to enable support for transparent controls. We do this by calling 

the SetStyle method of the form, passing ControlStyles.SupportTransparentBackColor as the first argument, and setting the second argument 

(which in turn sets the SupportTransparentBackColor bit) to true. Next we set the control's BackColor property to a transparent color. Either we 

can use Color.Transparent, or we can create a Color object using an alpha component value less than 255 to provide custom 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



semitransparency. Listing 15.4 sets the background color of controls to transparent.

Listing 15.4 Setting the background color of controls to transparent

/* Code for transparent controls */

this.SetStyle(

ControlStyles.SupportsTransparentBackColor,

true);

button1.BackColor = Color.Transparent;

btnBrowse.BackColor = Color.Transparent;

btnClose.BackColor = Color.Transparent;

panel1.BackColor = Color.FromArgb(70, 0, 0, 255);

The output of Listing 15.4 looks like Figure 15.2.

Figure 15.2. Designing transparent controls

Note

Not all controls support transparent color. For example, if you set the BackColor property of a text box to Color.Transparent, 

you will get an exception.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

15.2 Drawing Shaped Forms and Windows Controls

Normally, all Windows controls and forms are rectangular, but what if we want to draw them in nonrectangular shapes? We can do this by 

setting the Region property. The Region property of a form or a control represents that window's region, which is a collection of pixels within a 

form or control where the operating system permits drawing; no portion of a form that lies outside of the window region is displayed. To draw 

nonrectangular shapes, we trick the system into drawing only the region of a control.

Let's draw a circular form. We can use the GraphicsPath class to draw graphics paths. In this application we'll create a circular form and a 

circular picture box, which will display an image. To test this application, we follow these simple steps:

We create a Windows application and add a button and a picture box to the form. Then we set the Text property of the button control to "Exit" 

and write the following line on the button click event handler:

this.Close();

Next we add a reference to the System.Drawing.Drawing2D namespace so that we can use the GraphicsPath class:

using System.Drawing.Drawing2D;

On the form-load event handler, we create a Bitmap object from a file and load the bitmap in the picture box as shown in the following code 

snippet.

Image bmp = Bitmap.FromFile("aphoto.jpg");

pictureBox1.Image = bmp;

The last step is to set the form and picture box as circular. We can modify the InitializeComponent method and add code as in Listing 15.5 at 

the end of the method, or we can add the code on the form-load event handler. We just set the Region property of the form and picture box to 

the region of our GraphicsPath object.

Listing 15.5 Setting a form and picture box control as circular

private void Form1_Load(object sender,

System.EventArgs e)

{

 // Create a rectangle

 Rectangle rect = new Rectangle(0,0,100,100);

 // Create a graphics path

 GraphicsPath path = new GraphicsPath();

 // Add an ellipse to the graphics path

 path.AddEllipse(rect);

 // Set the Region property of the picture box

 // by creating a region from the path

 pictureBox1.Region = new Region(path);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



 rect.Height += 200;

 rect.Width += 200;

 path.Reset();

 path.AddEllipse(rect);

 this.Region = new Region(path);

 // Create an image from a file and

 // set the picture box's Image property

 Image bmp = Bitmap.FromFile("aphoto.jpg");

 pictureBox1.Image = bmp;

}

When we build and run the application; the output will look like Figure 15.3. Because we have eliminated the normal title bar controls, we must 

implement an Exit button.

Figure 15.3. Drawing a circular form and Windows controls

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

15.3 Adding Copyright Information to a Drawn Image

With the popularity of digital cameras and the increase of digital archive Web sites that allow you to buy images, it's handy to be able to add a 

copyright to your image. Not only that, you can also add text specifying the date and place of the photograph.

In this section we will create an application with support for the display of copyright information on displayed images. First we create a 

Windows application and add a File | Open menu item, a button with text "Add Copyright," and a picture box. The final form looks like Figure 

15.4.

Figure 15.4. A graphics copyright application

After adding the controls, we add a reference to the System.Drawing.Imaging namespace to the application. Then we add a class Image

variable to the application as follows:

Image origImage;

The File | Open menu allows us to browse images and view a thumbnail of a specific image. The code for the menu click event handler is 

given in Listing 15.6. After reading the name of the image, we create an Image object from the file name using the Image.FromFile static 

method. After creating one Image object, we create another Image object using the GetThumbnailImage method of the Image class. 

GetThumbnailImage returns a thumbnail image. After that we simply set the Image property of PictureBox to display the image.

Listing 15.6 Browsing images

private void menuItem2_Click(object sender,

  System.EventArgs e)

{

  // Open file dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  OpenFileDialog fileDlg = new OpenFileDialog();

  fileDlg.InitialDirectory = "c:\\" ;

  fileDlg.Filter= "All files (*.*)|*.*";

  fileDlg.FilterIndex = 2 ;

  fileDlg.RestoreDirectory = true ;

  if(fileDlg.ShowDialog() == DialogResult.OK)

  {

    // Create image from file

    string fileName = fileDlg.FileName.ToString();

    origImage = Image.FromFile(fileName);

    // Create thumbnail image

    Image thumbNail =

      origImage.GetThumbnailImage(100, 100,

      null, new IntPtr());

    // View image in picture box

    pictureBox1.Image = thumbNail;

  }

}

If we run the application and open a file using the Open menu item, the image will be displayed. The output looks like Figure 15.5.

Figure 15.5. Thumbnail view of an image

Once the image has been loaded, we click the Add Copyright button and let the program do its work. Basically we need to create an image 

on the fly, add text to the image using the DrawString method, and then save the image. To give the text a different shade, we need to change 

the color of the pixels that draw the text. In other words, we must change the brightness of the pixels that represent the text to distinguish the 

text pixels from the image pixels. We increase the values for the red, green, and blue component of the color by 25 to brighten the text pixels. 

We use the MeasureString method of the Graphics class to set the size and font of the text. (We discussed MeasureString in detail in Chapter 

3.)

The maximum value for each of the red, green, and blue components of a color is 255. What happens if these values are already set to 255? 

Do we still increase their value by 25? No. In that case we cheat and don't touch these pixels. In most cases this approach works because 

there is always a pixel that is totally different in brightness. One additional thing we could do would be to analyze the image, determine 

whether it's a dark or bright image, and adjust it accordingly.

To find out which pixels to change, we create a second bitmap that is the same size as the original image. We write "Add Copyright Info" on 

this image and use it as the pattern for the main image.

We also want to use the largest font we can to create a big word across the image. Of course, the image can be any size, so we can predict 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



the font size. To do this we create a graphics class based on our pattern image and use the MeasureString method until we get a font that fits 

the graphic, as in Listing 15.7.

Listing 15.7 Adding the copyright text

 while(foundfont==false)

 {

   Font fc = new Font("Georgia",

     fntSize, System.Drawing.FontStyle.Bold);

   sizeofstring = new SizeF(imgWidth,imgHeight);

   sizeofstring =

     g.MeasureString("Copyright GDI+ Inc.,",fc);

   if (sizeofstring.Width<pattern.Width)

   {

     if (sizeofstring.Height<pattern.Height)

     {

       foundfont=true;

       g.DrawString("Copyright GDI+ Inc.,",

         fc, new SolidBrush(Color.Black),

         1, 15);

     }

   }

   else

     fntSize = fntSize - 1;

 }

The complete code for the Add Copyright button click event handler is given in Listing 15.8. We read the image size and create a Bitmap

object from the original size of the image. Then we create a Graphics object on the fly using this Bitmap object. Once the pattern bitmap has 

been created, all we have to do is loop through all the pixels and if a pixel is black (which means that it's part of the word), we go to the main 

image and increase its brightness, producing a glasslike effect.

Listing 15.8 Adding copyright to an image

private void button1_Click(object sender,

 System.EventArgs e)

{

  if(origImage == null)

  {

    MessageBox.Show("Open a file");

    return;

  }

  int imgWidth;

  int imgHeight;

  int fntSize=300;

  int x,y;

  int a,re,gr,bl,x1,y1,z1;

  int size;

  Bitmap pattern;

  SizeF sizeofstring;

  bool foundfont;

  imgWidth = origImage.Width;

  imgHeight = origImage.Height;

  size=imgWidth*imgHeight;

  pattern = new Bitmap(imgWidth,imgHeight);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  Bitmap temp = new Bitmap(origImage);

  Graphics g = Graphics.FromImage(pattern);

  Graphics tempg = Graphics.FromImage(origImage);

  // Find a font size that will fit in the bitmap

  foundfont = false;

  g.Clear(Color.White);

  while(foundfont==false)

  {

    Font fc = new Font("Georgia",

      fntSize, System.Drawing.FontStyle.Bold);

    sizeofstring = new SizeF(imgWidth,imgHeight);

    sizeofstring =

      g.MeasureString("Add Copyright Info",fc);

    if (sizeofstring.Width<pattern.Width)

    {

      if (sizeofstring.Height<pattern.Height)

      {

        foundfont=true;

        g.DrawString("Add Copyright Info",

          fc, new SolidBrush(Color.Black),

          1, 15);

      }

    }

    else

      fntSize = fntSize - 1;

  }

  MessageBox.Show("Creating new graphic",

    "GraphicsCopyright");

  for(x=1;x<pattern.Width;x++)

  {

    for(y=1;y<pattern.Height;y++)//

    {

      if (pattern.GetPixel(x,y).ToArgb()

      == Color.Black.ToArgb())

    {

      a=temp.GetPixel(x,y).A;

      re=temp.GetPixel(x,y).R;

      gr=temp.GetPixel(x,y).G;

      bl=temp.GetPixel(x,y).B;

      x1=re;

      y1=gr;

      z1=bl;

      if (bl+25<255)

        bl=bl+25;

      if (gr+25<255)

        gr=gr+25;

      if (re+25<255)

        re=re+25;

      if (x1-25>0)

        x1=x1-25;

      if (y1-25>0)

        y1=y1-25;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



      if (z1-25>0)

        z1=z1-25;

      tempg.DrawEllipse(new Pen(

        new SolidBrush(Color.Black)),

        x, y+1, 3, 3);

      tempg.DrawEllipse(new Pen(

        new SolidBrush(

        Color.FromArgb(a,x1,y1,z1))),

        x, y, 1, 1);

      }

    }

  }

  MessageBox.Show("Output file is output.jpeg",

  "GraphicsCopyright");

  tempg.Save();

  origImage.Save("output.jpeg",

    ImageFormat.Jpeg);

}

Now we can run the application and browse images. When we click the Add Copyright button, we will get a message when the program is 

done adding text. The result creates what is commonly known as a watermark in the image (see Figure 15.6).

Figure 15.6. An image after copyright has been added to it

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

15.4 Reading and Writing Images to and from a Stream or Database

Sometimes we need to read and write images to and from a stream or database. In this example we will build an application to show how to 

do this for both streams and databases. We will use Microsoft Access for the database and ADO.NET to read and write data to the database.

Database Programming and ADO.NET

If you are new to database programming and ADO.NET, you may want to look at the ADO.NET section of C# Corner 

(www.c-sharpcorner.com). Plenty of source code samples and tutorials are available for free. You also might want to check 

out my book for ADO.NET beginners: A Programmer's Guide to ADO.NET in C# (published by APress).

First we need to create a database. We start by creating a new Access database called AppliedAdoNet.mdb and adding a table to the 

database called "Users." The database table schema should look like Figure 15.7. Microsoft Access stores binary large objects (BLOBs) 

using the OLE object data type.

Figure 15.7. Users table schema

To make our application a little more interactive and user-friendly, let's create a Windows application and add a text box, three button 

controls, and a PictureBox control. The final form looks like Figure 15.8. As you can probably guess, the Browse Image button allows users to 

browse for bitmap files; the Save Image button saves the image to the database; and the Read Image button reads the first row of the 

database table, saves binary data as a bitmap, and displays the image in the picture box.

Figure 15.8. Reading and writing images in a database form

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.c-sharpcorner.com/default.htm


Before we write code on button clicks, we need to define the following variables:

// User-defined variables

private Image curImage = null;

private string curFileName = null;

private string connectionString =

  "Provider=Microsoft.Jet.OLEDB.4.0; " +

  "Data Source=F:\\AppliedAdoNet.mdb" ;

private string savedImageName =

  "F:\\ImageFromDb.BMP";

Do not forget to add references to the System.IO and System.Data.OleDb namespaces:

using System.IO;

using System.Data.OleDb;

The stream-related classes are defined in the System.IO namespace. We will use the OLE DB data provider, which is defined in the 

System.Data.OleDb namespace, to work with our Access database.

The Browse Image button click code is given in Listing 15.9, which simply browses bitmap files and saves the file name in curFileName. We 

can set a filter to access the file formats we want.

Listing 15.9 The Browse button click event handler

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



private void BrowseBtn_Click(object sender,

  System.EventArgs e)

{

  OpenFileDialog openDlg = new OpenFileDialog();

  openDlg.Filter = "All Bitmap files|*.bmp";

  string filter = openDlg.Filter;

  openDlg.Title = "Open a Bitmap File";

  if(openDlg.ShowDialog() == DialogResult.OK)

  {

    curFileName = openDlg.FileName;

    textBox1.Text = curFileName;

  }

}

The Save Image button code given in Listing 15.10 creates a FileStream object from the bitmap file, opens a connection with the database, 

adds a new data row, set its values, and saves the row back to the database.

Listing 15.10 The Save Image button click event handler

private void SaveImageBtn_Click(object sender,

  System.EventArgs e)

{

  // Read a bitmap's contents in a stream

  FileStream fs = new FileStream(curFileName,

    FileMode.OpenOrCreate, FileAccess.Read);

  byte[] rawData = new byte[fs.Length];

  fs.Read(rawData, 0,

    System.Convert.ToInt32(fs.Length));

  fs.Close();

  // Construct a SQL string and a connection object

  string sql = "SELECT * FROM Users";

  OleDbConnection conn = new OleDbConnection();

  conn.ConnectionString = connectionString;

  // Open the connection

  if(conn.State != ConnectionState.Open)

    conn.Open();

  // Create a data adapter and data set

  OleDbDataAdapter adapter =

    new OleDbDataAdapter(sql, conn);

  OleDbCommandBuilder cmdBuilder =

    new OleDbCommandBuilder(adapter);

  DataSet ds = new DataSet("Users");

     adapter.MissingSchemaAction =

     MissingSchemaAction.AddWithKey;

  // Fill the data adapter

  adapter.Fill(ds,"Users");

  string userDes =

    "Mahesh Chand is a founder of C# Corner ";

  userDes +=

    "Author: 1. A Programmer's Guide to ADO.NET;";

  userDes += ", 2. Applied ADO.NET. ";

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  // Create a new row

  DataRow row = ds.Tables["Users"].NewRow();

  row["UserName"] = "Mahesh Chand";

  row["UserEmail"] = "mcb@mindcracker.com";

  row["UserDescription"] = userDes;

  row["UserPhoto"] = rawData;

  // Add the row to the collection

  ds.Tables["Users"].Rows.Add(row);

  // Save changes to the database

  adapter.Update(ds, "Users");

  // Clean up connection

  if(conn != null)

  {

    if(conn.State == ConnectionState.Open)

      conn.Close();

    // Dispose of connection

    conn.Dispose();

  }

  MessageBox.Show("Image Saved");

}

Once the data has been saved, the next step is to read data from the database table, save it as a bitmap again, and view the bitmap on the 

form. We can view an image using the Graphics.DrawImage method or using a picture box. Our example uses a picture box.

The code for reading binary data is shown in Listing 15.11. We open a connection, create a data adapter, fill a data set, and get the first row 

of the Users table. If you want to read all the images, you may want to modify your application or loop through all the rows. Once a row has 

been read, we retrieve the data stored in the UserPhoto column in a stream and save it as a bitmap file. Later we view that bitmap file in a 

picture box by setting its Image property to the file name.

Listing 15.11 Reading images from a database

private void ReadImageBtn_Click(object sender,

  System.EventArgs e)

{

  // Construct a SQL string and a connection object

  string sql = "SELECT * FROM Users";

  OleDbConnection conn = new OleDbConnection();

  conn.ConnectionString = connectionString;

  // Open the connection

  if(conn.State != ConnectionState.Open)

    conn.Open();

  // Create a data adapter and data set

  OleDbDataAdapter adapter =

    new OleDbDataAdapter(sql, conn);

  OleDbCommandBuilder cmdBuilder =

    new OleDbCommandBuilder(adapter);

  DataSet ds = new DataSet("Users");

  adapter.MissingSchemaAction =

    MissingSchemaAction.AddWithKey;

  // Fill the data adapter

  adapter.Fill(ds,"Users");

  // Get the first row of the table

  DataRow row = ds.Tables["Users"].Rows[0];

  // Read data in a stream

  byte[] rawData = new byte[0];

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  rawData = (byte[])row["UserPhoto"];

  int len = new int();

  len = rawData.GetUpperBound(0);

  // Save rawData as a bitmap

  FileStream fs = new FileStream

  (savedImageName, FileMode.OpenOrCreate,

    FileAccess.Write);

  fs.Write(rawData, 0, len);

  // Close the stream

  fs.Close();

  // View the image in a picture box

  curImage = Image.FromFile(savedImageName);

  pictureBox1.Image = curImage;

  // Clean up connection

  if(conn != null)

  {

    if(conn.State == ConnectionState.Open)

      conn.Close();

    // Dispose of connection

    conn.Dispose();

  }

}

To see the program in action, we select the MyPhoto.bmp file by using the Browse Image button, and we click the Save Image button. When 

we open the database, we see that a new record has been added to the Users table. When we click on the Read Image button, a new 

ImageFromDb.bmp file is added to the current folder. The output is shown in Figure 15.9.

Figure 15.9. Displaying a bitmap after reading data from a database

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



How to Resize Graphics When a Window Is Resized

The Control class provides a property called ClientRectangle that represents the client area of a control or form. Using this 

property, we can measure the size of a control or a form, and set its position on the Paint event handler or OnPaint method. 

Whenever a user resizes the form, OnPaint is called.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

15.5 Creating Owner-Drawn List Controls

How to create owner-drawn controls is a frequent topic of discussion forums and newsgroups. In this section we will discuss how an 

owner-drawn process works for Windows controls and how you can create your own controls.

15.5.1 The DrawItem Event

The DrawItem event is raised by owner-drawn controls. This event passes an argument of type DrawItemEventArgs, which contains data 

related to the event. The user uses this data to paint a specific item of the control. The properties of the DrawItemEventArgs class are given in 

Table 15.1.

Besides the properties listed in Table 15.1, the DrawItemEventArgs class provides two useful methods: DrawBackground and 

DrawFocusRectangle. The DrawBackground method draws the background of the item when we select an item in a control. The 

DrawFocusRectangle method draws a focus rectangle around the text of an item selected in the control. These methods take no arguments.

15.5.2 The MeasureItem Event

The MeasureItem event is raised by owner-drawn controls when the size (width and height) of the items in a control is being determined. This 

event passes an argument of type MeasureItemEventArgs,which contains data related to the event. This data is used by the user to paint a 

specific item of the control. The MeasureItemEventArgs class properties are listed in Table 15.2.

Table 15.1. DrawItemEventArgs properties

Property Description

BackColor Background color of the item that is being drawn.

Bounds Rectangle that represents the bounds of the item being drawn.

Font Font assigned to the item being drawn.

ForeColor Foreground color of the item being drawn.

Graphics Graphics object associated with the item being drawn.

Index Index value of the item being drawn.

State State of the item being drawn.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 15.2. MeasureItemEventArgs properties

Property Description

Graphics Graphics object associated with the event.

Index Index of the item participating in the measure-item event. Both get and set.

ItemHeight Height of the item. Both get and set.

ItemWidth Width of the item. Both get and set.

15.5.3 Owner-Drawn ListBox Controls

The ListBox class represents a list box control in Windows Forms. This class provides two events—DrawItem and MeasureItem—that

participate in owner drawing processes.

Briefly, in owner-drawn controls the developer (not the framework) programmatically handles the process of creating controls. One example 

of an owner-drawn control is a list box in which you can change the color, font, and size of the individual items.

Note

The DrawMode property of ListBox must be set to DrawMode.OwnerDrawVariable.

Let's create a Windows application using Visual Studio .NET and add a ListBox control by dragging it from the toolbox to the form. We start by 

drawing a list box with different colors, background color, and size. Then we set the DrawMode to OwnerDrawVariable using the Properties

window. Finally, we add the code from Listing 15.12 on InitializeComponent after the ListBox code. This code sets the DrawMode property of 

ListBox and adds DrawItem and MeasureItem event handlers.

Listing 15.12 Adding DrawItem and MeasureItem event handlers

this.listBox1.DrawMode =

  System.Windows.Forms.DrawMode.OwnerDrawVariable;

this.listBox1.MeasureItem +=

  new System.Windows.Forms.MeasureItemEventHandler(

  this.ListBoxMeasureItem);

this.listBox1.DrawItem +=

  new System.Windows.Forms.DrawItemEventHandler(

  this.ListBoxDrawItem);

Next we define four arrays to store the text, size, foreground color, and background color, respectively, of a ListBox item. We define the 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



following variables in the form class:

private string [] textArray = null;

private int [] sizeArray = null;

private Color [] colorArray = null;

private Color [] backColorArray = null;

The next step is to initialize these arrays as in Listing 15.13. Our code also binds the text array to the ListBox control. You can add this code 

on the form's constructor after InitializeComponent or on the form's load event handler.

Listing 15.13 Initializing arrays

textArray = new String[5]

{

  "Black Item", "Blue Item",

  "Red Item", "Green Item",

  "Yellow Item",

};

colorArray = new Color[5]

{

  Color.Black, Color.Blue,

  Color.Red, Color.Green,

  Color.Yellow,

};

backColorArray = new Color[5]

{

  Color.Gray, Color.LightCyan,

  Color.LightPink, Color.Yellow,

  Color.Black,

};

sizeArray = new int[5]

{

  12, 14, 16, 18, 20

};

// Bind text array to list box

listBox1.DataSource = textArray;

The final step is to write DrawItem and MeasureItem event handlers. The code for these handlers is given in Listing 15.14. We draw a focus 

rectangle and background of items, and then we draw text using DrawString by passing the color, text, and size after reading from arrays. The 

MeasureItem event handler sets the height of the ListBox control items.

Note

See Chapters 3 and 5 for more about the DrawString method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Listing 15.14 The DrawItem and MeasureItem event handlers

private void ListBoxDrawItem(object sender,

  DrawItemEventArgs e)

{

  e.DrawFocusRectangle();

  e.DrawBackground();

  // Uncomment this code to set the background

  // color of items

  /*

  e.Graphics.FillRectangle(

    new SolidBrush(backColorArray[e.Index]),

    new Rectangle (e.Bounds.Left, e.Bounds.Top,

    e.Bounds.Right, e.Bounds.Bottom) );

  */

  e.Graphics.DrawString(textArray[e.Index],

    new Font(FontFamily.GenericSansSerif,

    sizeArray[e.Index], FontStyle.Bold),

    new SolidBrush(colorArray[e.Index]),

    e.Bounds);

}

private void ListBoxMeasureItem(object sender,

  MeasureItemEventArgs e)

{

  e.ItemHeight= 24;

}

If we run the application, the output will look like Figure 15.10.

Figure 15.10. An owner-drawn ListBox control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



15.5.4 An Owner-Drawn Image ListBox Control

Sometimes we want to display images in a ListBox control. By applying the method described in the preceding section, we can easily create 

an owner-drawn ListBox control with images in it. In the previous example we created an array of strings and used DrawString to draw them. 

This time we create an array of Image objects and call the DrawImage method. First we define an array of Image objects as follows:

private Image [] imgArray = null;

Then we initialize the image array. We can create an Image object from a file by using the Image.FromFile method. The following code snippet 

initializes the image array:

imgArray = new Image[5]

{

 Image.FromFile("Img1.jpg"),

 Image.FromFile("Img2.jpg"),

 Image.FromFile("Img3.jpg"),

 Image.FromFile("Img4.jpg"),

 Image.FromFile("Img5.jpg")

};

Next we calculate the sizes of the images and draw them using DrawImage on the DrawItem event handler. We can also set the sizes of 

items on the MeasureItem event handler. Listing 15.15 shows how to draw images using the DrawImage method.

Listing 15.15 DrawItem and MeasureItem event handlers for an image ListBox control

private void ListBoxDrawItem(object sender,

  DrawItemEventArgs e)

{

  SizeF curImgSize =

    imgArray[e.Index].PhysicalDimension;

  e.Graphics.DrawImage(imgArray[e.Index],

    e.Bounds.X+5 ,

    ( e.Bounds.Bottom + e.Bounds.Top ) /2

      - curImgSize.Height/2);

}

private void ListBoxMeasureItem(object sender,

  MeasureItemEventArgs e)

{

  e.ItemHeight= 150;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The image listbox application looks like Figure 15.11.

Figure 15.11. An owner-drawn ListBox control with images

More on Owner-Drawn Controls

Now that you have an idea how the owner drawing process works, you can create owner-drawn menus, combo boxes, and 

other controls. I recommend that you go to C# Corner and look at the Windows Forms section 

(http://www.c-sharpcorner.com/WinForms.asp). There you will find hundreds of useful source code samples available for 

download.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.c-sharpcorner.com/WinForms.asp
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

SUMMARY

GDI+ can be used to write fun applications. In this chapter we covered more practical uses of GDI+ for real-world Windows applications. 

Topics discussed in this chapter included how to write interactive GUI rectangular and nonrectangular Windows applications, how to add 

custom text to images, how to read and write images to and from a stream or database, and finally, how to create owner-drawn controls.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

Appendix A. Exception Handling in .NET

The handling of exceptions and errors is critical to the development of reliable and stable applications. You may have noticed that no 

exception handling was included in the sample applications in this book. There are several reasons for this. First, omitting exception handling 

code simply makes the source a lot easier to read. Second, you might encounter new objects that we haven't discussed yet. After you read 

this appendix, you should implement error handling (also known as exception management) in your applications. Efficient exception 

management allows developers to write reliable and robust code that helps anticipate exceptions and, in doing so, provides an opportunity to 

present more informative and user-friendly error messages.

If you come from a C++ background, you are probably familiar with techniques such as C++ exception handling, structured exception 

handling, and MFC exceptions. If you come from a Visual Basic background, you are probably familiar with the On Error statement. Before 

.NET, every language implemented its own error handling. With .NET, all languages that create managed code share the same error handling 

mechanism. All .NET-supported languages (C#, VC++.NET, VB.NET, VJ#) enjoy the same rich exception handling.

C++ developers will probably be familiar with the try...catch block, which provides structured exception handling. Suspect code is placed 

within a try block, and when an exception occurs, the control is directed to the catch block. We will discuss the try...catch block in more detail in 

the following sections.

Note

C++ and C# are case-sensitive languages; VB.NET is not, in the sense that no matter what is typed in, the editor 

automatically corrects the capitalization. In C# and C++, the statement is try...catch; in VB.NET, it is Try...Catch.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



A.1 Why Exception Handling?

If you've been writing software for very long, you probably already know why you want to handle exceptions. Have you ever seen a program 

crash and display a weird message that doesn't make any sense? This is what happens when developers do not handle exceptions properly. 

Let's look at a simple example. Listing A.1 opens a file named c:\abc.txt.

Listing A.1 Opening a file

using System;

using System.IO;

namespace ListingA1andA2

{

  class Class1

  {

    static void Main(string[] args)

    {

      File.Open("c:\\abc.txt", FileMode.Open);

    }

  }

}

What if the file does not exist? We get the error message shown in Figure A.1. We are fortunate that CLR handles so much for us because 

otherwise this error message could have been a lot worse.

Figure A.1. An error generated from Listing A.1

Now let's make a small modification to our program. The new code is shown in Listing A.2. This time we use a simple try...catch block to 

handle the exception.

Listing A.2 A simple exception handling block

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



using System;

using System.IO;

namespace ListingA1andA2

{

  class Class1

  {

    static void Main(string[] args)

    {

      try

      {

        File.Open("c:\\abc.txt", FileMode.Open);

      }

      catch (Exception exp)

      {

        Console.WriteLine(exp.Message);

      }

    }

  }

}

Figure A.2 shows the output from the modified program. Not only is the exception handled, but also the cause of the exception is reported.

Figure A.2. An exception-handled error message

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



[ Team LiB ]  

A.2 Understanding the try...catch Block

If you come from a Visual Basic background, we recommend that you just forget about unstructured exception handling and learn this new 

approach using the try...catch statement. After you finish reading this appendix, you'll find the structured approach much better!

A.2.1 The try...catch Statement

Using the try...catch statement is very straightforward. First we decide which code we want the error handler to monitor by placing that code 

inside the try block. When an exception occurs in the encapsulated code, a control goes to the catch block that handles the exception. A simple 

template for a try...catch block is shown in Listing A.3.

Listing A.3 A simple try...catch block

try

{

  // Place the code that may generate

  // an exception in this block

}

catch ( exception type)

{

  // This code executes when the try block fails and

  // the filter on the catch statement is true.

  // Here you can write your own custom error message

  // or get the message description or other details

  // from the exception class.

}

A.2.2 The try...catch...finally Statement

The try...catch...finally statement is an extended version of the try...catch statement. If an error occurs during execution of any of the code 

inside the try section, the control moves to the catch block when the filter condition is true. The finally block always executes last, just before 

the error handling block loses scope, regardless of whether an exception has occurred. The finally block is the perfect place to close files and 

dispose of objects. A simple try...catch...finally statement is shown in Listing A.4.

Listing A.4 A simple try...catch...finally statement

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



try

{

  // Place the code that may generate

  // an exception in this block

}

catch ( exception type)

{

  // This code executes when the try block fails and

  // the filter on the catch statement is true.

  // Here you can write your own custom error message

  // or get the message description or other details

  // from the exception class.

}

finally

{

  // Release and dispose of objects and

  // other resources here

}

Listing A.5 allocates resources at the beginning of the method and releases them inside the finally block. Regardless of whether an exception 

occurs, execution control will pass to the finally block and release the resources.

Listing A.5 Disposing of objects inside the finally block

private void TestExpBtn_Click(object sender,

  System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  // Create pens and brushes

  Pen redPen = new Pen(Color.Red, 1);

  Pen bluePen = new Pen(Color.Blue, 2);

  Pen greenPen = new Pen(Color.Green, 3);

  SolidBrush greenBrush =

    new SolidBrush(Color.Green);

  // Put whatever code you think may cause

  // the error within this block

  try

  {

    // Use the Point structure to draw lines

    Point pt1 = new Point(30, 40);

    Point pt2 = new Point(250, 60);

    g.DrawLine(redPen, pt1, pt2);

    // Draw a rectangle

    Rectangle rect =

      new Rectangle(20,20, 80, 40);

    g.DrawRectangle(bluePen, rect);

    // Create points for curve

    PointF p1 = new PointF(40.0F, 50.0F);

    PointF p2 = new PointF(60.0F, 70.0F);

    PointF p3 = new PointF(80.0F, 34.0F);

    PointF p4 = new PointF(120.0F, 180.0F);

    PointF p5 = new PointF(200.0F, 150.0F);

    PointF p6 = new PointF(350.0F, 250.0F);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    PointF p7 = new PointF(200.0F, 200.0F);

    PointF[] ptsArray =

    {

    p1, p2, p3, p4, p5, p6, p7

    };

    // Draw Bézier curve

    g.DrawBeziers(redPen, ptsArray);

  }

  catch(Exception exp)

  {

    string errMsg = "Message: " + exp.Message;

    errMsg += "Source: "+ exp.Source.ToString();

    errMsg += "TargetSite: "+ exp.TargetSite;

    errMsg += "HelpLink: "

    + exp.HelpLink.ToString();

    errMsg += "StackTrace: "

    + exp.StackTrace.ToString();

    MessageBox.Show(errMsg);

  }

  finally

  {

    // Release resources

    // Dispose of objects

    redPen.Dispose();

    bluePen.Dispose();

    greenPen.Dispose();

    greenBrush.Dispose();

    g.Dispose();

  }

}

A.2.3 Nested try...catch Statements

We can provide more specific error handling by nesting try...catch blocks. The only case in which we might not want to use nested try...catch

blocks is when we want to catch different types of exceptions. For example, one block might catch memory-related exceptions; another, 

I/O-related exceptions; and a third, general exceptions.

Listing A.6 uses nested try...catch statements. In this code we create two images. The first image we draw only once, but the second image 

we draw 15 times at different locations. The first try...catch statement covers the entire code with a general exception, and the second 

try...catch statement is specific to the OutOfMemory exception. We can use as many try...catch blocks as exceptions we want to catch. For 

example, if our code performs I/O operations, we may want to use the IOException class. We can also customize the default message to 

match the error type.

Listing A.6 Nesting try...catch statements

private void NestedMenu_Click(object sender,

  System.EventArgs e)

{

  // Create Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



  try

  {

    // Create an image from a file

    Image curImage = Image.FromFile("roses.jpg");

    // Draw the image

    g.DrawImage(curImage, AutoScrollPosition.X,

      AutoScrollPosition.Y,

      curImage.Width, curImage.Height );

    // Create a second image from a file

    Image smallImage =

      Image.FromFile("smallRoses.gif");

    // Draw the second image many times

    int x1, y1, x2, y2, w, h;

    x1 = x2 = AutoScrollPosition.X;

       y1 = AutoScrollPosition.Y;

    y2 = 300;

    w = 20;

    h = 20;

    // Make a loop to draw second image

    // on top of the first image

    for(int i=0; i<=15; i++)

    {

      try

      {

        // Draw from top left to bottom right

        g.DrawImage(smallImage,

          new Rectangle(x1, y1, w, h),

          0, 0, smallImage.Width,

          smallImage.Height,

          GraphicsUnit.Pixel );

        // Draw from top right to bottom left

        g.DrawImage(smallImage,

          new Rectangle(x2, y2, w, h),

          0, 0, smallImage.Width,

          smallImage.Height,

          GraphicsUnit.Pixel );

        x1 += 20;

        y1 += 20;

        x2 += 20;

        y2 -= 20;

      }

      catch (OutOfMemoryException memExp)

      {

        MessageBox.Show(memExp.Message);

      }

    }

  }

  catch(Exception exp)

  {

    MessageBox.Show(exp.Message);

  }

  finally

  {

    // Dispose of objects

    g.Dispose();

  }

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



A.2.4 Multiple catch Statements with a Single try Statement

The try...catch statement also allows us to use multiple catch statements with a single try statement, which helps when we're catching multiple 

types of exceptions and customizing error messages to match the type of error.

Listing A.7 is a modified version of Listing A.6 that uses a try statement with two catch statements.

Listing A.7 Using multiple catch statements with a single try statement

private void MultiCatchesMenu_Click(object sender,

  System.EventArgs e)

{

  // Create a Graphics object

  Graphics g = this.CreateGraphics();

  g.Clear(this.BackColor);

  try

  {

    // Create an image from a file

    Image curImage = Image.FromFile("roses.jpg");

    // Draw image

    g.DrawImage(curImage, AutoScrollPosition.X,

      AutoScrollPosition.Y,

      curImage.Width, curImage.Height );

    // Create a second image from a file

    Image smallImage =

      Image.FromFile("smallRoses.gif");

    // Draw the second image many times

    int x1, y1, x2, y2, w, h;

    x1 = x2 = AutoScrollPosition.X;

    y1 = AutoScrollPosition.Y;

    y2 = 300;

    w = 20;

    h = 20;

    // Make a loop to draw second image

    // on top of the first image

    for(int i=0; i<=15; i++)

    {

      // Draw from top left to bottom right

      g.DrawImage(smallImage,

        new Rectangle(x1, y1, w, h),

        0, 0, smallImage.Width,

        smallImage.Height,

        GraphicsUnit.Pixel );

      // Draw from top right to bottom left

      g.DrawImage(smallImage,

      new Rectangle(x2, y2, w, h),

      0, 0, smallImage.Width,

      smallImage.Height,

      GraphicsUnit.Pixel );

    x1 += 20;

    y1 += 20;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    x2 += 20;

    y2 -= 20;

    }

  }

  catch (OutOfMemoryException memExp)

  {

    MessageBox.Show(memExp.Message);

  }

  catch(Exception exp)

  {

    MessageBox.Show(exp.Message);

  }

  finally

  {

    // Dispose of objects

    g.Dispose();

  }

}

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]  

A.3 Understanding Exception Classes

By now you have a basic idea of how to implement structured exception handling in your code. Now let's take a quick overview of 

exception-related classes provided by the .NET Framework library.

A.3.1 The Exception Class: Mother of All Exceptions

The Exception class is the first class we will discuss. It caters to errors that occur during normal application execution. This is the base class 

for all exception classes. In our previous samples, we have already seen how to use the Exception class. Table A.1 describes its properties.

Listing A.8 uses the Exception class properties to display information about an exception.

Listing A.8 Using Exception properties

// The error within this block

try

{

// Suspect code here

}

catch(Exception exp)

{

  string errMsg = "Message: " + exp.Message;

  errMsg += "Source: "+ exp.Source.ToString();

  errMsg += "TargetSite: "+ exp.TargetSite;

  errMsg += "HelpLink: "

  + exp.HelpLink.ToString();

  errMsg += "StackTrace: "

  + exp.StackTrace.ToString();

  MessageBox.Show(errMsg);

}

finally

{

  // Release resources

  // Dispose of objects

}

A.3.2 Other Exception Classes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



The .NET Framework class library defines a multitude of exception classes—each designed to handle a specific kind of exception. For

example, the IOException error is thrown when an I/O error occurs. All of the classes work in a similar way. If you want to handle I/O-related 

errors, use IOException instead of Exception. This allows your code to respond to a more specific exception. Unlike ADO.NET and other 

libraries, GDI+ doesn't have any specific exception handling classes.

Table A.1. Exception properties

Property Description

HelpLink Represents the link to the help file associated with an exception. Both get and set.

InnerException Returns the Exception instance that caused the current exception. Read-only.

Message Returns the error message that describes the current exception. Read-only.

Source Indicates the name of the application or object that causes the error. Both get and set.

StackTrace A string representation of the frames on the call stack at the time the exception occurred. Read-only.

TargetSite Returns the method that throws the exception. Read-only.

Some of the common exception handling classes are listed below. The SystemException class, which is derived from the Exception class, is 

the base class for system (runtime)-generated errors. The following class hierarchy shows the SystemException-derived classes:

System.Object

  System.Exception

    System.SystemException
    System.AppDomainUnloadedException

    System.ArgumentException

    System.ArithmeticException

    System.ArrayTypeMismatchException

    System.BadImageFormatException

    System.CannotUnloadAppDomainException

    System.ComponentModel.Design.Serialization

      .CodeDomSerializerException

    System.ComponentModel.LicenseException

    System.ComponentModel.WarningException

    System.Configuration.ConfigurationException

    System.Configuration.Install.InstallException

    System.ContextMarshalException

    System.Data.DataException

    System.Data.DBConcurrencyException

    System.Data.SqlClient.SqlException

    System.Data.SqlTypes.SqlTypeException

    System.Drawing.Printing.InvalidPrinterException

    System.EnterpriseServices.RegistrationException

    System.EnterpriseServices.ServicedComponentException

    System.ExecutionEngineException

    System.FormatException

    System.IndexOutOfRangeException

    System.InvalidCastException

    System.InvalidOperationException

    System.InvalidProgramException

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    System.IO.InternalBufferOverflowException

    System.IO.IOException

    System.Management.ManagementException

    System.MemberAccessException

    System.MulticastNotSupportedException

    System.NotImplementedException

    System.NotSupportedException

    System.NullReferenceException

    System.OutOfMemoryException

    System.RankException

    System.Reflection.AmbiguousMatchException

    System.Reflection.ReflectionTypeLoadException

    System.Resources.MissingManifestResourceException

    System.Runtime.InteropServices.ExternalException

    System.Runtime.InteropServices

      .InvalidComObjectException

    System.Runtime.InteropServices

      .InvalidOleVariantTypeException

    System.Runtime.InteropServices

      .MarshalDirectiveException

    System.Runtime.InteropServices

      .SafeArrayRankMismatchException

    System.Runtime.InteropServices

      .SafeArrayTypeMismatchException

    System.Runtime.Remoting.RemotingException

    System.Runtime.Remoting.ServerException

    System.Runtime.Serialization.SerializationException

    System.Security.Cryptography.CryptographicException

    System.Security.Policy.PolicyException

    System.Security.SecurityException

    System.Security.VerificationException

    System.Security.XmlSyntaxException

    System.ServiceProcess.TimeoutException

    System.StackOverflowException

    System.Threading.SynchronizationLockException

    System.Threading.ThreadAbortException

    System.Threading.ThreadInterruptedException

    System.Threading.ThreadStateException

    System.TypeInitializationException

    System.TypeLoadException

    System.TypeUnloadedException

    System.UnauthorizedAccessException

    System.Web.Services.Protocols.SoapException

    System.Xml.Schema.XmlSchemaException

    System.Xml.XmlException

    System.Xml.XPath.XPathException

    System.Xml.Xsl.XsltException

As we saw in the class hierarchy, the .NET Framework defines hundreds of exception classes—some of them specific to a particular

operation. For example, OutOfMemoryException is thrown when there is not enough memory to continue the execution of a program.

The System.ArithmeticException class represents arithmetic exceptions that occur in arithmetic, casting, or conversion operations. All of its 

members are inherited from the Exception class. ArithmeticException has three derived classes: DivideByZeroException, 

NotFiniteNumberException, and OverflowException.

DivideByZeroException occurs when code tries to divide an integral or decimal value by zero. NotFiniteNumberException occurs when a 

floating point value is positive infinity, negative infinity, or not a number. OverflowException occurs when an arithmetic, casting, or conversion 

operation in a checked context results in an overflow.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



System.Data.DataException and its derived classes represent exceptions that occur when we're working with data (ADO.NET) components.

System.IOException represents an exception that is thrown when an I/O error occurs.

System.StackOverflowException represents an exception that is thrown when the stack overflows because too many method calls have been 

executed.

[ Team LiB ]  

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html


[ Team LiB ]

SUMMARY

This appendix provided a working introduction to structured exception and error handling in .NET. We discussed various exception-related 

classes that are provided by the .NET Framework. We also discussed how error handling works in .NET and how to use try..catch blocks. In 

addition, we discussed the Exception class and its members, as well as other exception-related classes.

[ Team LiB ]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Brought to You by

Like the book? Buy it!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .


	Main Page
	Table of content
	Copyright
	Praise for 'Graphics Programming with GDI+'
	Microsoft .NET Development Series
	Figures
	Tables
	Acknowledgments
	Introduction
	Who Is This Book For?
	Prerequisites
	What's in This Book That I Won't See in Other Books?
	Chapter Organization
	Example Source Code
	Exception and Error Handling in the Samples
	SUMMARY

	Chapter 1. GDI+: The Next-Generation Graphics Interface
	1.1 Understanding GDI+
	1.2 Exploring GDI+ Functionality
	1.3 GDI+ from a GDI Perspective
	1.4 GDI+ Namespaces and Classes in .NET
	Summary

	Chapter 2. Your First GDI+ Application
	2.1 Drawing Surfaces
	2.2 The Coordinate System
	2.3 Tutorial: Your First GDI+ Application
	2.4 Some Basic GDI+ Objects
	SUMMARY

	Chapter 3. The 'Graphics' Class
	3.1 'Graphics' Class Properties
	3.2 'Graphics' Class Methods
	3.3 The GDI+Painter Application
	3.4 Drawing a Pie Chart
	SUMMARY

	Chapter 4. Working with Brushes and Pens
	4.1 Understanding and Using Brushes
	4.2 Using Pens in GDI+
	4.3 Transformation with Pens
	4.4 Transformation with Brushes
	4.5 System Pens and System Brushes
	4.6 A Real-World Example: Adding Colors, Pens, and Brushes to the GDI+Painter Application
	SUMMARY

	Chapter 5. Colors, Fonts, and Text
	5.1 Accessing the 'Graphics' Object
	5.2 Working with Colors
	5.3 Working with Fonts
	5.4 Working with Text and Strings
	5.5 Rendering Text with Quality and Performance
	5.6 Advanced Typography
	5.7 A Simple Text Editor
	5.8 Transforming Text
	SUMMARY

	Chapter 6. Rectangles and Regions
	6.1 The 'Rectangle' Structure
	6.2 The 'Region' Class
	6.3 Regions and Clipping
	6.4 Clipping Regions Example
	6.5 Regions, Nonrectangular Forms, and Controls
	SUMMARY

	Chapter 7. Working with Images
	7.1 Raster and Vector Images
	7.2 Working with Images
	7.3 Manipulating Images
	7.4 Playing Animations in GDI+
	7.5 Working with Bitmaps
	7.6 Working with Icons
	7.7 Skewing Images
	7.8 Drawing Transparent Graphics Objects
	7.9 Viewing Multiple Images
	7.10 Using a Picture Box to View Images
	7.11 Saving Images with Different Sizes
	SUMMARY

	Chapter 8. Advanced Imaging
	8.1 Rendering Partial Bitmaps
	8.2 Working with Metafiles
	8.3 Color Mapping Using Color Objects
	8.4 Image Attributes and the 'ImageAttributes' Class
	8.5 Encoder Parameters and Image Formats
	SUMMARY

	Chapter 9. Advanced 2D Graphics
	9.1 Line Caps and Line Styles
	9.2 Understanding and Using Graphics Paths
	9.3 Graphics Containers
	9.4 Reading Metadata of Images
	9.5 Blending Explained
	9.6 Alpha Blending
	9.7 Miscellaneous Advanced 2D Topics
	SUMMARY

	Chapter 10. Transformation
	10.1 Coordinate Systems
	10.2 Transformation Types
	10.3 The 'Matrix' Class and Transformation
	10.4 The 'Graphics' Class and Transformation
	10.5 Global, Local, and Composite Transformations
	10.6 Image Transformation
	10.7 Color Transformation and the Color Matrix
	10.8 Matrix Operations in Image Processing
	10.9 Text Transformation
	10.10 The Significance of Transformation Order
	SUMMARY

	Chapter 11. Printing
	11.1 A Brief History of Printing with Microsoft Windows
	11.2 Overview of the Printing Process
	11.3 Your First Printing Application
	11.4 Printer Settings
	11.5 The 'PrintDocument' and 'Print' Events
	11.6 Printing Text
	11.7 Printing Graphics
	11.8 Print Dialogs
	11.9 Customizing Page Settings
	11.10 Printing Multiple Pages
	11.11 Marginal Printing: A Caution
	11.12 Getting into the Details: Custom Controlling and the Print Controller
	SUMMARY

	Chapter 12. Developing GDI+ Web Applications
	12.1 Creating Your First ASP.NET Web Application
	12.2 Your First Graphics Web Application
	12.3 Drawing Simple Graphics
	12.4 Drawing Images on the Web
	12.5 Drawing a Line Chart
	12.6 Drawing a Pie Chart
	SUMMARY

	Chapter 13. GDI+ Best Practices and Performance Techniques
	13.1 Understanding the Rendering Process
	13.2 Double Buffering and Flicker-Free Drawing
	13.3 Understanding the 'SetStyle' Method
	13.4 The Quality and Performance of Drawing
	SUMMARY

	Chapter 14. GDI Interoperability
	14.1 Using GDI in the Managed Environment
	14.2 Cautions for Using GDI in Managed Code
	SUMMARY

	Chapter 15. Miscellaneous GDI+ Examples
	15.1 Designing Interactive GUI Applications
	15.2 Drawing Shaped Forms and Windows Controls
	15.3 Adding Copyright Information to a Drawn Image
	15.4 Reading and Writing Images to and from a Stream or Database
	15.5 Creating Owner-Drawn List Controls
	SUMMARY

	Appendix A. Exception Handling in .NET
	A.1 Why Exception Handling?
	A.2 Understanding the 'try...catch' Block
	A.3 Understanding Exception Classes
	SUMMARY


