

Beginning ASP.NET 2.0
E-Commerce in C# 2005
From Novice to Professional

■ ■ ■

Cristian Darie and Karli Watson

Darie-Watson_4681Front.fm Page i Thursday, September 22, 2005 5:26 AM

Beginning ASP.NET 2.0 E-Commerce in C# 2005: From Novice to Professional

Copyright © 2006 by Cristian Darie and Karli Watson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-468-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Paul Sarknas
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie McNamee
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor: Susan Glinert Stevens
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Darie-Watson_4681Front.fm Page ii Thursday, September 22, 2005 5:26 AM

iii

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xv

Introduction . xvii

■CHAPTER 1 Starting an E-Commerce Site . 1

■CHAPTER 2 Laying Out the Foundations . 11

■CHAPTER 3 Creating the Product Catalog: Part I . 45

■CHAPTER 4 Creating the Product Catalog: Part II . 105

■CHAPTER 5 Searching the Catalog . 169

■CHAPTER 6 Improving Performance . 199

■CHAPTER 7 Receiving Payments Using PayPal . 209

■CHAPTER 8 Catalog Administration . 221

■CHAPTER 9 Creating a Custom Shopping Cart . 311

■CHAPTER 10 Dealing with Customer Orders . 353

■CHAPTER 11 Making Product Recommendations . 401

■CHAPTER 12 Adding Customer Accounts . 417

■CHAPTER 13 Advanced Customer Orders . 485

■CHAPTER 14 Order Pipeline . 517

■CHAPTER 15 Implementing the Pipeline . 541

■CHAPTER 16 Credit Card Transactions . 593

■CHAPTER 17 Integrating Amazon Web Services . 625

■APPENDIX A Installing the Software . 643

■APPENDIX B Project Management Considerations . 651

■INDEX . 661

Darie-Watson_4681Front.fm Page iii Thursday, September 22, 2005 5:26 AM

Darie-Watson_4681Front.fm Page iv Thursday, September 22, 2005 5:26 AM

v

Contents

About the Authors . xiii

About the Technical Reviewer . xv

Introduction . xvii

■CHAPTER 1 Starting an E-Commerce Site . 1

Deciding Whether to Go Online . 1

Getting More Customers . 2

Making Customers Spend More . 2

Reducing the Costs of Fulfilling Orders . 3

Making Money . 3
Considering the Risks and Threats . 4

Designing for Business . 5

Phase I: Getting a Site Up . 6

Phase II: Creating Your Own Shopping Cart. 6
Phase III: Processing Orders . 7

The Balloon Shop . 8

Summary . 9

■CHAPTER 2 Laying Out the Foundations . 11

Designing for Growth . 12

Meeting Long-Term Requirements with Minimal Effort 12

The Magic of the Three-Tier Architecture . 13

Choosing Technologies and Tools . 18

Using ASP.NET 2.0 . 19

Using C# and VB .NET . 23

Using Visual Studio 2005 and Visual Web Developer 2005
 Express Edition . 23

Using SQL Server 2005 . 24

Following Coding Standards . 26

Creating the Visual Web Developer Project . 27

Contents

Darie-Watson_4681Front.fm Page v Thursday, September 22, 2005 5:26 AM

vi ■C O N T E N T S

Implementing the Site Skeleton . 31

Building the First Page . 33

Adding the Header to the Main Page . 38

Creating the SQL Server Database . 41

Downloading the Code . 43

Summary . 43

■CHAPTER 3 Creating the Product Catalog: Part I . 45

Showing Your Visitor What You’ve Got . 45

What Does a Product Catalog Look Like? . 46

Previewing the Product Catalog . 47

Roadmap for This Chapter . 50

Storing Catalog Information . 52

Understanding Data Tables . 53

Creating the Department Table . 61

Communicating with the Database . 63

Speaking the Database Language . 64

Creating Stored Procedures. 68

Adding Logic to the Site . 70

Connecting to SQL Server . 71

Issuing Commands and Executing Stored Procedures 74

Implementing Generic Data Access Code . 76

Catching and Handling Exceptions . 78

Sending Emails . 81

Writing the Business Tier Code . 81

Displaying the List of Departments . 90

Preparing the Field: Themes, Skins, and Styles 90

Displaying the Departments . 94

Adding a Custom Error Page . 100

Summary . 104

■CHAPTER 4 Creating the Product Catalog: Part II . 105

Storing the New Data . 105

What Makes a Relational Database . 106

Enforcing Table Relationships with the
 FOREIGN KEY Constraint . 110

Adding Categories. 111

Adding Products . 116

Darie-Watson_4681Front.fm Page vi Thursday, September 22, 2005 5:26 AM

■C O N T E N T S vii

Querying the New Data . 122

Retrieving Short Product Descriptions . 122

Joining Data Tables . 123

Showing Products Page by Page . 125

Writing the New Stored Procedures . 129

Using ADO.NET with Parameterized Stored Procedures 135

Using Input Parameters . 135

Using Output Parameters . 135

Stored Procedure Parameters Are Not Strongly Typed. 136

Getting the Results Back from Output Parameters 136

Completing the Business Tier Code . 136

Implementing the Presentation Tier . 147

Displaying the List of Categories. 148

Displaying Department and Category Details 153

Displaying Product Lists. 157

Displaying Product Details . 165

Summary . 167

■CHAPTER 5 Searching the Catalog . 169

Choosing How to Search the Catalog . 169

Teaching the Database to Search Itself . 171

Implementing a Custom Search Engine . 171

Introducing the SearchCatalog Stored Procedure 175

Implementing Paging . 177

Writing the Code . 178

Implementing the Business Tier . 182

Implementing the Presentation Tier . 184

Creating the Search Box . 185

Displaying the Search Results. 191

Searching Smarter . 195

Summary . 197

■CHAPTER 6 Improving Performance . 199

Handling Postback . 199

Managing ViewState . 203

Using Output Cache . 206

Summary . 208

Darie-Watson_4681Front.fm Page vii Thursday, September 22, 2005 5:26 AM

8213592a117456a340854d18cee57603

viii ■C O N T E N T S

■CHAPTER 7 Receiving Payments Using PayPal . 209

Considering Internet Payment Service Providers 210

Getting Started with PayPal . 211

Integrating the PayPal Shopping Cart and Checkout 212

Using the PayPal Single Item Purchases Feature 218

Summary . 219

■CHAPTER 8 Catalog Administration . 221

Preparing to Create the Catalog Administration Page 221

Authenticating Administrators . 227

ASP.NET 2.0 and Using Declarative Security 229

Implementing Security . 230

Administering Departments . 243

Stored Procedures for Departments Administration 244

Middle-Tier Methods for Departments Administration 244

The DepartmentsAdmin User Control . 249

Customizing the GridView with Template Columns 263

Administering Categories . 266

Stored Procedures for Categories Administration 266

Middle-Tier Methods for Categories Administration 267

The CategoriesAdmin Web User Control . 270

Administering Products . 277

Stored Procedures for Products Administration 278

Middle-Tier Methods for Products Administration 280

The ProductsAdmin Web User Control . 284

Administering Product Details . 293

Stored Procedures for Product Details Admin 295

Middle-Tier Methods for Product Details Admin 298

The ProductDetailsAdmin Web User Control 302

Summary . 309

■CHAPTER 9 Creating a Custom Shopping Cart . 311

Designing the Shopping Cart . 314

Storing Shopping Cart Information . 314

Implementing the Data Tier . 317

Implementing the Business Tier . 320

Generating Shopping Cart IDs . 320

What If the Visitor Doesn’t Like Cookies? . 325

Implementing the Shopping Cart Access Functionality 325

Darie-Watson_4681Front.fm Page viii Thursday, September 22, 2005 5:26 AM

■C O N T E N T S ix

Implementing the Presentation Tier . 329

Creating the Add to Cart Buttons . 329

Showing the Shopping Cart Summary . 331

Displaying the Shopping Cart . 335

Editing Product Quantities . 341

Adding “Continue Shopping” Functionality 343

Administering the Shopping Cart . 346

Deleting Products that Exist in Shopping Carts 346

Removing Old Shopping Carts. 346

Summary . 352

■CHAPTER 10 Dealing with Customer Orders . 353

Implementing an Order-Placing System . 353

Storing Orders in the Database . 355

Updating the Business Layer . 360

Adding the Checkout Button . 361

Administering Orders . 363

Creating the OrdersAdmin Web Form. 365

Displaying Existing Orders . 367

Administering Order Details. 381

Summary . 399

■CHAPTER 11 Making Product Recommendations . 401

Increasing Sales with Dynamic Recommendations 402

Implementing the Data Tier . 403

Adding Product Recommendations. 407

Adding Shopping Cart Recommendations . 409

Implementing the Business Tier . 410

Implementing the Presentation Tier . 412

Summary . 415

■CHAPTER 12 Adding Customer Accounts . 417

Handling Customer Accounts . 417

Creating a BalloonShop Customer Account Scheme 418

The SecurityLib Classes . 419

Customer Logins . 448

Customer Details . 455

The Checkout Page. 474

Darie-Watson_4681Front.fm Page ix Thursday, September 22, 2005 5:26 AM

x ■C O N T E N T S

Setting Up Secure Connections . 479

Obtaining an SSL Certificate from VeriSign 480

Enforcing SSL Connections . 480

Including Redirections to Enforce Required SSL Connections 482

Summary . 484

■CHAPTER 13 Advanced Customer Orders . 485

Implementing Customer Order Functionality . 485

Placing Customer Orders . 485

Accessing Customer Orders . 490

Tax and Shipping Charges . 500

Tax Issues . 500

Shipping Issues . 501

Implementing Tax and Shipping Charges . 502

Summary . 515

■CHAPTER 14 Order Pipeline . 517

Defining an Order Pipeline . 517

Understanding the BalloonShop Order Pipeline . 518

Building the Order Pipeline . 522

The Basic Order Pipeline . 522

Adding More Functionality to OrderProcessor 535

Summary . 539

■CHAPTER 15 Implementing the Pipeline . 541

Considering the Code for the Pipeline Sections 541

Business Tier Modifications. 541

Presentation Tier Modifications. 554

Administering BalloonShop Orders . 561

Database Modifications . 561

Business Tier Modifications. 565

Presentation Tier Modifications. 575

Testing the Order Administration Page . 589

Summary . 591

Darie-Watson_4681Front.fm Page x Thursday, September 22, 2005 5:26 AM

■C O N T E N T S xi

■CHAPTER 16 Credit Card Transactions . 593

Learning the Credit Card Transaction Fundamentals 593

Working with Credit Card Payment Gateways 594

Understanding Credit Card Transactions . 595

Implementing Credit Card Processing . 596

Considering the DataCash XML API . 596

Integrating DataCash with BalloonShop . 615

Business Tier Modifications. 616

Testing the Pipeline . 621

Going Live . 621

Using the PayFlow Pro API . 621

Summary . 624

■CHAPTER 17 Integrating Amazon Web Services . 625

Accessing the Amazon E-Commerce Service . 626

Creating Your Amazon E-Commerce Service Account 627

Getting an Amazon Associate ID . 627

Accessing Amazon Web Services Using REST 628

Accessing Amazon Web Services Using SOAP 631

Integrating the Amazon E-Commerce Service with BalloonShop 631

Writing the Amazon Access Code . 632

Implementing the Presentation Tier . 639

Summary . 642

■APPENDIX A Installing the Software . 643

What Do These Programs Do? . 643

Installing Visual Web Developer 2005 Express Edition
 and SQL Server 2005 Express Edition . 644

Installing SQL Server 2005 Express Manager . 645

Installing the IIS 5.x Web Server . 646

Installing IIS 5.x on a Web Server Machine 647

Working with IIS . 649

Darie-Watson_4681Front.fm Page xi Thursday, September 22, 2005 5:26 AM

xii ■C O N T E N T S

■APPENDIX B Project Management Considerations 651

Developing Software Solutions . 651

Considering the Theory Behind Project Management 652

The Waterfall (or Traditional) Method . 652

The Spiral Method . 654

The Rapid Application Development (RAD) Method 656

Extreme Programming (XP) Methodology . 657

Picking a Method . 657

Understanding the E-Commerce Project Cycle 658

Maintaining Relationships with Your Customers 659

■INDEX . 661

Darie-Watson_4681Front.fm Page xii Thursday, September 22, 2005 5:26 AM

xiii

About the Authors

■CRISTIAN DARIE, currently technical lead for the Better Business Bureau
Romania, is an experienced programmer specializing in Microsoft and
open source technologies, and relational database management systems.
Having worked with computers since he was old enough to press the
keyboard, he initially tasted programming success with a first prize in
his first programming contest at the age of 12. From there, Cristian moved
on to many other similar achievements in the following years, and now
he is studying advanced distributed application architectures for his

PhD degree. Cristian co-authored several programming books for Apress, Wrox Press, and Packt
Publishing. He can be contacted through his personal web site at http://www.CristianDarie.ro.

■KARLI WATSON is the technical director of 3form Ltd. (http://www.3form.net)
and a freelance writer. He started out with the intention of becoming a
world-famous nanotechnologist, so perhaps one day you might recognize
his name as he receives a Nobel Prize. For now, though, Karli’s computer
interests include all things mobile and everything .NET. Karli is also a snow-
boarding enthusiast and wishes he had a cat.

Darie-Watson_4681Front.fm Page xiii Thursday, September 22, 2005 5:26 AM

Darie-Watson_4681Front.fm Page xiv Thursday, September 22, 2005 5:26 AM

8213592a117456a340854d18cee57603

xv

About the
Technical Reviewer

■PAUL SARKNAS currently is the president of his own consulting company, Sarknasoft Solutions LLC,
which provides enterprise solutions to a wide array of companies utilizing the .NET platform. He
specializes in C#, ASP.NET, and SQL Server. Paul works intimately with all aspects of software,
including project planning, requirements gathering, design, architecture, development, testing,
and deployment. Paul’s experience spans more than eight years working with Microsoft tech-
nologies, and he has used .NET since its early conception.

Along with authoring and technical reviewing for Apress, Paul has also co-authored books
for Wrox Press.

Paul can be contacted via his consulting company’s web site (http://www.sarknasoft.com)
or his personal site (http://www.paulsarknas.com), and he welcomes questions and feedback of
any kind.

Darie-Watson_4681Front.fm Page xv Thursday, September 22, 2005 5:26 AM

Darie-Watson_4681Front.fm Page xvi Thursday, September 22, 2005 5:26 AM

xvii

Introduction

Welcome to Beginning ASP.NET 2.0 E-Commerce in C# 2005: From Novice to Professional! The
explosive growth of retail over the Internet is encouraging more small- to medium-sized busi-
nesses to consider the benefits of setting up e-commerce web sites. Although online retailing has
great and obvious advantages, there are also many hidden pitfalls that may be encountered
when developing a retail web site. This book provides you with a practical, step-by-step guide
to setting up an e-commerce site. Guiding you through every aspect of the design and build
process, this book will have you building high-quality, extendable e-commerce web sites
quickly and easily.

Over the course of this book, you will develop all the skills necessary to get your business
up on the web and available to a worldwide audience, without having to use high-end, expensive
solutions. Except for the operating system, the software required for this book can be down-
loaded free. We present this information in a book-long case study, the complexity of which
develops as your knowledge increases through the book.

The case study is presented in three phases. The first phase focuses on getting the site up
and running as quickly as possible, and at a low cost. That way, the financial implications if
you are not publishing the site are reduced, and also, should you use the site, you can start to
generate revenue quickly. At the end of this phase, you’ll have a working site that you can play with
or go live with if you want to. The revenue generated can be used to pay for further development.

The second phase concentrates on increasing revenue by improving the shopping experience
and actively encouraging customers to buy more by implementing product recommendations.
Again at the end of this phase, you’ll have a fully working site that you can go live with.

By the third phase, you’ll have the site up and running, and doing very well. During this
phase, you’ll look at increasing your profit margins by reducing costs through automating and
streamlining order processing and administration, and by handling credit card transactions
yourself. You’ll also learn how to communicate with external systems, by integrating the Amazon
E-Commerce Service (formerly known as Amazon Web Services—AWS), into your web site.

Who This Book Is For
This book is aimed at developers looking for a tutorial approach to building a full e-commerce
web site from design to deployment.

Although this book explains the techniques used to build the site, you should have some
previous experience programming ASP.NET 2.0 with C#. Having a reference book such as
Beginning Visual Web Developer 2005 Express: From Novice to Professional (Apress, 2005) on
hand is highly recommended.

This book may also prove valuable for ASP.NET 1.x, ASP 3, PHP, or Java developers who
learn best by example and want to experience ASP.NET 2.0 development techniques firsthand.

Darie-Watson_4681Front.fm Page xvii Thursday, September 22, 2005 5:26 AM

xviii ■I N T R O D U C T I O N

What This Book Covers
In this book you’ll learn to

• Build an online product catalog that can be browsed and searched.

• Implement the catalog administration pages that allow adding, modifying, and
removing products, categories, and departments.

• Create your own shopping basket and checkout in ASP.NET.

• Increase sales by implementing product recommendations.

• Handle payments using PayPal, DataCash, and VeriSign Payflow Pro.

• Implement a customer accounts system.

• Integrate with XML Web Services, such as Amazon E-Commerce Service.

How This Book Is Structured
The following sections present a brief roadmap of where this book is going to take you. The first
phase of the book, Chapters 1 through 8, takes you through the process of getting your site up
and running. In the second phase of the book, Chapters 9 through 11, you’ll create your own
shopping cart. And in the third phase, Chapters 12 through 17, you’ll start processing orders
and integrating external systems.

Chapter 1: Starting an E-Commerce Site
In this chapter you’ll see some of the principles of e-commerce in the real world. You’ll learn
the importance of focusing on short-term revenue and keeping risks down. We look at the three
basic ways in which an e-commerce site can make money. We then apply those principles to a
three-phase plan that continues to expand throughout the book, providing a deliverable, usable
site at each stage.

Chapter 2: Laying Out the Foundations
After deciding to develop a web site, we start to look in more detail at laying down the founda-
tions for the future web site. We’ll talk about what technologies and tools you’ll use and, even
more important, how you’ll use them.

Chapter 3: Creating the Product Catalog: Part I
After you’ve learned about the three-tier architecture and implemented a bit of your web site’s
main page, it’s time to continue your work by starting to create the product catalog. You’ll develop
the first database table, create the first stored procedure, implement generic data access code,
learn how to handle errors and email their details to the administrator, work with the web.config
ASP.NET configuration file, implement the business logic, and finally use data gathered from the
database through the business logic mechanism to compose dynamic content for your visitor.

Darie-Watson_4681Front.fm Page xviii Thursday, September 22, 2005 5:26 AM

■I N T R O D U C T I O N xix

Chapter 4: Creating the Product Catalog: Part II
This chapter continues the work started in Chapter 3 by adding many new product catalog
features. Here you’ll learn about relational data and about the types of relationships that occur
between data tables, how to join data tables, how to work with stored procedures, and how to
display categories, products, and product details.

Chapter 5: Searching the Catalog
“What are you looking for?” There is no place where you’ll hear this question more frequently
than in both brick-and-mortar and e-commerce stores. Like any other quality web store around,
your site should allow visitors to search through the product catalog. In this chapter, you’ll see
how easy it is to add new functionality to a working site by integrating the new components into
the existing architecture.

Chapter 6: Improving Performance
Why walk when you can run? No, we won’t talk about sports cars in this chapter. Instead, we’ll
analyze a few possibilities to improve the performance of your project. Although having a serious
discussion on improving ASP.NET performance is beyond the scope of this book, in this chapter,
you’ll learn a few basic principles that you can follow to improve your web site’s performance.

Chapter 7: Receiving Payments Using PayPal
Let’s collect some money! Your e-commerce web site needs a way to receive payments from
customers. The preferred solution for established companies is to open a merchant account,
but many small businesses choose to start with a solution that’s simpler to implement, where
they don’t have to process credit card or payment information themselves. In this chapter,
you’ll learn how to receive payments through PayPal.

Chapter 8: Catalog Administration
The final detail to take care of before launching the site is to create the administrative interface.
In the previous chapters, you worked with catalog information that already existed in the data-
base. You’ve probably inserted some records yourself, or maybe you downloaded the database
information. For a real web site, both of these methods are unacceptable, so you need to write
some code to allow easy management of the web store data. In this chapter, you’ll implement a
catalog administration page. With this feature, you complete the first stage of your web site’s
development.

Chapter 9: Creating a Custom Shopping Cart
Welcome to the second phase of development, where you’ll start improving and adding new
features to the already existing, fully functional e-commerce site. In this chapter, you’ll imple-
ment the custom shopping basket, which will store its data into the local database. This will
provide you with more flexibility than the PayPal shopping basket, over which you have no
control and which you can’t save into your database for further processing and analysis.

Darie-Watson_4681Front.fm Page xix Thursday, September 22, 2005 5:26 AM

xx ■I N T R O D U C T I O N

Chapter 10: Dealing with Customer Orders
The good news is that your brand-new shopping cart looks good and is fully functional. The bad
news is that it doesn’t allow visitors to actually place orders, making it totally useless in the
context of a production system. You’ll deal with that problem in this chapter, in two separate
stages. In the first part of the chapter, you’ll implement the client-side part of the order-placing
mechanism. In the second part of the chapter, you’ll implement a simple orders administration
page where the site administrator can view and handle pending orders.

Chapter 11: Making Product Recommendations
One of the most important advantages of an online store as compared to a brick-and-mortar
store is the capability to customize the web site for each visitor based on his or her preferences,
or based on data gathered from other visitors with similar preferences. If your web site knows
how to suggest additional products to an individual visitor in a clever way, he or she might end
up buying more than initially planned. In this chapter, you’ll implement a simple but efficient
product recommendations system in your web store.

Chapter 12: Adding Customer Accounts
So far in this book, you’ve built a basic (but functional) site and hooked it into PayPal for taking
payments and confirming orders. In this last section of the book, you’ll take things a little further.
By cutting out PayPal from the ordering process, you can gain better control and reduce over-
heads. This isn’t as complicated as you might think, but you must be careful to do things right.
This chapter lays the groundwork for this task by implementing a customer account system.

Chapter 13: Advanced Customer Orders
Your e-commerce application is shaping up nicely. You’ve added customer account function-
ality, and you’re keeping track of customer addresses and credit card information, which is
stored in a secure way. However, you’re not currently using this information—you’re delegating
responsibility for this to PayPal. In this chapter, you’ll make the modifications required for
customers to place orders that are associated with their user profile.

Chapter 14: Order Pipeline
In this and the next chapter, you’ll build your own order-processing pipeline that deals with
credit card authorization, stock-checking, shipping, sending email notifications, and so on.
We’ll leave the credit card processing specifics until Chapter 16, but we’ll show you where this
process fits in before then.

Chapter 15: Implementing the Pipeline
Here you complete the previous chapter’s work by adding the required pipeline sections so that
you can process orders from start to finish. We’ll also look at the web administration of orders
by modifying the order administration pages added earlier in the book to take into account the
new order-processing system.

Darie-Watson_4681Front.fm Page xx Thursday, September 22, 2005 5:26 AM

■I N T R O D U C T I O N xxi

Chapter 16: Credit Card Transactions
The last thing you need to do before launching the e-commerce site is enable credit card
processing. In this chapter, we’ll look at how you can build this into the pipeline you created in
the last chapter. You’ll learn how to process payments through DataCash and using the VeriSign
Payflow Pro service.

Chapter 17: Integrating Amazon Web Services
In the dynamic world of the Internet, sometimes it isn’t enough to just have an important web
presence; you also need to interact with functionality provided by third parties to achieve your
goals. So far in this book, you’ve seen how to integrate external functionality to process payments
from your customers. In this chapter, you’ll learn new possibilities for integrating functionality
from an external source, this time through a web service.

Appendix A: Installing the Software
Here you’ll learn how to set up your machine for the e-commerce site you’ll build throughout
the book. You’re shown the steps to install Visual Web Developer 2005 Express Edition, SQL
Server 2005 Express Edition, SQL Server Express Manager, and IIS 5.x.

Appendix B: Project Management Considerations
Although the way you build your e-commerce web site throughout this book (by designing and
building one feature at a time) is ideal for learning, in real-world projects, you need to design
everything from the start, otherwise you risk ending up with a failed project. Appendix B is a
very quick introduction to the most popular project-management methodologies and gives
you a few guidelines about how to successfully manage building a real-world project.

Downloading the Code
The code for this book is available for download in the Source Code area of the Apress web site
(http://www.apress.com). Unzip the file and open Welcome.html for installation details.

Contacting the Authors
Cristian Darie can be contacted through his personal web site at http://www.CristianDarie.ro.
Karli Watson can be contacted through http://www.3form.net.

Darie-Watson_4681Front.fm Page xxi Thursday, September 22, 2005 5:26 AM

8213592a117456a340854d18cee57603

Darie-Watson_4681Front.fm Page xxii Thursday, September 22, 2005 5:26 AM

1

■ ■ ■

C H A P T E R 1

Starting an E-Commerce Site

The word “e-commerce” has had a remarkable fall from grace in the past few years. Just the
idea of having an e-commerce web site was enough to get many business people salivating
with anticipation. Now it’s no longer good enough to just say, “E-commerce is the future—get
online or get out of business.” You now need compelling, realistic, and specific reasons to take
your business online.

This book focuses on programming and associated disciplines, such as creating, accessing,
and manipulating databases. Before we jump into that, however, we need to cover the business
decisions that lead to the creation of an e-commerce site in the first place.

If you want to build an e-commerce site today, you must answer some tough questions.
The good news is these questions do have answers, and we’re going to have a go at answering
them in this chapter:

• So many big e-commerce sites have failed. What can e-commerce possibly offer me in
today’s tougher environment?

• Most e-commerce companies seemed to need massive investment. How can I produce
a site on my limited budget?

• Even successful e-commerce sites expect to take years before they turn a profit. My busi-
ness can’t wait that long. How can I make money now?

Deciding Whether to Go Online
Although there are hundreds of possible reasons to go online, they tend to fall into the following
motivations:

• Getting more customers

• Making customers spend more

• Reducing the costs of fulfilling orders

We’ll look at each of these in the following sections.

Darie-Watson_4681C01.fm Page 1 Tuesday, August 9, 2005 3:51 AM

2 C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E

Getting More Customers
Getting more customers is immediately the most attractive reason. With an e-commerce site,
even small businesses can reach customers all over the world. This reason can also be the most
dangerous because many people set up e-commerce sites assuming that the site will reach
customers immediately. It won’t. In the offline world, you need to know a shop exists before
you can go into it. This is still true in the world of e-commerce—people must know your site
exists before you can hope to get a single order.

■Note The need to register and optimize your site for good search engine placement (with Google, Yahoo!,
and so on) has given birth to an entire services industry (and many spam emails). For example, many services
offer to register your site for a fee, but actually you can do it yourself with a bit of effort—the link to register
yourself with Google is http://www.google.com/addurl.html.

Addressing this issue is largely a question of advertising, rather than the site itself. Because
this is a programming book, we won’t cover this aspect of e-commerce, and we suggest you
consult additional books and resources if you’re serious about doing e-commerce.

Anyway, because an e-commerce site is always available, some people may stumble across
it. It’s certainly easier for customers to tell their friends about a particular web address than to
give them a catalog, mailing address, or directions to their favorite offline store.

Making Customers Spend More
Assuming your company already has customers, you probably wish that they bought more.
What stops them? If the customers don’t want any more of a certain product, there’s not a lot
that e-commerce can do, but chances are there are other reasons, too:

• Getting to the shop/placing an order by mail is a hassle.

• Some of the things you sell can be bought from more convenient places.

• You’re mostly open while your customers are at work.

• Buying some products just doesn’t occur to your customers.

An e-commerce site can fix those problems. People with Internet access will find placing
an order online far easier than any other method—meaning that when the temptation to buy
strikes, it will be much easier for them to give in. Of course, the convenience of being online
also means that people are more likely to choose your site over other local suppliers.

Because your site is online 24 hours a day, rather than the usual 9 to 5, your customers can
shop at your store outside of their working hours. Having an online store brings a double blessing
to you if your customers work in offices because they can indulge in retail therapy directly from
their desks.

Skillful e-commerce design can encourage your customers to buy things they wouldn’t
usually think of. You can easily update your site to suggest items of particular seasonal interest
or to announce interesting new products.

Darie-Watson_4681C01.fm Page 2 Tuesday, August 9, 2005 3:51 AM

C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E 3

Many of the large e-commerce sites encourage shoppers to buy useful accessories along
with the main product or to buy a more expensive alternative to the one they’re considering.
Others give special offers to regular shoppers or suggest impulse purchases during checkout.
You’ll learn how to use some of these methods in later chapters, and by the end of the book,
you’ll have a good idea of how to add more features for yourself.

Finally, it’s much easier to learn about your customers via e-commerce than in face-to-
face shops, or even through mail order. Even if you just gather email addresses, you can use
these to send out updates and news. More sophisticated sites can automatically analyze a
customer’s buying habits to suggest other products the customer might like to buy.

Another related benefit of e-commerce is that you can allow people to browse without
buying at no real cost to you. In fact, getting people to visit the site as often as possible can be
valuable. You should consider building features into the site that are designed purely to make
people visit regularly; for example, you might include community features such as forums or
free content related to the products you’re selling. Although we won’t cover these features
explicitly, by the end of the book you will have learned enough to easily add them for yourself.

Reducing the Costs of Fulfilling Orders
A well-built e-commerce site will be much cheaper to run than a comparable offline business.
Under conventional business models, a staff member must feed an order into the company’s
order-processing system. With e-commerce, the customer can do this for you—the gateway
between the site and the order processing can be seamless.

Of course, after your e-commerce site is up and running, the cost of actually taking orders
gets close to zero—you don’t need to pay for checkout staff, assistants, security guards, or rent
in a busy shopping mall.

If you have a sound business idea, and you execute the site well, you can receive these
benefits without a massive investment. It’s important to always focus on the almighty dollar:
Will your site, or any particular feature of it, help you get more customers, get customers to
spend more, or reduce the costs and therefore increase your profit margins?

Now it’s time to introduce the site we’ll be using as the example in this book, and see just
how all these principles relate to your own shop.

Making Money
We’re going to build an online balloon shop. On all the e-commerce sites we’ve worked on,
there’s been a great deal of tension between wanting to produce an amazing site that every-
body will love and needing to create a site with a limited budget that will make money. Usually,
we’re on the trigger-happy, really-amazing-site side, but we’re always grateful that our ambi-
tions are reined in by the actual business demands. If you’re designing and building the site for
yourself and you are the client, then you have a challenge: keeping your view realistic while
maintaining your enthusiasm for the project.

This book shows you a logical way to build an e-commerce site that delivers what it needs
to be profitable. However, when designing your own site, you need to think carefully about
exactly who your customers are, what they need, how they want to place orders, and what they
are most likely to buy. Most important of all, you need to think about how they will come to
your site in the first place. You should consider the following points before you start to visualize
or design the site, and certainly before you start programming:

Darie-Watson_4681C01.fm Page 3 Tuesday, August 9, 2005 3:51 AM

4 C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E

• Getting customers: How will you get visitors to the site in the first place?

• Offering products: What will you offer, and how will you expect customers to buy? Will
they buy in bulk? Will they make a lot of repeat orders? Will they know what they want
before they visit, or will they want to be inspired? These factors will influence how you
arrange your catalog and searching, as well as what order process you use. A shopping
basket is great if people want to browse. If people know exactly what they want, then
they may prefer something more like an order form.

• Processing orders: How will you turn a customer order into a parcel ready for mailing?
How will you ship the products (for example, FedEx, UPS, or DHL)? Your main consider-
ation here is finding an efficient way to process payments and deliver orders to whoever
manages your stocks or warehouse. You must give your customers confidence in your
ability to protect their data and deliver their purchases on time.

• Servicing customers: Will customers require additional help with products that they buy
from you? Do you need to offer warranties, service contracts, or other support services?

• Bringing customers back: How will you entice customers back to the site? Are they likely
to only visit the site to make a purchase, or will there be e-window shoppers? Are your
products consumables, and can you predict when your customers will need some-
thing new?

After you’ve answered these questions, you can start designing your site, knowing that
you’re designing for your customers—not just doing what seems like a good idea. Determining
the answers to these questions also helps ensure that your design covers all the important areas,
without massive omissions that will be a nightmare to fix later.

The example presented in this book takes a deliberate generic approach to show you the
most common e-commerce techniques. To really lift yourself above the competition, however,
you don’t need fancy features or Flash movies—you just need to understand, attract, and serve
your customers better than anybody else. Think about this before you launch into designing
and building the site itself.

Considering the Risks and Threats
All this might make it sound as if your e-commerce business can’t possibly fail. Well, it’s time
to take a cold shower and realize that even the best-laid plans often go wrong. Some risks are
particularly relevant to e-commerce companies, such as

• Hacking and identity theft

• Credit-card scams

• Hardware failures

• Unreliable shipping services

• Software errors

• Changing laws

Darie-Watson_4681C01.fm Page 4 Tuesday, August 9, 2005 3:51 AM

C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E 5

You can’t get rid of these risks, but you can try to understand them and defend yourself
from them. The software developed in this book goes some way to meeting these issues, but
many of the risks have little to do with the site itself.

An important way to defend your site from many risks is to keep backups. You already
know backups are important; however, if you’re anything like us, when it gets to the end of the
day, saving five minutes and going home earlier seems even more important. When you have a
live web site, this simply isn’t an option.

Coding with security in mind is also essential. In this book, you’ll learn how to protect
yourself by implementing a good error-handling strategy and validating user input. Using SSL
(Secure Sockets Layer) connections is vital for securing sensible pages, such as the ones that
contain credit-card data, and we’ll cover this as well.

We haven’t talked much about the legal side of e-commerce in this book because we’re
programmers, not lawyers. However, if you’re setting up an e-commerce site that goes much
beyond an online garage sale, you’ll need to look into these issues before putting your business
online.

While we’re on the subject of risks and threats, one issue that can really damage your
e-commerce site is unreliable order fulfillment. An essential part of the processes is getting the
products delivered. To do this, you need a good logistics network set up before launching your
shop. If your store doesn’t deliver the goods, customers won’t come back or refer their friends.

■Tip Webmonkey provides an excellent general e-commerce tutorial that covers taxation, shipping, and
many of the issues you’ll face when designing your site at http://hotwired.lycos.com/webmonkey/
e-business/building/tutorials/tutorial3.html. Check this out before you start designing your
own site.

Designing for Business
Building an e-commerce site requires a significant investment. If you design the site in phases,
you can reduce the initial investment, and therefore cut your losses if the idea proves unsuccessful.
You can use the results from an early phase to assess whether it’s worthwhile to add extra features,
and even use revenue from the site to fund future development. If nothing else, planning to
build the site in phases means that you can get your site online and receive orders much earlier
than if you build every possible feature into the first release.

Even after you’ve completed your initial planned phases, things may not end there. When-
ever you plan a large software project, it’s important to design in a way that makes unplanned
future growth easy. In Chapter 2, where we’ll start dealing with the technical details of building
e-commerce sites, you’ll learn how to design the web site architecture to allow for long-term
development flexibility and scalability.

If you’re building sites for clients, they will like to think their options are open. Planning
the site, or any other software, in phases will help your clients feel comfortable doing business
with you. They will be able to see that you are getting the job done, and they can decide to end
the project at the end of any phase if they feel—for whatever reason—that they don’t want to
continue to invest in development.

Darie-Watson_4681C01.fm Page 5 Tuesday, August 9, 2005 3:51 AM

6 C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E

Phase I: Getting a Site Up
Chapters 2 through 8 concentrate on establishing the basic framework for a site and putting a
product catalog online. We’ll start by putting together the basic site architecture, deciding how
the different parts of our application will work together. We’ll then build the product catalog
into this architecture. You’ll learn how to

• Design a database for storing a product catalog containing categories, subcategories,
and products.

• Write the SQL (Structured Query Language) code and C# code for accessing that data.

• Build an attractive and functional user interface (UI) that allows for easy catalog browsing.

• Implement an efficient error-reporting system that notifies the administrator in case the site
runs into trouble and displays an Ooops message to the visitor when a critical error occurs.

• Integrate an external payment processor (with examples for PayPal) to allow visitors to
order your products.

• Provide a free-text search engine for the database.

• Give the site’s administrators a private section of the site where they can modify the
catalog online.

After you’ve built this catalog, you’ll see how to offer the products for sale by integrating it
with PayPal’s shopping cart and order-processing system, which will handle credit-card trans-
actions for you and email you with details of orders. These orders will be processed manually
because in the early stages of an e-commerce site, the time you lose processing orders will be
less than the time it would have taken to develop an automated system.

Phase II: Creating Your Own Shopping Cart
Using PayPal’s shopping cart is okay and really easy, but it does mean you lose a lot of advan-
tages. For example, you can’t control the look and feel of PayPal’s shopping cart, but if you use
your own, you can make it an integral part of the site.

This is a significant advantage, but it’s superficial compared to some of the others. For
example, with your own shopping cart, you can store complete orders in your database as part
of the order process, and then use that data to learn about your customers. With additional
work, you also can use the shopping basket and checkout as a platform for selling more products.
How often have you been tempted by impulse purchases near the checkout of your local store?
Well, this also works with e-commerce. Having your own shopping cart and checkout gives you
the option of later offering low-cost special offers from there. You can even analyze and make
suggestions based on the contents of the cart. These optional features are outside the scope of
this book, but will be easy to plug into the infrastructure you develop here—remember, your
site is designed for growth!

Chapters 9 through 11 show you how to

• Build your own ASP.NET (Active Server Pages .NET) shopping cart.

• Pass a complete order through to PayPal for credit-card processing.

Darie-Watson_4681C01.fm Page 6 Tuesday, August 9, 2005 3:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E 7

• Create an orders administration page.

• Implement a product recommendations system in the form of a “customers who bought
this product also bought” list.

Once again, at the end of Phase II, your site will be fully operational. If you want, you can
leave it as it is or add features within the existing PayPal-based payment system. When the site
gets serious, however, you’ll want to start processing orders and credit cards yourself. This is
the part where things get complicated, and you need to be serious and careful about your site’s
security.

Phase III: Processing Orders
The core of e-commerce, and the bit that really separates it from other web-development
projects, is handling orders and credit cards. PayPal has helped you put this off, but there are
many good reasons why—eventually—you’ll want to part company with PayPal:

• Cost: PayPal is not expensive, but the extra services it offers must be paid for somehow.
Moving to a simpler credit-card processing service will mean lower transaction costs,
although developing your own system will obviously incur upfront costs.

• Freedom: PayPal has a fairly strict set of terms and conditions and is designed for residents
of a limited number of countries. By taking on more of the credit-card processing respon-
sibility yourself, you can better control the way your site works. As an obvious example,
you can accept payment using regional methods such as the Switch debit cards common
in the United Kingdom.

• Integration: If you deal with transactions and orders using your own system, you can
integrate your store and your warehouse to whatever extent you require. You could even
automatically contact a third-party supplier that ships the goods straight to the customer.

• Information: When you handle the whole order yourself, you can record and collate all
the information involved in the transaction—and then use it for marketing and research
purposes.

By integrating the order processing with the warehouse, fulfillment center, or suppliers,
you can reduce costs significantly. This might mean that it reduces the need for staff in the
fulfillment center, or at least that the business can grow without requiring additional staff.

Acquiring information about customers can feed back into the whole process, giving you
valuable information about how to sell more. At its simplest, you could email customers with
special offers, or just keep in touch with a newsletter. You also could analyze buying patterns
and use that data to formulate targeted marketing campaigns.

During Phase III (in Chapters 12 through 17), you will learn how to

• Build a customer accounts module, so that customers can log in and retrieve their details
every time they make an order.

• Establish secure connections using SSL so that data sent by users is encrypted on its
travels across the Internet.

Darie-Watson_4681C01.fm Page 7 Tuesday, August 9, 2005 3:51 AM

8 C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E

• Authenticate and charge credit cards using third-party companies such as DataCash
and VeriSign, and their XML (Extensible Markup Language) web services.

• Store credit-card numbers securely in a database.

• Learn how to integrate the Amazon E-Commerce Service into your web site.

This third phase is the most involved of all and requires some hard and careful work. By
the end of Phase III, however, you will have an e-commerce site with a searchable product
catalog, shopping cart, secure checkout, and complete order-processing system.

The Balloon Shop
As we said earlier, we’re going to build an online shop called BalloonShop. Figure 1-1 shows
how BalloonShop will look at some point during the second stage of development.

Figure 1-1. BalloonShop during Phase II of development

Darie-Watson_4681C01.fm Page 8 Tuesday, August 9, 2005 3:51 AM

C H A P T E R 1 ■ S T A R T I N G A N E - C O M M E R C E S I T E 9

■Tip You can preview the online version of BalloonShop at http://web.cristiandarie.ro/
BalloonShop. Many thanks go to http://www.balloon-shop.com/ for allowing us to use some of their
products to populate our virtual BalloonShop store.

For the purposes of this book, we’ll assume that the client already exists as a mail-order
company and has a good network of customers. The company is not completely new to the
business and wants the site to make it easier and more enjoyable for its existing customers to
buy—with the goal that they’ll end up buying more.

Knowing this, we suggest the phased development because

• The company is unlikely to get massive orders initially, so you should keep the initial
cost of building the web site down as much as possible.

• The company is accustomed to manually processing mail orders, so manually
processing orders emailed by PayPal will not introduce many new problems.

• The company doesn’t want to invest all of its money in a massive e-commerce site, only
to find that people actually prefer mail order after all! Or, after Phase I, the company
might realize that the site already meets its needs and there’s no reason to expand it
further. Either way, you hope that offering a lower initial cost gives your bid the edge. (It
might also mean you can get away with a higher total price.)

Because this company is already a mail-order business, it probably already has a merchant
account and can process credit cards. Thus, moving on to Phase III as soon as possible would
be best for this company so it can benefit from the preferential card-processing rates.

Summary
In this chapter, we’ve covered some of the principles of e-commerce in the real, hostile world
where it’s important to focus on short-term revenue and keep risks down. We’ve discussed the
three basic motivations for taking your business online:

• Acquiring more customers

• Making customers spend more

• Reducing the costs of fulfilling orders

We’ve shown you how to apply those principles to a three-phase plan that provides a deliv-
erable, usable site at each stage. We’ll continue to expand on this plan throughout the book.

At this point, you’ve presented your plan to the owners of the balloon shop. In the next
chapter, you’ll put on your programming hat, and start to design and build your web site
(assuming you get the contract, of course).

Darie-Watson_4681C01.fm Page 9 Tuesday, August 9, 2005 3:51 AM

Darie-Watson_4681C01.fm Page 10 Tuesday, August 9, 2005 3:51 AM

11

■ ■ ■

C H A P T E R 2

Laying Out the Foundations

Now that you’ve convinced the client that you can create a cool web site to complement the
client’s store activity, it’s time to stop celebrating and start thinking about how to put into
practice all the promises made to the client. As usual, when you lay down on paper the tech-
nical requirements you must meet, everything starts to seem a bit more complicated than
initially anticipated.

■Note It is strongly recommended to consistently follow an efficient project-management methodology to
maximize the chances of the project’s success, on budget and on time. Most project-management theories
imply that an initial requirements/specifications document containing the details of the project you’re about to
create has been signed by you and the client. You can use this document as a guide while creating the solution, and
it also allows you to charge extra in case the client brings new requirements or requests changes after devel-
opment has started. See Appendix B for more details.

To ensure this project’s success, you need to come up with a smart way to implement what
you’ve signed the contract for. You want to make your life easy and develop the project smoothly
and quickly, but the ultimate goal is to make sure the client is satisfied with your work. Conse-
quently, you should aim to provide your site’s increasing number of visitors with a pleasant
web experience by creating a nice, functional, and responsive web site by implementing each
one of the three development phases described in the first chapter.

The requirements are high, but this is normal for an e-commerce site today. To maximize
the chances of success, we’ll try to analyze and anticipate as many of the technical require-
ments as possible, and implement the solution in way that supports changes and additions
with minimal effort.

In this chapter, we’ll lay down the foundations for the future BalloonShop web site. We’ll
talk about what technologies and tools you’ll use, and even more important, how you’ll use
them. Let’s consider a quick summary of the goals for this chapter before moving on:

• Analyze the project from a technical point of view.

• Analyze and choose an architecture for your application.

• Decide which technologies, programming languages, and tools to use.

Darie-Watson_4681C02.fm Page 11 Tuesday, September 20, 2005 4:51 AM

12 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

• Discuss naming and coding conventions.

• Create the basic structure of the web site and set up the database.

Designing for Growth
The word “design” in the context of a Web Application can mean many things. Its most popular
usage probably refers to the visual and user interface (UI) design of a web site.

This aspect is crucial because, let’s face it, the visitor is often more impressed with how a
site looks and how easy it is to use than about which technologies and techniques are used
behind the scenes, or what operating system the web server is running. If the site is hard to use
and easy to forget, it just doesn’t matter what rocket science was used to create it.

Unfortunately, this truth makes many inexperienced programmers underestimate the
importance of the way the invisible part of the site is implemented—the code, the database,
and so on. The visual part of a site gets visitors interested to begin with, but its functionality
makes them come back. A web site can sometimes be implemented very quickly based on
certain initial requirements, but if not properly architected, it can become difficult, if not
impossible, to change.

For any project of any size, some preparation must be done before starting to code. Still,
no matter how much planning and design work is done, the unexpected does happen and
hidden catches, new requirements, and changing rules always seem to work against deadlines.
Even without these unexpected factors, site designers are often asked to change or add new
functionality after the project is finished and deployed. This also will be the case for BalloonShop,
which you’ll implement in three separate stages, as discussed in Chapter 1.

You’ll learn how to create the web site so that the site (or you) will not fall apart when func-
tionality is extended or updates are made. Because this is a programming book, it doesn’t
address important aspects of e-commerce, such as designing the UI, marketing techniques, or
legal issues. You’ll need additional material to cover that ground. Instead, in this book, we’ll
pay close attention to constructing the code that makes the site work.

The phrase “designing the code” can have different meanings; for example, we’ll need to
have a short talk about naming conventions. Still, the most important aspect that we need to
look at is the architecture to use when writing the code. The architecture refers to the way you
split the code for a simple piece of functionality (for example, the product search feature) into
smaller, interconnected components. Although it might be easier to implement that function-
ality as quickly and as simply as possible, in a single component, you gain great long-term
advantages by creating more components that work together to achieve the desired result.

Before considering the architecture itself, you must determine what you want from this
architecture.

Meeting Long-Term Requirements with Minimal Effort
Apart from the fact that you want a fast web site, each of the phases of development we talked
about in Chapter 1 brings new requirements that must be met.

Every time you proceed to a new stage, you want to reuse most of the already existing solu-
tion. It would be very inefficient to redesign the site (not just the visual part, but the code as
well!) just because you need to add a new feature. You can make it easier to reuse the solution

Darie-Watson_4681C02.fm Page 12 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 13

by planning ahead so that any new functionality that needs to be added can slot in with ease,
rather than each change causing a new headache.

When building the web site, implementing a flexible architecture composed of pluggable
components allows you to add new features—such as the shopping cart, the departments list,
or the product search feature—by coding them as separate components and plugging them
into the existing application. Achieving a good level of flexibility is one of the goals regarding
the application’s architecture, and this chapter shows how you can put this into practice. You’ll
see that the level of flexibility is proportional to the amount of time required to design and
implement it, so we’ll try to find a compromise that provides the best gains without complicating
the code too much.

Another major requirement that is common to all online applications is to have a scalable
architecture. Scalability is defined as the capability to increase resources to yield a linear increase
in service capacity. In other words, in a scalable system, the ratio (proportion) between the
number of client requests and the hardware resources required to handle those requests is
constant, even when the number of clients increases (ideally). An unscalable system can’t deal
with an increasing number of clients, no matter how many hardware resources are provided.
Because we’re optimistic about the number of customers, we must be sure that the site will
be able to deliver its functionality to a large number of clients without throwing out errors or
performing sluggishly.

Reliability is also a critical aspect for an e-commerce application. With the help of a coherent
error-handling strategy and a powerful relational database, you can ensure data integrity and
ensure that noncritical errors are properly handled without bringing the site to its knees.

The Magic of the Three-Tier Architecture
Generally, the architecture refers to splitting each piece of the application’s functionality into
separate components based on what they do and grouping each kind of component into a
single logical tier.

The three-tier architecture has become popular today because it answers most of the
problems discussed so far by splitting an application’s functionality unit into three logical tiers:

• The presentation tier

• The business tier

• The data tier

The presentation tier contains the UI elements of the site, and includes all the logic that
manages the interaction between the visitor and the client’s business. This tier makes the whole
site feel alive, and the way you design it is crucially important to the site’s success. Because
your application is a web site, its presentation tier is composed of dynamic web pages.

The business tier (also called the middle tier) receives requests from the presentation tier
and returns a result to the presentation tier depending on the business logic it contains. Almost
any event that happens in the presentation tier results in the business tier being called (except
events that can be handled locally by the presentation tier, such as simple input data validation).
For example, if the visitor is doing a product search, the presentation tier calls the business tier
and says, “Please send me back the products that match this search criterion.” Almost always,

Darie-Watson_4681C02.fm Page 13 Tuesday, September 20, 2005 4:51 AM

8213592a117456a340854d18cee57603

14 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

the business tier needs to call the data tier for information to respond to the presentation tier’s
request.

The data tier (sometimes referred to as the database tier) is responsible for storing the
application’s data and sending it to the business tier when requested. For the BalloonShop
e-commerce site, you’ll need to store data about products (including their categories and their
departments), users, shopping carts, and so on. Almost every client request finally results in
the data tier being interrogated for information (except when previously retrieved data has
been cached at the business tier or presentation tier levels), so it’s important to have a fast
database system. In Chapters 3 and 4, you’ll learn how to design the database for optimum
performance.

These tiers are purely logical—there is no constraint on the physical location of each tier.
You’re free to place all the application, and implicitly all its tiers, on a single server machine.
Alternatively, you can place each tier on a separate machine or even split the components
of a single tier over multiple machines. Your choice depends on the particular performance
requirements of the application. This kind of flexibility allows you to achieve many benefits,
as you’ll soon see.

An important constraint in the three-layered architecture model is that information must flow
in sequential order between tiers. The presentation tier is only allowed to access the business tier
and never directly the data tier. The business tier is the “brain” in the middle that communicates
with the other tiers and processes and coordinates all the information flow. If the presentation
tier directly accessed the data tier, the rules of three-tier architecture programming would be
broken. When you implement a three-tier architecture, you must be consistent and obey its
rules to reap the benefits.

Figure 2-1 is a simple representation of how data is passed in an application that imple-
ments the three-tier architecture.

Figure 2-1. Simple representation of the three-tier architecture

A Simple Scenario

It’s easier to understand how data is passed and transformed between tiers if you take a closer
look at a simple example. To make the example even more relevant to the project, let’s analyze
a situation that will actually happen in BalloonShop. This scenario is typical for three-tier
applications.

Darie-Watson_4681C02.fm Page 14 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 15

Like most e-commerce sites, BalloonShop will have a shopping cart, which we’ll discuss
later in the book. For now, it’s enough to know that the visitor will add products to the shopping
cart by clicking an Add to Cart button. Figure 2-2 shows how the information flows through the
application when that button is clicked.

Figure 2-2. Internet visitor interacting with a three-tier application

When the user clicks the Add to Cart button for a specific product (Step 1), the presenta-
tion tier (which contains the button) forwards the request to the business tier—“Hey, I want
this product added to the visitor’s shopping cart!” (Step 2). The business tier receives the request,
understands that the user wants a specific product added to the shopping cart, and handles the
request by telling the data tier to update the visitor’s shopping cart by adding the selected
product (Step 3). The data tier needs to be called because it stores and manages the entire web
site’s data, including users’ shopping cart information.

The data tier updates the database (Step 4) and eventually returns a success code to the
business tier. The business tier (Step 5) handles the return code and any errors that might
have occurred in the data tier while updating the database and then returns the output to the
presentation tier.

Finally, the presentation tier generates an updated view of the shopping cart (Step 6). The
results of the execution are wrapped up by generating an HTML (Hypertext Markup Language)
web page that is returned to the visitor (Step 7), where the updated shopping cart can be seen
in the visitor’s favorite web browser.

Note that in this simple example, the business tier doesn’t do a lot of processing, and its
business logic isn’t very complex. However, if new business rules appear for your application,
you would change the business tier. If, for example, the business logic specified that a product

Darie-Watson_4681C02.fm Page 15 Tuesday, September 20, 2005 4:51 AM

16 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

could only be added to the shopping cart if its quantity in stock were greater than zero, an
additional data tier call would have been made to determine the quantity. The data tier would
only be requested to update the shopping cart if products were in stock. In any case, the
presentation tier is informed about the status and provides human-readable feedback to the
visitor.

What’s in a Number?

It’s interesting to note how each tier interprets the same piece of information differently. For
the data tier, the numbers and information it stores have no significance because this tier is an
engine that saves, manages, and retrieves numbers, strings, or other data types—not product
quantities or product names. In the context of the previous example, a product quantity of 0
represents a simple, plain number without any meaning to the data tier (it is simply 0, a 32-bit
integer).

The data gains significance when the business tier reads it. When the business tier asks the
data tier for a product quantity and gets a “0” result, this is interpreted by the business tier as
“Hey, no products in stock!” This data is finally wrapped in a nice, visual form by the presenta-
tion tier, for example, a label reading, “Sorry, at the moment the product cannot be ordered.”

Even if it’s unlikely that you want to forbid a customer from adding a product to the shopping
cart if the product isn’t in stock, the example (described in Figure 2-3) is good enough to present
in yet another way how each of the three tiers has a different purpose.

Figure 2-3. Internet visitor interacting with a three-tier application

The Right Logic for the Right Tier

Because each layer contains its own logic, sometimes it can be tricky to decide where exactly
to draw the line between the tiers. In the previous scenario, instead of reading the product’s

Darie-Watson_4681C02.fm Page 16 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 17

quantity in the business tier and deciding whether the product is available based on that number
(resulting in two data tier, and implicitly database, calls), you could have a single data tier method
named AddProductIfAvailable that adds the product to the shopping cart only if it’s available
in stock.

In this scenario, some logic is transferred from the business tier to the data tier. In many
other circumstances, you might have the option to place the same logic in one tier or another,
or maybe in both. In most cases, there is no single best way to implement the three-tier architec-
ture, and you’ll need to make a compromise or a choice based on personal preference or
external constraints.

Occasionally, even though you know the right way (in respect to the architecture) to
implement something, you might choose to break the rules to get a performance gain. As a
general rule, if performance can be improved this way, it’s okay to break the strict limits between
tiers just a little bit (for example, add some of the business rules to the data tier or vice versa),
if these rules are not likely to change in time. Otherwise, keeping all the business rules in the
middle tier is preferable because it generates a “cleaner” application that is easier to maintain.

Finally, don’t be tempted to access the data tier directly from the presentation tier. This is
a common mistake that is the shortest path to a complicated, hard-to-maintain, and inflexible
system. In many data access tutorials or introductory materials, you’ll be shown how to perform
simple database operations using a simple UI application. In these kinds of programs, all the
logic is probably written in a short, single file instead of separate tiers. Although the materials
might be very good, keep in mind that most of these texts are meant to teach you how to do
different individual tasks (for example, access a database) and not how to correctly create a
flexible and scalable application.

A Three-Tier Architecture for BalloonShop

Implementing a three-tiered architecture for the BalloonShop web site will help you achieve
the goals listed at the beginning of the chapter. The coding discipline imposed by a system that
might seem rigid at first sight allows for excellent levels of flexibility and extensibility in the
long run.

Splitting major parts of the application into separate, smaller components also encourages
reusability. More than once when adding new features to the site you’ll see that you can reuse
some of the already existing bits. Adding a new feature without needing to change much of
what already exists is, in itself, a good example of reusability. Also, smaller pieces of code placed
in their correct places are easier to document and analyze later.

Another advantage of the three-tiered architecture is that, if properly implemented, the
overall system is resistant to changes. When bits in one of the tiers change, the other tiers
usually remain unaffected, sometimes even in extreme cases. For example, if for some reason
the backend database system is changed (say, the manager decides to use Oracle instead of
SQL Server), you only need to update the data tier. The existing business tier should work the
same with the new database.

Why Not Use More Tiers?

The three-tier architecture we’ve been talking about so far is a particular (and the most popular)
version of the n-Tier Architecture, which is a commonly used buzzword these days. n-Tier
architecture refers to splitting the solution into a number (n) of logical tiers. In complex projects,
sometimes it makes sense to split the business layer into more than one layer, thus resulting in

Darie-Watson_4681C02.fm Page 17 Tuesday, September 20, 2005 4:51 AM

18 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

an architecture with more than three layers. However, for this web site, it makes most sense to
stick with the three-layered design, which offers most of the benefits while not requiring too
many hours of design or a complex hierarchy of framework code to support the architecture.

Maybe with a more involved and complex architecture, you would achieve even higher
levels of flexibility and scalability for the application, but you would need much more time for
design before starting to implement anything. As with any programming project, you must
find a fair balance between the time required to design the architecture and the time spent to
implement it. The three-tier architecture is best suited to projects with average complexity, like
the BalloonShop web site.

You also might be asking the opposite question, “Why not use fewer tiers?” A two-tier
architecture, also called client-server architecture, can be appropriate for less-complex projects. In
short, a two-tier architecture requires less time for planning and allows quicker development
in the beginning, although it generates an application that’s harder to maintain and extend in
the long run. Because we’re expecting to extend the application in the future, the client-server
architecture isn’t appropriate for this application, so it won’t be discussed further in this book.

Now that you know the general architecture, let’s see what technologies and tools you’ll
use to implement it. After a brief discussion of the technologies, you’ll create the foundation of
the presentation and data tiers by creating the first page of the site and the backend database.
You’ll start implementing some real functionality in each of the three tiers in Chapter 3 when
you start creating the web site’s product catalog.

Choosing Technologies and Tools
No matter which architecture is chosen, a major question that arises in every development
project is which technologies, programming languages, and tools are going to be used, bearing
in mind that external requirements can seriously limit your options.

■Note In this book, we’re creating a web site using Microsoft technologies. Keep in mind, however, that
when it comes to technology, problems often have more than one solution, and rarely is there only a single
best way to solve the problem. Although we really like Microsoft’s technologies as presented in this book, it
doesn’t necessarily mean they’re the best choice for any kind of project, in any circumstances. Additionally,
in many situations, you must use specific technologies because of client requirements or other external constraints.
The System Requirements and Software Requirements stages in the software development process will
determine which technologies you must use for creating the application. See Appendix B for more details.

This book is about programming e-commerce web sites with ASP.NET 2.0 (Active Server
Pages .NET 2.0) and C#. The tools you’ll use are Visual Web Developer 2005 Express Edition
and SQL Server 2005 Express Edition, which are freely available from Microsoft’s web site. See
Appendix A for installation instructions. Although the book assumes a little previous experi-
ence with each of these, we’ll take a quick look at them and see how they fit into the project and
into the three-tier architecture.

Darie-Watson_4681C02.fm Page 18 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 19

■Note This book builds on Beginning ASP.NET 1.1 E-Commerce: From Novice to Professional (Apress, 2004),
which used ASP.NET 1.1, Visual Studio .NET 2003, and SQL Server 2000. If you’re an open source fan, you
might also want to check out Beginning PHP 5 and MySQL E-Commerce: From Novice to Professional
(Apress, 2004).

Using ASP.NET 2.0
ASP.NET 2.0 is Microsoft’s latest technology set for building dynamic, interactive web content.
Compared to its previous versions, ASP.NET 2.0 includes many new features aimed at increasing
the web developer’s productivity in building web applications.

Because this book is targeted at both existing ASP.NET 1.1 and existing ASP.NET 2.0
developers, we’ll highlight a number of ASP.NET 2.0-specific techniques along the way and try
to provide useful tips and tricks that increase your coding efficiency by making the most of this
technology. However, do keep in mind that while building your e-commerce web site with this
book, we only cover a subset of the vast number of features ASP.NET 2.0 has to offer. Therefore,
you still need additional ASP.NET 2.0 books (or other resources) to use as a reference and to
complete your knowledge on theory issues that didn’t make it into this book. In the Apress
technology tree, reading this book comes naturally after Beginning ASP.NET 2.0 in C#: From
Novice to Professional (Apress, 2005), but you can always use the beginners’ books of your
choice instead.

ASP.NET is not the only server-side technology around for creating professional e-commerce
web sites. Among its most popular competitors are PHP (Hypertext Preprocessor), JSP (JavaServer
Pages), ColdFusion, and even the outdated ASP 3.0 and CGI (Common Gateway Interface).
Among these technologies are many differences, but also some fundamental similarities. For
example, pages written with any of these technologies are composed of basic HTML, which
draws the static part of the page (the template), and code that generates the dynamic part.

Web Clients and Web Servers

You probably already know the general principles about how dynamic web pages work. However,
as a short recap, Figure 2-4 shows what happens to an ASP.NET web page from the moment the
client browser (no matter if it’s Internet Explorer, Mozilla Firefox, or any other web browser)
requests it to the moment the browser actually receives it.

Darie-Watson_4681C02.fm Page 19 Tuesday, September 20, 2005 4:51 AM

20 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Figure 2-4. Web server processing client requests

After the request, the page is first processed at the server before being returned to the
client (this is the reason ASP.NET and the other mentioned technologies are called server-side
technologies). When an ASP.NET page is requested, its underlying code is first executed on the
server. After the final page is composed, the resulting HTML is returned to the visitor’s browser.

The returned HTML can optionally contain client-side script code, which is directly inter-
preted by the browser. The most popular client-side scripting technologies are JavaScript and
VBScript. JavaScript is usually the better choice because it has wider acceptance, whereas only
Internet Explorer recognizes VBScript. Other important client-side technologies are Macromedia
Flash and Java applets, but these are somewhat different because the web browser does not
directly parse them—Flash requires a specialized plug-in and Java applets require a JVM (Java
Virtual Machine). Internet Explorer also supports ActiveX controls and .NET assemblies.

The Code Behind the Page

From its first version, ASP.NET encouraged (and helped) developers to keep the code of a web
page physically separated from the HTML layout of that page. Keeping the code that gives life
to a web page in a separate file from the HTML layout of the page was an important improve-
ment over other server-side web-development technologies whose mix of code and HTML in
the same file often led to long and complicated source files that were hard to document, change,
and maintain. Also, a file containing both code and HTML is the subject of both programmers’
and designers’ work, which makes team collaboration unnecessarily complicated and increases
the chances of the designer creating bugs in the code logic while working on cosmetic changes.

Darie-Watson_4681C02.fm Page 20 Tuesday, September 20, 2005 4:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 21

ASP.NET 1.0 introduced a code-behind model, used to separate the HTML layout of a web
page from the code that gives life to that page. Although it was possible to write the code and
HTML in the same file, Visual Studio .NET 2002 and Visual Studio .NET 2003 always automati-
cally generated two separate files for a Web Form: the HTML layout resided in the .ASPX file
and the code resided in the code-behind file. Because ASP.NET allowed the developer to write
the code in the programming language of his choice (such as C# or VB .NET), the code-behind
file’s extension depended on the language it was written in (such as .ASPX.CS or .ASPX.VB).

ASP.NET 2.0 uses a refined code-behind model. Although the new model is more
powerful, the general principles (to help separate the page’s looks from its brain) are still the
same. We’ll look over the differences a bit later, especially for existing ASP.NET 1.x developers
migrating to ASP.NET 2.0.

Before moving on, let’s summarize the most important general features of ASP.NET:

• The server-side code can be written in the .NET language of your choice. By default, you
can choose from C#, VB .NET, and J#, but the whole infrastructure is designed to support
additional languages. These languages are powerful and fully object oriented.

• The server-side code of ASP.NET pages is fully compiled and executed—as opposed to
being interpreted line by line—which results in optimal performance and offers the
possibility to detect a number of errors at compile-time instead of runtime.

• The concept of code-behind files helps separate the visual part of the page from the
(server-side) logic behind it. This is an advantage over other technologies, in which both
the HTML and the server-side code reside in the same file (often resulting in the popular
“spaghetti code”).

• Visual Web Developer 2005 is an excellent and complete visual editor that represents a
good weapon in the ASP.NET programmer’s arsenal (although you don’t need it to
create ASP.NET Web Applications). Visual Web Developer 2005 Express Edition is free,
and you can use it to develop the examples in this book.

ASP.NET Web Forms, Web User Controls, and Master Pages

ASP.NET web sites are developed around ASP.NET Web Forms. ASP.NET Web Forms have the
.aspx extension and are the standard way to provide web functionality to clients. A request to
an ASPX resource, such as http://web.cristiandarie.ro/BalloonShop/default.aspx, results
in the default.aspx file being executed on the server (together with its code-behind file) and
the results being composed as an HTML page that is sent back to the client. Usually, the .aspx
file has an associated code-behind file, which is also considered part of the Web Form.

Web User Controls and Master Pages are similar to Web Forms in that they are also
composed of HTML and code (they also support the code-behind model), but they can’t be
directly accessed by clients. Instead, they are used to compose the content of the Web Forms.

Web User Controls are files with the .ascx extension that can be included in Web Forms,
with the parent Web Form becoming the container of the control. Web User Controls allow you
to easily reuse pieces of functionality in a number of Web Forms.

Darie-Watson_4681C02.fm Page 21 Tuesday, September 20, 2005 4:51 AM

22 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Master Pages are a new feature of ASP.NET 2.0. A Master Page is a template that can be
applied to a number of Web Forms in a site to ensure a consistent visual appearance and function-
ality throughout the various pages of the site. Updating the Master Page has an immediate
effect on every Web Form built on top of that Master Page.

Web User Controls, Web Server Controls, and HTML Server Controls It’s worth taking a second look
at Web User Controls from another perspective. Web User Controls are a particular type of
server-side control. Server-side controls generically refer to three kinds of controls: Web User
Controls, Web Server Controls, and HTML Server Controls. All these kinds of controls can be
used to reuse pieces of functionality inside Web Forms.

As stated in the previous section, Web User Controls are files with the .ascx extension that
have a structure similar to the structure of Web Forms, but they can’t be requested directly by
a client web browser; instead, they are meant to be included in Web Forms or other Web User
Controls.

Web Server Controls are compiled .NET classes that, when executed, generate HTML
output (eventually including client-side script). You can use them in Web Forms or in Web
User Controls. The .NET Framework ships with a large number of Web Server Controls (many
of which are new to version 2.0 of the framework), including simple controls such as Label,
TextBox, or Button, and more complex controls, such as validation controls, data controls, the
famous GridView control (which is meant to replace the old DataGrid), and so on. Web Server
Controls are powerful, but they are more complicated to code because all their functionality
must be implemented manually. Among other features, you can programmatically declare and
access their properties, make these properties accessible through the Visual Web Developer
designer, and add the controls to the toolbox, just as in Windows Forms applications or old
VB6 programs.

HTML Server Controls allow you to programmatically access HTML elements of the page
from code (such as from the code-behind file). You transform an HTML control to an HTML
Server Control by adding the runat="server" attribute to it. Most HTML Server Controls are
doubled by Web Server Controls (such as labels, buttons, and so on). For consistency, we’ll
stick with Web Server Controls most of the time, but you’ll need to use HTML Server Controls
in some cases.

For the BalloonShop project, you’ll use all kinds of controls, and you’ll create a number of
Web User Controls.

Because you can develop Web User Controls independently of the main web site and then
just plug them in when they’re ready, having a site structure based on Web User Controls
provides an excellent level of flexibility and reusability.

ASP.NET and the Three-Tier Architecture

The collection of Web Forms, Web User Controls, and Master Pages form the presentation tier
of the application. They are the part that creates the HTML code loaded by the visitor’s browser.

The logic of the UI is stored in the code-behind files of the Web Forms, Web User Controls,
and Master Pages. Note that although you don’t need to use code-behind files with ASP.NET
(you’re free to mix code and HTML just as you did with ASP), we’ll exclusively use the code-
behind model for the presentation-tier logic.

In the context of a three-tier application, the logic in the presentation tier usually refers to
the various event handlers, such as Page_Load and someButton_Click. As you learned earlier,

Darie-Watson_4681C02.fm Page 22 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 23

these event handlers should call business-tier methods to get their jobs done (and never call
the data tier directly).

Using C# and VB .NET
C# and VB .NET are languages that can be used to code the Web Forms’ code-behind files. In
this book, we’re using C#; in a separate version of this book called Beginning ASP.NET E-Commerce
in VB .NET: From Novice to Professional, we’ll present the same functionality using VB .NET.
Unlike its previous version (VB6), VB .NET is a fully object-oriented language and takes advan-
tage of all the features provided by the .NET Framework.

ASP.NET 2.0 even allows you to write the code for various elements inside a project in
different languages, but we won’t use this feature in this book. Separate projects written in
different .NET languages can freely interoperate, as long as you follow some basic rules. For
more information about how the .NET Framework works, you should read a general-purpose
.NET book.

■Note Just because you can use multiple languages in a single language, doesn’t mean you should
overuse that feature, if you have a choice. Being consistent is more important than playing with diversity if you
care for long-term ease of maintenance and prefer to avoid unnecessary headaches (which is something that
most programmers do).

In this book, apart from using C# for the code-behind files, you’ll use the same language to
code the middle tier classes. You’ll create the first classes in Chapter 3 when building the product
catalog, and you’ll learn more details there, including a number of new features that come with
.NET 2.0.

Using Visual Studio 2005 and Visual Web Developer 2005
Express Edition
Visual Studio 2005 is by far the most powerful tool you can find to develop .NET applications.
Visual Studio is a complete programming environment capable of working with many types of
projects and files, including Windows and Web Forms projects, setup and deployment projects,
and many others. Visual Studio also can be used as an interface to the database to create tables
and stored procedures, implement table relationships, and so on.

Visual Web Developer 2005 Express Edition is a free version of Visual Studio 2005, focused
on developing Web Applications with ASP.NET 2.0. Because the code in this book can be
built with any of these products, we’ll use the terms Visual Web Developer and Visual Studio
interchangeably.

A significant new feature in Visual Studio .NET 2005 and Visual Web Developer 2005
compared to previous versions of Visual Studio is the presence of an integrated web server,
which permits you to execute your ASP.NET Web Applications even if you don’t have IIS
(Internet Information Services) installed on your machine. This is good news for Windows XP
Home Edition users, who can’t install IIS on their machines because it isn’t supported by the
operating system.

Darie-Watson_4681C02.fm Page 23 Tuesday, September 20, 2005 4:51 AM

24 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Although we’ll use Visual Web Developer 2005 Express Edition for writing the BalloonShop
project, it’s important to know that you don’t have to. ASP.NET and the C# and VB .NET compilers
are available as free downloads at http://www.microsoft.com as part of the .NET Framework
SDK (Software Developers Kit), and a simple editor such as Notepad is enough to create any
kind of web page.

■Tip In the ASP.NET 1.x days when there were no free versions of Visual Studio, many developers preferred
to use a neat program called Web Matrix—a free ASP.NET development tool whose installer (which can still
be downloaded at http://www.asp.net/webmatrix) was only 1.3MB. Development of Web Matrix has
been discontinued though, because Visual Web Developer 2005 Express Edition is both powerful and free.

Visual Studio 2005 and Visual Web Developer 2005 come with many new features compared to
its earlier versions, and we’ll study a part of them while creating the BalloonShop project.

Using SQL Server 2005
Along with .NET Framework 2.0 and Visual Studio 2005, Microsoft also released a new version
of its player in the Relational Database Management Systems (RDBMS) field—SQL Server 2005.
This complex software program’s purpose is to store, manage, and retrieve data as quickly and
reliably as possible. You’ll use SQL Server to store all the information regarding your web site,
which will be dynamically placed on the web page by the application logic. Simply said, all data
regarding the products, departments, users, shopping carts, and so on will be stored and managed
by SQL Server.

The good news is that a lightweight version of SQL Server 2005, named SQL Server 2005
Express Edition, is freely available. Unlike the commercial versions, SQL Server 2005 Express
Edition doesn’t ship by default with any visual-management utilities. However, a very nice tool
called SQL Server Express Manager is also freely available. Appendix A contains details for
installing both SQL Server 2005 Express Edition and SQL Server Express Manager.

■Tip To learn more about the differences between SQL Server 2005 Express Edition and the other versions,
you can check http://www.microsoft.com/sql/2005/productinfo/sql2005features.asp.

The first steps in interacting with SQL Server come a bit later in this chapter when you
create the BalloonShop database.

Darie-Watson_4681C02.fm Page 24 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 25

SQL Server and the Three-Tier Architecture

It should be clear by now that SQL Server is somehow related to the data tier. However, if you
haven’t worked with databases until now, it might be less than obvious that SQL Server is more
than a simple store of data. Apart from the actual data stored inside, SQL Server is also capable
of storing logic in the form of stored procedures, maintaining table relationships, ensuring that
various data integrity rules are obeyed, and so on.

You can communicate with SQL Server through a language called T-SQL (Transact-SQL),
which is the SQL dialect recognized by SQL Server. SQL, or Structured Query Language, is the
language used to interact with the database. SQL is used to transmit to the database instructions
such as “Send me the last 10 orders” or “Delete product #123.”

Although it’s possible to compose T-SQL statements in your C# code and then submit
them for execution, this is generally a bad practice, because it incurs security, consistency, and
performance penalties. In our solution, we’ll store all data tier logic using stored procedures.
Historically, stored procedures were programs that were stored internally in the database and
were written in T-SQL. This still stands true with SQL Server 2005, which also brings the notion
of managed stored procedures that can be written in a .NET language such as C# and VB.NET
and are, as a result, compiled instead of interpreted.

■Note Writing stored procedures in C#, also called managed stored procedures, doesn’t just sound inter-
esting, it actually is. However, managed stored procedures are very powerful weapons, and as with any
weapon, only particular circumstances justify using them. Typically it makes sense to use managed stored
procedures when you need to perform complex mathematical operations or complex logic that can’t be easily
implemented with T-SQL. However, learning how to do these tasks the right way requires a good deal of
research, which is outside the scope of this book. Moreover, the data logic in this book didn’t justify adding
any managed stored procedures, and as a result you won’t see any here. Learning how to program managed
stored procedures takes quite a bit of time, and you might want to check out one of the books that are dedicated
to writing managed code under SQL Server.

The stored procedures are stored internally in the database and can be called from external
programs. In your architecture, the stored procedures will be called from the business tier. The
stored procedures in turn manipulate or access the data store, get the results, and return them
to the business tier (or perform the necessary operations).

Figure 2-5 shows the technologies associated with every tier in the three-tier architecture.
SQL Server contains the data tier of the application (stored procedures that contain the logic to
access and manipulate data) and also the actual data store.

Darie-Watson_4681C02.fm Page 25 Tuesday, September 20, 2005 4:51 AM

26 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Figure 2-5. Using Microsoft technologies and the three-tier architecture

Following Coding Standards
Although coding and naming standards might not seem that important at first, they definitely
shouldn’t be overlooked. Not following a set of rules for your code almost always results in
code that’s hard to read, understand, and maintain. On the other hand, when you follow a
consistent way of coding, you can say your code is already half documented, which is an
important contribution toward the project’s maintainability, especially when many people are
working at the same project at the same time.

Darie-Watson_4681C02.fm Page 26 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 27

■Tip Some companies have their own policies regarding coding and naming standards, whereas in other
cases you’ll have the flexibility to use your own preferences. In either case, the golden rule to follow is be
consistent in the way you code. Check out Microsoft’s suggested naming conventions at http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/
cpconnamingguidelines.asp.

Naming conventions refer to many elements within a project, simply because almost all of
a project’s elements have names: the project itself, namespaces, Web Forms, Web User Controls,
instances of Web User Controls and other interface elements, classes, variables, methods,
method parameters, database tables, database columns, stored procedures, and so on. Without
some discipline when naming all those elements, after a week of coding, you won’t understand a
line of what you’ve written.

This book tries to stick to Microsoft’s recommendations regarding naming conventions.
Now the philosophy is that a variable name should express what the object does and not its
data type. We’ll talk more about naming conventions while building the site. Right now, it’s
time to play.

Creating the Visual Web Developer Project
Our favorite toy is, of course, Visual Web Developer. It allows you to create all kinds of projects,
including Web Site projects (formerly known as Web Application projects). The other necessary
toy is SQL Server, which will hold your web site’s data. We’ll deal with the database a bit later in
this chapter.

■Note At this point, we assume you have Visual Web Developer 2005 Express Edition and SQL Server 2005
Express Edition installed on your computer. It’s okay if you use the commercial versions of Visual Studio 2005
or SQL Server 2005, in which case the exercise steps you need to take might be a bit different from what is
presented in the book. Consult Appendix A for more details about the installation work.

The first step toward building the BalloonShop site is to open Visual Web Developer and
create a new ASP.NET Web Site project. If with previous versions of Visual Studio you needed
to have IIS installed, due to the integrated web server of Visual Studio .NET 2005 (named Cassini),
you can run the ASP.NET Web Application from any physical folder on your disk. As a result,
when creating the Web Site project, you can specify for destination either a web location (such
as http://localhost/BalloonShop) or a physical folder on your disk (such as C:\BalloonShop).

If you have a choice, usually the preferred solution is still to use IIS because of its better
performance and because it guarantees that the pages will display the same as the deployed
solution. Cassini (the integrated web server) does an excellent job of simulating IIS, but it still
shouldn’t be your first option. For this book, you can use either option, although our final tests
and screenshots were done using IIS.

Darie-Watson_4681C02.fm Page 27 Tuesday, September 20, 2005 4:51 AM

8213592a117456a340854d18cee57603

28 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

You’ll create the BalloonShop project step-by-step in the exercises that follow. To ensure
that you always have the code we expect you to have and to eliminate any possible frustrations
or misunderstandings, we’ll always include the steps you must follow to build your project in
separate Exercise sections. We know it’s very annoying when a book tells you something, but
the computer’s monitor shows you another thing, so we did our best to eliminate this kind of
problems.

Let’s go.

Exercise: Creating the BalloonShop Project

Follow the steps in this exercise to create the ASP.NET Web Site project.

1. Start Visual Web Developer 2005 Express Edition, choose File ➤ New Web Site. In the dialog box that
opens, select ASP.NET Web Site from the Templates panel, and Visual C# for the Language.

2. In the first Location combo box, you can choose from File System, HTTP, and FTP, which determine how
your project is executed. If you choose to install the project on the File System, you need to choose a
physical location on your disk, such as C:\BalloonShop\. In this case, the Web Application is exe-
cuted using Visual Web Developer’s integrated web server (Cassini). If you choose an HTTP location
(such as http://localhost/BalloonShop), the Web Application will be executed through IIS.

Make a choice that fits you best. If you go the HTTP way and you’re developing on your local machine,
make sure that your machine has IIS installed (see Appendix A). For the purpose of this exercise, we’re
creating the project in the http://localhost/BalloonShop location, as shown in Figure 2-6.

Figure 2-6. Creating the Visual Studio .NET project

Darie-Watson_4681C02.fm Page 28 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 29

■Note When creating the project on an HTTP location with the local IIS server, the project is physically
created, by default, under the \InetPub\wwwroot folder. If you prefer to use another folder, use the Internet
Information Services applet by choosing Control Panel ➤ Administrative Tools to create a virtual folder pointing to
the physical folder of your choice prior to creating the Web Application with Visual Web Developer. If this note
doesn’t make much sense to you, ignore it for now.

3. Click OK. Visual Studio now creates the new project in the BalloonShop folder you specified.

In the new project, a new Web Form called Default.aspx is created by default, as shown in Figure 2-7.

Figure 2-7. The BalloonShop project in Visual Web Developer 2005 Express Edition

4. Execute the project in debug mode by pressing F5. At this point, Visual Web Developer will complain (as
shown in Figure 2-8) that it can’t debug the project as long as debugging is not enabled in web.config
(actually, at this point, the web.config file doesn’t even exist). Click OK to allow Visual Studio to enable
debug mode for you. Feel free to look at the newly created web.config file to see what has been done
for you.

Darie-Watson_4681C02.fm Page 29 Tuesday, September 20, 2005 4:51 AM

30 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Figure 2-8. Debugging must be enabled in web.config

5. When executing the project, a new and empty Internet Explorer should open. Closing the window will
also stop the project from executing (the Break and Stop Debugging symbols disappear from the Visual
Web Developer toolbar, and the project becomes fully editable again).

■Note When executing the project, the web site is loaded in your system’s default web browser. For the
purposes of debugging your code, we recommend configuring Visual Web Developer to use Internet Explorer
by default, even if your system’s preferred browser is (for example) Mozilla Firefox. The reason is that Internet
Explorer integration seems to work better. For example, Visual Web Developer knows when you close the
Internet Explorer window and automatically stops the project from debug mode so you can continue develop-
ment work normally; however, with other browsers, you may need to manually Stop Debugging (click the Stop
square button in the toolbar, or press Shift+F5 by default). To change the default browser to be used by Visual
Web Developer, right-click the root node in Solution Explorer, choose Browse With, select a browser from the
Browsers tab, and click Set as Default.

How It Works: Your Visual Web Developer Project

Congratulations! You have just completed the first step in creating your e-commerce store!

Unlike with previous versions of ASP.NET, you don’t need an IIS virtual directory (or IIS at all, for that matter) to run
a Web Application, because you can create the ASP.NET Web Site project in a physical location on your drive. Now
it’s up to you where and how you want to debug and execute your Web Application!

When not using IIS and executing the project, you’ll be pointed to an address like http://localhost:5392/
BalloonShop/Default.aspx, which corresponds to the location of the integrated web server.

At this moment your project contains three files:

• Default.aspx is your Web Form.

• Default.aspx.cs is the code-behind file of the Web Form.

• web.config is the project’s configuration file.

We’ll have a closer look at these files later.

Darie-Watson_4681C02.fm Page 30 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 31

Implementing the Site Skeleton
The visual design of the site is usually agreed upon after a discussion with the client and in
collaboration with a professional web designer. Alternatively, you can buy a web site template
from one of the many companies that offer this kind of service for a reasonable price.

Because this is a programming book, we won’t discuss web design issues. Furthermore, we
want a simple design that allows you to focus on the technical details of the site. A simplistic
design will also make your life easier if you’ll need to apply your layout on top of the one we’re
creating here.

All pages in BalloonShop, including the first page, will have the structure shown in Figure 2-9.
In later chapters, you’ll add more components to the scheme (such as the login box or shopping
cart summary box), but for now, these are the pieces we’re looking to implement in the next
few chapters.

Figure 2-9. Structure of web pages in BalloonShop

Although the detailed structure of the product catalog is covered in the next chapter, right
now you know that the main list of departments needs to be displayed on every page of the site.
You also want the site header to be visible in any page the visitor browses.

You’ll implement this structure by creating the following:

Darie-Watson_4681C02.fm Page 31 Tuesday, September 20, 2005 4:51 AM

32 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

• A Master Page containing the general structure of all the web site’s pages, as shown in
Figure 2-9

• A number of Web Forms that use the Master Page to implement the various locations of
the web site, such as the main page, the department pages, the search results page, and
so on

• A number of Web User Controls to simplify reusing specific pieces of functionality (such
as the departments list box, the categories list box, the search box, the header, and so on)

Figure 2-10 shows a few of the Web User Controls you’ll create while developing
BalloonShop.

Figure 2-10. Using Web User Controls to generate content

Using Web User Controls to implement different pieces of functionality has many long-
term advantages. Logically separating different, unrelated pieces of functionality from one
another gives you the flexibility to modify them independently and even reuse them in other
pages without having to write HTML code and the supporting code-behind file again. It’s also
extremely easy to extend the functionality or change the place of a feature implemented as a
user control in the parent web page; changing the location of a Web User Control is anything
but a complicated and lengthy process.

Darie-Watson_4681C02.fm Page 32 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 33

In the remainder of this chapter, we’ll write the Master Page of the site, a Web Form for the
first page that uses the Master Page, and the Header Web User Control. We’ll deal with the
other user controls in the following chapters. Finally, at the end of the chapter, you’ll create the
BalloonShop database, which is the last step in laying the foundations of the project.

Building the First Page
At the moment, you have a single Web Form in the site, Default.aspx, which Visual Web Developer
automatically created when you created the project. By default, Visual Web Developer didn’t
generate a Master Page for you, so you’ll do this in the following exercise.

Exercise: Creating the Main Web Page

1. Click Website ➤ Add New Item (or press Ctrl+Shift+A). In the dialog box that opens, choose Master
Page from the Visual Studio Installed Templates list.

2. Choose Visual C# for the language, check the Place code in a separate file check box, and change the
page name to BalloonShop.master (the default name MasterPage.master isn’t particularly
expressive). The Add New Item dialog box should now look like Figure 2-11.

Figure 2-11. Adding a new Master Page to the project

3. Click Add to add the new Master Page to the project. The new Master Page will be opened with some
default code in Source View. If you switch to Design View, you’ll see the ContentPlaceHolder object
that it contains. While in Source View, update its code like this:

Darie-Watson_4681C02.fm Page 33 Tuesday, September 20, 2005 4:51 AM

34 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="BalloonShop.master.cs" Inherits="BalloonShop" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>BalloonShop</title>
</head>
<body>
 <form id="Form1" runat="server">
 <table cellspacing="0" cellpadding="0" width="770" border="0">
 <tr>
 <td width="220" valign="top">
 List of Departments

 List of Categories

 </td>
 <td valign="top">
 Header
 <asp:ContentPlaceHolder ID="contentPlaceHolder" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

4. Now switch again to Design View; you should see something like Figure 2-12. If you haven’t changed
the default behavior of Visual Web Developer, you’ll see that the ContentPlaceHolder object is
marked with a little green arrow sign (which is probably hardly visible in the figure). This indicates that
the control is marked to be executed at server-side (on the server). All server-side controls (including
Labels, TextBoxes, and so on) on the page will be marked with the same green symbol. If you look at
the HTML code of the ContentPlaceHolder, you’ll see the runat="server" clause:

 <asp:contentplaceholder id="contentPlaceHolder" runat="server">
 </asp:contentplaceholder>

Darie-Watson_4681C02.fm Page 34 Tuesday, September 20, 2005 4:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 35

Figure 2-12. Your New Master Page in Design View

Master Pages are not meant to be accessed directly by clients, but to be implemented in Web Forms.
You’ll use the Master Page you’ve just created to establish the template of the Default.aspx Web
Form. Because the Default.aspx page that Visual Web Developer created for you was not meant to
be used with Master Pages (it contains code that should be inherited from the Master Page), it’s easier
to delete and re-create the file.

5. Right-click Default.aspx in Solution Explorer and choose Delete. Confirm the deletion.

6. Right-click the project root in Solution Explorer and select Add New Item. Choose the Web Form tem-
plate, leave its name as Default.aspx, make sure both check boxes Place code in separate file and
Select Master Page are checked, verify that the language is Visual C#, and click Add. When asked for
a Master Page file, choose BalloonShop.master and click OK. Your new page will be created with
just a few lines of code, all the rest being inherited from the Master Page:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default"
Title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="contentPlaceHolder"
Runat="Server">
</asp:Content>

When you switch to Design View, Default.aspx will look like Figure 2-13.

Darie-Watson_4681C02.fm Page 35 Tuesday, September 20, 2005 4:51 AM

36 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Figure 2-13. Default.aspx in Design View

7. Change the title of the page from “Untitled Page” to “Welcome to BalloonShop!” by either using the
Properties window in Design View (see Figure 2-14) or by editing the code in Source View like this:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default"
Title="Welcome to BalloonShop!" %>

Figure 2-14. Changing the form name using the Properties window

8. Press F5 to execute the project. You should get a page similar to the one in Figure 2-15.

Darie-Watson_4681C02.fm Page 36 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 37

Figure 2-15. Default.aspx in action

■Note You need to close the browser window or manually stop the project from running before you can use
the Designer window to edit your forms at full power again.

How It Works: The Main Web Page

Right now you have the skeleton of the first BalloonShop page in place. Perhaps it’s not apparent right now, but
working with Master Pages will save you a lot of headaches later on when you extend the site.

The Master Page establishes the layout of the pages that implement it, and these pages have the freedom to update
the contents of the ContentPlaceHolder elements. In our case, the header, the list of departments, and the list
of categories are standard elements that will appear in every page of the web site (although the list of categories will
have blank output in some cases and will appear only when a department is selected—you’ll see more about this
in the next chapter). For this reason, we included these elements directly in the Master Page, and they are not
editable when you’re designing Default.aspx. The actual contents of every section of the web site (such as the
search results page, the department and category pages, and so on) will be generated by separate Web Forms that
will be differentiated by the code in the ContentPlaceHolder object.

■Note A Master Page can contain more than one ContentPlaceHolder object.

The list of departments and the list of categories will be implemented as Web User Controls that generate their
output based on data read from the database. You’ll implement this functionality in Chapters 3 and 4.

Darie-Watson_4681C02.fm Page 37 Tuesday, September 20, 2005 4:51 AM

38 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Adding the Header to the Main Page
After so much theory about how useful Web User Controls are, you finally get to create one. The
Header control will populate the upper-right part of the main page and will look like Figure 2-16.

Figure 2-16. The BalloonShop logo

To keep your site’s folder organized, you’ll create a separate folder for all the user controls.
Having them in a centralized location is helpful, especially when the project grows and contains
a lot of files.

Exercise: Creating the Header Web User Control

Follow these steps to create the Web User Control and add it to the Master Page:

1. Download the code for this book from the Source Code area at http://www.apress.com, unzip it
somewhere on your disk, and copy the ImageFolders\Images folder to your project’s directory
(which will be \Inetpub\wwwroot\BalloonShop\ if you used the default options when creating the
project). The Images folder contains, among other files, a file named BalloonShopLogo.png, which
is the logo of your web site. Now, if you save, close, and reload your solution, the Images folder will
show up in Solution Explorer.

2. Make sure that the project isn’t currently running (if it is, the editing capabilities are limited), and that
the Solution Explorer window is visible (if it isn’t, choose View ➤ Solution Explorer or use the default
Ctrl+Alt+L shortcut). Right-click the root entry and select Add Folder ➤ Regular Folder.

3. Enter UserControls as the name of the new folder, as shown in Figure 2-17.

Darie-Watson_4681C02.fm Page 38 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 39

Figure 2-17. Adding a new folder to the BalloonShop project

4. Create the Header.ascx user control in the UserControls folder. Right-click UserControls in Solution
Explorer and click Add New Item. In the form that appears, choose the Web User Control template and
change the default name to Header.ascx. Leave the other options in place (as shown in Figure 2-18),
and click Add.

Figure 2-18. Creating the Header.ascx Web User Control

Darie-Watson_4681C02.fm Page 39 Tuesday, September 20, 2005 4:51 AM

40 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

5. The Header Web User Control automatically opens in Source View. Modify the HTML code like this:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="Header.ascx.cs"
Inherits="Header" %>
<p align="center">

</p>

■Note If you switch the control to Design View right now, you won’t see the image because the relative path
to the Images folder points to a different absolute path at designtime than at runtime. At runtime, the control
is included and run from within BalloonShop.master, not from its current location (the UserControls
folder).

6. Open BalloonShop.master in Design View, drag Header.ascx from Solution Explorer, drop it near the
“Header” text, and then delete the “Header” text from the cell. The Design view of BalloonShop.master
should now look like Figure 2-19.

Figure 2-19. Adding Header.ascx to the Master Page

7. Click Debug ➤ Start (F5 by default) to execute the project. The web page will look like Figure 2-20.

Darie-Watson_4681C02.fm Page 40 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 41

Figure 2-20. BalloonShop in action

How It Works: The Header Web User Control

Congratulations once again! Your web site has a perfectly working header! If you don’t find it all that exciting, then
get ready for the next chapter, where you’ll get to write some real code and show the visitor dynamically generated
pages with data extracted from the database. The final step you’ll make in this chapter is to create the BalloonShop
database (in the next exercise), so everything will be set for creating your product catalog!

Until that point, make sure you clearly understand what happens in the project you have at hand. The Web User
Control you just created is included in the BalloonShop.master Master Page, so it applies to all pages that use
this Master Page, such as Default.aspx. Having that bit of HTML written as a separate control will make your life
just a little bit easier when you need to reuse the header in other parts of the site. If at any point the company
decides to change the logo, changing it in one place (the Header.ascx control) will affect all pages that use it.

This time you created the control by directly editing its HTML source, but it’s always possible to use the Design View
and create the control visually. The HTML tab of the Toolbox window in Visual Studio contains all the basic HTML elements,
including Image, which generates an img HTML element.

Let’s move on.

Creating the SQL Server Database
The final step in this chapter is to create the SQL Server database, although you won’t get to
effectively use it until the next chapter. SQL Server 2005 Express Edition, the free version of SQL

Darie-Watson_4681C02.fm Page 41 Tuesday, September 20, 2005 4:51 AM

8213592a117456a340854d18cee57603

42 C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S

Server, doesn’t ship with the SQL Server Management Studio (formerly known as the Enterprise
Manager). However, now you can also create databases using Visual Web Developer’s features.

All the information that needs to be stored for your site, such as data about products,
customers, and so on, will be stored in a database named, unsurprisingly, BalloonShop.

Exercise: Creating a New SQL Server Database

The following steps show how to create the BalloonShop database using Visual Studio. However, feel free to use the
tool of your choice.

1. In your Visual Web Developer project, make sure the Database Explorer window is open. If it isn’t, you
can either select View ➤ Database Explorer or press the default shortcut keys Ctrl+Alt+S.

2. In Server Explorer, right-click the Data Connections entry, and select Create New SQL Server Database. In
the window that appears (see Figure 2-21), enter the name of the SQL Server instance where you want
to create the database (note that you can use (local) instead of the local computer’s name), the login
information, and the name of the new database. If you installed SQL Server Express using the default
options as shown in Appendix A, then your server name should be (local)\SqlExpress; in the installation
process you are provided with the necessary data to connect to your database. Enter BalloonShop for
the name of the new database.

Figure 2-21. Creating a new SQL Server database using Visual Web Developer

■Note Using Windows Authentication, your local Windows account will be used to log in to SQL Server. If
you installed SQL Server yourself, you’ll have full privileges to SQL Server, and everything will run smoothly;
otherwise, you’ll need to make sure you’re provided with administrative privileges on the SQL Server instance.
With SQL Server Authentication, you need to provide a username and password, but note that this authenti-
cation mode is disabled by default in SQL Server.

Darie-Watson_4681C02.fm Page 42 Tuesday, September 20, 2005 4:51 AM

C H A P T E R 2 ■ LA Y I N G O U T T H E F O U N D A T I O N S 43

How It Works: The SQL Server Database

That’s it! You’ve just created a new SQL Server database! The Server Explorer window in Visual Studio allows you
to control many details of the SQL Server instance. After creating the BalloonShop database, it appears under the
Data Connections node in Server Explorer. Expanding that node reveals a wide area of functionality you can access
directly from Visual Web Developer (see Figure 2-22). Because the database you just created is (obviously) empty,
its subnodes are also empty, but you’ll take care of this detail in the following chapters.

Figure 2-22. Accessing the BalloonShop database from the Database Explorer

Downloading the Code
The code you have just written is available in the Source Code area of the Apress web site at
http://www.apress.com or at the author’s web site at http://www.CristianDarie.ro. It should
be easy for you to read through this book and build your solution as you go; however, if you
want to check something from our working version, you can. Instructions on loading the chapters
are available in the Welcome.html document in the download. You can also view the online
version of BalloonShop at http://web.cristiandarie.ro/BalloonShop.

Summary
We covered a lot of ground in this chapter, didn’t we? We talked about the three-tier architec-
ture and how it helps you create powerful flexible and scalable applications. You also saw how
each of the technologies used in this book fits into the three-tier architecture.

So far you have a very flexible and scalable application because it only has a main web
page formed from a Web Form, a Master Page, and the Header Web User Control, but you’ll feel
the real advantages of using a disciplined way of coding in the next chapters. In this chapter,
you have only coded the basic, static part of the presentation tier and created the BalloonShop
database, which is the support for the data tier. In the next chapter, you’ll start implementing
the product catalog and learn a lot about how to dynamically generate visual content using
data stored in the database with the help of the middle tier and with smart and fast presenta-
tion tier controls and components.

Darie-Watson_4681C02.fm Page 43 Tuesday, September 20, 2005 4:51 AM

Darie-Watson_4681C02.fm Page 44 Tuesday, September 20, 2005 4:51 AM

45

■ ■ ■

C H A P T E R 3

Creating the Product Catalog:
Part I

After learning about the three-tier architecture and implementing a bit of your web site’s
main page, it’s time to continue your work by starting to create the BalloonShop product catalog.

Because the product catalog is composed of many components, you’ll create it over two
chapters. Be warned that this chapter is a particularly intense chapter, especially if you’re a
beginner, because it introduces a lot of new theory. It’s important to understand this theory well,
so please don’t rush into doing the exercises before reading and understanding the preceding
theory sections. Don’t hesitate to use additional material, such as Beginning ASP.NET 2.0 in C#:
From Novice to Professional (Apress, 2006), to learn more about the bits we didn’t have space to
fully cover in this book.

In this chapter, you’ll create the first database table, create the first stored procedure,
implement generic data access code, learn how to handle errors and email their details to the
administrator, work with the web.config ASP.NET configuration file, implement the business
logic, and finally use data gathered from the database through the business logic mechanism
to compose dynamic content for your visitor.

The main topics we’ll touch on in this chapter are

• Analyzing the structure of the product catalog and the functionality it should support

• Creating the database structures for the catalog and the data tier of the catalog

• Implementing the business tier objects required to make the catalog run, and putting a
basic but functional error-handling strategy in place

• Implementing a functional UI for the product catalog

Showing Your Visitor What You’ve Got
One of the essential features required in any e-store is to allow the visitor to easily browse
through the products. Just imagine what Amazon.com would be like without its excellent
product catalog!

Whether your visitors are looking for something specific or just browsing, it’s important to
make sure their experience with your site is a pleasant one. When looking for a specific product
or product type, you want the visitor to find it as easily as possible. This is why you’ll want to

Darie-Watson_4681C03.fm Page 45 Thursday, September 15, 2005 5:42 AM

46 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

add search functionality to the site and find a clever way of structuring products into categories
so they can be quickly and intuitively accessed.

Depending on the size of the store, it might be enough to group products under a number
of categories, but if there are a lot of products, you’ll need to find even more ways to categorize
them.

Determining the structure of the catalog is one of the first tasks to accomplish in this chapter.
Keep in mind that using a professional approach, these details would have been established
before starting to code when building the requirements document for the project, as explained
in Appendix B. However, for the purposes of this book, we prefer to deal with things one at a time.

After the structure of the catalog is established, you’ll start writing the code that makes the
catalog work as planned.

What Does a Product Catalog Look Like?
Today’s web surfers are more demanding than they used to be. They expect to find information
quickly on whatever product or service they have in mind, and if they don’t find it, they are
likely to go to the competition before giving the site a second chance. Of course, you don’t want
this to happen to your visitors, so you need to structure the catalog to make it as intuitive and
helpful as possible.

Because the e-store will start with around 100 products and will probably have many more
in the future, it’s not enough to just group them in categories. The store has a number of depart-
ments, and each department will contain a number of categories. Each category can then have
any number of products attached to it.

■Note Later in the book, you’ll also create the administrative part of the web site, often referred to as the
Control Panel, which allows the client to update department, category, and product data. Until then, you’ll
manually fill in the database with data (or you can “cheat” by using the SQL scripts provided in the Source
Code area on the Apress web site [http://www.apress.com], as you’ll see).

Another particularly important detail that you need to think about is whether a category can
exist in more than one department, and whether a product can exist in more than one category.
This decision can have implications on the way you code the product catalog (most important,
as you’ll see, it affects the design of the database), so you need to consult your client on this matter.

Darie-Watson_4681C03.fm Page 46 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 47

For the BalloonShop product catalog, each category can exist in only one department, but
a product can exist in more than one category. For example, the product “Today, Tomorrow &
Forever” will appear in both the “Love & Romance” and “Birthdays” categories. (Not that the
authors are very romantic by nature, but the example is good enough to illustrate the idea.)

Finally, apart from having the products grouped in categories, we also want to have featured
products. For this web site, a product can be featured either on the front page or in the depart-
ment pages. Let’s look at a few screenshots that explain this.

Previewing the Product Catalog
Although we’ll have the fully functional product catalog finished by the end of Chapter 4, look
at it now to help you get a better idea about where you’re heading. In Figure 3-1, you can see
the BalloonShop front page and four of its featured products.

Figure 3-1. The BalloonShop front page and some of its featured products

Darie-Watson_4681C03.fm Page 47 Thursday, September 15, 2005 5:42 AM

48 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Note the Choose a Department list in the upper-left corner of the page. The list of depart-
ments is dynamically generated with data gathered from the database; you’ll implement the
list of departments in this chapter.

When site visitors click a department in the departments list, they go to the main page of
the specified department. This replaces the store’s list of catalog-featured products with a page
containing information specific to the selected department—including the list of featured products
for that department. In Figure 3-2, you see the page that will appear when the “Anniversary
Balloons” department is clicked.

Figure 3-2. The “Anniversary Balloons” department and four of its featured products

Under the list of departments, you can now see the Choose a Category list of categories
that belong to the selected department. In the right side of the screen, you can see the name,
description, and featured products of the selected department. We decided to list only the

Darie-Watson_4681C03.fm Page 48 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 49

featured products in the department page, in part because the complete list would be too long.
The text above the list of featured products is the description for the selected department,
which means you’ll need to store in the database both a name and a description for each
department.

In this page, when a particular category from the categories list is selected, all of its prod-
ucts are listed, along with updated title and description text. In Figure 3-3, you can see how that
page appears when selecting the “Birthdays” category. Also note the paging controls, which
appear in any product listings that contain more than an established number of products.

Figure 3-3. The “Birthdays” category

In any page that displays products, you can click the name or the picture of a product to
view its product details page (see Figure 3-4). In later chapters, you’ll add more functionality to
this page, such as product recommendations.

Darie-Watson_4681C03.fm Page 49 Thursday, September 15, 2005 5:42 AM

50 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Figure 3-4. The product details page

Roadmap for This Chapter
We’ll cover a lot of ground in this chapter. To make sure you don’t get lost on the way, let’s have
a look at the big picture.

The departments list will be the first dynamically generated data in your site, as the names
of the departments will be extracted from the database. We cover just the creation of the
department list in this chapter, in the form of a Web User Control, because we’ll also take a
closer look at the mechanism that makes the control work. After you understand what happens
behind the list of departments, you’ll quickly implement the other components in Chapter 4.

In Chapter 2, we discussed the three-tiered architecture that you’ll use to implement the
Web Application. The product catalog part of the site makes no exception to the rule, and its
components (including the departments list) will be spread over the three logical layers. Figure 3-5
previews what you’ll create at each tier in this chapter to achieve a functional departments list.

Darie-Watson_4681C03.fm Page 50 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 51

Figure 3-5. The components of the departments list

To implement the departments list, you’ll start with the database and make your way to
the presentation tier:

1. You’ll create the Department table in the database. This table will store data regarding
the store’s departments. Before adding this table, you’ll learn the basic concepts of
working with relational databases.

2. You’ll add the GetDepartments stored procedure to the database, which (like all the
other stored procedures you’ll write) is logically located in the data tier part of the appli-
cation. At this step, you’ll learn how to speak with relational databases using SQL.

Darie-Watson_4681C03.fm Page 51 Thursday, September 15, 2005 5:42 AM

52 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

3. You’ll create the business tier components of the departments list. You’ll learn how to
communicate with the database by calling the stored procedure and sending the results
to the presentation tier.

4. Finally, you’ll implement the DepartmentsList.ascx Web User Control to display a
dynamic list of departments for your visitor, which is the goal of this chapter.

You’ll implement the rest of the product catalog in Chapter 4. So, let’s start with the database.

Storing Catalog Information
The vast majority of Web Applications, e-commerce web sites being no exception, live around
the data they manage. Analyzing and understanding the data you need to store and process is
an essential step in successfully completing your project.

The typical data storage solution for this kind of application is a relational database. However,
this is not a requirement—you have the freedom to create your own data access layer and have
whatever kind of data structures to support your application.

■Note In some particular cases, it may be preferable to store your data in plain text files or XML files instead
of databases, but these solutions are generally not suited for applications like BalloonShop, so we won’t cover
them in this book. However, it’s good to know there are options.

Although this is not a book about databases or relational database design, you’ll learn all
you need to know to understand the product catalog and make it work. For more information
about database programming using SQL Server, you should read an SQL Server book such as
Beginning SQL Server 2005 Programming (Wiley, 2005).

Essentially, a relational database is made up of data tables and the relationships that exist
between them. Because in this chapter you’ll work with a single data table, we’ll cover only the
database theory that applies to the table as a separate, individual database item. In the next
chapter, when you add the other tables to the picture, we’ll take a closer look at more theory
behind relational databases by analyzing how the tables relate to each other and how SQL
Server helps you deal with these relationships.

■Note In a real world situation, you would probably design the whole database (or at least all the tables
relevant to the feature you build) from the start. However, we chose to split the development over two chapters
to maintain a better balance of theory and practice.

So, let’s start with a little bit of theory, after which you’ll create the Department data table
and the rest of the required components.

Darie-Watson_4681C03.fm Page 52 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 53

Understanding Data Tables
This section is a quick database lesson that covers the essential information you need to know
to design simple data tables. We’ll briefly discuss the main parts that make up a database table:

• Primary keys

• Unique columns

• SQL Server data types

• Nullable columns and default values

• Identity columns

• Indexes

■Note If you have enough experience with SQL Server, you might want to skip this section and go directly
to the “Creating the Department Table” section.

A data table is made up of columns and rows. Columns are also referred to as fields, and
rows are sometimes called records. Still, in a relational database, a good deal of hidden logic
exists behind a simple list of data rows.

The Department Table

The database element of the product catalog is composed of tables, table relationships, and
stored procedures. Because this chapter only covers the departments list, you’ll only need to
create one data table: the Department table. This table will store your departments’ data and is
one of the simplest tables you’ll work with.

With the help of tools such as the Visual Studio .NET or Visual Web Developer, it’s easy to
create a data table in the database if you know what kind of data it will store. When designing a
table, you must consider which fields it should contain and which data types should be used
for those fields. Besides a field’s data type, there are a few more properties to consider; we’ll
learn about them in the following pages.

To determine which fields you need for the Department table, write down a few examples
of records that would be stored in that table. Remember from the previous figures that there
isn’t much information to store about a department—just the name and description for each
department. The table containing the departments’ data might look like Figure 3-6.

Figure 3-6. Data from the Department table

Darie-Watson_4681C03.fm Page 53 Thursday, September 15, 2005 5:42 AM

54 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

From a table like this, the names would be extracted to populate the list in the upper-left
part of the web page, and the descriptions would be used as headers for the featured products list.

Primary Keys

The way you work with data tables in a relational database is a bit different from the way you
usually work on paper. A fundamental requirement in relational databases is that each data
row in a table must be uniquely identifiable. This makes sense because you usually save records
into a database so that you can retrieve them later; however, you can’t do that if each row isn’t
uniquely identifiable. For example, suppose you add another record to the Department table
shown previously in Figure 3-6, making it look like the table shown in Figure 3-7.

Figure 3-7. Two departments with the same name

Now look at this table, and tell me the description of the “Balloons for Children” depart-
ment. Yep, we have a problem! The problem arises because there are two departments with
this name. If you queried the table using the Name column and wanted to add new products to
the “Balloons for Children” department, to change the department’s name, or to do literally
anything, you would get two results!

To solve this problem, you use a primary key, which allows you to uniquely identify a
specific row out of many rows. Technically, a PRIMARY KEY is a constraint applied on a table
column that guarantees that the column will have unique values across the table.

■Note Applying a PRIMARY KEY constraint on a field also generates a unique index by default. Indexes are
objects that improve the performance of many database operations, speeding up your Web Application (you’ll
learn more about indexes a bit later).

A table can have a single PRIMARY KEY constraint, which can be composed of one or more
columns. Note that the primary key is not a column itself; instead, it’s a constraint that applies
to one or more of the existing columns. Constraints are rules that apply to data tables and make
up part of the data integrity rules of the database. The database takes care of its own integrity
and makes sure these rules aren’t broken. If, for example, you try to add two identical values for
a column that has a PRIMARY KEY constraint, the database will refuse the operation and generate
an error. We’ll do some experiments later in this chapter to show this.

Darie-Watson_4681C03.fm Page 54 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 55

■Note Although a PRIMARY KEY is not a column, but a constraint that applies to that column, from now
on, for the sake of simplicity, when we refer to primary key, we’ll be talking about the column that has the
PRIMARY KEY constraint applied to it.

Back to the example, setting the Name column as the primary key of the Department table
would solve the problem because two departments would not be allowed to have the same
name. If Name is the primary key of the Department table, searching for a row with a specific Name
will always produce exactly one result if the name exists, or no results if no records have the
specified name.

An alternative solution, and usually the preferred one, is to have an additional column in
the table, called an ID column, to act as its primary key. With an ID column, the Department
table would look like Figure 3-8.

Figure 3-8. Adding an ID column as the primary key of Department

The primary key column is named DepartmentID. We’ll use the same naming convention
for primary key columns in the other data tables we’ll create.

There are two main reasons why it’s better to create a separate numerical primary key
column than to use Name (or another existing column) as the primary key:

• Performance: The database engine handles sorting and searching operations much
faster with numerical values than with strings. This becomes even more relevant in the
context of working with multiple related tables that need to be frequently joined (you’ll
learn more about this in Chapter 4).

• Department name changes: If you need to rely on the ID value being stable in time,
creating an artificial key solves the problem because it’s unlikely you’ll ever need to
change the ID.

In Figure 3-8, the primary key is composed of a single column, but this is not a requirement.
If the primary key is composed of more than one column, the group of primary key columns
(taken as a unit) is guaranteed to be unique (but the individual columns that form the primary
key can have repeating values in the table). In Chapter 4, you’ll see an example of a multivalued
primary key. For now, it’s enough to know that they exist.

Darie-Watson_4681C03.fm Page 55 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

56 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Unique Columns

UNIQUE is yet another kind of constraint that can be applied to table columns. This constraint is
similar to the PRIMARY KEY constraint because it doesn’t allow duplicate data in a column. Still,
there are differences. Although there is only one PRIMARY KEY constraint per table, you are allowed
to have as many UNIQUE constraints as you like.

Columns with the UNIQUE constraint are useful when you already have a primary key, but
you still have columns for which you want to have unique values. You can set Name to be unique
in the Department table if you want to forbid repeating values, when the DepartmentID column
is the primary key. (We won’t use the UNIQUE constraint in this book, but we mention it here for
completeness.) We decided to allow identical department names because only site administra-
tors will have the privileges to modify or change department data.

The facts that you need to remember about UNIQUE constraints are

• The UNIQUE constraint forbids having identical values on the field.

• You can have more that one UNIQUE field in a data table.

• Unlike with primary keys, a UNIQUE constraint can’t apply to more than one field.

• A UNIQUE field is allowed to accept NULL values, in which case it can only accept one
NULL value.

• Indexes are automatically created on UNIQUE and PRIMARY KEY columns.

Columns and Data Types

Each column in a table has a particular data type. By looking at the previously shown Figure 3-8
with the Department table, it’s clear that DepartmentID has a numeric data type, whereas Name
and Description contain text.

It’s important to consider the many data types that SQL Server supports so that you can
make correct decisions concerning how to create your tables. Table 3-1 isn’t an exhaustive list
of SQL Server data types, but it focuses on the main types you might come across in your project.
Refer to SQL Server 2005 Books Online, which can be freely accessed and downloaded from
http://msdn.microsoft.com/sql/, for a more detailed list.

■Note Table 3-1 was created with SQL Server 2005 in mind, but these data types exist in SQL Server 2000
as well, and even SQL Server 7 comes close. The differences between SQL Server versions are reflected in
details such as the maximum size for character data.

To keep the table short, under the Data Type heading we’ve listed only the most frequently
used types, while similar data types are explained under the Description and Notes heading.
You don’t need to memorize the list, but you should get an idea of which data types are available.

Darie-Watson_4681C03.fm Page 56 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 57

Table 3-1. SQL Server 2005 Data Types

Data Type Size in Bytes Description and Notes

Int 4 Stores whole numbers from -2,147,483,648 to 2,147,483,647.
You’ll use them for ID columns and in other circumstances that
require integer numbers. Related types are SmallInt and
TinyInt. A Bit data type is able to store values of 0 and 1.

Money 8 Stores monetary data with values from -263 to 263 -1 with a
precision of four decimal places. You’ll use this data type to
store product prices, shopping cart subtotals, and so on. SQL
Server also supports the Float data type, which holds floating-
point data, but Float is not recommended for storing monetary
information because of its lack of precision. A variation of
Money is SmallMoney, which has a smaller range, but the same
precision.

DateTime 8 Supports date and time data from January 1, 1753 through
December 31, 9999 with an accuracy of three hundredths of a
second. A SmallDateTime type has a range from January 1, 1900
to June 6, 2079 with an accuracy of one minute. You’ll use this
data type to store information such as order shipping dates.

UniqueIdentifier 16 Stores a numerical Globally Unique Identifier (GUID). A GUID
is guaranteed to be unique; this property makes it very useful
in certain situations. In this book, we prefer to generate unique
identifiers using other methods, but it’s good to know there
are options.

VarChar, NVarChar Variable Stores variable-length character data. NVarChar stores Unicode
data with a maximum length of 4,000 characters and VarChar
non-Unicode data with a maximum length of 8,000 characters.
This data type is best used for storing short strings (note their
length limitation) without fixed lengths.

Char, NChar Fixed Stores fixed-length character data. Values shorter than the
declared size are padded with spaces. NChar is the Unicode
version and goes to a maximum of 4,000 characters, whereas
Char can store 8,000 characters. When the size of the strings
to be stored is fixed, it’s more efficient to use Char rather than
VarChar.

Text, NText Fixed Stores large character data. NText is the Unicode version and
has a maximum size of 1,073,741,823 characters. Text has
double this maximum size. Using these data types can slow
down the database, and it’s generally recommended to use
Char, VarChar, NChar, or NVarChar instead. When adding Text
or NText fields, their length is fixed to 16, which represents the
size of the pointer that references the location where the actual
text is stored, and not the size of the text itself. The Text data
type can be used to store large character data such as para-
graphs, long product descriptions, and so on. We won’t use
this data type in this book.

Darie-Watson_4681C03.fm Page 57 Thursday, September 15, 2005 5:42 AM

58 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

■Note The names of the SQL Server 2005 data types are not case sensitive, and most programmers write
them either in full uppercase or lowercase. We’ve cased them properly in the table for readability.

Now let’s get back to the Department table and determine which data types to use. Don’t
worry that you don’t have the table yet in your database, you’ll create it a bit later. For now, you
just need to understand how data types work with SQL Server.

If you know what these data types mean, Figure 3-9 is self-explanatory. DepartmentID is an Int,
and Name and Description are VarChar data types. The little golden key at the left of DepartmentID
specifies that the column is the primary key of the Department table.

Figure 3-9. Designing the Department table

You can also see the length of the VarChar fields. Note that “length” means different things
for different data types. For numerical data types, the length is usually fixed (so it doesn’t show
up in some designers, such as the one in Figure 3-9) and it specifies the number of bytes it takes
to store one record, whereas for string data types (excluding Text and NText), the length specifies
the number of characters that can be stored in a record. This is a subtle but important difference
because for Unicode text data (NChar, NVarChar, NText), the actual storage space needed is 2 bytes
per character.

We choose to have 50 characters available for the department’s name and 1,000 for the
description. Some prefer to use NVarChar instead of VarChar—this is actually a requirement
when you need to store Unicode characters (such as Chinese text). Otherwise, the non-Unicode
versions are usually preferred because they occupy half the size their Unicode pairs need. With
large databases, the smaller size of the non-Unicode versions can make some difference.

Binary, VarBinary Fixed/Variable Stores binary data with a maximum length of 8,000 bytes.

Image Variable Stores binary data of maximum 231 - 1 bytes. Despite its name,
this field can store any kind of binary data, not just pictures. In
most circumstances, it’s easier and faster to store the files in
the OS file system and store only their names in the database,
but there are situations when it makes more sense to use the
database for storing binary data. For BalloonShop, you’ll store
the product images in the file system.

Table 3-1. SQL Server 2005 Data Types (Continued)

Data Type Size in Bytes Description and Notes

Darie-Watson_4681C03.fm Page 58 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 59

Nullable Columns and Default Values

Observe the Allow Nulls column in the design window of the Department table—some fields
have this check box checked, but others don’t. If the check box is checked, the column is allowed
to store the NULL value.

The best and shortest definition for NULL is “undefined.” In your Department table, only
DepartmentID and Name are required, so Description is optional—meaning that you are allowed
to add a new department without supplying a description for it. If you add a new row of data
without supplying a value for columns that allow nulls, NULL is automatically supplied for them.

Especially for character data, a subtle difference exists between the NULL value and an
“empty” value. If you add a product with an empty string for its description, this means that
you actually set a value for its description; it’s an empty string, not an undefined (NULL) value.

The primary key field never allows NULL values. For the other columns, it’s up to you to
decide which fields are required and which are not.

In some cases, instead of allowing NULLs, you’ll prefer to specify default values. This way, if
the value is unspecified when creating a new row, it will be supplied with the default value. The
default value can be a literal value (such as 0 for a Salary column or "Unknown" for a Description
column), or it can be a system value (such as the GETDATE function, which returns the current
date). In Chapter 10, you’ll have a column named DateCreated, which can be set to have the
default value supplied by the GETDATE function.

Identity Columns

Identity columns are “auto-numbered” columns. This behavior is similar to AutoNumber columns
in Microsoft Access. When a column is set as an identity column, SQL Server automatically
provides values for it when inserting new records into the table; by default, the database doesn’t
permit manually specified values for identity columns.

SQL Server guarantees that the generated values are always unique, which makes them
especially useful when used in conjunction with the PRIMARY KEY constraint. You already know
that primary keys are used on columns that uniquely identify each row of a table. If you set a
primary key column to also be an identity column, SQL Server automatically fills that column
with values when adding new rows (in other words, it generates new IDs), ensuring that the
values are unique.

When setting an identity column, you must specify an identity seed, which is the first value
that SQL Server provides for that column, and an identity increment value, which specifies the
number of units to increase between two consecutive records.

By default, identity seed and identity increment values are both set to 1, meaning that the
first value will be 1 and the following ones will be generated by adding 1 to the last created
value. You don’t need to specify other values because you don’t care what values are generated
anyway.

Although it wasn’t shown in the earlier Figure 3-9, DepartmentID in your Department table
is an identity column. You’ll learn how to set identity columns a bit later, when creating the
Department table.

Darie-Watson_4681C03.fm Page 59 Thursday, September 15, 2005 5:42 AM

60 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

■Note The generated values for identity columns are unique over the life of your table. A value that was
generated once will never be generated again, even if you delete all the rows from the table. If you want SQL
Server to restart numbering from the initial value, you need to either delete and re-create the table or truncate
the table using the TRUNCATE SQL command. Truncating a table has the same effect as deleting and creating
it again.

Indexes

Indexes are related to SQL Server performance tuning, so we’ll mention them only briefly. For
more in-depth information about SQL Server indexes, read a specialized book on SQL Server 2005.

Indexes are database objects meant to increase the overall speed of database operations.
Indexes work on the assumption that the vast majority of database operations are read opera-
tions. Indexes increase the speed of search operations, but slow down insert, delete, and update
operations. Usually, the gains of using indexes considerably outweigh the drawbacks.

On a table, you can create one or more indexes, with each index working on one column
or on a set of columns. When a table is indexed on a specific column, its rows are either indexed
or physically arranged based on the values of that column and of the type of index. This makes
search operations on that column very fast. If, for example, an index exists on DepartmentID,
and then you do a search for department 934, the search is performed very quickly. Adding or
updating new rows is a bit slower because the index must be actualized (or the table rows
rearranged) each time these operations occur.

You should keep the following in mind about indexes:

• Indexes greatly increase search operations on the database, but they slow down operations
that change the database (delete, update, and insert operations).

• Having too many indexes can slow down the general performance of the database. The
general rule is to set indexes on columns frequently used in WHERE, ORDER BY, and GROUP BY
clauses, used in table joins, or having foreign-key relationships with other tables.

• By default, indexes are automatically created on primary key and unique table columns.

You can use dedicated tools to test the performance of a database under stress conditions
with and without particular indexes; in fact, a serious database administrator will want to make
some of these tests before deciding on a wining combination for indexes. You can also use the
Database Tuning Advisor that can be accessed through SQL Server Management Studio (this
doesn’t ship with the Express Edition, however). Consult a specialized SQL Server book for
more details on these subjects.

In your application, you’ll rely on the indexes that are automatically created on the
primary key columns, which is a safe combination for our kind of web site.

Darie-Watson_4681C03.fm Page 60 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 61

Creating the Department Table
You created the BalloonShop database in Chapter 2. In the following exercise, you’ll add the
Department table to it.

We recommend that you create the Department table by following the steps in the exercise.
Alternatively, you can use the SQL scripts for this book in the Source Code area of the Apress
web site (http://www.apress.com/) to create and populate the Department table. The script file
that creates the Department table is named CreateDepartment.sql, and you can execute it using
the SQL Server Express Manager utility (see Appendix A for installation instructions).

Exercise: Creating the Department Table

1. Using the Database Explorer window in Visual Web Developer, open the BalloonShop data connection
that you created in Chapter 2. Remember, if Database Explorer is not visible, activate it using View ➤
Database Explorer or by using the default shortcut Ctrl+Alt+S.

2. Expand the BalloonShop database connection node, right-click the Tables node, and select Add New
Table from the context menu. Alternatively, after connecting to the database, you can choose Data ➤
Add New ➤ Table.

3. A form appears where you can add columns to the new table. Using this form, add three columns, with
the properties described in Table 3-2.

■Note You set a column to be the primary key by right-clicking it and clicking the Set Primary Key item
from the context menu. You set a column to be an identity column by expanding the Identity Specification
item from its Column Properties window, and setting the (Is Identity) node to Yes. You can also access the
Identity Increment and Identity Seed values, if you should ever want to use other values than the defaults.

After adding these fields, the form should look like Figure 3-10 in Visual Studio.

Table 3-2. Designing the Department Table

Field Name Data Type Other Properties

DepartmentID int Primary Key and Identity column

Name varchar(50) Don’t allow NULLs

Description varchar(1000) Allow NULLs

Darie-Watson_4681C03.fm Page 61 Thursday, September 15, 2005 5:42 AM

62 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Figure 3-10. The three fields of the Department table

4. Now that everything is in place, you need to save the newly created table. Press Ctrl+S or select File ➤
Save Table1. When asked, type Department for the table name.

5. After creating the table in the database, you can open it to add some data. To open the Department
table for editing, right-click it in Database Explorer and select Show Table Data from the context
menu. (Alternatively, you can choose Database ➤ Show Table Data after selecting the table in Database
Explorer.) Using the integrated editor, you can start adding rows. Because DepartmentID is an identity
column, you cannot manually edit its data—SQL Server automatically fills this field, depending on the
identity seed and identity increment values that you specified when creating the table.

6. Add two departments, as shown in Figure 3-11.

Figure 3-11. Adding two sample rows to the Department table

Darie-Watson_4681C03.fm Page 62 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 63

■Note To ensure consistency with the scripts in the Source Code area on the Apress web site (and to make
your life easier), make sure the department IDs are 1 and 2, as shown in Figure 3-11. Because DepartmentID
is an identity column, an ID value is generated only once, even if you remove records from the table in the
meantime. The only way to reset the identity values generator is to delete and re-create the table, or to truncate
the table. The easiest way to truncate the table is to start SQL Server Express Manager, log in to your local
SQL Server Express Instance (by default, named localhost\SqlExpress), and execute the following
SQL commands:

USE BalloonShop
TRUNCATE TABLE Department

How It Works: The Database Table

You have just created your first database table! You also set a primary key, set an identity column, and then filled the
table with some data. As you can see, as soon as you have a clear idea about the structure of a table, Visual Web
Developer and SQL Server make it very easy to implement.

Let’s continue by learning how to programmatically access and manipulate this data with SQL code.

Communicating with the Database
Now that you have a table filled with data, let’s do something useful with it. The ultimate goal
with this table is to get the list of department names from the database using C# code.

To get data from a database, you first need to know how to communicate with the database.
SQL Server understands a language called Transact-SQL (T-SQL). The usual way of communi-
cating with SQL Server is to write a T-SQL command, send it to SQL Server, and get the results
back. However, these commands can be sent either directly from the business tier to SQL Server
(without having an intermediary data tier) or can be centralized and saved as stored procedures
as part of the database.

Stored procedures are database objects that store programs written in T-SQL. Much like
normal functions, stored procedures accept input and output parameters and have return values.

■Note As mentioned in Chapter 2, SQL Server 2005 introduces for the first time the notion of managed
stored procedures, which are programs written in a .NET language that execute inside SQL Server. Writing
managed stored procedures is an advanced topic outside the scope of this book, but it’s good to know that
they exist.

Darie-Watson_4681C03.fm Page 63 Thursday, September 15, 2005 5:42 AM

64 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

You don’t need to use stored procedures if you want to perform database operations. You
can directly send the SQL commands from an external application to SQL Server. When using
stored procedures, instead of passing the SQL code you want executed, you just pass the name
of the stored procedure, and the values for any parameters it might have. Using stored proce-
dures for data operations has the following advantages:

• Storing SQL code as a stored procedure usually results in better performance because
SQL Server generates and caches the stored procedure execution plan when it’s first
executed.

• Using stored procedures allows for better maintainability of the data access and manip-
ulation code, which is stored in a central place, and permits easier implementation of
the three-tier architecture (the stored procedures forming the data tier).

• Security can be better controlled because SQL Server permits setting different security
permissions for each individual stored procedure.

• SQL queries created ad hoc in C# code are more vulnerable to SQL injection attacks,
which is a major security threat. Many Internet resources cover this security subject,
such as the article at http://www.sitepoint.com/article/sql-injection-attacks-safe.

• This might be a matter of taste, but having the SQL logic separated from the C# code
keeps the C# code cleaner and easier to manage; it looks better to call the name of a
stored procedure than to join strings to create an SQL query to pass to the database.

Your goal for this section is to write the GetDepartments stored procedure, but first, let’s
take a quick look at SQL.

Speaking the Database Language
SQL (Structured Query Language) is the language used to communicate with modern Relational
Database Management Systems (RDBMS). Most database systems support a particular dialect
of SQL, such as T-SQL (Transact-SQL) for SQL Server and PL/SQL (Procedural Language extensions
to SQL) for Oracle. Because T-SQL is a big subject when analyzed in detail, we’ll briefly introduce it
and cover just enough so you’ll understand the code in your stored procedures.

■Tip If you’re interested in entering the world of SQL, we recommend another book we’ve authored called
The Programmer’s Guide to SQL (Apress, 2003). It covers the SQL standard and its dialects implemented in
SQL Server, Oracle, DB2, MySQL, and Access.

The basic and most important SQL commands are SELECT, INSERT, UPDATE, and DELETE. Their
names are self-explanatory, and they allow you to perform basic operations on the database.

You can use SQL Server Express Manager to test these commands with your newly created
Department table. Start SQL Server Express Manager, log in to your local SQL Server Express
Instance (by default, named localhost\SqlExpress), and then execute the following command

Darie-Watson_4681C03.fm Page 64 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 65

that connects you to the BalloonShop database (to execute the command, you can use the Execute
button on the toolbar, or choose Query ➤ Execute, or press the F5 shortcut key):

USE BalloonShop

After executing this command, you should get a “Command(s) completed successfully”
message. After you connect to the database, you’re ready to test the SQL commands you’re
about to learn.

Be aware that each SQL command has many optional arguments, and they can become
more complex than those presented here. Still, to keep the presentation short and simple,
you’ll learn the most important and frequently used parameters, and we’ll get into more details
later in the book.

SELECT

The SELECT statement is used to query the database and retrieve selected data that match the
criteria you specify. Its basic structure is

SELECT <column list>
FROM <table name(s)>
[WHERE <restrictive condition>]

■Note Although SQL is not case sensitive, in this book the SQL commands and queries appear in uppercase
for consistency and clarity. The WHERE clause appears in brackets because it’s optional.

The simplest SELECT command you can execute on your BalloonShop database is

SELECT * FROM Department

If you’ve created and populated the Department table as described in the exercises, you
should get the results shown in Figure 3-12.

Figure 3-12. Executing a simple SQL command using SQL Express Manager

Darie-Watson_4681C03.fm Page 65 Thursday, September 15, 2005 5:42 AM

66 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

The “*” wildcard you used in the SQL query means “all columns.” Most of the time, unless
you have a serious reason to use it, it’s good to avoid using this wildcard and to specify the
columns you want returned manually, like this:

SELECT DepartmentID, Name, Description
FROM Department

The following command returns the name of the department that has the DepartmentID of
1. In your case, the returned value is "Anniversary Balloons", but you would receive no results
if there were no departments with an ID of 1.

SELECT Name FROM Department WHERE DepartmentID = 1

INSERT

The INSERT statement is used to insert or add a row of data into the table. Its syntax is as follows:

INSERT [INTO] <table name> (column list) VALUES (column values)

The following INSERT statement adds a department named “Mysterious Department” to
the Department table:

INSERT INTO Department (Name) VALUES ('Mysterious Department')

■Tip The INTO keyword is optional, but including it makes the statement easier to read.

We didn’t specify any value for the Description field because it was marked to allow NULLs
in the Department table. This is why you can omit specifying a value, if you want to. However,
the Name field is required, so if you tried, for example, to specify a description without specifying
a name, you would get an error:

INSERT INTO Department (Description) VALUES ('Some Description Here')

The error message specifies

.Net SqlClient Data Provider: Msg 515, Level 16, State 2, Line 1
Cannot insert the value NULL into column 'Name',
table 'balloonshop.dbo.Department'; column
does not allow nulls. INSERT fails.
The statement has been terminated.

Also note that you didn’t specify a DepartmentID. Because DepartmentID was set as an identity
column, you’re not allowed to manually specify values for this column. SQL Server can guarantee
this has unique values, but only if you don’t interfere with it.

So, if you can’t specify a value for DepartmentID, how can you determine which value was
automatically supplied by SQL Server? For this, you have a special variable named @@IDENTITY.
You can type its value by using the SELECT statement. The following two SQL commands add a
new record to Department and return the DepartmentID of the row just added:

Darie-Watson_4681C03.fm Page 66 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 67

INSERT INTO Department (Name) Values ('Some New Department')
SELECT @@IDENTITY

UPDATE

The UPDATE statement is used to modify existing data and has the following syntax:

UPDATE <table name>
SET <column name> = <new value> [, <column name> = <new value> ...]
[WHERE <restrictive condition>]

The following query changes the name of the department with the ID of 43 to Cool➥
Department. If there were more departments with that ID, all of them would be modified, but
because DepartmentID is the primary key, you can’t have more departments with the same ID.

UPDATE Department SET Name='Cool Department' WHERE DepartmentID = 43

Be careful with the UPDATE statement, because it makes it easy to mess up an entire table.
If the WHERE clause is omitted, the change is applied to every record of the table, which you
usually don’t want to happen. SQL Server will be happy to change all your records; even if all
departments in the table would have the same name and description, they would still be
perceived as different entities because they have DepartmentIDs.

DELETE

The syntax of the DELETE command is actually very simple:

DELETE [FROM] <table name>
[WHERE <restrictive condition>]

The FROM keyword is optional and can be omitted. We generally use it because it makes the
query sound more like normal English.

Most times, you’ll want to use the WHERE clause to delete a single row:

DELETE FROM Department
WHERE DepartmentID = 43

As with UPDATE, be careful with this command, because if you forget to specify a WHERE
clause, you’ll end up deleting all the rows in the specified table. The following query deletes
all the records in Department. The table itself isn’t deleted by the DELETE command.

DELETE FROM Department

■Tip As with INSERT [INTO], the FROM keyword is optional. Add it if you feel it makes the statement
easier to understand.

Darie-Watson_4681C03.fm Page 67 Thursday, September 15, 2005 5:42 AM

68 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Creating Stored Procedures
You need to create the GetDepartments stored procedure, which returns department information
from the Department table. This stored procedure is part of the data tier and will be accessed
from the business tier. The final goal is to have this data displayed in the user control.

The SQL code that retrieves the necessary data and that you need to save to the database
as the GetDepartments stored procedure is the following:

SELECT DepartmentID, Name, Description FROM Department

This command returns all the department information.

■Caution Unless you have a specific reason to do so, never ask for all columns (using the * wildcard) when
you only need a part of them. This generates more traffic and stress on the database server than necessary
and slows down performance. Moreover, even if you do need to ask for all columns in the table, it’s safer to
mention them explicitly to protect your application in case the number or order of columns changes in future.

Saving the Query As a Stored Procedure

As with data tables, after you know the structure, implementing the stored procedure is a piece
of cake. Now that you know the SQL code, the tools will help you save the query as a stored
procedure easily.

The syntax for creating a stored procedure that has no input or output parameters is
as follows:

CREATE PROCEDURE <procedure name>
AS
 <stored procedure code>

If the procedure already exists and you just want to update its code, use ALTER PROCEDURE
instead of CREATE PROCEDURE.

Stored procedures can have input or output parameters. Because GetDepartments doesn’t
have any parameters, you don’t have to bother about them right now. You’ll learn how to use
input and output parameters in Chapter 4.

In the following exercise, you’ll add the GetDepartments stored procedure to your database.

■Note Alternatively, you can execute the GetDepartments.sql script file in the BalloonShop database,
which creates the GetDepartments stored procedure.

Darie-Watson_4681C03.fm Page 68 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 69

Exercise: Writing the Stored Procedure

1. Make sure the data connection to the BalloonShop database is expanded and selected in Database
Explorer. Choose Data ➤ Add New ➤ Stored Procedure. Alternatively, you can right-click the Stored
Procedures node in Server Explorer and select Add New Stored Procedure.

2. Replace the default text with your GetDepartments stored procedure:

CREATE PROCEDURE GetDepartments AS
SELECT DepartmentID, Name, Description
FROM Department

3. Press Ctrl+S to save the stored procedure. Unlike with the tables, you won’t be asked for a name because the
database already knows that you’re talking about the GetDepartments stored procedure.

■Note Saving the stored procedure actually executes the SQL code you entered, which creates the stored
procedure in the database. After saving the procedure, the CREATE keyword becomes ALTER, which is the
SQL command that changes the code of an existing procedure.

4. Now test your first stored procedure to see that it’s actually working. Navigate to the GetDepartments
stored procedure node in Database Explorer and select Execute, as shown in Figure 3-13.

Figure 3-13. Executing a stored procedure from Visual Web Developer

Darie-Watson_4681C03.fm Page 69 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

70 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

5. After running the stored procedure, you can see the results in the Output window (see Figure 3-14). You
can open the Output window by choosing View ➤ Other Windows ➤ Output or by pressing Ctrl+Alt+O.

Figure 3-14. The Output window shows the results.

How it Works: The GetDepartments Stored Procedure

You’ve just finished coding the data tier part that reads the departments list!

The results in the Output window confirm your stored procedure works as expected. You can also test the stored
procedure by using SQL Express Manager and executing the stored procedure from there:

USE BalloonShop
EXEC GetDepartments

Adding Logic to the Site
The business tier (or middle tier) is said to be the brains of the application because it manages
the application’s business logic. However, for simple tasks such as getting a list of departments
from the data tier, the business tier doesn’t have much logic to implement. It just requests the
data from the database and passes it to the presentation tier.

For the business tier of the departments list, you’ll implement three classes:

• GenericDataAccess implements common functionality that you’ll then reuse whenever
you need to access the database. Having this kind of generic functionality packed in a
separate class saves keystrokes and avoids bugs in the long run.

• CatalogAccess contains product catalog specific functionality, such the GetDepartments
method that will retrieve the list of departments from the database.

• BalloonShopConfiguration and Utilities contain miscellaneous functionality such as
sending emails, which will be reused in various places in BalloonShop.

In Chapter 4, you’ll keep adding methods to these classes to support the new pieces of
functionality.

Darie-Watson_4681C03.fm Page 70 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 71

Connecting to SQL Server
The main challenge is to understand how the code that accesses the database works. The .NET
technology that permits accessing a database from C# code is called ADO.NET. ADO.NET
groups all .NET classes that are related to database access. This is the most modern Microsoft
data-access technology, and it can be used from any .NET language.

ADO.NET is a complex subject that requires a separate book by itself, so we’ll cover just
enough to help you understand how your business tier works. For more information about
ADO.NET, refer to Beginning ASP.NET 2.0 Databases: From Novice to Professional (Apress, 2005).

The data access class named GenericDataAccess that you’ll write will make extensive use of
many ADO.NET features, including features new to ADO.NET 2.0 (we’ll highlight these features
at the proper time). The GenericDataAccess class deals with accessing the database, executing
stored procedures, and returning the retrieved data. This class will be part of the business tier
and will provide generic functionality for the other business tier classes.

Each database operation always consists of three steps:

1. Open a connection to the SQL Server database.

2. Perform the needed operations with the database and get back the results.

3. Close the connection to the database.

Before you implement the GenericDataAccess class itself, which implements all these
steps, we’ll have a quick look at each step individually.

■Tip Always try to make the second step (executing the commands) as fast as possible. Keeping a data
connection open for too long or having too many database connections open at the same time is expensive
for your application’s performance. The golden rule is to open the connection as late as possible, perform the
necessary operations, and then close it immediately.

The class used to connect to SQL Server is SqlConnection. When creating a new database
connection, you always need to specify at least three important pieces of data:

• The name of the SQL Server instance you’re connecting to

• The authentication information that will permit you to access the server

• The database you want to work with

This connection data is grouped in a connection string, which needs to be passed to the
SqlConnection object. The following code snippet demonstrates how to create and open a
database connection:

Darie-Watson_4681C03.fm Page 71 Thursday, September 15, 2005 5:42 AM

72 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

 // Create the connection object
 SqlConnection connection = new SqlConnection();
 // Set the connection string
 connection.ConnectionString = "Server=(local)\SqlExpress; " +
 "User ID=johnny; Password=qwerty;" +
 "Database=BalloonShop";
 // Open the connection
 connection.Open();

The code is fairly straightforward: you first create a SqlConnection object, then set its
ConnectionString property, and finally open the connection. A connection needs to be opened
before using it for any operations.

Understanding the connection string is important—if your program has problems
connecting to the database, these problems likely can be solved by “fixing” the connection
string (assuming that SQL Server is properly configured and that you actually have access to it).

The connection string contains the three important elements. The first is the name of the
SQL Server instance you’re connecting to. For the SQL Server 2005 Express Edition, the default
instance name is (local)\SqlExpress. You’ll want to change this if your SQL Server instance
has another name. You can use your computer name instead of (local). Of course, if you
connect to a remote SQL Server instance, you’ll need to specify the complete network path
instead of (local).

After specifying the server, you need to supply security information needed to log in to the
server. You can log in to SQL Server by either using SQL Server Authentication (in which case
you need to supply a SQL Server username and password as shown in the code snippet) or by
using Windows Authentication (also named Windows Integrated Security). With Windows
Integrated Security, you don’t have to supply a username and password because SQL Server
uses the Windows login information of the currently logged-in user.

To log in using Windows Authentication, you’ll need to supply Integrated Security=True
(or Integrated Security=SSPI) instead of User ID=username; Password=password. The final part
of the connection string specifies the database you’ll be working with.

Instead of setting the connection string after creating the SqlConnection object, you can
provide the connection string right when creating the SqlConnection object:

 // Create the connection object and set the connection string
 SqlConnection connection = new SqlConnection("... connection string ...");
 // Open the connection
 connection.Open();

A final note about the connection string is that several synonyms can be used inside it; for
example, instead of Server, you can use Data Source or Data Server, and instead of Database,
you can use Initial Catalog. The list is much longer, and the complete version can be found
in SQL Server 2005 Books Online.

Darie-Watson_4681C03.fm Page 72 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 73

CONFIGURING SQL SERVER SECURITY

Because connection problems are common, many readers have asked for additional information about fixing
connection problems. Let’s talk about configuring SQL Server to accept connections from within your web site,
considering that you have done the installation procedures as explained in Appendix A. If you’re using an external
SQL Server instance, such as the one provided by your web hosting company, you’ll need to request the
connection string details from the system administrator or the hosting company.

Because the configuration details can be boring, you can skip these sections for now, if you want. If the
BalloonShop project throws a connectivity exception when executed, you can come back and see what’s wrong.

SQL Server can be configured to work in Windows Authentication Mode or in Mixed Mode. In Mixed
Mode, SQL Server accepts connections through both Windows Authentication and SQL Server Authentication.
You can’t set SQL Server to accept connection only through SQL Server Authentication.

If you don’t specify otherwise at installation, by default SQL Server works in Windows Authentication
Mode, in which SQL Server recognizes you by your Windows login. This is why you don’t need to specify any
extra credentials when accessing SQL Server from Visual Web Developer or when connecting to your database
using SQL Express Manager.

However, an ASP.NET application running through IIS will authenticate itself using a special account
named ASPNET (in Windows 2003 Server, this account is named Network Service), which doesn’t have by
default privileges to access SQL Server, not to mention the BalloonShop database. As a result, if you’re
using IIS, you’ll need to give rights to the ASPNET account to access the BalloonShop database, in order for
your application to function properly. The integrated web server that ships with Visual Web Developer runs
under the credentials of the logged-in user, making your life easier from this point of view (you don’t need to
set any security options, as your site will have full privileges to the BalloonShop database by default).

Alternative methods to solve the connection problem when you use IIS include enabling SQL Server
Authentication and using a user ID and password in the connection string, or using a technique called ASP.NET
impersonation, when the ASP.NET application is executed under the credentials of another Windows user
than ASPNET. However, we’ll not discuss the details of using these techniques here.

To enable the ASPNET account to access the BalloonShop database, you need to follow these steps:

1. Start SQL Express Manager, specify the SQL Server Instance name (localhost\SqlExpress by
default), and log in using Windows Authentication.

2. Use the sp_grantlogin stored procedure to add a Windows user account to the SQL Server database.
This command grants the ASPNET account the privilege to connect to SQL Server. Be sure to use the
name of your local machine instead of MachineName.

EXEC sp_grantlogin 'MachineName\ASPNET'

3. After giving the ASPNET account the privilege to connect to SQL Server, you need to give it the privilege
to access to the BalloonShop database:

USE BalloonShop
EXEC sp_grantdbaccess 'MachineName\ASPNET'

Darie-Watson_4681C03.fm Page 73 Thursday, September 15, 2005 5:42 AM

74 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

4. Finally, you need to give the ASPNET account privileges to the objects inside the BalloonShop database,
such as the privilege to execute stored procedures, read and modify tables, and so on. The simplest way
is to assign the ASPNET account with the db_owner role in the BalloonShop database. Assuming that
you already connected to the BalloonShop database at the previous step (with USE BalloonShop),
type the following:

EXEC sp_addrolemember 'db_owner', 'MachineName\ASPNET'

That’s it, now you can connect to SQL Server from your Web Application using Windows Authentication.

Issuing Commands and Executing Stored Procedures
After you have an open connection to the database, you usually need to create an SqlCommand
object to perform operations. Because there are more tricks you can do with the SqlCommand
object, we’ll take them one at a time.

Creating an SqlCommand Object

SqlCommand will be your best friend when implementing the data access code. This class is
capable of storing information about what you want to do with the database—it can store an
SQL query or the name of a stored procedure that needs to be executed. The SqlCommand is also
aware of stored procedure parameters—you’ll learn more about these in Chapter 4, because
the stored procedure you work with in this chapter (GetDepartments) doesn’t have any parameters.

Following is the standard way of creating and initializing an SqlCommand object:

 // Create the command object
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandText = "GetDepartments";
 command.CommandType = CommandType.StoredProcedure;

Once again, there’s no mystery about the code. You first create an SqlCommand object and
then set some of its properties. The most important property that needs to be set is Connection,
because each command needs to be executed on a specific connection. The other important
property is CommandText, which specifies the command that needs to be executed. This can be
an SQL query such as SELECT * FROM Department, but in your application this will always be the
name of a stored procedure.

By default, the CommandText property receives SQL queries. Because you are supplying the
name of a stored procedure instead of an SQL query, you need to inform the SqlCommand object
about this by setting its CommandType property to CommandType.StoredProcedure.

The previous code snippet shows a simple and structured way to create and configure the
SqlCommand object. However, it’s possible to achieve the same result using less code by passing
some of the information when creating the Command object:

 // Create the command object
 SqlCommand command = new SqlCommand("GetDepartments", connection);
 command.CommandType = CommandType.StoredProcedure;

Darie-Watson_4681C03.fm Page 74 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 75

Executing the Command and Closing the Connection

This is the moment of glory—finally, after creating a connection, creating an SqlCommand object,
and setting various parameters, you’re ready to execute the command. It is important always
to close the connection as soon as possible, immediately after the necessary database opera-
tion has been performed, because open connections consume server resources, which finally
results in poor performance if not managed carefully.

You can execute the command in many ways, depending on the specifics. Does it return
any information? If so, what kind of information, and in which format? You’ll analyze the various
scenarios later, when you actually put the theory into practice, but for now let’s take a look at
the three Execute methods of the SqlCommand class: ExecuteNonQuery, ExecuteScalar, and
ExecuteReader.

ExecuteNonQuery is used to execute an SQL statement or stored procedure that doesn’t
return any records. You’ll use this method when executing operations that update, insert, or
delete information in the database. ExecuteNonQuery returns an integer value that specifies
how many rows were affected by the query—this proves useful if you want to know, for example,
how many rows were deleted by the last delete operation. Of course, in case you don’t need to
know that number, you can simply ignore the return value. Here’s a simple piece of code that
shows how to open the connection, execute the command using ExecuteNonQuery, and imme-
diately close the connection afterward:

 connection.Open();
 command.ExecuteNonQuery();
 command.Close();

ExecuteScalar is like ExecuteNonQuery in that it returns a single value, although it returns a
value that has been read from the database instead of the number of affected rows. It is used in
conjunction with SELECT statements that select a single value. If SELECT returns more rows and/or
more columns, only the first column in the first row is returned.

ExecuteReader is used with SELECT statements that return multiple records (with any number
of fields). ExecuteReader returns an SqlDataReader object, which contains the results of the
query. An SqlDataReader object reads and returns the results one by one, in a forward-only and
read-only manner. The good news about the SqlDataReader is that it represents the fastest way
to read data from the database, and the bad news is that it needs an open connection to operate—
no other database operations can be performed on that connection until the reader is closed.
In our solution, you’ll load all the data returned by the SqlDataReader into a DataTable object
(which is capable of storing the data offline without needing an open connection), which will
allow you to close the database connection very quickly.

The DataTable class can store a result set locally without needing an open connection to
SQL Server, and it isn’t data provider-specific, like the other ADO.NET objects mentioned so far
(whose names begin with SQL because they’re SQL Server-specific).

■Tip A “parent” of the DataTable object is the DataSet, which is a very smart object that represents
something like an “in-memory” database. DataSet is capable of storing data tables, their data types, relationships
between tables, and so on. Because of their complexity, DataSets consume a lot of memory so it’s good to
avoid them when possible. We won’t use any DataSets when building BalloonShop.

Darie-Watson_4681C03.fm Page 75 Thursday, September 15, 2005 5:42 AM

76 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Here’s a simple example of reading some records from the database and saving them to
a DataTable:

 // Open the connection
 conn.Open();
 // Create the SqlDataReader object by executing the command
 SqlDataReader reader = comm.ExecuteReader();
 // Create a new DataTable and populate it from the SqlDataReader
 DataTable table = new DataTable();
 table.Load(reader);
 // Close the reader and the connection
 reader.Close();
 conn.Close();

Implementing Generic Data Access Code
So far in the examples we used classes whose names start with Sql: SqlConnection, SqlCommand,
and SqlDataReader. These objects and all the others whose names start with Sql are specifically
created for SQL Server, and are part of the SQL Server Managed Data Provider. The SQL Server
Managed Data Provider is the low-level interface between the database and your program. The
ADO.NET objects that use this provider are grouped in the System.Data.SqlClient namespace, so
you need to import this namespace when you need to access these classes directly.

The .NET Framework ships with Managed Data Providers for SQL Server (System.Data.
SqlClient namespaces), Oracle (System.Data.Oracle), OLE DB (System.Data.OleDb), and
ODBC (System.Data.Odbc).

To keep your application as independent as possible to the backend database, we’ll use a
trick to avoid using database-specific classes, such as SqlConnection, and so on. Instead, we’ll
let the application decide at runtime which provider to use, depending on the connection
string provided. Moreover, because of a cool new ADO.NET 2.0 feature, we can implement this
trick without affecting the application’s performance!

■Tip If you’re familiar with Object-Oriented Programming (OOP) theory, you’ll find it interesting to hear this
extra bit of information. In our code, we’ll use database-agnostic classes, such as DbConnection and
DbCommand, instead of SqlConnection and SqlCommand. At execution time, objects of these classes will
contain instances of their database-specific variants, through polymorphism. As a result, for example, calling
a method on the DbConnection class will have the similar method from SqlConnection executed. Using
this trick, if you change the backend database, the compiled code keeps working with absolutely no changes,
as long as the stored procedures are implemented the same under the new database. You can download
some free material on OOP with C# from my personal web site at http://www.CristianDarie.ro.

Darie-Watson_4681C03.fm Page 76 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 77

Although using SQL Server-specific classes was better for the sake of keeping examples
simple, in practice we’ll use a method that doesn’t make the C# code depend (in theory, at
least) on a specific database server product.

The new ADO.NET 2.0 classes that allow for generic data access functionality (they weren’t
available in ADO.NET 1.0 or 1.1)—such as in DbConnection, DbCommand, and so on—are grouped
under the System.Data.Common namespace.

The first step in implementing database-agnostic data access is to use the DbProviderFactory
class to create a new database provider factory object:

 // Create a new database provider factory
 DbProviderFactory factory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");

This piece of code, because of the System.Data.SqlClient parameter passed, will have the
factory object contain an SQL Server database provider factory (the term factory generally
refers to a class that builds other classes for you). In practice, the System.Data.SqlClient string
parameter is kept in a configuration file, allowing you to have C# code that really doesn’t know
what kind of database it’s dealing with.

The database provider factory class is capable of creating a database-specific connection
object through its CreateConnection object. However, you’ll keep the reference to the connection
object stored using the generic DbConnection reference:

 // Obtain a database specific connection object
 DbConnection conn = factory.CreateConnection();

So, in practice, the connection object will actually contain a SqlCommand object if the backend
database is SQL Server, an OracleCommand if the backend database is Oracle, and so on. However,
instead of working with SqlCommand or OracleCommand objects, we simply use DbCommand and let
it decide at runtime what kind of object to create in the background.

After you have a connection object, you can simply set its properties the familiar way, just
as you would with a “normal” connection object:

 // Set the connection string
 conn.ConnectionString = "... connection string ...";

Okay, so you have the connection, but what about executing the command? Well, it just so
happens that the connection object has a method named CreateCommand that returns a data-
base command object. Just like with the connection object, CreateCommand returns a database-
specific command object, but you’ll keep the reference stored using a database-neutral object:
DbCommand. Here’s the line of code that does the job:

 // Create a database specific command object
 DbCommand comm = conn.CreateCommand();

Now that you have a connection object and a command object, you can play with them
just like the good old days. Here’s a fairly complete (and almost working) ADO.NET 2.0 code
listing that loads the list of departments into a DataTable without knowing what kind of data-
base it’s working with:

Darie-Watson_4681C03.fm Page 77 Thursday, September 15, 2005 5:42 AM

78 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

 // Create a new database provider factory
 DbProviderFactory factory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
 // Create the connection object
 DbConnection conn = factory.CreateConnection();
 // Initialize the connection string
 conn.ConnectionString = "... connection string ...";
 // Create the command object and set its properties
 DbCommand comm = conn.CreateCommand();
 comm.CommandText = "GetDepartments";
 comm.CommandType = CommandType.StoredProcedure;
 // Open the connection
 conn.Open();
 // Execute the command and save the results in a DataTable
 DbDataReader reader = comm.ExecuteReader();
 DataTable table = new DataTable();
 table.Load(reader);
 // Close the reader and the connection
 reader.Close();
 conn.Close();

Catching and Handling Exceptions
The rule is, of course, that your web site will always work fine, and no problems of any kind will
ever happen. Exceptions to that rule can happen during development, however, and even
more important, in a production system. It’s needless to mention the many aspects out of your
control, like hardware failure, software crashes, and viruses that can cause your software to
work not exactly the way you designed it to work. Even better known are the errors that can
happen because of bad (or unexpected) user input data combined with weaknesses in the
application logic.

Common and particularly dangerous are the errors that can happen when accessing the
database or executing a stored procedure. This can be caused by too many reasons to list, but
the effects can show the visitor a nasty error message or keep database resources locked, which
would cause problems to all the visitors accessing the site at that time.

Exceptions are the modern way of intercepting and handling runtime errors in object-
oriented languages. When a runtime error occurs in your code, the execution is interrupted,
and an exception is generated (or raised). If the exception is not handled by the local code that
generated it, the exception goes up through the methods in the stack trace. If it isn’t handled
anywhere, it’s finally caught by the .NET Framework, which displays an error message. If the
error happens in an ASP.NET page during a client request, ASP.NET displays an error page,
eventually including debugging information, to the visitor. (The good news in this scenario is
that ASP.NET can be instructed to display a custom error page instead of the default one—
you’ll do that by the end of the chapter.)

On the other hand, if the exception is dealt with in the code, execution continues normally,
and the visitor will never know a problem ever happened when handling the page request.

The general strategy to deal with runtime exceptions is as follows:

Darie-Watson_4681C03.fm Page 78 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 79

• If the error is not critical, deal with it in code, allowing the code to continue executing
normally, and the visitor will never know an error happened.

• If the error is critical, handle it partially with code to reduce the negative effects as much
as possible, and then let the error propagate to the presentation tier that will show the
visitor a nice looking “Houston, there’s a problem” page.

• For the errors that you can’t anticipate, the last line of defense is still the presentation
tier, which politely asks the visitor to come back later.

For any kind of error, it’s good to let the site administrator (or the technical staff) know
about the problem. Possible options include sending details about the error to a custom data-
base table, to the Windows Event log, or by email. At the end of this chapter, you’ll learn how to
send an email to the site administrator with detailed information when an error happens.

In our data access code, you’ll consider any error as critical. As a result, you’ll minimize
potential damage by closing the database connection immediately, logging the error, and then
letting it propagate to the presentation tier.

■Note The business logic you see in the business tier code can control which exceptions pass through it.
Any exception generated by the data access code can be caught and handled by the business tier. In case the
business tier doesn’t handle it, the exception propagates to the presentation tier, where it’s logged once again
(so the administrator will know it was a critical error), and the visitor is shown a nice error message asking
him to come back later.

So, data access errors that are handled somewhere before getting to the visitor are logged
only once (in the data access code). Critical errors that affect the visitor’s browsing experience
(by displaying the error message) are logged twice—the first time when they are thrown by the
data access code and the second time when they display the error message for the visitor.

The theory sounds good enough, but how do we put it in practice? First, you need to learn
about exceptions. Exceptions are dealt with in C# code using the try-catch-finally construct,
whose simple version looks something like

 try
 {
 // code that might generate an exception
 }
 catch (Exception ex)
 {
 // code that is executed only in case of an exception
 // (exception’s details are accessible through the ex object)
 }
 finally
 {
 // code that executes at the end, no matter if
 // an exception was generated or not
 }

Darie-Watson_4681C03.fm Page 79 Thursday, September 15, 2005 5:42 AM

80 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

You place inside the try block any code that you suspect might possibly generate errors.
If an exception is generated, the execution is immediately passed to the catch block. If no
exceptions are generated in the try block, the catch block is bypassed completely. In the end,
no matter whether an exception occurred or not, the finally block is executed.

The finally block is important because it’s guaranteed to execute no matter what happens. If
any database operations are performed in the try block, it’s a standard practice to close the
database connection in the finally block to ensure that no open connections remain active on
the database server. This is useful because open connections consume resources on the data-
base server and can even keep database resources locked, which can cause problems for other
concurrently running database activities.

Both the finally and catch blocks are optional, but (obviously) the whole construct only
makes sense if at least one of them is present. If no catch block exists (and you have only try
and finally), the exception is not handled; the code stops executing, and the exception prop-
agates to the higher levels in the class hierarchy, but not before executing the finally block
(which, as stated previously, is guaranteed to execute no matter what happens).

Runtime exceptions propagate from the point they were raised through the call stack of
your program. So, if an exception is generated in the database stored procedure, it is immediately
passed to the data access code. If the data tier handles the error using a try-catch construct,
then everything’s fine, and the business tier and the presentation tier will never know that an
error occurred. If the data tier doesn’t handle the exception, the exception is then propagated
to the business tier, and if the business tier doesn’t handle it, the exception then propagates to
the presentation tier. If the error isn’t handled in the presentation tier either, the exception is
finally propagated to the ASP.NET runtime that will deal with it by presenting an error page to
the visitor.

There are cases when you want to catch the exception, respond to it somehow, and then
allow it to propagate through the call stack anyway. This will be the case in the BalloonShop
data access code, where we want to catch the exceptions to log them, but afterward we let them
propagate to higher-level classes that know better how to handle the situation and decide how
critical the error is. To rethrow an error after you’ve caught it in the catch block, you use the
throw statement:

 try
 {
 // code that might generate an exception
 }
 catch (Exception ex)
 {
 // code that is executed only in case of an exception
 throw ex;
 }

As you can see in the code snippet, exceptions are represented in .NET code by the
Exception class. The .NET Framework contains a number of specialized exception classes that
are generated on certain events, and you can even create your own. However, these topics are
out of the scope of this book.

See the C# language reference for complete details about using the try-catch-finally
construct. In this chapter, you’ll see it in action in the data access code, where it catches potential
data access errors to report them to the administrator.

Darie-Watson_4681C03.fm Page 80 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 81

Sending Emails
Speaking of reporting errors, in BalloonShop you’ll report errors by emailing them to the site
administrator (or to the person you designate to handle them). Alternatives to this solution
consist of using the Windows Event log, saving the error to the database, or even saving to a text file.

To send emails, you need the SmtpClient and MailMessage classes from the System.Web.Mail
namespace.

MailMessage has four important properties that you set before sending an email: From, To,
Subject, and Body. These properties can also be set through MailMessage’s constructor, which
accepts them as parameters. After the MailMessage object is properly set up, you send it using
the SmtpMail class.

When working with SmtpClient, you can set its Host property to the address of an external
SMTP (Simple Mail Transfer Protocol) server; otherwise, the mail is sent through the local SMTP
service in Windows. Note that the SMTP service must be installed in Windows before you can
use it. This service is a component of IIS, and you can install it by following the instructions in
Appendix A.

The standard code that sends an email looks like the following code snippet (you need to
replace the text in italics with your own data):

 // Configure mail client (may need additional
 // code for authenticated SMTP servers)
 SmtpClient smtpClient = new SmtpClient("SMTP server address");
 // Create the mail message
 MailMessage mailMessage = new MailMessage("from", "to", "subject", "body");
 // Send mail
 smtpClient.Send(mailMessage);

If you’re working with your local SMTP server, ensure that the server is started using the IIS
Configuration console. Also, you may need to enable relaying for the local machine. For this,
you need to open the IIS configuration console, expand your computer’s node, right-click
Default SMTP Virtual Server, select Properties, go to the Access tab, click the Relay button, add
127.0.0.1 to the list, and finally restart the SMTP server.

If you’re having problems, before trying Google, first look at http://www.systemwebmail.com/
default.aspx—although designed for .NET 1.1, this site may contain the solution to your problem.

Writing the Business Tier Code
It’s time to upgrade your BalloonShop solution with some new bits of code. The following exercise
uses much of the theory presented so far, while implementing the business tier code. You’ll add the
following C# classes to your application:

• GenericDataAccess contains the generic database access code, implementing basic
error-handling and logging functionality.

• CatalogAccess contains the product catalog business logic.

• BalloonShopConfiguration provides easy access to various configuration settings (that
are generally read from web.config), such as the database connection string, and so on.

Darie-Watson_4681C03.fm Page 81 Thursday, September 15, 2005 5:42 AM

82 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

• Utilities contains miscellaneous functionality such as sending emails, which will be
used from various places in BalloonShop.

Follow the steps of the exercise to add these classes to your project.

Exercise: Implementing the Data Access Code

1. Open the web.config configuration file (double-click on its name in Solution Explorer) and update
the connectionStrings element like this:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings/>
 <connectionStrings>
 <add name="BalloonShopConnection" connectionString="Server=
(local)\SqlExpress;
Integrated Security=True;Database=BalloonShop"
providerName="System.Data.SqlClient"/>
 </connectionStrings>
 <system.web>
 <!--

■Note You might need to adapt the connection string to match your particular SQL Server configuration.
Also, you should type the <add> element on a single line, not split in multiple lines as shown in the previous
code snippet.

2. Add the other necessary configuration data under the <appSettings> node in web.config, as
shown here:

 <appSettings>
 <add key="MailServer" value="localhost" />
 <add key="EnableErrorLogEmail" value="true" />
 <add key="ErrorLogEmail" value="errors@yourballoonshopxyz.com" />
 </appSettings>

■Note Make sure you include a working server address instead of localhost and a valid email account
instead of errors@yourballoonshopxyz.com, if you intend to use the email logging feature. Otherwise, just set
EnableErrorLogEmail to false.

3. Right-click the project’s name in Solution Explorer and choose Add New Item from the context menu.

4. Choose the Class template, and set its name to ApplicationConfiguration.cs. Click Add.

Darie-Watson_4681C03.fm Page 82 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 83

5. You’ll be asked about adding the class into the App_Code folder. This is a special folder in ASP.NET 2.0.
Choose Yes.

6. Modify the ApplicationConfiguration class like this:

using System;
using System.Configuration;

/// <summary>
/// Repository for BalloonShop configuration settings
/// </summary>
public static class BalloonShopConfiguration
{
 // Caches the connection string
 private static string dbConnectionString;
 // Caches the data provider name
 private static string dbProviderName;

 static BalloonShopConfiguration()
 {
 dbConnectionString =
ConfigurationManager.ConnectionStrings["BalloonShopConnection"].
ConnectionString;
 dbProviderName =
ConfigurationManager.ConnectionStrings["BalloonShopConnection"].
ProviderName;
 }

 // Returns the connection string for the BalloonShop database
 public static string DbConnectionString
 {
 get
 {
 return dbConnectionString;
 }
 }

 // Returns the data provider name
 public static string DbProviderName
 {
 get
 {
 return dbProviderName;
 }
 }

Darie-Watson_4681C03.fm Page 83 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

84 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

 // Returns the address of the mail server
 public static string MailServer
 {
 get
 {
 return ConfigurationManager.AppSettings["MailServer"];
 }
 }

 // Send error log emails?
 public static bool EnableErrorLogEmail
 {
 get
 {
 return bool.Parse(ConfigurationManager.AppSettings
["EnableErrorLogEmail"]);
 }
 }

 // Returns the email address where to send error reports
 public static string ErrorLogEmail
 {
 get
 {
 return ConfigurationManager.AppSettings["ErrorLogEmail"];
 }
 }
}

7. Right-click the project’s name in Solution Explorer and choose Add New Item from the context menu.

8. Choose the Class template and set its name to Utilities.cs. Click Add. You’ll be asked about
adding the class into the App_Code folder. Choose Yes.

9. Write the following code into Utilities.cs (note that we’ve removed the unnecessary using statements):

using System;
using System.Net.Mail;

/// <summary>
/// Class contains miscellaneous functionality
/// </summary>
public static class Utilities
{
 static Utilities()
 {
 //
 // TODO: Add constructor logic here
 //
 }

Darie-Watson_4681C03.fm Page 84 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 85

 // Generic method for sending emails
 public static void SendMail(string from, string to, string subject,
string body)
 {
 // Configure mail client (may need additional
 // code for authenticated SMTP servers)
 SmtpClient mailClient = new SmtpClient
(BalloonShopConfiguration.MailServer);
 // Create the mail message
 MailMessage mailMessage = new MailMessage(from, to, subject, body);
/*
// For SMTP servers that require authentication
message.Fields.Add
("http://schemas.microsoft.com/cdo/configuration/smtpauthenticate", 1);
message.Fields.Add
("http://schemas.microsoft.com/cdo/configuration/sendusername",
"SmtpHostUserName");
message.Fields.Add
("http://schemas.microsoft.com/cdo/configuration/sendpassword",
"SmtpHostPassword");
*/
 // Send mail
 mailClient.Send(mailMessage);
 }

 // Send error log mail
 public static void LogError(Exception ex)
 {
 // get the current date and time
 string dateTime = DateTime.Now.ToLongDateString() + ", at "
 + DateTime.Now.ToShortTimeString();
 // stores the error message
 string errorMessage = "Exception generated on " + dateTime;
 // obtain the page that generated the error
 System.Web.HttpContext context = System.Web.HttpContext.Current;
 errorMessage += "\n\n Page location: " + context.Request.RawUrl;
 // build the error message
 errorMessage += "\n\n Message: " + ex.Message;
 errorMessage += "\n\n Source: " + ex.Source;
 errorMessage += "\n\n Method: " + ex.TargetSite;
 errorMessage += "\n\n Stack Trace: \n\n" + ex.StackTrace;
 // send error email in case the option is activated in Web.Config
 if (BalloonShopConfiguration.EnableErrorLogEmail)
 {

Darie-Watson_4681C03.fm Page 85 Thursday, September 15, 2005 5:42 AM

86 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

 string from = "noreply@cristiandarie.ro";
 string to = BalloonShopConfiguration.ErrorLogEmail;
 string subject = BalloonShopConfiguration.SiteName + " error report";
 string body = errorMessage;
 SendMail(from, to, subject, body);
 }
 }
}

10. Right-click the project’s name in Solution Explorer and choose Add New Item from the context menu.
Choose the Class template and set its name to GenericDataAccess.cs. Click Add. You’ll be asked
about adding the class into the App_Code folder. Choose Yes.

11. Write the following code into GenericDataAccess.cs:

using System;
using System.Data;
using System.Data.Common;
using System.Configuration;

/// <summary>
/// Class contains generic data access functionality to be accessed from
/// the business tier
/// </summary>
public static class GenericDataAccess
{
 // static constructor
 static GenericDataAccess()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 // executes a command and returns the results as a DataTable object
 public static DataTable ExecuteSelectCommand(DbCommand command)
 {
 // The DataTable to be returned
 DataTable table;
 // Execute the command making sure the connection gets closed in the end
 try
 {
 // Open the data connection
 command.Connection.Open();
 // Execute the command and save the results in a DataTable
 DbDataReader reader = command.ExecuteReader();
 table = new DataTable();
 table.Load(reader);

Darie-Watson_4681C03.fm Page 86 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 87

 // Close the reader
 reader.Close();
 }
 catch (Exception ex)
 {
 Utilities.LogError(ex);
 throw ex;
 }
 finally
 {
 // Close the connection
 command.Connection.Close();
 }
 return table;
 }

 // creates and prepares a new DbCommand object on a new connection
 public static DbCommand CreateCommand()
 {
 // Obtain the database provider name
 string dataProviderName = BalloonShopConfiguration.DbProviderName;
 // Obtain the database connection string
 string connectionString = BalloonShopConfiguration.DbConnectionString;
 // Create a new data provider factory
 DbProviderFactory factory = DbProviderFactories.
 GetFactory(dataProviderName);
 // Obtain a database specific connection object
 DbConnection conn = factory.CreateConnection();
 // Set the connection string
 conn.ConnectionString = connectionString;
 // Create a database specific command object
 DbCommand comm = conn.CreateCommand();
 // Set the command type to stored procedure
 comm.CommandType = CommandType.StoredProcedure;
 // Return the initialized command object
 return comm;
 }
}

12. In Solution Explorer, right-click on the App_Code folder and choose Add New Item. Using the window
that appears, create a new class named CatalogAccess (which would reside in a file named
CatalogAccess.cs). Add the new code to the file:

Darie-Watson_4681C03.fm Page 87 Thursday, September 15, 2005 5:42 AM

88 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

using System;
using System.Data;
using System.Data.Common;

/// <summary>
/// Product catalog business tier component
/// </summary>
public static class CatalogAccess
{
 static CatalogAccess()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 // Retrieve the list of departments
 public static DataTable GetDepartments()
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetDepartments";
 // execute the stored procedure and return the results
 return GenericDataAccess.ExecuteSelectCommand(comm);
 }
}

How It Works: The Business Tier

Let’s take some time to understand the code you just wrote.

First, you added some configuration settings to the web.config configuration file. web.config is an external
configuration XML file managed by ASP.NET. This complex and powerful file can include many options regarding the
application’s security, performance, behavior, and so on.

Saving data to web.config is beneficial because you can change it independently of your C# code, which now
doesn’t need to be recompiled when you change the address of the mail server or the database connection string.
This detail, combined with the fact that the data access code is written to be database-independent, makes the
whole data access code powerful.

Then, you added the BalloonShopConfiguration class, which is simply a collection of static properties that
return data from web.config. Using this class instead of needing to read web.config all the time will make your
life easier in the long run. The performance is improved as well because the class can cache the values read from
web.config instead of reading them on every request. The first place you use the BalloonShopConfiguration
class is the Utility class, which for now only contains code that sends emails.

Next, you implemented the GenericDataAccess class, whose purpose is to store a series of common database
access operations, to avoid typing it all over again in other places. The two methods it contains now are

Darie-Watson_4681C03.fm Page 88 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 89

• CreateCommand creates a DbCommand object, sets some standard properties to it, and returns the
configured object. If you preferred to use a database-specific command object, such as SqlCommand,
the code would have been a bit simpler, but in this case we prefer to have database-independent access
code, as explained earlier in this chapter. The CreateCommand method uses the steps presented
earlier in this chapter to create a command object specific to the database implementation you’re
working with, wrap that instance into a generic DbCommand reference, and return this reference. This
way, external classes will be able to call CreateCommand to get an already configured—with a
prepared connection—DbCommand object.

• ExecuteSelectCommand is essentially a wrapper for DbCommand’s ExecuteReader method, except
it returns the results as a DataTable instead of a DataReader. Using the DataTable ensures that
the database connection is kept open as short as possible. In this method, you implement an error-
handling technique that guarantees that in case of an exception, the administrator is informed by email
(if the application is configured to do so), the database connection is properly closed and the error is
rethrown. We decided to let the error propagate because this class is at too low a level to know how to
properly handle the errors. At this point, we’re only interested in keeping the database safe (by closing
the connection) and reporting any eventual error. The best example of how a client class can use
GenericDataAccess to work with the BalloonShop database is the GetDepartments method in
the CatalogAccess class.

All the classes you’ve added are static classes, which are composed exclusively of static members. Note that some
understanding of basic OOP terminology—such as classes, objects, constructors, methods, properties, fields,
instance members and static members, public data and private data, and so on—is an important prerequisite for
this book. These topics are covered in many articles on the Internet, such as the ones you can find for free download
at http://www.cristiandarie.ro/downloads.html.

■Note Static class members (such as static properties and static methods) can be called by external
classes without creating an instance of the class first; instead, they can be called directly using the class
name. The perfect example for this is the Math class, which contains a number of static methods to perform
various operations, such as Math.Cos, and so on. Under the hood, the static class members are called on a
global instance of that class, which is not destroyed by the GC (Garbage Collector) after execution. When the
first static member of a class is called, the global instance of the class is created, and its static constructor is
executed. Because the static constructor is called only once per application’s lifetime, and the global instance
is never destroyed, we can ensure that any initializations performed by the static constructor (such as reading
the database connection string) are performed only once, and the values of any static members are persisted.
A static class member can call or access another static class member directly. However, if you needed to
access an instance class member (nonstatic class member) from a static class member, you had to create an
instance of the class, even from a method of that class, to access that member.

We’ve chosen to use static members mainly to improve performance. Because static classes and static members
are initialized only once, they don’t need to be reinstantiated each time a new visitor makes a new request; instead,
their “global” instances are used. In the presentation tier, you’ll display your list of departments with a call like this:

list.DataSource = CatalogAccess.GetDepartments();

Darie-Watson_4681C03.fm Page 89 Thursday, September 15, 2005 5:42 AM

90 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

If GetDepartments would have been an instance method, you would have needed to create a separate instance
of the CatalogAccess class instead of using the static instance, which would have had, obviously, a bigger
performance impact:

CatalogAccess catalogAccess = new CatalogAccess();
list.DataSource = catalogAccess.GetDepartments();

In BalloonShopConfiguration, you’ve implemented even an additional trick to improve performance by caching
connection string data using static fields (dbConnectionString and dbProviderName), whose data is read in
from web.config in the class’s static constructor. The static class constructor is called only once per application’s
life cycle, so the web.config file won’t be read on every database operation, but just once when the class is initialized.

Displaying the List of Departments
Now that everything is in place in the other tiers, all you have to do is create the presentation
tier part—the final goal you’ve been working toward from the beginning. As you saw in the
figures at the beginning of this chapter, the departments list needs to look something like
Figure 3-15 when the site is loaded in the web browser.

Figure 3-15. The departments list when loaded in the web browser

You’ll implement this as a separate Web User Control named DepartmentsList, just as you
did with the Header control in Chapter 2, and then you’ll add the user control to the Master
Page to make it available to all the site’s pages.

The list of departments needs to be dynamically generated based on what you have in the
database. Fortunately, the .NET Framework provides a few useful web controls that can help
you solve this problem without writing too much code. For example, the DataList control can
be set to simply take a DataTable object as input and generate content based on it.

Before actually writing the user control, let’s prepare the BalloonShop CSS file.

Preparing the Field: Themes, Skins, and Styles
Cascading Style Sheets (CSS) files are a standard repository for font and formatting informa-
tion that can be easily applied to various parts of the site. For example, instead of setting fonts,
colors, and dimensions for a Label control, you can set its CssClass property to one of the
existing styles. The CSS file is applied at the client side and doesn’t imply any server-side
processing on the ASP.NET application. A typical CSS style definition looks like this:

Darie-Watson_4681C03.fm Page 90 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 91

.AdminButtonText
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 12px;
}

ASP.NET 2.0 brings in the notions of themes and skins. Skins are like CSS files in that they
contain various properties, but they do this on a control-type basis, they allow setting properties
that aren’t accessible through CSS (such as image’s src property), and they are applied at
server side. Skin definitions are saved in files with the .skin extension (these files can store one
or more skin definitions) and look much like the definition of an ASP.NET control. A typical
skin definition looks like this:

<asp:Image runat="server" SkinID="BalloonShopLogo" src="/Images/BalloonShop.png"/>

This skin entry is a named skin because it has a SkinID. In this case, when adding images
that you want to implement this skin, you need to set their SkinID properties to BalloonShopLogo.
If you don’t specify a SkinID when creating the skin, that skin becomes the default skin for its
control type.

Just as with CSS files, you use skins when you want to reuse a particular control format in
more controls. However, your DepartmentsList.ascx and its contents will be one-of-a-kind,
and using a skin for just one instance of a control wouldn’t bring much of a benefit. As a result,
we won’t build any skins in this chapter, but you’ll meet them later in the book, where it makes
more sense to use them.

A theme is a collection of CSS files, skins, and images. You can add more themes to a web
site and allow for easily changing the look of your site by switching the active theme at design-
time or even at runtime.

In the exercise, you’ll create a new theme called BalloonShopDefault, and you’ll add a CSS
file to it, which will be then used to display the list of departments.

Exercise: Preparing the Styles

1. Right-click the root entry in Solution Explorer, and then choose Add Folder ➤ Theme Folder. Set the
name of the new folder to BalloonShopDefault, as shown in Figure 3-16.

Figure 3-16. The departments list when loaded in the web browser

Darie-Watson_4681C03.fm Page 91 Thursday, September 15, 2005 5:42 AM

92 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

2. Right-click the BalloonShopDefault entry in Solution Explorer and then choose Add New Item.
From the Templates window, choose Style Sheet and name it BalloonShop.css. Click Add.

3. Open BalloonShop.css by double-clicking it in Solution Explorer. Delete its contents and add these
styles to it:

.DepartmentListHead
{
 border-right: #01a647 1px solid;
 border-top: #01a647 1px solid;
 border-left: #01a647 1px solid;
 border-bottom: #01a647 1px solid;
 background-color: #30b86e;
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
 color: #f5f5dc;
 padding-left: 3px;
 text-align: center;
}
.DepartmentListContent
{
 border-right: #01a647 1px solid;
 border-top: #01a647 1px solid;
 border-left: #01a647 1px solid;
 border-bottom: #01a647 1px solid;
 background-color: #9fe1bb;
 text-align: center;
}
a.DepartmentUnselected
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 9pt;
 color: #5f9ea0;
 line-height: 25px;
 padding-left: 5px;
 text-decoration: none;
}
a.DepartmentUnselected:hover
{
 padding-left: 5px;
 color: #2e8b57;
}
a.DepartmentSelected
{
 font-family: Verdana, Arial;
 font-weight: bold;

Darie-Watson_4681C03.fm Page 92 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 93

 font-size: 9pt;
 color: #556b2f;
 line-height: 25px;
 padding-left: 5px;
 text-decoration: none;

}

4. Finally, open web.config to enable the default theme:

 <system.web>
 <pages theme="BalloonShopDefault"/>

 ...

How It Works: Using Themes

Having a central place to store style information helps you to easily change the look of the site without changing a
line of code.

At this moment, BalloonShop.css contains a few styles you’ll need for displaying the departments list. These
styles refer to the way department names should look when they are unselected, unselected but with the mouse
hovering over them, or selected. The CSS file and skin file are added to the default theme, which is enabled in
web.config, so they’ll be accessible from any page of the site.

While you’re here, it’s worth noticing the built-in features Visual Web Developer has for editing CSS files. While
BalloonShop.css is open in edit mode, right-click one of its styles and click the Build Style menu option. You’ll
get a dialog box such as the one in Figure 3-17, which permits editing the style visually.

Figure 3-17. Editing a style in Visual Web Developer

Darie-Watson_4681C03.fm Page 93 Thursday, September 15, 2005 5:42 AM

94 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Displaying the Departments
Now everything is in place, the only missing part being the DepartmentsList user control itself.
This user control will contain a DataList control that generates the list of departments.

In this exercise, you’ll implement most functionality by using the Design View of Visual
Web Developer, and you’ll see the HTML code that it generates. In other exercises, you’ll work
directly in Source View mode.

Exercise: Creating DepartmentsList.ascx

1. First create a new Web User Control in the UserControls folder. Right-click the UserControls folder and
then choose Add New Item. Select the Web User Control template and name it DepartmentsList.ascx
(or simply DepartmentsList). Check the Place Code in separate file check box, make sure the
language is Visual C#, and click Add.

2. Switch DepartmentsList.ascx to Design View. Make sure the toolbox is visible (Ctrl+Alt+X),
open the Data tab, and double-click the DataList entry. This will add a DataList control to
DepartmentsList.ascx.

3. Use the Properties window (see Figure 3-18) to change the properties of your DataList, as shown in
Table 3-3.

Figure 3-18. Changing the name of the DataList control

Table 3-3. Setting the DataList Properties

Property Name Value

(ID) list

Width 200px

CssClass DepartmentListContent

HeaderStyle-CssClass DepartmentListHead

Darie-Watson_4681C03.fm Page 94 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 95

4. Open DepartmentsList.ascx in Design View, right-click the DataList, and select Edit Template ➤
Header and Footer Templates.

5. Type Choose a Department in the Header template.

6. Right-click the DataList and select Edit Template ➤ Item Templates.

7. Add a HyperLink control from the Standard tab of the Toolbox to the ItemTemplate.

8. Set the Text property of the HyperLink to an empty string. The list control should then look like
Figure 3-19.

Figure 3-19. Editing the templates of the DataList

9. Switch to Source View, where you need to make few changes to the HyperLink control. Here’s the full
code of the DataList control:

<asp:DataList ID="list" runat="server" Width="200px">
 <ItemTemplate>
 »
 <asp:HyperLink
 ID="HyperLink1"
 Runat="server"
 NavigateUrl='<%# "../Catalog.aspx?DepartmentID=" +
Eval("DepartmentID")%>'
 Text='<%# Eval("Name") %>'
 ToolTip='<%# Eval("Description") %>'
 CssClass='<%# Eval("DepartmentID").ToString() ==
Request.QueryString["DepartmentID"] ? "DepartmentSelected" :
"DepartmentUnselected"
%>'>

Darie-Watson_4681C03.fm Page 95 Thursday, September 15, 2005 5:42 AM

96 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

 </asp:HyperLink>
 «
 </ItemTemplate>
 <HeaderTemplate>
 Choose a Department
 </HeaderTemplate>
 <ItemStyle CssClass="DepartmentListContent" />
 <HeaderStyle CssClass="DepartmentListHead" />
</asp:DataList>

10. Now open the code-behind file of the user control (DepartmentsList.ascx.cs) and modify the
Page_Load event handler function like this:

 // Load department details into the DataList
 protected void Page_Load(object sender, EventArgs e)
 {
 // CatalogAccess.GetDepartments returns a DataTable object containing
 // department data, which is read in the ItemTemplate of the DataList
 list.DataSource = CatalogAccess.GetDepartments();
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 }

11. Open BalloonShop.master in Design View. Drag DepartmentsList.ascx from Solution Explorer
and drop it near the “List of Departments” text. Delete the text from the cell, so that only the user control
should be there, as shown in Figure 3-20.

Figure 3-20. Adding the list of departments to the Master Page

Darie-Watson_4681C03.fm Page 96 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 97

12. Finish the exercise by creating Catalog.aspx, the page that is referenced by the departments list
links. Right-click the name of the project in Solution Explorer and select Add New Item. Choose the
Web Form template, set its name to Catalog.aspx, make sure both check boxes Place Code in
separate file and Select Master Page are checked, and click Add. When asked for a Master Page file,
choose Balloonshop.master.

13. Open Catalog.aspx in Source View and change its title to BalloonShop – The Product Catalog:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Catalog.aspx.cs"
Inherits="Catalog" Title="BalloonShop : The Product Catalog" %>

14. Press F5 to execute the project (see Figure 3-21). Then select one of the departments.

Figure 3-21. Executing the BalloonShop project

■Note If you get an error at this point, you either didn’t enter the code correctly or there is a problem
connecting to SQL Server. Review the “Configuring SQL Server Security” section earlier in this chapter.

How It Works: The DepartmentsList User Control

The heart of the DepartmentsList Web User Control is its DataList control, which generates the list of depart-
ments. To make a DataList work, you need to edit its ItemTemplate property at the least. You also edited its
HeaderTemplate.

Darie-Watson_4681C03.fm Page 97 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

98 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

The templates can be edited either in Design View mode or in Source View mode. It’s easier to work with the
designer, but editing the HTML directly is more powerful and allows some tweaks that aren’t always possible with
the designer.

The DataList control, which generates the list of departments, is flexible and configurable. The most important
step for configuring this control is to set its ItemTemplate property. When the DataList is bound to a data
source, the ItemTemplate generates a new data list entry for each row of the data source. In our case, the
DataList object contains a HyperLink control in its ItemTemplate, so we’ll have one hyperlink for each record
returned from the database. It’s important to understand how the data-binding process works. Let’s have another
look at the code of the HyperLink:

 <asp:HyperLink
 ID="HyperLink1"
 Runat="server"
 NavigateUrl='<%# "../Catalog.aspx?DepartmentID=" +
Eval("DepartmentID")%>'
 Text='<%# Eval("Name") %>'
 ToolTip='<%# Eval("Description") %>'
 CssClass='<%# Eval("DepartmentID").ToString() ==
 Request.QueryString["DepartmentID"] ? "DepartmentSelected" :
"DepartmentUnselected"
%>'>
 </asp:HyperLink>

Basically, this piece of code generates a link of the form http://webserver/Catalog.aspx?DepartmentID=XXX
for each row retrieved from the data source. In our case, the data source is a DataTable that contains this infor-
mation about each department: the DepartmentID, the Name, and the Description. These details are extracted
using the Eval() function. For example, Eval("Name") will return the Name field of the row being processed by
the DataList.

■Tip With previous versions of ASP.NET, the code used to look a bit longer, such as in DataBinder.
Eval(Container.DataItem, "Name") instead of Eval("Name"). The new form was introduced to
make things a little bit easier for programmers’ fingers.

Perhaps the most interesting detail about the piece of code that creates the hyperlinks is the way you set CssClass.
The code should make sense if you’re familiar with the ternary operator. The expression assigned to the CssClass
property returns "DepartmentSelected" in case the DepartmentID from the query string is the same as the
DepartmentID of the row being read from the data source or returns "DepartmentUnselected" otherwise. This
ensures that after the visitor clicks a department and the page gets reloaded with a new query string, the selected
department is painted using a different style than the other departments in the list.

Darie-Watson_4681C03.fm Page 98 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 99

■Tip The ternary operator has the form condition ? value1 : value2. If the condition is true, value1
is returned, otherwise, value2 is returned. The expression could be rewritten as

if (condition) return value1 else return value2;

Back to the DataList, it’s important to know that it accepts more templates that can be used to customize its
appearance, using a schema like the following:

<asp:DataList id="list" runat="server">
 <HeaderTemplate>
 <!- contents -->
 </HeaderTemplate>
 <SelectedItemTemplate>
 <!- contents -->
 </SelectedItemTemplate>
 <ItemTemplate>
 <!- contents -->
 </ItemTemplate>
 <AlternatingItemTemplate>
 <!- contents -->
 </AlternatingItemTemplate>
 <FooterTemplate>
 <!- contents -->
 </FooterTemplate>
</asp:DataList>

The last piece of the puzzle that makes the list of departments work is the C# code you wrote in
DepartmentsList.ascx.cs. The Page_Load event is fired when loading the data list, with which you ask for
the list of departments from the business tier, and bind that list to the DataList:

 // Load department details into the DataList
 protected void Page_Load(object sender, EventArgs e)
 {
 // CatalogAccess.GetDepartments returns a DataTable object containing
 // department data, which is read in the ItemTemplate of the DataList
 list.DataSource = CatalogAccess.GetDepartments();
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 }

It’s exciting how the full power of the business tier code you implemented earlier can now be used to populate a
DataList control with just a couple of lines of code, isn’t it? Keep in mind that you’re working on the presentation
tier right now. It doesn’t matter how the CatalogAccess class or the GetDepartments method is implemented.
You just need to know that GetDepartments returns a list of (DepartmentID, Name) pairs. While you are on the
presentation tier, you don’t really care how Catalog.GetDepartments does what it’s supposed to do.

Darie-Watson_4681C03.fm Page 99 Thursday, September 15, 2005 5:42 AM

100 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Adding a Custom Error Page
Now, at the final bit of this chapter, you complete the last piece of error-handling functionality
for BalloonShop.

At this point, the single piece of error handling that you’ve implemented is in the data
access code. The data access code can’t know if an error is serious or if it can simply be ignored,
so the only purpose is to make sure the database connection is closed properly and to report
the error to the administrator. The exception is rethrown, and it’s up to the upper layers of the
architecture to decide what to do next with the exception.

The problem is, if the error isn’t properly handled anywhere, it generates an ugly error
message that your visitors will see—you don’t want this to happen.

In the next exercise you will

• Add a custom error page to your site that your visitor will see in case an unhandled error
happens. That page will politely ask the visitor to come back later.

• Report the error once again, so the administrator knows that this serious error gets to the
visitor and needs to be taken care of as soon as possible.

Adding the custom error page is a very simple task, consisting of building a simple Web
Form and configuring it as the default error page in web.config. Reporting unhandled errors is
equally simple, by using a class named the Global Application Class. Follow the steps in the
exercise to apply all this in practice.

Exercise: Adding a Custom Error Page and Reporting Unhandled Errors

1. Right-click the project entry in Solution Explorer and then select Add New Item.

2. Choose the Global Application Class template and click Add.

3. Modify Application_Error like this:

 void Application_Error(Object sender, EventArgs e)
 {
 // Log all unhandled errors
 Utilities.LogError(Server.GetLastError());
 }

4. In Solution Explorer, double-click web.config and add the following element as a child of the
<system.web> element:

<customErrors mode="RemoteOnly" defaultRedirect="Oooops.aspx" />

Darie-Watson_4681C03.fm Page 100 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 101

■Note After this change, remote clients will be forwarded to Oooops.aspx when unhandled exceptions
are thrown; however, on the local machine, you’ll still receive detailed error information. If you want to see the
same error message as your visitors, set mode to On instead of RemoteOnly.

5. Add a new Web Form to your application’s root, named Oooops.aspx, based on BalloonShop.master.

6. While in Source View, modify the page by changing its title and adding content to its content placeholder:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Oooops.aspx.cs" Inherits="Oooops"
Title="BalloonShop - Oooops!" %>
<asp:Content ID="Content1" ContentPlaceHolderID="contentPlaceHolder"
runat="Server">
 <p align="center">
 Your request generated an internal error!

 We apologize for the inconvenience!
The error has been reported.
 </p>
</asp:Content>

How It Works: Error Reporting

Right now your web site, no matter what happens, will look good. In case of an error, instead of displaying the
default error message (which is, of course, not colorful enough for our customers’ tastes), it will display a nice-
looking error message page. For a short test, configure your application to show the error page to you as well, not
only to your visitors (there’s a note about how to do this in the exercise). Remember to unset this option, however,
because you need exception details when building and debugging the application.

Then, execute the project, click on a department, and add a few letters to the department ID, like this:

 http://localhost/BalloonShop/Catalog.aspx?DepartmentID=1ABC

Trying to load this page generates an exception because the department ID is supposed to be numerical, and the
business tier code tries to convert this to an integer before sending it to the database (this is a good technique to
prevent sending bogus values to the database).

Have a look at the custom error page in Figure 3-22.

Darie-Watson_4681C03.fm Page 101 Thursday, September 15, 2005 5:42 AM

102 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Figure 3-22. Oooops!

First, this exception is caught in the data tier, which simply reports it and then rethrows it. The report from the data
tier generates an email with contents like this:

Exception generated on Sunday, September 25, 2005, at 1:15 AM

 Page location: /BalloonShop/Catalog.aspx?DepartmentID=1ABC

 Message: Failed to convert parameter value from a String to a Int32.

 Source: System.Data

 Method: System.Object CoerceValue(System.Object, System.Data.SqlClient
.MetaType)

 Stack Trace:

 at System.Data.SqlClient.SqlParameter.CoerceValue(Object value, MetaType
destinationType)
 at System.Data.SqlClient.SqlParameter.GetCoercedValue()
 at System.Data.SqlClient.SqlParameter.Validate(Int32 index)
 at System.Data.SqlClient.SqlCommand.SetUpRPCParameters(_SqlRPC rpc, Int32
startCount, Boolean inSchema, SqlParameterCollection parameters)

Darie-Watson_4681C03.fm Page 102 Thursday, September 15, 2005 5:42 AM

C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I 103

 at System.Data.SqlClient.SqlCommand.BuildRPC(Boolean inSchema,
SqlParameterCollection parameters, _SqlRPC& rpc)
 at System.Data.SqlClient.SqlCommand.RunExecuteReaderTds(CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, Boolean async)
 at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method,
DbAsyncResult result)
 at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method)
 at System.Data.SqlClient.SqlCommandExecuteReader(CommandBehavior behavior,
String method)
 at System.Data.SqlClient.SqlCommand.ExecuteDbDataReader(CommandBehavior
behavior)
 at System.Data.Common.DbCommand.ExecuteReader()
 at GenericDataAccess.ExecuteSelectCommand(DbCommand command) in
c:\Inetpub\wwwroot\BalloonShop\App_Code\GenericDataAccess.cs:line 31

This email contains all the significant details about the error. However, the error is rethrown, and because it isn’t
handled anywhere else, it’s finally caught by the presentation tier, which displays the nice error page. A second
email is generated, which should be taken seriously because the error caused the visitor to see an error message:

Exception generated on Sunday, September 25, 2005, at 1:15 AM

 Page location: /BalloonShop/Catalog.aspx?DepartmentID=1ABC

 Message: Exception of type 'System.Web.HttpUnhandledException' was thrown.

 Source: System.Web

 Method: Boolean HandleError(System.Exception)

 Stack Trace:

 at System.Web.UI.Page.HandleError(Exception e)
 at System.Web.UI.Page.ProcessRequestMain(Boolean
includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint)
 at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint,
 Boolean includeStagesAfterAsyncPoint)
 at System.Web.UI.Page.ProcessRequest()
 at System.Web.UI.Page.ProcessRequest(HttpContext context)
 at
System.Web.HttpApplication.CallHandlerExecutionStep.System.
Web.HttpApplication.IexecutionStep.Execute()
 at System.Web.HttpApplication.ExecuteStep
(IExecutionStep step, Boolean& completedSynchronously)

Darie-Watson_4681C03.fm Page 103 Thursday, September 15, 2005 5:42 AM

104 C H A P T E R 3 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I

Summary
This long chapter was well worth the effort, when you consider how much theory you’ve learned
and applied to the BalloonShop project! In this chapter, you accomplished the following:

• Created the Department table and populated it with data

• Added a stored procedure to the database and added code to access this stored procedure
from the middle tier using a special data access class

• Added a number of configuration options to web.config, such as the database connection
string, to make things easier if you need to change these options

• Wrote error-handling and reporting code to keep the administrator notified of any
errors that happen to the web site

• Added the DepartmentList Web User Control to the site

In the next chapter, you’ll continue building the site to include even more exciting
functionality!

Darie-Watson_4681C03.fm Page 104 Thursday, September 15, 2005 5:42 AM

8213592a117456a340854d18cee57603

105

■ ■ ■

C H A P T E R 4

Creating the Product Catalog:
Part II

The fun isn’t over yet! In the previous chapter, you created a selectable list of departments for
BalloonShop. However, there’s much more to a product catalog than a list of departments. In
this chapter, you’ll add many new product catalog features. This chapter has a similar structure
to the last chapter, but there’s a lot of new functionality to add, which involves quite a bit of code.

Review Figures 3-1, 3-2, 3-3, and 3-4 from Chapter 3 to get a visual feeling of the new func-
tionality you’ll implement in this chapter.

In this chapter, you will

• Learn about relational data and the types of relationships that occur between data tables,
and then create the new data structures in your database.

• Understand how to join related data tables, how to use subqueries, how to implement
paging at the data tier level, and even more theory about T-SQL functions and techniques.

• Complete business tier functionality to work with the new stored procedures, including
stored procedures with input and output parameters, and use simple data structures to
pass requested data to the presentation tier.

• Create new Web Forms and Web User Controls to show your visitor details about your
categories, your products, and more.

Yep, that’s a lot of material to get through! Take a deep breath, and let’s get started!

Storing the New Data
Given the new functionality you are adding in this chapter, it’s not surprising that you need to
add more data tables to the database. However, this isn't just about adding new data tables.
You also need to learn about relational data and the relationships that you can implement
between the data tables, so that you can obtain more significant information from your database.

Darie-Watson_4681C04.fm Page 105 Monday, September 19, 2005 9:51 AM

106 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

What Makes a Relational Database
It’s no mystery that a database is something that stores data. However, today’s modern Relational
Database Management Systems (RDBMS), such as MySQL, PostgreSQL, SQL Server, Oracle, DB2,
and others, have extended this basic role by adding the capability to store and manage rela-
tional data.

So what does relational data mean? It’s easy to see that every piece of data ever written in
a real-world database is somehow related to some already existing information. Products are
related to categories and departments, orders are related to products and customers, and so
on. A relational database keeps its information stored in data tables but is also aware of the
relations between them.

These related tables form the relational database, which becomes an object with a signifi-
cance of its own, rather than simply being a group of unrelated data tables. It is said that data
becomes information only when we give significance to it, and establishing relations with other
pieces of data is a good means of doing that.

Look at the product catalog to see what pieces of data it needs and how you can transform
this data into information. For the product catalog, you’ll need at least three data tables: one
for departments, one for categories, and one for products. It’s important to note that physically
each data table is an independent database object, even if logically it’s part of a larger entity—
in other words, even though we say that a category contains products, the table that contains
the products is not inside the table that contains categories. This is not in contradiction with
the relational character of the database. Figure 4-1 shows a simple representation of three data
tables, including some selected sample data.

When two tables are related, this more specifically means that the records of those tables
are related. So, if the products table is related to the categories table, this translates into each
product record being somehow related to one of the records in the categories table.

Figure 4-1 doesn’t show the physical representation of the database, so we didn’t list the
table names there. Diagrams like this are used to decide what needs to be stored in the data-
base. After you know what to store, the next step is to decide how the listed data is related,
which leads to the physical structure for the database. Although Figure 4-1 shows three kinds
of data that you want to store, you’ll learn later that to implement this structure in the data-
base, you’ll actually use four tables.

So, now that you know the data you want to store, let’s think about how the three parts
relate to each other. Apart from knowing that the records of two tables are related somehow,
you also need to know the kind of relationship between them. Let’s now take a closer look at the
different ways in which two tables can be related.

Darie-Watson_4681C04.fm Page 106 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 107

Figure 4-1. Unrelated departments, categories, and products

Relational Data and Table Relationships

To continue exploring the world of relational databases, let’s further analyze the three logical
tables we’ve been looking at so far. To make life easier, let’s give them names now: the table
containing products is Product, the table containing categories is Category, and the last one is
our old friend, Department. No surprises here! These tables implement the most common kinds
of relationships that exist between tables, the One-to-Many and Many-to-Many relationships,
so you have the chance to learn about them.

Darie-Watson_4681C04.fm Page 107 Monday, September 19, 2005 9:51 AM

108 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

■Note Some variations of these two relationship types exist, as well as the less popular One-to-One rela-
tionship. In the One-to-One relationship, each row in one table matches exactly one row in the other. For
example, in a database that allowed patients to be assigned to beds, you would hope that there would be a
one-to-one relationship between patients and beds! Database systems don’t support enforcing this kind of
relationship, because you would have to add matching records in both tables at the same time. Moreover, two
tables with a One-to-One relationship can be joined to form a single table. No One-to-One relationships are
used in this book.

One-to-Many Relationships

The One-to-Many relationship happens when one record in a table can be associated with
multiple records in the related table, but not vice versa. In our catalog, this happens for the
Department–Category relation. A specific department can contain any number of categories,
but each category belongs to exactly one department. Figure 4-2 better represents the One-to-
Many relationship between departments and categories.

Figure 4-2. A One-to-Many relationship between departments and categories

Another common scenario in which you see the One-to-Many relationship is with the
Order–Order Details tables, where Order contains general details about the order (such as date,
total amount, and so on) and Order Details contains the products related to the order.

Darie-Watson_4681C04.fm Page 108 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 109

Many-to-Many Relationships

The other common type of relationship is the Many-to-Many relationship. This kind of rela-
tionship is implemented when records in both tables of the relationship can have multiple
matching records in the other. In our scenario, this happens between the Product and Category
tables, because a product can exist in more than one category (one product—many categories),
and also a category can have more than one product (one category—many products).

This happens because we decided earlier that a product could be in more than one category.
If a product belonged to a single category, you would have another One-to-Many relationship,
just like that between departments and categories (where a category can’t belong to more than
one department).

If you represent this relationship with a picture as shown previously in Figure 4-2, but with
generic names this time, you get something like what is shown in Figure 4-3.

Figure 4-3. The Many-to-Many relationship between categories and products

Although logically the Many-to-Many relationship happens between two tables, databases
don’t have the means to physically implement this kind of relationship by using just two tables,
so we cheat by adding a third table to the mix. This third table, called a junction table (also known
as a linking table or associate table) and two One-to-Many relationships will help achieve the
Many-to-Many relationship.

The junction table is used to associate products and categories, with no restriction on how
many products can exist for a category or how many categories a product can be added to.
Figure 4-4 shows the role of the junction table.

Darie-Watson_4681C04.fm Page 109 Monday, September 19, 2005 9:51 AM

110 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-4. The Many-to-Many relationship between categories and products

Note that each record in the junction table links one category with one product. You can have
as many records as you like in the junction table, linking any category to any product. The linking
table contains two fields, each one referencing the primary key of one of the two linked tables.
In our case, the junction table will contain two fields: a CategoryID field and a ProductID field.

Each record in the junction table will consist of a (ProductID, CategoryID) pair, which is
used to associate a particular product with a particular category. By adding more records to the
junction table, you can associate a product with more categories or a category with more prod-
ucts, effectively implementing the Many-to-Many relationship.

Because the Many-to-Many relationship is implemented using a third table that makes
the connection between the linked tables, there is no need to add additional fields to the
related tables in the way that you added DepartmentID to the category table for implementing
the One-to-Many relationship.

There’s no definitive naming convention to use for the junction table. Most of the time it’s
okay to just join the names of the two linked tables—in this case, our junction table will be
named ProductCategory.

Enforcing Table Relationships with the FOREIGN KEY
Constraint
Relationships between tables are physically enforced in the database using FOREIGN KEY
constraints, or simply foreign keys.

You learned in the previous chapter about the PRIMARY KEY and UNIQUE constraints. We
covered them there because they apply to the table as an individual entity. Foreign keys, on the
other hand, always occur between two tables: the table in which the foreign key is defined (the
referencing table) and the table the foreign key references (the referenced table).

Darie-Watson_4681C04.fm Page 110 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 111

■Tip Actually, the referencing table and the referenced table can be one and the same. You won’t see this
too often in practice, but it’s not unusual, either. For example, you can have a table with employees, where
each employee references the employee that is her or his boss (in this case, the big boss would probably
reference itself).

SQL Server Books Online defines a foreign key as a column or combination of columns used
to establish or enforce a link between data in two tables (usually representing a One-to-Many
relationship). Foreign keys are used both to ensure data integrity and to establish a relationship
between tables.

To enforce database integrity, the foreign keys, like the other types of constraints, apply
certain restrictions. Unlike PRIMARY KEY and UNIQUE constraints that apply restrictions to a
single table, the FOREIGN KEY constraint applies restrictions on both the referencing and refer-
enced tables. For example, when enforcing a One-to-Many relationship between the Department
table and the Category table by using a FOREIGN KEY constraint, the database includes this rela-
tionship as part of its integrity. The foreign key won’t allow you to add a category to a nonexistent
department, and it won’t allow you to delete a department if categories belong to it.

You now know the general theory of foreign keys. You’ll implement them in the following
exercise, where you’ll have the chance to learn more about how foreign keys work. A bit later,
in the “Creating a Database Diagram” exercise, you’ll learn how to visualize and implement
foreign keys using the integrated diagramming feature in Visual Web Developer.

In the following exercises, you’ll put into practice the new theory you learned on table
relationships by creating and populating these tables:

• Category

• Product

• ProductCategory

Adding Categories

■Tip Remember that you can use the code in the Source Code area of the Apress web site
(http://www.apress.com) to create and populate the data tables.

Exercise: Creating the Product Table and Relating It to Department

Essentially, creating the Category table is pretty much the same as the Department table you’ve already created,
so we’ll move pretty quickly. What makes this exercise special is that you’ll learn how to implement and enforce the
One-to-Many relationship between the Category and Department tables.

Darie-Watson_4681C04.fm Page 111 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

112 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

1. Using the Database Explorer (Ctrl+Alt+S), open the data connection to the BalloonShop database.
When the database is selected, choose Data ➤ Add New ➤ Table. Alternatively, you can right-click
the Tables node under BalloonShop and select Add New Table.

2. Add the columns shown in Table 4-1 using the form that appears.

■Tip A quick reminder from the previous chapter: you set a column to be the primary key by right-clicking
on it and clicking the Set Primary Key item from the context menu. You set it to be an identity column by
expanding the Identity Specification item from its Column Properties window, and setting the (Is Identity)
node to Yes. At this moment the form should look like Figure 4-5.

Figure 4-5. Creating the Category table

3. Press Ctrl+S to save the table. When asked, type Category for the table’s name.

Table 4-1. Designing the Category Table

Field Name Data Type Other Properties

CategoryID int Primary Key and Identity column

DepartmentID int Don’t allow NULLs

Name varchar(50) Don’t allow NULLs

Description varchar(1000) Allow NULLs

Darie-Watson_4681C04.fm Page 112 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 113

4. While the Category table is still selected, click Table Designer ➤ Relationships. Here is where you
specify the details for the foreign key. This works by relating a column of the referencing table
(Category) to a column of the referenced table (Department). You need to relate the DepartmentID
column in Category with the DepartmentID column of the Department table.

5. In the dialog box that appears, click Add.

6. Select the Tables and Columns Specifications entry and click the “...” button that appears. In the dialog
box that opens (see Figure 4-6), choose Department for the Primary key table and DepartmentID for the
column on both tables.

Figure 4-6. Creating a new foreign key

7. Click OK and then Close to save the relationship.

■Tip If anything goes wrong, delete the relationship, and then create it again.

8. Press Ctrl+S to save the table again. You’ll be warned about the Category and Department tables
being updated and asked for confirmation. This confirms again that a foreign-key relationship affects
both tables that take part in the relationship. Click Yes.

How It Works: The One-to-Many Relationship

Okay, so you created and then enforced a relationship between the Category and Department tables. But how
does it work, and how does it affect your work and life? Let’s study how you implemented this relationship.

In the Category table, apart from the primary key and the usual CategoryID, Name and Description columns,
you added a DepartmentID column. This column stores the ID of the department the category belongs to. Because the
DepartmentID field in Category doesn’t allow NULLs, you must supply a department for each category.
Furthermore, because of the foreign-key relationship, the database won’t allow you to specify a nonexistent
department.

Darie-Watson_4681C04.fm Page 113 Monday, September 19, 2005 9:51 AM

114 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Actually, you can ask the database not to enforce the relationship. In the Foreign Key Relationships dialog box where
you created the relationship, you can set a number of options for your foreign key. We left them with the default
value, but let’s see what they do:

• Check existing data on creation: If you set this to Yes, it doesn’t allow the creation of the relationship if
the existing database records don’t comply with it. In other words, the relationship can’t be created if
orphaned categories are in the database (you have categories with a DepartmentID that references a
nonexistent department).

• Enforce For Replication: This option applies to database replication, which is beyond the scope of this
book. Replication is a technology that allows the synchronization of data between multiple SQL Servers
situated at different locations.

• Enforce Foreign Key Constraint: This is probably the most important of the options. It tells SQL Server to
make sure that database operations on the tables involved in the relationship don’t break the relationship.
When this option is selected, by default SQL Server won’t allow you to add categories to nonexistent
departments or delete departments that have related categories.

• INSERT and UPDATE specification: These options allow you to fine-tune the way SQL Server behaves
when you delete or update data that would break data integrity. For example, if you set the Update Rule
to Cascade, changing the ID of an existing department would cause the change to propagate to the
Category table to keep the category-department associations intact. This way, even after you change
the ID of the department, its categories would still belong to it (you can leave this option set to No Action
because you won’t need to change departments IDs.) Setting the Delete Rule to Cascade is a radical
solution for keeping data integrity. If this is selected and you delete a department from the database,
SQL Server automatically deletes all the department’s related categories. This is a sensitive option and
you should be very careful with it. You won’t use it in the BalloonShop project.

In the One-to-Many relationship (and implicitly the FOREIGN KEY constraint), you link two columns from two
different tables. One of these columns is a primary key, and it defines the One part of the relationship. In our case,
DepartmentID is the primary key of Department, so Department is the one that connects to many categories.
A primary key must be on the One part to ensure that it’s unique—a category can’t be linked to a department if you
can’t be sure that the department ID is unique. You must ensure that no two departments have the same ID; other-
wise, the relationship wouldn’t make much sense.

Now that you’ve created the Category table, you can populate it with some data. We’ll also
try to add data that would break the relationship that you established between the Department
and Category tables.

Exercise: Adding Categories

1. Open the Category table for editing (right-click the table in Database Explorer and select
Show Table Data).

Darie-Watson_4681C04.fm Page 114 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 115

2. Using the editor integrated with Visual Web Developer, you can start adding rows. Because CategoryID
has been set as an identity column, you cannot manually edit its data—SQL Server automatically fills
this field for you. However, you’ll need to manually fill the DepartmentID field with ID values of existing
departments. Alternatively, you can populate the Category table using the scripts from the Source Code
area on the Apress web site (http://www.apress.com). Add categories as shown in Figure 4-7.

Figure 4-7. Populating the Category table

■Tip Keep the CategoryID numbers in sequential order to make your life easier when associating them
with product IDs later in this chapter. Remember that you can use the TRUNCATE TABLE command to empty
the table’s contents and reset the identity value.

3. Now, try to break the database integrity by adding a category to a nonexistent department (for example,
set the DepartmentID to 500). After filling the new category data, try to move to the next row. At this
point, Visual Web Developer submits the newly written data to SQL Server. If you’ve created the relationship
properly, an error should occur (see Figure 4-8). For more detailed information about the error, click the
Help button.

Figure 4-8. The foreign key in action

Darie-Watson_4681C04.fm Page 115 Monday, September 19, 2005 9:51 AM

116 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

How It Works: Populating the Categories Table

Visual Web Developer makes it very easy to add new records to a data table. The only trick is to keep the generated
CategoryID numbers in sequential order, as shown earlier in Figure 4-7. Otherwise, you won’t be able to use the
SQL scripts from the Source Code area on the Apress web site to populate the tables that relate to Category.

This can be tricky if you delete and add records in the table, because the autogenerated number keeps increasing,
and you can’t specify the ID manually. Erasing all the records of the table doesn’t reset the autoincrement number.
Instead, you need to truncate the table, or delete and re-create it. Another solution is to temporarily disable the
(Is Identity) option, change the IDs manually, and then activate the option again.

Adding Products
Now that you’ve added categories and departments to the database, the next logical step is to
add products. This is different from what you did when adding categories, because between
Product and Category, you must implement a Many-to-Many relationship.

Here you’ll create the Product and ProductCategory tables. The Product table contains a
few more fields than the usual ProductID, Name, and Description. Most of them are pretty self-
explanatory, but for completeness, let’s look at each of them:

• ProductID uniquely identifies a product. It’s the primary key of the table.

• Name stores the product’s name.

• Description stores the product’s description.

• Price stores the product’s price.

• Image1FileName stores the name of the product’s primary picture file (to be displayed on
product lists). SQL Server can store binary data, including pictures, directly in the data-
base, but we chose to store only the file names in the database and store the actual picture
files in the Windows file system. This method also allows you to save the images in a
separate physical location (for example, another hard disk), further improving performance
for high-traffic web sites.

• Image2FileName stores the name of the product’s secondary picture file, which is displayed
on the product details page.

• OnCatalogPromotion is a bit field (can be set to either 0 or 1) that specifies whether the
product is featured on the front page of the web site. The main page of the site will list
the products that have this bit set to 1. This field doesn’t accept NULLs and has a default
value of 0.

Darie-Watson_4681C04.fm Page 116 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 117

• OnDepartmentPromotion is a bit field that specifies whether the product is featured on the
department pages. When visiting a department, the visitor is shown only the featured
products of that department. If a product belongs to more than one department (remember,
it can belong to more than one category), it will be listed as featured on all those
departments. This field doesn’t accept NULLs and has a default value of 0.

Using those bit fields allows you to let the site administrators highlight a set of products
that are particularly important at a specific time (for example, before Valentine’s Day they will
draw attention to the pink balloons, and so on).

Okay, enough talk; let’s add the Product table to the database.

Exercise: Creating the Product Table and Relating It to Category

1. Using the steps that you already know, create a new Product table with the fields shown in Table 4-2.

■Tip You set a column’s default value from the Default Value or Binding property in its Column
 Properties window.

After adding the fields, your table window will look like Figure 4-9.

Table 4-2. Designing the Product Table

Field Name Data Type Other Properties

ProductID int Primary Key and Identity column

Name varchar(50) Doesn’t allow NULLs

Description varchar(5000) Doesn’t allow NULLs

Price money Doesn’t allow NULLs

Image1FileName varchar(50) Default value is GenericImage1.png

Image2FileName varchar(50) Default value is GenericImage2.png

OnCatalogPromotion bit Doesn’t allow NULLs and has a default
value of 0

OnDepartmentPromotion bit Doesn’t allow NULLs and has a default
value of 0

Darie-Watson_4681C04.fm Page 117 Monday, September 19, 2005 9:51 AM

118 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-9. Creating the Product table

2. Press Ctrl+S to save the table and type Product for its name. Now you have a brand new Product table!

3. Because there are many products, populate this table by executing the PopulateProduct.sql script
provided in the Source Code area on the Apress web site.

4. Now let’s create the junction table to associate products to categories (implementing the Many-to-Many
relationship between Product and Category). Create a new table with two fields, as shown in Figure 4-10.

Figure 4-10. Creating the Product table

5. Now select both fields, ProductID and CategoryID, and click Table Designer ➤ Set Primary Key.
Two golden keys appear on the left side, and the Allow Nulls check boxes are automatically unchecked
(see Figure 4-11).

Figure 4-11. Creating the Product table

6. Press Ctrl+S to save the newly created table. Its name is ProductCategory.

Darie-Watson_4681C04.fm Page 118 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 119

7. Expand your database node in Database Explorer, right-click the Database Diagrams node, and select
Add New Diagram from the context menu (alternatively, you can choose Data ➤ Add New ➤
Diagram). If a dialog box that asks about creating database objects required for diagramming shows
up, click Yes.

8. You’ll see a dialog box as shown in Figure 4-12. Click Add four times to add all your tables to the
diagram, and then click Close.

Figure 4-12. Adding tables to the diagram

9. Feel free to zoom the window and rearrange the tables on the diagram to fit nicely on the screen. With
the default options, your diagram will look like Figure 4-13.

Figure 4-13. Adding tables to the diagram

Darie-Watson_4681C04.fm Page 119 Monday, September 19, 2005 9:51 AM

120 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

To enforce the Many-to-Many relationship between Category and Product, you need to add two
FOREIGN KEY constraints. In this exercise, you’ll create these constraints visually.

10. Click the ProductID key in the ProductCategory table and drag it over the ProductID column of
the Product table. The dialog box that adds a new foreign-key relationship shows up, already filled
with the necessary data (see Figure 4-14).

Figure 4-14. Creating a new foreign key

11. Click OK to confirm adding the foreign key, and then click OK again to close the Foreign Key Relationship
dialog box.

12. Create a new relationship between the Category and ProductCategory tables on their CategoryID
columns in the same way you did in steps 11 and 12. The diagram now reflects the new relationships
(see Figure 4-15).

Figure 4-15. Viewing tables and relationships using the database diagram

Darie-Watson_4681C04.fm Page 120 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 121

13. Press Ctrl+S to save your diagram and the changes you made to your tables. When asked for a diagram
name, type CatalogDiagram. You’ll be warned that Product, Category, and ProductCategory will
be saved to the database. Click Yes to confirm.

14. Populate the ProductCategory table by running the PopulateProductCategory.sql script
provided in the Source Code area on the Apress web site.

How It Works: Many-to-Many Relationships and Database Diagrams

In this exercise, you created the Product table and implemented (and enforced) a Many-to-Many relationship with
Category.

Many-to-Many relationships are created by adding a third table, called a junction table, which is named
ProductCategory in this case. This table contains (ProductID, CategoryID) pairs, and each record in the table
associates a particular product with a particular category. So, if you see a record such as (1,4) in ProductCategory,
you know that the product with ProductID 1 belongs to the category with CategoryID 4.

The Many-to-Many relationship is physically enforced through two FOREIGN KEY constraints—one that links
Product to ProductCategory, and the other that links ProductCategory to Category. In English, this means,
“one product can be associated with many product-category entries, each of those being associated with one category.”
The foreign keys ensure that the products and categories that appear in the ProductCategory table actually exist
in the database and won’t allow you to delete a product if you have a category associated with it and vice versa.

This is also the first time that you set a primary key consisting of more than one column. The primary key of
ProductCategory is formed by both its fields: ProductID and CategoryID. This means that you won’t be
allowed to have two identical (ProductID, CategoryID) pairs in the table. However, it’s perfectly legal to have a
ProductID or CategoryID appear more than once, as long as it’s part of a unique (ProductID, CategoryID)
pair. This makes sense, because you don’t want to have two identical records in the ProductCategory table. A
product can be associated with a particular category, or not; it cannot be associated with a category multiple times.

At first, all the theory about table relationships can be a bit confusing, until you get used to them. To understand the
relationship more clearly, you can get a picture by using database diagrams like the ones you worked with in this
exercise. Database diagrams are very useful. If, until now, you could only imagine the relationships between the different
tables, the diagram allows you to see what actually happens. The diagram you created shows your three One-to-
Many relationships.

The diagram also shows the type and direction of the relationships. Note that a key symbol appears at the One part
of each relationship and an infinity symbol appears at the Many side of the relationship. The table whose whole
primary key is involved in the relationship is at the One side of the relationship and is marked with the little
golden key.

One of the most useful things about diagrams is that you can edit database objects directly from the diagram. If you
right-click a table or a relationship, you’ll see a lot of features there. Feel free to experiment a bit to get a feeling for
the features available. Not only can you create foreign keys through the diagram, you can also create new tables,
or design existing ones, directly within the diagram. To design one of the existing tables, you must switch the table
to normal mode by right-clicking the table, and then choosing Table View ➤ Standard. When the table is in Standard
View mode, you can edit it directly in the diagram, as shown in Figure 4-16.

Darie-Watson_4681C04.fm Page 121 Monday, September 19, 2005 9:51 AM

122 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-16. Editing the table directly in the diagram

Querying the New Data
Now you have a database with a wealth of information just waiting to be read by somebody.
However, the new elements bring with them a set of new things you need to learn.

For this chapter, the data-tier logic is a little bit more complicated than in the previous
chapter, because it must answer to queries like “give me the second page of products from the
‘Cartoons’ category” or “give me the products on promotion for department X.” Before moving
on to writing the stored procedures that implement this logic, let’s first cover the theory about

• Retrieving short product descriptions

• Joining data tables

• Implementing paging

Let’s deal with these monsters one by one.

Retrieving Short Product Descriptions
In our web site, product lists don’t display complete product descriptions, but only a portion of
them (the full descriptions are shown only in the product details pages). In T-SQL, you get the
first characters of a string using the LEFT function. After extracting a part of the full description,
you append “…” to the end using the + operator.

The following SELECT query returns all product’s descriptions trimmed at 60 characters,
with “…” appended:

SELECT LEFT(Description, 60) + '...' AS 'Short Description'
FROM Product

The new column generated by the (LEFT(Description, 60) + '...') expression doesn’t
have a name, so we created an alias for it using the AS keyword. With your current data, this
query would return something like this:

Darie-Watson_4681C04.fm Page 122 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 123

Short Description

An adorable romantic balloon by Simon Elvin. You’ll fall in ...
A heart-shaped balloon with the great Elvis on it and the wo...
A red heart-shaped balloon with "I love you" written on a wh...
White heart-shaped balloon with the words "Today, Tomorrow a...
Red heart-shaped balloon with a smiley face. Perfect for say...
A red heart-shaped balloon with "I Love You" in script writi...
Red heart-shaped balloon with a smiley face and three kisses...
...

Joining Data Tables
Because the data is stored in several tables, you’ll frequently run into situations in which not all
the information you want is in one table. Take a look at the following list, which contains data
from both the Department and Category tables:

Department Name Category Name
--- ---
Anniversary Balloons Love & Romance
Anniversary Balloons Birthdays
Anniversary Balloons Weddings
Balloons for Children Message Balloons
Balloons for Children Cartoons
Balloons for Children Miscellaneous

In other cases, all the information you need is in just one table, but you need to place
conditions on it based on the information in another table. You cannot get this kind of result
set with simple queries such as the ones you’ve used so far. Needing a result set based on data
from multiple tables is a good indication that you might need to use table joins.

When extracting the products that belong to a category, the SQL query isn’t the same as
when extracting the categories that belong to a department. This is because products and cate-
gories are linked through the ProductCategory junction table.

To get the list of products in a category, you first need to look in the ProductCategory table
and get all the (ProductID, CategoryID) pairs where CategoryID is the ID of the category you’re
looking for. That list contains the IDs of the products in that category. Using these IDs, you can
generate the required product list. Although this sounds complicated, it can be done using a
single SQL query. The real power of SQL lies in its capability to perform complex operations on
large amounts of data using simple queries.

You’ll learn how to make table joins by analyzing the Product and ProductCategory tables
and by analyzing how to get a list of products that belong to a certain category. Tables are
joined in SQL using the JOIN clause. Joining one table with another table results in the columns
(not the rows) of those tables being joined. When joining two tables, there always must be a
common column on which the join will be made.

Suppose you want to get all the products in the category where CategoryID = 5. The query
that joins the Product and ProductCategory tables is as follows:

Darie-Watson_4681C04.fm Page 123 Monday, September 19, 2005 9:51 AM

124 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

SELECT ProductCategory.ProductID, ProductCategory.CategoryID, Product.Name
FROM ProductCategory INNER JOIN Product
ON Product.ProductID = ProductCategory.ProductID

The result will look something like this (to save space, the listing doesn’t include all
returned rows:

ProductID CategoryID Name
----------- ----------- --
1 1 I Love You (Simon Elvin)
1 2 I Love You (Simon Elvin)
2 1 Elvis Hunka Burning Love
2 4 Elvis Hunka Burning Love
2 6 Elvis Hunka Burning Love
3 1 Funny Love
3 3 Funny Love
3 4 Funny Love
...

The resultant table is composed of the requested fields from the joined tables synchronized on
the ProductID column, which was specified as the column to make the join on. You can see that
the products that exist in more categories are listed more than once, once for each category
they belong in, but this problem will go away after we filter the results to get only the products
for a certain category.

Note that in the SELECT clause, the column names are prefixed by the table name. This is a
requirement if columns exist in more than one table participating in the table join, such as
ProductID in our case. For the other column, prefixing its name with the table name is optional,
although it’s a good practice to avoid confusion.

The query that returns only the products that belong to category 5 is

SELECT Product.ProductID, Product.Name
FROM ProductCategory INNER JOIN Product
ON Product.ProductID = ProductCategory.ProductID
WHERE ProductCategory.CategoryID = 5

The results are

ProductID Name
----------- --
21 Baby Hi Little Angel
25 Tweety Stars
39 Toy Story
40 Rugrats Tommy & Chucky
41 Rugrats & Reptar Character
42 Tweety & Sylvester
43 Mickey Close-up
44 Minnie Close-up
45 Teletubbies Time

Darie-Watson_4681C04.fm Page 124 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 125

46 Barbie My Special Things
47 Paddington Bear
48 I Love You Snoopy
49 Pooh Adult
50 Pokemon Character
51 Pokemon Ash & Pikachu
53 Smiley Face
54 Soccer Shape
55 Goal Ball

A final thing worth discussing here is the use of aliases. Aliases aren’t necessarily related to
table joins, but they become especially useful (and sometimes necessary) when joining tables,
and they assign different (usually) shorter names for the tables involved. Aliases are necessary
when joining a table with itself, in which case you need to assign different aliases for its different
instances to differentiate them. The following query returns the same products as the query
before, but it uses aliases:

SELECT p.ProductID, p.Name
FROM ProductCategory pc INNER JOIN Product p
ON p.ProductID = pc.ProductID
WHERE pc.CategoryID = 5

Showing Products Page by Page
In case certain web sections need to list large numbers of products, it’s useful to let the visitor
browse them page by page, with a predefined (or configurable by the visitor) number of products
per page.

Depending on the tier on your architecture where paging is performed, there are two main
ways to implement paging:

• Paging at the data tier level: In this case, the database returns only the page of products
the visitor wants to see.

• Paging at the presentation tier level: In this scenario, the data tier always returns the
complete list of products for a certain section of the site, and the presentation tier objects
(such as the GridView control) extract the requested page of products from the complete
list. This method has potential performance problems especially when dealing with large
result sets, because it transfers unnecessarily large quantities of data from the database
to the presentation tier. Additional data also needs to be stored on the server’s memory,
unnecessarily consuming server resources.

In our web site, we’ll implement paging at the data tier level, not only because of its better
performance, but also because it allows you to learn some very useful tricks about database
programming that you’ll find useful when developing your web sites. Paging at the data tier
level can be done in two main ways:

• You can use ASP.NET 2.0’s new feature of the DbDataReader object, which has an over-
load of the ExecuteReader method that takes as parameter the page of records you’re
interested in.

• You can write stored procedures that return only the requested page of products.

Darie-Watson_4681C04.fm Page 125 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

126 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

The second alternative is more powerful because of flexibility and performance reasons.
The automatic paging feature offered by ADO.NET usually doesn’t yield optimal performance
because under the hood it uses cursors. In case you aren’t a database professional, you don’t
need to know what cursors are, besides the fact they usually offer the slowest method of SQL
Server data access.

In the following pages, you’ll learn how to write smart stored procedures that return a
specific page of records. Say, the first time the visitor searches for something, only the first n
matching products are retrieved from the database. Then, when the visitor clicks Next page, the
next n rows are retrieved from the database, and so on. Because for your own project you may
need to use various versions of SQL Server, we’ll cover this theory for both SQL Server 2005 and
SQL Sever 2000. The optimal method to implement paging using T-SQL code is different for
each case because SQL Server 2005 has improvements to the T-SQL language that make your
life easier.

Implementing Paging Using SQL Server 2005

Unlike SQL Server 2000, SQL Server 2005 has a new feature that allows for a very easy imple-
mentation of the paging functionality.

With SQL Server 2000 (and other relational database systems), the main problem is that
result sets are always perceived as a group, and individual rows of the set aren’t numbered
(ranked) in any way. As a consequence, there was no straightforward way to say “I want the
sixth to the tenth records of this list of products,” because the database actually didn’t know
which those records were.

■Note The problem was sometimes even more serious because unless some sorting criteria was imple-
mented, the database didn’t (and doesn’t) guarantee that if the same SELECT statement is run twice, you get
the resulted rows in the same order. Therefore, you couldn’t know for sure that after the visitor sees the first
five products and clicks “Next”, products “six to ten” returned by the database are the ones you would expect.

To demonstrate the paging feature, we’ll use the SELECT query that returns all the products
of the catalog:

SELECT Name
FROM Product

Now, how do you take just one portion from this list of results, given that you know the
page number and the number of products per page? (To retrieve the first n products, the simple
answer is to use the TOP keyword in conjunction with SELECT, but that wouldn’t work to get the
next page of products.)

SQL Server 2005 has a ROW_NUMBER function that assigns consecutive row numbers, starting
with 1, for each row returned by a SELECT statement. Because numbering can only be guaranteed
to be consistent if a sorting criteria applies to the query, when using ROW_NUMBER, you also need
to specify a column on which the rows are ordered prior to being numbered:

Darie-Watson_4681C04.fm Page 126 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 127

SELECT ROW_NUMBER() OVER (ORDER BY ProductID) AS Row, Name
FROM Product

This query will have a list of results such as the following:

Row Name
-------------------- --
1 I Love You (Simon Elvin)
2 Elvis Hunka Burning Love
3 Funny Love
4 Today, Tomorrow & Forever
5 Smiley Heart Red Balloon
6 Love 24 Karat
7 Smiley Kiss Red Balloon
8 Love You Hearts
9 Love Me Tender
10 I Can’t Get Enough of You Baby
...

To retrieve five products, namely the sixth to the tenth products of the list, you transform
the previous query into a subquery and filter the results on the WHERE clause of the main query.
The results of a subquery can be interpreted as a separate table, on which the main query applies
(the AS keyword that follows the subquery assigns a name to this virtual “table”). The following
T-SQL code returns the specified list of products:

SELECT Row, Name
FROM(
 SELECT ROW_NUMBER() OVER (ORDER BY ProductID) AS Row, Name
 FROM Product
) AS ProductsWithRowNumbers
WHERE Row >= 6 AND Row <= 10

Using Table Variables

If you get a set of data that you need to make further operations on, you’re likely to need to save
it either as a temporary table or in a TABLE variable. Both temporary tables and TABLE variables
can be used just like normal tables, and are very useful for storing temporary data within the
scope of a stored procedure.

In the stored procedures that return pages of products, you’ll save the complete list of
products in a TABLE variable, allowing you to count the total number of products (so you can
tell the visitor the number of pages of products) before returning the specified page.

The code listing that follows shows you how to create a TABLE variable named @Products:

-- declare a new TABLE variable
DECLARE @Products TABLE
(RowNumber INT,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(5000))

Darie-Watson_4681C04.fm Page 127 Monday, September 19, 2005 9:51 AM

128 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

After creating this variable, you’ll populate it with data using INSERT INTO:

-- populate the table variable with the complete list of products
INSERT INTO @Products
SELECT ROW_NUMBER() OVER (ORDER BY Product.ProductID) AS Row,
 ProductID, Name, Description
FROM Product

You can then retrieve data from this table object like this:

-- extract the requested page of products
SELECT Name, Description FROM @Products
WHERE RowNumber >= 6 AND RowNumber <= 10

IMPLEMENTING PAGING USING SQL SERVER 2000

The presented solution doesn’t work with SQL Server 2000, because SQL Server 2000 doesn’t support the
ROW_NUMBER function used to generate the rank column. Instead, you need to use an IDENTITY column,
which generates the rank you need. IDENTITY columns work with both TABLE variables and with temporary tables.

Of course, this technique works with SQL Server 2005 as well (actually, it works even better with SQL
Server 2005). The technique is somewhat flawed because SQL Server 2000 (unlike SQL Server 2005) doesn’t
guarantee the temporary table will always get populated in the same order and that each product will get the
same row number on two consecutive executions. In the worst scenario (which is likely to happen very rarely),
the visitor can be presented, for example, the same product in two different pages of products. We’ll consider
this to be a minor disadvantage compared to the dramatic performance gains you’ll get by using the paging
technique that uses a temporary table, compared with other kinds of paging queries (that we don’t cover in
this book).

For variety, this time instead of using a TABLE variable, we’ll use a temporary table. Temporary tables
are just like normal data tables, except their names begin with # or ##. Using # specifies a local temporary
table and ## marks a global temporary table. Local temporary tables are unique to the connection that
created them, whereas global temporary tables are visible to all connections.

The following piece of code creates a local temporary table named #Products with three fields (Row,
ProductID, and Name). Note the first field is an IDENTITY (auto-numbered) field. IDENTITY fields were
discussed in Chapter 3.

/* Create the temporary table that will contain the search results */
CREATE TABLE #Products
(Row SMALLINT NOT NULL IDENTITY(1,1),
 ProductID INT,
 Name VARCHAR(50),

 Description VARCHAR(5000))

The next step is to populate this temporary table with the complete list of products using the INSERT➥
INTO statement. This process automatically assigns a row number to each product on the IDENTITY column:

/* Populate the temporary table, automatically assigning row numbers */
INSERT INTO #Products (ProductID, Name, Description)
SELECT ProductID, Name, Description

 FROM Product

Darie-Watson_4681C04.fm Page 128 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 129

Finally, you extract the needed page of products from this temporary table:

/* Get page of products */
SELECT Name, Description
FROM #Products

 WHERE Row >= 6 AND Row <= 10

■Note Because you work with a local temporary table, if multiple users are performing searches at the
same time, each user will create a separate version of the #Products table, because different users will
access the database on different database connections. It’s easy to imagine that things won’t work exactly
well if all connections worked with a single ##Products table.

Writing the New Stored Procedures
It’s time to add the new stored procedures to the BalloonShop database, and then you’ll have
the chance to see them in action. For each stored procedure, you’ll need its functionality some-
where in the presentation tier. You may want to refresh your memory by having a look at the
first four figures in Chapter 3.

In this chapter, the data you need from the database depends on external parameters
(such as the department selected by a visitor, the number of products per pages, and so on).
You’ll send this data to your stored procedures in the form of stored procedure parameters.

The syntax used to create a stored procedure with parameters is

CREATE PROCEDURE <procedure name>
[(
 <parameter name> <parameter type> [=<default value>] [INPUT|OUTPUT],
 <parameter name> <parameter type> [=<default value>] [INPUT|OUTPUT],
 ...
 ...
)]
AS
 <stored procedure body>

The portions between the square brackets are optional. Specifying parameters is optional,
but if you specify them, they must be within parentheses. For each parameter, you must supply
at least its name and data type.

You can optionally supply a default value for the parameter. In this case, if the calling func-
tion doesn’t supply a value for this parameter, the default value will be used instead. Also you
can specify whether the parameter is an input parameter or output parameter. By default, all
parameters are input parameters. The value of output parameters can be set in the stored
procedure and then read by the calling function after the stored procedure executes.

Darie-Watson_4681C04.fm Page 129 Monday, September 19, 2005 9:51 AM

130 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Stored procedure parameters are treated just like any other SQL variables, and their names
start with @, as in @DepartmentID, @CategoryID, @ProductName, and so on. The simplest syntax for
setting the value of an output parameter, inside the stored procedure, is as follows:

SELECT @DepartmentID = 5

Because you already know how to add stored procedures, we won’t be using Exercises this
time. Add the stored procedures discussed in the following sections to the BalloonShop database.

GetDepartmentDetails

The GetDepartmentDetails stored procedure is needed when the user selects a department in
the product catalog. When this happens, the database must be queried again to find out the
name and the description of the particular department.

The stored procedure receives the ID of the selected department as a parameter and returns its
name and description. A bit later, when you create the business tier, you’ll learn how to extract
these values into individual variables after executing the stored procedure.

The code for GetDepartmentDetails is as follows:

CREATE PROCEDURE GetDepartmentDetails
(@DepartmentID int)
AS
SELECT Name, Description
FROM Department
WHERE DepartmentID = @DepartmentID

GetCategoryDetails

The GetCategoryDetails stored procedure is called when the visitor selects a category, and
wants to find out more information about it, such as its name and description. Here’s the code:

CREATE PROCEDURE GetCategoryDetails
(@CategoryID int)
AS
SELECT DepartmentID, Name, Description
FROM Category
WHERE CategoryID = @CategoryID

GetProductDetails

The GetCategoryDetails stored procedure is called to display a product details page. The infor-
mation it needs to display is the name, description, price, and the second product image.

CREATE PROCEDURE GetProductDetails
(@ProductID int)
AS
SELECT Name, Description, Price, Image1FileName, Image2FileName,
 OnDepartmentPromotion, OnCatalogPromotion
FROM Product
WHERE ProductID = @ProductID

Darie-Watson_4681C04.fm Page 130 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 131

GetCategoriesInDepartment

When the visitor selects a particular department, apart from showing the department’s details,
you also want to display the categories that belong to that department. This is done using the
GetCategoriesInDepartment procedure, which returns the list of categories in a department.

GetCategoriesInDepartment returns the IDs, names, and descriptions for the categories
that belong to the department mentioned by the @DepartmentID input parameter:

CREATE PROCEDURE GetCategoriesInDepartment
(@DepartmentID int)
AS
SELECT CategoryID, Name, Description
FROM Category
WHERE DepartmentID = @DepartmentID

GetProductsOnCatalogPromotion

GetProductsOnCatalogPromotion returns a page of products that are on catalog promotion
(have the OnCatalogPromotion bit field set to 1). This stored procedure employs much of the
theory presented earlier in this chapter:

• The stored procedure saves the total number of products into the @HowManyProducts
variable.

• A TABLE variable holds the complete list of products.

• The ROW_NUMBER function implements paging.

CREATE PROCEDURE GetProductsOnCatalogPromotion
(@DescriptionLength INT,
@PageNumber INT,
@ProductsPerPage INT,
@HowManyProducts INT OUTPUT)
AS

-- declare a new TABLE variable
DECLARE @Products TABLE
(RowNumber INT,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(5000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 OnDepartmentPromotion bit,
 OnCatalogPromotion bit)

Darie-Watson_4681C04.fm Page 131 Monday, September 19, 2005 9:51 AM

132 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

-- populate the table variable with the complete list of products
INSERT INTO @Products
SELECT ROW_NUMBER() OVER (ORDER BY Product.ProductID),
 ProductID, Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description, Price,
 Image1FileName, Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM Product
WHERE OnCatalogPromotion = 1

-- return the total number of products using an OUTPUT variable
SELECT @HowManyProducts = COUNT(ProductID) FROM @Products

-- extract the requested page of products
SELECT ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM @Products
WHERE RowNumber > (@PageNumber - 1) * @ProductsPerPage
 AND RowNumber <= @PageNumber * @ProductsPerPage

GetProductsInCategory

When a visitor selects a particular category from a department, you’ll want to list all the products
that belong to that category. For this, you’ll use the GetProductsInCategory stored procedure.
This stored procedure is much the same as GetProductsOnCatalogPromotion, except the actual
query is a bit more complex (it involves a table join to retrieve the list of products in the speci-
fied category):

CREATE PROCEDURE GetProductsInCategory
(@CategoryID INT,
@DescriptionLength INT,
@PageNumber INT,
@ProductsPerPage INT,
@HowManyProducts INT OUTPUT)
AS

-- declare a new TABLE variable
DECLARE @Products TABLE
(RowNumber INT,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(5000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 OnDepartmentPromotion bit,
 OnCatalogPromotion bit)

Darie-Watson_4681C04.fm Page 132 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 133

-- populate the table variable with the complete list of products
INSERT INTO @Products
SELECT ROW_NUMBER() OVER (ORDER BY Product.ProductID),
 Product.ProductID, Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description, Price,
 Image1FileName, Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM Product INNER JOIN ProductCategory
 ON Product.ProductID = ProductCategory.ProductID
WHERE ProductCategory.CategoryID = @CategoryID

-- return the total number of products using an OUTPUT variable
SELECT @HowManyProducts = COUNT(ProductID) FROM @Products

-- extract the requested page of products
SELECT ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM @Products
WHERE RowNumber > (@PageNumber - 1) * @ProductsPerPage
 AND RowNumber <= @PageNumber * @ProductsPerPage

GetProductsOnDepartmentPromotion

When the visitor selects a particular department, apart from needing to list its name, descrip-
tion, and list of categories (you wrote the necessary stored procedures for these tasks earlier),
you also want to display the list of featured products for that department.

GetProductsOnDepartmentPromotion needs to return all the products that belong to a
department and have the OnDepartmentPromotion bit set to 1. In GetProductsInCategory, you
needed to make a table join to find out the products that belong to a specific category. Now that
you need to do this for departments, the task is a bit more complicated because you can’t
directly know which products belong to which departments.

You know how to find categories that belong to a specific department (you did this in
GetCategoriesInDepartment), and you know how to get the products that belong to a specific
category (you did that in GetProductsInCategory). By combining this information, you can
determine the list of products in a department. For this, you need two table joins. You’ll also
filter the final result to get only the products that have the OnDepartmentPromotion bit set to 1.

You’ll also use the DISTINCT clause to filter the results to make sure you don’t get the same
record multiple times. This can happen when a product belongs to more than one category,
and these categories are in the same department. In this situation, you would get the same
product returned for each of the matching categories, unless you filter the results using DISTINCT.
(Using DISTINCT also implies using a SELECT subquery that doesn’t return row numbers when
populating the @Products variable, because the rows would become different and using DISTINCT
would make no more difference.)

Darie-Watson_4681C04.fm Page 133 Monday, September 19, 2005 9:51 AM

134 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

CREATE PROCEDURE GetProductsOnDepartmentPromotion
(@DepartmentID INT,
@DescriptionLength INT,
@PageNumber INT,
@ProductsPerPage INT,
@HowManyProducts INT OUTPUT)
AS

-- declare a new TABLE variable
DECLARE @Products TABLE
(RowNumber INT,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(5000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 OnDepartmentPromotion bit,
 OnCatalogPromotion bit)

-- populate the table variable with the complete list of products
INSERT INTO @Products
SELECT ROW_NUMBER() OVER (ORDER BY ProductID) AS Row,
 ProductID, Name, SUBSTRING(Description, 1, @DescriptionLength)
+ '...' AS Description,
 Price, Image1FileName, Image2FileName, OnDepartmentPromotion,
OnCatalogPromotion
FROM
(SELECT DISTINCT Product.ProductID, Product.Name,
 SUBSTRING(Product.Description, 1, @DescriptionLength) + '...' AS Description,
 Price, Image1FileName, Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
 FROM Product INNER JOIN ProductCategory
 ON Product.ProductID = ProductCategory.ProductID
 INNER JOIN Category
 ON ProductCategory.CategoryID = Category.CategoryID
 WHERE Product.OnDepartmentPromotion = 1
 AND Category.DepartmentID = @DepartmentID
) AS ProductOnDepPr

-- return the total number of products using an OUTPUT variable
SELECT @HowManyProducts = COUNT(ProductID) FROM @Products

-- extract the requested page of products
SELECT ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM @Products
WHERE RowNumber > (@PageNumber - 1) * @ProductsPerPage
 AND RowNumber <= @PageNumber * @ProductsPerPage

Darie-Watson_4681C04.fm Page 134 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 135

Using ADO.NET with Parameterized
Stored Procedures
In this section, you’ll learn a few more tricks for ADO.NET, mainly regarding dealing with stored
procedure parameters. Let’s start with the usual theory part, after which you’ll write the code.

The ADO.NET class that deals with input and output stored procedure parameters is
DbCommand. This shouldn’t come as a big surprise—DbCommand is responsible for executing
commands on the database, so it makes sense that it should also deal with their parameters.
(Remember that DbCommand is just a generic class that will always contain a reference to a “real”
command object, such as SqlCommand.)

Using Input Parameters
When adding an input parameter to a command object, you need to specify the parameter’s
name, data type, and value. The DbCommand object stores its parameters in a collection named
Parameters, which contains DbParameter objects. Each DbParameter instance represents a
parameter.

Given that you have a DbCommand object named comm, the following code snippet creates a
DbParameter object for the command using the CreateParameter method, sets its properties,
and adds the parameter to the command’s Parameters collection.

// create a new parameter
DbParameter param = comm.CreateParameter();
param.ParameterName = "@DepartmentID";
param.Value = value;
param.DbType = DbType.Int32;
comm.Parameters.Add(param);

The command’s CreateParameter method always returns a parameter object type specific
to the data provider you’re using, so the DbParameter object will actually reference a SqlParameter
instance if you’re using SQL Server, and so on.

Another important property of DbParameter is size, which is good to set for data types that
don’t have fixed values, such as VarChar. For numerical columns, specify the parameter size in
bytes. For columns that store strings (such as Char, VarChar, or even Text), specify the size in
number of characters. Longer strings are automatically truncated to the size specified for the
parameter.

Using Output Parameters
Output stored procedure parameters behave like Out parameters in C#. They are much like
return values, in that you set their value in the stored procedure and read it from the calling
function after executing the procedure. Output parameters are especially useful when you
have more return values, when you want to return noninteger data, or when you prefer to keep
using the return value for indicating executing success (or for some other purpose).

The code that creates an output parameter is as follows:

Darie-Watson_4681C04.fm Page 135 Monday, September 19, 2005 9:51 AM

136 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

// create a new parameter
param = comm.CreateParameter();
param.ParameterName = "@HowManyProducts";
param.Direction = ParameterDirection.Output;
param.DbType = DbType.Int32;
comm.Parameters.Add(param);

This is almost the same as the code for the input parameter, except instead of supplying a
value for the parameter, you set its Direction property to ParameterDirection.Output. This
tells the command that @HowManyProducts is an output parameter.

Stored Procedure Parameters Are Not Strongly Typed
When adding stored procedure parameters, you should use exactly the same name, type, and
size as in the stored procedure. You don’t always have to do it, however, because SQL Server is very
flexible and automatically makes type conversions. For example, you could add @DepartmentID as a
VarChar or even NVarChar, as long as the value you set it to is a string containing a number.

We recommend always specifying the correct data type for parameters, however, especially in
the business tier. The DbParameter object will always check the value you assign to see if it corre-
sponds to the specified data type, and if it doesn’t, an exception is generated. This way, you can
have the data tier check that no bogus values are sent to the database to corrupt your data.

The C# methods in the business tier (the CatalogAccess class) always take their parameters
from the presentation tier as strings. We chose this approach for the architecture to keep the
presentation tier from being bothered with the data types; for example, it simply doesn’t care
what kind of product IDs it works with (123 is just as welcome as ABC). It’s the role of the business
tier to interpret the data and test for its correctness.

Getting the Results Back from Output Parameters
After executing a stored procedure that has output parameters, you’ll probably want to read
the values returned in those parameters. You can do this by reading the parameters’ values
from the DbParameter object after executing it and closing the connection.

In your business tier code, you’ll have a line like this, which will retrieve the value of the
@HowManyProducts output parameter:

int howManyProducts = Int32.Parse(comm.Parameters["@HowManyProducts"].ToString());

In this example, ToString() is called to convert the returned value to a string, which is then
parsed and transformed into an integer.

Completing the Business Tier Code
Most of your business tier code will consist of the new code you’ll add to the CatalogAccess
class. That code will use a few new configuration settings that you’ll add to web.config:

• ProductsPerPage stores the maximum number of products to list on a page of products.
If the entire list contains more items, the paging controls (next page/previous page) appear.

Darie-Watson_4681C04.fm Page 136 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 137

• ProductDescriptionLength stores the length of the product descriptions to be used in
product lists. The entire description is shown only in the product details page.

• SiteName stores the name of your store, which will be used to compose catalog page names.

Let’s add these settings in a short exercise.

Exercise: Adding New Configuration Settings

1. Open web.config and add the following entries to the <appSettings> node:

<appSettings>
 <add key="MailServer" value="localhost" />
 <add key="EnableErrorLogEmail" value="true" />
 <add key="ErrorLogEmail" value="errors@yourballoonshopxyz.com" />
 <add key="ProductsPerPage" value="6"/>
 <add key="ProductDescriptionLength" value="60"/>
 <add key="SiteName" value="BalloonShop"/>
</appSettings>

2. Open the BalloonShopConfiguration class and add two fields, whose values are loaded once by
the static constructor of the class:

public static class BalloonShopConfiguration
{
 // Caches the connection string
 private readonly static string dbConnectionString;
 // Caches the data provider name
 private readonly static string dbProviderName;
 // Store the number of products per page
 private readonly static int productsPerPage;
 // Store the product description length for product lists
 private readonly static int productDescriptionLength;
 // Store the name of your shop
 private readonly static string siteName;

 // Initialize various properties in the constructor
 static BalloonShopConfiguration()
 {
 dbConnectionString =
ConfigurationManager.ConnectionStrings
["BalloonShopConnection"].ConnectionString;
 dbProviderName =
ConfigurationManager.ConnectionStrings["BalloonShopConnection"].ProviderName;
 productsPerPage =
Int32.Parse(ConfigurationManager.AppSettings["ProductsPerPage"]);
 productDescriptionLength =

Darie-Watson_4681C04.fm Page 137 Monday, September 19, 2005 9:51 AM

138 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Int32.Parse(ConfigurationManager.AppSettings["ProductDescriptionLength"]);
 siteName = ConfigurationManager.AppSettings["SiteName"];
 }

3. Also in the BalloonShopConfiguration class, add the corresponding properties to return the values
of the fields you’ve added in the previous step:

// Returns the maximum number of products to be displayed on a page
public static int ProductsPerPage
{
 get
 {
 return productsPerPage;
 }
}

// Returns the length of product descriptions in products lists
public static int ProductDescriptionLength
{
 get
 {
 return productDescriptionLength;
 }
}
// Returns the length of product descriptions in products lists
public static string SiteName
{
 get
 {
 return siteName;
 }
}

How It Works: Read-Only Fields and Constants

The productsPerPage and productDescriptionLength fields are marked as readonly. This mainly means
that after setting their values in the class constructor, you can’t change their values any more in any method. If
you’re curious to find more details about readonly and how readonly is different from const, read on.

The major similarity between the readonly and const fields is that you aren’t allowed to change their values
inside class methods or properties. The main difference is that whereas for constants you need to set their value at
the time you write the code (their values must be known at compile-time), with readonly fields you are allowed to
dynamically set their values in the class constructor.

Constant values are always replaced with their literal values by the compiler. If you look at the compiled code, you’ll
never know constants were used. You can use the const keyword only with value types (the primitive data types:
Int, Char, Float, Bool, and so on), but not with reference types (such as the classes you’re creating).

Readonly fields are handled differently. They don’t have to be value types, and they can be initialized in the class
constructor. Static readonly fields can be initialized only in the static class constructor, and instance readonly
fields can be initialized only in the instance class constructor.

Darie-Watson_4681C04.fm Page 138 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 139

Note that in case of readonly fields of reference types, only the reference is kept read only. The inner data of the
object can still be modified.

Let’s now implement the business-tier methods. Each method calls exactly one stored
procedure, and the methods are named exactly like the stored procedures they are calling. In
Visual Studio, open the CatalogAccess.cs file you created in the previous chapter, and prepare
to fill it with business logic.

GetDepartmentDetails

GetDepartmentDetails is called from the presentation tier when a department is clicked to
display its name and description. The presentation tier passes the ID of the selected department,
and you need to send back the name and the description of the selected department.

The GetDepartmentDetails method of the business tier uses the
GenericDataAccess.CreateCommand method to get a DbCommand object and execute the
GetDepartmentDetails stored procedure. The business tier wraps the returned data into a
separate object and sends this object back to the presentation tier.

What object, you say? The technique is to create a separate class (or struct, in our case) for
the particular purpose of storing data that you want to pass around. This struct is named
DepartmentDetails and looks like this:

public struct DepartmentDetails
{
 public string Name;
 public string Description;
}

STRUCTS

A struct is a user-defined data type that is very similar to a class; it can contain constructors, fields, methods,
and properties. Structs are declared using the struct keyword instead of class. Please consult separate
documentation for more details, but as a quick reference here are some differences you should keep in mind:

• A struct is a value type, whereas classes are reference types. Internally, structs are implicitly derived
from System.ValueType.

• Inheritance doesn’t work with structs. A struct cannot derive from a class or from another struct; a class
cannot derive from a struct.

• Structs always contain by default a parameterless, default constructor, which does nothing. You’re
allowed to add more overloads, but you can’t add a parameterless constructor.

• Although structs are very powerful, they are mainly designed to act as containers for data rather than as
fully featured objects. Because they are value types (and are stored on the stack), passing them around
can be very fast. MSDN says that data structures smaller than 16 bytes may be handled more efficiently
as structs rather than as classes.

Darie-Watson_4681C04.fm Page 139 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

140 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

You wrap the department’s name and description into one DepartmentDetails object and
send it back to the presentation tier. The DepartmentDetails class can be added in a separate
file in the BusinessObjects folder or added to one of the existing files. Most of the time, you’ll
want to create a separate file for each class, but because in this case DepartmentDetails is more
like a tool for the CatalogAccess class, we chose to add it to CatalogAccess.cs.

Add the DepartmentDetails class at the beginning of CatalogAccess.cs (but not inside the
CatalogAccess class) like this:

using System;
using System.Data;
using System.Data.Common;

/// <summary>
/// Wraps department details data
/// </summary>
public struct DepartmentDetails
{
 public string Name;
 public string Description;
}

/// <summary>
/// Product catalog business tier component
/// </summary>
public class CatalogAccess

Now add the GetDepartmentDetails method to the CatalogAccess class. The exact location
doesn’t matter, but to keep the code organized, add it just after the GetDepartments method:

// get department details
public static DepartmentDetails GetDepartmentDetails(string departmentId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetDepartmentDetails";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentID";
 param.Value = departmentId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // wrap retrieved data into a DepartmentDetails object
 DepartmentDetails details = new DepartmentDetails();
 if (table.Rows.Count > 0)
 {

Darie-Watson_4681C04.fm Page 140 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 141

 details.Name = table.Rows[0]["Name"].ToString();
 details.Description = table.Rows[0]["Description"].ToString();
 }
 // return department details
 return details;
}

You know what happens in this function fairly well because we analyzed portions of
it in the first part of the chapter. Its main purpose is to send back the name and description
of the relevant department. To do this, it calls the GetDepartmentDetails stored procedure,
supplying it with a department ID. After execution, the function reads the @DepartmentName and
@DepartmentDescription output parameters, saves them into a DepartmentDetails object, and
sends this object back to the calling function.

GetCategoryDetails

History repeats itself in this section. Just as you needed to return a name and description for
the selected department, now you need to do the same thing for the categories. You’ll use the
same technique here and wrap the data into a separate class.

Add the CategoryDetails struct at the beginning of CatalogAccess.cs. Don’t place it inside
the CatalogAccess class!

/// <summary>
/// Wraps category details data
/// </summary>
public struct CategoryDetails
{
 public int DepartmentId;
 public string Name;
 public string Description;
}

Next, add the GetCategoryDetails method to the CatalogAccess class. Except for the fact
that it calls another stored procedure and uses another class to wrap the return information, it
is identical to GetDepartmentDetails:

// Get category details
public static CategoryDetails GetCategoryDetails(string categoryId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetCategoryDetails";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";
 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

Darie-Watson_4681C04.fm Page 141 Monday, September 19, 2005 9:51 AM

142 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

 // execute the stored procedure
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // wrap retrieved data into a CategoryDetails object
 CategoryDetails details = new CategoryDetails();
 if (table.Rows.Count > 0)
 {
 details.DepartmentId = Int32.Parse(table.Rows[0]["DepartmentID"].ToString());
 details.Name = table.Rows[0]["Name"].ToString();
 details.Description = table.Rows[0]["Description"].ToString();
 }
 // return department details
 return details;
}

GetProductDetails

Let’s do the same with the product details now. Add the ProductDetails struct at the beginning
of Catalog.cs. Don’t place it inside the CatalogAccess class!

/// <summary>
/// Wraps product details data
/// </summary>
public struct ProductDetails
{
 public string Name;
 public string Description;
 public decimal Price;
 public string Image1FileName;
 public string Image2FileName;
 public bool OnDepartmentPromotion;
 public bool OnCatalogPromotion;
}

Add the GetProductDetails method to the CatalogAccess class:

// Get product details
public static ProductDetails GetProductDetails(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetProductDetails";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

Darie-Watson_4681C04.fm Page 142 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 143

 // execute the stored procedure
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // wrap retrieved data into a ProductDetails object
 ProductDetails details = new ProductDetails();
 if (table.Rows.Count > 0)
 {
 // get the first table row
 DataRow dr = table.Rows[0];
 // get product details
 details.Name = dr["Name"].ToString();
 details.Description = dr["Description"].ToString();
 details.Price = Decimal.Parse(dr["Price"].ToString());
 details.Image1FileName = dr["Image1FileName"].ToString();
 details.Image2FileName = dr["Image2FileName"].ToString();
 details.OnDepartmentPromotion =
bool.Parse(dr["OnDepartmentPromotion"].ToString());
 details.OnCatalogPromotion = bool.Parse(dr["OnCatalogPromotion"].ToString());
 }
 // return department details
 return details;
}

GetCategoriesInDepartment

The GetCategoriesInDepartment method is called to retrieve the list of categories that belong to
a department. Add this function to the CatalogAccess class:

// retrieve the list of categories in a department
public static DataTable GetCategoriesInDepartment(string departmentId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetCategoriesInDepartment";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentID";
 param.Value = departmentId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 return GenericDataAccess.ExecuteSelectCommand(comm);
}

GetProductsOnCatalogPromotion

The methods that return products (GetProductsOnCatalogPromotion, GetProductsOn➥

DepartmentPromotion, GetProductsInCategory) are a bit more complex because they need to
manage paging. This implies adding three parameters to the command objects: @PageNumber,

Darie-Watson_4681C04.fm Page 143 Monday, September 19, 2005 9:51 AM

144 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

@ProductsPerPage, and @HowManyProducts. The latter is an output parameter, which will be set
by the stored procedure to the total number of products for the section (so you can calculate
and tell the visitor the number of pages of products). Another new parameter is
@DescriptionLength, which specifies how many characters the product’s description should be
trimmed down to (remember that we don’t show full product descriptions in product lists).

The GetProductsOnCatalogPromotion method gets the list of products featured on the main
page of the site. It has two parameters: pageNumber and howManyPages. The latter parameter,
howManyPages, is an out parameter. The values for the other two parameters needed for the
GetProductsOnCatalogPromotion stored procedure (@DescriptionLength and @ProductsPerPage)
are taken from the productsPerPage and productDescriptionLength class fields that you added
earlier to the class.

When the presentation tier calls GetProductsOnCatalogPromotion, you send back the
requested list of products in the form of a DataTable and the number of product subpages
using the howManyPages out parameter.

Add this method to the CatalogAccess class:

// Retrieve the list of products on catalog promotion
public static DataTable GetProductsOnCatalogPromotion(string pageNumber,
 out int howManyPages)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetProductsOnCatalogPromotion";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@PageNumber";
 param.Value = pageNumber;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductsPerPage";
 param.Value = BalloonShopConfiguration.ProductsPerPage;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@HowManyProducts";
 param.Direction = ParameterDirection.Output;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

Darie-Watson_4681C04.fm Page 144 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 145

 // execute the stored procedure and save the results in a DataTable
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // calculate how many pages of products and set the out parameter
 int howManyProducts = Int32.Parse(comm.Parameters
["@HowManyProducts"].Value.ToString());
 howManyPages = (int)Math.Ceiling((double)howManyProducts /
 (double)BalloonShopConfiguration.ProductsPerPage);
 // return the page of products
 return table;
}

GetProductsOnDepartmentPromotion

The GetProductsOnDepartmentPromotion function returns the list of products featured for a
particular department. The department’s featured products must be displayed when the
customer visits the home page of a department.

// retrieve the list of products featured for a department
public static DataTable GetProductsOnDepartmentPromotion
(string departmentId, string pageNumber, out int howManyPages)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetProductsOnDepartmentPromotion";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentID";
 param.Value = departmentId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@PageNumber";
 param.Value = pageNumber;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductsPerPage";
 param.Value = BalloonShopConfiguration.ProductsPerPage;
 param.DbType = DbType.Int32;

Darie-Watson_4681C04.fm Page 145 Monday, September 19, 2005 9:51 AM

146 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@HowManyProducts";
 param.Direction = ParameterDirection.Output;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure and save the results in a DataTable
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // calculate how many pages of products and set the out parameter
 int howManyProducts = Int32.Parse
(comm.Parameters["@HowManyProducts"].Value.ToString());
 howManyPages = (int)Math.Ceiling((double)howManyProducts /
 (double)BalloonShopConfiguration.ProductsPerPage);
 // return the page of products
 return table;
}

GetProductsInCategory

GetProductsInCategory returns the list of products that belong to a particular category. Add the
following method to the CatalogAccess class:

// retrieve the list of products in a category
public static DataTable GetProductsInCategory
(string categoryId, string pageNumber, out int howManyPages)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetProductsInCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";
 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@PageNumber";

Darie-Watson_4681C04.fm Page 146 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 147

 param.Value = pageNumber;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductsPerPage";
 param.Value = BalloonShopConfiguration.ProductsPerPage;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@HowManyProducts";
 param.Direction = ParameterDirection.Output;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure and save the results in a DataTable
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // calculate how many pages of products and set the out parameter
 int howManyProducts = Int32.Parse
(comm.Parameters["@HowManyProducts"].Value.ToString());
 howManyPages = (int)Math.Ceiling((double)howManyProducts /
 (double)BalloonShopConfiguration.ProductsPerPage);
 // return the page of products
 return table;
}

Implementing the Presentation Tier
Once again, it’s time to see some colors! Believe it or not, right now the data and business tiers
of the product catalog are complete for this chapter (finally!). All you have to do is use their
functionality in the presentation tier. In this final section, you’ll create a few Web Forms and
Web User Controls and integrate them into the existing project.

If you now execute the BalloonShop project and click one of the departments, you are redi-
rected to Catalog.aspx (which at this moment doesn’t exist), with a DepartmentID parameter in
the query string that specifies the ID of the selected department:

http://localhost/BalloonShop/Catalog.aspx?DepartmentID=1

In the following sections, you’ll write code that makes the catalog more friendly by actually
responding when the visitor clicks on those links. In the following sections, you will

Darie-Watson_4681C04.fm Page 147 Monday, September 19, 2005 9:51 AM

148 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

• Write the CategoriesList.ascx control, which will display the list of categories for the
selected department. This new control is similar to DepartmentsList.ascx that you wrote
in the previous chapter.

• Complete the functionality in Catalog.aspx, making it display the name and description
of the selected department or category.

• Implement ProductsList.ascx, which will display the products for the currently visited
page (the main page, a department page, or a category page).

• Implement Product.aspx, which will be the product details page. When the visitors click
on a product in the products list, they will be redirected to an address like http://
localhost:13319/BalloonShop/Product.aspx?ProductID=1.

Displaying the List of Categories
CategoriesList is similar to the DepartmentsList Web User Control. It consists of a DataList
control that is populated with data retrieved from the business tier. The DataList control will
contain links to Catalog.aspx, but this time the query string will also contain a CategoryID
parameter, showing that a category has been clicked, like this:

http://localhost/BalloonShop/Catalog.aspx?DepartmentID=1&CategoryID=2

The steps in the following exercise are similar to the steps you followed to create the
DepartmentsList user control, so we’ll move a bit more quickly this time.

Exercise: Creating the CategoriesList Web User Control

1. Create a new Web User Control in the UserControls folder. In Solution Explorer, right-click the
UserControls folder, and then choose Add New Item. Select the Web User Control template, and
set CategoriesList.ascx (or simply CategoriesList) as its name. Make sure Place code in
separate file is checked and click Add.

2. Set the properties on the DataList object as shown in Table 4-3.

Table 4-3. Setting the DataList Properties

Property Name Value

(ID) list

Width 200px

CssClass CategoryListContent

HeaderStyle-CssClass CategoryListHead

Darie-Watson_4681C04.fm Page 148 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 149

3. Switch to Design View, right-click the DataList, and select Edit Template ➤ Header and Footer
Templates. Type Choose a Category in the Header template.

4. Right-click the DataList and select Edit Template ➤ Item Templates. Add a HyperLink control
from the Standard tab of the toolbox to the ItemTemplate. Set the Text property of the HyperLink to
an empty string.

5. Switch to Source View. The code auto-generated by Visual Studio for the hyperlink should look like this:

<asp:DataList ID="list" runat="server" CssClass="CategoryListContent"
Width="200px">
 <ItemTemplate>
 <asp:HyperLink ID="HyperLink1" runat="server"></asp:HyperLink>
 </ItemTemplate>
 <HeaderTemplate>
 Choose a Category
 </HeaderTemplate>
 <HeaderStyle CssClass="CategoryListHead" />
</asp:DataList>

6. Modify the code of the <ItemTemplate> element like this:

 <ItemTemplate>
 »
 <asp:HyperLink
 ID="HyperLink1"
 Runat="server"
 NavigateUrl='<%# "../Catalog.aspx?DepartmentID=" +
Request.QueryString["DepartmentID"] +
"&CategoryID=" + Eval("CategoryID") %>'
 Text='<%# Eval("Name") %>'
 ToolTip='<%# Eval("Description") %>'
 CssClass='<%# Eval("CategoryID").ToString() ==
Request.QueryString["CategoryID"] ?
"CategorySelected" : "CategoryUnselected" %>'>>
 </asp:HyperLink>
 «
 </ItemTemplate>

7. Add a Label control after the DataList with no text. When the categories list is populated with data,
you’ll set the text of this label to
 for cosmetic reasons.

<asp:Label ID="brLabel" runat="server" Text="" />

Switching to Design View should reveal a window such as the one in Figure 4-17.

Darie-Watson_4681C04.fm Page 149 Monday, September 19, 2005 9:51 AM

150 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-17. CategoriesList.ascx in Design View

8. Add the following styles to BalloonShop.css:

.CategoryListHead
{
 border-right: #ea6d00 1px solid;
 border-top: #ea6d00 1px solid;
 border-left: #ea6d00 1px solid;
 border-bottom: #ea6d00 1px solid;
 background-color: #ef8d0e;
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
 color: #f5f5dc;
 text-align: center;
}
.CategoryListContent
{
 border-right: #ea6d00 1px solid;
 border-top: #ea6d00 1px solid;
 border-left: #ea6d00 1px solid;
 border-bottom: #ea6d00 1px solid;
 background-color: #f8c78c;
 text-align: center;
}
a.CategoryUnselected
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 9pt;
 color: #cd853f;
 line-height: 25px;
 padding-right: 5px;
 padding-left: 5px;
 text-decoration: none
}

Darie-Watson_4681C04.fm Page 150 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 151

a.CategoryUnselected:hover
{
 color: #d2691e;
 padding-right: 5px;
 padding-left: 5px
}
a.CategorySelected
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 9pt;
 color: #a0522d;
 line-height: 25px;
 padding-right: 5px;
 padding-left: 5px;
 text-decoration: none
}

9. Now open the code-behind file of the user control (CategoriesList.ascx.cs) and modify the
Page_Load event handler like this:

protected void Page_Load(object sender, EventArgs e)
{
 // Obtain the ID of the selected department
 string departmentId = Request.QueryString["DepartmentID"];
 // Continue only if DepartmentID exists in the query string
 if (departmentId != null)
 {
 // Catalog.GetCategoriesInDepartment returns a DataTable
 // object containing category data, which is displayed by the DataList
 list.DataSource =
CatalogAccess.GetCategoriesInDepartment(departmentId);
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 // Make space for the next control
 brLabel.Text = "
";
 }
}

10. Open BalloonShop.master in Design View. Drag CategoriesList.ascx from Solution Explorer
and drop it near the text that reads “List of Categories.” Delete the text so that only the user control is
there.

11. Execute the project, select a department, and then select a category. You should see something like
Figure 4-18.

Darie-Watson_4681C04.fm Page 151 Monday, September 19, 2005 9:51 AM

152 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-18. BalloonShop with a brand new list of categories

How It Works: The CategoriesList User Control

The important detail to know about CategoriesList is what happens when you click a category link: Catalog.aspx
is reloaded, but this time, CategoryID is appended to the query string. In some of the other controls you’ll create,
you’ll check for CategoryID in the query string—when it’s present, this indicates that the visitor is browsing
a category.

CategoriesList works like DepartmentsList, they are both used in the Master Page, and they both get loaded
at the same time. However, when CategoriesList gets loaded and its Page_Load function executes, the code
checks to determine whether a department was selected:

 void Page_Load(object sender, EventArgs e)
 {
 // Obtain the ID of the selected department
 string departmentId = Request.QueryString["DepartmentID"];
 // Continue only if DepartmentID exists in the query string
 if (departmentId != null)
 {
 ...
 ...

 ...

If the DataList isn’t populated with data, it doesn’t show at all. This is important, because if the visitor is on the
main page and a department was not selected, no categories should show up.

Darie-Watson_4681C04.fm Page 152 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 153

On the other hand, if a department was selected, the business tier GetCategoriesInDeparment method of the
CatalogAccess class is called to obtain the list of categories in that department:

 // Continue only if DepartmentID exists in the query string
 if (departmentId != null)
 {
 // Catalog.GetCategoriesInDepartment returns a DataTable object
 // containing category data, which is displayed by the DataList
 list.DataSource =
CatalogAccess.GetCategoriesInDepartment(departmentId);
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 // Make space for the next control
 brLabel.Text = "
";

 }

■Note A final note about CategoriesList.ascx is that you’re free to use it in other pages or even for
other user controls. For example, you might want to add CategoriesList inside the SelectedItemTemplate
element of the DataList in the DepartmentsList instead of placing in directly on the Master Page. Feel
free to experiment and see how easy it is to change the look of the web site with just a few clicks!

Displaying Department and Category Details
Now the visitor can visit the main web page and select a department or a category. In each of
these cases, your page contents cell must update itself with data about the selected department
or category.

The good thing is that category and department pages have similar structure: they display
the name of the selected category or department on the top, then the description, and finally a
list of products. You’ll use a single Web Form named Catalog.aspx, which handles generating
both category and department pages. The list of products in those pages is generated by a separate
Web User Control that you’ll implement later.

In the following exercise, you implement Catalog.aspx, which hosts the details of the
selected department of category.

Exercise: Displaying Department and Category Data

1. Open Catalog.aspx in Source View. You need to add two labels, named catalogTitleLabel and
catalogDescriptionLabel, to the content part of the page. Feel free to use Design View to add
them the way you like. Alternatively, use Source View to add the following HTML code, which also
contains the mentioned labels:

Darie-Watson_4681C04.fm Page 153 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

154 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Catalog.aspx.cs" Inherits="Catalog"
Title="BalloonShop - The Product Catalog" %>
<asp:Content ID="content" ContentPlaceHolderID="contentPlaceHolder"
Runat="Server">
 <asp:Label ID="catalogTitleLabel" CssClass="CatalogTitle"
Runat="server" />

 <asp:Label ID="catalogDescriptionLabel" CssClass="CatalogDescription"
 Runat="server" />

 [Place List of Products Here]
</asp:Content>

2. Open Default.aspx in Source View and edit the content placeholder like this:

<asp:Content ID="content" ContentPlaceHolderID="contentPlaceHolder"
 Runat="server">
 Welcome to BalloonShop!

 This week we have a special price
 for these fantastic products:

 [Place List of Products Here]
</asp:Content>

3. Add the following styles to BalloonShop.css:

.CatalogTitle
{
 color: red;
 font-family: 'Trebuchet MS', Comic Sans MS, Arial;
 font-size: 24px;
 font-weight: bold;
}
.CatalogDescription
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-weight: bold;
 font-size: 14px;
}

4. It’s time to write the code that populates the two labels with data from the database. Add the following
code to the Catalog class, in Catalog.aspx.cs:

Darie-Watson_4681C04.fm Page 154 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 155

public partial class Catalog : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 PopulateControls();
 }
 // Fill the page with data
 private void PopulateControls()
 {
 // Retrieve DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Retrieve CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // If browsing a category...
 if (categoryId != null)
 {
 // Retrieve category details and display them
 CategoryDetails cd = CatalogAccess.GetCategoryDetails(categoryId);
 catalogTitleLabel.Text = cd.Name;
 catalogDescriptionLabel.Text = cd.Description;
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Category : " + cd.Name;
 }
 // If browsing a department...
 else if (departmentId != null)
 {
 // Retrieve department details and display them
 DepartmentDetails dd =
CatalogAccess.GetDepartmentDetails(departmentId);
 catalogTitleLabel.Text = dd.Name;
 catalogDescriptionLabel.Text = dd.Description;
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Department : " + dd.Name;
 }
 }
}

5. Execute the project and click one of the departments. You should get something like Figure 4-19. Then
do the same test for categories.

Darie-Watson_4681C04.fm Page 155 Monday, September 19, 2005 9:51 AM

156 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-19. Displaying category and department details

How It Works: Displaying Department and Category Data

BalloonShop started looking almost like a real web site, didn’t it? In this exercise you started by adding some
controls to Catalog.aspx that display the name and description of the selected department or category. You also
added some text to Default.aspx that gets displayed on the main page of your catalog. Both Catalog.aspx and
Default.aspx contain the [Place list of products here] text; you’ll replace this text with the actual list
of products in the next section.

The work of displaying department and category data is done in the PopulateControls method in
Catalog.aspx.cs. To determine whether the visitor is browsing a department or a category, the method needs
to check out the values of CategoryID and DepartmentID in the query string, so it saves the values of these
parameters as local variables:

 // Retrieve DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Retrieve CategoryID from the query string

 string categoryId = Request.QueryString["CategoryID"];

Next it determines whether a value has been supplied for CategoryID; if it hasn’t, CategoryID will be NULL.
Otherwise, if CategoryId has a value, its details are obtained using the CatalogAccess.GetCategoryDetails
method of the business tier. These details come packed as a CategoryDetails object:

Darie-Watson_4681C04.fm Page 156 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 157

 // If browsing a category...
 if (categoryId != null)
 {
 // Retrieve category details and display them
 CategoryDetails cd = CatalogAccess.GetCategoryDetails(categoryId);
 catalogTitleLabel.Text = cd.Name;
 catalogDescriptionLabel.Text = cd.Description;

 }

If CategoryId is NULL, you could assume the visitor is browsing a department and display the department’s data
(Catalog.aspx is loaded only if the visitor has clicked on a department or a category). However, for safety, you do
an extra check on DepartmentId’s value, and if it’s not NULL, loads its data from the business tier:

 // If browsing a department...
 else if (departmentId != null)
 {
 // Retrieve department details and display them
 DepartmentDetails dd = CatalogAccess.GetDepartmentDetails(departmentId);
 catalogTitleLabel.Text = dd.Name;
 catalogDescriptionLabel.Text = dd.Description;

 }

Displaying Product Lists
So where’s the meat? Your web site will display product lists using a Web User Control named
ProductsList.ascx. In theory, this control is very much alike CategoriesList.ascx and
DepartmentsList.ascx, in that it uses a DataList control to generate a list of items. In practice,
implementing this control is a little bit more complicated because there’s more code to write.

This control also needs to support the paging feature offered by the business tier. It needs
to display controls to allow the visitor to move forward and backward between pages of products.
The product’s name and picture are links to the product details page, which is dealt with by a
Web Form named Product.aspx (you’ll write this one later).

Let’s go.

Exercise: Creating the ProductsList Web User Control

1. Copy the ProductImages folder from the Source Code area on the Apress web site to your
BalloonShop solution.

2. Add a new Web User Control named ProductsList to the UserControls folder.

Darie-Watson_4681C04.fm Page 157 Monday, September 19, 2005 9:51 AM

158 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

3. While in Source View, add the following code that will generate the “Page x of y … Previous … Next”
text in sections of products that have more pages.

<asp:Label ID="pagingLabel" Runat="server"
 CssClass="PagingText" Visible="false" />

<asp:HyperLink ID="previousLink" Runat="server"
 CssClass="PagingText" Visible="false">Previous</asp:HyperLink>

<asp:HyperLink ID="nextLink" Runat="server"
 CssClass="PagingText" Visible="false">Next</asp:HyperLink>

4. Open the control in Design View, and drag a DataList control from the toolbox to the bottom of the
control.

5. Rename the ID of the DataList to list, and set its RepeatColumns property to 2 (specifies the
number of products to be displayed per row), and RepeatDirection to Horizontal.

6. Edit the DataList’s code directly in Source View:

<asp:DataList ID="list" Runat="server" RepeatColumns="2">
 <ItemTemplate>
 <table cellPadding="0" align="left">
 <tr height="105">
 <td align="center" width="110">
 <a href='Product.aspx?ProductID=<%# Eval("ProductID")%>'>
 <img width="100" src='ProductImages/
<%# Eval("Image1FileName") %>' border="0"/>

 </td>
 <td vAlign="top" width="250">
 <a class="ProductName" href='Product.aspx?ProductID=
<%# Eval("ProductID")%>'>
 <%# Eval("Name") %>

 <%# Eval("Description") %>

 Price:

 <%# Eval("Price", "{0:c}") %>

 </td>
 </tr>
 </table>
 </ItemTemplate>
</asp:DataList>

Darie-Watson_4681C04.fm Page 158 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 159

7. Add these styles to BalloonShop.css:

a.ProductName
{
 color: Red;
 font-family: 'Trebuchet MS';
 text-decoration: none;
 font-weight: bold;
 font-size: 12px;
}
a.ProductName:hover
{
 text-decoration: underline;
}
.ProductDescription
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 11px;
}
.ProductPrice
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-weight: bold;
 font-size: 11px;
}
.PagingText
{
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 11px;
 color: Black;
}

8. The way ASP.NET outputs product prices to the visitor depends on the culture settings of the computer
running the site. You told ASP.NET which numbers represent prices by using the {0:C} formatting
parameter in the Eval expression. For example, if the default culture is set to fr-FR, instead of $1.23
you would see 1,23EUR. (For more information on internationalization issues, consult an advanced
ASP.NET book.) For now, to make sure the prices are expressed in the same currency (U.S. dollars for
this example), double-click web.config in Solution Explorer and add the <globalization> element
under <system.web>, like this:

...
 <globalization requestEncoding="utf-8" responseEncoding="utf-8"
 culture="en-US"/>
 </system.web>
</configuration>

Darie-Watson_4681C04.fm Page 159 Monday, September 19, 2005 9:51 AM

160 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

This ensures that no matter how the development (or production) machine is set up, your prices will
always be expressed in the same currency.

9. Modify ProductsList class in ProductsList.ascx.cs like this:

using System.Collections.Specialized;

public partial class ProductsList : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 PopulateControls();
 }

 private void PopulateControls()
 {
 // Retrieve DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Retrieve CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // Retrieve Page from the query string
 string page = Request.QueryString["Page"];
 if (page == null) page = "1";
 // How many pages of products?
 int howManyPages = 1;
 // If browsing a category...
 if (categoryId != null)
 {
 // Retrieve list of products in a category
 list.DataSource =
CatalogAccess.GetProductsInCategory(categoryId, page, out howManyPages);
 list.DataBind();
 }
 else if (departmentId != null)
 {
 // Retrieve list of products on department promotion
 list.DataSource = CatalogAccess.GetProductsOnDepartmentPromotion
(departmentId, page, out howManyPages);
 list.DataBind();
 }
 else
 {
 // Retrieve list of products on catalog promotion
 list.DataSource =
CatalogAccess.GetProductsOnCatalogPromotion(page, out howManyPages);
 list.DataBind();
 }

Darie-Watson_4681C04.fm Page 160 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 161

 // display paging controls
 if (howManyPages > 1)
 {
 // have the current page as integer
 int currentPage = Int32.Parse(page);
 // make controls visible
 pagingLabel.Visible = true;
 previousLink.Visible = true;
 nextLink.Visible = true;
 // set the paging text
 pagingLabel.Text = "Page " + page + " of " + howManyPages.ToString();
 // create the Previous link
 if (currentPage == 1)
 previousLink.Enabled = false;
 else
 {
 NameValueCollection query = Request.QueryString;
 string paramName, newQueryString = "?";
 for (int i = 0; i < query.Count; i++)
 if (query.AllKeys[i] != null)
 if ((paramName = query.AllKeys[i].ToString()).ToUpper() != "PAGE")
 newQueryString += paramName + "=" + query[i] + "&";
 previousLink.NavigateUrl = Request.Url.AbsolutePath + newQueryString
 + "Page=" + (currentPage - 1).ToString();
 }
 // create the Next link
 if (currentPage == howManyPages)
 nextLink.Enabled = false;
 else
 {
 NameValueCollection query = Request.QueryString;
 string paramName, newQueryString = "?";
 for (int i = 0; i < query.Count; i++)
 if (query.AllKeys[i] != null)
 if ((paramName = query.AllKeys[i].ToString()).ToUpper() != "PAGE")
 newQueryString += paramName + "=" + query[i] + "&";
 nextLink.NavigateUrl = Request.Url.AbsolutePath + newQueryString +
"Page=" + (currentPage + 1).ToString();
 }
 }
 }
}

10. Open Catalog.aspx in Design View. Drag ProductsList.ascx from Solution Explorer, drop it near
the [Place List of Products Here] text, and then delete the text, as shown in Figure 4-20.

Darie-Watson_4681C04.fm Page 161 Monday, September 19, 2005 9:51 AM

162 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-20. Adding ProductsList.ascx to Catalog.aspx

11. Now do the same in Default.aspx.

12. Press F5 to execute the project. The main page should now be populated with its featured products (see
Figure 4-21).

■Note To see the product images, make sure you have the ProductImages folder available (located in
your project’s folder) from the Source Code area on the Apress web site (http://www.apress.com).

Darie-Watson_4681C04.fm Page 162 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 163

Figure 4-21. The front page of BalloonShop

13. Now click a department to see the department’s featured products, and then click a category to see all
the products in that category. Figure 4-22 shows the paging feature in action.

Darie-Watson_4681C04.fm Page 163 Monday, September 19, 2005 9:51 AM

164 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Figure 4-22. Paging in action

How It Works: The ProductsList Web User Control

ProductsList.ascx, just like CategoriesList.ascx and DepartmentsList.ascx, uses a DataList to
paint a list of items. Because ProductsList.ascx will be reused in both Default.aspx and Catalog.aspx,
you can’t know beforehand exactly what it needs to display. Is it the list of products on catalog promotion, or is it the
list of products in a particular category? In the usual style, ProductsList decides what it needs to display by ana-
lyzing the query string parameters. The logic is simple, so we won’t go through it again here.

The first two new issues you played with in this exercise are the globalization setting and the paging controls. Setting
the application to use the en-US culture ensures that monetary data (product prices) will always be displayed using the
dollar symbol, no matter the settings of the computer that hosts the application.

Paging works through a query string parameter named Page. When a list of products is to be displayed and Page
doesn’t show up in the query string, the code automatically assumes the visitor is on the first page. For example,
both these links would forward the visitor to the first page of products for the main page of the catalog:

http://localhost/BalloonShop/Catalog.aspx?DepartmentID=1
http://localhost/BalloonShop/Catalog.aspx?DepartmentID=1&Page=1

Darie-Watson_4681C04.fm Page 164 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 165

The Previous and Next links have the simple role of incrementing or decrementing the value of the Page query
string parameter. Note that the paging controls only appear if there’s more than one subpage of products. You find
out this detail from the business tier GetProducts... functions, which return the total number of subpages
through the howManyPages out parameter:

 // If browsing a category...
 if (categoryId != null)
 {
 // Retrieve list of products in a category
 list.DataSource =
CatalogAccess.GetProductsInCategory(categoryId, page, out howManyPages);
 list.DataBind();

 }

You make the paging controls visible only if the number of subpages is greater than 1:

 // display paging controls
 if (howManyPages > 1)

When making the paging controls visible, the main challenge is to build the links for Previous and Next. For
example, the Next link should be the same as the currently loaded page, except the Page value in the query string
should incremented by one, but it shouldn’t be enabled if the visitor is on the last page. You do this by browsing
through the collection of query string parameters and reconstructing the complete query string:

 // create the Next link
 if (currentPage == howManyPages)
 nextLink.Enabled = false;
 else
 {
 NameValueCollection query = Request.QueryString;
 string paramName, newQueryString = "?";
 for (int i = 0; i < query.Count; i++)
 if (query.AllKeys[i] != null)
 if ((paramName = query.AllKeys[i].ToString()).ToUpper() != "PAGE")
 newQueryString += paramName + "=" + query[i] + "&";
 nextLink.NavigateUrl = Request.Url.AbsolutePath +
newQueryString + "Page=" + (currentPage + 1).ToString();

 }

The logic that builds the Previous link is similar to the code for the Next link.

Displaying Product Details
This is the last bit of the UI for this chapter. Product lists contain links to the product details
pages, which is dealt with by a Web Form named Product.aspx that you’ll write in the following
exercise.

Darie-Watson_4681C04.fm Page 165 Monday, September 19, 2005 9:51 AM

166 C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A LO G : P A R T I I

Exercise: Displaying Product Details

1. Add a new Web Form named Product.aspx to your project, based on the BalloonShop.master
Master Page.

2. The Web Form opens by default in Source View. The product details page needs to display the
product’s name in a Label control named titleLabel, the product’s description in a Label named
descriptionLabel, the price in a Label named priceLabel, and the image in an Image control
named productImage. Feel free to arrange these items in any way you like. Here’s how we placed
them in Product.aspx (note their CssLabel property as well):

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Product.aspx.cs" Inherits="Product"
Title="BalloonShop – Product Details Page" %>
<asp:Content ID="content" ContentPlaceHolderID="contentPlaceHolder"
Runat="Server">

<asp:Label CssClass="ProductTitle" ID="titleLabel"
Runat="server" Text="Label"></asp:Label>

<asp:Image ID="productImage" Runat="server" />

<asp:Label CssClass="ProductDescription" ID="descriptionLabel"
Runat="server" Text="Label"></asp:Label>

Price:
<asp:Label CssClass="ProductPrice" ID="priceLabel"
Runat="server" Text="Label"></asp:Label>

</asp:Content>

3. Add the following style to BalloonShop.css:

.ProductTitle
{
 color: Blue;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 24px;
 font-weight: bold;
 line-height: 15px;
}

4. Let’s now read the necessary data from the database to set up the labels and the image. Add the following
code to the page’s Page_Load event handler method in Product.aspx.cs:

Darie-Watson_4681C04.fm Page 166 Monday, September 19, 2005 9:51 AM

C H A P T E R 4 ■ C R E A T I N G T H E P R O D U C T C A T A L O G : P A R T I I 167

public partial class Product : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 PopulateControls();
 }

 // Fill the control with data
 private void PopulateControls()
 {
 // Retrieve ProductID from the query string
 string productId = Request.QueryString["ProductID"];
 // stores product details
 ProductDetails pd;
 // Retrieve product details
 pd = CatalogAccess.GetProductDetails(productId);
 // Display product details
 titleLabel.Text = pd.Name;
 descriptionLabel.Text = pd.Description;
 priceLabel.Text = String.Format("{0:c}", pd.Price);
 productImage.ImageUrl = "ProductImages/" + pd.Image2FileName;
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Product : " + pd.Name;
 }
}

5. Congratulations, you’ve finished! Execute the project to ensure everything works as expected.

Summary
You’ve done a lot of work in this chapter. You finished building the product catalog by imple-
menting the necessary logic in the data, business, and presentation tiers. On the way, you
learned about many new theory issues, including

• Relational data and the types of relationships that can occur between tables

• How to obtain data from multiple tables in a single result set using JOIN and how to
implement paging at the data tier level

• How to work with stored procedure input and output parameters

Chapter 5 will be at least as exciting as this one, because you’ll learn how to add a dynamic
site map to your web site!

Darie-Watson_4681C04.fm Page 167 Monday, September 19, 2005 9:51 AM

8213592a117456a340854d18cee57603

Darie-Watson_4681C04.fm Page 168 Monday, September 19, 2005 9:51 AM

169

■ ■ ■

C H A P T E R 5

Searching the Catalog

“ What are you looking for?” There is no place where you’ll hear this question more frequently
than in both brick-and-mortar and e-commerce stores. Like any other quality web store around,
your BalloonShop will allow visitors to search through the product catalog. You’ll see how easy
it is to add new functionality to a working site by integrating the new components into the
existing architecture.

In this chapter, you will

• Analyze the various ways in which the product catalog can be searched

• Implement a custom search engine that works with SQL Server Express

• Write the data tier and business tier code that interacts with the search stored procedure

• Create the user interface of the catalog search feature

Choosing How to Search the Catalog
As always, you need to think about a few things before starting to code. Always keep in mind
that when designing a new feature, you must analyze that feature from the final user’s perspective.

For the visual part, you’ll use a text box in which the visitor can enter one or more words to
search for. In BalloonShop, the words entered by the visitor will be searched for in the products’
names and descriptions. The text entered by the visitor can be searched for in several ways:

• Exact-match search: If the visitor enters an entire phrase, this phrase is searched in the
database as it is, without splitting the words and searching for them separately.

• All-words search: The phrase entered by the visitor is split into words, causing a search
for products that contain every word entered by the visitor. This is like the exact-match
search in that it still searches for all the entered words, but this time the order of the
words is no longer important.

• Any-words search: Products must contain at least one of the entered words.

This simple classification isn’t by any means complete. The search engine can be as complex
as the one offered by modern search engines, which provides many options and features and
shows a ranked list of results, or as simple as searching the database for the exact string provided
by the visitor.

Darie-Watson_4681C05.fm Page 169 Monday, September 19, 2005 9:53 AM

170 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

BalloonShop will support the any-words and all-words search modes. This decision leads
to the visual design of the search feature (see Figure 5-1).

Figure 5-1. The search box

The text box is there, as expected, along with a check box that allows the visitor to choose
between an all-words search and an any-words search.

Another decision you need to make here concerns how the matching products are displayed.
The simplest solution to display the search results is to reuse the ProductsList.ascx web control
you built in the previous chapter. A sample search page will look like Figure 5-2.

Figure 5-2. A sample search results page

The search results page employs paging, just as the other pages that contain product lists.
If there are a lot of search results, you’ll only present a fixed (but configurable) number of products
per page and allow the visitor to browse through the pages using Previous and Next links.

Let’s begin implementing the functionality by starting, as usual, with the data tier.

Darie-Watson_4681C05.fm Page 170 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 171

Teaching the Database to Search Itself
Within the database, there are two main ways to implement searching. You can implement
database searching by using

• SQL Server’s Full-Text Search feature: This feature—available with SQL Server Workgroup,
Standard, and Enterprise editions—allows for advanced keyword searches (see http://
www.microsoft.com/sql/2005/productinfo/sql2005features.asp for a comparison of
the features in these SQL Server editions). These include searching using the Boolean
operators (AND, AND NOT, OR) and searching for inflected forms of words, such as
plurals and various verb tenses, or words located in close proximity. Additionally, the
Full-Text Search feature can also sort the results based on rank, placing the most likely
matches at the top.

• A custom search solution for which you need stored procedures, user-defined functions,
and courage: This solution is very useful for your clients that are not ready to purchase
an expensive version of SQL Server that contains the Full-Text Search engine.

The technical difference between the two approaches affects only the data tier, so if your
customer starts with the custom solution, it will be easy to upgrade the web site to use Full-Text
Search.

In this chapter, we’ll analyze the custom search engine because it works with all editions
of SQL Server 2005 (including the Express Edition), whereas you need a commercial version of
SQL Server to use the Full-Text Search feature.

■Note You can visit http://www.cristiandarie.ro for updated information on how to integrate the
Full-Text Search instead of the custom search engine into BalloonShop.

Implementing a Custom Search Engine
We’ll start by presenting the custom search feature. Before moving on, it’s good to know the
disadvantages of this method as compared with using Full-Text Search:

• Manual searches of the catalog are much slower than SQL Server’s Full-Text Search
feature, which uses internal search indexes and features advanced search algorithms.
However, this won’t be a problem for your site until you have a large number of visitors
and a large products database.

• You can’t easily implement all the features that you could use with SQL Server’s Full-Text
Search, such as allowing the visitor to search using Boolean operators (AND, OR). Also,
manually implementing advanced features such as searching for similar words adds
even more performance penalties.

The good part about implementing the custom search engine is that you get to play a little
more with some lesser-known features of SQL Server, so get ready. When it comes to manually
searching the catalog, you have some options to choose from, as detailed in the following
sections.

Darie-Watson_4681C05.fm Page 171 Monday, September 19, 2005 9:53 AM

172 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

Searching Using WHERE and LIKE

The straightforward solution, most widely used in such situations, consists of using LIKE in the
WHERE clause of the SELECT statement. The following query returns all the products that have the
word “mask” somewhere in their description:

SELECT Name FROM Product WHERE Description LIKE '%mask%'

The percent (%) wildcard is used to specify any string of zero or more characters. Placing it
before and after the word to be searched for guarantees that you’ll get all the products whose
description contains the word “mask.”

This technique—using WHERE and LIKE—was used when building the SearchCatalog stored
procedure for the ASP.NET 1.0 (but not in the ASP.NET 1.1) edition of this book, and is also
presented in the Product Catalog case study in The Programmer’s Guide to SQL (Apress, 2003).
This is the fastest method for manually searching the catalog. In this edition of the book, we chose
to present two other methods, which are not as fast as this one, but provide better search results.

Searching for Product Data in the Search String

This is yet another search strategy that doesn’t provide the best search results, but it’s worth
taking a look at. This is the search method used in the Community Starter Kit (CSK).

■Note The CSK is a complex, free, and customizable application (provided with full source code) from
Microsoft that allows you to build powerful community web sites quickly and easily. By default, the CSK
comes with out-of-the box functionality that supports nine types of content, including articles, books, events,
photo galleries, downloads, user polls, and more. It also supports features such as moderation, upload quotas,
comments, ratings, newsletters, advertisements, web services, and security. However, by the time of this
writing, the CSK hasn’t been updated for ASP.NET 2.0. (You can download the CSK at http://www.asp.net.)

Like with BalloonShop, the CSK also implements a custom search feature instead of relying on
SQL Server’s Full-Text Search, making it possible to use MSDE as the database server.

The typical search method when Full-Text Search is not available is to split the search string
into words and then look into the database for these words. However, the search algorithm in
the CSK goes the other way round: It takes every word from the searchable database content
and verifies whether it exists in the search string. The method doesn’t offer much search flexibility,
but it works.

In BalloonShop, the searchable content is the products’ names and descriptions. These
are split into separate words called search keys. The search keys are saved into a special data
table in the database whenever new content is added or updated in the database.

■Tip To learn more about the CSK, check out another book I co-authored, Building Websites with
the ASP.NET Community Starter Kit (Packt Publishing, 2004). Find more details about it at http://
www.CristianDarie.ro/books.html.

Darie-Watson_4681C05.fm Page 172 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 173

These two methods are okay, but in BalloonShop, you’ll implement something even better.

Searching by Counting the Number of Appearances

The disadvantage when searching with LIKE is that the search results are returned in random
order. Today’s smart search engines provide a ranking system that places the results with higher
rankings at the top of the search results page.

An intuitive solution for implementing a simple ranking system is to count how many
times the words you’re searching for appear in the product’s name or description. Moreover,
you can give higher ranking to products that have matching words in their names, rather than
in their descriptions.

This solution can’t be implemented with LIKE and WHERE. LIKE returns True or False, spec-
ifying whether you have a match or not, but can’t tell you how many times a word appears in a
phrase.

Because SQL Server doesn’t provide an easy way to count how many times a substring
appears in a string, you’ll manually implement this functionality as an SQL Server User-Defined
Function.

■Note SQL Server User-Defined Functions (UDFs) implement common functionality that can be called from
stored procedures. Unlike stored procedures, which can be accessed from client applications, UDFs are
created for database internal usage and can be called from stored procedures or from other UDFs. UDFs must
return data to the caller function or stored procedure before exiting (their last command must be RETURN) and
are not allowed to modify data—their role is to return information.

For the catalog, you’ll create a UDF named WordCount. It will take as parameters two strings
and will return a SMALLINT value specifying how many times the first string appears in the second.
The definition of WordCount is

CREATE FUNCTION dbo.WordCount
(@Word VARCHAR(20),
@Phrase VARCHAR(1000))
RETURNS SMALLINT

This looks similar to how you create stored procedures, except that you use FUNCTION
instead of PROCEDURE, you need to explicitly specify the user who owns the function (which, in
the example, is dbo), and you need to specify the return data type.

■Note dbo is a special database user who has full privileges on the database. If you’re not permitted to use
dbo, use the username under which you have privileges on the database.

Darie-Watson_4681C05.fm Page 173 Monday, September 19, 2005 9:53 AM

174 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

Inside WordCount, the challenge is to find an effective way to count how many times @Word
appears in @Phrase, because SQL Server doesn’t provide a function for this (otherwise, you
would have used that function instead of creating your own, right?).

The straightforward solution, which implies splitting the phrase where it has spaces (or
other delimiter characters) and comparing word by word, is very slow. We’ve found a trick that
performs the same functionality about five times faster.

SQL Server provides the REPLACE function, which replaces all occurrences of a substring in
a string with another substring. REPLACE doesn’t tell you how many replacements it did, but it
returns the modified initial string. REPLACE works much faster than a custom created UDF or
stored procedure because it’s an internal SQL Server function.

You’ll use REPLACE to replace the word to search for with a word that is one character longer.
Say you want to count how many times the word “red” appears in “This is a red, red mask.”
Replacing “red” with “redx” generates “This is a redx, redx mask.” The length difference between
the initial phrase and the modified phrase tells you how many times the word “red” appears in
the initial phrase (nice trick, eh?).

The code that does this appears as follows:

/* @BiggerWord is a string one character longer than @Word */
DECLARE @BiggerWord VARCHAR(21)
SELECT @BiggerWord = @Word + 'x'

/* Replace @Word with @BiggerWord in @Phrase */
DECLARE @BiggerPhrase VARCHAR(2000)
SELECT @BiggerPhrase = REPLACE (@Phrase, @Word, @BiggerWord)

/* The length difference between @BiggerPhrase and @phrase
 is the number we're looking for */
RETURN LEN(@BiggerPhrase) - LEN(@Phrase)

Searching for Similar Words

The implementation shown earlier is fast, but has one drawback: It can’t be used to search for
words that are similar to (sound like) the words entered by the visitor. For example, in the
current database, searching for “balloon” generates many results, whereas searching for
“balloons” generates a single result. This may or may not be what you want—you must decide
what works best for your site.

You can change this behavior by changing the WordCount function. However, the version
that recognizes similar versions of words is very slow because you can’t use the REPLACE func-
tion anymore—you need to manually split the phrase word-by-word in SQL code, which is a
time-consuming process. We’ll present this modified version of WordCount at the end of the
chapter for your reference.

■Tip You can implement the WordCount stored procedure in many ways, so we encourage you to play with
it until you get the best results for your solution.

Darie-Watson_4681C05.fm Page 174 Monday, September 19, 2005 9:53 AM

8213592a117456a340854d18cee57603

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 175

Introducing the SearchCatalog Stored Procedure
SearchCatalog is the stored procedure that will perform the actual database search. When
building it, you need to address three main issues:

• The form in which you’ll pass the search string to the stored procedure

• The way to use the WordCount UDF to calculate ranking within search results

• The need to support the paging functionality for the presentation tier

Let’s analyze these requirements one at a time.

Passing the Search String to the Stored Procedure

The SearchCatalog stored procedure will receive the words to search for as separate INPUT
parameters. But wait, how do you know how many keywords the search string will contain?
Well, you don’t, and the workaround is to assume a maximum number of keywords.

In this case, you’ll have five input parameters named @Word1 through @Word5. These
parameters will have a default value of NULL, so the business tier won’t have to supply values
for all of them if the visitor is searching for fewer than five words.

The obvious disadvantage is that you’ll always have a maximum number of keywords that
can be accepted (five words, in this example). If a visitor ever introduces more than the maximum
number of words, the additional words are simply ignored—the business tier doesn’t send them to
the stored procedure at all. This suggests the second drawback: The business tier needs to
know about the data-tier logic (regarding the maximum number of allowed words); this is a
data-tier limitation that has to be handled by the business tier.

■Note You might not like the limitation about the number of words you can search for in the database.
However, if you set the limit high enough, the visitors are not likely to feel this limitation. Even Google has
(at the moment of writing) a maximum number of allowed search words (ten), and we haven’t heard anyone
complaining about this, so far.

The alternative to sending separate words to SearchCatalog is to send the entire search
string from the business tier and then split it into separate words in the stored procedure. Then,
after extracting the words, you have to build the SQL query that does the search by joining strings,
and save it in a VarChar variable. When you have a query saved in a VarChar variable, named
@SearchQuery for instance, you can execute it using sp_executesql as follows:

/* Execute the query using the SQL Server's sp_executesql stored procedure*/
EXEC sp_executesql @SearchQuery

This solution isn’t preferred because it results in messy SQL code (don’t we all like simple
and clear solutions?), and dynamically creating SQL queries isn’t a very elegant solution (it’s
almost like building the query in the business tier by joining strings). Also, the query will probably
perform more slowly because SQL Server can’t precompile and save the execution plan of a
dynamically created query, as it does with stored procedures.

Darie-Watson_4681C05.fm Page 175 Monday, September 19, 2005 9:53 AM

176 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

Calculating Product Ranking Using WordCount

You’ve decided SearchCatalog will receive the search string as separate words, named @Word1
to @Word5. The second challenge with this stored procedure is how to calculate a ranking for
each matching product, so you can place the higher-ranking records first.

To assign a rank to each product in the database when doing an any-words search, you
need a query like this one:

SELECT Product.Name,
 3 * WordCount(@Word1, Name) + WordCount(@Word1, Description) +
 3 * WordCount(@Word2, Name) + WordCount(@Word2, Description) +
 ...
 AS TotalRank
FROM Product

■Tip TotalRank, in this example, is a calculated column. It doesn’t exist in the database, but it’s generated
using a formula you define.

This query gives three ranking points for each time one of the search string words is found
in the product’s name, and one ranking point for each time the words are found in the descrip-
tion. The query uses the WordCount function, which returns a number specifying how many
times a word appears in a phrase.

If none of the search words is found in a product’s name or description, its ranking is 0. If
any of the words are found, the ranking is a positive number. The search results will consist of
the products that have a positive ranking number.

In case the business tier sends fewer than five words to the procedure, the remaining @Word
parameters are NULL, for which WordCount returns 0. This is okay for any-words searches, because
you don’t want any ranking points added for nonmatching words, and you also don’t want a
product eliminated because of a nonmatching word.

Things are a bit more complicated for all-words searches. With all-words searches, when a
single word isn’t found in the product’s name or description, the product must not be included
in the search results.

One solution to implement the all-words search is to multiply the individual rankings of
each word (using 1 for NULL @Word parameters), instead of adding them; this way, if a word has
a ranking of 0, the total rank will be 0, and the product is excluded from the list. The query that
returns the names and rankings for each product in the Product table for an all-words search
looks like the following:

SELECT Product.Name,
 (3 * WordCount(@Word1, Name) + WordCount(@Word1, Description)) *
 CASE
 WHEN @Word2 IS NULL THEN 1
 ELSE 3 * WordCount(@Word2, Name) + WordCount(@Word2, Description)
 END *
 ...

Darie-Watson_4681C05.fm Page 176 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 177

 AS TotalRank
FROM Product

If for any reason you want to avoid multiplying the partial rank numbers, the workaround
is to continue adding the partial ranks, while granting negative ranks for the words that don’t
match. So, if the WordCount function returns a positive number, that number is used as the
word’s partial rank; if WordCount returns 0, that number is substituted with a negative number
(-1000 in the following code) that ensures the total sum is negative. Here’s how to do that:

SELECT Product.Name,
 CASE
 WHEN @Word1 IS NULL THEN 0
 ELSE ISNULL(NULLIF(dbo.WordCount(@Word1, Name + ' ' + Description),
0), -1000)
 END +
 CASE
 WHEN @Word2 IS NULL THEN 0
 ELSE ISNULL(NULLIF(dbo.WordCount(@Word2, Name + ' ' + Description), 0),
 -1000)
 END +
 ...
 AS TotalRank
FROM Product

■Note Using the ISNULL and NULLIF functions avoids calling WordCount twice for each word (this trick
significantly improves performance). Visit SQL Server 2005 Books Online for more information about how
these functions work.

Implementing Paging
You’ll implement paging in a bit different way than you did in Chapter 4. Back then, you populated
the @Products table variable while assigning a row number to each row using the ROW_NUMBER()
function, like this:

INSERT INTO @Products
SELECT ROW_NUMBER() OVER (ORDER BY Product.ProductID) AS Row,
...

As you can see, the list of products is sorted on their product IDs before being numbered.
This criterion doesn’t apply to the list of search results, which need to be sorted in descending
order on their search ranking (so more relevant search results are always listed first). We can
solve this problem by performing the search in a subquery and then applying the ROW_NUMBER()
function on the results (so, using the same technique as in Chapter 4) or by using a new trick.
We chose the latter method, of course, to play with yet a new T-SQL thing.

This time, when creating the @Products table variable (see the following code snippet),
you’ll make RowNumber an IDENTITY column. This means that it will be automatically assigned

Darie-Watson_4681C05.fm Page 177 Monday, September 19, 2005 9:53 AM

178 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

incrementing numbers, without you needing to explicitly calculate them using a function such
as ROW_NUMBER().

/* Create the table variable that will contain the search results */
DECLARE @Products TABLE
(RowNumber SMALLINT IDENTITY (1,1) NOT NULL,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(1000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 Rank INT)

Okay, enough with the theory. Let’s go back to the keyboard.

Writing the Code
You’re probably eager to write some code! Let’s implement the WordCount function and the
SearchCatalog stored procedure in the following exercise.

Exercise: Adding Search Functionality to the Data Tier

1. Let’s first add the WordCount function. Navigate to the BalloonShop connection in Database Explorer,
right-click Functions, and choose Add New ➤ Scalar-valued Function. Change the function skeleton
Visual Web Developer created for you with the following code:

CREATE FUNCTION dbo.WordCount
(@Word VARCHAR(15),
@Phrase VARCHAR(1000))
RETURNS SMALLINT
AS
BEGIN

/* If @Word or @Phrase is NULL the function returns 0 */
IF @Word IS NULL OR @Phrase IS NULL RETURN 0

/* @BiggerWord is a string one character longer than @Word */
DECLARE @BiggerWord VARCHAR(21)
SELECT @BiggerWord = @Word + 'x'

/* Replace @Word with @BiggerWord in @Phrase */
DECLARE @BiggerPhrase VARCHAR(2000)
SELECT @BiggerPhrase = REPLACE (@Phrase, @Word, @BiggerWord)

/* The length difference between @BiggerPhrase and @phrase
 is the number we're looking for */

Darie-Watson_4681C05.fm Page 178 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 179

RETURN LEN(@BiggerPhrase) - LEN(@Phrase)
END

2. Now add the SearchCatalog stored procedure. This stored procedure uses WordCount to calculate
the search results. Using the steps you already know, add this stored procedure to your BalloonShop
database:

CREATE PROCEDURE SearchCatalog
(@DescriptionLength INT,
 @PageNumber TINYINT,
 @ProductsPerPage TINYINT,
 @HowManyResults SMALLINT OUTPUT,
 @AllWords BIT,
 @Word1 VARCHAR(15) = NULL,
 @Word2 VARCHAR(15) = NULL,
 @Word3 VARCHAR(15) = NULL,
 @Word4 VARCHAR(15) = NULL,
 @Word5 VARCHAR(15) = NULL)
AS

/* Create the table variable that will contain the search results */
DECLARE @Products TABLE
(RowNumber SMALLINT IDENTITY (1,1) NOT NULL,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(1000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 Rank INT)

/* Populate @Products for an any-words search */
IF @AllWords = 0
 INSERT INTO @Products
 SELECT ProductID, Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description,
 Price, Image1FileName, Image2FileName,
 3 * dbo.WordCount(@Word1, Name) + dbo.WordCount(@Word1, Description) +
 3 * dbo.WordCount(@Word2, Name) + dbo.WordCount(@Word2, Description) +
 3 * dbo.WordCount(@Word3, Name) + dbo.WordCount(@Word3, Description) +
 3 * dbo.WordCount(@Word4, Name) + dbo.WordCount(@Word4, Description) +
 3 * dbo.WordCount(@Word5, Name) + dbo.WordCount(@Word5, Description)
 AS Rank
 FROM Product
 ORDER BY Rank DESC

/* Populate @Products for an all-words search */
IF @AllWords = 1

Darie-Watson_4681C05.fm Page 179 Monday, September 19, 2005 9:53 AM

180 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

 INSERT INTO @Products
 SELECT ProductID, Name,
 SUBSTRING(Description, 1, @DescriptionLength) +
'...' AS Description,
 Price, Image1FileName, Image2FileName,
 (3 * dbo.WordCount(@Word1, Name) + dbo.WordCount
(@Word1, Description)) *
 CASE
 WHEN @Word2 IS NULL THEN 1
 ELSE 3 * dbo.WordCount(@Word2, Name) + dbo.WordCount(@Word2,
Description)
 END *
 CASE
 WHEN @Word3 IS NULL THEN 1
 ELSE 3 * dbo.WordCount(@Word3, Name) + dbo.WordCount(@Word3,
Description)
 END *
 CASE
 WHEN @Word4 IS NULL THEN 1
 ELSE 3 * dbo.WordCount(@Word4, Name) + dbo.WordCount(@Word4,
Description)
 END *
 CASE
 WHEN @Word5 IS NULL THEN 1
 ELSE 3 * dbo.WordCount(@Word5, Name) + dbo.WordCount(@Word5,
Description)
 END
 AS Rank
 FROM Product
 ORDER BY Rank DESC

/* Save the number of searched products in an output variable */
SELECT @HowManyResults = COUNT(*)
FROM @Products
WHERE Rank > 0

/* Send back the requested products */
SELECT ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, Rank
FROM @Products
WHERE Rank > 0
 AND RowNumber BETWEEN (@PageNumber-1) * @ProductsPerPage + 1
 AND @PageNumber * @ProductsPerPage
ORDER BY Rank DESC

Darie-Watson_4681C05.fm Page 180 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 181

How It Works: WordCount and SearchCatalog

In the first step of the exercises, you wrote the WordCount function. This function returns the number of times the
@Word string appears in @Phrase (@Word and @Phrase are its input parameters). We discussed how this function
works earlier in this chapter.

■Note The function is completely unaware of the fact that you’re searching for words; it simply searches
for substrings. The effect is that if you search for “love,” it finds a match on “lovely,” for example. If you don’t
like this behavior, there are a number of ways to change it. One of them is to append a space before and after
the word to search for, do some preparation on the phrase (such as add leading and trailing spaces), and then
perform the search with these.

SearchCatalog is a bit more complex. First of all, let’s analyze its parameters:

• @DescriptionLength is the maximum length of the product description.

• @PageNumber specifies the page of results the visitor has requested.

• @ProductsPerPage specifies how many records to return. If @PageNumber is 3 and
@ProductPerPage is 5, the procedure will return the 11th to 15th records from the search results.

• @HowManyResults is an output parameter, which you’ll set to the total number of search results. This
will be read from the C# code to calculate the number of search results pages.

• @AllWords is a bit input parameter that specifies whether you should do an all-words or any-words search.

• @Word1 to @Word5 are the words to be searched for. They all have a default value of NULL.

The stored procedure starts by creating the @Products table variable:

/* Create the table variable that will contain the search results */
DECLARE @Products TABLE
(RowNumber SMALLINT IDENTITY (1,1) NOT NULL,
 ProductID INT,
 Name VARCHAR(50),
 Description VARCHAR(1000),
 Price MONEY,
 Image1FileName VARCHAR(50),
 Image2FileName VARCHAR(50),
 Rank INT)

The RowNumber field is used for paging, as you learned in Chapter 4. This time it’s also an IDENTITY column, to
make its calculation a bit easier later on.

We also have a field called Rank that contains the search result ranking (products with higher values are listed first).

After creating the table variable, you populate it by searching the product catalog. For this, the stored procedure
reads the @AllWords bit parameter and decides what kind of search to do depending on its value (an all-words
search versus an any-words search). The logic of searching the catalog was explained earlier in this chapter.

Darie-Watson_4681C05.fm Page 181 Monday, September 19, 2005 9:53 AM

8213592a117456a340854d18cee57603

182 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

After searching the catalog and populating @Products, you set the value of the @HowManyResults output
parameter (which will be read from the business tier), by counting the number of rows in @Products:

/* Save the number of searched products in an output variable */
SELECT @HowManyResults = COUNT(*)
FROM @Products
WHERE Rank > 0

Finally, you get back the portion of records from @Products based on the @PageNumber and @ProductsPerPage input
parameters:

/* Send back the requested products */
SELECT ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, Rank
FROM @Products
WHERE Rank > 0
 AND RowNumber BETWEEN (@PageNumber-1) * @ProductsPerPage + 1
 AND @PageNumber * @ProductsPerPage
ORDER BY Rank DESC

Implementing the Business Tier
The business tier consists of the SearchCatalog method, which calls the SearchCatalog stored
procedure. This data feeds our older friend, the ProductsList.ascx Web User Control, which
displays the search results.

Apart from a little bit of logic to handle splitting the search phrase into separate words (the
presentation tier sends the whole phrase, but the data tier needs individual words) and to
ensure we send a valid True/False value for the @AllWords parameter to the SearchCatalog stored
procedure, there’s nothing fantastic about this new method.

Like always, you set up the stored procedure parameters, execute the command, and
return the results. Add the Search method to your CatalogAccess class:

// Search the product catalog
public static DataTable Search(string searchString, string allWords,
string pageNumber, out int howManyPages)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "SearchCatalog";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

Darie-Watson_4681C05.fm Page 182 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 183

 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@AllWords";
 param.Value = allWords.ToUpper() == "TRUE" ? "True" : "False";
 param.DbType = DbType.Boolean;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@PageNumber";
 param.Value = pageNumber;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductsPerPage";
 param.Value = BalloonShopConfiguration.ProductsPerPage;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@HowManyResults";
 param.Direction = ParameterDirection.Output;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

 // define the maximum number of words
 int howManyWords = 5;
 // transform search string into array of words
 char[] wordSeparators = new char[] { ',', ';', '.', '!', '?', '-', ' ' };
 string[] words = searchString.Split(wordSeparators,
 StringSplitOptions.RemoveEmptyEntries);
 int index = 1;

 // add the words as stored procedure parameters
 for (int i = 0; i <= words.GetUpperBound(0) && index <= howManyWords; i++)
 // ignore short words
 if (words[i].Length > 2)
 {
 // create the @Word parameters
 param = comm.CreateParameter();
 param.ParameterName = "@Word" + index.ToString();
 param.Value = words[i];
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 index++;
 }

Darie-Watson_4681C05.fm Page 183 Monday, September 19, 2005 9:53 AM

184 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

 // execute the stored procedure and save the results in a DataTable
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 // calculate how many pages of products and set the out parameter
 int howManyProducts =
Int32.Parse(comm.Parameters["@HowManyResults"].Value.ToString());
 howManyPages = (int)Math.Ceiling((double)howManyProducts /
 (double)BalloonShopConfiguration.ProductsPerPage);
 // return the page of products
 return table;
}

Because the code is pretty clear, it’s not worth analyzing it again in detail. However, note
the following aspects:

• To guard against bogus values, we make sure to set the @AllWords parameter strictly to
True or False, using the allWords.ToUpper() == "TRUE" ? "True" : "False" construct.

• The words in the search phrase are split on the list of characters contained in the
wordSeparators array.

• There’s a for loop to add the @Word parameters. Short words (fewer than three letters
long) are considered noise words and are not used for the search. Feel free to change this
rule to suit your particular solution.

• The words searched for are returned though an out parameter, so the presentation tier is
able to tell the visitor which words were actually used for searching.

• The number of pages is given by dividing the number of products by the number of
products per page.

■Note The maximum number of allowed words and the list of characters used to split the search string are
hard-coded. In case you think any of these could ever change, it’s strongly recommended to save their values
in web.config. Also note that increasing the maximum number of allowed words implies updating the
SearchCatalog stored procedure as well.

Let’s now create the presentation tier, where you’ll use all the logic implemented so far.

Implementing the Presentation Tier
Let’s see some colors now! The Search Catalog feature has two separate interface elements that
you need to implement. The first one is the place where the visitor enters the search string,
shown earlier in Figure 5-1.

This part of the UI will be implemented as a separate user control named SearchBox.ascx,
which provides a text box and a check box for the visitor. The other part of the UI consists of the
search results page (Search.aspx), which displays the products matching the search criteria
(refer to Figure 5-2).

Darie-Watson_4681C05.fm Page 184 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 185

The Search Box consists of a text box, a button, and a check box. Many times, ASP.NET
programmers have complained about TextBox and Button controls working well together,
especially when you want the same functionality to happen both when the Enter key is pressed
while editing the TextBox and when the Button is clicked. For example, the standard way to
respond to the Enter key in the text box is handling its TextChanged event, but this event is also
raised when the button is clicked (in which case, it’s called twice). Other problems involve
circumstances when you have more buttons on the form, and you need to associate their
actions with the visitor hitting Enter in different text boxes.

The solution presented in this book is a bit more involved than other possible solutions,
but it’s very powerful because after it’s in place, you can easily reuse it in other parts of the site,
as you’ll see when adding new functionality in later chapters. You’ll add a method called
TieButton to the Utilities class that can be called from any presentation tier component (Web
User Controls, Web Forms, and so on) and that associates a TextBox control with an existing
Button control. TieButton ensures than when the visitor presses Enter while editing the text
box, the Click event of the Button is raised. This way you won’t need to deal with the TextChanged
event of the TextBox any more.

This way of doing things is not exactly the “ASP.NET way,” which by design encourages
you to handle everything with server-side code, but in this case breaking the rules a little bit
brings some long-term benefits, and you’ll probably come to use the TieButton method in your
other web projects as well. However, because the code is beyond the scope of this book, we
won’t analyze the inner workings of TieButton here.

Creating the Search Box
Because there are more steps to follow to create the SearchBox.ascx control, let’s do them in
the following exercise.

Exercise: Creating the SearchBox Web User Control

1. First let’s handle adding the required new functionality to Utilities.cs. Open Utilities.cs and
add the following references at the beginning of the file:

using System;
using System.Net.Mail;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

2. Add the following method to your Utilities class:

// Configures what button to be clicked when the uses presses Enter in a
// text box. The text box doesn't have to be a TextBox control, but it must
// be derived from either HtmlControl or WebControl, and the HTML control it
// generates should accept an 'onkeydown' attribute. The HTML generated by
// the button must support the 'Click' event
public static void TieButton(Page page, Control TextBoxToTie,
Control ButtonToTie)

Darie-Watson_4681C05.fm Page 185 Monday, September 19, 2005 9:53 AM

186 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

{
 // Init jscript
 string jsString = "";

 // Check button type and get required jscript
 if (ButtonToTie is LinkButton)
 {
 jsString = "if ((event.which && event.which == 13) ||
(event.keyCode && event.keyCode == 13)) {"
 + page.ClientScript.GetPostBackEventReference
(ButtonToTie, "").Replace(":", "$") + ";return false;} else return true;";
 }
 else if (ButtonToTie is ImageButton)
 {
 jsString = "if ((event.which && event.which == 13) ||
(event.keyCode && event.keyCode == 13)) {"
 + page.ClientScript.GetPostBackEventReference
(ButtonToTie, "").Replace(":", "$") + ";return false;} else return true;";
 }
 else
 {
 jsString = "if ((event.which && event.which == 13) ||
(event.keyCode && event.keyCode == 13)) {document."
 + "forms[0].elements['" + ButtonToTie.UniqueID.Replace
(":", "_") + "'].click();return false;} else return true; ";
 }

 // Attach jscript to the onkeydown attribute—we have to
cater for HtmlControl or WebControl
 if (TextBoxToTie is HtmlControl)
 {
 ((HtmlControl)TextBoxToTie).Attributes.Add("onkeydown", jsString);
 }
 else if (TextBoxToTie is WebControl)
 {
 ((WebControl)TextBoxToTie).Attributes.Add("onkeydown", jsString);
 }
}

3. First, create a Web User Control named SearchBox.ascx in the UserControls folder.

4. You can create the control either by using the Design View window or by directly modifying the HTML.
In this case, add the following HTML code to the file:

<table border="0" cellpadding="0" cellspacing="0" width="200px">
 <tr>
 <td class="SearchBoxHead">
 Search the Catalog

Darie-Watson_4681C05.fm Page 186 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 187

 </td>
 </tr>
 <tr>
 <td class="SearchBoxContent">
 <asp:TextBox ID="searchTextBox" Runat="server" Width="128px"
CssClass="SearchBox" BorderStyle="Dotted" MaxLength="100" Height="16px" />
 <asp:Button ID="goButton" Runat="server" CssClass="SearchBox"
Text="Go!" Width="36px" Height="21px" />

 <asp:CheckBox ID="allWordsCheckBox" CssClass="SearchBox" Runat="server"
Text="Search for all words" />
 </td>
 </tr>
</table>

5. Switch to Design View. The control should look like Figure 5-3.

Figure 5-3. SearchBox.ascx in Design View

Note the CssClass used for both controls will be applied at runtime and also note the maximum size
of 100 characters was set for the text box.

6. Add the following styles to BalloonShop.css:

.SearchBoxHead
{
 border-right: #0468a4 1px solid;
 border-top: #0468a4 1px solid;
 border-bottom: #0468a4 1px solid;
 border-left: #0468a4 1px solid;
 background-color: #0583b5;
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
 color: #f5f5dc;
 text-align: center;
}
.SearchBoxContent
{
 border-right: #0468a4 1px solid;
 border-top: #0468a4 1px solid;
 border-left: #0468a4 1px solid;
 border-bottom: #0468a4 1px solid;
 background-color: #8bc8dd;
 font-family: Arial, Verdana;
 font-size: 9pt;

Darie-Watson_4681C05.fm Page 187 Monday, September 19, 2005 9:53 AM

188 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

 color: darkblue;
 padding-top: 5px;
 padding-left: 12px;
 padding-bottom: 5px;
}
.SearchBox
{
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 9pt;
 margin-bottom: 5px;
}

7. Open the code-behind file, SearchBox.ascx.cs, and complete the Page_Load method like this:

 protected void Page_Load(object sender, EventArgs e)
 {
 // don't repopulate control on postbacks
 if (!IsPostBack)
 {
 // tie the search text box to the Go button
 Utilities.TieButton(this.Page, searchTextBox, goButton);
 // load search box controls' values
 string allWords = Request.QueryString["AllWords"];
 string searchString = Request.QueryString["Search"];
 if (allWords != null)
 allWordsCheckBox.Checked = (allWords.ToUpper() == "TRUE");
 if (searchString != null)
 searchTextBox.Text = searchString;
 }
 }

8. Switch to SearchBox.ascx.cs in Design View, double-click the Go button to generate its Click
event handler, and complete it like this:

 // Perform the product search
 protected void goButton_Click(object sender, EventArgs e)
 {
 ExecuteSearch();
 }

 // Redirect to the search results page
 private void ExecuteSearch()
 {
 if (searchTextBox.Text.Trim() != "")
 Response.Redirect(Request.ApplicationPath +
 "/Search.aspx?Search=" + searchTextBox.Text +
 "&AllWords=" + allWordsCheckBox.Checked.ToString());
 }

Darie-Watson_4681C05.fm Page 188 Monday, September 19, 2005 9:53 AM

8213592a117456a340854d18cee57603

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 189

9. Add the newly created user control to BalloonShop.master by dragging it from the Solution Explorer and
dropping it just below the CategoriesList user control (see Figure 5-4).

Figure 5-4. Adding the search box to BalloonShop.master

10. Press F5 to execute the project. The search box should rest nicely in its place. Trying to search for any-
thing would generate an error, however, because the Search.aspx page doesn’t exist yet.

How It Works: The SearchBox Web User Control

The SearchBox user control isn’t very complicated. When the visitor enters a new search string and presses Enter
or clicks the Go button, the response is redirected to Search.aspx, which handles the search. Search recognizes
the following query string parameters:

• Search specifies the search string entered by the visitor.

• AllWords specifies whether to do an all-words or an any-words search. You find its value by checking
allWordsCheckBox.Checked, which returns True or False. A mighty hacker can, of course, play
with the query string and change the value to something else, but our business tier contains code to
guard against this kind of potential problem.

• PageNumber appears only in case the number of products is larger than the number of products per
page (which you saved in web.config).

The Page_Load method first uses the Utilities.TieButton method, which configures the text box to “click”
the Go! button when the Enter key is pressed. Details about TieButton have been presented prior to this exercise.

Page_Load then checks the query string parameters and fills the search box contents accordingly. When the visitor
performs a search, the page is reloaded (with a Response.Redirect to the Search.aspx page), so implicitly the

Darie-Watson_4681C05.fm Page 189 Monday, September 19, 2005 9:53 AM

190 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

search box contents are cleared. If you want to keep the values there (the string of the text box and the status of the
check box), you must do this manually.

While we’re here, note the check for the IsPostBack property of the page. After the visitor clicks the Go! button to
perform a search, the SearchBox control is loaded (Page_Load executes) and the Click event handler executes,
which causes a page redirect (to Search.aspx). After the redirect happens, SearchBox is loaded once again in
the new page (so Page_Load executes again). This suggests two problems:

• A performance problem because the Page_Load method is called twice.

• Functionality problem because you actually only want to set the check box and text box values when the
control is reloaded in a new page. If their values are rewritten immediately after clicking the Go! button,
the user’s input would be ignored (which is bad, of course).

To avoid these kind of problems, ASP.NET offers the Page.IsPostBack method, which tells you if Page_Load is
executed as a result of a postback, which is true when the method is executed in response to a user clicking the Go!
button or pressing Enter and false when the method is executed when the control is loaded for the first time on a
new page.

The first time Page_Load executes (after the button click), IsPostBack returns true. The second time Page_Load
executes (the control is loaded in a fresh page), IsPostBack returns false. You don’t want to fill the contents of
the search box from the query string when the page is loaded from a postback event, because it will be filled with
data from the previous search. To test this, remove the if statement from Page_Load and try to do some consecutive
different searches.

Because playing with postback is mostly used to improve performance, we’ll cover it more seriously in the next
chapter, where you’ll use this technique in more pages of BalloonShop. However, you needed to use it here to make
the search functionality, well, functional.

With this new theory in mind, the implementation of Page_Load in SearchBox.ascx.cs starts to make sense:

 protected void Page_Load(object sender, EventArgs e)
 {
 // don't repopulate control on postbacks
 if (!IsPostBack)
 {
 // tie the search text box to the Go button
 Utilities.TieButton(this.Page, searchTextBox, goButton);
 // load search box controls' values
 string allWords = Request.QueryString["AllWords"];
 string searchString = Request.QueryString["Search"];
 if (allWords != null)
 allWordsCheckBox.Checked = (allWords.ToUpper() == "TRUE");
 if (searchString != null)
 searchTextBox.Text = searchString;
 }
 }

Darie-Watson_4681C05.fm Page 190 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 191

Displaying the Search Results
Now you’ll create the Web Form that displays the search results. To simplify the work, you’ll
reuse the ProductsList user control to display the actual list of products. This control is currently
listing products for the main page, for departments, and for categories. Of course, if you want
to have the searched products displayed in another format, you need to create another user
control.

In the following exercise, you’ll create the Search.aspx Web Form and update ProductsList.

Exercise: Displaying Search Results

1. Let’s create a new Web Form in the root of the BalloonShop folder. Right-click the BalloonShop root
entry in Solution Explorer and select Add New Item. In the Add New Item dialog box, write Search.aspx
for the name, make sure the two check boxes are selected and that the language is Visual C#, and click Add.

2. In the dialog box that opens, select the BalloonShop.master Master Page and click OK.

3. Switch Search.aspx to Design View, add two Label controls, and then drag ProductsList.ascx
from Solution Explorer to the Content area, as shown in Figure 5-5.

Figure 5-5. Creating Search.aspx in Design View

Darie-Watson_4681C05.fm Page 191 Monday, September 19, 2005 9:53 AM

192 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

4. Clear the Text property of the Label controls. Set the name of the first label to titleLabel. The
second label should be named descriptionLabel.

5. Set the CssClass property of the first Label control to CatalogTitle. Set the CssClass property of
the second label to CatalogDescription.

The HTML code of the control should be like this, at this moment:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="Search.aspx.cs" Inherits="Search"
Title="Untitled Page" %>

<%@ Register Src="UserControls/ProductsList.ascx" TagName=
"ProductsList" TagPrefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID=
"contentPlaceHolder" Runat="Server">
 <asp:Label ID="titleLabel" runat="server" CssClass="CatalogTitle">
 </asp:Label>

 <asp:Label ID="descriptionLabel" runat="server" CssClass=
"CatalogDescription">
 </asp:Label>

 <uc1:productslist id="ProductsList1" runat="server"></uc1:productslist>
</asp:Content>

6. Go to the code file now and edit Page_Load like this:

public partial class Search : System.Web.UI.Page
{
 // Fill the form with data
 protected void Page_Load(object sender, EventArgs e)
 {
 // fill the table contents
 string searchString = Request.QueryString["Search"];
 titleLabel.Text = "Product Search";
 descriptionLabel.Text = "You searched for "
 + searchString + ".";
 // set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Product Search : " + searchString;
 }
}

7. Finally, update the code-behind file of ProductsList.ascx to recognize the Search query string
parameter and perform a product search in case the parameter is found:

private void PopulateControls()
{
 // Retrieve DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Retrieve CategoryID from the query string

Darie-Watson_4681C05.fm Page 192 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 193

 string categoryId = Request.QueryString["CategoryID"];
 // Retrieve Page from the query string
 string page = Request.QueryString["Page"];
 if (page == null) page = "1";
 // Retrieve Search string from query string
 string searchString = Request.QueryString["Search"];
 // How many pages of products?
 int howManyPages = 1;
 // If performing a product search
 if (searchString != null)
 {
 // Retrieve AllWords from query string
 string allWords = Request.QueryString["AllWords"];
 // Perform search
 list.DataSource = CatalogAccess.Search(searchString, allWords,
page, out howManyPages);
 list.DataBind();
 }
 // If browsing a category...
 else if (categoryId != null)
 {
 ...

8. Press F5 to execute the project. Type love in the search text box to get an output similar to Figure 5-6.

Darie-Watson_4681C05.fm Page 193 Monday, September 19, 2005 9:53 AM

194 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

Figure 5-6. Searching for love

How It Works: Displaying Search Results

You’ve now finished implementing the search functionality of the catalog. Although you had quite a bit to write, the
code wasn’t that complicated, was it?

The single important detail of this exercise was calling the business tier CatalogAccess.Search method to get
the search results and display them:

 // If performing a product search
 if (searchString != null)
 {
 // Retrieve AllWords from query string
 string allWords = Request.QueryString["AllWords"];
 // Perform search
 list.DataSource = CatalogAccess.Search(searchString, allWords,
page, out howManyPages);
 list.DataBind();
 }

Darie-Watson_4681C05.fm Page 194 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 195

Make sure to have a closer look at all the code that makes the product searching work. If you understand it correctly,
you can easily update the code to make it work best for your particular solutions.

Searching Smarter
Okay, the search feature is working fine. Do some tests with both all-words and any-words
modes to ensure that the search feature really does work. You’ll notice that it’s fast, too.

The major problem with the search feature is that it doesn’t recognize similar word forms.
If you search for “balloon,” you’ll be shown ten pages of results, but if you search for “balloons,”
you’ll get only one matching product.

Depending on your client’s requests, this might not be acceptable. The two solutions to
this problem are to either search using SOUNDEX or search using SQL Server’s Full Text Search.

SOUNDEX is an SQL Server function that allows you to check if two English words sound the
same (phonetical searching). SOUNDEX was initially created to find similar person names—
SOUNDEX returns the same value for, say, Charlie and Charly. Checking the SOUNDEX results for
two strings reveals whether they sound the same or not. As a quick test, run these queries using
SQL Server Express Manager:

SELECT SOUNDEX('Charly')
SELECT SOUNDEX('Charlie')

In both cases, the result should be C640.

■Note Using SOUNDEX isn’t exactly the ideal search solution (which is still Full Text Search), because it
doesn’t offer features such as matching different verb tenses, plurals, words located in close proximity, and
other advanced options. The SOUNDEX value of a string is calculated based on the first portion of that string,
and the remaining characters are ignored. For more details about how SOUNDEX works, please do a Google
search on “soundex algorithm.”

SQL Server has another related function called DIFFERENCE, which returns the phonetical difference
between two words. The return value ranges from 0 to 4: 0 indicates little or no similarity, and 4 indicates
strong similarity or identical values. See more details about DIFFERENCE and SOUNDEX in SQL Server 2005
Books Online.

However, searching smarter equals searching slower. To improve the search functionality
using SOUNDEX, you’ll need to change the WordCount function. The SearchCatalog stored procedure
doesn’t need to change! (nice one, right?)

Unfortunately, in WordCount, when using SOUNDEX you must manually split the phrase into
separate words and compare their SOUNDEX value to the SOUNDEX value of the word you’re searching
for. This isn’t very fast.

In tests, we discovered that the new version of WordCount is about five times slower than
the previously presented one. However, if the business has grown large enough and the SQL

Darie-Watson_4681C05.fm Page 195 Monday, September 19, 2005 9:53 AM

8213592a117456a340854d18cee57603

196 C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G

Server can’t successfully deal any more with client requests, this is an indication that a commercial
version of SQL Server should probably be purchased (which also comes with the advanced
Full-Text Search functionality).

■Note The main performance penalty in this version of WordCount isn’t because of the SOUNDEX (or
DIFFERENCE) calls, as you might think. Manually splitting the phrase into separate words is what takes a lot
of time. The WordCount algorithm solution you applied earlier using the REPLACE function was cool and fast,
but it can’t be used any more.

After all that, here’s the code for the “smarter” version of WordCount. Check the comments
to understand the functionality:

CREATE FUNCTION dbo.WordCount
(@Word VARCHAR(20),
@Phrase VARCHAR(1000))
RETURNS SMALLINT
AS
BEGIN

/* If @Word or @Phrase is NULL, the function returns 0 */
IF @Word IS NULL OR @Phrase IS NULL RETURN 0

/* Calculate and store the SOUNDEX value of the word */
DECLARE @SoundexWord CHAR(4)
SELECT @SoundexWord = SOUNDEX(@Word)

/* Eliminate bogus characters from phrase */
SELECT @Phrase = REPLACE(@Phrase, ',', ' ')
SELECT @Phrase = REPLACE(@Phrase, '.', ' ')
SELECT @Phrase = REPLACE(@Phrase, '!', ' ')
SELECT @Phrase = REPLACE(@Phrase, '?', ' ')
SELECT @Phrase = REPLACE(@Phrase, ';', ' ')
SELECT @Phrase = REPLACE(@Phrase, '-', ' ')

/* Remove trailing spaces. Necessary because LEN doesn't
calculate trailing spaces */
SELECT @Phrase = RTRIM(@Phrase)

/* Check every word in the phrase */
DECLARE @NextSpacePos SMALLINT
DECLARE @ExtractedWord VARCHAR(20)
DECLARE @Matches SMALLINT

/* This variable keeps the number of matches */

Darie-Watson_4681C05.fm Page 196 Monday, September 19, 2005 9:53 AM

C H A P T E R 5 ■ S E A R C H I N G T H E C A T A LO G 197

SELECT @Matches = 0

/* Analyze the phrase word by word */
WHILE LEN(@Phrase)>0
 BEGIN
 SELECT @NextSpacePos = CHARINDEX(' ', @Phrase)
 IF @NextSpacePos = 0
 BEGIN
 SELECT @ExtractedWord = @Phrase
 SELECT @Phrase=''
 END
 ELSE
 BEGIN
 SELECT @ExtractedWord = LEFT(@Phrase, @NextSpacePos-1)
 SELECT @Phrase = RIGHT(@Phrase, LEN(@Phrase)-@NextSpacePos)
 END

 /* If there’s a match... */
 IF @SoundexWord = SOUNDEX(@ExtractedWord)
 SELECT @Matches = @Matches + 1

 /* To allow for more matches, use DIFFERENCE instead of SOUNDEX:
 IF DIFFERENCE(@ExtractedWord, @Word) >= 3
 SELECT @Matches = @Matches + 1 */
 END

/* Return the number of occurences of @Word in @Phrase */
RETURN @Matches
END

Summary
In this chapter, you implemented the search functionality of BalloonShop. You learned many
useful tricks about SQL Server and C# programming.

While implementing the data tier, you learned two ways of counting how many times a
substring appears in a longer string while building the WordCount function. You learned how to
use that function to implement search results ranking in the SearchCatalog procedure. You
also learned how to select only a portion of the entire search results by using a table variable in
SQL Server.

In the business tier, you added the logic to process the string entered by the visitor and
send the words to search for to the presentation tier. The presentation tier nicely displays the
search results by reusing the ProductsList controls you wrote in Chapter 4.

Darie-Watson_4681C05.fm Page 197 Monday, September 19, 2005 9:53 AM

Darie-Watson_4681C05.fm Page 198 Monday, September 19, 2005 9:53 AM

199

■ ■ ■

C H A P T E R 6

Improving Performance

Why walk, when you can run? No, we won’t talk about sports cars in this chapter. Instead,
we’ll analyze a few possibilities to improve the performance of the BalloonShop project.

For now, rest assured that you’ve already implemented good programming practices
when building BalloonShop, such as

• Carefully designing the database; for example, having indexes on the columns used in
table joins significantly improves query performance

• Writing efficient SQL code (starting from little tricks such as avoiding using the * wildcard,
to implementing efficient query logic) and storing that code within stored procedures
(which are easier to maintain and run faster than ad-hoc queries)

• Using smart data access techniques in the business tier

• Using fast ASP.NET objects and efficient techniques when building the presentation tier.

However, you can gain even more performance by using a few new tricks. In this chapter,
you’ll briefly learn about some of the most important performance tricks.

In this chapter, you’ll learn how to

• Avoid populating controls with data during postback events

• Disable ViewState to pass less data in client-server roundtrips

• Enable output page caching

■Caution This chapter is a very short introduction to just a few topics regarding ASP.NET performance. For
a serious coverage of these subjects, you should read an advanced ASP.NET 2.0 book. Also look over Alex
Homer’s excellent article on ASP.NET 2.0 data-caching techniques at http://www.devx.com/dotnet/
Article/27327?trk=DXRSS_WEBDEV.

Handling Postback
Postback is the mechanism by which the client (the web browser) informs the server about
the events that happen to its server-side controls. When an event happens at the client side

Darie-Watson_4681C06.fm Page 199 Wednesday, August 24, 2005 7:02 AM

200 C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E

(such as a button click), the data about this event is posted back to the server, where it’s handled
using server-side code (the C# code from the code-behind files).

For example, if a visitor clicks your Button control, the data about this event is posted back
on the server. At the server side, the button’s Click event method executes, and the results are
sent back to the client as HTML code.

Every time such an event happens, the ASP.NET page and all its controls (including user
controls) get reloaded, and their Page_Load event executes. In any data-driven application, it’s
likely that these Page_Load methods access the database to populate the page with information.

When each ASP.NET control has a “cache” mechanism called ViewState (which retains the
control’s data during postbacks), it isn’t efficient to have these controls reload their data from
the database (or do other initialization things) on each postback event (unless that postback
event affects the database and the controls of the page actually need to get the updated
information).

Thanks to this ViewState mechanism, unlike with other web-development technologies,
the state of the controls in the page is not lost during postback events, even if you don’t repopulate
the controls in their Page_Load methods.

■Note As a result, most times it makes sense to load the page or control contents only when loading the
page for the first time, and reload the page or control contents during postbacks only if those postback events
affect the data that needs to be displayed by the page or control.

In the BalloonShop site, you’ve already seen an example of postback event handling in the
SearchBox control, which avoided filling its controls in Page_Load during postbacks.

Also in SearchBox.ascx, it’s easy to see a possible performance problem when looking at
the ExecuteSearch method:

 // Redirect to the search results page
 private void ExecuteSearch()
 {
 if (searchTextBox.Text.Trim() != "")
 Response.Redirect(Request.ApplicationPath +
 "/Search.aspx?Search=" + searchTextBox.Text +
 "&AllWords=" + allWordsCheckBox.Checked.ToString());
 }

The code in this method redirects the visitor to the search results page. However, in the
postback process, the original page that initiated the event (Default.aspx, Catalog.aspx,
Product.aspx, or even Search.aspx) is reloaded once before being redirected (its Page_Load
method is executed). That means all the composing controls—including DepartmentsList.ascx,
CategoriesList.ascx, ProductsList.ascx—and any other controls on the page are loaded
twice: once in the original page, and then once again after the new page is loaded.

You can significantly improve performance by preventing Web User Controls or Web
Forms from performing certain tasks (such as refreshing the DataList controls with information
from the database) when they are being loaded as a result of a postback event.

Darie-Watson_4681C06.fm Page 200 Wednesday, August 24, 2005 7:02 AM

C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E 201

The IsPostBack is a property of the Page class. Let’s see how it works by updating some
BalloonShop classes in the following exercise.

Exercise: Speeding Up BalloonShop

1. Open the code-behind file of DepartmentsList and update its Page_Load method as shown here:

// Load department details into the DataList
protected void Page_Load(object sender, EventArgs e)
{
 // don't reload data during postbacks
 if (!IsPostBack)
 {
 // CatalogAccess.GetDepartments returns a DataTable object containing
 // department data, which is read in the ItemTemplate of the DataList
 list.DataSource = CatalogAccess.GetDepartments();
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 }
}

2. Now, do the same in CategoriesList.ascx.cs:

protected void Page_Load(object sender, EventArgs e)
{
 // don't reload data during postbacks
 if (!IsPostBack)
 {
 // Obtain the ID of the selected department
 string departmentId = Request.QueryString["DepartmentID"];
 // Continue only if DepartmentID exists in the query string
 if (departmentId != null)
 {
 // Catalog.GetCategoriesInDepartment returns a DataTable object
 // containing category data, which is displayed by the DataList
 list.DataSource = CatalogAccess.GetCategoriesInDepartment(departmentId);
 // Needed to bind the data bound controls to the data source
 list.DataBind();
 // Make space for the next control
 brLabel.Text = "
";
 }
 }
}

Darie-Watson_4681C06.fm Page 201 Wednesday, August 24, 2005 7:02 AM

202 C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E

3. Now update the code in Product.aspx.cs:

protected void Page_Load(object sender, EventArgs e)
{
 // don't reload data during postbacks
 if (!IsPostBack)
 {
 PopulateControls();
 }
}

4. Apply the same change to Catalog.aspx.cs:

protected void Page_Load(object sender, EventArgs e)
{
 // don't reload data during postbacks
 if (!IsPostBack)
 {
 PopulateControls();
 }
}

5. Finally, open Search.aspx.cs and apply the following change:

protected void Page_Load(object sender, EventArgs e)
{
 // don't reload data during postbacks
 if (!IsPostBack)
 {
 // fill the table contents
 string searchString = Request.QueryString["Search"];
 titleLabel.Text = "Product Search";
 descriptionLabel.Text = "You searched for "
 + searchString + ".";
 // set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Product Search : " + searchString;
 }
}

How It Works: The IsPostBack Property

After completing the exercise, test your solution to see that everything works just like before. Apart from an increase
in performance, nothing really changed.

In DepartmentsList.ascx.cs, the list of departments is populated in Page_Load. However, during postback
events, its state is maintained by ASP.NET using the ViewState mechanism (which we’ll discuss next), and the
response is redirected to another page anyway. Also, there are no postback events that should affect the way the
departments list looks. For these reasons, it’s more efficient to query the database for the list of departments only
the first time a page is loaded, and never reload the list of departments during postback events.

Darie-Watson_4681C06.fm Page 202 Wednesday, August 24, 2005 7:02 AM

8213592a117456a340854d18cee57603

C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E 203

The Page.IsPostBack function is your best friend in this instance. IsPostBack indicates whether the page is
being loaded in response to a client postback or whether it’s being loaded and accessed for the first time.

■Tip Performance tuning can be fun to play with, but never do experiments on a production system. Some-
times the results are unexpected, until you learn very well how the ASP.NET internals work.

Managing ViewState
HTTP (Hypertext Transfer Protocol) is a stateless protocol—the server doesn’t retain any infor-
mation about the previous client request. Without an additional mechanism over this protocol,
the server can’t retain the state of a simple HTML page between client requests (for example,
which check boxes or radio buttons are selected, and so on).

ASP.NET has a built-in technique for dealing with this problem. When sending the HTML
response to the client, by default ASP.NET encodes the current state of every control in a string
called ViewState, in the form of a hidden form field called __VEWSTATE.

ViewState is used to maintain the state of the web page during client postbacks. In other
words, when the visitor performs any action that triggers a postback event, the page maintains
its state after the event handler method executes at the server.

For this reason, in the previous exercise, you modified DepartmentsList.ascx.cs and the
other controls and pages to first verify whether the control is being loaded as a result of a client
postback. If it is, you don’t need to query the database again, because its state is maintained by
the ViewState mechanism.

The problem with ViewState is that it’s transferred between the client and the server on
every request. With pages that contain a large number of controls, the ViewState information
can grow significantly, causing a lot of network traffic. The ViewState information can be
disabled for an entire page, or for just specific controls on a page. However, when disabling
ViewState for a control, you need to fill it with data even during postback events; otherwise, its
contents would disappear.

■Note So, if you want to speed up a user control, you mainly have to choose between disabling its ViewState
(causing less network traffic to happen) or letting ViewState be enabled but preventing further reprocessing
of Page_Load during page postbacks (causing less database load when there are controls that work with the
database). You can’t apply both techniques, or you’ll get empty controls when postback events occur. Which
technique is best for a particular control depends on the specifics of the control.

To see the encoded ViewState information for a page, you can do a simple test. Load
BalloonShop in your web browser, right-click the page, and select View Source. Inside the page

Darie-Watson_4681C06.fm Page 203 Wednesday, August 24, 2005 7:02 AM

204 C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E

HTML code, you can see the ViewState information encoded as a hidden form element named
__VIEWSTATE:

<input type="hidden" name="__VIEWSTATE"
value="dDwyMTAxNDE4MzM3O3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDE+O2k8Mz47aTwxMT47PjtsPHQ8O2
w8aTwwPjs+O2w8dDxAMDxwPHA8bDxTZWxlY3RlZEluZGV4O0RhdGFLZXlzO" />

■Note The value of the ViewState is not in human-readable form, but it isn’t encrypted either. The informa-
tion is stored as name-value pairs using the System.Web.UI.StateBag object. The simplest way to decipher
the value stored in your ViewState is by going to a web site such as http://www.wilsondotnet.com/
Demos/ViewState.aspx, which reveals what the ViewState string actually contains.

In the BalloonShop web site, you’re mainly concerned about the ViewState for
ProductsList.ascx, which can get quite large for a lot of products. The total page ViewState has
close to 2KB if the page has six products, and less than 1KB if no products are displayed on the
page.

The professional way to view how much space the ViewState occupies for every element
on the page is to enable page tracing by opening a Web Form and modifying its Page directive.
Update Default.aspx like this:

<%@ Page Trace="true" Language="C#" MasterPageFile="~/BalloonShop.master"
CompileWith="Default.aspx.cs" ClassName="Default_aspx" Title="Untitled Page" %>

After making this change, load Default.aspx and look at the tracing information appended
at the bottom of the page. You can see a lot of info about your page, including the ViewState
size for every control.

■Note This is obvious, but it has to be said: Always remember to turn off tracing and debug mode before
releasing your pages to the web.

By default, ViewState is enabled for all server controls. However, it can be disabled for a
specific control or even for an entire page. For the pages and controls where we prevented
reloading during postback events, we’ll leave ViewState enabled.

You should disable ViewState for ProductsList.ascx because you need to populate it every
time from the database anyway—all postback events that happen in your web site affect its
contents, so using the cached version from the ViewState isn’t an option. Moreover, the list of
products causes a lot of ViewState data, so disabling its ViewState causes a significant network
traffic improvement.

To disable ViewState for a control, change its EnableViewState property to False (by
default it’s True). Let’s disable ViewState for the DataList control in ProductsList.ascx and for
the entire SearchBox.ascx control in the following exercise.

Darie-Watson_4681C06.fm Page 204 Wednesday, August 24, 2005 7:02 AM

C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E 205

Exercise: Disabling ViewState for Server-Side Controls

1. Open ProductsList.ascx in Design View, select the DataList, and open its Properties window
by pressing F4.

2. Set the EnableViewState property to False, as shown in Figure 6-1.

Figure 6-1. Disabling ViewState for the DataList control

How It Works: Disabling ViewState to Improve Performance

Now you have disabled ViewState for some of your controls. For your particular solutions, you’ll decide for which
controls it’s best to disable ViewState.

So far, you’ve learned about letting ASP.NET manage the state of your controls, in which case you don’t reload the
controls with data from the database (by verifying the IsPostBack value), like you did with DepartmentsList.
ascx. You also learned how to disable the ViewState information, in which case you rely on the control reading
the database on every request.

Most of the time, you must not apply both techniques because you risk ending up with “empty” controls when client
postbacks occur, because the data isn’t gathered from the database or from the ViewState.

So far, your client’s web site is an exception to that rule, however, because the only occasion (until now) in which a
client postback occurs is in the SearchBox control, at which time the page is redirected (and so reloaded) anyway.
Still, for a quick test, you can now disable ViewState for DepartmentsList.ascx, add a button somewhere in
Default.aspx, and double-click it (in Design View) to create its Click event handler. Execute the page, and click
the button. The list of departments should disappear because its ViewState is not maintained, and it’s not popu-
lated from the database, either.

Darie-Watson_4681C06.fm Page 205 Wednesday, August 24, 2005 7:02 AM

206 C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E

Using Output Cache
Output page caching is an ASP.NET feature that increases the performance of your Web Appli-
cation by caching the HTML content generated from dynamic pages or controls. In other
words, a page or user control that has output caching enabled is only executed the first time it
is requested. On subsequent requests, the page or control is served directly from the cache,
instead of being executed again.

This can have an important effect on performance for BalloonShop, because most controls
access the database to populate themselves with information. With output caching enabled,
the controls only read the database the first time they are accessed. You can set the interval of
time at which the cache expires, so the controls have the chance to execute again, and refresh
them with current information.

The drawback with output caching is that if the information in the database changes in the
meantime, your page will display outdated information. For controls whose data is susceptible
to frequent updates, the duration of the cache should be shorter.

Also, enabling output caching, although it saves server-processing power, consumes
server memory, and should be used with caution. This is especially true when storing multiple
versions of the page or user control being cached.

You can enable output page caching for a Web Form or Web User Control using the
OutputCache page directive, which has a number of optional parameters:

<%@ OutputCache
 Duration="#ofseconds"
 Location="Any | Client | Downstream | Server | None"
 Shared="True | False"
 VaryByControl="controlname"
 VaryByCustom="browser | customstring"
 VaryByHeader="headers"
 VaryByParam="parametername" %>

• Duration: Specifies the number of seconds the page is stored in cache. A page is stored
in cache the first time it’s generated, which happens the first time a visitor asks for it. All
the subsequent requests for that page, during the period mentioned by Duration, are
served directly from cache instead of being processed again. After the cache duration
expires, the page is removed from the cache.

• Location: Specifies the place the actual data for the cache is stored. The default value
(Any) caches the page on the client browser, on the web server, or on any proxy servers
supporting HTTP 1.1 caching located between the client and the server.

• Shared: Applies only to user controls, and specifies whether the output of the user
control should be cached once for all the pages that include the control, or if multiple
versions of the control should be cached for each page that contains it.

• VaryByControl: Used to vary the output cache depending on the values of server-side
controls contained in the control or page being cached.

Darie-Watson_4681C06.fm Page 206 Wednesday, August 24, 2005 7:02 AM

C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E 207

• VaryByCustom: Used to identity custom caching requirements. Its most popular value is
“browser”, which results in having different versions of the page cached at the server for
each type of client-side browser. This feature is very useful if your dynamic web pages
generate different HTML outputs depending on the client browser (this isn’t the case for
BalloonShop, however). If varying the output by browser type, the server retains different
versions of the page that were generated for each kind and version of client browser.

• VaryByHeader: Used to vary the output cache by the value of different HTTP headers.
When you set the value of VaryByHeader to a list of HTTP headers (separated by semicolons),
multiple versions of the page are cached depending on the values of the mentioned
headers. A typical value for VaryByHeader is “Accept-Language”, which instructs ASP.NET
to cache multiple versions of the page for different languages.

• VaryByParam: Varies the output cache based on the values of the parameters passed to
the server, which include the query string parameters. You’ll see in the exercise how to
vary the output page cache based on the query string parameters.

You can enable output caching for DepartmentsList.ascx by editing the file in HTML View
and by adding the following line at the beginning of the file:

<%@ OutputCache Duration="1000" VaryByParam="DepartmentIndex" %>

After adding this directive, ASP.NET retains the different output versions of
DepartmentsList.ascx, depending on the value of the DepartmentIndex query string parameter.

■Caution Implementing output caching can easily affect the behavior of your web site in unexpected ways.
Also, the way output caching should be implemented depends on the exact stage of your web site. For now,
you shouldn’t use output caching, but only keep its possibilities in mind. You can start improving performance
and tweaking your Web Forms or Web User Controls after you have a working Web Application.

For controls whose output also depends on the CategoryIndex, such as CategoriesList.ascx
and Catalog.ascx, you can implement caching like this:

<%@ OutputCache Duration="1000" VaryByParam="DepartmentIndex;CategoryIndex" %>

Because ProductsList.ascx has many output versions (especially if you take searching
into account), it’s not recommended to implement caching for it. However, if you still want to
do this, you need to make it vary on every possible query string parameter that could influence
its output, with an OutputCache directive like this:

<%@ OutputCache Duration="1000"
VaryByParam="DepartmentIndex;CategoryIndex;Search;AllWords;PageNumber;
ProductsOnPage" %>

Alternatively, the “*” wildcard can be used to vary the output cache on any possible query
string parameter:

<%@ OutputCache Duration="1000" VaryByParam="*" %>

Darie-Watson_4681C06.fm Page 207 Wednesday, August 24, 2005 7:02 AM

208 C H A P T E R 6 ■ I M P R O V I N G P E R F O R M A N C E

■Note You can test caching to make sure it actually works by either placing breakpoints in code (the code
shouldn’t execute at all when caching is enabled) or even by temporarily stopping SQL Server and then
browsing through pages that were stored in cache (although for this to work, you’ll need to implement caching
on all the controls that perform data access).

Although implementing output page caching saves the database, it occupies web server
memory. For this reason, it isn’t feasible to implement output caching for controls such as
ProductsList, which have a very large number of display possibilities. ProductsList has a different
output for every department and category, not to mention the endless search possibilities.

■Note For your own solutions, you’ll need to carefully decide on which user controls to implement output
page caching. You can start experimenting by playing with the different controls that you implemented for
BalloonShop so far. One thing you should be aware of is that output page caching doesn’t always behave as
expected during client postbacks generated by other user controls in the page. For this reason, it’s advisable
to test your solution seriously every time you change output cache options.

Summary
This chapter was very short, indeed, especially since it covered a topic that’s very complex by
its nature. Although ASP.NET performance tuning is out of the scope of this book, you took a
quick look at the most useful features that allow you to improve a web site’s performance.

In the next chapter, you’ll learn how to accept payments for BalloonShop using PayPal.

Darie-Watson_4681C06.fm Page 208 Wednesday, August 24, 2005 7:02 AM

209

■ ■ ■

C H A P T E R 7

Receiving Payments
Using PayPal

Let’s collect some money! Your e-commerce web site needs a way to receive payments from
customers. The preferred solution for established companies is to open a merchant account,
but many small businesses choose to start with a solution that’s simpler to implement, where
they don’t have to process credit card or payment information themselves.

A number of companies and web sites can help individuals or small businesses that don’t
have the resources to process credit card and wire transactions. These companies can be used
to intermediate the payment between online businesses and their customers. Many of these
payment-processing companies are relatively new, and the handling of any individual’s finan-
cial details is very sensitive. Additionally, a quick search on the Internet will produce reports
from both satisfied and unsatisfied customers for almost all of these companies. For these
reasons, we are not recommending any specific third-party company.

Instead, this chapter lists some of the companies currently providing these services, and
then demonstrates some of the functionality they provide with PayPal. You’ll learn how to inte-
grate PayPal with BalloonShop in the first two stages of development. In this chapter, you will

• Learn how to create a new PayPal account

• Learn how to integrate PayPal in stage 1 of development, where you’ll need a shopping
cart and custom checkout mechanism

• Learn how to integrate PayPal in stage 2 of development, where you’ll have your own
shopping cart, so you’ll need to guide the visitor directly to a payment page

• Learn how to configure PayPal to automatically calculate shipping costs

■Note This chapter is not a PayPal manual, but a quick guide to using PayPal. For any complex queries about
the services provided, visit PayPal (http://www.paypal.com) or the Internet Payment Service Provider you
decide to use. Also, you can buy components that make it easier to interact with these systems, such as the free
ComponentOne PayPal eCommerce for ASP.NET by ComponentOne (http://www.componentone.com).

Darie-Watson_4681C07.fm Page 209 Thursday, August 25, 2005 8:48 AM

8213592a117456a340854d18cee57603

210 C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L

Considering Internet Payment Service Providers
Take a look at this list of Internet Payment Service Provider web sites. This is a diverse group,
each having its advantages. Some of the providers transfer money person to person, and
payments need to be verified manually; others offer sophisticated integration with your web
site. Some providers work anywhere on the globe, whereas others work only for a single country.

The following list is not complete. You can find many other such companies by doing a
Google search on “Internet Payment Service Providers.” An online resource with a list of such
companies that I’ve found helpful is http://www.online-payment-processing.com.

• 2Checkout: http://www.2checkout.com

• AnyPay: http://www.anypay.com

• CCNow: http://www.ccnow.com

• Electronic Transfer: http://www.electronictransfer.com

• Moneybookers: http://www.moneybookers.com

• MultiCards: http://www.multicards.com

• Pay By Web: http://www.paybyweb.com

• Paymate: http://www.paymate.com.au

• PayPal: http://www.paypal.com

• PaySystems: http://www.paysystems.com

• ProPay: http://www.propay.com

• QuickPayPro: http://www.quickpaypro.com

• WorldPay: http://worldpay.com

For the demonstration in this chapter, we chose to use PayPal. Apart from being quite
popular, PayPal offers the services that fit very well into our web site for the first two stages of
development. PayPal is available in a number of countries—the most up-to-date list can be
found at http://www.paypal.com.

For the first stage of development—where you only have a searchable product catalog—
and with only a few lines of HTML code, PayPal enables you to add a shopping cart with checkout
functionality. For the second stage of development, in which you need to manually record
orders in the database, PayPal has a feature called Single Item Purchases that can be used to
send the visitor directly to a payment page without the intermediate shopping cart. You’ll use
this feature of PayPal in Chapter 10.

For a summary of the features provided by PayPal, point your browser to http://
www.paypal.com and click the Merchant Tools link. That page contains a few other useful links
that will show you the main features available from PayPal.

Darie-Watson_4681C07.fm Page 210 Thursday, August 25, 2005 8:48 AM

C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L 211

Getting Started with PayPal
Probably the best description of this service is the one found on its web site: “PayPal is an
account-based system that lets anyone with an email address securely send and receive online
payments using their credit card or bank account.”

PayPal is one of the companies that allow a small business like your BalloonShop to receive
payments from its customers. The visitor, instead of paying the client directly, pays PayPal
using a credit card or bank account. The client then uses its PayPal account to get the money
received from the customers. At the time of writing, creating a new PayPal account is free, and
the service for the buyer is free. The fees involved when receiving money are shown at http://
www.paypal.com/cgi-bin/webscr?cmd=_display-fees-outside.

Visit the PayPal web site to get updated and complete information, and, of course, visit its
competitors before making a decision for your own e-commerce site. You’ll also want to check
which of the services are available in your country, what kind of credit cards and payment
methods each company accepts, information about currency conversions, and so on.

PAYPAL LINKS AND RESOURCES

Check out these resources when you need more information than this short chapter provides:

• Website Payments Standard Integration Guide: Contains information previously contained in
separate manuals, such as the Shopping Cart manual and the Instant Payments Notification
manual. Get it at https://www.paypal.com/en_US/pdf/PP_WebsitePaymentsStandard_
IntegrationGuide.pdf.

• The PayPal Developer Network: The official resource for PayPal developers. Access it at https://
www.paypal.com/pdn.

• PayPalDev: According to the site, this is an independent forum for PayPal developers. Access it at
http://www.paypaldev.org/. You can also find numerous links to various other PayPal resources
as well.

In the following exercise, you’ll create a new PayPal account and then integrate it with
BalloonShop. (These steps are also described in more detail in the PayPal manuals mentioned
earlier.)

Exercise: Creating the PayPal Account

1. Browse to http://www.paypal.com using your favorite web browser.

2. Click the Sign Up link.

3. PayPal supports three account types: Personal, Premier, and Business. To receive credit card payments,
you need to open a Premier or Business account. Choose your country from the combo box, and click
Continue.

Darie-Watson_4681C07.fm Page 211 Thursday, August 25, 2005 8:48 AM

212 C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L

4. Complete all the requested information and you’ll receive an email asking you to revisit the PayPal site
to confirm the details you have entered.

■Note The email address you provide during the registration process will be your PayPal ID, and it will be
shown to your customers when they pay for your products.

How It Works: The PayPal Account

After the PayPal account is set up, the email address you provided will be your PayPal ID.

The PayPal service provides a lot of functionality, and because the site is easy to use and many of the functions are
self-explanatory, we won’t describe everything here. Remember that these sites are there for your business, so
they’re more than happy to assist with any of your queries.

Now let’s see how you can actually use the new account for the web site.

Integrating the PayPal Shopping Cart
and Checkout
In the first stage of development (the current stage), you need to integrate the shopping cart
and checkout functionality from PayPal. In the second stage of development, after you create
your own shopping cart, you’ll only need to rely on PayPal’s checkout mechanism.

To accept payments, you need to add two important elements to the user interface part of
the site: Add to Cart buttons for each product and a View Cart button somewhere on the page.
PayPal makes adding these buttons a piece of cake.

The functionality of those buttons is performed by secure links to the PayPal web site. For
example, the following form represents the Add to Cart button for a product named “Welcome
Back” that costs $12.99:

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_cart">
 <input type="hidden" name="business" value="your_email_address">
 <input type="hidden" name="item_name" value="Welcome Back">
 <input type="hidden" name="amount" value="12.99">
 <input type="hidden" name="currency" value="USD">
 <input type="image" src="Images/AddToCart.gif" name="submit">
 <input type="hidden" name="add" value="1">
</form>

The fields are predefined and their names are self-explanatory. The most important is
business, which must be the email address you used when you registered the PayPal account
(the email address that will receive the money). Consult PayPal’s Website Payments Standard
Integration Guide for more details.

Darie-Watson_4681C07.fm Page 212 Thursday, August 25, 2005 8:48 AM

C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L 213

The View Cart button can be generated using a similar structure. In your web site, because
ASP.NET works by default using a main form (and forms cannot be nested), you’ll generate the
buttons using links such as

https://www.paypal.com/cgi-bin/webscr?
cmd=_cart&business=your_email_address&item_name=Welcome Back&
amount=12.99¤cy=USD&add=1

■Caution Yes, it’s just that simple to manufacture an Add to Cart link! The drawback of this simplicity
is that it can be potentially used against you. After PayPal confirms the payment, you can ship the products to
your customer. On each payment, you need to carefully check that the product prices correspond to the correct
amounts, because it’s very easy for anyone to add a fake product to the shopping cart, or an existing product
with a modified price. This can be done so simply by fabricating one of those PayPal Add to Cart links and
navigating to it. You can read a detailed article about this problem at http://www.alphabetware.com/
pptamper.asp.

You need to make sure this HTML code gets added to each product, so you’ll have Add to
Cart buttons for each product. To do this, you must modify the ItemTemplate of the DataList
control in the ProductsList user control. Then, you’ll add the View Cart button somewhere on
default.aspx, so it’s accessible at any time for the visitor.

In BalloonShop, you need to add links such as the one shown previously (Add to Cart
links) in the product details pages (Product.aspx), and you need to add the View Cart link on
the main web page (so you’ll update BalloonShop.master as well).

■Tip Although we won’t use them for our site, it’s good to know that PayPal provides button generators
based on certain data you provide (product name, product price), giving you an HTML code block similar
to the one shown previously. Click the Developers link at the bottom of the first page and then click
PayPal Solutions in the menu on the left to find the button generators.

You’ll implement the PayPal integration in the next exercise.

Exercise: Integrating the PayPal Shopping Cart and Custom Checkout

1. Open BalloonShop.master in Source View and add the following JavaScript function inside the
<HEAD> element:

<head runat="server">
 <title>BalloonShop</title>
 <script language="JavaScript">

Darie-Watson_4681C07.fm Page 213 Thursday, August 25, 2005 8:48 AM

214 C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L

 <!--
 var PayPalWindow = null;

 // Opens a PayPal window
 function OpenPayPalWindow(url)
 {
 if ((!PayPalWindow) || PayPalWindow.closed)
 // If the PayPal window doesn't exist, we open it
 PayPalWindow = window.open(url, "cart", "height=300, width=500");
 else
 {
 // If the PayPal window exists, we make it show
 PayPalWindow.location.href=url;
 PayPalWindow.focus();
 }
 }
 // -->
 </script>
</head>

■Note JavaScript is case sensitive, so you need to be very careful to reproduce the code exactly; otherwise,
it won’t work as expected.

2. While BalloonShop.master is in Source View, add the View Cart button on the main page, just below
the SearchBox control.

<uc4:SearchBox id="SearchBox1" runat="server">
</uc4:SearchBox>
<p align="center">
 <a href="JavaScript: OpenPayPalWindow('https://www.paypal.com/cgi-bin/webscr
 ?cmd=_cart
 &business=youremail@yourserver.com
 &display=1
 &return=www.yourwebsite.com
 &cancel_return=www.yourwebsite.com')">

</p>

■Note You must write the OpenPayPalWindow call on a single line in the HTML source. We split it on
multiple lines in the code snippet to make it easier to read.

Darie-Watson_4681C07.fm Page 214 Thursday, August 25, 2005 8:48 AM

C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L 215

3. Next, to add the PayPal Add to Cart button in Product.aspx, open Product.aspx and add an HTML
Server Control just below the product price:

<asp:Label CssClass="ProductPrice" ID="priceLabel" Runat="server"
 Text="Label"/>

Your form should look like Figure 7-1 in Design View.

Figure 7-1. The Add to Cart button in Product.aspx

4. Append the following code to the PopulateControls method in Product.aspx.cs:

 // Create the "Add to Cart" PayPal link
 string link =
 "JavaScript: OpenPayPalWindow(\"https://www.paypal.com/cgi-bin/webscr"
 + "?cmd=_cart" + // open shopping cart command
 "&business=youremail@yourserver.com" + // your PayPal account
 "&item_name=" + pd.Name + // product name
 "&amount=" + String.Format("{0:0.00}", pd.Price) + // product price
 "¤cy=USD" + // currency
 "&add=1" + // quantity to add to the shopping cart
 "&return=www.yourwebsite.com" + // return address
 "&cancel_return=www.yourwebsite.com\")"; // cancel return address)

Darie-Watson_4681C07.fm Page 215 Thursday, August 25, 2005 8:48 AM

216 C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L

 // Encode link characters to be included in HTML file
 string encodedLink = Server.HtmlEncode(link);
 // The the link of the HTML Server Control
 addToCartLink.HRef = encodedLink;

5. Make sure you replace youremail@yourserver.com in every link with the email address you sub-
mitted when you created your PayPal account for all Add to Cart and View Cart buttons. Also, replace
www.yourwebsite.com with the address of your e-commerce store. Alternatively, you can remove
the return and cancel_return variables if you don’t want PayPal to redirect back to your web site
after the customer completes or cancels a payment.

■Caution You need to use the correct email address for the money to get into your account.

6. Press F5 to execute the project. Your first page should look like Figure 7-2 now.

Figure 7-2. Integrating the PayPal shopping cart

7. Experiment with the PayPal shopping cart to make sure that it works as advertised. Figure 7-3 shows
the PayPal shopping cart in action.

Darie-Watson_4681C07.fm Page 216 Thursday, August 25, 2005 8:48 AM

8213592a117456a340854d18cee57603

C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L 217

Figure 7-3. The PayPal shopping cart

How It Works: PayPal Integration

Yes, it was just that simple. Right now, all visitors became potential customers! They can click the Checkout button
of the PayPal shopping cart, which allows them to buy the products!

After a customer makes a payment on the web site, an email notification is sent to the email address registered on
PayPal and also to the customer. Your PayPal account reflects the payment, and you can view the transaction infor-
mation in your account history or as a part of the history transaction log.

We touched on a few of the details of the PayPal shopping cart, but for a complete description of its functionality, you
should read PayPal’s Website Payments Standard Integration Guide. If you decide to use PayPal for your own web
site, make sure you learn about all its features. For example, you can teach PayPal to automatically calculate
shipping costs and tax for each order.

This was also the first time you created an HTML Server Control, when you added the Add to Cart link in
Product.aspx. The HTML Server Control is just a simple HTML tag that has the runat="server" attribute. After
you add that attribute, you can access its properties from the code-behind file, just as you did when setting the link’s
HRef property.

Among the alternative solutions is the use of an ImageButton control, whose OnClientClick property could
contain the JavaScript function call that opens the PayPal shopping cart.

Darie-Watson_4681C07.fm Page 217 Thursday, August 25, 2005 8:48 AM

218 C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L

Using the PayPal Single Item Purchases Feature
Single Item Purchases is a PayPal feature that allows you to send the visitor directly to a payment
page instead of the PayPal shopping cart. The PayPal shopping cart will become useless in
Chapter 9, where you’ll create your own shopping cart.

In Chapter 10, you’ll implement the Place Order button in the shopping cart, which saves
the order into the database and forwards the visitor to a PayPal payment page. To call the
PayPal payment page (bypassing the PayPal shopping cart), redirect to a link like the following:

https://www.paypal.com/xclick/business=youremail@yourserver.com&item_name=Order#1
23&item_number=123&amount=123.00¤cy=USD

The Website Payments Standard Integration Guide includes all the options available for
this feature.

■Note You’ll create your own complete order-processing system in the third phase of development (starting
with Chapter 12), where you’ll process credit card transactions.

When you implement the PayPal Single Item Purchases in Chapter 10 (just after creating
the Place Order button), you’ll need to add the following code to checkoutButton_Click in the
code-behind file of ShoppingCart.ascx:

 // create a new order and redirect to a payment page
 protected void checkoutButton_Click(object sender, EventArgs e)
 {
 // Store the total amount because the cart
 // is emptied when creating the order
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 // Create the order and store the order ID
 string orderId = ShoppingCartAccess.CreateOrder();
 // Create the PayPal redirect location
 string redirect = "";
 redirect += "https://www.paypal.com/xclick/business=youremail@server.com";
 redirect += "&item_name=" + BalloonShopConfiguration.SiteName + " Order "
 + orderId;
 redirect += "&item_number=" + orderId;
 redirect += "&amount=" + String.Format("{0:0.00} ", amount);
 redirect += "¤cy=USD";
 redirect += "&return=http://www.YourWebSite.com";
 redirect += "&cancel_return=http://www.YourWebSite.com";
 // Redirect to the payment page
 Response.Redirect(redirect);
 }

Of course, don’t forget to replace youremail@server.com with your registered PayPal email
address and replace http://www.YourWebSite.com with the address of your e-commerce store.

Darie-Watson_4681C07.fm Page 218 Thursday, August 25, 2005 8:48 AM

C H A P T E R 7 ■ R E C E I V I N G P A Y M E N T S U S I N G P A Y P A L 219

The return and cancel_return parameters specify the web pages to return to after the payment
is made or canceled. Figure 7-4 shows the PayPal Single Item Purchase screen.

Figure 7-4. The PayPal Single Item Purchase screen

Summary
In this chapter, you saw how to integrate PayPal into an e-commerce site—a simple payment
solution that many small businesses choose so they don’t have to process credit card or payment
information themselves.

First we listed some of the alternatives to PayPal, before guiding you through the creation
of a new PayPal account. We then covered how to integrate PayPal in stages 1 and 2 of develop-
ment, first discussing a shopping cart, a custom checkout mechanism, and then how to direct
the visitor straight to the payment page.

In the next chapter, we’ll move on to look at a catalog administration page for BalloonShop.

Darie-Watson_4681C07.fm Page 219 Thursday, August 25, 2005 8:48 AM

Darie-Watson_4681C07.fm Page 220 Thursday, August 25, 2005 8:48 AM

221

■ ■ ■

C H A P T E R 8

Catalog Administration

The final detail to take care of before launching BalloonShop is to create the administrative
interface.

In the previous chapters, you worked with catalog information that already existed in the
database. You’ve probably inserted some records yourself, or maybe you downloaded the
department, category, and product information from the Source Code area of the Apress web
site. Obviously, for a real web site, both ways are unacceptable, so you need to write some code
to allow easy management of the web store data.

In this chapter, you’ll implement a catalog administration page. With this feature, you
complete the first stage of your web site’s development!

Because this page can be done in many ways, a serious discussion with the client is required
to get the specific list of required features. In our case, the catalog administration page should
allow the client to

• Add or remove departments, and update the details of existing departments

• View and manage the categories that belong to a department

• Manage the list of products in a specific category, and edit product details

• Assign an existing product to an additional category (a product can belong to multiple
categories), or move it to another category

• Remove a product from a category or delete the product from the catalog

The administration page also needs to ask for a username and password, so that only the
site administrator is allowed to perform administrative tasks.

Preparing to Create the Catalog
Administration Page
Although the list of objectives might look intimidating at first, it will be easy to implement. We
have already covered most of the theory in the previous chapters, but you’ll still learn a few new
bits of information in this chapter.

Darie-Watson_4681C08.fm Page 221 Monday, September 19, 2005 9:55 AM

222 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

The first step toward creating the catalog administration page is to create a simple login
mechanism for administrators. This mechanism will be extended in Chapter 12, where you’ll
add customer accounts. The user interface bit of the login functionality consists of a control
named UserInfo that allows the administrator to authenticate himself or herself (see Figure 8-1).

Figure 8-1. BalloonShop with a login box

After logging in as an administrator, the UserInfo box displays links to the administrative
parts of the site. The first page of the catalog administration section that you’ll build in this
chapter will look like Figure 8-2 (note that it reuses the UserInfo control).

■Tip Although the list of departments looks like a DataList control, it’s actually a GridView. You’ll learn
more about this control later, when you create the DepartmentsAdmin Web User Control. For now, it’s
important to know that it allows for easy integration of edit, select, and delete functionalities. When the Edit,
Edit Categories (Select), or Delete buttons are clicked, events are generated that can be handled in code.

Darie-Watson_4681C08.fm Page 222 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 223

Figure 8-2. Administering departments

The functionality you’ll implement for departments is much the same as you’ll see for
categories and products. More specifically, the administrator can

• Edit the department’s name or description by clicking the Edit button.

• Edit the categories for a specific department by clicking the Edit Categories button.

• Completely remove a department from the database by clicking the Delete button (this
works only if the department has no related categories; otherwise, the administrator is
notified that the operation couldn’t be completed).

When clicking the Edit button, the grid enters edit mode, and its fields become editable
TextBox controls, as shown in Figure 8-3. Also, as you can see, instead of the Edit button, you
get Update and Cancel buttons. Clicking Update updates the database with the changes, whereas
clicking Cancel simply quits edit mode.

Darie-Watson_4681C08.fm Page 223 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

224 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-3. Editing department information

The administrator can add new departments by writing the new department’s name and
description in the TextBox controls below the grid, and clicking the Add button.

When the administrator clicks the Edit Categories button, the page is reloaded, but with an
additional parameter in the query string: DepartmentID. The user is presented with a similar page
where he or she can edit the categories that belong to the selected department (see Figure 8-4).

Darie-Watson_4681C08.fm Page 224 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 225

Figure 8-4. Administering categories

This page works similar to the one for editing departments, but there is an additional link
that takes you back to the departments’ page. When selecting a category, the page loads the list
of products for that category (see Figure 8-5).

Darie-Watson_4681C08.fm Page 225 Monday, September 19, 2005 9:55 AM

226 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-5. Administering products

Finally, the last page allows you to do additional product details management, such as
changing the product’s category, removing a product from a category or from the catalog, and
so on (see Figure 8-6).

The navigation logic between the department, category, and product administration
pages is done using query string parameters.

Darie-Watson_4681C08.fm Page 226 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 227

Figure 8-6. Administering product details

Authenticating Administrators
Because you want only certain persons to access the catalog administration page, you need to
implement some sort of security mechanism that controls access to the sensitive pages in the site.

Implementing security implies dealing with two important concepts: authentication and
authorization. Authentication is the process in which users are uniquely identified (most often
by supplying a username and password); authorization refers to which resources the authenti-
cated user can access.

Darie-Watson_4681C08.fm Page 227 Monday, September 19, 2005 9:55 AM

228 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Users who want to access the catalog administration page should first authenticate them-
selves. After you know who they are, you decide whether they are authorized to access the
administration page.

In BalloonShop, you’ll use an authentication method called Forms authentication, which
allows you to control the login process through a Web Form. After the client is authenticated,
ASP.NET automatically generates a cookie on the client, which is used to authenticate all
subsequent requests. If the cookie is not found, the client is redirected to the login Web Form.

■Tip You should know that ASP.NET supports more authentication methods, which are presented in the
MSDN article on ASP.NET authentication at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/vsent7/html/vxconASPNETAuthentication.asp. Two
other interesting and detailed articles on ASP.NET security are “Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication” (http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp) and “Improving Web
Application Security: Threats and Countermeasures” (http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp).

Authorization to access various resources can be applied to individual users or to roles.

ROLES

A role is a named set of permissions. In other words, a role contains permissions. Roles can be granted to or
revoked from users; granting a role to a user has the same effect as granting the user all the permissions in
that role. Roles are important because they allow the administrator to manage user privileges in a much more
convenient way.

In this chapter, you’ll create a new role named Administrators, which will have the privilege
to access the web site administration pages. You’ll add new roles in the following chapters.

The username and password combinations can be saved in various formats and can be
physically stored in different places. ASP.NET stores the passwords in hashed form by default.

HASHING

Hashing is a common method for storing passwords. The hash value of a password is calculated by applying
a mathematical function (hash algorithm) to it. The essential property about the hash algorithm is that you
can’t obtain the original password from its hash value (the algorithm is one-way).

Hashing is different from encryption in that it can’t be undone, whereas encrypted data can be decrypted
given the correct decrypt key is known. With hashing, even if some unauthorized person gets access to the

Darie-Watson_4681C08.fm Page 228 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 229

database, he or she won’t be able to find out the stored passwords (in practice, scientists have found vulner-
abilities with the popular MD5, SHA-0, and SHA-1 hashing algorithms—see http://www.broadbandreports.
com/shownews/52284).

User passwords are stored in hashed form, so when the user tries to authenticate, the entered password
is hashed, and the resulted hash value is compared to the hash value of the original (correct) password. If the
two values are identical, then the entered password is the correct one.

You can store the hashed versions of user passwords directly in web.config (although in this chapter
you’ll use a new ASP.NET 2.0 technique that uses the database for storage). To calculate the hash value of a
password for storing in web.config, you can use the very intuitively named function
FormsAuthentication.HashPasswordForStoringInConfigFile. You can find examples about
how to use this function in MSDN and in a number of other articles, such as the ones at http://
www.stardeveloper.com/articles/display.html?article=2003062001&page=1 or http://
www.c-sharpcorner.com/Code/2003/Feb/HashPassword.asp.

Alternatively, you can even hash your password online on a site such as http://aspnetresources.
com/tools/pwdhash.aspx. For example, the hash value of the password “admin” using the SHA-1 algorithm is
D033E22AE348AEB5660FC2140AEC35850C4DA997. In the following example, you’ll simply store this hash
value in web.config.

ASP.NET 2.0 works by default with an SQL Server Express database named ASPNETDB,
located in the application’s App_Data folder, whose data can be managed by the ASP.NET Web
Site Administration Tool.

ASP.NET 2.0 and Using Declarative Security
To build the skeleton of your site’s security mechanism, you’ll use many of the new login controls
offered by ASP.NET 2.0. At this stage, the functionality you implement is limited, because you
only need to authenticate administrators, but you’ll add more features in Chapter 12, when
adding customer accounts. Here, you’ll implement complete, working login/logout function-
ality and apply security restrictions to the admin pages without writing a single line of code!
Everything is as simple as combining some login controls and applying templates to define the
way they look and behave.

You can see the list of login controls packaged with ASP.NET 2.0 under the Login tab of the
toolbox. The controls you’ll use in this chapter are

• Login is perhaps the most useful control of all. It displays a login box asking for the user-
name and password and a check box for the “remember me next time” feature. It has a
number of color templates that you can apply, and if you don’t like any of these templates,
you can convert the whole control into a template (you’ll see how to do this later in this
chapter). This gives you access to all the individual controls that make up the Login control,
so you can customize them separately. You’ll use the template not only for changing
colors and styles, but also to tie the text boxes and check boxes to the Log In button using
the TieButton method you added in Chapter 5.

Darie-Watson_4681C08.fm Page 229 Monday, September 19, 2005 9:55 AM

230 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

• LoginView is capable of displaying various templates depending on which user is logged
in at the moment. The AnonymousTemplate is displayed if no user is logged in, and you’ll
generally want it to display the “You are not logged in” text and a link to the login page.
If an administrator is logged in, your LoginView control displays links to the various
administrative pages. In Chapter 12, when you’ll allow your customers to create accounts
on your site, your LoginView control will be updated to recognize the customers and
display links to their personal pages.

• LoginName is a simple control that displays the name of the logged-in user. You’ll use this
control inside some templates of the LoginView control, to display the “You’re logged in
as username” text.

• LoginStatus simply generates a Login link in case no user is logged in and a Logout link
in case a user is logged in.

Implementing Security
Let’s add the security mechanism in the following exercise, where you’ll

• Create a role named Administrators for your application, and then a user named admin
that is associated with the role.

• Add the UserInfo control to your application that displays data about the currently
logged-in user (refer to Figure 8-1).

• Create a login page named Login.aspx.

• Create the skeleton of the catalog administration page (CatalogAdmin.aspx).

• Make the CatalogAdmin.aspx page accessible only by users of the Administrators role.

Exercise: Implementing the Login Mechanism

1. The first step is to create an admin user to be recognized by your ASP.NET application. This user will
have the privilege to access the catalog administration page. Start the ASP.NET Web Site Administration
Tool by clicking WebSite ➤ ASP.NET Configuration.

2. Click the Security tab. You should get a screen like the one shown in Figure 8-7.

Darie-Watson_4681C08.fm Page 230 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 231

Figure 8-7. The ASP.NET Web Site Administration Tool

3. Click Enable roles.

4. Click Create or Manage roles and create a new role named Administrators. Click Back.

5. The default authentication type is Windows. Click Select authentication type and select the From the
Internet option. Click Done.

6. Click Create user and add a new user that will be allowed to perform catalog administration tasks. We’ll
assume you add a new user named admin with the password BalloonShop!. Add some text of your
choice for E-mail, Security Question, and Security Answer. Assign the user to the Administrators role
by checking the check box, and click Create User (see Figure 8-8).

Darie-Watson_4681C08.fm Page 231 Monday, September 19, 2005 9:55 AM

232 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-8. Creating a new user

■Note The default security settings require users to have strong passwords, so your password may be
rejected if you try simpler passwords. This is because the ASP.NET membership system applies several rules
to passwords, which are defined in machine.config. By default, passwords require a minimum length of
seven characters, including at least one nonalphanumeric character (that is, a symbol character such as [, *,
!, and so on). These settings can be changed by editing the machine.config file, which is located in
<Windows Install Directory>\Microsoft.NET\Framework\<Version>\CONFIG\. Look for
the definition of the AspNetSqlMembershipProvider provider, which can include the
minRequiredPasswordLength and minRequiredNonalphanumericCharacters attributes to
define the length and complexity of the password (or you can do this in one go using the
passwordStrengthRegularExpression parameter). However, be aware that changes you make in
machine.config apply to all the web sites on your computer. An alternative is to override the definition of
this provider in web.config—you’ll learn more details about this in Chapter 12.

7. Click Back to get to the main Security page. Make sure that you have one role and one user and then
close the window.

Darie-Watson_4681C08.fm Page 232 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 233

8. Switch back to Visual Studio. You’ll probably be asked to reload web.config, which was modified by
an external program. Select Yes.

9. Next you’ll create the UserInfo Web User Control, the Login Web Form, and the skeleton of the
CatalogAdmin Web Form. First add the following styles to BalloonShop.css, which will be used in
these pages:

.UserInfoHead
{
 border-right: #cc6666 1px solid;
 border-top: #cc6666 1px solid;
 border-left: #cc6666 1px solid;
 border-bottom: #cc6666 1px solid;
 background-color: #dc143c;
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
 color: #f5f5dc;
 padding-left: 3px;
 text-align: center;
}
.UserInfoContent
{
 border-right: #cc6666 1px solid;
 border-top: #cc6666 1px solid;
 border-left: #cc6666 1px solid;
 border-bottom: #cc6666 1px solid;
 background-color: #ffcccc;
 text-align: center;
}
.UserInfoText
{
 font-family: Verdana, Arial;
 font-size: 9pt;
 padding-left: 5px;
 text-decoration: none;
}
a.UserInfoLink
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 9pt;
 color: #ed486d;
 line-height: 15px;
 padding-left: 5px;
 text-decoration: none;
}

Darie-Watson_4681C08.fm Page 233 Monday, September 19, 2005 9:55 AM

234 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

a.UserInfoLink:hover
{
 padding-left: 5px;
 color: #dc143c;
}
.Button
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 12px;
}
.AdminTitle
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 21px;
 font-weight: bold;
 line-height: 25px;
}
.AdminPageText
{
 color: Navy;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 12px;
}
a.AdminPageText
{
 color: Navy;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 12px;
}
a.AdminPageText:hover
{
 color:Red;
}

10. Now, create a Web User Control named UserInfo.ascx in your UserControls folder.

11. In UserInfo, you’ll use a new ASP.NET 2.0 control named LoginView, which can display different
data (through templates) depending on the currently logged-in user. For users of the Administrators role,
you’ll display links to the administration pages, and if no users are logged in, you simply display a login
link (using the LoginStatus control). You can edit the templates of the LoginView control by either
using Design View or Source View. Either way, make sure your UserInfo Web User Control contains
the following code:

Darie-Watson_4681C08.fm Page 234 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 235

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="UserInfo.ascx.cs"
Inherits="UserInfo" %>
<table cellspacing="0" border="0" width="200px" class="UserInfoContent">
 <tr>
 <td class="UserInfoHead">
 User Info</td>
 </tr>
 <asp:LoginView ID="LoginView1" runat="server">
 <AnonymousTemplate>
 <tr>
 <td>
 You are not logged in.
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:LoginStatus ID="LoginStatus1" runat="server"
CssClass="UserInfoLink" />
 «
 </td>
 </tr>
 </AnonymousTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles="Administrators">
 <ContentTemplate>
 <tr>
 <td>
 <asp:LoginName ID="LoginName2" runat="server" FormatString=
"You are logged in as {0}. "
 CssClass="UserInfoText" />
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:LoginStatus ID="LoginStatus2" runat="server" CssClass=
"UserInfoLink" />
 «
 </td>
 </tr>
 <tr>
 <td>
 »

Darie-Watson_4681C08.fm Page 235 Monday, September 19, 2005 9:55 AM

236 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Catalog Admin
 «
 </td>
 </tr>
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
 </asp:LoginView>
</table>

12. Open BalloonShop.master and drag the UserInfo control from Solution Explorer just before the
list of departments, as shown in Figure 8-9.

Figure 8-9. Adding the UserInfo control to the Master Page

13. Start your project and ensure that your UserInfo control looks good. The next step is to create the
login page. Right-click the root entry in Solution Explorer, select Add New Item, choose the Web Form
template, and name it Login.aspx. Make sure the two check boxes are checked and click Add.

14. In the dialog box that opens, select the BalloonShop.master entry and click OK.

Darie-Watson_4681C08.fm Page 236 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 237

15. Switch Login.aspx to Design View, add a Login control from the Login tab of the toolbox to the
content placeholder, and then rename the control from Login1 to login, as shown in Figure 8-10.

Figure 8-10. The content area of Login.aspx in Design View

16. Open web.config and change the <authentication> element under the <system.web> node, as
shown next. This registers Login.aspx as the default login page, which visitors will be forwarded to if
they click the Login link or when they try to access an unauthorized page.

 <authentication mode="Forms">
 <forms name="BalloonShopLogin"
 loginUrl="Login.aspx" path="/" protection="All" timeout="60">
 </forms>
 </authentication>

At this point, you have a working login and logout mechanism! Start your project to ensure the login and
logout features are fully working (try to log in with the username admin, which should have as the password
BalloonShop!, if you followed the instructions).

■Note After you type your username and password, it’s not enough to just press the Enter key while the
focus is on the Password text box or on the check box. You need to press the Tab key to give the Log In button
the focus or click the Log In button with the mouse. You’ll fix this problem in the next steps by using the
TieButton method that you implemented in Chapter 5 (I told you that method would be useful!).

17. Continue by doing a few cosmetic changes to your page. To make the Login control fully customizable
by having access to its individual constituent controls, you need to convert it to a template. Click its
Smart Link and choose Convert to Template, as shown in Figure 8-11.

Darie-Watson_4681C08.fm Page 237 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

238 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-11. Converting the Login control to a template

18. Switch to Source View. After converting the control to a template, you’ll see all of its constituent controls gen-
erated inside its <LayoutTemplate>. Modify the template as shown in the following code snippet:

<LayoutTemplate>
 <table border="0" cellpadding="1">
 <tr class="UserInfoText">
 <td>
 <table border="0" cellpadding="0">
 <tr>
 <td class="CatalogTitle" align="left" colspan="2">
 Who Are You?

 </td>
 </tr>
 <tr>
.....

19. Remember the TieButton method you wrote in Chapter 5? You’ll use it here again to link the username and
password text boxes to the Log In button. After converting the Login control to use templates, not only
is it easy to change how the control looks, but you can also see the names of the constituent controls
(more specifically, you want to find the names of the two TextBox controls and the name of the Button
control). Open the code-behind file Login.aspx.cs and modify Page_Load like this:

protected void Page_Load(object sender, EventArgs e)
{
 // get references to the button, checkbox and textboxes
 TextBox usernameTextBox = (TextBox)login.FindControl("UserName");
 TextBox passwordTextBox = (TextBox)login.FindControl("Password");
 CheckBox persistCheckBox = (CheckBox)login.FindControl("RememberMe");
 Button loginButton = (Button)login.FindControl("LoginButton");
 // tie the two textboxes and the checkbox to the button
 Utilities.TieButton(this.Page, usernameTextBox, loginButton);
 Utilities.TieButton(this.Page, passwordTextBox, loginButton);
 Utilities.TieButton(this.Page, persistCheckBox, loginButton);

Darie-Watson_4681C08.fm Page 238 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 239

 // set the page title
 this.Title = BalloonShopConfiguration.SiteName + " : Login";
 // set focus on the username textbox when the page loads
 usernameTextBox.Focus();
}

20. Now your login page not only that works well, but it also looks good and is very user-friendly. The next and
final task for this exercise is to create the skeleton of your administrative part of the site. Start by creating
a new Master Page to be used by all the admin pages you’ll build for BalloonShop. Right-click the project
name in Solution Explorer, choose Add New Item, select Master Page, and type Admin.master for
the name. Choose Visual C# for the language, make sure Place code in separate file is checked, and
click Add.

21. While editing the page in Source View, modify the body like this:

<body>
 <form id="form1" runat="server">
 <table cellspacing="0" cellpadding="0" border="0" width="100%">
 <tr = valign="top">
 <td width="220">
 <uc1:UserInfo ID="UserInfo1" runat="server" />
 </td>
 <td valign="top">

 <% Response.Write(BalloonShopConfiguration.SiteName); %>

 (go back
 to BalloonShop)

 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>

 <asp:ContentPlaceHolder ID="ContentPlaceHolder2" runat="server">
 </asp:ContentPlaceHolder>
 </form>
</body>

22. Switch to Design View and drag the UserInfo.ascx control you wrote earlier from the Solution
Explorer, near the “Login here” text in your page. Delete the “Login here” text, and your page should
look like Figure 8-12.

Darie-Watson_4681C08.fm Page 239 Monday, September 19, 2005 9:55 AM

240 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-12. Admin.master in Design View

23. Add a new Web Form called CatalogAdmin.aspx to the project. Make sure its language is Visual C#
and that both check boxes (Place code in separate file and Select master page) are checked. Click
Add, choose the Admin.master Master Page, and then click OK.

24. In CatalogAdmin.aspx, write the following code in the first content area:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="server">
 Catalog Admin
</asp:Content>

25. Add a PlaceHolder object from the toolbox to the second content area and change its ID to
adminPlaceHolder.

26. Double-click web.config in Solution Explorer and add the following sections to it. Be aware that the
default authentication mode is Windows, and you’ll need to change it to Forms:

<?xml version="1.0" encoding="utf-8" ?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings>
 ...
 </appSettings>

 <connectionStrings>
 ...

Darie-Watson_4681C08.fm Page 240 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 241

 </connectionStrings>

 <!-- Only administrators are allowed to access CatalogAdmin.aspx -->
 <location path="CatalogAdmin.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

 <system.web>
 ...

How It Works: The Security Mechanism

Congratulations for finishing this long exercise! First, test that your new features work as expected. Try also to
access the CatalogAdmin.aspx page without being logged in as Administrator or try to log out when you’re in the
admin page. You should be forwarded to the login page.

In this exercise, you first added the Administrators role and the admin user to your site. You performed these tasks
using the ASP.NET Web Application Administration page. Feel free to check out other options of that page as well.
For instance, you can access and manage the options you saved to web.config (such as SiteName, and so on)
by going to the Application tab, and then clicking Create/Manage application settings.

The security data is saved in the App_Data folder of your application, in either an Access database or in an SQL
Server Express database named ASPNETDB. After this database is created, you can access it from the Database
Explorer window. You can change the engine used for this database from the ASP.NET Configuration page, on the
Provider tab.

After adding the admin user, you created the UserInfo Web User Control. There you used a number of the new
.NET 2.0 login controls that were explained previously. You could have used the designer to build these controls and
their templates—and you can still use the designer to edit them, which I encourage you to test—but in this exercise, it
was easier to simply type the code. Let’s see how these controls were used:

• LoginView is capable of displaying various templates depending on what user is logged in at the moment.
The AnonymousTemplate is displayed if no user is logged in, and it generates the “You are not logged
in” text and a link to the login page.

 <AnonymousTemplate>
 <tr>
 <td>
 You are not logged in.
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:LoginStatus ID="LoginStatus1" runat="server"

Darie-Watson_4681C08.fm Page 241 Monday, September 19, 2005 9:55 AM

242 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

CssClass="UserInfoLink" />
 </asp:HyperLink>
 «
 </td>
 </tr>
 </AnonymousTemplate>

• Then, under the RoleGroups template, you can find the HTML code that is displayed when an admin-
istrator is logged in.

• LoginName simply displays the “You are logged in as username” text. This text is defined in its
FormatString property, where {0} is the username.

<asp:LoginName ID="LoginName2" runat="server"
FormatString="You are logged in as {0}. " CssClass="UserInfoText" />

• LoginStatus displays a Login link that forwards you to the login page you configured in web.config, or
a Logout button that logs out the currently logged-in user and clears the current session information.

<asp:LoginStatus ID="LoginStatus1" runat="server" CssClass="UserInfoLink" />

After writing the UserInfo control, you created Login.aspx. Creating this page was extremely simple, because
its only role is to contain a Login control. That control does the login work by itself, without requiring you to write
any line of code or configure any settings. The extra steps you took for creating Login.aspx were for customizing
the look of the Login control and converting it into a template to have access to its inner controls. Knowing the
names of the inner controls helped you use the Utilities.TieButton method to tie the two text boxes and the
one check box to the Log In button. This way, if the visitor presses Enter while any of the text boxes or the check box
has focus, the Log In button is automatically clicked (otherwise, the page would have been refreshed without per-
forming any login functionality).

Finally, CatalogAdmin.aspx was created to serve as a skeleton for the future catalog admin page. You configured
it through web.config to be only accessible by users of the Administrators role:

 <!-- Only administrators are allowed to access CatalogAdmin.aspx -->
 <location path="CatalogAdmin.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

Note that the authorization list is interpreted in sequential order. The following combination would reject all login
attempts:

 <deny users="*" />
 <allow roles="Administrators" />

The * wildcard is used for “all identities.” The other wildcard character, ?, means “anonymous users.” If you
wanted all anonymous users to be denied, you could have used the following:

Darie-Watson_4681C08.fm Page 242 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 243

 <location path="CatalogAdmin.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>

With this setting, any logged-in users (not only administrators) would be allowed access to the admin page.

■Tip By default, all visitors are allowed access to all pages, so you need to explicitly deny access to the
sensitive pages.

Administering Departments
The department administration section will allow your client to add, remove, or change
department information. To implement this functionality, you’ll need to write the code for
the presentation, business, and data layers.

One fundamental truth regarding n-Tiered applications (which also applies to this particular
case) is that the business and database tiers are ultimately created to support the presentation
tier. Drawing it on paper and establishing exactly how you want the site to look (in other words,
what functionality needs to be supported by the user interface) will provide you with a good
indication of what the database and business tier will contain.

With the proper design work, you would know exactly what to place in each tier, so the
order of writing the code wouldn’t matter. When the design is clearly established, a team of
programmers can work at the same time and implement the three tiers concurrently, which is
one of the benefits of having a tiered architecture.

However, this rarely happens in practice, except for the largest projects that really need
very careful design and planning. In our case, usually the best way is to start with the lower
levels (the database) to get the basics established before creating the user interface. For this to
happen, you need to analyze first what functionality is required for the user interface; other-
wise, you won’t know what to write in the data and business tiers.

Because you already have a working architecture, it will be simple to write components as
needed for each tier. Of course, if you had to implement something new or more complicated,
we would have spent some time analyzing the full implications, but here you won’t do anything
more complicated than the code in the previous chapters.

This being said, you’ll implement all features for this chapter in the classical order, starting
with the data tier.

Darie-Watson_4681C08.fm Page 243 Monday, September 19, 2005 9:55 AM

244 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Stored Procedures for Departments Administration
Four stored procedures perform the four basic tasks for departments: retrieve departments,
update departments, delete departments, and insert departments. The procedure for retrieving
departments already exists in the database, so you just need to add the other three.

AddDepartment

AddDepartment inserts a new department into the database. Add this stored procedure to the
BalloonShop database:

CREATE PROCEDURE AddDepartment
(@DepartmentName varchar(50),
@DepartmentDescription varchar(1000))
AS
INSERT INTO Department (Name, Description)
VALUES (@DepartmentName, @DepartmentDescription)

UpdateDepartment

The UpdateDepartment stored procedure updates the name and description of an existing
department using the UPDATE SQL statement. Add it to the BalloonShop database:

CREATE PROCEDURE UpdateDepartment
(@DepartmentID int,
@DepartmentName varchar(50),
@DepartmentDescription varchar(1000))
AS
UPDATE Department
SET Name = @DepartmentName, Description = @DepartmentDescription
WHERE DepartmentID = @DepartmentID

DeleteDepartment

DeleteDepartment deletes an existing department from the database. Add this stored procedure
to the BalloonShop database:

CREATE PROCEDURE DeleteDepartment
(@DepartmentID int)
AS
DELETE FROM Department
WHERE DepartmentID = @DepartmentID

Middle-Tier Methods for Departments Administration
In this section, you’ll add two new methods to the GenericDataAccess class, called ExecuteNonQuery
and ExecuteScalar, which will wrap DbCommand’s ExecuteNonQuery and ExecuteScalar methods
in the same way ExecuteSelectCommand works with ExecuteReader.

Darie-Watson_4681C08.fm Page 244 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 245

You’ll then add three methods to the CatalogAccess class that you’ll need to call from the
DepartmentsAdmin control (you’ll also use the GetDepartments method that already exists):

• UpdateDepartment

• DeleteDepartment

• AddDepartment

Start by adding these methods to the GenericDataAccess class:

// execute an update, delete, or insert command
// and return the number of affected rows
public static int ExecuteNonQuery(DbCommand command)
{
 // The number of affected rows
 int affectedRows = -1;
 // Execute the command making sure the connection gets closed in the end
 try
 {
 // Open the connection of the command
 command.Connection.Open();
 // Execute the command and get the number of affected rows
 affectedRows = command.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 // Log eventual errors and rethrow them
 Utilities.LogError(ex);
 throw ex;
 }
 finally
 {
 // Close the connection
 command.Connection.Close();
 }
 // return the number of affected rows
 return affectedRows;
}

// execute a select command and return a single result as a string
public static string ExecuteScalar(DbCommand command)
{
 // The value to be returned
 string value = "";
 // Execute the command making sure the connection gets closed in the end
 try
 {

Darie-Watson_4681C08.fm Page 245 Monday, September 19, 2005 9:55 AM

246 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // Open the connection of the command
 command.Connection.Open();
 // Execute the command and get the number of affected rows
 value = command.ExecuteScalar().ToString();
 }
 catch (Exception ex)
 {
 // Log eventual errors and rethrow them
 Utilities.LogError(ex);
 throw ex;
 }
 finally
 {
 // Close the connection
 command.Connection.Close();
 }
 // return the result
 return value;
}

The functionality in these two methods is similar to the one you wrote for
ExecuteSelectCommand in Chapter 4, so we won’t analyze them again here.

The next step is to update CatalogAccess. Add these methods to your CatalogAccess class,
inside CatalogAccess.cs:

// Update department details
public static bool UpdateDepartment(string id, string name, string description)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "UpdateDepartment";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentId";
 param.Value = id;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DepartmentName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);

Darie-Watson_4681C08.fm Page 246 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 247

 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DepartmentDescription";
 param.Value = description;
 param.DbType = DbType.String;
 param.Size = 1000;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

// Delete department
public static bool DeleteDepartment(string id)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "DeleteDepartment";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentId";
 param.Value = id;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure; an error will be thrown by the
 // database if the department has related categories, in which case
 // it is not deleted
 int result = -1;
 try
 {
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {

Darie-Watson_4681C08.fm Page 247 Monday, September 19, 2005 9:55 AM

248 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

// Add a new department
public static bool AddDepartment(string name, string description)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "AddDepartment";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DepartmentDescription";
 param.Value = description;
 param.DbType = DbType.String;
 param.Size = 1000;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

Darie-Watson_4681C08.fm Page 248 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 249

The DepartmentsAdmin User Control
Figure 8-13 shows how the DepartmentsAdmin Web User Control will look.

Figure 8-13. The departments administration page

The control is formed from a list populated with the departments’ information, and it also
has four additional controls (a label, two text boxes, and a button) used to add new departments to
the list.

The list control you see in Figure 8-13 is not a DataList, but a GridView control.

■Tip The GridView object is more powerful than the DataList, but its power comes at the expense
of speed. For this reason, when the GridView’s extra features are not used, you should stick with the
DataList. ASP.NET also provides an even simpler and faster object, named Repeater. We don’t use the
Repeater object in this book, but you should take a look at its documentation for more information.

The GridView is more powerful than DataList and has many more features; in this chapter,
you’ll only use a part of GridView’s possibilities, particularly the ones that allow for easy inte-
gration of Edit, Select, and Delete buttons, and database-bound column editing in Design
View. You can see the mentioned controls in Figure 8-13, where the Select button is called Edit
Categories.

Darie-Watson_4681C08.fm Page 249 Monday, September 19, 2005 9:55 AM

250 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Everything you do here with GridView is also possible to do with DataList, but using
GridView eases your work considerably because of its rich set of built-in features. You don’t
have to worry about the performance penalty for using a more complex control, because the
administration page won’t be accessed frequently, compared to the main web site.

You’ll implement DepartmentsAdmin.ascx in the following exercise, and then we’ll discuss
the details in the “How it Works” section.

Exercise: Implementing DepartmentsAdmin.ascx

1. Create a new Web User Control named DepartmentsAdmin in the UserControls folder (be sure to
check the Place code in separate file option).

2. Switch to Design View. From the toolbox, add two Label controls and a GridView control, as shown
in Figure 8-14.

Figure 8-14. Adding controls to DepartmentsAdmin.ascx

3. Set the properties for the controls as shown in Table 8-1.

4. Set the DataKeyNames property of the grid to DepartmentID and set its Width property to 100%.

Table 8-1. Setting the Properties for the Controls in CategoriesAdmin.ascx

Control Type ID Property Text Property CssClass Property

Label statusLabel Departments Loaded AdminPageText

Label locationLabel These are your
departments:

AdminPageText

GridView grid

Darie-Watson_4681C08.fm Page 250 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 251

■Note Setting the DataKeyNames allows you to find the DepartmentID of the selected departments.

5. Switch to Source View and add the controls that will allow new departments to be added:

Create a new department:
<table class="AdminPageText" cellspacing="0">
 <tr>
 <td valign="top" width="100">Name:
 </td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newName" Runat="server"
Width="400px" />
 </td>
 </tr>
 <tr>
 <td valign="top" width="100">Description:
 </td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newDescription"
Runat="server" Width="400px" Height="70px" TextMode="MultiLine"/>
 </td>
 </tr>
</table>
<asp:Button ID="createDepartment" Text="Create Department" Runat="server"
CssClass="AdminButtonText" />

6. Click GridView’s Smart Link and choose Add New Column. Use this command to add two columns
with the properties shown in Table 8-2.

Your Add Field window should look like Figure 8-15 when adding the Department Name bound field.

Table 8-2. Adding Bound Fields to Your Grid

Field Type Header Text Data Field Other Properties

BoundField Department Name Name

BoundField Department Description Description

Darie-Watson_4681C08.fm Page 251 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

252 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-15. Adding a bound column

7. Add the View Categories column by adding a HyperLinkField with a text of View Categories. Set the
data field to DepartmentID and the URL format string to ../CatalogAdmin.aspx?DepartmentID={0}, as
shown in Figure 8-16.

8. Now add the functionality that allows the administrator to edit department details. Use the Add New
Column command again to add a CommandField. Leave the header text empty, leave button type set
to Link, check the Edit/Update check box, and leave the Show cancel button check box checked.
Click OK.

9. Finally, add the Delete button by clicking the Smart Link and choosing Add New Column. Choose the
ButtonField field type, choose Delete for the command name, modify the text to Delete, and click OK.

10. Click GridView’s Smart Link and choose Edit Columns. In the dialog box that opens, deselect Auto-
Generate Fields (because you manually specified which columns to display). If you leave this check box
checked, the GridView appends all columns retrieved from the data source to the manually created
ones. At the end of this exercise, you might want to experiment with checking this check box, but for
now, leave it unchecked. Click OK.

Okay, you finished working on the columns, so your control should now look like Figure 8-17.

Darie-Watson_4681C08.fm Page 252 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 253

Figure 8-16. Adding a HyperLinkField column

Figure 8-17. Designing DepartmentsAdmin.ascx

Darie-Watson_4681C08.fm Page 253 Monday, September 19, 2005 9:55 AM

254 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

■Note Right now the CSS styles don’t have any effect because BalloonShop.css is part of a skin, which
is loaded at runtime.

11. To make the data grid functional, you need to populate it with data in the Page_Load method of
DepartmentsAdmin.ascx.cs:

protected void Page_Load(object sender, EventArgs e)
{
 // Load the grid only the first time the page is loaded
 if (!Page.IsPostBack)
 {
 // Load the departments grid
 BindGrid();
 // Set control properties
 statusLabel.ForeColor = System.Drawing.Color.Red;
 }
}

// Populate the GridView with data
private void BindGrid()
{
 // Get a DataTable object containing the catalog departments
 grid.DataSource = CatalogAccess.GetDepartments();
 // Bind the data bound controls to the data source
 grid.DataBind();
}

12. Update CatalogAdmin.aspx.cs to load the admin user controls by adding this code to its Page_Load
method:

protected void Page_Load(object sender, EventArgs e)
{
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName + " : Catalog Admin";
 // Get DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];

Darie-Watson_4681C08.fm Page 254 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 255

 // Get CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // Get ProductID from the query string
 string productId = Request.QueryString["ProductID"];
 // Load the appropriate control into the place holder
 if (departmentId == null)
 {
 Control c = Page.LoadControl(Request.ApplicationPath +
 "/UserControls/DepartmentsAdmin.ascx");
 adminPlaceHolder.Controls.Add(c);
 }
 else if (categoryId == null)
 {
 Control c = Page.LoadControl(Request.ApplicationPath +
 "/UserControls/CategoriesAdmin.ascx");
 adminPlaceHolder.Controls.Add(c);
 }
 else if (productId == null)
 {
 Control c = Page.LoadControl(Request.ApplicationPath +
 "/UserControls/ProductsAdmin.ascx");
 adminPlaceHolder.Controls.Add(c);
 }
 else
 {
 Control c = Page.LoadControl(Request.ApplicationPath +
 "/UserControls/ProductDetailsAdmin.ascx");
 adminPlaceHolder.Controls.Add(c);
 }
}

13. Pause here to test whether what you’ve been working on so far works. Execute the project, log in as
administrator, and go to the catalog admin page. The GridView control doesn’t look like much at the
moment, but you’ll take care of its looks a bit later. If everything works as expected, you should be presented
with a page that looks like Figure 8-18.

Darie-Watson_4681C08.fm Page 255 Monday, September 19, 2005 9:55 AM

256 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-18. Executing CatalogAdmin.aspx

14. To change the looks of the DataGrid, you’ll use a skin, which will define the appearance of every
GridView in the site. Open the App_Themes folder in Solution Explorer.

15. Right-click the BalloonShopDefault folder and choose Add New Item.

16. Select the Skin File template and change the name to BalloonShop.skin.

17. Add the following code, which represents the default skin for GridView controls, to
BalloonShop.skin:

<asp:GridView runat="server" CssClass="Grid" CellPadding="4"
AutoGenerateColumns="False">
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
ForeColor="#F7F7F7" />
 <HeaderStyle CssClass="GridHeader" />
 <RowStyle CssClass="GridRow" />
 <AlternatingRowStyle CssClass="GridAlternateRow" />
</asp:GridView>

18. Add the following styles to BalloonShop.css:

Darie-Watson_4681C08.fm Page 256 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 257

.Grid
{
 border-color: #E7E7FF;
 width: 100%;
}
.GridHeader
{
 color: White;
 background-color: Navy;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 11px;
 text-align: left;
}
.GridRow
{
 color: Navy;
 background-color: #E7E7FF;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 11px;
 text-align: left;
}
.GridEditingRow
{
 color: Navy;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 11px;
 text-align: left;
}
.GridAlternateRow
{
 color: Navy;
 background-color: #F7F7F7;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: none;
 font-size: 11px;
 text-align: left;
}

19. Execute your project again to make sure your new skin and styles are in effect, as shown in Figure 8-19.
Feel free to change your skin and styles files until the grid looks like you want it to.

Darie-Watson_4681C08.fm Page 257 Monday, September 19, 2005 9:55 AM

258 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-19. Executing CatalogAdmin.aspx with skins and styles

20. Now that everything looks good, you can implement the functionality by writing the event handlers for
the Edit, View Categories, and Delete buttons. You’ll start with the row editing functionality. Open
DepartmentsAdmin.ascx in Design View and select the GridView control.

Figure 8-20. Using Visual Web Developer to generate new event handlers

21. In the Properties window, double-click the RowEditing entry (as shown in Figure 8-20). Visual Web
Developer generates the grid_RowEditing event handler for you in the code-behind file, This method
is executed when the visitor clicks the Edit button in the grid, and it must enable edit mode for that row.
Modify the code in grid_RowEditing like this:

Darie-Watson_4681C08.fm Page 258 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 259

// Enter row into edit mode
protected void grid_RowEditing(object sender, GridViewEditEventArgs e)
{
 // Set the row for which to enable edit mode
 grid.EditIndex = e.NewEditIndex;
 // Set status message
 statusLabel.Text = "Editing row # " + e.NewEditIndex.ToString();
 // Reload the grid
 BindGrid();
}

22. While in edit mode, instead of the Edit button, the GridView places two buttons: Update and Cancel.
To make editing functional, you need to supply code that reacts when these buttons are clicked.
Let’s start with the code that deals with the Cancel button. Follow the same procedure to generate
grid_RowCancelingEdit and complete its code like this:

// Cancel edit mode
protected void grid_RowCancelingEdit(object sender,
GridViewCancelEditEventArgs e)
{
 // Cancel edit mode
 grid.EditIndex = -1;
 // Set status message
 statusLabel.Text = "Editing canceled";
 // Reload the grid
 BindGrid();
}

Now you have functional Edit and Cancel buttons. When the Edit button is clicked, the grid enters into
edit mode, as shown in Figure 8-21.

Figure 8-21. Editing department information

■Note The problem with automatically generated editing controls is that they aren’t configurable, unless
transformed to template columns. You’ll do this later in a separate exercise for the department description
column, where the edit text box needs to be larger than the default size.

23. When the Update button is clicked, a RowUpdating event is raised. Generate its event handler like you
did for the other two. Now add the following code for these two events:

Darie-Watson_4681C08.fm Page 259 Monday, September 19, 2005 9:55 AM

260 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

// Update row
protected void grid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{
 // Retrieve updated data
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 string name = ((TextBox)grid.Rows[e.RowIndex].Cells[0].Controls[0]).Text;
 string description = ((TextBox)grid.Rows[e.RowIndex].
Cells[1].Controls[0]).Text;
 // Execute the update command
 bool success = CatalogAccess.UpdateDepartment(id, name, description);
 // Cancel edit mode
 grid.EditIndex = -1;
 // Display status message
 statusLabel.Text = success ? "Update successful" : "Update failed";
 // Reload the grid
 BindGrid();
}

24. Finally, here’s the code for the DeleteCommand event handler. Let Visual Web Developer generate its
signature for you, and then add the following code:

// Delete a record
protected void grid_RowDeleting(object sender, GridViewDeleteEventArgs e)
{
 // Get the ID of the record to be deleted
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 // Execute the delete command
 bool success = CatalogAccess.DeleteDepartment(id);
 // Cancel edit mode
 grid.EditIndex = -1;
 // Display status message
 statusLabel.Text = success ? "Delete successful" : "Delete failed";
 // Reload the grid
 BindGrid();
}

25. The last bit of code to write in this exercise consists of adding the addDepartmentButton_Click
event handler method. Generate its signature by double-clicking the Add button in the Design View
window and complete the code like this:

// Create a new department
protected void createDepartment_Click(object sender, EventArgs e)
{
 // Execute the insert command
 bool success = CatalogAccess.AddDepartment(newName.Text,

Darie-Watson_4681C08.fm Page 260 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 261

newDescription.Text);
 // Display status message
 statusLabel.Text = success ? "Insert successful" : "Insert failed";
 // Reload the grid
 BindGrid();
}

■Tip The presentation tier should do input validation when possible—for example, you can check whether
the department name and description are valid before trying to add them to the database. Later in this chapter,
you’ll learn how to implement validation using the .NET validator controls.

How It Works: DepartmentsAdmin.ascx

Be sure to test that the new features are functional. Try to add a new department, rename it, and then delete it.

This is the first exercise in which you worked with a GridView control, and it’s important to understand how this
complex control works. The GridView control is smart enough to be aware of the columns it reads from the data
source and display them to the user. Moreover, as you saw when writing the code, you just tell the grid what row you
want to enter edit mode, and it automatically transforms the labels into text boxes.

The GridView control supports a number of built-in column types: BoundField, CheckBoxField, HyperLinkField,
ButtonField, CommandField, ImageField, and TemplateField. The last one, TemplateField, really lets
you write your own HTML code for that column, whereas the others have predefined behavior. In this example, you
met some of these column types, but you’ll get to work with all of them by the end of this chapter!

BoundField is the most usual field type, simply reading the value from the database and displaying it in the grid.
Each column type has a number of options you can set that affect its behavior. The most common options are shown
in the Add New Column dialog box that you used to add your fields, but you can access more of their properties by
clicking GridView’s Smart Link and choosing the Edit Columns entry.

To change the default look of the GridView, you have three main options: You can use the Auto Format feature of
the grid (accessible by clicking the Smart Link), you can transform the columns into template columns and edit their
format manually, or you can use skins. For this case, we chose to create a default skin for the GridView, because
it offers the maximum efficiency with the least effort. Default skins apply to all controls of that kind in a web site, so
your work will also be much easier when creating other grids later in this book. If you want to have more skins for
a certain type of control, you need to create named skins by adding a SkinID property to their definition. However,
here we preferred to build a default skin to format all the grids in BalloonShop in an identical way.

The simplest way to create a skin is to create a control instance using the designer, rip the unnecessary details, and
copy what remains to the .skin file. For BalloonShop, we used styles from the CSS file in the skin, in an effort to
keep all the site’s colors in one place.

Your new C# code deals with the GridView control. For example, to enter a row into edit mode, you just need to set
the GridView’s EditItemIndex property to the index of the column you want to change in the EditCommand
event handler method:

Darie-Watson_4681C08.fm Page 261 Monday, September 19, 2005 9:55 AM

262 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

// Enter row into edit mode
protected void grid_RowEditing(object sender, GridViewEditEventArgs e)
{
 // Set the row for which to enable edit mode
 grid.EditIndex = e.NewEditIndex;
 // Set status message
 statusLabel.Text = "Editing row # " + e.NewEditIndex.ToString();
 // Reload the grid
 BindGrid();
}

The RowEditing event handler receives a GridViewEditEventArgs object named e, which contains, among
other details, the index of the row on which the Edit button was clicked (e.NewItemIndex). You use this value to
inform the GridView to enter in edit mode for that row. You take similar action in the CancelCommand event
handler, where you cancel edit mode by setting GridView’s EditIndex to -1. The way these two event handlers
work is fairly standard.

The methods that modify data (the event handlers for the Update and Delete buttons) need to read information from
the data grid and the ID of the item on which the action happens. Because delete and update operations are based
on departments’ IDs, you need to obtain somehow the ID of the department to be updated or deleted. The problem
is that you can’t extract DepartmentID from the visible part of the GridView, because we chose not to display it
for the user (it’s a low-level detail, useless for the user).

So, how do you know the ID associated with a GridView row? Fortunately, the designers of the GridView control
anticipated this problem and added a DataKeyNames property to the GridView, which can hold one or more keys
for each row in the grid. When creating the grid, you set its DataKeyNames property to DepartmentID, causing
the grid to retain the ID of each loaded department.

The code in grid_RowUpdating demonstrates how to get the ID of the row that is about to updated:

// Update row
protected void grid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{
 // Retrieve updated data
 string id = grid.DataKeys[e.RowIndex].Value.ToString();

The rest of the code shows how to retrieve data from the rows of the GridView. Each row in the grid is a collection
of cells, and each cell is a collection of controls. Given that you know which control you are looking for, it becomes
a fairly easy job to get the name or description of a department. You read the first cell of the row to obtain the name
and the second cell to obtain the description. In both cases, you read the first control, which you convert to a
TextBox to be able to read the Text property.

 // Retrieve updated data
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 string name = ((TextBox)grid.Rows[e.RowIndex].Cells[0].Controls[0]).Text;
 string description = ((TextBox)grid.Rows[e.RowIndex].Cells[1].
Controls[0]).Text;

To make this functionality even clearer, take a look at the following code block, which reads the department’s name
from the grid, but in a step-by-step fashion:

Darie-Watson_4681C08.fm Page 262 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 263

protected void grid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{
 // Get the index of the row to be modified
 int rowIndex = e.RowIndex;
 // Get a reference to the row being updated
 GridViewRow gridViewRow = grid.Rows[rowIndex];
 // Get the first cell (one which contains the name)
 TableCell tableCell = gridViewRow.Cells[0];
 // Get the first control in the cell
 Control control = tableCell.Controls[0];
 // Access the control through a TextBox reference
 TextBox textBox = (TextBox)control;
 // Get the text from the TextBox
 string name = textBox.Text;

After the ID, new name, and new description of the department are known, the business tier is called to apply the
changes. The CatalogAccess.UpdateDepartment method returns a Boolean value specifying whether the
update was performed successfully, and then the status label is populated based on this value:

 // Execute the update command
 bool success = CatalogAccess.UpdateDepartment(id, name, description);
 // Cancel edit mode
 grid.EditIndex = -1;
 // Display status message
 statusLabel.Text = success ? "Update successful" : "Update failed";
 // Reload the grid
 BindGrid();
}

Customizing the GridView with Template Columns
In spite of the length of the exercise that you’ve just completed, you must admit that it was so
easy to implement the editable GridView! You added columns to the GridView using Visual Web
Developer’s interface and set its layout and colors using a skin. Right now, the code of your grid
in DepartmentsAdmin.ascx looks like this:

<asp:GridView ID="grid" runat="server" DataKeyNames="DepartmentID" Width="100%"
OnRowCancelingEdit="grid_RowCancelingEdit" OnRowDeleting="grid_RowDeleting"
OnRowEditing="grid_RowEditing" OnRowUpdating="grid_RowUpdating"
AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Department Name"
SortExpression="Name" />
 <asp:BoundField DataField="Description" HeaderText="Department Description"
SortExpression="Description" />
 <asp:HyperLinkField DataNavigateUrlFields="DepartmentID"

Darie-Watson_4681C08.fm Page 263 Monday, September 19, 2005 9:55 AM

264 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

DataNavigateUrlFormatString="../CatalogAdmin.aspx?DepartmentID={0}"
 Text="View Categories" />
 <asp:CommandField ShowEditButton="True" />
 <asp:ButtonField CommandName="Delete" Text="Delete" />
 </Columns>
</asp:GridView>

The interesting aspect is that you can’t see any Label or TextBox controls, even though
GridView generates them when showing its data and when entering edit mode. The BoundField,
HyperLinkField, CommandField, and ButtonField columns take care of rendering themselves
without your intervention.

The problem with these automated controls is that you don’t have much flexibility with
how they show their data. Although you can use a number of techniques to format your GridView’s
styles, colors, or fonts (such as by using a skin), the only way to have complete access to the
HTML code your grid generates for a certain column is to transform that column to a template
column, instead of using predefined column types such as BoundField, HyperLinkField, and so on.

When using template columns, you need to manually supply the code for its templates.
You’ll do that in the following exercise, where you’ll enlarge the description editing TextBox
control.

■Note When transforming an existing field to a template field, its different display templates (such as the
editing template—EditItemTemplate or the normal display template—ItemTemplate) are automatically
generated for you so you won’t lose any functionality.

Exercise: Implementing a Template Column

1. Open DepartmentsAdmin.ascx in Design View, click GridView’s Smart Link and choose Edit
Columns. Select the Department Description field and click Convert this field into a TemplateField.

2. You’ll notice the panel on the right becomes empty, because now the GridView no longer takes care of
your column’s properties. Click OK.

3. Switch to Source View to see the generated code. The changes aren’t so drastic, but now instead of a
single line defining a BoundField entry, you can find a TemplateField entry containing the complete
code for the EditItemTeamplate and ItemTemplate templates. (Note that Visual Web Developer
smartly generated bound TextBox and Label controls in the two templates, so if you now execute
your project, you won’t lose any functionality.)

<asp:TemplateField HeaderText="Department Description"
SortExpression="Description">
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server" Text='<%# Bind("Description") %>'>
 </asp:Label>
 </ItemTemplate>

Darie-Watson_4681C08.fm Page 264 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 265

 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server"
Text='<%# Bind("Description") %>'>
 </asp:TextBox>
 </EditItemTemplate>
</asp:TemplateField>

4. While in Source View, change the name of the editing TextBox. Because you’ll need its name to access its
value from the code (when updating the departments’ details), it’s important to have a good name for it.
Change the control’s name from TextBox1 to descriptionTextBox:

 <asp:TextBox ID="descriptionTextBox" runat="server"
 Text='<%# Bind("Description") %>'></asp:TextBox>

5. After converting the description column to a TemplateField, you can edit its templates both in Source
View and in Design View. Switch to Design View, click GridView’s Smart Link, and choose Edit Templates.
Now, again using the Smart Link, you can choose which template to edit (see Figure 8-22).

Figure 8-22. Choosing a template to edit

6. To modify the text box that appears when editing a department, choose EditItemTemplate from the list.
Then, select the TextBox control and modify it to suit your preferences by using the Properties window (see
Figure 8-23). For this exercise, set its TextMode property to MultiLine, Width to 350px, and Height
to 70px:

Figure 8-23. Modifying the description editing text box

7. The last step is to change the code-behind file for updating department data. Locate this line in the
grid_RowUpdating method in DepartmentsAdmin.ascx.cs:

string description = ((TextBox)grid.Rows[e.RowIndex].
Cells[1].Controls[0]).Text;

Darie-Watson_4681C08.fm Page 265 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

266 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

8. Change this line to

string description = ((TextBox)grid.Rows[e.RowIndex].
FindControl("descriptionTextBox")).Text;

How It Works: Using Template Columns in the GridView Control

Execute the project and test the updated functionality to make sure that it still works. Template columns are useful
because they give you full control over how the column looks and behaves. In this exercise, you modified the
TextBox control used for editing the department description, but now you can use the same technique to change
any field in the table.

Because you can also change the names of the controls inside your template, you can now access them by name,
instead of by location:

string description = ((TextBox)grid.Rows[e.RowIndex].
FindControl("descriptionTextBox")).Text;

This piece of code demonstrates how to obtain a reference of the TextBox control named descriptionTextBox,
convert its Control reference to a TextBox reference, and extract its contents from there.

You’ll see some other examples of template columns later in this chapter when you’ll use CheckBox controls
instead of Labels and TextBoxes for displaying the value of True/False fields.

Administering Categories
The category administration bits are similar to what you did for departments, so we won’t need
to explain much this time. The main player in the whole categories administration part is the
CategoriesAdmin.ascx Web User Control, but first you need to write the data tier and business
tier code that will support its functionality.

Stored Procedures for Categories Administration
The three stored procedures that you need to add to your BalloonShop database are

• CreateCategory

• UpdateCategory

• DeleteCategory

The fourth stored procedure that you’ll use, GetCategories, already exists in the database.
Add these stored procedures covered in the following sections to the BalloonShop database.

CreateCategory

CreateCategory adds a new category to the database. Apart from the name and description of
the new category, you also need a DepartmentID, which specifies the department the category
belongs to. Note that you don’t need to (in fact, you can’t) specify a CategoryID because

Darie-Watson_4681C08.fm Page 266 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 267

CategoryID is an IDENTITY column in the Category table, and its value is automatically gener-
ated by the database when inserting a new record.

CREATE PROCEDURE CreateCategory
(@DepartmentID int,
@CategoryName varchar(50),
@CategoryDescription varchar(50))
AS
INSERT INTO Category (DepartmentID, Name, Description)
VALUES (@DepartmentID, @CategoryName, @CategoryDescription)

UpdateCategory

The UpdateCategory stored procedure updates the name and description of a category.

CREATE PROCEDURE UpdateCategory
(@CategoryID int,
@CategoryName varchar(50),
@CategoryDescription varchar(1000))
AS
UPDATE Category
SET Name = @CategoryName, Description = @CategoryDescription
WHERE CategoryID = @CategoryID

DeleteCategory

DeleteCategory deletes a certain category from the database. If the category has products that
belong to it, the database raises an error because the deletion affects the database integrity—
remember that you have implemented the One-to-Many relationship between Category and
Product tables using a foreign-key relationship back in Chapter 4. In this case, the error is
trapped in the business tier, which returns an error code to the presentation tier, which informs the
user that an error has occurred.

CREATE PROCEDURE DeleteCategory
(@CategoryID int)
AS
DELETE FROM Category
WHERE CategoryID = @CategoryID

Middle-Tier Methods for Categories Administration
Now you’ll write the methods of the CatalogAccess class that support the functionality required
by the CategoriesAdmin user control. These methods use the stored procedures mentioned
earlier to perform their functionality: GetCategories, CreateCategory, UpdateCategory, and
DeleteCategory.

Add these methods to your CatalogAccess class in CatalogAccess.cs:

Darie-Watson_4681C08.fm Page 267 Monday, September 19, 2005 9:55 AM

268 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

// Create a new Category
public static bool CreateCategory(string departmentId,
 string name, string description)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CreateCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@DepartmentID";
 param.Value = departmentId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryDescription";
 param.Value = description;
 param.DbType = DbType.String;
 param.Size = 1000;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

Darie-Watson_4681C08.fm Page 268 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 269

// Update category details
public static bool UpdateCategory(string id, string name, string description)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "UpdateCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryId";
 param.Value = id;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryDescription";
 param.Value = description;
 param.DbType = DbType.String;
 param.Size = 1000;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

Darie-Watson_4681C08.fm Page 269 Monday, September 19, 2005 9:55 AM

270 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

// Delete Category
public static bool DeleteCategory(string id)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "DeleteCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryId";
 param.Value = id;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure; an error will be thrown by the
 // database if the Category has related categories, in which case
 // it is not deleted
 int result = -1;
 try
 {
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

The CategoriesAdmin Web User Control
This exercise is very similar to the one in which you created the DepartmentsAdmin Web User
Control. The exercise mainly consists of preparing the GridView and the other constituent
controls and then implementing the code-behind functionality. Because you already have a
GridView skin, you won’t need to bother with that detail again here.

Exercise: Implementing CategoriesAdmin.ascx

1. Create a new Web User Control named CategoriesAdmin.ascx in the UserControls folder (make
sure the Place code in separate file option is checked).

2. Switch to Design View. From the toolbox, add two Label controls, a LinkButton and a GridView
control, as shown in Figure 8-24.

Darie-Watson_4681C08.fm Page 270 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 271

Figure 8-24. Creating CategoriesAdmin.ascx.

3. Set the properties for the controls as shown in Table 8-3.

4. Set the DataKeyNames property of the grid to CategoryID, the Width property to 100%, and the
AutoGenerateColumns property to False.

5. Add the controls for adding a new category manually. Switch to Source View and add the following code:

Create a new category in this department:
<table class="AdminPageText" cellspacing="0">.
 <tr>
 <td valign="top" width="100">Name:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newName"

Table 8-3. Setting the Properties for the Controls in CategoriesAdmin.ascx

Control Type ID Property Text Property CssClass
Property

Label statusLabel Categories Loaded AdminPageText

Label locationLabel Displaying categories for
department...

AdminPageText

LinkButton goBackLink (go back to departments) AdminPageText

GridView grid

Darie-Watson_4681C08.fm Page 271 Monday, September 19, 2005 9:55 AM

272 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td valign="top" width="100">Description:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newDescription"
Runat="server" Width="400px" Height="70px" TextMode="MultiLine"/>
 </td>
 </tr>
</table>
<asp:Button ID="createCategory" Text="Create Category" Runat="server"
CssClass="AdminButtonText" />.

At this point, your control should look like Figure 8-25.

Figure 8-25. CategoriesAdmin.ascx in Design View

6. Click the GridView’s Smart Link and use its Add New Column command to add fields with the
properties shown in Table 8-4 (leave the other properties to their defaults). .

Darie-Watson_4681C08.fm Page 272 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 273

7. The template field from the list is the View Products link, which you’re creating as a TemplateField
because the HyperLinkField isn’t flexible enough to generate the kind of link you need to create.
Switch to Source View and modify the code of the template field like this:

<asp:TemplateField>
 <ItemTemplate>
 <asp:HyperLink
 Runat="server" ID="link"
 NavigateUrl='<%# "../CatalogAdmin.aspx?DepartmentID=" + Request
.QueryString["DepartmentID"] + "&CategoryID=" + Eval("CategoryID")%>'
 Text="View Products">
 </asp:HyperLink>
 </ItemTemplate>
</asp:TemplateField>.

8. Transform the Category Description field into a template column, just like you did for the
description column in DepartmentsAdmin. Then, edit the column’s EditItemTemplate like this:

<asp:TemplateField HeaderText="Category Description"
SortExpression="Description">
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server" Text='<%# Bind("Description") %>'>
 </asp:Label>
 </ItemTemplate>.
 <EditItemTemplate>
 <asp:TextBox ID="descriptionTextBox" runat="server" TextMode="MultiLine"
Text='<%# Bind("Description") %>' Height="70px" Width="350px" />
 </EditItemTemplate>
</asp:TemplateField>

Switch to Design View and verify that your control looks like Figure 8-26.

Table 8-4. Setting GridView’s Field Properties

Column Type Header Text Data Field Other Properties

BoundField Category Name Name

BoundField Category Description Description

TemplateField

CommandField Select Edit/Update and
Show Cancel Button
check boxes

ButtonField Set Command Name to
Delete and set Text to
Delete

Darie-Watson_4681C08.fm Page 273 Monday, September 19, 2005 9:55 AM

274 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-26. CategoriesAdmin.ascx in Design View

9. Now you need to deal with the code-behind file. Use the techniques you already know to have
Visual Web Developer generate the method signatures for you, and write the following code to
CategoriesAdmin.ascx.cs:

protected void Page_Load(object sender, EventArgs e)
{
 // Load the grid only the first time the page is loaded
 if (!Page.IsPostBack)
 {
 // Load the categories grid
 BindGrid();
 // Get DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Obtain the department's name
 DepartmentDetails dd = CatalogAccess.GetDepartmentDetails(departmentId); .
 string departmentName = dd.Name;
 // Set the controls' properties
 statusLabel.ForeColor = System.Drawing.Color.Red;
 locationLabel.Text = "Displaying categories for department "
 + departmentName + "";
 }
}

Darie-Watson_4681C08.fm Page 274 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 275

// Populate the GridView with data
private void BindGrid()
{
 // Get DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Get a DataTable object containing the categories
 grid.DataSource = CatalogAccess.GetCategoriesInDepartment(departmentId);
 // Bind the data grid to the data source
 grid.DataBind();
}

// Enter row into edit mode
protected void grid_RowEditing(object sender, GridViewEditEventArgs e)
{
 // Set the row for which to enable edit mode
 grid.EditIndex = e.NewEditIndex;
 // Set status message
 statusLabel.Text = "Editing row # " + e.NewEditIndex.ToString();.
 // Reload the grid
 BindGrid();
}

// Cancel edit mode
protected void grid_RowCancelingEdit(object sender,
GridViewCancelEditEventArgs e)
{
 // Cancel edit mode
 grid.EditIndex = -1;
 // Set status message
 statusLabel.Text = "Editing canceled";
 // Reload the grid
 BindGrid();
}

// Update row
protected void grid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{
 // Retrieve updated data
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 string name = ((TextBox)grid.Rows[e.RowIndex].Cells[0].Controls[0]).Text;
 string description = ((TextBox)grid.Rows[e.RowIndex].FindControl
("descriptionTextBox")).Text;
 // Execute the update command
 bool success = CatalogAccess.UpdateCategory(id, name, description); .
 // Cancel edit mode
 grid.EditIndex = -1;

Darie-Watson_4681C08.fm Page 275 Monday, September 19, 2005 9:55 AM

276 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // Display status message
 statusLabel.Text = success ? "Update successful" : "Update failed";
 // Reload the grid
 BindGrid();
}

// Delete a record
protected void grid_RowDeleting(object sender, GridViewDeleteEventArgs e)
{
 // Get the ID of the record to be deleted
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 // Execute the delete command
 bool success = CatalogAccess.DeleteCategory(id);
 // Cancel edit mode
 grid.EditIndex = -1;
 // Display status message
 statusLabel.Text = success ? "Delete successful" : "Delete failed";.
 // Reload the grid
 BindGrid();
}

// Create a new category
protected void createCategory_Click(object sender, EventArgs e)
{
 // Get DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Execute the insert command
 bool success = CatalogAccess.CreateCategory(departmentId,
newName.Text, newDescription.Text);
 // Display results
 statusLabel.Text = success ? "Insert successful" : "Insert failed";
 // Reload the grid
 BindGrid();
}

// Redirect to the department's page
protected void goBackLink_Click(object sender, EventArgs e)
{
 Response.Redirect(Request.ApplicationPath + "/CatalogAdmin.aspx");
}

How It Works: CategoriesAdmin.ascx

Because this exercise was so similar to the exercise for administering departments, we won’t go into many
details here.

When creating the grid, the main difference was creating the View Products column as a TemplateField rather
than as a HyperLinkField. This is because a more complex link had to be created, which needed to include both
the CategoryID (from the data source) and the DepartmentID (from the query string).

Darie-Watson_4681C08.fm Page 276 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 277

 <asp:HyperLink
 Runat="server" ID="link"
 NavigateUrl='<%# "../CatalogAdmin.aspx?DepartmentID=" + Request
.QueryString["DepartmentID"] + "&CategoryID=" + Eval("CategoryID")%>'
 Text="View Products">
 </asp:HyperLink>

Note that we used the Eval function here, although the code automatically generated by Visual Web Developer uses
Bind. As far as your code is concerned, these functions have similar functionality, but in other circumstances, Bind
can be used to implement two-way data binding (we don’t use this feature in this book).

As far as the code in the code-behind file is concerned, compared to the code for administering departments, some-
times you need to read the DepartmentID parameter from the query string, which represents the ID of the
department for which you’re editing the categories.

You also have a LinkButton control that generates the link for going back to the main page. To implement its function-
ality, you composed the link to the main catalog admin page by reading the value of Request.ApplicationPath.

Administering Products
You’re now ready for the next major part of the catalog administration page: the place where
you edit the products that belong to the selected category. This one has a few more controls
than the others, as shown in Figure 8-27.

Figure 8-27. The products administration page

Darie-Watson_4681C08.fm Page 277 Monday, September 19, 2005 9:55 AM

278 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

The interface is a bit more complex, but the theory isn’t much more complicated. You just
need to display the products that belong to a selected category and allow the user to add new
products to that category. The product-deleting feature is offered via a separate page, so you
won’t see a Delete link here.

Stored Procedures for Products Administration
Three stored procedures support the user interface functionality: GetAllProductsIncategory,
CreateProduct, and UpdateProduct. The procedures are described in the following sections.

GetAllProductsInCategory

GetAllProductsInCategory is your admin stored procedure that returns the list of products in a
category and is a simplified version of GetProductsInCategory, which you created in Chapter 4.
Add the stored procedure to your BalloonShop database:

CREATE PROCEDURE GetAllProductsInCategory
(@CategoryID INT)
AS
SELECT Product.ProductID, Name, Description, Price, Image1FileName,
 Image2FileName, OnDepartmentPromotion, OnCatalogPromotion
FROM Product INNER JOIN ProductCategory
 ON Product.ProductID = ProductCategory.ProductID
WHERE ProductCategory.CategoryID = @CategoryID

CreateProduct

The CreateProduct stored procedure is called to create a new product and assign it to a cate-
gory. After adding the new product’s record to the Product table, you read the @@Identity value
to find out the generated ID, and then you assign this ID to the mentioned category. Add this
stored procedure to your BalloonShop database:

CREATE PROCEDURE CreateProduct
(@CategoryID INT,
 @ProductName VARCHAR(50),
 @ProductDescription VARCHAR(1000),
 @ProductPrice MONEY,
 @Image1FileName VARCHAR(50),
 @Image2FileName VARCHAR(50),
 @OnDepartmentPromotion BIT,
 @OnCatalogPromotion BIT)
AS
-- Declare a variable to hold the generated product ID
DECLARE @ProductID int
-- Create the new product entry

Darie-Watson_4681C08.fm Page 278 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 279

INSERT INTO Product
 (Name,
 Description,
 Price,
 Image1FileName,
 Image2FileName,
 OnDepartmentPromotion,
 OnCatalogPromotion)
VALUES
 (@ProductName,
 @ProductDescription,
 @ProductPrice,
 @Image1FileName,
 @Image2FileName,
 @OnDepartmentPromotion,
 @OnCatalogPromotion)
-- Save the generated product ID to a variable
SELECT @ProductID = @@Identity
-- Associate the product with a category
INSERT INTO ProductCategory (ProductID, CategoryID)
VALUES (@ProductID, @CategoryID)

This line of code is of particular importance:

SELECT @ProductID = @@Identity

Identity columns are automatically generated by the database. If you’ve ever wondered
how to determine which value has been generated for an identity column, here’s the answer:
the @@Identity system value. This needs to be saved into a variable immediately after the INSERT
command because its value is reset after other SQL statements execute. After you determine
which ID was generated for the new product, you can assign it to the category you received as
a parameter:

INSERT INTO ProductCategory (ProductID, CategoryID)
VALUES (@ProductID, @CategoryID)

UpdateProduct

The UpdateProduct stored procedure updates the information of a product:

CREATE PROCEDURE UpdateProduct
(@ProductID INT,
 @ProductName VARCHAR(50),
 @ProductDescription VARCHAR(5000),
 @ProductPrice MONEY,
 @Image1FileName VARCHAR(50),
 @Image2FileName VARCHAR(50),
 @OnDepartmentPromotion BIT,
 @OnCatalogPromotion BIT)

Darie-Watson_4681C08.fm Page 279 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

280 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

AS
UPDATE Product
SET Name = @ProductName,
 Description = @ProductDescription,
 Price = @ProductPrice,
 Image1FileName = @Image1FileName,
 Image2FileName = @Image2FileName,
 OnDepartmentPromotion = @OnDepartmentPromotion,
 OnCatalogPromotion = @OnCatalogPromotion
WHERE ProductID = @ProductID

Middle-Tier Methods for Products Administration
The methods you write here, GetAllProductsInCategory, CreateProduct, and UpdateProduct,
although long, are similar to what you have done so far.

What is important to note is the different error-handling strategies implemented in these
methods. In GetAllProductsInCategory (and in all the other Get... methods), we consider any
errors are important enough to be signaled to the user with an “oops” message, so we don’t
catch them in the business tier.

Errors with update- and create- type of methods are more likely due to bad input data, so
we prefer to signal with a “friendlier” error message instead of allowing the error to cause the
Oooops.aspx page to display. In these cases, we catch any potential exceptions to prevent them
from propagating, and we return the success value as a bool value. The presentation tier decides
what to tell the visitor depending on this value.

Add the following code to your CatalogAccess class:

// retrieve the list of products in a category
public static DataTable GetAllProductsInCategory(string categoryId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetAllProductsInCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";
 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure and save the results in a DataTable
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

Darie-Watson_4681C08.fm Page 280 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 281

// Create a new product
public static bool CreateProduct(string categoryId, string name, string description,
 string price, string image1FileName, string image2FileName,
string onDepartmentPromotion, string onCatalogPromotion)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CreateProduct";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";
 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductDescription";
 param.Value = description;
 param.DbType = DbType.AnsiString;
 param.Size = 5000;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductPrice";
 param.Value = price;
 param.DbType = DbType.Decimal;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Image1FileName";
 param.Value = image1FileName;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);

Darie-Watson_4681C08.fm Page 281 Monday, September 19, 2005 9:55 AM

282 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Image2FileName";
 param.Value = image2FileName;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@OnDepartmentPromotion";
 param.Value = onDepartmentPromotion;
 param.DbType = DbType.Boolean;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@OnCatalogPromotion";
 param.Value = onCatalogPromotion;
 param.DbType = DbType.Boolean;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result >= 1);
}

// Update an existing product
public static bool UpdateProduct(string productId, string name, string description,
string price, string image1FileName, string image2FileName, string
onDepartmentPromotion, string onCatalogPromotion)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "UpdateProduct";

Darie-Watson_4681C08.fm Page 282 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 283

 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductName";
 param.Value = name;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductDescription";
 param.Value = description;
 param.DbType = DbType.AnsiString;
 param.Size = 5000;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductPrice";
 param.Value = price;
 param.DbType = DbType.Decimal;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Image1FileName";
 param.Value = image1FileName;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Image2FileName";
 param.Value = image2FileName;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);

Darie-Watson_4681C08.fm Page 283 Monday, September 19, 2005 9:55 AM

284 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@OnDepartmentPromotion";
 param.Value = onDepartmentPromotion;
 param.DbType = DbType.Boolean;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@OnCatalogPromotion";
 param.Value = onCatalogPromotion;
 param.DbType = DbType.Boolean;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

■Note The product description is sent as a DbType.AnsiString parameter because DbType.String
stores Unicode characters and only supports strings up to 4,000 characters.

The ProductsAdmin Web User Control
More data to display means more columns to add to your grid and more controls to add for
creating a new product. In this exercise you’ll also work with new types of grid columns:
CheckBoxField and ImageField.

Darie-Watson_4681C08.fm Page 284 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 285

Exercise: Implementing ProductsAdmin.ascx

1. Create a new Web User Control named ProductsAdmin.ascx in the UserControls folder. Make
sure the Create code in a separate file option is checked and that the language is Visual C#.

2. Switch to Design View and add two Label controls, a LinkButton and a GridView, as shown in
Figure 8-28.

Figure 8-28. ProductsAdmin.ascx in Design View

3. Change the properties of the controls to the values in Table 8-5.

4. Change the DataKeyNames property of the GridView to ProductID, the Width property to 100%,
and the AutoGenerateColumns property to False. Right now, the control should look like Figure 8-29
when viewed in Design View. Remember that the CSS styles don’t apply when designing the form, only
when it is executed.

Table 8-5. Setting the Properties of the Controls in ProductsAdmin.ascx

Control Type ID Property Text Property CssClass Property

Label statusLabel Products Loaded AdminPageText

Label locationLabel Displaying products
for category...

AdminPageText

LinkButton goBackLink (go back to categories) AdminPageText

GridView grid

Darie-Watson_4681C08.fm Page 285 Monday, September 19, 2005 9:55 AM

286 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-29. ProductsAdmin.ascx in Design View

5. Create the columns described in Table 8-6 by clicking the GridView’s Smart Link and then clicking
Add New Column.

■Note You didn’t add a Delete button to the GridView because you’ll implement this functionality later, in
the product details page.

Table 8-6. GridView Field Properties

Column Type Header Text Data Field Other Properties

ImageField Product Image Image1FileName Read Only; URL
format string: ../
ProductImages/{0}

BoundField Product Name Name

BoundField Product
Description

Description

BoundField Price Price

BoundField Image1 File Image1FileName

BoundField Image2 File Image2FileName

CheckBoxField Dept. prom. OnDepartmentPromotion

CheckBoxField Cat. prom. OnCatalogPromotion

TemplateField

CommandField Select Edit/Update
and Show Cancel
Button check boxes

Darie-Watson_4681C08.fm Page 286 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 287

6. In the next few steps, you’ll transform all editable columns into template columns, to change the way
they look when being edited (otherwise, they won’t fit nicely on the screen). Moreover, you’ll want to
make other usability improvements such as enlarging the description text box to be multiline, or changing
the format of product prices. Start with updating the product name by transforming the product name
column into a template column and modifying its EditItemTemplate as shown:

 <EditItemTemplate>
 <asp:TextBox ID="nameTextBox" runat="server" Width="97%"
 CssClass="GridEditingRow" Text='<%# Bind("Name") %>'>
 </asp:TextBox>
 </EditItemTemplate>

7. Transform the product description field into a template field and then edit its EditItemTemplate in
Source View:

 <EditItemTemplate>
 <asp:TextBox ID="descriptionTextBox" runat="server"
 Text='<%# Bind("Description") %>' Height="100px" Width="97%"
 CssClass="GridEditingRow" TextMode="MultiLine" />
 </EditItemTemplate>

8. Transform the product price field into a template field and edit its templates to format the price to be
displayed with two decimal digits (as 19.99), instead of the default of four decimal digits (19.9900). In
this case, you can also make its editing text box shorter to make better use of the space on the screen
when entering edit mode:

<asp:TemplateField HeaderText="Price" SortExpression="Price">
 <ItemTemplate>
 <asp:Label ID="Label2" runat="server"
 Text='<%# String.Format("{0:0.00}", Eval("Price")) %>'>
 </asp:Label>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID="priceTextBox" runat="server" Width="45px"
 Text='<%# String.Format("{0:0.00}", Eval("Price")) %>'>
 </asp:TextBox>
 </EditItemTemplate>
</asp:TemplateField>

9. Transform the first image field into a template field to shrink its edit text box a little bit, as highlighted in
the following code:

 <EditItemTemplate>
 <asp:TextBox ID="image1TextBox" Width="80px" runat="server"
 Text='<%# Bind("Image1FileName") %>'></asp:TextBox>
 </EditItemTemplate>

10. Transform the second image field into a template field and set its editing TextBox’s width to 80px and
its name to image2TextBox, similar to what you did in the previous step.

Darie-Watson_4681C08.fm Page 287 Monday, September 19, 2005 9:55 AM

288 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

11. Edit the template of the last TemplateField column to contain a link to the product details page
(it must add a ProductID parameter to the query string):

<asp:TemplateField>
 <ItemTemplate>
 <asp:HyperLink
 Runat="server" Text="Select"
 NavigateUrl='<%# "../CatalogAdmin.aspx?DepartmentID=" +
Request.QueryString["DepartmentID"] + "&CategoryID=" +
Request.QueryString["CategoryID"] + "&ProductID=" +
Eval("ProductID") %>'
 ID="HyperLink1">
 </asp:HyperLink>
 </ItemTemplate>
</asp:TemplateField>

12. Now the GridView is ready. The final step for the user interface part is to create the controls for adding
a new product. Feel free to add them at the bottom of the page using Design View or simply write the
HTML code in Source View:

Create a new product and assign it to this category:
<table class="AdminPageText" cellspacing="0">
 <tr>
 <td width="100" valign="top">Name:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newName" Runat="server"
Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="100" valign="top">Description:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newDescription"
Runat="server" Width="400px" Height="70px" TextMode="MultiLine"/>
 </td>
 </tr>
 <tr>
 <td width="100" valign="top">Price:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newPrice" Runat="server"

Darie-Watson_4681C08.fm Page 288 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 289

Width="400px">0.00</asp:TextBox>
 </td>
 </tr>
 <tr>
 <td width="100" valign="top">Image1 File:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newImage1FileName"
Runat="server" Width="400px">Generic1.png</asp:TextBox>
 </td>
 </tr>
 <tr>
 <td width="150" valign="top">Image2 File:</td>
 <td>
 <asp:TextBox cssClass="AdminPageText" ID="newImage2FileName"
 Runat="server" Width="400px">Generic2.png</asp:TextBox>
 </td>
 </tr>
 <tr>
 <td width="150" valign="top">Dept. Promotion:</td>
 <td>
 <asp:CheckBox ID="newOnDepartmentPromotion" Runat="server" />
 </td>
 </tr>
 <tr>
 <td width="150" valign="top">Catalog Promotion:</td>
 <td>
 <asp:CheckBox ID="newOnCatalogPromotion" Runat="server" />
 </td>
 </tr>
</table>
<asp:Button ID="createProduct" CssClass="AdminButtonText"
 Runat="server" Text="Create Product" />

After all the changes, the user control should look Figure 8-30 when viewed in Design View:

Darie-Watson_4681C08.fm Page 289 Monday, September 19, 2005 9:55 AM

290 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-30. ProductsAdmin.ascx in Design View

13. Now it’s time to write the code. Remember to use Visual Web Developer to generate the event handler
signatures for you and modify their code, as shown in the following code listing:

protected void Page_Load(object sender, EventArgs e)
{
 // Load the grid only the first time the page is loaded
 if (!Page.IsPostBack)
 {
 // Get CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // Obtain the category's name
 CategoryDetails cd = CatalogAccess.GetCategoryDetails(categoryId);
 string categoryName = cd.Name;
 // Set controls' properties
 statusLabel.ForeColor = System.Drawing.Color.Red;
 locationLabel.Text = "Displaying products for category "
 + categoryName + "";

Darie-Watson_4681C08.fm Page 290 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 291

 // Load the products grid
 BindGrid();
 }
}

// Populate the GridView with data
private void BindGrid()
{
 // Get CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // Get a DataTable object containing the products
 grid.DataSource = CatalogAccess.GetAllProductsInCategory(categoryId);
 // Needed to bind the data bound controls to the data source
 grid.DataBind();
}

// Enter row into edit mode
protected void grid_RowEditing(object sender, GridViewEditEventArgs e)
{
 // Set the row for which to enable edit mode
 grid.EditIndex = e.NewEditIndex;
 // Set status message
 statusLabel.Text = "Editing row # " + e.NewEditIndex.ToString();
 // Reload the grid
 BindGrid();
}

// Cancel edit mode
protected void grid_RowCancelingEdit(object sender,
GridViewCancelEditEventArgs e)
{
 // Cancel edit mode
 grid.EditIndex = -1;
 // Set status message
 statusLabel.Text = "Editing canceled";
 // Reload the grid
 BindGrid();
}

// Update a product
protected void grid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{

Darie-Watson_4681C08.fm Page 291 Monday, September 19, 2005 9:55 AM

292 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // Retrieve updated data
 string id = grid.DataKeys[e.RowIndex].Value.ToString();
 string name = ((TextBox)grid.Rows[e.RowIndex].FindControl
("nameTextBox")).Text;
 string description = ((TextBox)grid.Rows[e.RowIndex].FindControl
("descriptionTextBox")).Text;
 string price = ((TextBox)grid.Rows[e.RowIndex].FindControl
("priceTextBox")).Text;
 string image1FileName = ((TextBox)grid.Rows[e.RowIndex].FindControl
("image1TextBox")).Text;
 string image2FileName = ((TextBox)grid.Rows[e.RowIndex].FindControl
("image2TextBox")).Text;
 string onDepartmentPromotion = ((CheckBox)grid.Rows[e.RowIndex].Cells[6].
Controls[0]).Checked.ToString();
 string onCatalogPromotion = ((CheckBox)grid.Rows[e.RowIndex].Cells[7]
.Controls[0]).Checked.ToString();
 // Execute the update command
 bool success = CatalogAccess.UpdateProduct(id, name, description, price,
image1FileName, image2FileName, onDepartmentPromotion, onCatalogPromotion);
 // Cancel edit mode
 grid.EditIndex = -1;
 // Display status message
 statusLabel.Text = success ? "Product update successful" :
"Product update failed";
 // Reload grid
 BindGrid();
}

// Create a new product
protected void createProduct_Click(object sender, EventArgs e)
{
 // Get CategoryID from the query string
 string categoryId = Request.QueryString["CategoryID"];
 // Execute the insert command
 bool success = CatalogAccess.CreateProduct(categoryId, newName.Text,
newDescription.Text, newPrice.Text, newImage1FileName.Text,
newImage2FileName.Text, newOnDepartmentPromotion.Checked.ToString(),
newOnCatalogPromotion.Checked.ToString());
 // Display status message
 statusLabel.Text = success ? "Insert successful" : "Insert failed";
 // Reload the grid
 BindGrid();
}

Darie-Watson_4681C08.fm Page 292 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 293

// Go back to the list of categories
protected void goBackLink_Click(object sender, EventArgs e)
{
 // Get DepartmentID from the query string
 string departmentId = Request.QueryString["DepartmentID"];
 // Redirect
 Response.Redirect(Request.ApplicationPath + "
/CatalogAdmin.aspx?DepartmentID=" + departmentId);
}

How It Works: ProductsAdmin.ascx

Most methods are similar to those you wrote for the previous controls, except this time you did more work to cus-
tomize their appearance, especially while in edit mode. Products can be updated or selected. The administrator can
change the product’s image using the product details admin page, which shows up when a product is selected in
the list. You’ll create the product details page next.

As usual, when selecting a product, you reload the form by adding its ID to the query string. ProductDetailsAdmin
allows you to assign the selected product to an additional category, to move the product to another category, to upload
a picture for the product, to remove the product from its category, or to remove the product from the database.

Administering Product Details
The products list you built earlier is wonderful, but it lacks a few important features. The final
control you’re implementing will take care of these missing features. ProductDetailsAdmin.
ascx will allow you to

• View the product’s pictures

• View which categories the product belongs to

• Remove the product from its category

• Remove the product from the database completely

• Assign the current product to an additional category

• Move the current product to another category

• Upload product pictures

Figure 8-31 shows how the control will look for the World’s Greatest Mom product.

Darie-Watson_4681C08.fm Page 293 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

294 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Figure 8-31. The product details admin page in action

When it comes to product removal, things aren’t straightforward: You can either unassign
the product from a category by removing the record from the ProductCategory table, or you can
effectively remove the product from the Product table. Because products are accessed in the
catalog by selecting a category, you must make sure there are no orphaned products (products
that don’t belong to any category), because they couldn’t be accessed using the current admin-
istration interface.

So, if you added a Delete button to the data grid, what kind of deletion would that button
have to do? Delete the product from the database? This would work, but it’s a bit awkward if
you have a product assigned to multiple categories, and you only want to remove it from a
single category. On the other hand, if the Delete button removes the product from the current
category, you can create orphaned products because they exist in the Product table. You could
fix that by allowing the site administrator to see the complete list of products without locating
them by department and category.

The simple solution implemented in this chapter is like that. If the product belongs to
more than one category, the Delete button unassigns the product from the current category. If
the product belongs to only one category, the product is first unassigned from the current cate-
gory and then also removed from the Product table.

Darie-Watson_4681C08.fm Page 294 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 295

Stored Procedures for Product Details Admin
Now you’ll add the following stored procedures to the BalloonShop database:

• GetCategoriesWithProduct

• GetCategoriesWithoutProduct

• AssignProductToCategory

• MoveProductToCategory

• RemoveProductFromCategory

• DeleteProduct

GetCategoriesWithProduct

The GetCategoriesWithProduct stored procedure returns a list of the categories that belong to
the specified product. Only their IDs and names are returned because this is the only information
we’re interested in.

CREATE PROCEDURE GetCategoriesWithProduct
(@ProductID int)
AS
SELECT Category.CategoryID, Name
FROM Category INNER JOIN ProductCategory
ON Category.CategoryID = ProductCategory.CategoryID
WHERE ProductCategory.ProductID = @ProductID

GetCategoriesWithoutProduct

The GetCategoriesWithoutProduct stored procedure returns a list of the categories that don’t
contain a specified product. This is the list of categories that the product can be moved or
assigned to.

CREATE PROCEDURE GetCategoriesWithoutProduct
(@ProductID int)
AS
SELECT CategoryID, Name
FROM Category
WHERE CategoryID NOT IN
 (SELECT Category.CategoryID
 FROM Category INNER JOIN ProductCategory
 ON Category.CategoryID = ProductCategory.CategoryID
 WHERE ProductCategory.ProductID = @ProductID)

AssignProductToCategory

The AssignProductToCategory stored procedure associates a product with a category by adding
a (ProductID, CategoryID) value pair to the ProductCategory table:

Darie-Watson_4681C08.fm Page 295 Monday, September 19, 2005 9:55 AM

296 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

CREATE PROCEDURE AssignProductToCategory
(@ProductID int, @CategoryID int)
AS
INSERT INTO ProductCategory (ProductID, CategoryID)
VALUES (@ProductID, @CategoryID)

Note that you don’t do any verification here. If an error occurs (because the entered
ProductID is not associated with any product or the ProductID, CategoryID pair already exists in
the ProductCategory table), it is trapped at the upper levels, and the administrator is notified.

Still, since we talked about the error-handling techniques, it’s worth noting that you can
make the stored procedure smart enough to do some validation before attempting to add the
(ProductID, CategorID) pair to ProductCategory table.

Following is a bulletproof version of the stored procedure that inserts the new record into
ProductCategory only if the received ProductID and CategoryID values are valid and the pair
doesn’t already exist in the database:

CREATE PROCEDURE AssignProductToCategory
(@ProductID int, @CategoryID int)
AS
IF EXISTS
 (SELECT Name
 FROM Product
 WHERE ProductID = @ProductID)
 AND EXISTS
 (SELECT Name
 FROM Category
 WHERE CategoryID = @CategoryID)
 AND NOT EXISTS
 (SELECT *
 FROM ProductCategory
 WHERE CategoryID = @CategoryID AND ProductID = @ProductID)
INSERT INTO ProductCategory (ProductID, CategoryID)
VALUES (@ProductID, @CategoryID)

We won’t use this version in practice because we prefer to be notified in case an illegal
association is attempted.

MoveProductToCategory

MoveProductToCategory is the stored procedure that moves a product from one category to
another:

CREATE PROCEDURE MoveProductToCategory
(@ProductID int, @OldCategoryID int, @NewCategoryID int)
AS
UPDATE ProductCategory
SET CategoryID = @NewCategoryID
WHERE CategoryID = @OldCategoryID
 AND ProductID = @ProductID

Darie-Watson_4681C08.fm Page 296 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 297

RemoveProductFromCategory

The RemoveProductFromCategory stored procedure verifies how many categories the product
exists in. If the product exists in more than one category, the stored procedure just removes the
product from the current category (ID received as a parameter). If the product is associated
with a single category, it is first removed from the category and then effectively deleted from
the database.

CREATE PROCEDURE RemoveProductFromCategory
(@ProductID int, @CategoryID int)
AS
DELETE FROM ProductCategory
WHERE CategoryID = @CategoryID AND ProductID = @ProductID

DeleteProduct

The DeleteProduct stored procedure verifies how many categories the product exists in. If the
product exists in more than one category, the stored procedure just removes the product from
the current category (ID received as a parameter). If the product is associated with a single category,
it is first removed from the category and then effectively deleted from the database.

CREATE PROCEDURE DeleteProduct
(@ProductID INT)
AS
DELETE FROM ProductCategory WHERE ProductID=@ProductID
DELETE FROM Product where ProductID=@ProductID

2 IN 1

Don’t add this new procedure to your database, but for your curiosity, here is a version of the previous two
stored procedures that completely deletes a product from the catalog if it belongs to a single category, or
simply removes it from the mentioned category if it belongs to more categories:

CREATE PROCEDURE DeleteProductFromCategoryOrFromCatalog
(@ProductID int, @CategoryID int)
AS
IF (SELECT COUNT(*) FROM ProductCategory WHERE ProductID=@ProductID)>1
 DELETE FROM ProductCategory
 WHERE CategoryID=@CategoryID AND ProductID=@ProductID
ELSE
 BEGIN
 DELETE FROM ProductCategory WHERE ProductID=@ProductID
 DELETE FROM Product where ProductID=@ProductID
 END

Darie-Watson_4681C08.fm Page 297 Monday, September 19, 2005 9:55 AM

298 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

Middle-Tier Methods for Product Details Admin
Add the following methods to the CatalogAccess class:

• GetCategoriesWithProduct gets the list of categories that are related to a specified product.

• GetCategoriesWithoutProduct returns the categories that do not contain the specified
product.

• AssignProductToCategory, MoveProductToCategory, and RemoveProductFromCategory do
what their names imply.

• DeleteProduct completely removes a product from the product catalog.

Add the following code to the CatalogAccess class:

// get categories that contain a specified product
public static DataTable GetCategoriesWithProduct(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetCategoriesWithProduct";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 return GenericDataAccess.ExecuteSelectCommand(comm);
}

// get categories that do not contain a specified product
public static DataTable GetCategoriesWithoutProduct(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetCategoriesWithoutProduct";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 return GenericDataAccess.ExecuteSelectCommand(comm);
}

Darie-Watson_4681C08.fm Page 298 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 299

// assign a product to a new category
public static bool AssignProductToCategory(string productId, string categoryId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "AssignProductToCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";
 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

// move product to a new category
public static bool MoveProductToCategory(string productId, string oldCategoryId,
 string newCategoryId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "MoveProductToCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";

Darie-Watson_4681C08.fm Page 299 Monday, September 19, 2005 9:55 AM

300 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@OldCategoryID";
 param.Value = oldCategoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@NewCategoryID";
 param.Value = newCategoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

// removes a product from a category
public static bool RemoveProductFromCategory(string productId, string categoryId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "RemoveProductFromCategory";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CategoryID";

Darie-Watson_4681C08.fm Page 300 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 301

 param.Value = categoryId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

// deletes a product from the product catalog
public static bool DeleteProduct(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "DeleteProduct";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // result will represent the number of changed rows
 int result = -1;
 try
 {
 // execute the stored procedure
 result = GenericDataAccess.ExecuteNonQuery(comm);
 }
 catch
 {
 // any errors are logged in GenericDataAccess, we ignore them here
 }
 // result will be 1 in case of success
 return (result != -1);
}

Darie-Watson_4681C08.fm Page 301 Monday, September 19, 2005 9:55 AM

302 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

The ProductDetailsAdmin Web User Control
You’ll implement the control in the following exercise.

Exercise: Implementing ProductDetailsAdmin.ascx

1. Create a new user control named ProductDetailsAdmin in the UserControls folder.

2. You need to add controls to the form, as shown in Figure 8-32. Here you meet for the first time the
FileUpload control.

Figure 8-32. The product details admin page

The following is the associated source code:

 <asp:Label ID="productNameLabel" runat="server" CssClass="AdminTitle" />
 <asp:HyperLink ID="goBackLink" runat="server">(go back to products)
</asp:HyperLink>

 <asp:Label ID="statusLabel" runat="server" CssClass="AdminPageText"
Text="Product Details Loaded" ForeColor="Red"></asp:Label>

Product belongs to these categories:
 <asp:Label ID="categoriesLabel" runat="server"></asp:Label>

Remove product from this category:
 <asp:DropDownList ID="categoriesListRemove" runat="server">
 </asp:DropDownList>
 <asp:Button ID="removeButton" runat="server" Text="Go!"

Darie-Watson_4681C08.fm Page 302 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 303

OnClick="removeButton_Click" />
 <asp:Button ID="deleteButton" runat="server" Text="DELETE FROM CATALOG"
OnClick="deleteButton_Click" />

Assign product to this category:
 <asp:DropDownList ID="categoriesListAssign" runat="server">
 </asp:DropDownList>
 <asp:Button ID="assignButton" runat="server" Text="Go!"
OnClick="assignButton_Click" />

 <asp:Label ID="moveLabel" runat="server" Text="Move product to this
 category:"/>
 <asp:DropDownList ID="categoriesListMove" runat="server" />
 <asp:Button ID="moveButton" runat="server" Text="Go!"
OnClick="moveButton_Click" />

Image1 file name:
 <asp:Label ID="image1FileNameLabel" runat="server" />
 <asp:FileUpload ID="image1FileUpload" runat="server" />
 <asp:Button ID="upload1Button" runat="server" Text="Upload" />

 <asp:Image ID="image1" runat="server" />

Image2 file name:
 <asp:Label ID="image2FileNameLabel " runat="server" />
 <asp:FileUpload ID="image2FileUpload" runat="server" />
 <asp:Button ID="upload2Button" runat="server" Text="Upload" />

 <asp:Image ID="image2" runat="server" />

3. Open the code-behind file and complete the ProductDetailsAdmin class, as shown in the code
snippet:

public partial class ProductDetailsAdmin : System.Web.UI.UserControl
{
 // store product, category and department IDs as class members
 private string currentProductId, currentCategoryId, currentDepartmentId;

 protected void Page_Load(object sender, EventArgs e)
 {
 // Get DepartmentID, CategoryID, ProductID from the query string
 // and save their values
 currentDepartmentId = Request.QueryString["DepartmentID"];
 currentCategoryId = Request.QueryString["CategoryID"];
 currentProductId = Request.QueryString["ProductID"];
 // Assign buttons to the combo boxes
 Utilities.TieButton(this.Page, categoriesListRemove, removeButton);
 Utilities.TieButton(this.Page, categoriesListAssign, assignButton);
 Utilities.TieButton(this.Page, categoriesListMove, moveButton);

Darie-Watson_4681C08.fm Page 303 Monday, September 19, 2005 9:55 AM

304 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // Fill the controls with data only on the initial page load
 if (!IsPostBack)
 {
 // Fill controls with data
 PopulateControls();
 }
 }

 // Populate the controls
 private void PopulateControls()
 {
 // Set the "go back to products" link
 goBackLink.NavigateUrl = Request.ApplicationPath +
 String.Format("/CatalogAdmin.aspx?DepartmentID={0}&CategoryID={1}",
 currentDepartmentId, currentCategoryId);
 // Retrieve product details and category details from database
 ProductDetails productDetails =
CatalogAccess.GetProductDetails(currentProductId);
 CategoryDetails categoryDetails =
CatalogAccess.GetCategoryDetails(currentCategoryId);
 // Set up labels and images
 productNameLabel.Text = productDetails.Name;
 moveLabel.Text = "Move product from category " +
categoryDetails.Name + " to this category: ";
 image1.ImageUrl = Request.ApplicationPath + "/ProductImages/" +
productDetails.Image1FileName;
 image2.ImageUrl = Request.ApplicationPath + "/ProductImages/" +
productDetails.Image2FileName;
 // Clear form
 categoriesLabel.Text = "";
 categoriesListAssign.Items.Clear();
 categoriesListMove.Items.Clear();
 categoriesListRemove.Items.Clear();
 // Fill categoriesLabel and categoriesListRemove with data
 string categoryId, categoryName;
 DataTable productCategories =
CatalogAccess.GetCategoriesWithProduct(currentProductId);
 for (int i = 0; i < productCategories.Rows.Count; i++)
 {
 // obtain category id and name
 categoryId = productCategories.Rows[i]["CategoryId"].ToString();
 categoryName = productCategories.Rows[i]["Name"].ToString();
 // add a link to the category admin page
 categoriesLabel.Text += (categoriesLabel.Text == "" ? "" : ", ") +
 "<a href=\"" + Request.ApplicationPath + "/CatalogAdmin.aspx" +
 "?DepartmentID=" +

Darie-Watson_4681C08.fm Page 304 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 305

CatalogAccess.GetCategoryDetails(currentCategoryId).DepartmentId +
 "&CategoryID=" + categoryId + "\">" +
 categoryName + "";
 // populate the categoriesListRemove combo box
 categoriesListRemove.Items.Add(new ListItem(categoryName, categoryId));
 }
 // Delete from catalog or remove from category?
 if (productCategories.Rows.Count > 1)
 {
 deleteButton.Visible = false;
 removeButton.Enabled = true;
 }
 else
 {
 deleteButton.Visible = true;
 removeButton.Enabled = false;
 }
 // Fill categoriesListMove and categoriesListAssign with data
 productCategories = CatalogAccess.GetCategoriesWithoutProduct
(currentProductId);
 for (int i = 0; i < productCategories.Rows.Count; i++)
 {
 // obtain category id and name
 categoryId = productCategories.Rows[i]["CategoryId"].ToString();
 categoryName = productCategories.Rows[i]["Name"].ToString();
 // populate the list boxes
 categoriesListAssign.Items.Add(new ListItem(categoryName, categoryId));
 categoriesListMove.Items.Add(new ListItem(categoryName, categoryId));
 }
 }
}

4. Open ProductDetailsAdmin.ascx in Design View, double-click the first button (removeButton),
and then complete its Click event handler method like this:

 // Remove the product from a category
 protected void removeButton_Click(object sender, EventArgs e)
 {
 // Check if a category was selected
 if (categoriesListRemove.SelectedIndex != -1)
 {
 // Get the category ID that was selected in the DropDownList
 string categoryId = categoriesListRemove.SelectedItem.Value;
 // Remove the product from the category
 bool success = CatalogAccess.RemoveProductFromCategory

Darie-Watson_4681C08.fm Page 305 Monday, September 19, 2005 9:55 AM

306 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

(currentProductId, categoryId);
 // Display status message
 statusLabel.Text = success ? "Product removed successfully" :
"Product removal failed";
 // Refresh the page
 PopulateControls();
 }
 else
 statusLabel.Text = "You need to select a category";
 }

5. While in Design View, double-click the second button (deleteButton), and then complete its Click
event handler method like this:

 // delete a product from the catalog
 protected void deleteButton_Click(object sender, EventArgs e)
 {
 // Delete the product from the catalog
 CatalogAccess.DeleteProduct(currentProductId);
 // Need to go back to the categories page now
 Response.Redirect(Request.ApplicationPath + "/CatalogAdmin.aspx" +
 "?DepartmentID=" + currentDepartmentId +
 "&CategoryID=" + currentCategoryId);
 }

6. While in Design View, double-click the third button (assignButton), and then complete its Click
event handler method like this:

 // assign the product to a new category
 protected void assignButton_Click(object sender, EventArgs e)
 {
 // Check if a category was selected
 if (categoriesListAssign.SelectedIndex != -1)
 {
 // Get the category ID that was selected in the DropDownList
 string categoryId = categoriesListAssign.SelectedItem.Value;
 // Assign the product to the category
 bool success = CatalogAccess.AssignProductToCategory(currentProductId,
categoryId);
 // Display status message
 statusLabel.Text = success ? "Product assigned successfully" :
"Product assignation failed";
 // Refresh the page
 PopulateControls();
 }
 else
 statusLabel.Text = "You need to select a category";
 }

Darie-Watson_4681C08.fm Page 306 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 307

7. While in Design View, double-click the fourth button (moveButton), and then complete its Click
event handler method like this:

 // move the product to another category
 protected void moveButton_Click(object sender, EventArgs e)
 {
 // Check if a category was selected
 if (categoriesListMove.SelectedIndex != -1)
 {
 // Get the category ID that was selected in the DropDownList
 string newCategoryId = categoriesListMove.SelectedItem.Value;
 // Move the product to the category
 bool success = CatalogAccess.MoveProductToCategory(currentProductId,
currentCategoryId, newCategoryId);
 // If the operation was successful, reload the page,
 // so the new category will reflect in the query string
 if (!success)
 statusLabel.Text = "Couldn't move the product to the
specified category";
 else
 Response.Redirect(Request.ApplicationPath + "/CatalogAdmin.aspx" +
 "?DepartmentID=" + currentDepartmentId +
 "&CategoryID=" + newCategoryId +
 "&ProductID=" + currentProductId);
 }
 else
 statusLabel.Text = "You need to select a category";
 }

8. While in Design View, double-click the two Upload buttons and complete their Click event handler
code like this:

 // upload product's first image
 protected void upload1Button_Click(object sender, EventArgs e)
 {
 // proceed with uploading only if the user selected a file
 if (image1FileUpload.HasFile)
 {
 try
 {
 string fileName = image1FileUpload.FileName;
 string location = Server.MapPath("./ProductImages/") + fileName;
 // save image to server
 image1FileUpload.SaveAs(location);

Darie-Watson_4681C08.fm Page 307 Monday, September 19, 2005 9:55 AM

8213592a117456a340854d18cee57603

308 C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N

 // update database with new product details
 ProductDetails pd = CatalogAccess.GetProductDetails(currentProductId);
 CatalogAccess.UpdateProduct(currentProductId, pd.Name,
 pd.Description, pd.Price.ToString(), fileName, pd.Image2FileName,
pd.OnDepartmentPromotion.ToString(), pd.OnCatalogPromotion.ToString());
 // reload the page
 Response.Redirect(Request.ApplicationPath + "/CatalogAdmin.aspx" +
 "?DepartmentID=" + currentDepartmentId +
 "&CategoryID=" + currentCategoryId +
 "&ProductID=" + currentProductId);
 }
 catch
 {
 statusLabel.Text = "Uploading image 1 failed";
 }
 }
 }

 // upload product's second image
 protected void upload2Button_Click(object sender, EventArgs e)
 {
 // proceed with uploading only if the user selected a file
 if (image2FileUpload.HasFile)
 {
 try
 {
 string fileName = image2FileUpload.FileName;
 string location = Server.MapPath("./ProductImages/") + fileName;
 // save image to server
 image2FileUpload.SaveAs(location);
 // update database with new product details
 ProductDetails pd = CatalogAccess.GetProductDetails(currentProductId);
 CatalogAccess.UpdateProduct(currentProductId, pd.Name,
pd.Description, pd.Price.ToString(), pd.Image1FileName, fileName,
pd.OnDepartmentPromotion.ToString(), pd.OnCatalogPromotion.ToString());
 // reload the page
 Response.Redirect(Request.ApplicationPath + "/CatalogAdmin.aspx" +
 "?DepartmentID=" + currentDepartmentId +
 "&CategoryID=" + currentCategoryId +
 "&ProductID=" + currentProductId);
 }
 catch
 {
 statusLabel.Text = "Uploading image 2 failed";
 }
 }
 }

Darie-Watson_4681C08.fm Page 308 Monday, September 19, 2005 9:55 AM

C H A P T E R 8 ■ C A T A L O G A D M I N I S T R A T I O N 309

9. Test your new catalog admin page to see that everything works as expected.

How It Works: ProductDetailsAdmin.ascx

It’s worth taking a second look at the bits that are different from the previous exercises:

• The TieButton method tied the drop-down lists to their associated Go! buttons.

• The FileUpload control uploaded product pictures to the server. The code is pretty clear, so take a
closer look at the Click event handlers of the two Upload buttons to see how the FileUpload control
is used in practice.

• Various tests are made in the buttons’ Click event handlers to display accurate status messages to the
visitor. A novelty in this control is checking whether a value of the drop-down lists has been selected
before trying to read its value (this is useful especially in the situation when the list is empty).

• The DropDownList controls are populated in the PopulateControls method, and they are capable
of storing a key for each of their entries, similar to what the DataKeyNames property does for the
GridView. In our case, this key retains the IDs of the listed categories. You read this ID from the
DropDownList controls when the user tries to move, assign, or remove the product from a selected
category, by reading the SelectedItem.Value property of the list.

Summary
You’ve done a lot of coding in this chapter. You implemented five user controls, along with
their middle-tier methods and stored procedures for the data tier. You learned how to imple-
ment a simple authentication scheme so only administrators are allowed to access the catalog
administration page.

You made contact with the GridView, which is probably the most powerful web control
that comes packaged with the .NET Framework. You learned how to use GridView’s built-in
features for editing, selecting, updating, and deleting records. You also learned how to use
template columns to improve its functionality.

At the end of the chapter, you learned how to upload files from the client to the server
using ASP.NET.

Darie-Watson_4681C08.fm Page 309 Monday, September 19, 2005 9:55 AM

Darie-Watson_4681C08.fm Page 310 Monday, September 19, 2005 9:55 AM

311

■ ■ ■

C H A P T E R 9

Creating a Custom
Shopping Cart

Welcome to the second stage of development! At this stage, you start improving and adding
new features to the already existing, fully functional e-commerce site.

So, what can you improve about it? Well, the answer to this question isn’t that hard to find
if you take a quick look at the popular e-commerce sites on the web. They have user personal-
ization and product recommendations, they remember customers’ preferences, and they
boast many other features that make the site easy to remember and hard to leave without first
buying something.

Because in the first stage of development we extensively relied on a third-party payment
processor (PayPal), which supplied an integrated shopping cart, we didn’t record any shopping
cart or order info into the database. Right now, your site isn’t capable of displaying a list of
“most wanted” products or any other information about the products that have been sold
through the web site, because at this stage, you aren’t tracking the products sold. This makes it
impossible to implement any of the improvements listed earlier.

Obviously, saving order information into the database is your first priority and most of the
features you’ll want to implement next rely on having a record of the products sold. To achieve
this functionality, you’ll implement a custom shopping basket and a custom checkout.

In this chapter, you’ll implement the custom shopping basket, which stores its data in the
local BalloonShop database. This shopping basket provides you with more flexibility, compared to
the PayPal shopping basket over which you have no control and which cannot be saved into
your database for further processing and analysis.

In this chapter, you’ll build the shopping cart page (see Figure 9-1) and a shopping cart
summary control that shows up in every catalog page except the shopping cart page (see
Figure 9-2). You’ll also create a shopping cart administration page (see Figure 9-3), which
allows the administrator to delete old shopping cart records from the database to prevent the
database from growing indefinitely.

Darie-Watson_4681C09.fm Page 311 Tuesday, September 20, 2005 7:28 AM

312 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

You’ll also appreciate the error-handling features in both the shopping cart and the shop-
ping cart administration page. In the shopping cart, for example, serious errors cause the site
to display the Oooops! message, whereas less-serious messages are simply logged (if the site is
configured to log them in web.config), and the visitor is notified with a simple message. This
happens, for example, if the user tries to update the shopping cart with bogus values, such as
inserting a letter for the product quantity, and so on.

Figure 9-1. The BalloonShop Shopping Cart

Darie-Watson_4681C09.fm Page 312 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 313

Figure 9-2. BalloonShop displays a Shopping Cart Summary box

Figure 9-3. The Shopping Cart Administration Page

Darie-Watson_4681C09.fm Page 313 Tuesday, September 20, 2005 7:28 AM

314 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

At the end of this chapter, you’ll have a functional shopping basket, but the visitor won’t
be able to order the products contained in it yet. You’ll take care of that in the next chapter,
where you’ll implement a custom checkout, which includes adding the Proceed to Checkout
button and the functionality to administer current orders. When the visitor clicks this button,
the products in the shopping basket are saved as a separate order in the database, and the
visitor is redirected to a page where payments are taken. If you integrated the PayPal shopping
cart for the first development stage, starting with the next chapter, PayPal will only be used to
handle payments, and you won’t rely on its shopping cart any more.

Before moving to the details, let’s review what you’ll do in this chapter:

• Design a shopping cart

• Add new data structures to store shopping cart records

• Implement the business tier methods to work with the shopping cart

• Implement the cart summary control and the shopping cart page and integrate them
into the existing solution

• Create the shopping cart administration page

Designing the Shopping Cart
At this stage of the site, you won’t have any user-personalization features. You won’t store any
user data, and BalloonShop won’t know who buys the products. We’re just interested in having
temporary shopping carts that can be transformed into orders and paid for through a service
like PayPal when the visitors decide to buy the products. The payment service provider asks for
the customers’ data (such as credit card information) when they decide to buy your products.

When you add user-customization features in the later chapters, your task will be fairly
simple: When the visitor places an order, the visitor’s temporary (anonymous) shopping cart is
associated with the visitor’s account. Because you’ll still work with temporary shopping carts,
even after implementing the customer account system, the visitor still won’t be required to
supply additional information (log in or create an account) earlier than the checkout stage.

Probably the best way to store shopping cart information is to generate a unique cart ID
for each shopping cart and save it on the visitor’s computer as a cookie and as session data.
This way, even if the visitor has cookies disabled, the application can be configured to work
fine by just relying on the visitor’s session data. We’ll discuss more about cookies and the
session when we get to the business tier part.

Storing Shopping Cart Information
You’ll store all shopping cart items in a single table, named ShoppingCart. You can create the
new table by either following the steps in the next exercise or by simply executing the SQL
script from the Source Code area on the Apress web site.

Darie-Watson_4681C09.fm Page 314 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 315

Remember that you can also create your table and implement the relationship using data-
base diagrams, as shown in Chapter 4.

Follow the steps in the next exercise if you prefer to create your new table manually.

Exercise: Creating the ShoppingCart Table

1. In Database Explorer, expand your BalloonShop database, right-click on Tables, and choose Add
New Table.

2. Add this table to your BalloonShop database as shown in Figure 9-4.

Figure 9-4. Designing the ShoppingCart table

■Note You can use either smalldatetime or datetime for the DateAdded column. smalldatetime
stores the date with less precision than datetime, down to minutes, but occupies 4 bytes instead of 8.

3. Select both the CartID and ProductID fields and click the golden key symbol (or right-click and
select Set Primary Key) to create a composite primary key formed of these two fields.

4. Press Ctrl+S to save the table. Choose ShoppingCart for the name and click OK.

5. Add a foreign key by right-clicking the table and selecting Relationships.

6. Click Add to create a new relationship entry.

7. Select the Tables and Columns Specification (see Figure 9-5) and then click the “...” button.

Darie-Watson_4681C09.fm Page 315 Tuesday, September 20, 2005 7:28 AM

316 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Figure 9-5. Adding a new relationship

8. Complete the form that appears as shown in Figure 9-6.

Figure 9-6. Setting foreign key properties

9. Click OK and then click Close.

10. Save your table. Confirm the action when asked about applying changes to the Product and
ShoppingCart tables.

How It Works: The ShoppingCart Table

CartID is the unique ID you’ll generate for each shopping cart. Unlike the other unique identifiers you’ve seen so far,
this is not an integer field; instead, it’s a Char(36) field, which will be filled with a GUID string. A GUID (Globally Unique
Identifier) is a value guaranteed to be unique across time and space. Two generated GUIDs will never be the same. The
string representation of a GUID has 36 characters: The GUID itself is 32 bytes long, and its string representation also
contains 4 separating dashes. An example of a GUID is ff8029a7-91e2-4ca2-b4e7-99a7588be751.

Darie-Watson_4681C09.fm Page 316 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 317

■Tip When you know the exact length of the strings you’re storing in a table field, it’s better to use the Char
data type instead of VarChar.

The second field is ProductID, which, as expected, holds the ID of an existing product. To ensure that the cart
doesn’t hold any nonexistent products, you need to enforce the One-to-Many relationship between the ShoppingCart
and Product tables through a FOREIGN KEY constraint. The relationship is tied between the ProductID columns
in the ShoppingCart and Product tables.

■Note The primary key is formed from both the CartID and ProductID fields (a composite primary
key). This makes sense because a particular product can exist only once in a particular shopping cart, so a
(CartID, ProductID) pair shouldn’t appear more than once in the table. If the visitor adds a product more
than once, you just increase the Quantity value.

Each record in ShoppingCart also has a DateAdded field, which is automatically populated with the current date
when a new product is added to the cart and is useful when deleting old records.

■Tip Your implementation of the ShoppingCartAddItem procedure manually fills the DateAdded field
using the GETDATE function. Alternatively, you can specify GETDATE as the default value for the DateAdded
field.

Implementing the Data Tier
Because you have already created stored procedures in the previous chapters, we’ll move a bit
quicker this time. You need to add the following stored procedures to the BalloonShop database:

• ShoppingCartAddItem adds a product to a shopping cart.

• ShoppingCartRemoveItem deletes a record from the ShoppingCart table.

• ShoppingCartUpdateItem modifies a shopping cart record.

• ShoppingCartGetItems gets the list of products in the specified shopping cart.

• ShoppingCartGetTotalAmount returns the total cost of the products in the specified
product cart.

Darie-Watson_4681C09.fm Page 317 Tuesday, September 20, 2005 7:28 AM

318 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

ShoppingCartAddItem

ShoppingCartAddItem is called when the visitor clicks the Add to Cart button for one of the
products. If the selected product already exists in the shopping cart, its quantity is increased by
one; if the product doesn’t exist, a new record is added to the shopping cart.

Not surprisingly, the parameters ShoppingCartAddItem receives are CartID and ProductID.
The stored procedure first searches to determine whether the product mentioned (ProductID,
CartID) pair exists in the ShoppingCart table. If it does, the stored procedure updates the
current product quantity in the shopping cart by adding one unit. Otherwise, the procedure
creates a new record for the product in ShoppingCart with a default quantity of 1, but not before
checking whether the mentioned @ProductID is valid.

Add the following stored procedure to your BalloonShop database:

CREATE Procedure ShoppingCartAddItem
(@CartID char(36),
 @ProductID int)
AS
IF EXISTS
 (SELECT CartID
 FROM ShoppingCart
 WHERE ProductID = @ProductID AND CartID = @CartID)
 UPDATE ShoppingCart
 SET Quantity = Quantity + 1
 WHERE ProductID = @ProductID AND CartID = @CartID
ELSE
 IF EXISTS (SELECT Name FROM Product WHERE ProductID=@ProductID)
 INSERT INTO ShoppingCart (CartID, ProductID, Quantity, DateAdded)
 VALUES (@CartID, @ProductID, 1, GETDATE())

You use the GETDATE system function to retrieve the current date and manually populate
the DateAdded field, but you could set the GETDATE function as the default value of that field
instead.

ShoppingCartRemoveItem

Following is the stored procedure that removes a product from the shopping cart. This happens
when the visitor clicks the Remove button for one of the products in the shopping cart. Add the
ShoppingCartRemoveItem stored procedure to your BalloonShop database:

CREATE PROCEDURE ShoppingCartRemoveItem
(@CartID char(36),
 @ProductID int)
AS
DELETE FROM ShoppingCart
WHERE CartID = @CartID and ProductID = @ProductID

Darie-Watson_4681C09.fm Page 318 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 319

ShoppingCartUpdateItem

ShoppingCartUpdateItem is used when you want to update the quantity of an existing shopping
cart item. This stored procedure receives three values as parameters: @CartID, @ProductID, and
@Quantity.

If @Quantity is 0 or less, ShoppingCartUpdateItem calls ShoppingCartRemoveItem to remove
the mentioned product from the shopping cart. Otherwise, it updates the quantity of the
product in the shopping cart and updates DateAdded to accurately reflect the time the record
was last modified.

■Tip Updating the DateAdded field is important because the administrator can remove old shopping carts
from the database, and you don’t want to remove carts that were recently updated!

Add the ShoppingCartUpdateItem stored procedure to your BalloonShop database:

CREATE Procedure ShoppingCartUpdateItem
(@CartID char(36),
 @ProductID int,
 @Quantity int)
AS
IF @Quantity <= 0
 EXEC ShoppingCartRemoveItem @CartID, @ProductID
ELSE
 UPDATE ShoppingCart
 SET Quantity = @Quantity, DateAdded = GETDATE()
 WHERE ProductID = @ProductID AND CartID = @CartID

ShoppingCartGetItems

This stored procedure returns the ID, Name, Price, Quantity, and Subtotal for each product in
the shopping cart. Because the ShoppingCart table only stores the ProductID for each product it
stores, you need to join the ShoppingCart and Product tables to get the information you need.
Add the ShoppingCartGetItems stored procedure to your BalloonShop database:

CREATE PROCEDURE ShoppingCartGetItems
(@CartID char(36))
AS
SELECT Product.ProductID, Product.Name, Product.Price, ShoppingCart.Quantity,
 Product.Price * ShoppingCart.Quantity AS Subtotal
FROM ShoppingCart INNER JOIN Product
ON ShoppingCart.ProductID = Product.ProductID
WHERE ShoppingCart.CartID = @CartID

Darie-Watson_4681C09.fm Page 319 Tuesday, September 20, 2005 7:28 AM

320 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

■Note Subtotal is a calculated column. It doesn’t exist in any of the tables you joined, but it’s generated
using a formula, which in this case is the price of the product multiplied by its quantity. When sending back
the results, Subtotal is regarded as a separate column.

ShoppingCartGetTotalAmount

ShoppingCartGetTotalAmount returns the total value of the products in the shopping cart. This
is called when displaying the total amount for the shopping cart.

CREATE PROCEDURE ShoppingCartGetTotalAmount
(@CartID char(36))
AS
SELECT ISNULL(SUM(Product.Price * ShoppingCart.Quantity), 0)
FROM ShoppingCart INNER JOIN Product
ON ShoppingCart.ProductID = Product.ProductID
WHERE ShoppingCart.CartID = @CartID

■Note The ISNULL method is used to return 0 instead of a NULL total amount (this happens if the shopping
cart is empty). You must do this because the business tier expects to receive a numerical value as the amount.

This stored procedure is different from the others in that it returns a single value instead of
a result set. In the business tier, you’ll retrieve this value using the ExecuteScalar method of the
DbCommand object.

Implementing the Business Tier
You’ll write the business layer methods for the shopping cart in a separate class named
ShoppingCartAccess.

The ShoppingCartAccess class supports the functionality required for the presentation
layer of the shopping cart and calls the stored procedures you wrote earlier. For example, when
the visitor clicks the Add to Cart button, a method of the ShoppingCartAccess class named
AddProduct is called.

None of the methods receives a CartID parameter, which might appear strange because all
the stored procedures you’ve written so far require a CartID parameter. So, how does the AddItem
method know which CartID to send to the ShoppingCartAddItem stored procedure?

Generating Shopping Cart IDs
Your site needs to know the Cart ID of your visitor’s shopping cart to perform its shopping cart
functionality. You’ll create a property named shoppingCartId in the ShoppingCartAccess class,
which returns the cart ID of the current visitor. It’s important to understand how this latter
property works.

Darie-Watson_4681C09.fm Page 320 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 321

HTTP is, by its nature, a stateless protocol. Each individual client request is not associated
with any previous requests from the same user. ASP.NET has a number of built-in features that
overcome this problem, one of them being the session state that you’ve already met earlier in
this book.

When it comes to identifying the visitor that browses your site and keeping track of the
visitor’s unique shopping cart, the first thing that comes to mind is cookies.

COOKIES

Cookies are client-side pieces of information that are managed by the visitor’s browser; they are stored as
name-value pairs. Cookies have the advantages of not consuming server resources (because they are managed at
the client) and having configurable expiration. By saving data unique to your visitor in a cookie (such as the
visitor’s shopping cart ID), you can later find its ID by requesting the cookie from the client. Cookies are also
useful because you can set them to expire when the browser session ends (so a new shopping cart is created
every time the visitor comes back to the site), or they can be set to exist indefinitely on the client computer,
effectively allowing you to control how long the shopping cart is remembered by your application.

If you store the Cart ID in the visitor’s cookie, you’ll have access to it when the visitor
returns after a period of time. If the shopping cart cookie doesn’t exist, it can mean that the
visitor used your shopping cart for the first time, so you generate a new GUID and save it to the
cookie. If the cookie exists, you take the GUID from there and use the shopping cart associated
with it.

What about customers that have disabled (or whose browsers don’t support) cookies?
Well, the backup strategy is to also use the visitor’s session. ASP.NET’s session relies, by default,
on using cookies, but by changing a simple setting, you can enable cookieless session support.
An alternative option to support cookieless browsers is to append the session ID to the query
string, as many popular e-commerce web sites do. Both solutions have the same effect and
allow the customers to use your shopping cart even if their browsers don’t support cookies
(however, in this case, their shopping carts are lost if they close their browser session and
return after a while, unlike when using cookies).

SESSION

Session handling is a great ASP.NET feature that allows you to keep track of variables specific to a certain
visitor accessing the web site. While your visitor browses various pages of the web site, its session variables
are persisted by the web server, and the Web Application can keep track of certain visitor data by uniquely
identifying the visitor (you can track, for example, data such as the visitor ID or the visitor’s favorite back-
ground color, name, email address, and so on). The visitor’s session object stores pairs of values (variable
name, variable value) that are accessible for the entire visitor’s visit on your web site.

In ASP.NET, you can access the session data through the Session object. You can use this object to
preserve data between client requests. This data is stored on the server side and is not passed back and forth
during requests—only a session identifier is passed. This means that storing large quantities of data in the
visitor’s session occupies the server’s memory, but doesn’t increase network traffic. In this chapter, you’ll only
use the session to store the ID of your visitor’s shopping cart.

Darie-Watson_4681C09.fm Page 321 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

322 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

So, shoppingCartId is a read-only property that returns the CartID of the visitor for whom
the call has been made. In this property, you’ll use a cookie named BalloonShop_CartID and a
session variable with the same name to keep track of your visitor’s shopping cart records.

Let’s create the ShoppingCartAccess class and add its shoppingCartId property in the
following exercise.

Exercise: Preparing the ShoppingCartAccess Class

1. We prefer to store the number of days for the cookie expiration in the config file rather than in code,
so open web.config and add this configuration setting:

 <appSettings>
 <add key="CartPersistDays" value="10" />
 ...

■Note Setting the expiration time to 0 generates nonpersistent cookies (they are automatically deleted
when the visitor’s session ends).

2. You now need to operate changes in the BalloonShopConfiguration class to make your new property
easily accessible from the rest of the site. Start by adding a private field called cartPersistDays to
the BalloonShopConfiguration class, located in BalloonShopConfiguration.cs:

public static class BalloonShopConfiguration
{
 // Store the number of days for shopping cart expiration
 private readonly static int cartPersistDays;
 ...

3. Add a new line in the static constructor to initialize your new field:

 static BalloonShopConfiguration()
 {
 cartPersistDays =
 Int32.Parse(ConfigurationManager.AppSettings["CartPersistDays"]);
 ...

4. Add the following public property to return the configuration value:

 // Returns the number of days for shopping cart expiration
 public static int CartPersistDays
 {
 get
 {
 return cartPersistDays;
 }
 }

Darie-Watson_4681C09.fm Page 322 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 323

5. Now for the real code that deals with the visitor’s shopping cart. Right-click the App_Code folder in the
Solution Explorer and select Add New Item.

6. Select Class from the Templates window and name it ShoppingCartAccess.cs.

7. After the file is in place, add a reference to the System.Data.Common assembly and write the
shoppingCartId property as shown here:

using System.Data.Common;

/// <summary>
/// Supports Shopping Cart functionality
/// </summary>
public class ShoppingCartAccess
{
 public ShoppingCartAccess()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 // returns the shopping cart ID for the current user
 private static string shoppingCartId
 {
 get
 {
 // get the current HttpContext
 HttpContext context = HttpContext.Current;
 // try to retrieve the cart ID from the user session object
 string cartId = "";
 object cartIdSession = context.Session["BalloonShop_CartID"];
 if (cartIdSession != null)
 cartId = cartIdSession.ToString();
 // if the ID exists in the current session...
 if (cartId != "")
 // return its value
 return cartId;
 else
 // if the cart ID isn't in the session...
 {
 // check if the cart ID exists as a cookie
 if (context.Request.Cookies["BalloonShop_CartID"] != null)
 {
 // if the cart exists as a cookie, use the cookie to get its value
 cartId = context.Request.Cookies["BalloonShop_CartID"].Value;
 // save the id to the session, to avoid reading the cookie next time
 context.Session["BalloonShop_CartID"] = cartId;

Darie-Watson_4681C09.fm Page 323 Tuesday, September 20, 2005 7:28 AM

324 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

 // return the id
 return cartId;
 }
 else
 // if the cart ID doesn't exist in the cookie as well,
generate a new ID
 {
 // generate a new GUID
 cartId = Guid.NewGuid().ToString();
 // create the cookie object and set its value
 HttpCookie cookie = new HttpCookie("BalloonShop_CartID",
 cartId.ToString());
 // set the cookie's expiration date
 int howManyDays = BalloonShopConfiguration.CartPersistDays;
 DateTime currentDate = DateTime.Now;
 TimeSpan timeSpan = new TimeSpan(howManyDays, 0, 0, 0);
 DateTime expirationDate = currentDate.Add(timeSpan);
 cookie.Expires = expirationDate;
 // set the cookie on the client's browser
 context.Response.Cookies.Add(cookie);
 // save the ID to the Session as well
 context.Session["BalloonShop_CartID"] = cartId;
 // return the CartID
 return cartId.ToString();
 }
 }
 }
 }
}

How It Works: ShoppingCartAccess and Cart IDs

The strategy of the shoppingCartID property is something like this:

1. Check whether the CartID is stored in the session. If yes, use the found value.

2. If the CartID doesn’t exist in the session, try to load it from a cookie. This happens with customers that
return after a while and have cookies enabled. If the cookie is found, use its value and also save the
value to the session so next time it will be found from the first attempt, without needing to read the
cookie from the client again.

3. If the CartID doesn’t exist in the session or a cookie, generate a new GUID and save it to both the
session and the cookie, effectively creating a new shopping cart.

When you set an expiration time for the cookie, it becomes a persistent cookie and is saved as a file by the computer’s
browser. We set our cookie to expire in ten days, so the visitor’s shopping cart exists for ten days from the time it is
created. If an expiration date is not specified, the cookie is stored only for the current browser session.

Darie-Watson_4681C09.fm Page 324 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 325

What If the Visitor Doesn’t Like Cookies?
Using the session as a backup strategy “against” cookies isn’t enough to support cookieless
browsers because, by default, ASP.NET uses cookies to track session information.

To configure your web site to work with browsers that have cookies disabled, you need to
configure ASP.NET’s session to work without cookies. To do that, you need to open web.config
and make this change:

<sessionState
 mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
 cookieless="true"
 timeout="20" />

In cookieless mode, an ID for the session state is automatically saved by ASP.NET in the
query string:

http://localhost/BalloonShop/(vcmq0tz22y2okxzdq1bo2w45)/default.aspx

Unfortunately, this looks a bit ugly, but works without using cookies. Now it’s just a matter
of taste and knowledge of your customers to enable or disable this feature. We won't use this
feature in BalloonShop.

Implementing the Shopping Cart Access Functionality
You have five methods in the business tier that correspond to the five stored procedures you wrote
earlier. Add the methods presented in the following sections to the ShoppingCartAccess class.

AddItem

AddItem calls the ShoppingCartAddItem stored procedure. If the product already exists in the
shopping cart, its quantity is increased by one. Otherwise, the product is added with a default
quantity of one:

// Add a new shopping cart item
public static bool AddItem(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartAddItem";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();

Darie-Watson_4681C09.fm Page 325 Tuesday, September 20, 2005 7:28 AM

326 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // returns true in case of success or false in case of an error
 try
 {
 // execute the stored procedure and return true if it executes
 // successfully, or false otherwise
 return (GenericDataAccess.ExecuteNonQuery(comm) != -1);
 }
 catch
 {
 // prevent the exception from propagating, but return false to
 // signal the error
 return false;
 }
}

UpdateItem

UpdateItem calls the ShoppingCartUpdateItem stored procedure to change the quantity of a
product that already exists in the shopping cart:

// Update the quantity of a shopping cart item
public static bool UpdateItem(string productId, int quantity)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartUpdateItem";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Quantity";
 param.Value = quantity;

Darie-Watson_4681C09.fm Page 326 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 327

 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // returns true in case of success or false in case of an error
 try
 {
 // execute the stored procedure and return true if it executes
 // successfully, or false otherwise
 return (GenericDataAccess.ExecuteNonQuery(comm) != -1);
 }
 catch
 {
 // prevent the exception from propagating, but return false to
 // signal the error
 return false;
 }
}

RemoveItem

Now add the RemoveItem method, which causes the removal of one product from the customer’s
shopping cart:

// Remove a shopping cart item
public static bool RemoveItem(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartRemoveItem";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // returns true in case of success or false in case of an error
 try
 {

Darie-Watson_4681C09.fm Page 327 Tuesday, September 20, 2005 7:28 AM

328 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

 // execute the stored procedure and return true if it executes
 // successfully, or false otherwise
 return (GenericDataAccess.ExecuteNonQuery(comm) != -1);
 }
 catch
 {
 // prevent the exception from propagating, but return false to
 // signal the error
 return false;
 }
}

GetItems

GetItems retrieves all the products in the customer’s shopping cart. This is called from the
presentation tier when the visitor wants to view the cart:

// Retrieve shopping cart items
public static DataTable GetItems()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartGetItems";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // return the result table
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

GetTotalAmount

GetTotalAmount does exactly what its name suggests, and it’s a bit more interesting than the
others because it uses SqlCommand’s ExecuteScalar method, which we haven’t used so far. Add
it to the ShoppingCart class, and we’ll discuss the details:

// Retrieve shopping cart items
public static decimal GetTotalAmount()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartGetTotalAmount";

Darie-Watson_4681C09.fm Page 328 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 329

 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // return the result table
 return Decimal.Parse(GenericDataAccess.ExecuteScalar(comm));
}

Implementing the Presentation Tier
Okay, now that the foundation functionality is in place, you can add the presentation tier bits.
Building the user interface for the shopping cart functionality involves the following major steps:

• Creating Add to Cart buttons (refer to Figure 9-2)

• Showing shopping cart summary information in catalog pages (refer to Figure 9-2)

• Creating the actual shopping cart page (refer to Figure 9-1)

• Allowing the visitor to update product quantities in the shopping cart

• Implementing “Continue Shopping” functionality

Let’s deal with these tasks one by one.

Creating the Add to Cart Buttons
You can choose to have Add to Cart buttons only in the products details pages (Product.aspx),
in the product listings (ProductsList.ascx), or in both. Follow the steps in the following exercise
to add your buttons.

Exercise: Creating the Add to Cart Buttons

1. If you implemented the PayPal shopping cart in Chapter 7, you now need to remove the PayPal Add to
Cart buttons from Product.aspx. Open the file in HTML View and remove the following code:

Then remove the associated code from the PopulateControls method in Product.aspx.cs:

 // Create the "Add to Cart" PayPal link
 string link =
 "JavaScript: OpenPayPalWindow(\"https://www.paypal.com/

Darie-Watson_4681C09.fm Page 329 Tuesday, September 20, 2005 7:28 AM

330 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

cgi-bin/webscr" +
 "?cmd=_cart" + // open shopping cart command
 "&business=youremail@yourserver.com" + // your PayPal account
 "&item_name=" + pd.Name + // product name
 "&amount=" + String.Format("{0:0.00}", pd.Price) + // product price
 "¤cy=USD" + // currency
 "&add=1" + // quantity to add to the shopping cart
 "&return=www.yourwebsite.com" + // return address
 "&cancel_return=www.yourwebsite.com\")"; // cancel return address)
 // Encode the link characters to be included in HTML file
 string encodedLink = Server.HtmlEncode(link);
 // Set the link of the HTML Server Control
 addToCartLink.HRef = encodedLink;

2. Add the following style to BalloonShop.css. You’ll use it for your Add to Cart buttons.

.SmallButtonText
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 10px;
}

3. Add a button to the ItemTemplate of the DataList in ProductsList.ascx, just below the product
price. You can see the HTML code in the following snippet, but keep in mind that you can use the Edit
Template feature in Design View to generate at least part of the code. In any case, make sure you have
this button in the ItemTemplate:

 <%# Eval("Description") %>

 Price:

 <%# Eval("Price", "{0:c}") %>

 <asp:Button ID="addToCartButton" runat="server" Text="Add to Cart"
CommandArgument='<%# Eval("ProductID") %>' CssClass="SmallButtonText"/>
</td>

■Note Clicking a button in a DataList fires the DataList’s ItemCommand event. In the event handler,
you read the CommandArgument of the button, which contains the ID of the product that needs to be added
to the shopping cart.

Darie-Watson_4681C09.fm Page 330 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 331

4. Switch ProductsList.ascx to Design View, select the DataList control, and use the Properties
window to add the list’s ItemCommand event handler. Complete the generated code with the following code:

// fires when an Add to Cart button is clicked
protected void list_ItemCommand(object source, DataListCommandEventArgs e)
{
 // The CommandArgument of the clicked Button contains the ProductID
 string productId = e.CommandArgument.ToString();
 // Add the product to the shopping cart
 ShoppingCartAccess.AddItem(productId);
}

5. Now add the same functionality to Product.aspx. Open Product.aspx and add the following button
at the bottom of the page (note that this new button doesn’t have the CommandArgument property
set—this button isn’t part of a DataList, so you don’t need that kind of functionality this time).

 <asp:Button ID="addToCartButton" runat="server" Text="Add to Cart"
CssClass="SmallButtonText" />
</asp:Content>

6. Switch to Design View and double-click the button to have its Click event handler generated by Visual
Web Developer. Complete the method signature with the following code:

// Add the product to cart
protected void addToCartButton_Click(object sender, EventArgs e)
{
 // Retrieve ProductID from the query string
 string productId = Request.QueryString["ProductID"];
 // Add the product to the shopping cart
 ShoppingCartAccess.AddItem(productId);
}

How It Works: The Add to Cart Buttons

After making the changes, build the project (Ctrl+Shift+B) and then load the site to make sure the buttons appear
okay. Now click the Add to Cart button on one of the products on the site. If you don’t get any errors, the product was
probably successfully added to the shopping cart; right now, you can’t see this in the web site, because you still
need to implement functionality for viewing the shopping cart.

The ItemCommand event is raised by the DataList when one of its buttons is clicked. The CommandArgument
parameter of the Add to Cart buttons is populated with the product ID from the database. This ID is read from the
ItemCommand event handler, which passes it to ShoppingCart.AddProduct to have it added to the database.

Showing the Shopping Cart Summary
The shopping cart summary is implemented as a Web User Control named CartSummary.ascx.
You’ll use this control in the BalloonShop.master Master Page, so it shows up in every page that
implements it. However, you’ll write a bit of code in your control to make sure it doesn’t also

Darie-Watson_4681C09.fm Page 331 Tuesday, September 20, 2005 7:28 AM

332 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

appear in the shopping cart page, because you don’t want to show both the cart and its summary
on the same page.

Exercise: Showing the Shopping Cart Summary

1. Let’s start with the simple details. Add the following styles to BalloonShop.css:

.CartSummary
{
 border-right: #0468a4 2px solid;
 border-top: #0468a4 2px solid;
 border-left: #0468a4 2px solid;
 border-bottom: #0468a4 2px solid;
 background-color: snow;
 font-family: Arial;
 font-size: 9pt;
 color: Navy;
 padding-top: 3px;
 padding-left: 2px;
 padding-bottom: 5px;
}
a.CartLink
{
 color: Black;
 font-family: Arial;
 text-decoration: none;
 font-size: 12px;
}
a.CartLink:hover
{
 color: Red;
}

2. Add a new Web User Control to your UserControls folder, named CartSummary.ascx. Make sure
the language is Visual C# and that the Place code in separate file check box is checked.

3. Add the following code to CartSummary.ascx:

<table border="0" cellpadding="0" cellspacing="1" width="200">
 <tr>
 <td class="CartSummary">
 <asp:Label ID="cartSummaryLabel" runat="server" />
 <asp:HyperLink ID="viewCartLink" runat="server"
NavigateUrl="../ShoppingCart.aspx"
 CssClass="CartLink" Text="(view details)" />
 <asp:DataList ID="list" runat="server">
 <ItemTemplate>
 <%# Eval("Quantity") %> x <%# Eval("Name") %>

Darie-Watson_4681C09.fm Page 332 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 333

 </ItemTemplate>
 </asp:DataList>

 Total:

 <asp:Label ID="totalAmountLabel" runat="server" />

 </td>
 </tr>
</table>

4. Go to the control’s code-behind file (ShoppingCart.ascx.cs) and add the Page_Prerender function,
along with its PopulateControls helper function, like this:

// fill cart summary contents in the PreRender stage
protected void Page_PreRender(object sender, EventArgs e)
{
 PopulateControls();
}

// fill the controls with data
private void PopulateControls()
{
 // get the items in the shopping cart
 DataTable dt = ShoppingCartAccess.GetItems();
 // if the shopping cart is empty...
 if (dt.Rows.Count == 0)
 {
 cartSummaryLabel.Text = "Your shopping cart is empty.";
 totalAmountLabel.Text = String.Format("{0:c}", 0);
 viewCartLink.Visible = false;
 list.Visible = false;
 }
 else
 // if the shopping cart is not empty...
 {
 // populate the list with the shopping cart contents
 list.Visible = true;
 list.DataSource = dt;
 list.DataBind();
 // set up controls
 cartSummaryLabel.Text = "Cart summary ";
 viewCartLink.Visible = true;
 // display the total amount
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 totalAmountLabel.Text = String.Format("{0:c}", amount);
 }
}

Darie-Watson_4681C09.fm Page 333 Tuesday, September 20, 2005 7:28 AM

334 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

5. Because you’ll include the shopping cart summary control in the Master Page, normally it will show up
in every page of your web site. If you don’t want your shopping cart summary to show up when the
visitor is viewing the shopping cart page, add the following code to the CartSummary class in
CartSummary.ascx.cs:

// we don't want to display the cart summary in the shopping cart page
protected void Page_Init(object sender, EventArgs e)
{
 // get the current page
 string page = Request.AppRelativeCurrentExecutionFilePath;
 // if we're in the shopping cart, don't display the cart summary
 if (String.Compare(page, "~/ShoppingCart.aspx", true) == 0)
 this.Visible = false;
 else
 this.Visible = true;
}

6. The tough part’s over now. Build the project to ensure everything compiles okay.

7. Open BalloonShop.master in Source View and remove the code of the OpenPayPalWindow JavaScript
function, which is no longer necessary:

 <script language="JavaScript">
 <!--
...
...
...
 </script>

8. Also in BalloonShop.master, remove the code that generates the PayPal View Cart button:

<p align="center">

</p>

9. Switch BallonShop.master to Design View and then drag CartSummary.ascx from the Solution
Explorer to BalloonShop.master as shown in Figure 9-7.

10. Execute the project to ensure the shopping cart summary shows up as expected. Just don’t expect the
view details link to work, because you haven’t implemented the ShoppingCart.aspx file yet.

Darie-Watson_4681C09.fm Page 334 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 335

Figure 9-7. Adding the shopping cart summary control to the Master Page

How It Works: The Shopping Cart Summary

The important bit to understand here is the way we used the Page_PreRender method to populate the control
with data.

We used Page_PreRender instead of the Load event, because Load fires before the Click event of the Add to
Cart buttons, so the summary is updated before—not after—the cart is updated. PreRender, on the other hand,
fires later in the control life cycle, so we used it to ensure that the cart summary is properly updated.

To learn more about the life cycle of ASP.NET controls, see an advanced ASP.NET book.

Displaying the Shopping Cart
Finally, you’ve arrived at the shopping cart, your primary goal for this chapter. The shopping
cart is a Web Form named ShoppingCart.aspx, based on the BalloonShop.master Master Page.

Follow the steps in the next exercise to build your shopping cart page.

Darie-Watson_4681C09.fm Page 335 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

336 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Exercise: Implementing the Shopping Cart

1. Before starting to work on the shopping cart, let’s deal with a simple detail first. Add this style to your
BalloonShop.css file.

.ShoppingCartTitle
{
 color: Red;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 16px;
}

2. Right-click the project name in Solution Explorer and click Add New Item.

3. Select the Web Form template, write ShoppingCart.aspx for its name, make sure the language is
Visual C#, and select the two check boxes (Place code in separate file and Select master page),
as shown in Figure 9-8. Click Add.

Figure 9-8. Creating the ShoppingCart.aspx Web Form

4. Choose the BalloonShop.master file in the dialog box that opens and click OK.

5. If you prefer to work in Design View, create a form as shown in Figure 9-9, and set the controls’
properties as shown in Table 9-1.

Darie-Watson_4681C09.fm Page 336 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 337

Figure 9-9. ShoppingCart.aspx in Design View

6. Feel free to play with the control’s look to customize it according to your preferences. The source code
of your page should look something like this:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="ShoppingCart.aspx.cs" Inherits="ShoppingCart"
 Title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="contentPlaceHolder"

Table 9-1. Control Properties in ShoppingCart.ascx

Control Type ID Property Text Property CssClass Property

Label titleLabel Your Shopping Cart ShoppingCartTitle

Label statusLabel (empty) AdminPageText

GridView grid

Label totalAmountLabel ProductPrice

Button updateButton Update Quantities ButtonText

Button continueShoppingButton Continue Shopping ButtonText

Darie-Watson_4681C09.fm Page 337 Tuesday, September 20, 2005 7:28 AM

338 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Runat="Server">
 <asp:Label ID="titleLabel" runat="server"
 Text="Your Shopping Cart" CssClass="ShoppingCartTitle" />

 <asp:Label ID="statusLabel" CssClass="AdminPageText"
 ForeColor="Red" runat="server" />

 <asp:GridView ID="grid" runat="server">
 </asp:GridView>
 <table width="100%">
 <tr>
 <td>

 Total amount:

 <asp:Label ID="totalAmountLabel" runat="server"
 Text="Label" CssClass="ProductPrice" />
 </td>
 <td align="right">
 <asp:Button ID="updateButton" runat="server"
 Text="Update Quantities" CssClass="SmallButtonText" />
 </td>
 </tr>
 </table>

 <asp:Button ID="continueShoppingButton" runat="server"
 Text="Continue Shopping" CssClass="SmallButtonText" />

</asp:Content>

7. Now it’s time to deal with the GridView control. Set its AutoGenerateColumns property to false,
DataKeyNames to ProductID, Width to 100%, and BorderWidth to 0px.

8. In Design View, select the GridView, click the Smart Link, and choose Add New Column to add the
grid columns listed in Table 9-2.

Table 9-2. Setting the Properties of the GridView Control

Column Type Header Text Data Field Other Properties

BoundField Product Name Name Read Only

BoundField Price Price Read Only

TemplateField Quantity

BoundField Subtotal Subtotal Read Only

ButtonField Command name: Delete
Text: Delete
Button type: Button

Darie-Watson_4681C09.fm Page 338 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 339

■Note The Product Name, Price, and Subtotal columns are marked as read-only. If you transform them to
template fields, Visual Web Developer won’t generate their EditItemTemplate but only their
ItemTemplate. Also, they won’t be editable if the GridView enters edit mode (we don’t use this feature
here, however, but you know the functionality from Chapter 8, the administration chapter).

9. Click GridView’s Smart Link and choose Edit Columns. From the Selected Fields list, select Price
and set its DataFormatString property to {0:c}.

10. Do the same (set the DataFormatString to {0:c}) for the Subtotal field.

11. The Quantity field is a template field, so you need to fill its contents manually. Switch to Source View
and add the following TextBox to the ItemTemplate:

<asp:TemplateField HeaderText="Quantity">
 <ItemTemplate>
 <asp:TextBox ID="editQuantity" runat="server" CssClass="GridEditingRow"
 Width="24px" MaxLength="2" Text='<%#Eval("Quantity")%>' />
 </ItemTemplate>
</asp:TemplateField>

12. We want to use the SmallButtonText class for the Delete button. Switch to Design View, click the
grid’s Smart Link, and select Edit Columns. In the dialog box that opens, select the Delete field, expand
its ControlStyle property, and set the CssClass to SmallButtonText, as shown in Figure 9-10.

Figure 9-10. Choosing a style for the Delete button

13. Click OK to close the dialog box. Verify that the content area of your Web Form looks like Figure 9-11.

Darie-Watson_4681C09.fm Page 339 Tuesday, September 20, 2005 7:28 AM

340 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Figure 9-11. The content area of ShoppingCart.aspx in Design View

14. The visual part is ready. Open the code-behind file now (ShoppingCart.aspx.cs) and complete its
Page_Load method to populate the controls, as shown in the following code listing:

public partial class ShoppingCart : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // populate the control only on the initial page load
 if (!IsPostBack)
 PopulateControls();
 }

 // fill shopping cart controls with data
 private void PopulateControls()
 {
 // set the title of the page
 this.Title = BalloonShopConfiguration.SiteName + " : Shopping Cart";
 // get the items in the shopping cart
 DataTable dt = ShoppingCartAccess.GetItems();
 // if the shopping cart is empty...
 if (dt.Rows.Count == 0)
 {
 titleLabel.Text = "Your shopping cart is empty!";
 grid.Visible = false;
 updateButton.Enabled = false;
 totalAmountLabel.Text = String.Format("{0:c}", 0);
 }
 else
 // if the shopping cart is not empty...
 {

Darie-Watson_4681C09.fm Page 340 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 341

 // populate the list with the shopping cart contents
 grid.DataSource = dt;
 grid.DataBind();
 // setup controls
 titleLabel.Text = "These are the products in your shopping cart:";
 grid.Visible = true;
 updateButton.Enabled = true;
 // display the total amount
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 totalAmountLabel.Text = String.Format("{0:c}", amount);
 }
 }
}

How It Works: The ShoppingCart User Control

The steps in this exercise are probably familiar to you by now. You created a new Web Form and then added a
number of controls to it, including a GridView control, to which you added and formatted columns afterwards.

Feel free to execute the project, add a few products to the cart, and then click the (view details) link in the cart
summary. Your shopping cart should display your products nicely. It takes a couple of more exercises to make the
Update Quantities and Continue Shopping buttons functional.

Editing Product Quantities
You learned how to work with editable GridView controls in Chapter 9. However, this time you
won’t use GridView’s editing functionality, because you want to allow the visitor to update
several product quantities at once, not only record by record. Of course, if you prefer, you can
always implement the editing functionality just like you learned in Chapter 8, but in this chapter,
you’ll learn a new way of doing things.

Exercise: Editing Product Quantities

1. Open ShoppingCart.aspx in Design View, select the GridView, and use Visual Web Developer to
generate the RowDeleting event handler.

2. Complete the code as shown in the following code listing:

// remove a product from the cart
protected void grid_RowDeleting(object sender, GridViewDeleteEventArgs e)
{
 // Index of the row being deleted
 int rowIndex = e.RowIndex;
 // The ID of the product being deleted
 string productId = grid.DataKeys[rowIndex].Value.ToString();
 // Remove the product from the shopping cart
 bool success = ShoppingCartAccess.RemoveItem(productId);

Darie-Watson_4681C09.fm Page 341 Tuesday, September 20, 2005 7:28 AM

342 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

 // Display status
 statusLabel.Text = success ? "
Product successfully removed!
" :
 "
There was an error removing the product!
";
 // Repopulate the control
 PopulateControls();
}

3. In ShoppingCart.aspx, double-click the Update Quantities button and complete the automatically
generated code like this:

// update shopping cart product quantities
protected void updateButton_Click(object sender, EventArgs e)
{
 // Number of rows in the GridView
 int rowsCount = grid.Rows.Count;
 // Will store a row of the GridView
 GridViewRow gridRow;
 // Will reference a quantity TextBox in the GridView
 TextBox quantityTextBox;
 // Variables to store product ID and quantity
 string productId;
 int quantity;
 // Was the update successful?
 bool success = true;
 // Go through the rows of the GridView
 for (int i = 0; i < rowsCount; i++)
 {
 // Get a row
 gridRow = grid.Rows[i];
 // The ID of the product being deleted
 productId = grid.DataKeys[i].Value.ToString();
 // Get the quantity TextBox in the Row
 quantityTextBox = (TextBox)gridRow.FindControl("editQuantity");
 // Get the quantity, guarding against bogus values
 if (Int32.TryParse(quantityTextBox.Text, out quantity))
 {
 // Update product quantity
 success = success && ShoppingCartAccess.UpdateItem(productId, quantity);
 }
 else
 {
 // if TryParse didn't succeed
 success = false;
 }

Darie-Watson_4681C09.fm Page 342 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 343

 // Display status message
 statusLabel.Text = success ?
 "
Your shopping cart was successfully updated!
" :
 "
Some quantity updates failed! Please verify your cart!
";
 }
 // Repopulate the control
 PopulateControls();
}

How It Works: Editing Product Quantities

Yep, this was interesting all right. Allowing the visitor to edit multiple GridView entries at once is certainly very
useful. Take a close look at the code and make sure you understand how the GridView is parsed, how the proper
TextBox controls is found, and how its value is read. Then, the ShoppingCartAccess class is simply used to
update the product quantities.

When reading the values from the TextBox controls and converting them to integers, you use a new .NET 2.0
feature called TryParse. This static method of the Int32 class (you can find it in other similar classes, too) is
similar to Parse, but doesn’t throw an exception if the conversion cannot be done—which can easily happen if the
visitor enters a letter instead of a number in the quantity box, for example.

TryParse returns a bool value representing the success of the operation and returns the converted value as an
out parameter:

 // Get the quantity, guarding against bogus values
 if (Int32.TryParse(quantityTextBox.Text, out quantity))

The ShoppingCartAccess.UpdateItem method also returns a bool value specifying whether the update completed
successfully or not. Should either this method or TryParse return false, you set the value of the success
variable to false. If after processing all rows, the value of success is false, you inform the visitor that at least
one of the rows couldn’t be updated.

If ShoppingCartAccess.UpdateItem generates a database error for some reason, the error is logged using the
log mechanism that you implemented in Chapter 4 —if you enabled the error-handling routine, that is—because it
can be disabled by changing an option in web.config.

Adding “Continue Shopping” Functionality
Although you have the Continue Shopping button, at this point, it doesn’t do much. The steps
to make it work are presented in the next exercise.

Exercise: Implementing the Continue Shopping Button

1. Start editing ShoppingCart.ascx in Design View and double-click the Continue Shopping button.
This automatically creates the continueShoppingButton_Click method. Modify it like this:

Darie-Watson_4681C09.fm Page 343 Tuesday, September 20, 2005 7:28 AM

344 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

// Redirects to the previously visited catalog page
// (an alternate to the functionality implemented here is to
// Request.UrlReferrer, although that way you have no control over
// what pages you forward your visitor back to)
protected void continueShoppingButton_Click(object sender, EventArgs e)
{
 // redirect to the last visited catalog page, or to the
 // main page of the catalog
 object page;
 if ((page = Session["LastVisitedCatalogPage"]) != null)
 Response.Redirect(page.ToString());
 else
 Response.Redirect(Request.ApplicationPath);
}

2. Open BalloonShop.master.cs and modify it to save the current page location to the visitor’s session:

public partial class BalloonShop : System.Web.UI.MasterPage
{
 // Website pages considered to be "catalog pages" that the visitor
 // can "Continue Shopping" to
 private static string[] catalogPages = { "~/Default.aspx", "~/Catalog.aspx",
 "~/Search.aspx" };

 // Executes when any page based on this master page loads
 protected void Page_Load(object sender, EventArgs e)
 {
 // Don't perform any actions on postback events
 if (!IsPostBack)
 {
 /* Save the latest visited catalog page into the session
 to support "Continue Shopping" functionality */
 // Get the currently loaded page
 string currentLocation = Request.AppRelativeCurrentExecutionFilePath;
 // If the page is one we want the visitor to "continue shopping"
 // to, then save it to visitor's Session
 for (int i = 0; i < catalogPages.GetLength(0); i++)
 if (String.Compare(catalogPages[i], currentLocation, true) == 0)
 {
 // save the current location
 Session["LastVisitedCatalogPage"] = Request.Url.ToString();
 // stop the for loop from continuing
 break;
 }
 }
 }
}

Darie-Watson_4681C09.fm Page 344 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 345

3. Open Product.aspx and add a Continue Shopping button next to the existing Add to Cart button,
with the following properties:

4. In Design View, double-click the button to have its Click event handler generated for you, and complete its
code just as you did for the other Continue Shopping button:

// Redirects to the previously visited catalog page
protected void continueShoppingButton_Click(object sender, EventArgs e)
{
 // redirect to the last visited catalog page
 object page;
 if ((page = Session["LastVisitedCatalogPage"]) != null)
 Response.Redirect(page.ToString());
 else
 Response.Redirect(Request.ApplicationPath);
}

5. Execute the project and test your new Continue Shopping buttons!

How It Works: The Continue Shopping Button

Let’s take a good look at the functionality you’ve added to the Master Page. Because the BalloonShop.master
Master Page is used in all catalog pages, you can rely on it being called every time the visitor accesses a new
catalog page. When this happens, if the accessed page is from a list of predefined page names, this location is
saved to a session variable.

The list of predefined pages must contain the pages that the Continue Shopping button redirects the visitor to, and
they must not be pages that contain Continue Shopping buttons. Otherwise, the Continue Shopping button would
redirect the visitor to the page he or she is already visiting.

Note that instead of implementing this functionality, you can choose to use the value from Request.
UrlReferrer, which contains the page the visitor was previously browsing. This technique is simpler to imple-
ment because it doesn’t require you to add any code to the Master Page, but it doesn’t offer much control over what
page you are redirecting the visitor to. For example, if the visitor comes to BalloonShop from an external page, with
the implemented solution, the Continue Shopping button will redirect her to the main BalloonShop page.

Property Name Property Value

ID continueShoppingButton

CssClass SmallButtonText

Text Continue Shopping

Darie-Watson_4681C09.fm Page 345 Tuesday, September 20, 2005 7:28 AM

346 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Administering the Shopping Cart
Now that you’ve finished writing the shopping cart, you need to take two more things into
account, and both are related to administration issues:

• How to delete from the product catalog a product that exists in shopping carts.

• How to remove old shopping cart elements by building a simple shopping cart adminis-
tration page. This is important, because without this feature, the ShoppingCart table
keeps growing.

Deleting Products that Exist in Shopping Carts
The catalog administration pages offer the possibility to completely delete products from the
catalog. Before removing a product from the Product table, however, you need to remove
related records from the related tables first (otherwise, the foreign-key constraints in the data-
base won’t allow the action).

For example, look at the DeleteProduct stored procedure that first deletes all related
records from ProductCategory before deleting the Product record:

 DELETE FROM ProductCategory WHERE ProductID=@ProductID
 DELETE FROM Product where ProductID=@ProductID

Now the problem reappears with the ShoppingCart table: The Product and ShoppingCart
tables are tied through a FOREIGN KEY constraint on their ProductID fields. The database doesn’t
allow deleting products from Product that have related ShoppingCart records.

The solution is to update the DeleteProduct stored procedure to also remove all the refer-
ences to the product from the ShoppingCart table before attempting to delete it from the database.

Update the DeleteProduct stored procedure by executing this command (you can use the
same screen as the one where you create new procedures, or you can use SQL Express Manager):

ALTER PROCEDURE DeleteProduct
(@ProductID int, @CategoryID int)
AS
DELETE FROM ShoppingCart WHERE ProductID=@ProductID
DELETE FROM ProductCategory WHERE ProductID=@ProductID
DELETE FROM Product where ProductID=@ProductID

This way, the site administrators can (once again) remove products from the database.

Removing Old Shopping Carts
The second problem with the shopping cart is that at this moment no mechanism exists to
delete the old records from the ShoppingCart table. On a high activity web site with many users
and many shopping carts, the ShoppingCart table can grow very large.

With the default setting in web.config, shopping cart IDs are stored at the client browser
for ten days. As a result, you can assume that any shopping carts that haven’t been updated in
the last ten days are invalid and can be safely removed.

Darie-Watson_4681C09.fm Page 346 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 347

In the following exercise, you’ll quickly implement a simple shopping cart administration
page, where the administrator can see how many old shopping cart entries exist and can delete
them if necessary.

The most interesting aspect you need to understand is the logic behind the database
stored procedure that calculates the records that need to be deleted. The goal is to delete all
shopping carts that haven’t been updated in a certain amount of time.

This isn’t as simple as it sounds—at first sight, you might think all you have to do is delete
all the records in ShoppingCart whose DateAdded value is older than a specified date. However,
this strategy doesn’t work with shopping carts that are modified over time (say, the visitor has
been adding items to the cart each week in the past three months). If the last change to the
shopping cart is recent, none of its elements should be deleted, even if some are very old. In
other words, you should either remove all elements in a shopping cart or none of them. The age
of a shopping cart is given by the age of its most recently modified or added product.

■Tip If you look at the ShoppingCartUpdateItem stored procedure, you’ll notice it also updates the
DateAdded field of a product each time the quantity changes.

For the shopping cart admin page, you’ll build two stored procedures (ShoppingCart➥

RemoveOldCarts and ShoppingCartCountOldCarts), but they both work using the same logic to
calculate the shopping cart elements that are old and should be removed. First, you should
learn a little bit about the SQL logic that retrieves the old shopping cart elements.

Take a look at the following query, which returns how many days have passed since the
day the last cart item was added or modified for each cart ID:

SELECT CartID,
 MIN(DATEDIFF(dd,DateAdded,GETDATE())) as DaysFromMostRecentRecord
FROM ShoppingCart
GROUP BY CartID

The DATEDIFF function returns the difference, in days (because of the dd parameter),
between the date specified by DateAdded and the current date (specified by GETDATE). GROUP BY
groups the results by CartID, and for each CartID, the MIN aggregate function calculates the
most recent record.

To select all the elements from the carts that haven’t been modified in the past ten days,
you need a query like this:

SELECT CartID
FROM ShoppingCart
GROUP BY CartID
HAVING MIN(DATEDIFF(dd,DateAdded,GETDATE())) >= 10

You’ll implement the shopping cart administration page in the next exercise. You’ll imple-
ment everything, starting from the stored procedures and finishing with the presentation tier,
in a single exercise.

Darie-Watson_4681C09.fm Page 347 Tuesday, September 20, 2005 7:28 AM

348 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

Exercise: Implementing the Cart Admin Page

1. Add the ShoppingCartRemoveOldCarts stored procedure to the database. It receives as a parameter the
maximum number of days for a shopping cart age. All shopping carts older than that are deleted.

CREATE PROCEDURE ShoppingCartDeleteOldCarts
(@Days smallint)
AS
DELETE FROM ShoppingCart
WHERE CartID IN
 (SELECT CartID
 FROM ShoppingCart
 GROUP BY CartID
 HAVING MIN(DATEDIFF(dd,DateAdded,GETDATE())) >= @Days)

2. Add ShoppingCartCountOldCarts, which returns the number of shopping cart elements that would
be deleted by a ShoppingCartCountOldCarts call:

CREATE PROCEDURE ShoppingCartCountOldCarts
(@Days smallint)
AS
SELECT COUNT(CartID)
FROM ShoppingCart
WHERE CartID IN
 (SELECT CartID
 FROM ShoppingCart
 GROUP BY CartID
 HAVING MIN(DATEDIFF(dd,DateAdded,GETDATE())) >= @Days)

3. Add these methods to the ShoppingCartAccess class (located in ShoppingCartAccess.cs). They
are used to interact with the two stored procedures you wrote earlier.

// Counts old shopping carts
public static int CountOldCarts(byte days)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartCountOldCarts";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@Days";
 param.Value = days;
 param.DbType = DbType.Byte;
 comm.Parameters.Add(param);

Darie-Watson_4681C09.fm Page 348 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 349

 // execute the procedure and return number of old shopping carts
 try
 {
 return Byte.Parse(GenericDataAccess.ExecuteScalar(comm));
 }
 catch
 {
 return -1;
 }
}

// Deletes old shopping carts
public static bool DeleteOldCarts(byte days)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "ShoppingCartDeleteOldCarts";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@Days";
 param.Value = days;
 param.DbType = DbType.Byte;
 comm.Parameters.Add(param);
 // execute the procedure and return true if no problem occurs
 try
 {
 GenericDataAccess.ExecuteNonQuery(comm);
 return true;
 }
 catch
 {
 return false;
 }
}

4. Create a new Web Form at the root of the BalloonShop project, named ShoppingCartAdmin.aspx,
based on the Admin.master Master Page.

5. While in Source View, add this code to the first place holder:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 Shopping Cart Admin
</asp:Content>

6. Add the following content to the second place holder:

Darie-Watson_4681C09.fm Page 349 Tuesday, September 20, 2005 7:28 AM

8213592a117456a340854d18cee57603

350 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder2"
runat="Server">
 <asp:Label ID="countLabel" runat="server" CssClass="AdminPageText">
 Hello!
 </asp:Label>

 How many days?
 <asp:DropDownList ID="daysList" runat="server">
 <asp:ListItem Value="0">All shopping carts</asp:ListItem>
 <asp:ListItem Value="1">One</asp:ListItem>
 <asp:ListItem Value="10" Selected="True">Ten</asp:ListItem>
 <asp:ListItem Value="20">Twenty</asp:ListItem>
 <asp:ListItem Value="30">Thirty</asp:ListItem>
 <asp:ListItem Value="90">Ninety</asp:ListItem>
 </asp:DropDownList>

 <asp:Button ID="countButton" runat="server" Text="Count Old Shopping Carts"
CssClass="Button" />
 <asp:Button ID="deleteButton" runat="server" Text="Delete Old Shopping
Carts" CssClass="Button" />
</asp:Content>

Now if you switch to Design View, you should see a form like the one shown in Figure 9-12.

Figure 9-12. ShoppingCartAdmin.aspx in Design View

Darie-Watson_4681C09.fm Page 350 Tuesday, September 20, 2005 7:28 AM

C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T 351

7. Double-click the Delete Old Shopping Carts button, and complete its Click event handler with the
 following code:

// deletes old shopping carts
protected void deleteButton_Click(object sender, EventArgs e)
{
 byte days = byte.Parse(daysList.SelectedItem.Value);
 ShoppingCartAccess.DeleteOldCarts(days);
 countLabel.Text = "The old shopping carts were removed from the database";
}

8. Double-click the Count Old Shopping Carts button and complete its Click event handler with the fol-
lowing code:

// counts old shopping carts
protected void countButton_Click(object sender, EventArgs e)
{
 byte days = byte.Parse(daysList.SelectedItem.Value);
 int oldItems = ShoppingCartAccess.CountOldCarts(days);
 if (oldItems == -1)
 countLabel.Text = "Could not count the old shopping carts!";
 else if (oldItems == 0)
 countLabel.Text = "There are no old shopping carts.";
 else
 countLabel.Text = "There are " + oldItems.ToString() +
 " old shopping carts.";
}

9. Add this code to Page_Load:

protected void Page_Load(object sender, EventArgs e)
{
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Shopping Cart Admin";
}

10. To restrict this page to administrator-only access, open web.config and add the following block, after
the one that deals with CatalogAdmin.aspx:

<!-- Only administrators are allowed to access ShoppingCartAdmin.aspx -->
<location path="ShoppingCartAdmin.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

Darie-Watson_4681C09.fm Page 351 Tuesday, September 20, 2005 7:28 AM

352 C H A P T E R 9 ■ C R E A T I N G A C U S T O M S H O P P I N G C A R T

11. Finally, add a link to this new page. Open UserInfo.ascx in Source View and add a link to the shopping
cart admin page for the Administrators role group, just after the link to the catalog admin page:

 <tr>
 <td>
 »
 Catalog Admin
 «
 </td>
 </tr>
 <tr>
 <td>
 »
 Shopping Cart
Admin
 «
 </td>
 </tr>
</ContentTemplate>

How It Works: The Shopping Cart Admin Page

Congratulations, you’re done! Your new shopping cart admin page should work as expected.

Summary
In this chapter, you learned how to store the shopping cart information in the database, and
you learned a few things in the process as well. Probably the most interesting was the way you
can store the shopping cart ID as a cookie on the client, because you haven’t done anything
similar so far in this book.

When writing the code for the user interface, you learned how to allow the visitor to update
multiple GridView records with a single click, and you also implemented a clever strategy for
the Continue Shopping functionality.

At the end, you updated the administrative part of the web site to deal with the new challenges
implied by your custom-created shopping cart.

You’ll complete the functionality offered by the custom shopping cart in the next chapter
with a custom checkout system. You’ll add a Place Order button to the shopping cart, which
allows you to save the shopping cart information as a separate order in the database.

See you in the next chapter!

Darie-Watson_4681C09.fm Page 352 Tuesday, September 20, 2005 7:28 AM

353

■ ■ ■

C H A P T E R 1 0

Dealing with Customer Orders

The good news is that your brand-new shopping cart looks good and is fully functional. The
bad news is that it doesn’t allow the visitor to actually place an order, making it totally useless
in the context of a production system.

You’ll deal with that problem in this chapter, in two separate stages. In the first part of the
chapter, you’ll implement the client-side part of the order-placing mechanism. More precisely,
you’ll add a Proceed to Checkout button onto the shopping cart control, which will allow the
visitor to order the products in the shopping cart.

In the second part of the chapter, you’ll implement a simple orders administration page
where the site administrator can view and handle pending orders.

The code for each part of the site is presented in the usual way, starting with the database
tier, continuing with the business tier, and finishing with the user interface.

Implementing an Order-Placing System
The entire order-placing system is related to the Proceed to Checkout button mentioned
earlier. Figure 10-1 shows how this button will look after you update the ShoppingCart.aspx
control in this chapter.

Looking at the figure, the button looks boring for something that is the center of this
chapter’s universe. Still, a lot of logic is hidden behind it, so let’s consider what you want to
happen when the customer clicks that button. Remember that at this stage, it doesn’t matter
who places the order, but it’s important to store information in the database about the products
that were ordered.

Basically, two things need to happen when the customer clicks the Proceed to Checkout
button:

• First, the order must be stored somewhere in the database. You’ll save the shopping cart’s
products to an order named BalloonShop Order nnn and then clear the shopping cart.

• Secondly, the customer must be redirected to a PayPal payment page where the
customer pays the necessary amount for the order.

Darie-Watson_4681C10.fm Page 353 Tuesday, September 20, 2005 4:52 AM

354 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

Figure 10-1. The shopping cart with a Proceed to Checkout button

■Note In this development stage, you still don’t do the credit card transactions yourself, but use a third-
party payment processor instead. You no longer need the PayPal shopping cart because you implemented
your own in the previous chapter. Instead, as you’ll see, you’ll use the Single Item Purchases option of PayPal,
which redirects the visitor directly to a payment page.

A problem that arises when using a third-party payment processor is that the customer
can change her mind and cancel the order while at the checkout page. This can result in orders
that are saved to the database (the order is saved before the page is redirected to the payment
page), but for which payment wasn’t completed. This makes it obvious that a payment-
confirmation system is necessary, along with a database structure able to store status informa-
tion about each order.

The confirmation system that you’ll implement is simple. Every payment processor,
including PayPal, can be instructed to send a confirmation message after a payment has been
processed. The site administrator can manually check, in the administration page, which orders
have been paid for. The orders for which the payment has been confirmed are known as verified
orders. You’ll see later in this chapter how to manage them in the orders management part of
the site.

Darie-Watson_4681C10.fm Page 354 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 355

■Note PayPal and its competitors offer automated systems that notify your web site when a payment has
been completed or canceled. However, in this book, we don’t aim at visiting the intimate details of any of
these payment systems—you’ll need to do your homework and study the documentation of the company you
choose. The PayPal Instant Payment Notification manual can be downloaded at https://www.paypal.
com/en_US/pdf/PP_WebsitePaymentsStandard_IntegrationGuide.pdf.

Now that you have an idea of what the Proceed to Checkout button will do, the next major
concerns are what product order information to store in the database and how to store it.
As you saw in the previous chapters, deciding how to store information gives you have a better
idea of how the whole system works.

Storing Orders in the Database
Two kinds of order information need to be stored in the database when a customer places
an order:

• The general information about the order, including the date the order was created, the
status of the order, and a few other details.

• The products that belong to that order and their quantities.

You’ll need to add two tables in the database to store this information.

Creating the New Data Tables

Due to the nature of the information you need to store, two data tables are necessary: Orders
and OrderDetail. The Orders table stores information regarding the order as a whole, while
OrderDetail contains the products that belong to each order.

■Tip So far, we’ve consistently named our tables in singular form (ShoppingCart, Department, and so
on). However, here we make an exception for the Orders table. Because ORDER is an SQL keyword, we can’t
use it as a name unless written with square brackets, like this: [Order]. For the purposes of this book, we
prefer to break the naming convention to avoid any confusion while writing the SQL code.

These tables have a One-to-Many relationship, enforced through a FOREIGN KEY constraint
on their OrderID fields. One-to-Many is the usual relationship implemented between an Orders
table and an OrderDetail table. The OrderDetail table contains many records that belong to
one order. You might want to revisit Chapter 4, where the table relationships are explained in
more detail.

You’ll create these tables in the following exercise. This time we don’t explain each step in
great detail, as you’ve been through these processes before in this book. Feel free to refer to
previous chapters if anything is unclear.

Darie-Watson_4681C10.fm Page 355 Tuesday, September 20, 2005 4:52 AM

356 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

Exercise: Adding the Orders and the OrderDetail Tables to the Database

1. First add the Orders table to the database with the columns described in Table 10-1.

■Caution Don’t forget to set the default of GETDATE() to the DateCreated column. Don’t forget to set
OrderID as a primary key and an identity column. Leave Identity Seed and Identity Increment at
their default values of 1. Remember that making a column an identity column tells the database to automat-
ically generate values for it when new records are added to the table—you can’t supply your own values for
that field when adding new records. The generated ID value can be found by reading the @@Identity
system variable. You’ll use this when creating the CreateOrder stored procedure a bit later.

2. Add the OrderDetail table (see Table 10-2):

Table 10-1. The Orders Table

Column Name Data Type Allow Nulls Other Properties

OrderID int No Primary Key, Identity

DateCreated smalldatetime No Default: GETDATE()

DateShipped smalldatetime Yes

Verified bit No Default Value or
Binding: 0

Completed bit No Default Value or
Binding: 0

Canceled bit No Default Value or
Binding: 0

Comments varchar(1000) Yes

CustomerName varchar(50) Yes

CustomerEmail varchar(50) Yes

ShippingAddress varchar(500) Yes

Table 10-2. The OrderDetail Table

Column Name Data Type Allow Nulls Other Properties

OrderID int No Primary Key

ProductID int No Primary Key

ProductName varchar(50) No

Quantity int No

Darie-Watson_4681C10.fm Page 356 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 357

■Caution Don’t forget to set the composite primary key formed of OrderID and ProductID.

3. Enforce the One-to-Many relationship between Orders and OrderDetail by adding a FOREIGN KEY
constraint on the OrderID column in OrderDetail to reference the OrderID column in Orders. Do
this by either using database diagrams or by opening the table in Database Explorer and clicking Table
Designer ➤ Relationships (as you learned in Chapter 4).

■Note Although ProductID is part of the primary key in OrderDetail, you don’t place a FOREIGN KEY
constraint on it (referencing the Product table), because products can change in time or can even be
removed, while the existing orders should remain unchanged. ProductID is simply used to form the primary
key of OrderDetail because at any given time, each product has a unique ProductID. However, the
ProductID in OrderDetail is not required to point to an existing, real product.

How It Works: The Data Tables

Now that you have created the tables, take a closer look at the way they are designed.

The Orders Table

The Orders table basically contains two categories of information: data about the order (the first seven fields), and
data about the customer that made the order (last three fields).

The professional way to store customer data is to use a separate table, named Customer, and reference that table
from the Orders table. We chose not to take the professional approach in this chapter because at this stage of
development, storing customer data is optional and is not one of our goals. Right now, we don’t need to know who
bought our products, because the third-party payment processor deals with these details. You’ll create the Customer
table in Chapter 12, where you add customer accounts functionality to BalloonShop.

Third-party payment processors, such as PayPal, store and manage the complete customer information, so it
doesn’t need to be stored in your database as well. The CustomerName, ShippingAddress, and CustomerEmail
fields have been added as optional fields that can be filled by the administrator if it’s easier to have this information
at hand for certain (or all) orders. These are convenience fields that will be removed in Chapter 13 when you
implement a serious scheme for storing customer details.

UnitCost money No

Subtotal No Computed Column Specification
Formula: Quantity * UnitCost
Is Persisted: No

Table 10-2. The OrderDetail Table (Continued)

Column Name Data Type Allow Nulls Other Properties

Darie-Watson_4681C10.fm Page 357 Tuesday, September 20, 2005 4:52 AM

358 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

Now take a look at the other fields. OrderID is the primary key of the table, and is an identity column so you won’t
need to bother to find new IDs when adding new orders. DateCreated also has a pretty obvious role—you need
to know the date when each order was created. This column has a default value of GETDATE(), which means that
it will be automatically filled with the current date when adding new records if a specific value is not specified.
DateShipped is populated with the date an order has been shipped.

Three bit fields show the status of the order: Verified, Completed, and Canceled. These fields store 0 for No
and 1 for Yes. If your business grows, you’ll need to extend this system to a professional order pipeline, which you’ll
learn how to do in Chapter 13. For now, these three bit fields will do the job.

The Verified field is set to 1 after the payment has been confirmed by the payment processor. The site adminis-
trator marks the order as verified upon receipt of the payment confirmation mail. After the payment is confirmed, the
products are shipped, so the DateShipped field is populated and the Completed bit is also set to 1.

The administrator might want to mark an order as canceled (by setting the Canceled bit to 1) if it hasn’t been verified
in a certain amount of time or for other various reasons. The Comments field is used to record whatever special
information might show up about the order.

The OrderDetail Table

Let’s see now what information the OrderDetail table contains. Figure 10-2 shows what some typical
OrderDetail records look like.

Figure 10-2. Sample data in OrderDetail

Each record in OrderDetail represents an ordered product that belongs to the order specified by OrderID. The
primary key is formed by both OrderID and ProductID because a particular product can be ordered only once in
one order. A Quantity field contains the number of ordered items, so it wouldn’t make any sense to have one
ProductID recorded more than once for one order.

You might be wondering why apart from the product ID, you also store the price and product name in the OrderDetail
table. The question is valid because if you have the product ID, you can get all the product’s details from the Product
table without having any duplicated information.

The reason is this: The actual order detail data is stored in the ProductName, Quantity, and UnitCost fields. You
can’t rely on ProductID to store order data, because product IDs, names, and prices can change in time. ProductID is
simply used to form the primary key (in this role, it saves you from needing to create another primary key field) and
is also useful because it’s the only programmatic way to link back to the original product (if the product still exists).

Darie-Watson_4681C10.fm Page 358 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 359

The last and most interesting column in OrderDetail is Subtotal, which represents the quantity multiplied by
the unit price. Because it isn’t persisted, this column doesn’t occupy any disk space, and most importantly, it is
always in sync with the other fields.

Creating Orders in the Database

Here you’ll write the CreateOrder stored procedure, which takes the products from a shopping
cart and creates an order with them. This procedure gets called when the customer decides
that he wants to buy the products in the shopping cart and clicks the Proceed to Checkout
button.

Creating a new order implies adding a new record to the Orders table and a number of
records (one record for each product) to the OrderDetail table.

Add the CreateOrder stored procedure to the BalloonShop database, and then we’ll talk a
bit more about it:

CREATE PROCEDURE CreateOrder
(@CartID char(36))
AS
/* Insert a new record into Orders */
DECLARE @OrderID int
INSERT INTO Orders DEFAULT VALUES
/* Save the new Order ID */
SET @OrderID = @@IDENTITY
/* Add the order details to OrderDetail */
INSERT INTO OrderDetail
 (OrderID, ProductID, ProductName, Quantity, UnitCost)
SELECT
 @OrderID, Product.ProductID, Product.Name,
 ShoppingCart.Quantity, Product.Price
FROM Product JOIN ShoppingCart
ON Product.ProductID = ShoppingCart.ProductID
WHERE ShoppingCart.CartID = @CartID
/* Clear the shopping cart */
DELETE FROM ShoppingCart
WHERE CartID = @CartID
/* Return the Order ID */
SELECT @OrderID

The procedure starts by creating the new record in the Orders table. As you can see, when
adding a new record, you don’t specify any column values, as some of them allow NULLs, while
the others have default values specified.

After adding the new record, you need to read the @@Identity system variable (which
represents the order ID that was just generated) to a local variable named @OrderID:

Darie-Watson_4681C10.fm Page 359 Tuesday, September 20, 2005 4:52 AM

360 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

/* Insert a new record into Orders*/
DECLARE @OrderID int
INSERT INTO Orders DEFAULT VALUES
/* Obtain the new Order ID */
SET @OrderID = @@IDENTITY

This is the standard mechanism of extracting the newly generated ID. You must save the
value of @@IDENTITY immediately after the INSERT statement, because its value is lost afterward.

Using the @OrderID variable, you add the OrderDetail records by gathering information
from the Product and ShoppingCart tables. From ShoppingCart, you need the list of the products
and their quantities, and from Product, you get their names and prices.

After creating the order, the visitor’s shopping cart is emptied. The last step for the CreateOrder
stored procedure is to return the OrderID to the calling function. This is required when providing
the order number to the customer.

Updating the Business Layer
Luckily, at this stage, you only need a single method named CreateOrder. Add this method to
your ShoppingCartAccess class:

// Create a new order from the shopping cart
public static string CreateOrder()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CreateOrder";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // return the result table
 return GenericDataAccess.ExecuteScalar(comm);
}

The method calls the CreateOrder stored procedure in the usual way. It returns the OrderID
of the newly created order. ExecuteScalar is the DbCommand method used to execute stored
procedures that return a single value.

Note that we don’t catch the error here. If an exception occurs while trying to create the
order, we prefer to let it propagate and have the Oooops message displayed to the visitor (and
logged as such), because we consider this to be a critical error.

Darie-Watson_4681C10.fm Page 360 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 361

Adding the Checkout Button
This button is the only addition on the visitor side for the custom checkout. You’ll place the
button in the ShoppingCart Web Form and then implement the functionality by handling its
Click event.

Let’s do all this in the following exercise.

Exercise: Adding Proceed to Checkout Functionality

1. Open ShoppingCart.aspx and add the following button next to the Update Quantities button:

<asp:Button ID="checkoutButton" runat="server" CssClass="SmallButtonText"
Text="Proceed to Checkout" />

In Design View, the content area of the form should look like Figure 10-3 now.

s

Figure 10-3. ShoppingCart.ascx in Design View

2. Cool, now you have a checkout button in the shopping cart. This button should be enabled only when
the shopping cart is not empty. Take care of this issue by modifying PopulateControls() in
ShoppingCart.aspx.cs:

...
 // if the shopping cart is empty...
 if (dt.Rows.Count == 0)
 {
 titleLabel.Text = "Your shopping cart is empty!";
 grid.Visible = false;
 updateButton.Enabled = false;
 checkoutButton.Enabled = false;
 totalAmountLabel.Text = String.Format("{0:c}", 0);
 }

Darie-Watson_4681C10.fm Page 361 Tuesday, September 20, 2005 4:52 AM

362 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 else
 // if the shopping cart is not empty...
 {
 // populate the list with the shopping cart contents
 grid.DataSource = dt;
 grid.DataBind();
 // setup controls
 titleLabel.Text = "These are the products in your shopping cart:";
 grid.Visible = true;
 updateButton.Enabled = true;
 checkoutButton.Enabled = true;
 // display the total amount
...

3. Now it’s time to implement the checkout button’s functionality. Because this functionality depends on
the company that processes your payments, you might need to suit it for the payment-processing
company you’re working with. If you use PayPal, double-click the checkout button and complete its
Click event handler like this:

// create a new order and redirect to a payment page
protected void checkoutButton_Click(object sender, EventArgs e)
{
 // Store the total amount because the cart
 // is emptied when creating the order
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 // Create the order and store the order ID
 string orderId = ShoppingCartAccess.CreateOrder();
 // Obtain the site name from the configuration settings
 string siteName = BalloonShopConfiguration.SiteName;
 // Create the PayPal redirect location
 string redirect = "";
 redirect += "https://www.paypal.com/xclick/business=youremail@server.com";
 redirect += "&item_name=" + siteName + " Order " + orderId;
 redirect += "&item_number=" + orderId;
 redirect += "&amount=" + String.Format("{0:0.00} ", amount);
 redirect += "¤cy=USD";
 redirect += "&return=http://www." + siteName + ".com";
 redirect += "&cancel_return=http://www." + siteName + ".com";
 // Redirect to the payment page
 Response.Redirect(redirect);
}

How It Works: Placing a New Order

First of all, if you use a company other than PayPal to process your payments, you’ll need to modify the code in
checkoutButton_Click accordingly.

When the visitor clicks the Proceed to Checkout button, three important actions happen. First, the shopping
cart’s total amount is saved to a temporary variable. Second, the order is created in the database by calling

Darie-Watson_4681C10.fm Page 362 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 363

ShoppingCart.CreateOrder. At this point the shopping cart is emptied, which is the reason you needed to
save the total amount first.

Third, the link to the PayPal payment page is created. Note that you may want to replace the business, return,
and cancel addresses with your site’s specific details, the most important being the email address of your PayPal
account. Optionally, you could also call the Utilities.SendMail method to email the administrator when an
order is made, or you can rely on the messages that PayPal sends when a payment is processed.

For more details about the PayPal shopping cart and its options, please review its official manual at https://
www.paypal.com/en_US/pdf/PP_WebsitePaymentsStandard_IntegrationGuide.pdf.

Administering Orders
So your visitor just made an order. Now what? Well, after giving visitors the option to pay for
your products, you need to make sure they actually get what they paid for.

The BalloonShop orders administration page that you’ll write in what’s left of this chapter
allows the site administrator to review and manage pending orders. This chapter doesn’t
intend to create a perfect order-administration system, but rather something that is simple
and functional enough to get you on the right track. You’ll update the orders administration
page in Chapter 13, after you implement the professional order pipeline and process credit
card transactions on your own.

The orders administration part of the site will consist of a Web Form named OrdersAdmin.aspx
and one Web User Control named OrderDetailsAdmin.ascx. When first loaded, the admin
page will offer you various ways to select orders, as shown in Figure 10-4.

Figure 10-4. The Orders Admin page

Darie-Watson_4681C10.fm Page 363 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

364 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

After clicking one of the Go buttons, the matching orders show up in a data grid, as shown
in Figure 10-5.

Figure 10-5. The Orders Admin page showing a list of orders

When you click the Select button for an order, you’re sent to a page where you can view
and update order information (see Figure 10-6).

A Web Form named OrdersAdmin.aspx handles the functionality shown in Figure 10-4 and
Figure 10-5. When selecting an order, its details are displayed by a separate control you’ll write
later in this chapter, named OrderDetailsAdmin.ascx.

Darie-Watson_4681C10.fm Page 364 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 365

Figure 10-6. The form that allows administering order details

Creating the OrdersAdmin Web Form
OrdersAdmin.aspx allows the administrator to view pending and past orders according to
various criteria, such as date or status. Follow the steps in the exercise to create this form.

Exercise: Creating OrdersAdmin.aspx and Integrating It into BalloonShop

1. Create a new Web Form at the root of the BalloonShop project, named OrdersAdmin.aspx, based
on the Admin.master master page.

2. While in Source View, change the code of the first place holder like this:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 Orders Admin
</asp:Content>

Darie-Watson_4681C10.fm Page 365 Tuesday, September 20, 2005 4:52 AM

366 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

3. Open the code-behind file and add this code in the Page_Load method;

protected void Page_Load(object sender, EventArgs e)
{
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Orders Admin";
}

4. Extend the security mechanism for the page you created. Modify web.config by adding the following
lines just after the ones for CatalogAdmin.aspx and ShoppingCartAdmin.aspx:

<!-- Only administrators are allowed to access OrdersAdmin.aspx -->
<location path="OrdersAdmin.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

5. Open UserInfo.ascx in Source View and add a link to the orders administration page to be displayed
when an administrator logs in:

...
 <tr>
 <td>
 »

Shopping Cart Admin
 «
 </td>
 </tr>
 <tr>
 <td>
 »
 Orders Admin
 «
 </td>
 </tr>
</ContentTemplate>
...

6. Build the web site, execute the project, login as admin, and go to your orders administration page that
should look like Figure 10-7.

Darie-Watson_4681C10.fm Page 366 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 367

Figure 10-7. The form that will allow administering orders

Displaying Existing Orders
The orders administration page has two main functions:

• Allows administrators to view and filter pending and past orders

• Allows administrators to select one of the orders and to get the order details administration
page, where they can see more details about the selected order

We’ll deal with these requirements one at a time. For the first part, the administrator is
allowed to select the orders by the following criteria:

• Show the most recent orders.

• Show orders that took place in a certain period of time.

• Show pending orders that have not been canceled. This shows the recent orders that
have been placed and for which payment confirmation from PayPal is still pending. The
administrator needs to mark these orders as Verified when the financial transaction is
confirmed. Otherwise, if the payment is not confirmed in a reasonable amount of time,
the administrator probably will want to cancel the order (marking it as Canceled), in
which case the order will not appear in this list on future requests.

• Show orders that need to be shipped (they are Verified but not yet Completed). These are
the orders that have been paid for, but for which the products haven’t yet shipped. After
the products are shipped, the administrator will mark the order as Completed.

Okay, now that you know what you need, you can start writing some code in the data tier.

Darie-Watson_4681C10.fm Page 367 Tuesday, September 20, 2005 4:52 AM

368 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

The Database Stored Procedures

The stored procedures that you need to write to support the new functionality are

• OrdersGetByRecent

• OrdersGetByDate

• OrdersGetUnverifiedUncanceled

• OrdersGetVerifiedUncompleted

Add these stored procedures to the BalloonShop database, as shown in the following
sections.

OrdersGetByRecent

In the OrdersGetByRecent stored procedure, the SET ROWCOUNT statement is used to limit the
number of rows returned by the SELECT statement. The parameter, @Count, specifies the number
of records. The SELECT command simply returns the necessary rows, in descending order of the
date they were created.

CREATE PROCEDURE OrdersGetByRecent
(@Count smallint)
AS
-- Set the number of rows to be returned
SET ROWCOUNT @Count
-- Get list of orders
SELECT OrderID, DateCreated, DateShipped,
 Verified, Completed, Canceled, CustomerName
FROM Orders
ORDER BY DateCreated DESC
-- Reset rowcount value
SET ROWCOUNT 0

At the end, you set ROWCOUNT to 0, which tells SQL Server to stop limiting the number of
returned rows.

ORDER BY is used to sort the returned results from the SELECT statement. The default sorting
mode is ascending, but adding DESC sets the descending sorting mode (so the most recent
orders will be listed first).

OrdersGetByDate

OrdersGetByDate simply returns all the records in which the current date is between the start
and end dates that are supplied as parameters. The results are sorted descending by date.

CREATE PROCEDURE OrdersGetByDate
(@StartDate smalldatetime,
 @EndDate smalldatetime)
AS
SELECT OrderID, DateCreated, DateShipped,
 Verified, Completed, Canceled, CustomerName

Darie-Watson_4681C10.fm Page 368 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 369

FROM Orders
WHERE DateCreated BETWEEN @StartDate AND @EndDate
ORDER BY DateCreated DESC

OrdersGetUnverifiedUncanceled

OrdersGetUnverifiedUncanceled returns the orders that have not been verified yet but have not
been canceled, either. In other words, you’ll see the orders that need to be either verified (and
then completed when the shipment is done) or canceled (if the payment isn’t confirmed in a
reasonable amount of time). The code is fairly straightforward:

CREATE PROCEDURE OrdersGetUnverifiedUncanceled
AS
SELECT OrderID, DateCreated, DateShipped,
 Verified, Completed, Canceled, CustomerName
FROM Orders
WHERE Verified=0 AND Canceled=0
ORDER BY DateCreated DESC

OrdersGetVerifiedUncompleted

OrdersGetVerifiedUncompleted returns all the orders that have been verified but not yet
completed. The administrator will want to see these orders when a shipment has been done
and the order needs to be marked as Completed. (When an order is marked as completed, the
DateShipped field is populated.)

CREATE PROCEDURE OrdersGetVerifiedUncompleted
AS
SELECT OrderID, DateCreated, DateShipped,
 Verified, Completed, Canceled, CustomerName
FROM Orders
WHERE Verified=1 AND Completed=0
ORDER BY DateCreated DESC

The Business Tier Methods

In the business tier, you’ll call the stored procedures you just wrote. First, add a new class
named OrdersAccess to your application’s App_Code folder. Then, add a reference to the
System.Data.Common namespace, like this:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.Common;

Darie-Watson_4681C10.fm Page 369 Tuesday, September 20, 2005 4:52 AM

370 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

/// <summary>
/// Summary description for OrdersAccess
/// </summary>
public class OrdersAccess
{
 public OrdersAccess()
 {
 //
 // TODO: Add constructor logic here
 //
 }
}

Now you can start adding your business tier methods to the OrdersAccess class.

GetByRecent

The GetByRecent method calls the OrdersGetByRecent stored procedure and returns a list of
most recent orders to the calling function.

// Retrieve the recent orders
public static DataTable GetByRecent(int count)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrdersGetByRecent";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@Count";
 param.Value = count;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the result table
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

GetByDate

The GetByDate method returns all the orders that have been placed in a certain period of time,
specified by a start date and an end date.

// Retrieve orders that have been placed in a specified period of time
public static DataTable GetByDate(string startDate, string endDate)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();

Darie-Watson_4681C10.fm Page 370 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 371

 // set the stored procedure name
 comm.CommandText = "OrdersGetByDate";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@StartDate";
 param.Value = startDate;
 param.DbType = DbType.Date;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@EndDate";
 param.Value = endDate;
 param.DbType = DbType.Date;
 comm.Parameters.Add(param);
 // return the result table
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

GetUnverifiedUncanceled

The GetUnverifiedUncanceled method returns a list of orders that have not been verified yet,
but were not canceled, either. These are the records that need to be either verified (and then set
to completed when the shipment is done) or canceled (most probable, if the payment isn’t
confirmed in a reasonable amount of time).

// Retrieve orders that need to be verified or canceled
public static DataTable GetUnverifiedUncanceled()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrdersGetUnverifiedUncanceled";
 // return the result table
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

GetVerifiedUncompleted

The GetVerifiedUncompleted method returns all the orders that have been verified but not yet
completed. The administrator will want to see these orders when a shipment has been done to
mark the order as Completed.

// Retrieve orders that need to be shipped/completed
public static DataTable GetVerifiedUncompleted()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();

Darie-Watson_4681C10.fm Page 371 Tuesday, September 20, 2005 4:52 AM

372 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 // set the stored procedure name
 comm.CommandText = "OrdersGetVerifiedUncompleted";
 // return the result table
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

Client-Side Validation and Using the ASP.NET Validator Controls

It’s time to write the user interface. This time you’ll learn how to use the new ASP.NET validator
controls, which represent the standard way for ASP.NET applications to implement client-side
validation.

Whereas server-side validation occurs on the server and you program it with C# code,
client-side validation occurs in your user’s browser and is implemented with JavaScript.
Server-side validation is more powerful because on the server you have access to the databases
and to more powerful languages and libraries; however, client-side validation is still very
important and widely used because it’s fast from the user’s point of view. Although for server
code to execute you need a round trip to the server, client-side code executes right away inside
the browser.

As a result, using client-side validation for simple tasks such as reminding the user that he
forgot to enter his phone number or credit card expiry date is beneficial and improves the
overall user experience with your web site.

Then comes ASP.NET, which is a web technology that theoretically lets you do anything
without writing client-side code. Although ASP.NET generates a lot of JavaScript code for you,
it doesn’t require you to understand it, unless you need to manually implement some fancy
features—such as our TieButton method.

To let you have client-side validation without knowing JavaScript and to make things
easier for you even if you do know JavaScript, ASP.NET contains a number of controls called
validator controls. They place various conditions on the input controls of your form (such as
text boxes) and don’t allow the page to be submitted if the rules aren’t obeyed.

■Note In some circumstances, if the client has JavaScript disabled, these controls don’t work as expected
(they won’t prevent the page from being submitted), but you still can (and should) check at server side if the
page is valid. In other words, in the vast majority of cases, the simple presence of the validator controls will
prevent the page from being submitted with invalid values, but this is not guaranteed, so you need to do a
server-side check as well as a backup strategy.

In our case, our validator controls won’t allow submitting the page (such as when clicking
the Go buttons), if the dates entered by the user aren’t valid (see Figure 10-8).

Darie-Watson_4681C10.fm Page 372 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 373

Figure 10-8. Validator controls at work

The .NET Framework provides more validator controls, each specialized in a certain
type of validation: RequiredFieldValidator, RangeValidator, RegularExpressionValidator,
CompareValidator, and CustomValidator. Also, the ValidationSummary control can display a list
of all errors retrieved by all validator controls in the page.

We’ll only briefly analyze the way CompareValidator and RangeValidator work, because
they are used for BalloonShop. Still, the way all the validation controls work is similar, with the
exception of CustomValidator, which is more powerful, and its validation logic can be programmed
manually. You’ll also work with the ValidationSummary control, which gathers all the error
messages from the validation controls in the page and presents them in a separate list (the
error message in Figure 10-8 is generated by this control).

You’ll use two RangeValidator controls to test whether the data typed in the two date
text boxes is correct and whether their values are in a specified range. When adding a new
RangeValidator control, you usually set these properties:

• ControlToValidate: Set this property to the control that you want to validate (in this
case, one of the text boxes).

• Display: If you don’t use a ValidationSummary control, you can leave this set to Dynamic
or Static, which results in the error message being displayed right in the place where the
validator is placed. But because you’ll use the ValidationSummary control to do the
displaying work, set the Display to None, so that the error messages aren’t displayed twice.

Darie-Watson_4681C10.fm Page 373 Tuesday, September 20, 2005 4:52 AM

374 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

• ErrorMessage: This property contains the message to be displayed if the control is
not validated.

• Type: This property specifies the data type that should exist in the control being validated.
You’ll set this property to Date for the two text boxes.

• MinimumValue, MaximumValue: These specify the maximum and minimum value that
should exist in the control being validated.

You’ll also use a CompareValidator to ensure that the end date is more recent than the start
date. You’ll specify these properties:

• ControlToCompare, ControlToValidate: The two controls that need to be compared. The
one specified by ControlToValidate is the reference control.

• Operator: Specifies what kind of comparison should be done between the values of
the two controls. Possible values are Equal, NotEqual, GreaterThan, GreaterThanEqual,
LessThan, LessThanEqual, and DataTypeCheck. When DataTypeCheck is selected, only the
data type of ControlToValidate is verified, and the control specified by
ControlToCompare is ignored.

For the ValidationSummary control, you only set the CssClass property to a proper style for
displaying errors. You also set the HeaderText property, which represents the header to be
displayed before the list of errors. Other than that, there are no special properties that you’ll set.
Note that you can change the layout of the generated error message by setting the DisplayMode
property. You also can set it up to raise a dialog box by setting the ShowMessageBox property
to True.

Validation is, by default, enabled through the controls’ EnableValidation property, whose
default value is True. You’ll set this property to False for some of the buttons, for which you
don’t want validation enabled.

The controls that need valid values to operate, such as the Go button associated with the
dates, need to check the value of Page.IsValid to ensure the values are valid. This is important
because in some cases (for example, if JavaScript is not enabled on the client), the page may
submit even if the page doesn’t contain valid values.

Implementing the User Interface

Okay, enough theory, let’s add some code to OrdersAdmin.aspx. First, you’ll add the constituent
controls to the form, and then you’ll write the code-behind file.

While building the user interface in the following exercise, you’ll also add the validator
controls. This is the first (and only) place in this book they are used, so pay special attention
to them.

Darie-Watson_4681C10.fm Page 374 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 375

Exercise: Displaying Orders in OrdersAdmin.aspx

1. The first step is to add the necessary Label controls, Button controls, a GridView, and a PlaceHolder
control to the second place holder in OrdersAdmin.aspx, as shown in Figure 10-9.

Figure 10-9. Adding controls to OrdersAdmin.ascx

The code that generates these controls is

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder2" runat=
"Server">

 Show the most recent
 <asp:TextBox ID="recentCountTextBox" runat="server" MaxLength="4" Width=
"40px" Text="20" />
 records
 <asp:Button ID="byRecentGo" runat="server" CssClass="SmallButtonText"
Text="Go" />

 Show all records created between
 <asp:TextBox ID="startDateTextBox" runat="server" Width="72px" />
 and
 <asp:TextBox ID="endDateTextBox" runat="server" Width="72px" />
 <asp:Button ID="byDateGo" runat="server" CssClass="SmallButtonText"
Text="Go" />

 Show all unverified, uncanceled orders
 <asp:Button ID="unverfiedGo" runat="server" CssClass="SmallButtonText"
Text="Go" />

 Show all verified, uncompleted orders
 <asp:Button ID="uncompletedGo" runat="server" CssClass="SmallButtonText"

Darie-Watson_4681C10.fm Page 375 Tuesday, September 20, 2005 4:52 AM

376 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

Text="Go" />

 <asp:GridView ID="grid" runat="server">
 </asp:GridView>

</asp:Content>

2. Now edit the GridView control. First, set its ID to grid, its AutoGenerateColumns property to False, and
its DataKeyNames property to OrderID.

3. Add columns (see Table 10-3) to the GridView by clicking its Smart Link and choosing Add New Column.

■Note This is the first time in BalloonShop when you change the button type to Button. If you think it looks
better this way, feel free to make this change in the other grid as well. Just select the grids you want to
change, click their Smart Link, select Edit Columns, select the ButtonField column you want to change,
and change its ButtonType property to Button.

4. Okay, your grid is ready. Now add the validator controls. You can find the range validators in the Validation tab
of the toolbox. The validator controls provide a quick and easy way to validate the input values at the
presentation-tier level. In this form, you’ll test whether the values entered into the date text boxes are
valid before querying the business tier with them. Just above the data grid, add a Label control (which
is not related to the validation controls but is used for notifying the administrator about the status), two
RangeValidator controls, a CompareValidator control, and a ValidationSummary control, as
shown in Figure 10-10.

Table 10-3. Setting the Fields of the GridView Control

Column Type Header Text Data Field Other Properties

BoundField Order ID OrderID Read Only

BoundField Date Created DateCreated Read Only

BoundField Date Shipped DateShipped Read Only

CheckBoxField Verified Verified Read Only

CheckBoxField Completed Completed Read Only

CheckBoxField Canceled Canceled Read Only

BoundField Customer Name CustomerName Read Only

ButtonField Set Command Name to Select,
Text to Select, and Button
Type to Button

Darie-Watson_4681C10.fm Page 376 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 377

Figure 10-10. Adding the validation controls

5. Now set the properties for each of the newly added controls as noted in Table 10-4.

Table 10-4. Setting the New Control’s Properties in OrdersAdmin.ascx

Control Property Name Property Value

Label (ID) errorLabel

Text (should be empty)

CssClass AdminErrorText

EnableViewState False

RangeValidator (ID) startDateValidator

ControlToValidate startDateTextBox

Display None

ErrorMessage Invalid start date

MaximumValue 1/1/2009

MinimumValue 1/1/1999

Type Date

RangeValidator (ID) endDateValidator

ControlToValidate endDateTextBox

Display None

ErrorMessage Invalid end date

MaximumValue 1/1/2009

MinimumValue 1/1/1999

Type Date

Darie-Watson_4681C10.fm Page 377 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

378 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

6. Add the following style to BalloonShop.css:

.AdminErrorText
{
 font-weight: bold;
 font-size: 12px;
 color: red;
 font-style: italic;
 font-family: Verdana, Helvetica, sans-serif;
}

7. Execute the project and browse to the orders admin page (you may need to login as admin first). Enter
invalid dates and try clicking any of the admin buttons. You’ll get a page like the one shown earlier in
Figure 10-8.

8. A problem occurs if wrong dates are written, because none of the Go buttons can be used. We actually want
the restrictions to apply only to the Go button associated with the dates. Change the CausesValidation
property of the first, third, and fourth Go buttons to False (the default is True).

9. It’s time to write the code. While in Design View, double-click the Go buttons to have their Click event
handlers generated for you and complete their code as shown:

// list the most recent orders
protected void byRecentGo_Click(object sender, EventArgs e)
{
 // how many orders to list?
 int recordCount;

CompareValidator (ID) compareDatesValidator

ControlToCompare endDateTextBox

ControlToValidate startDateTextBox

Display None

ErrorMessage Start date should be more
recent than end date

Operator LessThan

Type Date

ValidationSummary (ID) validationSummary

CssClass AdminErrorText

HeaderText Please fix these errors
before submitting requests:

Table 10-4. Setting the New Control’s Properties in OrdersAdmin.ascx (Continued)

Control Property Name Property Value

Darie-Watson_4681C10.fm Page 378 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 379

 // load the new data into the grid
 if (int.TryParse(recentCountTextBox.Text, out recordCount))
 grid.DataSource = OrdersAccess.GetByRecent(recordCount);
 else
 errorLabel.Text = "
Please enter a valid number!";
 // refresh the data grid
 grid.DataBind();
 // no order is selected
 Session["AdminOrderID"] = null;
}

// list the orders that happened between specified dates
protected void byDateGo_Click(object sender, EventArgs e)
{
 // check if the page is valid (we have date validator controls)
 if ((Page.IsValid) && (startDateTextBox.Text + endDateTextBox.Text != ""))
 {
 // get the dates
 string startDate = startDateTextBox.Text;
 string endDate = endDateTextBox.Text;
 // load the grid with the requested data
 grid.DataSource = OrdersAccess.GetByDate(startDate, endDate);
 }
 else
 errorLabel.Text = "
Please enter valid dates!";
 // refresh the data grid
 grid.DataBind();
 // no order is selected
 Session["AdminOrderID"] = null;
}

// get unverified, uncanceled orders
protected void unverfiedGo_Click(object sender, EventArgs e)
{
 // load the grid with the requested data
 grid.DataSource = OrdersAccess.GetUnverifiedUncanceled();
 // refresh the data grid
 grid.DataBind();
 // no order is selected
 Session["AdminOrderID"] = null;
}

// get verified, but uncompleted orders
protected void uncompletedGo_Click(object sender, EventArgs e)
{
 // load the grid with the requested data
 grid.DataSource = OrdersAccess.GetVerifiedUncompleted();

Darie-Watson_4681C10.fm Page 379 Tuesday, September 20, 2005 4:52 AM

380 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 // refresh the data grid
 grid.DataBind();
 // no order is selected
 Session["AdminOrderID"] = null;
}

10. Add the following bits to Page_Load to associate the text boxes with their buttons:

protected void Page_Load(object sender, EventArgs e)
{
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Orders Admin";
 // associate the check boxes with their buttons
 Utilities.TieButton(this.Page, recentCountTextBox, byRecentGo);
 Utilities.TieButton(this.Page, startDateTextBox, byDateGo);
 Utilities.TieButton(this.Page, endDateTextBox, byDateGo);
}

11. Switch again to Design View, use Visual Web Developer to generate the SelectedIndexChanged event
handler for the first GridView control (the one in OrdersAdmin, not the one in OrderDetailsAdmin),
and then complete its code like this:

// Load the details of the selected order
protected void grid_SelectedIndexChanged(object sender, EventArgs e)
{
 // Save the ID of the selected order in the session
 Session["AdminOrderID"] = grid.DataKeys[grid.SelectedIndex].Value.
ToString();
}

12. Feel free to play with your new administration page. Try even to break it by writing bad data to the
record count or to the date text boxes. Except the Select buttons of the GridView, whose functionality
hasn’t been implemented yet, everything should work as expected.

How It Works: Using the Validator Controls

The two details to be aware of for this form are the way the session is used and how the validator controls work.

When selecting an order, the AdminOrderID session variable is populated with the ID of the selected order. The
order details admin control reads this value and decides what to display depending on this value. The Click event
handler of each of the Go buttons clears the AdminOrderID session variable, marking that no order is selected.

This form uses both server-side and client-side validation. The value for the most recent records count is verified at
server side to be a valid integer. If it isn’t, an error message is displayed to the visitor:

 // load the new data into the grid
 if (int.TryParse(recentCountTextBox.Text, out recordCount))
 grid.DataSource = OrdersAccess.GetByRecent(recordCount);
 else
 errorLabel.Text = "
Please enter a valid number!";
 // refresh the data grid

Darie-Watson_4681C10.fm Page 380 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 381

The date text boxes are validated using validation controls, which try to operate at client side, while also having a
server-side mechanism in case the client doesn’t support JavaScript.

 // check if the page is valid (we have date validator controls)
 if (Page.IsValid)
 {
 ...

The validator controls you wrote apply the following requirements for the entered dates:

• The values in startDateTextBox and endDateTextBox must be correctly formatted dates between
1/1/1999 and 1/1/2009.

• The start date needs to be more recent than the end date.

The first requirement is implemented using RangeValidator controls, and the second using a CompareValidator.
The ValidationSummary control gets the errors from the validator controls and displays them in a single, easy-
to-read list.

When creating the control, you also added a Label control named errorLabel, which you used to display other
errors than those generated by the validator controls. You set its EnableViewState property to False, so its value
will be cleared after a successful Go command executes.

Administering Order Details
The OrderDetailsAdmin user control allows the administrator to edit the details of a particular
order. The most common tasks are marking an unverified order as either Verified or Canceled
(it can’t be directly marked as Completed if it isn’t verified yet) and marking a verified order as
Completed when the shipment is dispatched. Refer to Figure 10-6 as a reminder of how this
form will look.

Here you’re providing the administrator with three very useful buttons: Mark this Order as
Verified, Mark this Order as Completed, and Mark this Order as Canceled. These buttons are
enabled or disabled, depending on the status of the order.

The Edit, Update, and Cancel buttons allow the administrator to manually edit any of the
details of an order. When the Edit button is clicked, all the check boxes and text boxes (except
for the one holding the order ID) become editable.

Now you have an idea about what you’ll be doing with this control. You’ll implement it in
the usual style starting with the data tier.

The Database Stored Procedures

Now you’ll implement the data tier logic that will support the functionality required by the user
interface. You’ll enable the administrator to do six operations, which you’ll implement with the
following stored procedures:

• OrderGetInfo returns the data needed to populate the text boxes of the form with general
order information, such as the total amount, date created, date shipped, and so on. You
can see the complete list in the previous figure.

Darie-Watson_4681C10.fm Page 381 Tuesday, September 20, 2005 4:52 AM

382 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

• OrderGetDetails returns all the products that belong to the selected order, and its return
data fills the grid at the bottom of the form.

• OrderUpdate is called when the form is in edit mode, and you submit new data to update
the selected order.

• OrderMarkVerified is called to set the Verified bit of the selected order to 1.

• OrderMarkCompleted sets the Completed bit of the order to 1.

• OrderMarkCanceled sets the Canceled bit of the order to 1.

You’ll now implement each of these stored procedures.

OrderGetInfo

The OrderGetInfo stored procedure returns the information necessary to fill the long list of text
boxes in the OrderDetailsAdmin control.

CREATE PROCEDURE OrderGetInfo
(@OrderID int)
AS
SELECT OrderID,
 (SELECT SUM(Subtotal) FROM OrderDetail WHERE OrderID = @OrderID)
 AS TotalAmount,
 DateCreated,
 DateShipped,
 Verified,
 Completed,
 Canceled,
 Comments,
 CustomerName,
 ShippingAddress,
 CustomerEmail
FROM Orders
WHERE OrderID = @OrderID

Note that a subquery is used to generate the TotalAmount field. All the other data you need
is read from the Orders table, but to get the total amount of an order, you need to look at the
OrderDetail table as well.

The subquery that returns the total amount of a particular order uses the SUM function to
add up the subtotal of each product in the order (remember Subtotal is a calculated column),
as follows:

SELECT SUM(Subtotal) FROM OrderDetail WHERE OrderID = @OrderID

This subquery gets executed for each row of the outer query, and its result is saved as a
calculated column named TotalAmount.

Darie-Watson_4681C10.fm Page 382 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 383

OrderGetDetails

OrderGetDetails returns the list of products that belongs to a specific order. This will be used
to populate the data grid containing the order details, situated at the bottom of the control.

CREATE PROCEDURE OrderGetDetails
(@OrderID int)
AS
SELECT Orders.OrderID,
 ProductID,
 ProductName,
 Quantity,
 UnitCost,
 Subtotal
FROM OrderDetail JOIN Orders
ON Orders.OrderID = OrderDetail.OrderID
WHERE Orders.OrderID = @OrderID

OrderUpdate

The OrderUpdate procedure is called when the user is updating the order in the GridView.

CREATE PROCEDURE OrderUpdate
(@OrderID int,
 @DateCreated smalldatetime,
 @DateShipped smalldatetime = NULL,
 @Verified bit,
 @Completed bit,
 @Canceled bit,
 @Comments varchar(200),
 @CustomerName varchar(50),
 @ShippingAddress varchar(200),
 @CustomerEmail varchar(50))
AS
UPDATE Orders
SET DateCreated=@DateCreated,
 DateShipped=@DateShipped,
 Verified=@Verified,
 Completed=@Completed,
 Canceled=@Canceled,
 Comments=@Comments,
 CustomerName=@CustomerName,
 ShippingAddress=@ShippingAddress,
 CustomerEmail=@CustomerEmail
WHERE OrderID = @OrderID

OrderMarkVerified

OrderMarkVerified is called when the administrator clicks the Mark this Order as Verified button.

Darie-Watson_4681C10.fm Page 383 Tuesday, September 20, 2005 4:52 AM

384 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

CREATE PROCEDURE OrderMarkVerified
(@OrderID int)
AS
UPDATE Orders
SET Verified = 1
WHERE OrderID = @OrderID

OrderMarkCompleted

OrderMarkCompleted is called when the administrator clicks the Mark this Order as Completed
button. It not only sets the Completed bit to 1 but also updates the DateShipped field because an
order is completed just after the shipment has been done.

CREATE PROCEDURE OrderMarkCompleted
(@OrderID int)
AS
UPDATE Orders
SET Completed = 1,
 DateShipped = GETDATE()
WHERE OrderID = @OrderID

OrderMarkCanceled

OrderMarkCanceled is called when the administrator clicks the Mark this Order as Canceled
button.

CREATE PROCEDURE OrderMarkCanceled
(@OrderID int)
AS
UPDATE Orders
SET Canceled = 1
WHERE OrderID = @OrderID

The Business Tier Methods

Apart from the usual methods that pass data back and forth between the user interface and the
database stored procedures, you’ll create a struct named OrderInfo. Instances of this struct
store information about one order and are used to pass order information from the business-
tier methods to the presentation tier.

You learned from the previous chapters, when you built similar structures, that the code
looks cleaner when using such a structure instead of passing a DataTable or a DataRow object to
the presentation tier.

The OrderInfo Struct

Although you can add this struct to any of the existing files in the App_Code folder (or you can
even create a new file for it if you prefer), for consistency and clarity you should add the
OrderInfo struct at the beginning of the OrdersAccess.cs file, after the using statements and
before the OrdersAccess class.

Darie-Watson_4681C10.fm Page 384 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 385

/// <summary>
/// Wraps order data
/// </summary>
public struct OrderInfo
{
 public int OrderID;
 public decimal TotalAmount;
 public string DateCreated;
 public string DateShipped;
 public bool Verified;
 public bool Completed;
 public bool Canceled;
 public string Comments;
 public string CustomerName;
 public string ShippingAddress;
 public string CustomerEmail;
}

After this class is in place, add the following methods to the OrdersAccess class:

• GetInfo

• GetDetails

• Update

• MarkVerified

• MarkCompleted

• MarkCanceled

GetInfo

This method gets information related to a particular order from the database and saves the
data into an OrderInfo object, which is then returned.

// Retrieve order information
public static OrderInfo GetInfo(string orderID)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderGetInfo";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);

Darie-Watson_4681C10.fm Page 385 Tuesday, September 20, 2005 4:52 AM

386 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 // obtain the results
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 DataRow orderRow = table.Rows[0];
 // save the results into an OrderInfo object
 OrderInfo orderInfo;
 orderInfo.OrderID = Int32.Parse(orderRow["OrderID"].ToString());
 orderInfo.TotalAmount = Decimal.Parse(orderRow["TotalAmount"].ToString());
 orderInfo.DateCreated = orderRow["DateCreated"].ToString();
 orderInfo.DateShipped = orderRow["DateShipped"].ToString();
 orderInfo.Verified = bool.Parse(orderRow["Verified"].ToString());
 orderInfo.Completed = bool.Parse(orderRow["Completed"].ToString());
 orderInfo.Canceled = bool.Parse(orderRow["Canceled"].ToString());
 orderInfo.Comments = orderRow["Comments"].ToString();
 orderInfo.CustomerName = orderRow["CustomerName"].ToString();
 orderInfo.ShippingAddress = orderRow["ShippingAddress"].ToString();
 orderInfo.CustomerEmail = orderRow["CustomerEmail"].ToString();
 // return the OrderInfo object
 return orderInfo;
}

GetDetails

GetDetails returns the order details of the specified order.

// Retrieve the order details (the products that are part of that order)
public static DataTable GetDetails(string orderID)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderGetDetails";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the results
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 return table;
}

Update

This stored procedure updates an order and is called when the Update button in
OrderDetailsAdmin is clicked. It receives the order details as an OrderInfo parameter and saves
them to the database.

Darie-Watson_4681C10.fm Page 386 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 387

// Update an order
public static void Update(OrderInfo orderInfo)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderUpdate";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderInfo.OrderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DateCreated";
 param.Value = orderInfo.DateCreated;
 param.DbType = DbType.DateTime;
 comm.Parameters.Add(param);
 // The DateShipped parameter is sent only if data is available
 if (orderInfo.DateShipped.Trim() != "")
 {
 param = comm.CreateParameter();
 param.ParameterName = "@DateShipped";
 param.Value = orderInfo.DateShipped;
 param.DbType = DbType.DateTime;
 comm.Parameters.Add(param);
 }
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Verified";
 param.Value = orderInfo.Verified;
 param.DbType = DbType.Byte;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Completed";
 param.Value = orderInfo.Completed;
 param.DbType = DbType.Byte;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Canceled";
 param.Value = orderInfo.Canceled;
 param.DbType = DbType.Byte;
 comm.Parameters.Add(param);

Darie-Watson_4681C10.fm Page 387 Tuesday, September 20, 2005 4:52 AM

388 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Comments";
 param.Value = orderInfo.Comments;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CustomerName";
 param.Value = orderInfo.CustomerName;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ShippingAddress";
 param.Value = orderInfo.ShippingAddress;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CustomerEmail";
 param.Value = orderInfo.CustomerEmail;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // return the results
 GenericDataAccess.ExecuteNonQuery(comm);
}

MarkVerified

The MarkVerified method is called when the Mark this Order as Verified button is clicked and
sets the Verified bit of the specified order in the database to 1.

// Mark an order as verified
public static void MarkVerified(string orderId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderMarkVerified";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the results
 GenericDataAccess.ExecuteNonQuery(comm);
}

Darie-Watson_4681C10.fm Page 388 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 389

MarkCompleted

The MarkCompleted method is called when the Mark this Order as Completed button is clicked
and sets the Completed bit of the specified order to 1.

// Mark an order as completed
public static void MarkCompleted(string orderId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderMarkCompleted";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the results
 GenericDataAccess.ExecuteNonQuery(comm);
}

MarkCanceled

The MarkCanceled method is called when the Mark this Order as Canceled button is clicked and
sets the Canceled bit of the specified order to 1.

// Mark an order as canceled
public static void MarkCanceled(string orderId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "OrderMarkCanceled";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the results
 GenericDataAccess.ExecuteNonQuery(comm);
}

Creating the User Interface

Once again, you’ve reached the place where you wrap up all the data-tier and business-tier
functionality and package it into a nice-looking user interface. You’ll create the OrderDetailsAdmin
user control in the following exercise.

Darie-Watson_4681C10.fm Page 389 Tuesday, September 20, 2005 4:52 AM

390 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

Exercise: Creating the OrderDetailsAdmin Web User Control

1. Right-click the UserControls folder in Solution Explorer and select Add New Item ➤ Web User
Control. Choose OrderDetailsAdmin.ascx for the name of the new user control.

2. Open the control in Design View and populate it as shown in Figure 10-11. The properties for each con-
stituent control are shown in Table 10-5, and the GridView columns are listed in Table 10-6. For the
GridView control, you also need to set its AutoGenerateColumns property to False.

Figure 10-11. OrderDetailsAdmin.ascx in Design View

■Tip When setting controls’ properties, remember that Visual Studio .NET allows you to set properties on
more than one control at a time—you can select, for example, the TextBox controls on the right and set their
Width to 400px, and so on.

Darie-Watson_4681C10.fm Page 390 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 391

Table 10-5. Setting Controls’ Properties in OrderDetailsAdmin.ascx

Control Type ID Text CssClass Width

Label orderIdLabel Order #000 AdminTitle

Label totalAmountLabel (empty) ProductPrice

TextBox dateCreatedTextBox AdminPageText 400px

TextBox dateShippedTextBox AdminPageText 400px

CheckBox verifiedCheck AdminPageText 400px

CheckBox completedCheck AdminPageText 400px

CheckBox canceledCheck AdminPageText 400px

TextBox commentsTextBox AdminPageText 400px

TextBox customerNameTextBox AdminPageText 400px

TextBox shippingAddressTextBox AdminPageText 400px

TextBox customerEmailTextBox AdminPageText 400px

Button editButton Edit SmallButtonText 100px

Button updateButton Update SmallButtonText 100px

Button cancelButton Cancel SmallButtonText 100px

Button markVerifiedButton Mark Order as Verified SmallButtonText 305px

Button markCompletedButton Mark Order as Completed SmallButtonText 305px

Button markCanceledButton Mark Order as Canceled SmallButtonText 305px

Label (doesn’t matter) The order contains
these items:

AdminPageText

GridView grid 100%

Table 10-6. Setting the Fields of the GridView Control

Column Type Header Text Data Field Other Properties

BoundField Product ID ProductID Read Only

BoundField Product Name ProductName Read Only

BoundField Quantity Quantity Read Only

BoundField Unit Cost Unit Cost Read Only

ButtonField Subtotal Subtotal Read Only

Darie-Watson_4681C10.fm Page 391 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

392 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

To make sure we’re on the same page, here’s the source code of the control:

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="OrderDetailsAdmin.ascx.cs" Inherits="OrderDetailsAdmin" %>
<asp:Label ID="orderIdLabel" runat="server"
 CssClass="AdminTitle" Text="Order #000" />

<table class="AdminPageText">
 <tr>
 <td width="130">Total Amount:</td>
 <td>
 <asp:Label ID="totalAmountLabel" runat="server"
CssClass="ProductPrice" />
 </td>
 </tr>
 <tr>
 <td width="130">Date Created:</td>
 <td>
 <asp:TextBox ID="dateCreatedTextBox" runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="130">Date Shipped:</td>
 <td>
 <asp:TextBox ID="dateShippedTextBox" runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="130">Verified:</td>
 <td>
 <asp:CheckBox ID="verifiedCheck" runat="server" />
 </td>
 </tr>
 <tr>
 <td width="130">Completed:</td>
 <td>
 <asp:CheckBox ID="completedCheck" runat="server" />
 </td>
 </tr>
 <tr>
 <td width="130">Canceled:</td>
 <td>
 <asp:CheckBox ID="canceledCheck" runat="server" />
 </td>
 </tr>

Darie-Watson_4681C10.fm Page 392 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 393

 <tr>
 <td width="130">Comments:</td>
 <td>
 <asp:TextBox ID="commentsTextBox" runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="130">Customer Name:</td>
 <td>
 <asp:TextBox ID="customerNameTextBox" runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="130">Shipping Address:</td>
 <td>
 <asp:TextBox ID="shippingAddressTextBox" runat="server" Width="400px" />
 </td>
 </tr>
 <tr>
 <td width="130">Customer Email:</td>
 <td>
 <asp:TextBox ID="customerEmailTextBox" runat="server" Width="400px" />
 </td>
 </tr>
</table>

<asp:Button ID="editButton" runat="server" CssClass="SmallButtonText"
 Text="Edit" Width="100px" />
<asp:Button ID="updateButton" runat="server" CssClass="SmallButtonText"
 Text="Update" Width="100px" />
<asp:Button ID="cancelButton" runat="server" CssClass="SmallButtonText"
 Text="Cancel" Width="100px" />

<asp:Button ID="markVerifiedButton" runat="server" CssClass="SmallButtonText"
 Text="Mark Order as Verified" Width="310px" />

<asp:Button ID="markCompletedButton" runat="server" CssClass="SmallButtonText"
 Text="Mark Order as Completed" Width="310px" />

<asp:Button ID="markCanceledButton" runat="server" CssClass="SmallButtonText"
 Text="Mark Order as Canceled" Width="310px" />

<asp:Label ID="Label13" runat="server" CssClass="AdminPageText"
Text="The order contains these items:" />

<asp:GridView ID="grid" runat="server" AutoGenerateColumns="False"
BackColor="White" Width="100%">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="Product ID"
 ReadOnly="True" SortExpression="ProductID" />

Darie-Watson_4681C10.fm Page 393 Tuesday, September 20, 2005 4:52 AM

394 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 <asp:BoundField DataField="ProductName" HeaderText="Product Name"
 ReadOnly="True" SortExpression="ProductName" />
 <asp:BoundField DataField="Quantity" HeaderText="Quantity"
 ReadOnly="True" SortExpression="Quantity" />
 <asp:BoundField DataField="UnitCost" HeaderText="Unit Cost"
 ReadOnly="True" SortExpression="UnitCost" />
 <asp:BoundField DataField="Subtotal" HeaderText="Subtotal"
 ReadOnly="True" SortExpression="Subtotal" />
 </Columns>
</asp:GridView>

3. Start writing the code-behind logic of OrderDetailsAdmin.ascx by adding a new field named
editMode, “transforming” the Page_Load method to Page_PreRender, and adding some code to it:

public partial class OrderDetailsAdmin : System.Web.UI.UserControl
{
 // edit mode by default is false
 private bool editMode = false;

 // set up the form
 protected void Page_PreRender(object sender, EventArgs e)
 {
 // check if we must display order details
 if (Session["AdminOrderID"] != null)
 {
 // fill constituent controls with data
 PopulateControls();
 // set edit mode
 SetEditMode(editMode);
 }
 else
 // Hide
 this.Visible = false;
 }
}

Note the use of Session["AdminOrderID"]—this is set in OrdersAdmin.aspx, when the admin-
istrator selects an order from the list. The OrderDetailsAdmin.ascx reads this value to find out the
ID of the order it needs to display details for. In the Page_PreRender function, you use two additional
methods: PopulateControls, which populates all the controls on the form with data, and SetEditMode,
which disables or enables the text boxes and check boxes for editing.

4. Add PopulateControls just after Page_PreRender. This method gets the order information into an
OrderInfo object, which was especially created for this purpose, by calling the GetInfo method of the
OrdersAccess class. Using the information from that object, the method fills the constituent controls with
data. At the end, you call OrdersAccess.GetDetails, which returns the products in the specified order.

Darie-Watson_4681C10.fm Page 394 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 395

// populate the form with data
private void PopulateControls()
{
 // obtain order ID from the session
 string orderId = Session["AdminOrderID"].ToString();
 // obtain order info
 OrderInfo orderInfo = OrdersAccess.GetInfo(orderId);
 // populate labels and text boxes with order info
 orderIdLabel.Text = "Displaying Order #" + orderId;
 totalAmountLabel.Text = String.Format("{0:c}", orderInfo.TotalAmount);
 dateCreatedTextBox.Text = orderInfo.DateCreated;
 dateShippedTextBox.Text = orderInfo.DateShipped;
 verifiedCheck.Checked = orderInfo.Verified;
 completedCheck.Checked = orderInfo.Completed;
 canceledCheck.Checked = orderInfo.Canceled;
 commentsTextBox.Text = orderInfo.Comments;
 customerNameTextBox.Text = orderInfo.CustomerName;
 shippingAddressTextBox.Text = orderInfo.ShippingAddress;
 customerEmailTextBox.Text = orderInfo.CustomerEmail;
 // by default the Edit button is enabled, and the
 // Update and Cancel buttons are disabled
 editButton.Enabled = true;
 updateButton.Enabled = false;
 cancelButton.Enabled = false;
 // Decide which one of the other three buttons
 // should be enabled and which should be disabled
 if (canceledCheck.Checked || completedCheck.Checked)
 {
 // if the order was canceled or completed ...
 markVerifiedButton.Enabled = false;
 markCompletedButton.Enabled = false;
 markCanceledButton.Enabled = false;
 }
 else if (verifiedCheck.Checked)
 {
 // if the order was not canceled but is verified ...
 markVerifiedButton.Enabled = false;
 markCompletedButton.Enabled = true;
 markCanceledButton.Enabled = true;
 }
 else
 {
 // if the order was not canceled and is not verified ...
 markVerifiedButton.Enabled = true;
 markCompletedButton.Enabled = false;
 markCanceledButton.Enabled = true;
 }

Darie-Watson_4681C10.fm Page 395 Tuesday, September 20, 2005 4:52 AM

396 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

 // fill the data grid with order details
 grid.DataSource = OrdersAccess.GetDetails(orderId);
 grid.DataBind();
}

5. Write the SetEditMode method now, which enables or disables edit mode for the information text boxes.

// enable or disable edit mode
private void SetEditMode(bool enable)
{
 dateCreatedTextBox.Enabled = enable;
 dateShippedTextBox.Enabled = enable;
 verifiedCheck.Enabled = enable;
 completedCheck.Enabled = enable;
 canceledCheck.Enabled = enable;
 commentsTextBox.Enabled = enable;
 customerNameTextBox.Enabled = enable;
 shippingAddressTextBox.Enabled = enable;
 customerEmailTextBox.Enabled = enable;
 editButton.Enabled = !enable;
 updateButton.Enabled = enable;
 cancelButton.Enabled = enable;
}

This method receives a bool parameter that specifies whether you enter or exit edit mode. When entering
edit mode, all text boxes and the Update and Cancel buttons become enabled, while the Edit button is
disabled. The reverse happens when exiting edit mode (this happens when one of the Cancel and
Update buttons is clicked).

6. Now, start implementing the code that allows the administrator to edit order information. To make your
life easier, first double-click each of the buttons (Edit, Cancel, Update) in Design View to let Visual
Studio generate the signatures of the event handlers. Here’s the code:

// enter edit mode
protected void editButton_Click(object sender, EventArgs e)
{
 editMode = true;
}

// cancel edit mode
protected void cancelButton_Click(object sender, EventArgs e)
{
 // don't need to do anything, editMode will be set to false by default
}

// update order information
protected void updateButton_Click(object sender, EventArgs e)
{

Darie-Watson_4681C10.fm Page 396 Tuesday, September 20, 2005 4:52 AM

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 397

 // Store the new order details in an OrderInfo object
 OrderInfo orderInfo = new OrderInfo();
 string orderId = Session["AdminOrderID"].ToString();
 orderInfo.OrderID = Int32.Parse(orderId);
 orderInfo.DateCreated = dateCreatedTextBox.Text;
 orderInfo.DateShipped = dateShippedTextBox.Text;
 orderInfo.Verified = verifiedCheck.Checked;
 orderInfo.Completed = completedCheck.Checked;
 orderInfo.Canceled = canceledCheck.Checked;
 orderInfo.Comments = commentsTextBox.Text;
 orderInfo.CustomerName = customerNameTextBox.Text;
 orderInfo.ShippingAddress = shippingAddressTextBox.Text;
 orderInfo.CustomerEmail = customerEmailTextBox.Text;
 // try to update the order
 try
 {
 // Update the order
 OrdersAccess.Update(orderInfo);
 }
 catch (Exception ex)
 {
 // In case of an error, we simply ignore it
 }
 // Exit edit mode
 SetEditMode(false);
 // Update the form
 PopulateControls();
}

■Note Here we didn’t implement a mechanism to let the administrator know whether the update was
successful or failed—if something happens, we just ignore the error. You’ve learned various error-handling
techniques in this and previous chapters, and you can choose to implement whichever technique you think is
best for your application.

7. Do the same for the last three buttons:

// mark order as verified
protected void markVerifiedButton_Click(object sender, EventArgs e)
{
 // obtain the order ID from the session
 string orderId = Session["AdminOrderID"].ToString();
 // mark order as verified
 OrdersAccess.MarkVerified(orderId);
 // update the form
 PopulateControls();
}

Darie-Watson_4681C10.fm Page 397 Tuesday, September 20, 2005 4:52 AM

398 C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S

// mark order as completed
protected void markCompletedButton_Click(object sender, EventArgs e)
{
 // obtain the order ID from the session
 string orderId = Session["AdminOrderID"].ToString();
 // mark the order as completed
 OrdersAccess.MarkCompleted(orderId);
 // update the form
 PopulateControls();
}

// mark order as canceled
protected void markCanceledButton_Click(object sender, EventArgs e)
{
 // obtain the order ID from the session
 string orderId = Session["AdminOrderID"].ToString();
 // mark the order as canceled
 OrdersAccess.MarkCanceled(orderId);
 // update the form
 PopulateControls();
}

8. Open OrdersAdmin.aspx in Design View and drag OrderDetailsAdmin.ascx from the Solution
Explorer to the bottom of the second place holder, as shown in Figure 10-12.

Figure 10-12. Adding OrderDetailsAdmin.ascx to OrdersAdmin.aspx

Darie-Watson_4681C10.fm Page 398 Tuesday, September 20, 2005 4:52 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 0 ■ D E A L I N G W I T H C U S T O M E R O R D E R S 399

9. Switch OrdersAdmin.aspx to Source View and disable the view state for the
OrderDetailsAdmin.ascx instance. Change its name from OrderDetailsAdmin1 to
orderDetailsAdmin:

 </asp:GridView>

 <uc1:OrderDetailsAdmin EnableViewState="false"
 id="orderDetailsAdmin" runat="server">
 </uc1:OrderDetailsAdmin>

</asp:Content>

How It Works: OrderDetailsAdmin.ascx

Whew, you’ve written a lot of code for this control. The code itself isn’t complicated, but you had to deal with a lot
of user interface elements. The two important details to understand are as follows:

• You used the session to persist data about the selected order. This is read in the OrderDetailsAdmin
control to obtain the ID of the selected order.

• You used Page_PreRender instead of Page_Load, because it executed after the session gets the
chance to be updated in the parent form.

Because we talked about each method while writing the code, it should be pretty clear how the page works. Run it
now and play with the buttons to make sure everything works as it should.

Summary
We covered a lot of ground in this chapter. You implemented a system by which you can both
take orders and manually administer them.

You accomplished this in two separate stages. You added a Proceed to Checkout button
onto the shopping cart control to allow the visitor to order the products in the shopping cart.
You implemented a simple orders administration page, where the site administrator could
view and handle pending orders.

In addition, we looked at the use of validation controls and also, importantly, set the scene
for entirely automating the order system.

Because order data is now stored in the database, you can create various statistics and run
calculations based on the items sold. In the next chapter, you’ll learn how to implement a “Visitors
who bought this also bought . . .” feature, which wouldn’t have been possible without the order
data stored in the database.

Darie-Watson_4681C10.fm Page 399 Tuesday, September 20, 2005 4:52 AM

Darie-Watson_4681C10.fm Page 400 Tuesday, September 20, 2005 4:52 AM

401

■ ■ ■

C H A P T E R 1 1

Making Product
Recommendations

One of the most important advantages of an Internet store compared to a brick-and-mortar
location is the capability to customize the web site for each visitor based on his or her prefer-
ences or based on data gathered from other visitors with similar preferences. If your web site
knows how to suggest additional products to your visitor in a clever way, he or she might end
up buying more than initially planned.

In this chapter, you’ll implement a simple but efficient product recommendations system
in your BalloonShop web store. You can implement a product recommendations system in
several ways, depending on your kind of store. Here are a few popular ones:

• Up-Selling: The strategy of offering consumers the opportunity to purchase an “upgrade”
or a little extra based on their requested purchases. Perhaps the most famous example of
up-selling—“Would you like to super-size that?”—is mentioned to customers when they
order a value meal at McDonald’s. This seemingly innocent request greatly increases the
profit margin.

• Cross-Selling: The practice of offering customers complementary products. Continuing
with the McDonald’s analogy, when customers order hamburgers, they’ll always hear
the phrase “Would you like fries with that?” because everyone knows that fries go with
burgers. Because the consumers are ordering burgers, it’s likely that they also like french
fries—the mere mention of fries is likely to generate a new sale.

• Featured products on the home page: BalloonShop permits the site administrator to
choose the products featured on the main page and on the department pages.

In this chapter, you’ll implement a dynamic recommendations system with both up-selling
and cross-selling strategies. This system has the advantage of not needing manual maintenance.
Because at this point BalloonShop retains what products were sold, you can now implement a
“customers who bought this product also bought . . .” feature.

Darie-Watson_4681C11.fm Page 401 Monday, September 19, 2005 10:02 AM

402 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

Increasing Sales with Dynamic
Recommendations
In BalloonShop, you’ll implement the dynamic recommendations system in the visitor’s shopping
cart and in the product details page. After adding the new bits to your shop, the product details
page will contain the product recommendations list at the bottom of the page, as shown in
Figure 11-1.

Figure 11-1. The product details page with the dynamic recommendations system implemented

The shopping cart page gets a similar addition, as shown in Figure 11-2.

Darie-Watson_4681C11.fm Page 402 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 403

Figure 11-2. The product details page with the dynamic recommendations system implemented

Implementing the Data Tier
Before writing any code, you first need to understand the logic you’ll implement for making
product recommendations. We’ll focus here on the logic of recommending products that were
ordered together with another specific product. Afterward, the recommendations for the shop-
ping cart page will function in a similar way, but will take more products into consideration.

So you need to find out what other products were bought by customers who also bought
the product for which you’re calculating the recommendations (in other words, determine
“customers who bought this product also bought . . .” information). Let’s develop the SQL logic
to achieve the list of product recommendations step by step.

Darie-Watson_4681C11.fm Page 403 Monday, September 19, 2005 10:02 AM

404 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

■Tip Because SQL is very powerful, you can actually implement the exact same functionality in several
ways. We’ll cover here one of the options, but when implementing the actual stored procedures, you’ll be
shown other options as well.

To find what other products were ordered together with a specific product, you need to
join two instances of the OrderDetail table on their OrderID fields. Feel free to review the
“Joining Data Tables” section in Chapter 4 for a quick refresher about table joins. Joining
multiple instances of a single table is just like joining different data tables that contain the
same data.

You join two instances of OrderDetail—called od1 and od2—on their OrderID fields, while
filtering the ProductID value in od1 for the ID of the product you’re looking for. This way, in the
od2 side of the relationship you’ll get all the products that were ordered in the orders that contain
the product you’re looking for.

The SQL code that gets all the products that were ordered together with the product iden-
tified by a ProductID of 4 is

SELECT od2.ProductID
FROM OrderDetail od1 JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
WHERE od1.ProductID = 4

This code returns a long list of products, which includes the product with the ProductID of
4, such as this one:

ProductID

1
4
7
10
14
18
22
26
30
1
4
7
10
14
18
4
14
18
22
26
30

Darie-Watson_4681C11.fm Page 404 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 405

Starting from this list of results, you need to get the products that are most frequently
bought along with this product. The first problem with this list of products is that it includes
the product with the ProductID of 4. To eliminate it from the list (because, of course, you can’t
put it in the recommendations list), you simply add one more rule to the WHERE clause:

SELECT od2.ProductID
FROM OrderDetail od1
JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
WHERE od1.ProductID = 4 and od2.ProductID != 4

Not surprisingly, you get a list of products that is similar to the previous one, except it
doesn’t contain the product with a ProductID of 4 anymore:

ProductID

1
7
10
14
18
22
26
30
1
7
10
14
18
14
18
22
26
30

Now the list of returned products is shorter, but it contains multiple entries for the products
that were ordered more than once in the orders that contain the product identifier 4. To get the
most relevant recommendations, you need to see which products appear more frequently in this
list. You do this by grouping the results of the previous query by ProductID and sorting in
descending order by how many times each product appears in the list (this number is given by
the Rank calculated column in the following code snippet):

SELECT od2.ProductID, COUNT(od2.ProductID) AS Rank
FROM OrderDetail od1
JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
WHERE od1.ProductID = 4 AND od2.ProductID != 4
GROUP BY od2.ProductID
ORDER BY Rank DESC

This query now returns a list such as the following:

Darie-Watson_4681C11.fm Page 405 Monday, September 19, 2005 10:02 AM

8213592a117456a340854d18cee57603

406 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

ProductID rank
----------- -----------
14 3
18 3
22 2
26 2
30 2
1 2
7 2
10 2

If you don’t need the rank to be returned, you can rewrite this query by using the COUNT
aggregate function directly in the ORDER BY clause. You can also use the TOP keyword to specify
how many records you’re interested in. If you want the top five products of the list, this query
does the trick:

SELECT TOP 5 od2.ProductID
FROM OrderDetail od1
JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
WHERE od1.ProductID = 4 AND od2.ProductID != 4
GROUP BY od2.ProductID
ORDER BY COUNT(od2.ProductID) DESC

The results of this query are

ProductID

18
14
22
10
7

Because this list of numbers doesn’t make much sense to a human eye, you’ll also want to
know the name and the description of the recommended products. The following query does
exactly this by querying the Product table for the IDs returned by the previous query (the
description isn’t requested because of space reasons):

SELECT ProductID, Name
FROM Product
WHERE ProductID IN
 (
 SELECT TOP 5 od2.ProductID
 FROM OrderDetail od1
 JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
 WHERE od1.ProductID = 4 AND od2.ProductID != 4
 GROUP BY od2.ProductID
 ORDER BY COUNT(od2.ProductID) DESC
)

Darie-Watson_4681C11.fm Page 406 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 407

Based on the data from the previous fictional results, this query returns something like this:

ProductID Name
----------- --
18 Love Cascade Hearts
14 Love Rose
22 I'm Younger Than You
10 I Can't Get Enough of You
7 Smiley Kiss Red Balloon

Alternatively, you might want to calculate the product recommendations only using data
from the orders that happened in the last n days. For this, you need an additional join with the
orders table, which contains the date_created field. The following query calculates product
recommendations based on orders placed in the past 30 days:

SELECT ProductID, Name
FROM Product
WHERE ProductID IN
 (
 SELECT TOP 5 od2.ProductID
 FROM OrderDetail od1
 JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
 JOIN Orders ON od1.OrderID = Orders.OrderID
 WHERE od1.ProductID = 4 AND od2.ProductID != 4
 AND DATEDIFF(dd, Orders.DateCreated,GETDATE()) < 30
 GROUP BY od2.ProductID
 ORDER BY COUNT(od2.ProductID) DESC
)

We won’t use this trick in BalloonShop, but it’s worth keeping in mind as a possibility.

Adding Product Recommendations
Make sure you understand the data tier logic explained earlier, as you’ll implement it in the
GetProductRecommendations stored procedure. The only significant difference from the queries
shown earlier is that you’ll also ask for the product description, which will be truncated at a
specified number of characters.

The GetProductRecommendations stored procedure is called when displaying Product.aspx to
show what products were ordered together with the selected product. Add this stored procedure to
the BalloonShop database:

CREATE PROCEDURE GetProductRecommendations
(@ProductID INT,
 @DescriptionLength INT)
AS
SELECT ProductID,
 Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description
FROM Product

Darie-Watson_4681C11.fm Page 407 Monday, September 19, 2005 10:02 AM

408 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

WHERE ProductID IN
 (
 SELECT TOP 5 od2.ProductID
 FROM OrderDetail od1
 JOIN OrderDetail od2 ON od1.OrderID = od2.OrderID
 WHERE od1.ProductID = @ProductID AND od2.ProductID != @ProductID
 GROUP BY od2.ProductID
 ORDER BY COUNT(od2.ProductID) DESC
)

An Alternate Solution Using SubQueries

Because SQL is so versatile, GetProductRecommendations can be written in a variety of ways. In
our case, one popular alternative to using table joins is using subqueries. Here’s a version of
GetProductRecommendations that uses subqueries instead of joins. The commented code is self-
explanatory:

CREATE PROCEDURE GetProductRecommendations2
(@ProductID INT,
 @DescriptionLength INT)
AS
--- Returns the product recommendations
SELECT ProductID,
 Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description
FROM Product
WHERE ProductID IN
 (
 -- Returns the products that were ordered together with @ProductID
 SELECT TOP 5 ProductID
 FROM OrderDetail
 WHERE OrderID IN
 (
 -- Returns the orders that contain @ProductID
 SELECT DISTINCT OrderID
 FROM OrderDetail
 WHERE ProductID = @ProductID
)
 -- Must not include products that already exist in the visitor's cart
 AND ProductID <> @ProductID
 -- Group the ProductID so we can calculate the rank
 GROUP BY ProductID
 -- Order descending by rank
 ORDER BY COUNT(ProductID) DESC
)

Darie-Watson_4681C11.fm Page 408 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 409

Adding Shopping Cart Recommendations
The logic for showing shopping cart recommendations is very similar to what you did earlier,
except now you need to take into account all products that exist in the shopping cart, instead
of a single product. Add the following procedure to your BalloonShop database:

CREATE PROCEDURE GetShoppingCartRecommendations
(@CartID CHAR(36),
 @DescriptionLength INT)
AS
--- Returns the product recommendations
SELECT ProductID,
 Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description
FROM Product
WHERE ProductID IN
 (
 -- Returns the products that exist in a list of orders
 SELECT TOP 5 od1.ProductID AS Rank
 FROM OrderDetail od1
 JOIN OrderDetail od2
 ON od1.OrderID=od2.OrderID
 JOIN ShoppingCart sp
 ON od2.ProductID = sp.ProductID
 WHERE sp.CartID = @CartID
 -- Must not include products that already exist in the visitor's cart
 AND od1.ProductID NOT IN
 (
 -- Returns the products in the specified shopping cart
 SELECT ProductID
 FROM ShoppingCart
 WHERE CartID = @CartID
)
 -- Group the ProductID so we can calculate the rank
 GROUP BY od1.ProductID
 -- Order descending by rank
 ORDER BY COUNT(od1.ProductID) DESC
)

The alternate version of this procedure, which uses subqueries instead of table joins, looks
like this:

CREATE PROCEDURE GetShoppingCartRecommendations2
(@CartID CHAR(36),
 @DescriptionLength INT)
AS

Darie-Watson_4681C11.fm Page 409 Monday, September 19, 2005 10:02 AM

410 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

--- Returns the product recommendations
SELECT ProductID,
 Name,
 SUBSTRING(Description, 1, @DescriptionLength) + '...' AS Description
FROM Product
WHERE ProductID IN
 (
 -- Returns the products that exist in a list of orders
 SELECT TOP 5 ProductID
 FROM OrderDetail
 WHERE OrderID IN
 (
 -- Returns the orders that contain certain products
 SELECT DISTINCT OrderID
 FROM OrderDetail
 WHERE ProductID IN
 (
 -- Returns the products in the specified shopping cart
 SELECT ProductID
 FROM ShoppingCart
 WHERE CartID = @CartID
)
)
 -- Must not include products that already exist in the visitor's cart
 AND ProductID NOT IN
 (
 -- Returns the products in the specified shopping cart
 SELECT ProductID
 FROM ShoppingCart
 WHERE CartID = @CartID
)
 -- Group the ProductID so we can calculate the rank
 GROUP BY ProductID
 -- Order descending by rank
 ORDER BY COUNT(ProductID) DESC
)

Implementing the Business Tier
The business tier of the product recommendations system consists of two methods named
GetRecommendations. One of them is located in the CatalogAccess class and retrieves recom-
mendations for a product details page, and the other one is located in the ShoppingCartAccess
class and retrieves recommendations to be displayed in the visitor’s shopping cart.

Add this GetRecommendations method to your CatalogAccess class:

Darie-Watson_4681C11.fm Page 410 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 411

// gets product recommendations
public static DataTable GetRecommendations(string productId)
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetProductRecommendations";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ProductID";
 param.Value = productId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 return GenericDataAccess.ExecuteSelectCommand(comm);
}

Add this version of the GetRecommendations method to your ShoppingCartAccess class:

// gets product recommendations for the shopping cart
public static DataTable GetRecommendations()
{
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "GetShoppingCartRecommendations";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DescriptionLength";
 param.Value = BalloonShopConfiguration.ProductDescriptionLength;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 return GenericDataAccess.ExecuteSelectCommand(comm);
}

Darie-Watson_4681C11.fm Page 411 Monday, September 19, 2005 10:02 AM

412 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

Implementing the Presentation Tier
Creating the user interface for product recommendations implies three major steps:

• Creating a new Web User Control that displays the product recommendations. This new
control will be named ProductRecommendations.ascx.

• Adding ProductRecommendations.ascx to Product.aspx, where it must display the
“customers who bought this product also bought:” list.

• Adding ProductRecommendations.ascx to ShoppingCart.aspx, where it displays the
“customers who bought these products also bought:” list.

Let’s do these steps in the following exercise.

Exercise: Creating the User Interface

1. Add the following styles to BalloonShop.css:

.RecommendationHead
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-weight: bold;
 font-size: 10px;
}
.RecommendationText
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 10px;
}
.RecommendationLink
{
 color: Black;
 font-family: Verdana, Helvetica, sans-serif;
 text-decoration: underline;
 font-size: 10px;
}
a.RecommendationLink:hover
{
 color: Red;
}

2. Add a new Web User Control named ProductRecommendations.ascx to your UserControls folder.

Darie-Watson_4681C11.fm Page 412 Monday, September 19, 2005 10:02 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 413

3. Write this code in the Source View window of the control, representing a DataList showing the
product recommendations list:

<asp:Label ID="recommendationsHeader" runat="server"
CssClass="RecommendationHead" />
<asp:DataList ID="list" runat="server">
 <ItemTemplate>
 <table cellpadding="0" cellspacing="0">
 <tr>
 <td width="170px">
 <a class="RecommendationLink"
 href='Product.aspx?ProductID=<%# Eval("ProductID") %>'>
 <%# Eval("Name") %>

 </td>
 <td class="RecommendationText" valign="top">
 <%# Eval("Description") %>
 </td>
 </tr>
 </table>
 </ItemTemplate>
</asp:DataList>

4. Switch to the code-behind file, change Page_Load to Page_PreRender, and complete its code like this:

protected void Page_PreRender(object sender, EventArgs e)
{
 // Get the currently loaded page
 string currentLocation = Request.AppRelativeCurrentExecutionFilePath;
 // If we're in Product.aspx...
 if (currentLocation == "~/Product.aspx")
 {
 // get the product ID
 string productId = Request.QueryString["ProductID"];
 // get product recommendations
 DataTable table;
 // display recommendations
 table = CatalogAccess.GetRecommendations(productId);
 list.DataSource = table;
 list.DataBind();
 // display header
 if (table.Rows.Count > 0)
 recommendationsHeader.Text =
 "Customers who bought this product also bought:";
 else
 recommendationsHeader.Text = "";
 }

Darie-Watson_4681C11.fm Page 413 Monday, September 19, 2005 10:02 AM

414 C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S

 // If we're in ShoppingCart.aspx...
 else if (currentLocation == "~/ShoppingCart.aspx")
 {
 // get product recommendations
 DataTable table;
 // display recommendations
 table = ShoppingCartAccess.GetRecommendations();
 list.DataSource = table;
 list.DataBind();
 // display header
 if (table.Rows.Count > 0)
 recommendationsHeader.Text =
 "Customers who bought these products also bought:";
 else
 recommendationsHeader.Text = "";
 }
}

5. Open Product.aspx in Design View and drag ProductRecommendations.ascx from the Solution
Explorer to the bottom of the form. Your new form will look like Figure 11-3.

Figure 11-3. Product.aspx in Design View

6. Now do the same for ShoppingCart.aspx. Open ShoppingCart.aspx in Design View and drag
ProductRecommendations.ascx from the Solution Explorer to the bottom of the form, as shown in
Figure 11-4.

Darie-Watson_4681C11.fm Page 414 Monday, September 19, 2005 10:02 AM

C H A P T E R 1 1 ■ M A K I N G P R O D U C T R E C O M M E N D A T I O N S 415

Figure 11-4. Product.aspx in Design View

7. Test your web site now to ensure that the new functionality works as expected. The results should
resemble the screenshots presented at the beginning of this chapter.

How It Works: Showing Product Recommendations

The most complex part of this new functionality is creating the database stored procedures. In this exercise, you just
needed to display the calculated products inside the Product.aspx and ShoppingCart.aspx Web Forms. The
Page_PreRender event handler is used instead of Page_Load to ensure that the recommendations list is properly
updated after the shopping cart changes, in case the visitor deletes products from the cart.

Summary
In this short chapter, you added a new and interesting functionality to the BalloonShop web
site. With product recommendations, you have more chances to convince visitors to buy
products from the BalloonShop web site.

In the next chapter, you’ll enter the third stage of development by adding customer
accounts functionality.

Darie-Watson_4681C11.fm Page 415 Monday, September 19, 2005 10:02 AM

Darie-Watson_4681C11.fm Page 416 Monday, September 19, 2005 10:02 AM

417

■ ■ ■

C H A P T E R 1 2

Adding Customer Accounts

So far in this book, you’ve built a basic (but functional) site and hooked it into PayPal for
taking payments and confirming orders. In this last section of the book, you’ll take things a
little further. By cutting out PayPal from the ordering process, you can gain better control and
reduce overheads. This isn’t as complicated as you might think, but you must be careful to do
things right.

This chapter lays the groundwork for this task by implementing a customer account system.
To make e-commerce sites more user-friendly, details such as credit card numbers are

stored in a database so that visitors don’t have to retype this information each time they place
an order. The customer account system you’ll implement will do this and will include all the
web pages required for entering such details.

As well as implementing these web pages, you’ll need to take several other factors into
account. First, simply placing credit card numbers, expiry dates, and so on into a database in
plain text isn’t ideal. This method might expose this data to unscrupulous people with access
to the database. This could occur remotely or be perpetrated by individuals within your client’s
organization. Rather than enforcing a prohibitively restrictive access policy to such data, it’s
much easier to encrypt sensitive information and retrieve it programmatically when required.
You’ll create a security library to make this easier.

Secondly, secure communications are important because you’ll be capturing sensitive
information such as credit card details via the Web. You can’t just put a form up for people to
access via HTTP and allow them to send it to you because the data could be intercepted. You’ll
learn how to use SSL over HTTPS connections to solve this problem.

You’ll be taking the BalloonShop application to the point where you can move on and
implement your own backend order pipeline in the next chapters.

Handling Customer Accounts
You can handle customer account functionality in web sites in many ways. In general, however,
they share the following features:

• Customers log in via a login page or dialog box to get access to secured areas of the web site.

• Once logged in, the Web Application remembers the customer until the customer logs
out (either manually via a Log Out button or automatically if the session times out or a
server error occurs).

Darie-Watson_4681C12.fm Page 417 Monday, September 12, 2005 6:50 AM

418 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

• All secure pages in a Web Application need to check whether a customer is logged in
before allowing access.

First, let’s look at the general implementation details for the BalloonShop e-commerce site.

Creating a BalloonShop Customer
Account Scheme
Actually, you’ve already done a lot of the work here—back in Chapter 9, you implemented a
system whereby site administrators can log in and, among other things, edit products in the
catalog. You did this using forms authentication, and you created a login page, Login.aspx, to
allow users in an Administrators role to log in. The current login status, that is, whether a user
is logged in, is shown using a user control you created, Login.ascx.

In this chapter, you’ll take things a little further by extending the system for use with
customers. You must make several changes to enable this, but the starting point is to include
a new role, in addition to Administrators, which we’ll call (surprisingly enough) Customers.
Customers will then log in using the same login page as administrators, but because they are in
a different role, the similarity ends there. They will not, for example, have access to the administra-
tion tools that administrators can use. They will, however, have access to a customer details
page, where they can view and edit address, contact, and credit card details prior to placing an
order. Another major addition is that of a registration page, where new customers can sign up
on the site.

As you can see, the amount of user data you need to store has increased now that you’re
catering to customers, with address data and so on needing somewhere to live. Luckily, ASP.NET
introduces the concept of user profiles, a flexible storage system that fits this need perfectly,
with minimal effort. Later in the chapter, you’ll see how user profiles can be quickly configured
using the web.config file and how you can hook into this information from your code.

Of course, there are alternatives to using the forms authentication system. You could use
Microsoft Passport authentication—although many people prefer not to because it ties accounts
into a proprietary system and can be time consuming and tricky to set up correctly. You could
also use Windows Authentication, where user accounts are associated with Windows accounts
stored on the hosting server or in the domain of the hosting server. This solution is great for
intranet sites, where users already have domain accounts, but is difficult to set up and maintain
for Internet sites, and is usually avoided in such cases. Alternatively, you could implement your
own custom system, which gives you the most flexibility at the cost of increased development time.

One important thing you’d have to do in a custom system, as mentioned in Chapter 9, is to
secure user passwords. It isn’t a good idea to store user passwords in your database in plain
text, because this information is a potential target for attack. Instead, you should store what is
known as the hash of the password. A hash is a unique string that represents the password, but
cannot be converted back into the password itself. To validate the password entered by the
user, you simply need to generate a hash for the password entered and compare it with the
hash stored in your database. If the hashes match, the passwords entered match as well, so you
can be sure that the customer is not an imposter. The ASP.NET forms authentication system
you’ll use in this chapter handles this side of things for you, and ensures that user passwords
are stored securely (and in a case-sensitive way, providing enhanced security). However, it’s

Darie-Watson_4681C12.fm Page 418 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 419

still worth looking at as a general technique, and so the security library you’ll create shortly
includes hashing capabilities.

Hashing is a one-way system, but to store credit card details securely, you’ll need to use a
more advanced, bidirectional form of encryption. This enables you to store credit card details
securely, but get access to them when you need to; that is, when the customer pays for an order.

The specifics of implementing this scheme in your application include the following tasks:

• Adding a user profile schema to the application

• Modifying the site to allow customer accounts, including registration and detail editing
pages

• Modifying ShoppingCart.ascx, which will now redirect the user to a checkout page called
Checkout.aspx

The SecurityLib Classes
The two areas you’ve seen so far where security functionality is required are

• Password hashing

• Credit card encryption

Both tasks can be carried out by classes in the SecurityLib directory, which you’ll add as a
subdirectory of App_Code. The reason for separating this functionality from the main code of
the web site in this case is purely logical. Of course, at some point, you may want to access this
code in another application. Having all the relevant files in one place makes it easy to copy else-
where or even to extract it and put it into a shared class library. To facilitate all this, the classes
in the SecurityLib directory are all placed in a separate namespace—also called SecurityLib. Note
that to share the code in a class library requires Visual C# Express or the full version of Visual
Studio, because Visual Web Developer Express doesn’t allow you to create class libraries. The
SecurityLib directory contains the following files:

• PasswordHasher.cs: Contains the PasswordHasher class, which contains the shared method
Hash that returns a hash for the password supplied.

• SecureCard.cs: Contains the SecureCard class, which represents a credit card. This class
can be initialized with credit card information, which is then accessible in encrypted
format. Alternatively, it can be initialized with encrypted credit card data and provide
access to the decrypted information contained within.

• SecureCardException.cs: Should there be any problems during encryption or decryption,
the exception contained in this file, SecureCardException, is thrown by SecureCard.

• StringEncryptor.cs: The class contained in this file, StringEncryptor, is used by SecureCard
to encrypt and decrypt data. This means that if you want to change the encryption method,
you only need to modify the code here, leaving the SecureCard class untouched.

• StringEncryptorException.cs: Contains the StringEncryptorException exception,
thrown by StringEncryptor if an error occurs.

We’ll look at the code for hashing first, followed by encryption.

Darie-Watson_4681C12.fm Page 419 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

420 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Hashing

Hashing, as has already been noted, is a means by which a unique value can be obtained that
represents an object. In practice, this means doing the following:

1. Serialize the object being hashed into a byte array.

2. Hash the byte array, obtaining a new hashed byte array.

3. Convert the hashed byte array into the format required for storage.

For passwords this is simple because converting a string (which is an array of characters)
into a byte array is no problem. Converting the resultant hashed byte array into a string for
database storage and quick comparison is also simple.

The actual method used to convert the source byte array into a hashed byte array can vary.
The System.Security.Cryptography namespace in .NET contains several algorithms for hashing
and allows you to provide your own if necessary, although we won’t go into details of this here.
The two main hashing algorithms found in the .NET Framework are SHA1 (Secure Hash Algo-
rithm) and MD5 (Message Digest, another name for the hash code generated). SHA1 generates
a 160-bit hash (regardless of the size of the input data), whereas MD5 generates a 128-bit hash;
therefore, SHA1 is generally considered more secure (although slower) than MD5. The Framework
also contains other versions of the SHA1 hash algorithm that generate longer hashes, up to 512 bits,
as well as hash algorithms that work using a key (shared secret) and the data to be hashed.

In the SecurityLib implementation, you’ll use SHA1, although it’s easy to change this if
you require stronger security. You’ll see the code that achieves this in the PasswordHasher class
in the following exercise.

Exercise: Implementing the PasswordHasher Class

1. Create a new subdirectory in the App_Code directory of BalloonShop called SecurityLib.

2. Add a new class file called PasswordHasher.cs with code as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace SecurityLib
{
 public static class PasswordHasher
 {
 private static SHA1Managed hasher = new SHA1Managed();

 public static string Hash(string password)
 {

Darie-Watson_4681C12.fm Page 420 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 421

 // convert password to byte array
 byte[] passwordBytes =
 System.Text.ASCIIEncoding.ASCII.GetBytes(password);

 // generate hash from byte array of password
 byte[] passwordHash = hasher.ComputeHash(passwordBytes);

 // convert hash to string
 return Convert.ToBase64String(passwordHash , 0,
 passwordHash.Length);
 }
 }
}

3. Add a new web page to the root of the BalloonShop web site called SecurityLibTester.aspx, using
the usual options for having code in an external file and selecting the default BalloonShop Master Page.

4. Add the following code to SecurityLibTester.aspx:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="SecurityLibTester.aspx.cs"
 Inherits="SecurityLibTester" Title="SecurityLib Test Page" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">
 Enter your password:

 <asp:TextBox ID="pwdBox1" runat="server" />

 Enter your password again:

 <asp:TextBox ID="pwdBox2" runat="server" />

 <asp:Button ID="processButton" runat="server" Text="Process"
 OnClick="processButton_Click" />

 <asp:Label ID="result" runat="server" />
</asp:Content>

5. Modify SecurityLibTester.aspx.cs as follows:

using System;
...
using System.Text;
using SecurityLib;

public partial class SecurityLibTester : System.Web.UI.Page
{
 ...

Darie-Watson_4681C12.fm Page 421 Monday, September 12, 2005 6:50 AM

422 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 protected void processButton_Click(object sender, EventArgs e)
 {
 string hash1 = PasswordHasher.Hash(pwdBox1.Text);
 string hash2 = PasswordHasher.Hash(pwdBox2.Text);
 StringBuilder sb = new StringBuilder();
 sb.Append("The hash of the first password is: ");
 sb.Append(hash1);
 sb.Append("
The hash of the second password is: ");
 sb.Append(hash2);
 if (hash1 == hash2)
 {
 sb.Append("
The passwords match! Welcome!");
 }
 else
 {
 sb.Append("
Password invalid. "
 + "Armed guards are on their way.");
 }
 result.Text = sb.ToString();
 }
}

6. Browse to BalloonShop/SecurityLibTester.aspx, enter two passwords, and click Process. The
result is shown in Figure 12-1.

Figure 12-1. Password hasher result

Darie-Watson_4681C12.fm Page 422 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 423

How It Works: Implementing the PasswordHasher Class

The code in the PasswordHasher class follows the steps that were discussed earlier. First, you use the utility
function System.Text.ASCIIEncoding.ASCII.GetBytes to convert the password string into a byte array:

 // convert password to byte array
 byte[]passwordBytes =
 System.Text.ASCIIEncoding.ASCII.GetBytes(password);

Next, you use the private shared member hasher, an instance of SHA1Managed, to generate a hash byte array:

 // generate hash from byte array of password
 byte[] passwordHash = hasher.ComputeHash(passwordBytes);

Finally, you convert the hash back into a string by using the utility function Convert.ToBase64String and return
the result:

 // convert hash to string
 return Convert.ToBase64String(passwordHash , 0,
 passwordHash.Length);

All the hash algorithm classes in the .NET Framework use this ComputeHash method to get a hash from an input
array of bytes. To increase the size of the hash, you can replace the hasher with another one of these, for example:

 public static class PasswordHasher
 {
 private static SHA512Managed hasher = new SHA512Managed();
 ...
 }

This change would result in a 512-bit hash, which is probably a bit excessive in this sort of application!

The client page, SecurityLibTest.aspx, hashes two passwords and compares the result. The code is basic
enough to ignore for now, but it’s important to note that the generated hashes vary a great deal for even simple
changes to the input data, even just changes of case—one of the defining features of good hash generation.

Encryption

Encryption comes in many shapes and sizes and continues to be a hot topic. No definitive solution
to encrypting data exists, although plenty of advice can be given. In general, there are two
forms of encryption:

• Symmetric encryption: A single key is used both to encrypt and decrypt data.

• Asymmetric encryption: Separate keys are used to encrypt and decrypt data. The encryption
key is commonly known as the public key, and anyone can use it to encrypt information.
The decryption key is known as the private key, because it can only be used to decrypt
data that has been encrypted using the public key.

Darie-Watson_4681C12.fm Page 423 Monday, September 12, 2005 6:50 AM

424 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

■Note In some situations, such as digital signing, the private key is used for encryption, and the public key
is used for decryption. However, this doesn’t apply to the techniques in this chapter.

Symmetric encryption is faster, but can be less secure because both the encryptor and
decryptor know a single key. With Internet communications, there is often no way of ensuring
that this key remains a secret from third parties when it is sent to the encryptor.

Asymmetric encryption gets around this by its key-pair method of operation, because the
private key need never be divulged, making it much more difficult for a third party to break the
encryption. Because the key-pair method requires a lot more processing power, the normal
method of operation is to use asymmetric encryption to exchange a symmetric key over the
Internet. This key is then used for symmetric encryption, safe in the knowledge that it hasn’t
been exposed to third parties.

In the BalloonShop application, things are much simpler than with Internet
communications—you just need to encrypt data for storage in the database and decrypt it
again when required—so you can use a symmetric algorithm.

■Note Behind the scenes, asymmetric encryption is going on, however, because that is the method used
to encrypt the credit card details that are sent over the Internet. You don’t need to do much to enable this, as
you’ll see in the “Secure Connections” section later in this chapter.

As with hashing, several algorithms can be used for both symmetric and asymmetric
encryption. The .NET Framework contains implementations of several of these in the
System.Security.Cryptography namespace.

The two available asymmetric algorithms are DSA (Digital Signature Algorithm) and RSA
(Rivest-Shamir-Adleman, from the names of its inventors: Ronald Rivest, Adi Shamir, and
Leonard Adleman). Of these, DSA can only be used to “sign” data so that its authenticity can be
verified, whereas RSA is more versatile (although slower than DSA when used to generate digital
signatures). DSA is the current standard for digital authentication used by the U.S. government.

The symmetric algorithms found in the .NET Framework are DES (Data Encryption Standard),
Triple DES (3DES), RC2 (“Ron’s Code,” or “Rivest’s Cipher” depending on who you ask, also
from Ronald Rivest), and Rijndael (from the names of its inventors, John Daemen and Vincent
Rijman). DES has been the standard for some time now, although this is gradually changing. It
uses a 64-bit key, although, in practice, only 56 of these bits are used because 8 are “parity” bits;
because of this, DES is often thought too weak to avoid being broken using today’s computers
(there are reports that a setup costing $400,000 managed to break DES encryption in three days).
Both Triple DES and RC2 are variations of DES. Triple DES effectively encrypts data using three
separate DES encryptions with three keys totaling 168 bits when parity bits are subtracted. RC2
is a variant in which key lengths up to 128 bits are possible (longer keys are also possible using
RC3, RC4, and so on), so it can be made weaker or stronger than DES depending on the key
size. Rijndael is a completely separate encryption method, and has now been accepted as the
new AES (Advanced Encryption Standard). This standard is intended to replace DES, and several

Darie-Watson_4681C12.fm Page 424 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 425

competing algorithms were considered before Rijndael was chosen. This is the standard that is
gradually replacing DES as the most-used symmetric encryption algorithm.

The tasks that must be carried out when encrypting and decrypting data are a little more
involved than hashing. The classes in the .NET Framework are optimized to work with data
streams so you have a bit more work to do with data conversion. You also have to define both
a key and an initialization vector (IV) to perform encryption and decryption. The IV is required
due to the nature of encryption: Calculating the encrypted values for one sequence of bits involves
using the encrypted values of the immediately preceding sequence of bits. Because no such
values exist at the start of encryption, an IV is used instead. In practice, both the IV and the key
can be represented as a byte array, which in the case of DES encryption is 64 bits (8 bytes) long.

The steps required for encrypting a string into an encrypted string are as follows:

1. Convert the source string into a byte array.

2. Initialize an encryption algorithm class.

3. Use the encryption algorithm class to generate an encryptor object, supporting the
ICryptoTransform interface. This requires key and IV values.

4. Use the encryptor object to initialize a cryptographic stream (CryptoStream object).
This stream also needs to know that you are encrypting data and needs a target stream
to write encrypted data to.

5. Use the cryptographic stream to write encrypted data to a target memory stream using
the source byte array created previously.

6. Extract the byte data stored in the stream.

7. Convert the byte data into a string.

Decryption follows a similar scheme:

1. Convert the source string into a byte array.

2. Fill a memory stream with the contents of the byte array.

3. Initialize an encryption algorithm class.

4. Use the encryption algorithm class to generate a decryptor object, supporting the
ICryptoTransform interface. This requires key and IV values.

5. Use the decryptor object to initialize a cryptographic stream (CryptoStream object).
This stream also needs to know that you are decrypting data and needs a source stream
to read encrypted data from.

6. Use the cryptographic stream to read decrypted data (can use the
StreamReader.ReadToEnd method to get the result as a string).

In the BalloonShop code, you’ll use DES, but the code in the StringEncryptor class could
be replaced with code to use any of the algorithms specified previously.

Darie-Watson_4681C12.fm Page 425 Monday, September 12, 2005 6:50 AM

426 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Exercise: Implementing the StringEncryptor Class

1. Add a new class to the SecurityLib directory called StringEncryptorException with code as
follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace SecurityLib
{
 public class StringEncryptorException : Exception
 {
 public StringEncryptorException(string message) : base(message)
 {
 }
 }
}

2. Add another new class to the SecurityLib directory called StringEncryptor with code as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;
using System.IO;

namespace SecurityLib
{
 public static class StringEncryptor
 {
 public static string Encrypt(string sourceData)
 {
 // set key and initialization vector values
 byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 try
 {
 // convert data to byte array
 byte[] sourceDataBytes =
 System.Text.ASCIIEncoding.ASCII.GetBytes(sourceData);

 // get target memory stream
 MemoryStream tempStream = new MemoryStream();

Darie-Watson_4681C12.fm Page 426 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 427

 // get encryptor and encryption stream
 DESCryptoServiceProvider encryptor =
 new DESCryptoServiceProvider();
 CryptoStream encryptionStream =
 new CryptoStream(tempStream,
 encryptor.CreateEncryptor(key, iv),
 CryptoStreamMode.Write);

 // encrypt data
 encryptionStream.Write(sourceDataBytes, 0,
 sourceDataBytes.Length);
 encryptionStream.FlushFinalBlock();

 // put data into byte array
 byte[] encryptedDataBytes = tempStream.GetBuffer();

 // convert encrypted data into string
 return Convert.ToBase64String(encryptedDataBytes, 0,
 (int)tempStream.Length);
 }
 catch
 {
 throw new StringEncryptorException(
 "Unable to encrypt data.");
 }
 }

 public static string Decrypt(string sourceData)
 {
 // set key and initialization vector values
 byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 try
 {
 // convert data to byte array
 byte[] encryptedDataBytes =
 Convert.FromBase64String(sourceData);

 // get source memory stream and fill it
 MemoryStream tempStream =
 new MemoryStream(encryptedDataBytes, 0,
 encryptedDataBytes.Length);

Darie-Watson_4681C12.fm Page 427 Monday, September 12, 2005 6:50 AM

428 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 // get decryptor and decryption stream
 DESCryptoServiceProvider decryptor =
 new DESCryptoServiceProvider();
 CryptoStream decryptionStream =
 new CryptoStream(tempStream,
 decryptor.CreateDecryptor(key, iv),
 CryptoStreamMode.Read);

 // decrypt data
 StreamReader allDataReader =
 new StreamReader(decryptionStream);
 return allDataReader.ReadToEnd();
 }
 catch
 {
 throw new StringEncryptorException(
 "Unable to decrypt data.");
 }
 }
 }
}

3. Add a new web page to the root of BalloonShop called SecurityLibTester2.aspx with the usual
options and code as follows:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="SecurityLibTester2.aspx.cs"
 Inherits="SecurityLibTester2" Title="SecurityLib Test Page 2" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">
 Enter data to encrypt:

 <asp:TextBox ID="encryptBox" runat="server" />

 Enter data to decrypt:

 <asp:TextBox ID="decryptBox" runat="server" />

 <asp:Button ID="processButton" runat="server" Text="Process"
 OnClick="processButton_Click" />

 <asp:Label ID="result" runat="server" />
</asp:Content>

Darie-Watson_4681C12.fm Page 428 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 429

4. Modify the code in SecurityLibTester2.aspx.cs in SecurityLibTester as follows:

using System;
...
using System.Text;
using SecurityLib;

public partial class SecurityLibTester2 : System.Web.UI.Page
{
 ...

 protected void processButton_Click(object sender, EventArgs e)
 {
 string stringToEncrypt = encryptBox.Text;
 string stringToDecrypt = decryptBox.Text;
 string encryptedString =
 StringEncryptor.Encrypt(stringToEncrypt);
 if (stringToDecrypt == "")
 {
 stringToDecrypt = encryptedString;
 }
 string decryptedString =
 StringEncryptor.Decrypt(stringToDecrypt);

 StringBuilder sb = new StringBuilder();
 sb.Append("Encrypted data: ");
 sb.Append(encryptedString);
 sb.Append("
Decrypted data: ");
 sb.Append(decryptedString);
 result.Text = sb.ToString();
 }
}

5. Browse to BalloonShop/SecurityLibTester2.aspx, enter a string to encrypt in the first text box
(leave the second text box blank unless you have a ready-encoded string to decrypt), and click Process.
The result is shown in Figure 12-2.

Darie-Watson_4681C12.fm Page 429 Monday, September 12, 2005 6:50 AM

430 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Figure 12-2. String encryption result

How It Works: Implementing the StringEncryptor Class

The StringEncryptor class has two shared methods, Encrypt and Decrypt, which encrypt and decrypt data.
We’ll look at each of these in turn.

Encrypt starts by defining two hard-coded byte arrays for the key and IV used in encryption:

 public static string Encrypt(string sourceData)
 {
 // set key and initialization vector values
 byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };

Both these arrays are set to temporary values here. They could just as easily take any other values, depending on
the key you want to use. Alternatively, they could be loaded from disk, although having the values compiled into your
code in this way could stop people from discovering the values used quite effectively. This method isn’t foolproof—
the data could be extracted if anyone gets access to your DLLs (Dynamic Link Libraries), but it’s secure enough for
our purposes. Note that you initialize these values each time the method is called rather than using constant values.
One reason for this is that the iv array is modified as part of the encryption process, so the values would be different
if you didn’t re-initialize it. In effect, this would mean that the first few bytes of the decrypted data would be garbled.
Therefore, you should use your own values, not the temporary ones used in the previous code snippet. You can use
the classes and methods in the System.Security.Cryptography namespace to generate such values auto-
matically, or you can just insert random numbers.

Darie-Watson_4681C12.fm Page 430 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 431

■Tip You could restrict access to this assembly to code that has been compiled using a particular key. This
is possible if you strongly name your assemblies and configure code access security yourself, and you want
to prevent people from using the SecurityLib assembly to decrypt credit card details from outside the
BalloonShop application, unless they had access to the signature key. However, this is an advanced topic and
won’t be covered here.

The encryption code is contained in a try...catch block in case an error occurs. The code follows the steps laid
out earlier, starting with the conversion of the source string into a byte array:

 try
 {
 // convert data to byte array
 byte[] sourceDataBytes =
 System.Text.ASCIIEncoding.ASCII.GetBytes(sourceData);

Next, a MemoryStream object is initialized, which is used to store encrypted data:

 // get target memory stream
 MemoryStream tempStream = new MemoryStream();

Now you get the encryptor object, in this case, an instance of the DESCryptoServiceProvider class, and use it
with the key and IV created earlier to generate a CryptoStream object (specifying an encryption operation via the
CreateEncryptor method and CryptoStreamMode.Write mode):

 // get target memory stream
 MemoryStream tempStream = new MemoryStream();

 // get encryptor and encryption stream
 DESCryptoServiceProvider encryptor =
 new DESCryptoServiceProvider();
 CryptoStream encryptionStream =
 new CryptoStream(tempStream,
 encryptor.CreateEncryptor(key, iv),
 CryptoStreamMode.Write);

If you wanted to substitute a different encryption algorithm, this is where you would change the code (although you
might also have to change the amount of data contained in the key and IV arrays).

■Note Note that the suffix of this class is CryptoServiceProvider. This indicates an unmanaged imple-
mentation of the DES encryption algorithm. There is no managed implementation of this algorithm in the .NET
Framework, although there is a managed implementation of the Rijndael algorithm. In practice, however, this
makes little (if any) difference to application performance.

Darie-Watson_4681C12.fm Page 431 Monday, September 12, 2005 6:50 AM

432 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

The next section of code performs the actual encryption, writing the resultant byte array to the MemoryStream
created earlier:

 // encrypt data
 encryptionStream.Write(sourceDataBytes, 0,
 sourceDataBytes.Length);
 encryptionStream.FlushFinalBlock();

The FlushFinalBlock call here is essential. Without this call, unwritten data might be left in the buffer of the
CryptoStream. This call forces the stream writing to complete so that all the data you require is contained in the
MemoryStream object.

Next, you grab the data from the MemoryStream and place it into a byte array:

 // put data into byte array
 byte[] encryptedDataBytes = tempStream.GetBuffer();

Finally, you convert the resultant byte array into a string and return it:

 // convert encrypted data into string
 return Convert.ToBase64String(encryptedDataBytes, 0,
 (int)tempStream.Length);

If anything goes wrong during this process, a StringEncryptorException exception is thrown:

 catch
 {
 throw new StringEncryptorException(
 "Unable to encrypt data.");
 }
 }

Note that this exception class doesn’t do very much, and you might think that just throwing a standard Exception
would be good enough. However, by creating your own type, it’s possible for Structured Exception Handling (SEH)
code that uses this class to test for the specific type of this new exception, filtering out
StringEncryptorException exceptions from others that might occur.

TheDecrypt method is very similar to Encrypt. You start in the same way by initializing the key and IV before
moving into a try...catch block and converting the source string into a byte array:

 public static string Decrypt(string sourceData)
 {
 // set key and initialization vector values
 byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 try
 {
 // convert data to byte array
 byte[] encryptedDataBytes =
 Convert.FromBase64String(sourceData);

Darie-Watson_4681C12.fm Page 432 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 433

This time, however, you need a stream that is filled with this source byte array because the CryptoStream will be
reading from a stream rather than writing to one:

 // get source memory stream and fill it
 MemoryStream tempStream =
 new MemoryStream(encryptedDataBytes, 0,
 encryptedDataBytes.Length);

The next code snippet is similar, although you use the CreateDecryptor method and
CryptoStreamMode.Read mode to specify decryption:

 // get decryptor and decryption stream
 DESCryptoServiceProvider decryptor =
 new DESCryptoServiceProvider();
 CryptoStream decryptionStream =
 new CryptoStream(tempStream,
 decryptor.CreateDecryptor(key, iv),
 CryptoStreamMode.Read);

Finally, you get the decrypted data out of the CryptoStream using a StreamReader object, which handily allows
you to grab the data straight into a string for returning. As with Encrypt, the last step is to add the code that throws
a StringEncryptorException exception if anything goes wrong:

 // decrypt data
 StreamReader allDataReader =
 new StreamReader(decryptionStream);
 return allDataReader.ReadToEnd();
 }
 catch
 {
 throw new StringEncryptorException(
 "Unable to decrypt data.");
 }
 }

The client code for this class simply encrypts and decrypts data, demonstrating that things are working properly.
The code for this is very simple, so it’s not detailed here.

Now that you have the StringEncryptor class code, the last step in creating the SecureLib library is to add the
SecureCard class.

Darie-Watson_4681C12.fm Page 433 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

434 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Exercise: Implementing the SecureCard Class

1. Add a new class to the SecurityLib directory called SecureCardException.cs with code as follows:

using System;

namespace SecurityLib
{
 public class SecureCardException : Exception
 {
 public SecureCardException(string message)
 : base(message)
 {
 }
 }
}

2. Add another new file to the SecurityLib directory called SecureCard.cs with code as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;

namespace SecurityLib
{
 public class SecureCard
 {
 private bool isDecrypted = false;
 private bool isEncrypted = false;
 private string cardHolder;
 private string cardNumber;
 private string issueDate;
 private string expiryDate;
 private string issueNumber;
 private string cardType;
 private string encryptedData;
 private XmlDocument xmlCardData;

 private SecureCard()
 {
 // private default constructor
 }

Darie-Watson_4681C12.fm Page 434 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 435

 public SecureCard(string newEncryptedData)
 {
 // constructor for use with encrypted data
 encryptedData = newEncryptedData;
 DecryptData();
 }

 public SecureCard(string newCardHolder,
 string newCardNumber, string newIssueDate,
 string newExpiryDate, string newIssueNumber,
 string newCardType)
 {
 // constructor for use with decrypted data
 cardHolder = newCardHolder;
 cardNumber = newCardNumber;
 issueDate = newIssueDate;
 expiryDate = newExpiryDate;
 issueNumber = newIssueNumber;
 cardType = newCardType;
 EncryptData();
 }

 private void CreateXml()
 {
 // encode card details as XML document
 xmlCardData = new XmlDocument();
 XmlElement documentRoot =
 xmlCardData.CreateElement("CardDetails");
 XmlElement child;

 child = xmlCardData.CreateElement("CardHolder");
 child.InnerXml = cardHolder;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("CardNumber");
 child.InnerXml = cardNumber;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("IssueDate");
 child.InnerXml = issueDate;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("ExpiryDate");
 child.InnerXml = expiryDate;
 documentRoot.AppendChild(child);

Darie-Watson_4681C12.fm Page 435 Monday, September 12, 2005 6:50 AM

436 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 child = xmlCardData.CreateElement("IssueNumber");
 child.InnerXml = issueNumber;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("CardType");
 child.InnerXml = cardType;
 documentRoot.AppendChild(child);
 xmlCardData.AppendChild(documentRoot);
 }

 private void ExtractXml()
 {
 // get card details out of XML document
 cardHolder =
 xmlCardData.GetElementsByTagName(
 "CardHolder").Item(0).InnerXml;
 cardNumber =
 xmlCardData.GetElementsByTagName(
 "CardNumber").Item(0).InnerXml;
 issueDate =
 xmlCardData.GetElementsByTagName(
 "IssueDate").Item(0).InnerXml;
 expiryDate =
 xmlCardData.GetElementsByTagName(
 "ExpiryDate").Item(0).InnerXml;
 issueNumber =
 xmlCardData.GetElementsByTagName(
 "IssueNumber").Item(0).InnerXml;
 cardType =
 xmlCardData.GetElementsByTagName(
 "CardType").Item(0).InnerXml;
 }

 private void EncryptData()
 {
 try
 {
 // put data into XML doc
 CreateXml();

 // encrypt data
 encryptedData =
 StringEncryptor.Encrypt(xmlCardData.OuterXml);

Darie-Watson_4681C12.fm Page 436 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 437

 // set encrypted flag
 isEncrypted = true;
 }
 catch
 {
 throw new SecureCardException("Unable to encrypt data.");
 }
 }

 private void DecryptData()
 {
 try
 {
 // decrypt data
 xmlCardData = new XmlDocument();
 xmlCardData.InnerXml =
 StringEncryptor.Decrypt(encryptedData);

 // extract data from XML
 ExtractXml();

 // set decrypted flag
 isDecrypted = true;
 }
 catch
 {
 throw new SecureCardException("Unable to decrypt data.");
 }
 }

 public string CardHolder
 {
 get
 {
 if (isDecrypted)
 {
 return cardHolder;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

Darie-Watson_4681C12.fm Page 437 Monday, September 12, 2005 6:50 AM

438 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 public string CardNumber
 {
 get
 {
 if (isDecrypted)
 {
 return cardNumber;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

 public string CardNumberX
 {
 get
 {
 if (isDecrypted)
 {
 return "XXXX-XXXX-XXXX-"
 + cardNumber.Substring(cardNumber.Length - 4, 4);
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

 public string IssueDate
 {
 get
 {
 if (isDecrypted)
 {
 return issueDate;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

Darie-Watson_4681C12.fm Page 438 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 439

 public string ExpiryDate
 {
 get
 {
 if (isDecrypted)
 {
 return expiryDate;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

 public string IssueNumber
 {
 get
 {
 if (isDecrypted)
 {
 return issueNumber;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

 public string CardType
 {
 get
 {
 if (isDecrypted)
 {
 return cardType;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

Darie-Watson_4681C12.fm Page 439 Monday, September 12, 2005 6:50 AM

440 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 public string EncryptedData
 {
 get
 {
 if (isEncrypted)
 {
 return encryptedData;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }
 }
}

3. Add a new web page to the root of BalloonShop called SecurityLibTester3.aspx, with the usual
options and code as follows:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="SecurityLibTester3.aspx.cs"
 Inherits="SecurityLibTester3" Title="SecurityLib Test Page 3" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">
 Card holder:

 <asp:TextBox ID="cardHolderBox" runat="server" />

 Card number:

 <asp:TextBox ID="cardNumberBox" runat="server" />

 Issue date:

 <asp:TextBox ID="issueDateBox" runat="server" />

 Expiry date:

 <asp:TextBox ID="expiryDateBox" runat="server" />

 Issue number:

 <asp:TextBox ID="issueNumberBox" runat="server" />

 Card type:

 <asp:TextBox ID="cardTypeBox" runat="server" />

Darie-Watson_4681C12.fm Page 440 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 441

 <asp:Button ID="processButton" runat="server" Text="Process"
 OnClick="processButton_Click" />

 <asp:Label ID="result" runat="server" />
</asp:Content>

4. Modify the code in SecurityLibTester3.aspx.cs as follows:

using System;
...
using System.Text;
using SecurityLib;

public partial class SecurityLibTester3 : System.Web.UI.Page
{
 ...

 protected void processButton_Click(object sender, EventArgs e)
 {
 SecureCard encryptedCard =
 new SecureCard(cardHolderBox.Text, cardNumberBox.Text,
 issueDateBox.Text, expiryDateBox.Text, issueNumberBox.Text,
 cardTypeBox.Text);
 string encryptedData = encryptedCard.EncryptedData;
 SecureCard decryptedCard = new SecureCard(encryptedData);
 string decryptedData = string.Format(
 "{0}, {1}, {2}, {3}, {4}, {5}",
 decryptedCard.CardHolder, decryptedCard.CardNumber,
 decryptedCard.IssueDate, decryptedCard.ExpiryDate,
 decryptedCard.IssueNumber, decryptedCard.CardType);

 StringBuilder sb = new StringBuilder();
 sb.Append("Encrypted data:
");
 sb.Append("<textarea style=\"width: 400px; height: 150px;\">");
 sb.Append(encryptedData);
 sb.Append("</textarea>
Decrypted data: ");
 sb.Append(decryptedData);
 result.Text = sb.ToString();
 }
}

5. Browse to BalloonShop/SecurityLibTester3.aspx, enter card details to encrypt, and click
Process. The result is shown in Figure 12-3.

Darie-Watson_4681C12.fm Page 441 Monday, September 12, 2005 6:50 AM

442 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Figure 12-3. Credit card encryption result

How It Works: Implementing the SecureCard Class

There is a bit more code here than in previous examples, but it’s all quite simple. First, you have the private member
variables to hold the card details as individual strings, as an encrypted string, and in an intermediate XML document. You
also have Boolean flags indicating whether the data has been successfully encrypted or decrypted:

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;

Darie-Watson_4681C12.fm Page 442 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 443

namespace SecurityLib
{
 public class SecureCard
 {
 private bool isDecrypted = false;
 private bool isEncrypted = false;
 private string cardHolder;
 private string cardNumber;
 private string issueDate;
 private string expiryDate;
 private string issueNumber;
 private string cardType;
 private string encryptedData;
 private XmlDocument xmlCardData;

Next, there are three constructors, a private default one (because you don’t want the class to be instantiated with no
data), and two for encrypting or decrypting credit card data:

 private SecureCard()
 {
 // private default constructor
 }

 public SecureCard(string newEncryptedData)
 {
 // constructor for use with encrypted data
 encryptedData = newEncryptedData;
 DecryptData();
 }

 public SecureCard(string newCardHolder,
 string newCardNumber, string newIssueDate,
 string newExpiryDate, string newIssueNumber,
 string newCardType)
 {
 // constructor for use with decrypted data
 cardHolder = newCardHolder;
 cardNumber = newCardNumber;
 issueDate = newIssueDate;
 expiryDate = newExpiryDate;
 issueNumber = newIssueNumber;
 cardType = newCardType;
 EncryptData();
 }

The main work is carried out in the private EncryptData and DecryptData methods, which we’ll come to shortly.
First, you have two utility methods for packaging and unpackaging data in XML format (which makes it easier to get
at the bits you want when exchanging data with the encrypted format):

Darie-Watson_4681C12.fm Page 443 Monday, September 12, 2005 6:50 AM

444 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 private void CreateXml()
 {
 // encode card details as XML document
 xmlCardData = new XmlDocument();
 XmlElement documentRoot =
 xmlCardData.CreateElement("CardDetails");
 XmlElement child;

 child = xmlCardData.CreateElement("CardHolder");
 child.InnerXml = cardHolder;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("CardNumber");
 child.InnerXml = cardNumber;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("IssueDate");
 child.InnerXml = issueDate;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("ExpiryDate");
 child.InnerXml = expiryDate;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("IssueNumber");
 child.InnerXml = issueNumber;
 documentRoot.AppendChild(child);

 child = xmlCardData.CreateElement("CardType");
 child.InnerXml = cardType;
 documentRoot.AppendChild(child);
 xmlCardData.AppendChild(documentRoot);
 }

 private void ExtractXml()
 {
 // get card details out of XML document
 cardHolder =
 xmlCardData.GetElementsByTagName(
 "CardHolder").Item(0).InnerXml;
 cardNumber =
 xmlCardData.GetElementsByTagName(
 "CardNumber").Item(0).InnerXml;
 issueDate =
 xmlCardData.GetElementsByTagName(
 "IssueDate").Item(0).InnerXml;

Darie-Watson_4681C12.fm Page 444 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 445

 expiryDate =
 xmlCardData.GetElementsByTagName(
 "ExpiryDate").Item(0).InnerXml;
 issueNumber =
 xmlCardData.GetElementsByTagName(
 "IssueNumber").Item(0).InnerXml;
 cardType =
 xmlCardData.GetElementsByTagName(
 "CardType").Item(0).InnerXml;
 }

These methods use simple XML syntax to address data elements.

The EncryptData method starts by using the previous CreateXml method to package the details supplied in the
SecureCard constructor into XML format:

 private void EncryptData()
 {
 try
 {
 // put data into XML doc
 CreateXml();

Next, the XML string contained in the resultant XML document is encrypted into a single string and stored in the
_encryptedData member:

 // encrypt data
 encryptedData =
 StringEncryptor.Encrypt(xmlCardData.OuterXml);

Finally, the isEncrypted flag is set to true to indicate success—or it throws a SecureCardException
exception if anything goes wrong:

 // set encrypted flag
 isEncrypted = true;
 }
 catch
 {
 throw new SecureCardException("Unable to encrypt data.");
 }
 }

The DecryptData method gets the XML from its encrypted form and uses it to populate a new XML document:

 private void DecryptData()
 {
 try
 {
 // decrypt data
 xmlCardData = new XmlDocument();
 xmlCardData.InnerXml =
 StringEncryptor.Decrypt(encryptedData);

Darie-Watson_4681C12.fm Page 445 Monday, September 12, 2005 6:50 AM

446 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

The method then gets the data in the XML document into the private member variables for card details using
ExtractXml and either sets the isDecrypted flag to True or throws an exception, depending on whether the
code succeeds:

 // extract data from XML
 ExtractXml();

 // set decrypted flag
 isDecrypted = true;
 }
 catch
 {
 throw new SecureCardException("Unable to decrypt data.");
 }
 }

Next, you come to the publicly accessible properties of the class. There are quite a few of these, so we won’t show
them all. Several are for reading card detail data, such as CardHolder:

 public string CardHolder
 {
 get
 {
 if (isDecrypted)
 {
 return cardHolder;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

Note that the data is only accessible when isDecrypted is true, so if an exception has been thrown during
decryption, then no data is available here (an exception is thrown instead). Also, note that the data isn’t accessible
after encryption—the data used to initialize a SecureCard object is only accessible in encrypted form. This is more
a use-case decision than anything else, because this class is only really intended for encryption and decryption, not
for persistently representing credit card details. After a SecureCard instance has been used to encrypt card details,
you shouldn’t subsequently need access to the unencrypted data, only the encrypted string.

One interesting property here is CardNumberX, which displays only a portion of the number on a credit card. This
is handy when showing a user existing details and is becoming standard practice because it lets the customer know
what card they have stored without exposing the details to prying eyes:

 public string CardNumberX
 {
 get
 {
 if (isDecrypted)

Darie-Watson_4681C12.fm Page 446 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 447

 {
 return "XXXX-XXXX-XXXX-"
 + cardNumber.Substring(cardNumber.Length - 4, 4);
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

The last property worth looking at is EncryptedData, which is used when extracting the encrypted credit card
details for database storage:

 public string EncryptedData
 {
 get
 {
 if (isEncrypted)
 {
 return encryptedData;
 }
 else
 {
 throw new SecureCardException("Data not decrypted.");
 }
 }
 }

The structure here is much like the other properties, although this time the isEncrypted flag restricts access
rather than the isDecrypted flag.

Before moving on to the client code, it’s important to explain and justify one design consideration that you have
probably already noticed. At no point are any of the card details validated. In fact, this class will work perfectly well
with empty strings for any properties. This is so the class can remain as versatile as possible. It’s more likely that
credit card details will be validated as part of the user interface used to enter them or even not at all. This isn’t at
all dangerous—if invalid details are used, then the credit card transaction simply fails, and you handle that using
very similar logic to that required to deal with lack of funds (that is, you notify the customer of failure and request
another card). Of course, there are also simple data-formatting issues (dates are usually MM/YY, for example), but
as noted, these can be dealt with externally to the SecureCard class.

The client code for this class allows you to see how an encrypted card looks. As you can see, a lot of data is gener-
ated, hence the rather large column size in the Customer database. You can also see that both encryption and
decryption are working perfectly, so you can now move on to the customer account section of this chapter.

Darie-Watson_4681C12.fm Page 447 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

448 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Customer Logins
As mentioned earlier in this chapter, allowing customers to log in to the site simply means
using the same login system that administrators use, but defining a Customers role to use rather
than an Administrators role. You can do this now using the ASP.NET Web Site Administration
Tool as before. This is shown in Figure 12-4.

Figure 12-4. Adding the Customers role

Next, you need to make it possible for customers to create their own accounts. ASP.NET
is very helpful here by providing the extremely useful CreateUserWizard control, which (as is
becoming a common theme) does most of the hard work for us.

Simply adding a CreateUserWizard control to a page results in the interface shown in
Figure 12-5.

Figure 12-5. Default CreateUserWizard interface

Darie-Watson_4681C12.fm Page 448 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 449

Just having this control on a site is enough to enable users to add themselves to the membership
database. For BalloonShop, however, you’ll need to tweak the control a little. Specifically, you’ll
do the following:

• Format the display of the control.

• Place the control in a LoginView control so that only users who aren’t logged in can see it.

• Provide a link to the page containing the control so that users who aren’t logged in can
register.

• Add code behind so that new users are automatically added to the Customers role.

• Add a redirect to the customer details page for after the user has registered.

• Make the control send a “welcome” email to the new user.

To keep things simple for now, we’ll have the contact details and credit card information
for the user editable on a separate page, which we’ll look at later in the chapter.

So, let’s go ahead and add the new page. At this point, you’ll create a fully functioning user
registration page and update UserInfo.ascx accordingly, but you’ll leave the emailing and
customer details page unfinished for now.

Exercise: Enabling Customer Registration

1. If you haven’t already done so, add the Customers role using the Security tab of the ASP.NET Web
Site Administration Tool.

2. Add a new Web Form to the BalloonShop web site called Register.aspx by using the usual
BalloonShop.master Master Page and the code-behind model.

3. In Design View, drag a LoginView control into the page content region.

4. Select the LoggedInTemplate of the LoginView control and add the text "You are already
registered.", as shown in Figure 12-6.

Figure 12-6. Default CreateUserWizard interface

5. Select the AnonymousTemplate in the LoginView control and drag a CreateUserWizard control to
the template.

Darie-Watson_4681C12.fm Page 449 Monday, September 12, 2005 6:50 AM

450 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

6. Autoformat the CreateUserWizard control with the Professional style.

7. Change the CreateUserButtonText property of the CreateUserWizard control to "Sign Up".

8. Set the CancelDestinationPageUrl and ContinueDestinationPageUrl properties of the
CreateUserWizard control to ~/Default.aspx.

9. Add an event handler for the CreatedUser event of the CreateUserWizard control as follows (and,
while you’re looking at the code behind, add the Title attribute configuration code as shown):

 protected void Page_Load(object sender, EventArgs e)
 {
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Register";
 }

 protected void CreateUserWizard1_CreatedUser(object sender,
 EventArgs e)
 {
 Roles.AddUserToRole((sender as CreateUserWizard).UserName,
 "Customers");
 }

10. In UserInfo.ascx, modify the AnonymousTemplate to include a link to the registration page as
follows:

 <AnonymousTemplate>
 <tr>
 <td>
 You are not logged in.
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:LoginStatus ID="LoginStatus1" runat="server"
 CssClass="UserInfoLink" />
 «
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:HyperLink runat="server" ID="registerLink"
 NavigateUrl="~/Register.aspx" Text="Register"
 ToolTip="Go to the registration page"
 CssClass="UserInfoLink" />
 «

Darie-Watson_4681C12.fm Page 450 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 451

 </td>
 </tr>
 </AnonymousTemplate>

11. Also in UserInfo.ascx, add a new RoleGroup Template to the RoleGroups section for users in the
Customers role:

 <RoleGroups>
 <asp:RoleGroup Roles="Customers">
 <ContentTemplate>
 <tr>
 <td>
 <asp:LoginName ID="LoginName1" runat="server"
 FormatString="You are logged in as {0}. "
 CssClass="UserInfoText" />
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:LoginStatus ID="LoginStatus1" runat="server"
 CssClass="UserInfoLink" />
 «
 </td>
 </tr>
 <tr>
 <td>
 »
 <asp:HyperLink runat="server" ID="detailsLink"
 NavigateUrl="~/CustomerDetails.aspx"
 Text="Edit Details"
 ToolTip="Edit your personal details"
 CssClass="UserInfoLink" />
 «
 </td>
 </tr>
 </ContentTemplate>
 </asp:RoleGroup>
 ...
 </RoleGroups>

■Note This code includes a link to CustomerDetails.aspx, the page you’ll add shortly to edit address
and credit card details for users. Rather than add this later, it’s included here to save some typing later on.

Darie-Watson_4681C12.fm Page 451 Monday, September 12, 2005 6:50 AM

452 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

12. Open the BalloonShop application in a browser, click on the Register link in the top left, and enter
details for a new customer, as shown in Figure 12-7.

Figure 12-7. Registering a new user

13. Click Sign Up.

■Note You may have your password rejected when you click Sign Up because the ASP.NET membership
system applies several rules to passwords, as defined in machine.config. By default, passwords require a
minimum length of seven characters, including at least one nonalphanumeric character (that is, a symbol
character such as [, *, !, and so on). We’ll look at how you can change this setting (and provide a more
helpful error message) shortly.

Darie-Watson_4681C12.fm Page 452 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 453

14. Click Continue and verify that the UserInfo.ascx display is updated as shown in Figure 12-8.

Figure 12-8. User info display

How It Works: Enabling Customer Registration

The ASP.NET controls for adding membership functionality to a web site are truly a joy to use. This is the sort of thing
that has often taken quite some time to implement and even longer to implement well. Now you can add this func-
tionality in minutes.

Further customization is also possible. You can add any number of wizard pages to the CreateUserWizard control
and make things work exactly as you want. For most purposes, however, the default functionality is all you need.

One thing you’ll probably want to change, as noted in the exercise, is the set of rules that are applied to password
complexity. This is defined by the AspNetSqlMembershipProvider provider contained in machine.config
(which you can find in <Windows Install Directory>\Microsoft.NET\Framework\<Version>\
CONFIG\). The code for this provider definition is as follows:

<membership>
 <providers>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 requiresQuestionAndAnswer="true" applicationName="/"
 requiresUniqueEmail="false" passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5" passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
</membership>

This definition can include two additional attributes, minRequiredPasswordLength and
minRequiredNonalphanumericCharacters, to define the length and complexity of the password, or you can
do this in one go using the passwordStrengthRegularExpression parameter. The first two of these attributes
aren’t included in the default definition, but you can add them yourself. However, be aware that changes you make
in machine.config will apply to all the web sites on your computer. An alternative is to override the definition of
this provider in web.config as follows:

Darie-Watson_4681C12.fm Page 453 Monday, September 12, 2005 6:50 AM

454 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

<system.web>
 ...
 <membership>
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider,
 System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 requiresQuestionAndAnswer="true" applicationName="/"
 requiresUniqueEmail="false" passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5" passwordAttemptWindow="10"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>
 ...
</system.web>

The passwords used on the BalloonShop site have been restricted to a minimum of six characters, but with no
requirement for nonalphanumeric characters. To do this, you have to remove the definition taken from machine.config
using a <remove> entry and then add it again using <add>.

■Note In the preceding code, the text string for the type attribute is split over multiple lines. If you use this
code, remember to place the whole string on a single line to avoid errors.

Whatever complexity you use, it is worthwhile to replace the default password error message for CreateUserWizard,
which displays simply "Please enter a different password.". You can do this using the
PasswordRegularExpressionErrorMessage property of the CreateUserWizard control. For the preceding
complexity, you can use "Your password must be at least 6 characters long.", for example.

The CreateUserWizard control also has a PasswordRegularExpression parameter that you can use to
restrict the password. However, any expression you use here applies only to this control—and the restrictions from
the membership provider will still be applied (assuming you use the membership provider included with ASP.NET,
which we are using here).

One final point to note in the preceding exercise before we move on is the code behind:

Darie-Watson_4681C12.fm Page 454 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 455

 protected void CreateUserWizard1_CreatedUser(object sender,
 EventArgs e)
 {
 Roles.AddUserToRole((sender as CreateUserWizard).UserName,
 "Customers");
 }

This uses one of the utility classes provided as part of the ASP.NET membership system, Roles, to perform what
might otherwise be a much more complicated task—adding a user to a role. The Roles class includes several other
useful methods that you might be interested in. The membership system also includes other utility classes for you to
use, including Membership and MemberhipUser, as well as Profile, which you’ll see in action in the next section.

Customer Details
The next thing to look at is how you store customer details, as well as enable users to edit those
details. This is a feature that is common to a huge number of web sites, including a huge
proportion of e-commerce sites. In fact, web developers want to implement this feature so
often that ASP.NET 2.0 includes a system—user profiles—for doing so with very little effort.
We’ll look at the user profiles feature in some depth shortly.

After you’ve implemented a customer details scheme you’ll also have to implement a Web
Form where users can edit their details. This involves some of the code from earlier in the
chapter, because credit card details must be encrypted. When you implement this form, you’ll
also be exposing customer profile details via the ObjectDataSource control. This isn’t difficult
and is well worth it because you can bind to customer profile data using the handy FormView
control. This control includes edit capabilities, so a little work at the beginning will result in a
great payoff.

Before you get to this editing page, however, let’s take a look at user profiles so you can
build your own.

User Profiles in ASP.NET 2.0

The user profile system enables you to define any number of custom data fields that can be
stored, along with user login details, in the ASPNETDB database that we’re currently using for
membership and security information. To tap into this resource, you just declare the fields you
want to define for users (along with the data type of those fields) in the web.config file for your
application. Behind the scenes, the ASP.NET Framework uses this information to dynamically
create classes that you can use to access user details. Functionally, this behavior is exhibited in
much the same way that Web Form classes allow you access to controls on a page without ever
having to declare them in code-behind files; that is to say, it “just happens” and you can use it.

To declare fields to use in user profiles, you use the <profile> element in the <system.web>
section of your web.config file, like so:

Darie-Watson_4681C12.fm Page 455 Monday, September 12, 2005 6:50 AM

456 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

<profile>
 <properties>
 <add name="param1" type"System.String" />
 <add name="param2" type"System.Int32" />
 <group name="paramGroup1">
 <add name="param3" type"System.String" />
 <add name="param4" type"System.String" />
 </group>
 </properties>
</profile>

This information is used to create an object that exposes these properties to the code
behind for a Web Form, with the name Profile. This object, an instance of a dynamically
generated class called ProfileCommon, can then be accessed in code behind as follows:

Profile.param1 = "New value for param1";
Profile.paramGroup1.param3 = "New value for param3";

If a user is logged in, then the preceding code results in these values being stored in the
membership database. You can retrieve values from the database in much the same way. And
that’s pretty much all there is to it. Each user has unique profile values stored in the database,
and the preceding code is pretty much all you need to gain access to this information.

Admittedly, we’ve skimmed over things a little here, for example, data types—you can
define whatever data types you want for profile properties as long as they are serializable. Also,
in the preceding code, you may note that two properties, param3 and param4, are defined as part
of a property group to make things easier. The code to achieve this is so simple that it hardly
seemed worth noting.

As with other functionality in the ASP.NET Framework, the preceding behavior is completely
customizable. You can, if you want to, create a profile provider to replace this one, adding as
much complexity as you need. For the purposes of the BalloonShop application, however, this
provides everything you need.

User Profiles in BalloonShop

For the BalloonShop application, you’ll use the following profile definition in web.config:

<profile>
 <properties>
 <add name="CreditCard" type="System.String" />
 <add name="Address1" type="System.String" />
 <add name="Address2" type="System.String" />
 <add name="City" type="System.String" />
 <add name="Region" type="System.String" />
 <add name="PostalCode" type="System.String" />
 <add name="Country" type="System.String" />

Darie-Watson_4681C12.fm Page 456 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 457

 <add name="ShippingRegion" type="System.String" />
 <add name="DayPhone" type="System.String" />
 <add name="EvePhone" type="System.String" />
 <add name="MobPhone" type="System.String" />
 </properties>
</profile>

To keep things simple, all this data is stored in string format. The CreditCard information
stored here is an encrypted string that is created using SecurityLib. The ShippingRegion infor-
mation is actually the ID or a record in the ShippingRegion table, which you’ll add as part of the
example.

In the next exercise, you’ll implement this system, including the custom data-binding
scheme. This involves a lot of work and gives us plenty to discuss afterward, but it’s well worth
the effort!

Exercise: Implementing User Profiles for BalloonShop

1. Add the profile information (shown just before this exercise) to web.config.

2. Add a new table to the BalloonShop database called ShippingRegion, with columns as shown in
Table 12-1.

3. Add the values “Please Select”, “US / Canada”, “Europe”, and “Rest of World” to the
ShippingRegion column in the new table. With auto-numbering of the identity column, “Please
Select” should have a ShippingRegionID value of 1—this is important!

4. Add a new class to the App_Code directory of the project called ProfileWrapper, with code as follows:

using System;
using System.Web;
using System.Web.Security;
using SecurityLib;

Table 12-1. The ShippingRegion Table

Column Name Column Type Description

ShippingRegionID int The ID of the shipping region.
Primary key and identity.

ShippingRegion varchar(100) The description of the shipping
region.

Darie-Watson_4681C12.fm Page 457 Monday, September 12, 2005 6:50 AM

458 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

/// <summary>
/// A wrapper around profile information, including
/// credit card encryption functionality.
/// </summary>
public class ProfileWrapper
{
 private string address1;
 private string address2;
 private string city;
 private string region;
 private string postalCode;
 private string country;
 private string shippingRegion;
 private string dayPhone;
 private string evePhone;
 private string mobPhone;
 private string email;
 private string creditCard;
 private string creditCardHolder;
 private string creditCardNumber;
 private string creditCardIssueDate;
 private string creditCardIssueNumber;
 private string creditCardExpiryDate;
 private string creditCardType;

 public ProfileWrapper()
 {
 ProfileCommon profile =
 HttpContext.Current.Profile as ProfileCommon;
 address1 = profile.Address1;
 address2 = profile.Address2;
 city = profile.City;
 region = profile.Region;
 postalCode = profile.PostalCode;
 country = profile.Country;
 shippingRegion =
 (profile.ShippingRegion == null
 || profile.ShippingRegion == ""
 ? "1"
 : profile.ShippingRegion);
 dayPhone = profile.DayPhone;
 evePhone = profile.EvePhone;
 mobPhone = profile.MobPhone;
 email = Membership.GetUser(profile.UserName).Email;

Darie-Watson_4681C12.fm Page 458 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 459

 try
 {
 SecureCard secureCard = new SecureCard(profile.CreditCard);
 creditCard = secureCard.CardNumberX;
 creditCardHolder = secureCard.CardHolder;
 creditCardNumber = secureCard.CardNumber;
 creditCardIssueDate = secureCard.IssueDate;
 creditCardIssueNumber = secureCard.IssueNumber;
 creditCardExpiryDate = secureCard.ExpiryDate;
 creditCardType = secureCard.CardType;
 }
 catch
 {
 creditCard = "Not entered.";
 }
 }

 public void UpdateProfile()
 {
 ProfileCommon profile =
 HttpContext.Current.Profile as ProfileCommon;
 profile.Address1 = address1;
 profile.Address2 = address2;
 profile.City = city;
 profile.Region = region;
 profile.PostalCode = postalCode;
 profile.Country = country;
 profile.ShippingRegion = shippingRegion;
 profile.DayPhone = dayPhone;
 profile.EvePhone = evePhone;
 profile.MobPhone = mobPhone;
 profile.CreditCard = creditCard;
 MembershipUser user = Membership.GetUser(profile.UserName);
 user.Email = email;
 Membership.UpdateUser(user); try
 {
 SecureCard secureCard = new SecureCard(
 creditCardHolder, creditCardNumber,
 creditCardIssueDate, creditCardExpiryDate,
 creditCardIssueNumber, creditCardType);
 profile.CreditCard = secureCard.EncryptedData;
 }
 catch
 {
 creditCard = "";
 }
 }
}

Darie-Watson_4681C12.fm Page 459 Monday, September 12, 2005 6:50 AM

460 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

5. For each of the 17 private fields of ProfileWrapper, add a corresponding public property. For
example, for address1, add the following property:

 public string Address1
 {
 get
 {
 return address1;
 }
 set
 {
 address1 = value;
 }
 }

6. Add a class to App_Code called ProfileDataSource, with code as follows:

using System;
using System.Collections.Generic;

/// <summary>
/// A further wrapper around ProfileWrapper, exposing data
/// in a form usable by ObjectDataSource.
/// </summary>
public class ProfileDataSource
{
 public ProfileDataSource()
 {
 }

 public List<ProfileWrapper> GetData()
 {
 List<ProfileWrapper> data = new List<ProfileWrapper>();
 data.Add(new ProfileWrapper());
 return data;
 }

 public void UpdateData(ProfileWrapper newData)
 {
 newData.UpdateProfile();
 }
}

7. Add a new user control to the UserControls directory called CustomerDetailsEdit.ascx.

Darie-Watson_4681C12.fm Page 460 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 461

8. In the Design View for CustomerDetailsEdit.ascx, drag an ObjectDataSource control onto
the page.

9. In ObjectDataView Tasks, click Configure Data Source.

10. Select ProfileDataSource from the drop-down selection, as shown in Figure 12-9.

Figure 12-9. ObjectDataSource configuration, step 1

11. On the next step of the wizard, select GetData(), returns List<ProfileWrapper> for the
SELECT method and UpdateDate(ProfileWrapper newData) for the UPDATE method. Leave the
INSERT and DELETE methods blank—users can’t add or delete profile information. Click Finish.

12. Drag an SqlDataSource control onto the page and configure it to use the BalloonShopConnection
connection string and to get the ShippingRegionID and ShippingRegion fields from the
ShippingRegion table. The code for the completed data source control should look as follows in
Source View:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:BalloonShopConnection %>"
 SelectCommand="SELECT [ShippingRegionID], [ShippingRegion] FROM
 [ShippingRegion]" />

13. In Design View, drag a FormView control onto CustomerDetailsEdit.ascx and choose
ObjectDataSource1 as its data source. The templates are auto-generated from the fields of
ProfileWrapper, as shown in Figure 12-10.

Darie-Watson_4681C12.fm Page 461 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

462 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Figure 12-10. Automatic generationof the FormView template for ProfileWrapper

14. In the Source View for CustomerDetailsEdit.ascx, delete the whole of the <InsertItemTemplate>
template, which should be on lines 67 to 128, or thereabouts.

15. Add a <HeaderTemplate> and <FooterTemplate> as follows:

 <HeaderTemplate>
 <table border="0" cellpadding="4" cellspacing="0"
 class="UserDetailsTable">
 <tr><td colspan="2" class="UserDetailsTableHead">
 <asp:Label runat="server" ID="TitleLabel" /></td></tr>
 </HeaderTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>

16. Replace the <ItemTemplate> with the following code:

 <ItemTemplate>
 <tr><td>Address line 1: </td><td width="350px">
 <asp:Label ID="Address1Label" runat="server"
 Text='<%# Bind("Address1") %>' />
 </td></tr>
 <tr><td>Address line 2: </td><td>
 <asp:Label ID="Address2Label" runat="server"
 Text='<%# Bind("Address2") %>' />
 </td></tr>
 <tr><td>City: </td><td>
 <asp:Label ID="CityLabel" runat="server"
 Text='<%# Bind("City") %>' />
 </td></tr>
 <tr><td>Region: </td><td>

Darie-Watson_4681C12.fm Page 462 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 463

 <asp:Label ID="RegionLabel" runat="server"
 Text='<%# Bind("Region") %>' />
 </td></tr>
 <tr><td>Zip / Postal Code: </td><td>
 <asp:Label ID="PostalCodeLabel" runat="server"
 Text='<%# Bind("PostalCode") %>'>
 </asp:Label>
 </td></tr>
 <tr><td>Country: </td><td>
 <asp:Label ID="CountryLabel" runat="server"
 Text='<%# Bind("Country") %>' />
 </td></tr>
 <tr><td>Shipping Region: </td><td>
 <asp:DropDownList Width="350px" ID="ShippingRegionDropDown"
 runat="server"
 SelectedValue='<%# Bind("ShippingRegion") %>'
 DataSourceID="SqlDataSource1"
 DataTextField="ShippingRegion"
 DataValueField="ShippingRegionID"
 enabled="false">
 </asp:DropDownList>
 </td></tr>
 <tr><td>Daytime Phone no: </td><td>
 <asp:Label ID="DayPhoneLabel" runat="server"
 Text='<%# Bind("DayPhone") %>' />
 </td></tr>
 <tr><td>Evening Phone no: </td><td>
 <asp:Label ID="EvePhoneLabel" runat="server"
 Text='<%# Bind("EvePhone") %>' />
 </td></tr>
 <tr><td>Mobile Phone no: </td><td>
 <asp:Label ID="MobPhoneLabel" runat="server"
 Text='<%# Bind("MobPhone") %>' />
 </td></tr>
 <tr><td>Email: </td><td>
 <asp:Label ID="EmailLabel" runat="server"
 Text='<%# Bind("Email") %>' />
 </td></tr>
 <tr><td>Credit Card: </td><td>
 <asp:Label ID="CreditCardLabel" runat="server"
 Text='<%# Bind("CreditCard") %>' />
 </td></tr>
 <tr><td>
 <asp:Button ID="EditButton" runat="server"
 CausesValidation="False" CommandName="Edit"
 Text="Edit" />
 </td></tr>
 </ItemTemplate>

Darie-Watson_4681C12.fm Page 463 Monday, September 12, 2005 6:50 AM

464 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

17. Replace the <EditItemTemplate> with the following code:

 <EditItemTemplate>
 <tr><td>Address line 1: </td><td width="350px">
 <asp:TextBox Width="340px" ID="Address1TextBox"
 runat="server" Text='<%# Bind("Address1") %>' />
 </td></tr>
 <tr><td>Address line 2: </td><td>
 <asp:TextBox Width="340px" ID="Address2TextBox"
 runat="server" Text='<%# Bind("Address2") %>' />
 </td></tr>
 <tr><td>City: </td><td>
 <asp:TextBox Width="340px" ID="CityTextBox" runat="server"
 Text='<%# Bind("City") %>' />
 </td></tr>
 <tr><td>Region: </td><td>
 <asp:TextBox Width="340px" ID="RegionTextBox"
 runat="server" Text='<%# Bind("Region") %>' />
 </td></tr>
 <tr><td>Zip / Postal Code: </td><td>
 <asp:TextBox Width="340px" ID="PostalCodeTextBox"
 runat="server" Text='<%# Bind("PostalCode") %>' />
 </td></tr>
 <tr><td>Country: </td><td>
 <asp:TextBox Width="340px" ID="CountryTextBox"
 runat="server" Text='<%# Bind("Country") %>' />
 </td></tr>
 <tr><td>Shipping Region: </td><td>
 <asp:DropDownList Width="350px" ID="ShippingRegionDropDown"
 runat="server"
 SelectedValue='<%# Bind("ShippingRegion") %>'
 DataSourceID="SqlDataSource1"
 DataTextField="ShippingRegion"
 DataValueField="ShippingRegionID">
 </asp:DropDownList>
 </td></tr>
 <tr><td>Daytime Phone no: </td><td>
 <asp:TextBox Width="340px" ID="DayPhoneTextBox"
 runat="server" Text='<%# Bind("DayPhone") %>' />
 </td></tr>
 <tr><td>Evening Phone no: </td><td>
 <asp:TextBox Width="340px" ID="EvePhoneTextBox"
 runat="server" Text='<%# Bind("EvePhone") %>' />
 </td></tr>
 <tr><td>Mobile Phone no: </td><td>
 <asp:TextBox Width="340px" ID="MobPhoneTextBox"
 runat="server" Text='<%# Bind("MobPhone") %>' />
 </td></tr>

Darie-Watson_4681C12.fm Page 464 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 465

 <tr><td>Email: </td><td>
 <asp:TextBox Width="340px" ID="EmailBox" runat="server"
 Text='<%# Bind("Email") %>' />
 </td></tr>
 <tr><td valign="top">Credit Card: </td><td>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr><td width="140px">Cardholder name: </td>
 <td width="200px">
 <asp:TextBox Width="200px" ID="CreditCardHolderLabel"
 runat="server"
 Text='<%# Bind("CreditCardHolder") %>' />
 </td></tr>
 <tr><td>Card type: </td><td>
 <asp:TextBox Width="200px" ID="CreditCardTypeLabel"
 runat="server"
 Text='<%# Bind("CreditCardType") %>' />
 </td></tr>
 <tr><td>Card number: </td><td>
 <asp:TextBox Width="200px" ID="CreditCardNumberLabel"
 runat="server"
 Text='<%# Bind("CreditCardNumber") %>' />
 </td></tr>
 <tr><td>Issue date: </td><td>
 <asp:TextBox Width="200px"
 ID="CreditCardIssueDateLabel" runat="server"
 Text='<%# Bind("CreditCardIssueDate") %>' />
 </td></tr>
 <tr><td>Expiry date: </td><td>
 <asp:TextBox Width="200px"
 ID="CreditCardExpiryDateLabel" runat="server"
 Text='<%# Bind("CreditCardExpiryDate") %>' />
 </td></tr>
 <tr><td>Issue number: </td><td>
 <asp:TextBox Width="200px"
 ID="CreditCardIssueNumberLabel" runat="server"
 Text='<%# Bind("CreditCardIssueNumber") %>' />
 </td></tr>
 </table>
 </td></tr>
 <tr><td>
 <asp:Button ID="UpdateButton" runat="server"
 CausesValidation="True" CommandName="Update"
 Text="Update" /> <asp:Button ID="UpdateCancelButton"
 runat="server" CausesValidation="False"
 CommandName="Cancel" Text="Cancel" />
 </td></tr>
 </EditItemTemplate>

Darie-Watson_4681C12.fm Page 465 Monday, September 12, 2005 6:50 AM

466 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

18. Add the following class definitions to BalloonShop.css:

.UserDetailsTable
{
 width: 100%;
 background-color: #ccccff;
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 12px;
 border: Solid 2px Navy;
 line-height: 25px;
}
.UserDetailsTableHead
{
 border-bottom: Navy 2px solid;
 background-color: #666699;
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
 color: #eeeeff;
 padding-left: 3px;
 text-align: center;
}

19. Add the following code to CustomerDetailsEdit.ascx.cs:

 public bool Editable
 {
 get
 {
 if (ViewState["editable"] != null)
 {
 return (bool)ViewState["editable"];
 }
 else
 {
 return true;
 }
 }
 set
 {
 ViewState["editable"] = value;
 }
 }

Darie-Watson_4681C12.fm Page 466 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 467

 public string Title
 {
 get
 {
 if (ViewState["title"] != null)
 {
 return ViewState["title"] as string;
 }
 else
 {
 return "Edit User Details";
 }
 }
 set
 {
 ViewState["title"] = value;
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 // Find and set title text
 Label TitleLabel =
 FormView1.FindControl("TitleLabel") as Label;
 if (TitleLabel != null)
 {
 TitleLabel.Text = Title;
 }

 // Find and set edit button visibility
 Button EditButton =
 FormView1.FindControl("EditButton") as Button;
 if (EditButton != null)
 {
 EditButton.Visible = Editable;
 }
 }

20. Add a new Web Form to the root of BalloonShop called CustomerDetails.aspx, with code as follows:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="CustomerDetails.aspx.cs"
 Inherits="CustomerDetails" Title="BalloonShop : Customer Details" %>

Darie-Watson_4681C12.fm Page 467 Monday, September 12, 2005 6:50 AM

468 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

<%@ Register TagPrefix="uc1" TagName="CustomerDetailsEdit"
 Src="UserControls/CustomerDetailsEdit.ascx" %>
<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">
 <uc1:customerdetailsedit id="CustomerDetailsEdit1"
 runat="server" />
</asp:Content>

21. Modify the Page_Load handler in Customer_Details.aspx.cs to set the page title:

 protected void Page_Load(object sender, EventArgs e)
 {
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Customer Details";

 }

22. Add the following location security to web.config:

 <!-- Only existing customers can access CustomerDetails.aspx -->
 <location path="CustomerDetails.aspx">
 <system.web>
 <authorization>
 <allow roles="Customers" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

23. In Register.aspx, change the ContinueDestinationPageUrl property of the CreateFormWizard
control to ~/CustomerDetails.aspx.

24. Have a cup of coffee—you’ve earned it.

25. Fire up a browser and either log in as an existing user and click Edit Details or register a new user.
Either way, you’ll be greeted with the page shown in Figure 12-11.

Darie-Watson_4681C12.fm Page 468 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 469

Figure 12-11. Blank user details page

26. Click Edit and enter some details, as shown in Figure 12-12.

Darie-Watson_4681C12.fm Page 469 Monday, September 12, 2005 6:50 AM

470 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Figure 12-12. User details page in edit mode

27. Click Update and note how the credit card number is displayed as XXXX-XXXX-XXXX-1234.

28. Log out (you should be redirected to the log in page), and then log back in again as a different user.
When you look at the user details for this user, you should see that the details are blank—they are
unique to users.

How It Works: Implementing User Profiles for BalloonShop

That was a long exercise! Still, at no point have you seen any particularly complicated code. In fact, most of it was
to make the user details edit form look good. Still, there’s plenty to analyze, starting with the way that user profile
data is exposed to the FormView control via an ObjectDataSource control.

Sadly, there is no direct way to bind user profile data to controls. Many methods are available for doing this (for
example, a fellow author and friend, Dave Sussman, created a generic way to do this, see http://blogs.
ipona.com/davids/archive/2004/10/29/414.aspx). You could even take the simple option—ignore data
binding and build a form yourself, setting Text properties of TextBox or Label controls to appropriate values in
the code behind. Because you have encrypted credit card details available, you needed to take a slightly oblique
approach to keep the data in the database secure; going with the data-bound approach is also a good test for your
ASP.NET development muscles.

To start with, let’s look at ProfileWrapper. The code for this class starts with a reference to the SecurityLib
library and a bunch of private fields. These fields cover all the fields defined in web.config, along with credit card
fields obtained from the SecureCard class in the SecurityLib namespace:

Darie-Watson_4681C12.fm Page 470 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 471

using System;
using System.Web;
using System.Web.Security;
using SecurityLib;

/// <summary>
/// A wrapper around profile information, including
/// credit card encryption functionality.
/// </summary>
public class ProfileWrapper
{
 private string address1;
 private string address2;
 private string city;
 private string region;
 private string postalCode;
 private string country;
 private string shippingRegion;
 private string dayPhone;
 private string evePhone;
 private string mobPhone;
 private string email;
 private string creditCard;
 private string creditCardHolder;
 private string creditCardNumber;
 private string creditCardIssueDate;
 private string creditCardIssueNumber;
 private string creditCardExpiryDate;
 private string creditCardType;

These fields all have associated public properties, which weren’t all listed to save space.

Next, the constructor for the ProfileWrapper class obtains the profile information for the currently logged-in user
and populates the preceding fields. Because this class isn’t the code behind for a Web Form, you can’t use the
Page.Profile property to access this information, so instead you used the static HttpContext.Current
property to obtain the current context. From this, you get the ProfileCommon instance that you’re interested in:

 public ProfileWrapper()
 {
 ProfileCommon profile =
 HttpContext.Current.Profile as ProfileCommon;

From this object, you extract all the data you want. Most of this is simply a case of examining properties of the
ProfileCommon instance, but in some cases more code is required. For instance, for shippingRegion, we
wanted to use a drop-down list rather than a text box (because limited options are available), so we initialized the
field accordingly—if profile.ShippingRegion is empty, you instead use the text "1", which matches the
ShippingRegionID for “Please Select” in the ShippingRegion table. You could do this for some of the
other properties, notably Country, but for simplicity (and brevity) we’ve kept things simple.

Darie-Watson_4681C12.fm Page 471 Monday, September 12, 2005 6:50 AM

472 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

You also extracted the email address of the user by obtaining a MembershipUser object via Membership.
GetUser() and passing the username obtained from the profile as a parameter. You then used the Email property
of this object to obtain the email address. Strictly speaking, the user’s email address isn’t part of the user’s profile,
but it makes sense to expose it here for easy editing.

creditCard also needs more work. You needed to decrypt any information stored and use the decrypted data to
fill the appropriate fields: creditCardHolder, creditCardNumber, and so on. Because a decryption failure
results in an exception, this decryption is performed in a try...catch block.

 address1 = profile.Address1;
 address2 = profile.Address2;
 city = profile.City;
 region = profile.Region;
 postalCode = profile.PostalCode;
 country = profile.Country;
 shippingRegion =
 (profile.ShippingRegion == null
 || profile.ShippingRegion == ""
 ? "1"
 : profile.ShippingRegion);
 dayPhone = profile.DayPhone;
 evePhone = profile.EvePhone;
 mobPhone = profile.MobPhone;
 email = Membership.GetUser(profile.UserName).Email;
 try
 {
 SecureCard secureCard = new SecureCard(profile.CreditCard);
 creditCard = secureCard.CardNumberX;
 creditCardHolder = secureCard.CardHolder;
 creditCardNumber = secureCard.CardNumber;
 creditCardIssueDate = secureCard.IssueDate;
 creditCardIssueNumber = secureCard.IssueNumber;
 creditCardExpiryDate = secureCard.ExpiryDate;
 creditCardType = secureCard.CardType;
 }
 catch
 {
 creditCard = "Not entered.";
 }
 }

Next the UpdateProfile method sets profile data, email data, and credit card details from the data contained in
the object instance from which it is called. Again, the code here is simple, with only some minor trickery required
to obtain the encrypted form of the credit card data. There’s nothing here you haven’t seen elsewhere, so there’s no
need to repeat the code here.

To use object data with the ObjectDataSource control, you needed to pass an object supporting IEnumerable
as the return result of a SELECT method. This is because ObjectDataSource is designed to work with data lists
as well as single data items. ProfileDataSource acts as an interface between ObjectDataSource and

Darie-Watson_4681C12.fm Page 472 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 473

ProfileWrapper, simply using the IEnumerable that is supporting generic list class List<T> to pass data to
ObjectDataSource. The code instantiates an instance of List<ProfileWrapper> and adds a single item, the
user’s profile data, to this list and then returns it.

 public List<ProfileWrapper> GetData()
 {
 List<ProfileWrapper> data = new List<ProfileWrapper>();
 data.Add(new ProfileWrapper());
 return data;
 }

Because List<T> actually supports IEnumerable<T>, this is a strongly typed binding, meaning that the UPDATE
method is passed an argument of type T when ObjectDataSource calls it. In this case, T is ProfileWrapper,
so to update the profile information, you just called the UpdateProfile() method:

 public void UpdateData(ProfileWrapper newData)
 {
 newData.UpdateProfile();
 }

Next, you used these classes to populate a FormView control via the aforementioned ObjectDataSource control.
The templates created needed a bit of modification, because we didn’t want to display all the credit card fields on
the initial item view. We also wanted to use a drop-down list for the shippingRegion property, and bound that
drop-down list to the ShippingRegion table using simple data-binding syntax.

This customization required a lot of code, but most of this was for general display purposes, so there’s no real need
to go through it in any depth here. Suffice to say that the credit card details get fully displayed for the editing template.

■Note We haven’t done it here, but it would be relatively easy to modify this code to enable customers to
store multiple credit cards, with one selected as a default to use for purchases. You could, for example, store
an array of strings for credit card details, each containing one encrypted card, along with a default card prop-
erty. Alternatively, you could extend SecureCard to provide a single encrypted string for multiple cards. The
only reason this hasn’t been done here is to keep things moving—there’s no reason to get bogged down in
lengthy, uninteresting code at this point. Another feature that’s lacking here is the inclusion of validation
controls to ensure that required fields are filled in. Again, this is easy to add, but would have filled up another
page or so if included here.

You used a user control to store the customer details editing form, CustomerDetailsEdit.ascx. There’s a good
reason for this—later you’ll want to display the same information to customers when they place their orders, giving
them a last chance to modify details. To facilitate this reuse, CustomerDetails.ascx.cs includes two public
properties, Editable and Title, which can be used to hide the EditButton button and set the title for the
FormView control, respectively. This customization happens in the OnPreRender event handler for the control, to
cater for the fact that these properties may be set late on in the life cycle of the control, and we still want them to
work if this happens. For the Edit Details page, you use the default values for these properties; later you’ll supply
nondefault values for them.

Darie-Watson_4681C12.fm Page 473 Monday, September 12, 2005 6:50 AM

474 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

The page displaying the CustomerDetailsEdit.ascx user control (CustomerDetails.aspx) needed to have
its access limited to users in the Customers role, so you added the required security code to web.config. Note
that the code in web.config prevents users in the Administrators role from editing profiles. This isn’t a problem,
however, because administrators don’t need to store this information.

Finally, you tested things out by entering some details for a customer and verified that the information added applied
only to that customer.

Now that you have this information available, you can move on to the next step—providing a new checkout page.

The Checkout Page
The new checkout page will display an order summary and customer details, which can be
reviewed before the customer places an order. This page appears when a customer clicks the
Proceed to Checkout button after viewing his shopping cart.

In the next exercise, you’ll implement and secure this page.

Exercise: Implementing a new Checkout Page

1. Add a new page to the BalloonShop application called Checkout.aspx and modify the code as follows:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="Checkout.aspx.cs"
 Inherits="Checkout" %>

<%@ Register TagPrefix="uc1" TagName="CustomerDetailsEdit"
 Src="UserControls/CustomerDetailsEdit.ascx" %>
<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">
 <asp:Label ID="titleLabel" runat="server"
 CssClass="ShoppingCartTitle"
 Text="Your Shopping Cart" />

 <asp:GridView ID="grid" runat="server"
 AutoGenerateColumns="False" DataKeyNames="ProductID"
 BorderWidth="1px" Width="100%">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Product Name"
 ReadOnly="True" SortExpression="Name" />
 <asp:BoundField DataField="Price" DataFormatString="{0:c}"
 HeaderText="Price" ReadOnly="True"
 SortExpression="Price" />
 <asp:BoundField DataField="Quantity" HeaderText="Quantity"
 ReadOnly="True" SortExpression="Quantity" />

Darie-Watson_4681C12.fm Page 474 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 475

 <asp:BoundField DataField="Subtotal" DataFormatString="{0:c}"
 HeaderText="Subtotal" ReadOnly="True"
 SortExpression="Subtotal" />
 </Columns>
 </asp:GridView>
 <asp:Label ID="Label2" runat="server" Text="Total amount: "
 CssClass="ProductDescription" />
 <asp:Label ID="totalAmountLabel" runat="server" Text="Label"
 CssClass="ProductPrice" />

 <uc1:CustomerDetailsEdit ID="CustomerDetailsEdit1" runat="server"
 Editable="false" Title="User Details" />

 <asp:Label ID="InfoLabel" runat="server" CssClass="InfoText" />

 <asp:Button ID="placeOrderButton" runat="server"
 CssClass="ButtonText" Text="Place order"
 OnClick="placeOrderButton_Click" />
</asp:Content>

2. Modify Checkout.aspx.cs as follows:

public partial class Checkout : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Checkout";

 if (!IsPostBack)
 PopulateControls();
 }

 // fill controls with data
 private void PopulateControls()
 {
 // get the items in the shopping cart
 DataTable dt = ShoppingCartAccess.GetItems();
 // populate the list with the shopping cart contents
 grid.DataSource = dt;
 grid.DataBind();
 // setup controls
 titleLabel.Text =
 "These are the products in your shopping cart:";
 grid.Visible = true;

Darie-Watson_4681C12.fm Page 475 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

476 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

 // display the total amount
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 totalAmountLabel.Text = String.Format("{0:c}", amount);

 // check customer details
 bool addressOK = true;
 bool cardOK = true;
 if (Profile.Address1 + Profile.Address2 == ""
 || Profile.ShippingRegion == ""
 || Profile.ShippingRegion == "Please Select"
 || Profile.Country == "")
 {
 addressOK = false;
 }
 if (Profile.CreditCard == "")
 {
 cardOK = false;
 }

 // report / hide place order button
 if (!addressOK)
 {
 if (!cardOK)
 {
 InfoLabel.Text =
 "You must provide a valid address and credit card "
 + "before placing your order.";
 }
 else
 {
 InfoLabel.Text =
 "You must provide a valid address before placing your "
 + "order.";
 }
 }
 else if (!cardOK)
 {
 InfoLabel.Text = "You must provide a credit card before "
 + "placing your order.";
 }
 else
 {
 InfoLabel.Text = "Please confirm that the above details are "
 + "correct before proceeding.";
 }
 placeOrderButton.Visible = addressOK && cardOK;
 }

Darie-Watson_4681C12.fm Page 476 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 477

 protected void placeOrderButton_Click(object sender, EventArgs e)
 {
 // Store the total amount because the cart
 // is emptied when creating the order
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 // Create the order and store the order ID
 string orderId = ShoppingCartAccess.CreateOrder();
 // Create the PayPal redirect location
 string redirect = "";
 redirect +=
 "https://www.paypal.com/xclick/business=youremail@server.com";
 redirect += "&item_name=BalloonShopOrder " + orderId;
 redirect += "&item_number=" + orderId;
 redirect += "&amount=" + String.Format("{0:c} ", amount);
 redirect += "&return=http://www.YourWebSite.com";
 redirect += "&cancel_return=http://www.YourWebSite.com";
 // Redirect to the payment page
 Response.Redirect(redirect);
 }
}

3. Add the following class definition to BalloonShop.css:

.InfoText
{
 font-family: Verdana, Helvetica, sans-serif;
 font-size: 12px;
}

4. Modify web.config as follows:

 <!-- Only existing customers can access Checkout.aspx -->
 <location path="Checkout.aspx">
 <system.web>
 <authorization>
 <allow roles="Customers" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

5. Modify ShoppingCart.aspx.cs as follows:

 // redirect to the checkout page
 protected void checkoutButton_Click(object sender, EventArgs e)
 {
 string redirect = "Checkout.aspx";
 // Redirect to the checkout page
 Response.Redirect("Checkout.aspx");
 }

Darie-Watson_4681C12.fm Page 477 Monday, September 12, 2005 6:50 AM

478 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

6. Log in, edit your customer details, and place an order via the shopping cart page. If your details are
correct, you should be able to click Proceed to Checkout; otherwise, you’ll have to add valid customer
details before proceeding.

How It Works: Implementing a New Checkout Page

We haven’t really done much that is particularly difficult here—most of the work was already done. All we’ve really
done is reorganize existing code to prepare for a new order backend.

The new checkout page, Checkout.aspx, now appears when customers click Proceed to Checkout from the
shopping cart view. It displays the current shopping cart using code very similar to—but not identical to—code in
ShoppingCart.aspx. The code is different in that editing is no longer possible—quantities and order items are
fixed. Checkout.aspx also includes a noneditable version of the CustomerUserDetails.ascx control, customized
using the Editable and Title properties you added earlier.

As with ShoppingCart.aspx, you use a code-behind method called PopulateControls() to get and bind to
data. The major differences here are that you don’t need to check for existing shopping cart items (we know there
will be some at this stage), and that you also check for valid address and credit card details before allowing the user
to proceed:

 // check customer details
 bool addressOK = true;
 bool cardOK = true;
 if (Profile.Address1 + Profile.Address2 == ""
 || Profile.ShippingRegion == ""
 || Profile.ShippingRegion == "1"
 || Profile.Country == "")
 {
 addressOK = false;
 }
 if (Profile.CreditCard == "")
 {
 cardOK = false;
 }

This code, which checks the validity of the address and credit card, merits a little extra discussion. First, notice
the validation of the address. The address is validated by checking a few of the fields for data (Address1 and
Address2 combined must contain data for a valid order, and a country and shipping region must be set). This may
look overly simple, but it’s fine here—if address problems occur further down the line, you can deal with problems
as they arise. The shipping region is also interesting because you check for a value of “1”, which corresponds to
“Please Select” in the database—hence the importance of this record having an ID field value of 1, as noted
earlier. As far as credit card details go, you just check that some data is stored, not what that data is. Again, problems here
can be dealt with later.

Assuming that the data is okay, the placeOrder button allows users to actually place an order. Notice that the code
here is the same code you used in the earlier incarnation of the ShoppingCart.aspx page. In fact, none of the
extra details are used. This isn’t a problem because you now have everything you need to hook into a proper,
fleshed-out order pipeline, as you’ll see in subsequent chapters.

Darie-Watson_4681C12.fm Page 478 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 479

A final note—the web.config file has again been modified so that users must log in before the checkout page is
visible. Using this setting, clicking on Proceed to Checkout takes users straight to the login page if they aren’t logged
in. This is a nice feature, but really there ought to be more feedback. Some simple text on Login.aspx ought to do it:

 ...
 </table>
 You must be logged in to place an
 order. If you aren't yet
 registered with the site, click
 <asp:HyperLink runat="server" ID="registerLink"
 NavigateUrl="~/Register.aspx" Text="here"
 ToolTip="Go to the registration page"
 CssClass="UserInfoLink" />.
 </LayoutTemplate>
 </asp:Login>
</asp:Content>

Now users will know that they must be registered to place on order and are automatically presented with the tool
they need.

Setting Up Secure Connections
Customers can now register on your site, log in, and change details. However, the current system
involves sending potentially sensitive information over HTTP. This protocol isn’t secure, and
the information could be intercepted and stolen. To avoid this, you need to set up the applica-
tion to work with SSL (Secure Socket Layer) connections using HTTPS (HyperText Transport
Protocol [Secure]).

To do this, you have a bit of groundwork to get through first. Unless you’ve already been
using an SSL connection on your web server, you are unlikely to have the correct configuration to
do so. This configuration involves obtaining a security certificate for your server and installing it
via IIS management.

Security certificates are basically public-private key pairs similar to those discussed earlier
in the chapter relating to asymmetric encryption. You can generate these yourself if your domain
controller is configured as a certification authority, but this method has its problems. Digital
signing of SSL certificates is such that browsers using the certificate will not be able to verify the
identity of your certification authority, and may therefore doubt your security. This isn’t disastrous,
but may affect consumer confidence, because users are presented with a warning message when
they attempt to establish a secure connection.

The alternative is to obtain SSL certificates from a known and respected organization that
specializes in web security, such as VeriSign. Web browsers such as Internet Explorer have
built-in root certificates from organizations such as this and are able to authenticate the digital
signature of SSL certificates supplied by them. This means that no warning message will appear
and an SSL secured connection will be available with a minimum of fuss.

This section assumes that you take this latter option, although if you want to create your
own certificates, that won’t affect the end result.

Darie-Watson_4681C12.fm Page 479 Monday, September 12, 2005 6:50 AM

480 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

Obtaining an SSL Certificate from VeriSign
Obtaining a certificate from VeriSign is a relatively painless experience, and full instructions
are available on the VeriSign web site, (http://www.verisign.com/). You also can get test certif-
icates from VeriSign, which are free to use for a trial period. The basic steps are as follows:

1. Sign up for a trial certificate on the VeriSign web site.

2. Generate a Certificate Signing Request (CSR) via IIS management on your web server.
This involves filling out various personal information, including the name of your web
site, and so on.

3. Copy the contents of the generated CSR into the VeriSign request system.

4. Shortly afterward, you’ll receive a certificate from VeriSign that you copy into IIS
management to install the certificate.

There is a little more to it than that, but as noted, detailed instructions are available on the
VeriSign web site, and you shouldn’t run into any difficulties.

Enforcing SSL Connections
After the certificate is installed, you can access any web pages on your web server using an SSL
connection by replacing the http:// part of the URL used to access the page with https://
(assuming that your firewall is set up to allow an SSL connection, which by default uses port 443,
if you use a firewall—this doesn’t apply to local connections). Obviously, you don’t need SSL
connections for all areas of the site, and shouldn’t enforce it in all places because it can reduce
performance. However, you do want to make sure that the checkout, login, and customer
detail modification pages are accessible only via SSL. While you’re at it, you can also secure the
admin pages. This isn’t so important at this stage, but later, when you have full order and user
admin controls, it doesn’t hurt to make things secure here.

There are several ways to achieve this restriction. One way is to configure individual pages
via IIS management. Looking at the properties for Login.aspx in IIS management, for example,
shows the File Security tab, as shown in Figure 12-13.

■Note To access this dialog box, open IIS manager from the Administrative Tools section of Control Panel,
navigate through the tree view through IIS/Local Computer/Web Sites/Default Web Site/
BalloonShop, and get the properties for Login.aspx.

From here, you can click the Edit button in the Secure Communications section and tick
the Require Secure Channel (SSL)box in the dialog box that appears (don’t worry about the
other options), as shown in Figure 12-14.

Darie-Watson_4681C12.fm Page 480 Monday, September 12, 2005 6:50 AM

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 481

Figure 12-13. File Security property page

Figure 12-14. Setting the HTTPS requirement

After clicking OK, attempts to access the Login.aspx page using HTTP will be rejected.
However, this isn’t quite the route you want to go down for BalloonShop, because it makes
certain things—namely redirections between URLs that start with http:// and URLs that start
with https://—slightly difficult to manage. Rather than giving an error message when users

Darie-Watson_4681C12.fm Page 481 Monday, September 12, 2005 6:50 AM

482 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

attempt to access Login.aspx without SSL, it’s better to detect unsecure connections in code
and redirect accordingly. This means that users trying to access Login.aspx without SSL are
automatically redirected to the same page, but with SSL. Similarly, we want users attempting
to use SSL to access a page such as Default.aspx—which doesn’t need to be secured—to be
redirected to a non-SSL connection to the same page. This results in a seamless experience
for users.

We’ll look at this in more detail in a moment. First, however, it’s worth mentioning an
attribute that ASP.NET supplies for use with the <forms> definition in web.config. You can set
the attribute requireSSL to true for this element, which will prevent user login cookies from
being exchanged over a non-SSL connection. However, this enforces the requirement that,
once logged in, users can only be authenticated for pages viewed over SSL. This setting does not
prevent users from looking at pages such as Default.aspx over a standard HTTP connection.
However, user-aware controls (such as UserInfo.ascx in BalloonShop) will not have access to
user information unless SSL is used. This attribute is for use only when you are happy to enforce
SSL connections site-wide. Because SSL connections introduce a performance hit due to the
encryption and decryption required, this isn’t recommended for most web sites.

Including Redirections to Enforce Required SSL Connections
One way to enforce SSL connections is to use absolute URLs everywhere a link is used on the
site, using for example https://<server>/CustomerDetails.aspx for the Edit Details link in
UserInfo.ascx and the http:// protocol for most other links. If you did this in combination
with SSL enforcement in IIS, you could prevent users from accessing secured pages quite effec-
tively. If they tried rewriting the URL by hand, they would likely end up with an error message
because IIS prevents secured pages from being transmitted via HTTP. However, this involves a
lot of work to modify and maintain links, and we have a far more elegant technique at our disposal.

The core concept behind the technique presented here is that every page—bar none—
uses a Master Page. This Master Page is either BalloonShop.master or Admin.master. We want to
force pages using Admin.master to always use SSL, and force pages using BalloonShop.master to
sometimes use SSL, where the “sometimes” translates as “where specified by the page.”

The simplest of these, Admin.master, requires the following code in Admin.master.cs:

 protected override void OnInit(EventArgs e)
 {
 if (!Request.IsSecureConnection)
 {
 Response.Redirect(Request.Url.AbsoluteUri.ToLower().Replace(
 "http://", "https://"), true);
 }
 base.OnInit(e);
 }

Here you detect whether an SSL connection is in use with Request.IsSecureConnection,
and if it isn’t, redirect to a page with the same URL as the current page, but starting with https
rather than http. You do this at the OnInit stage of the page life cycle; that is, before the page
has had a chance to do much processing that would be wasted.

Similarly, in BalloonShop.master.cs, you redirect to an SSL connection if required or to a
standard HTTP connection if SSL isn’t required. This prevents other, nonsecured pages in the

Darie-Watson_4681C12.fm Page 482 Monday, September 12, 2005 6:50 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S 483

site from being accessed via SSL when not required. To control this redirection, you include a
property that pages using BalloonShop.master can set, saying whether they require SSL or not.
This property, EnforceSSL, is defined as follows:

 public bool EnforceSSL
 {
 get
 {
 if (ViewState["enforceSSL"] != null)
 {
 return (bool)ViewState["enforceSSL"];
 }
 else
 {
 return false;
 }
 }
 set
 {
 ViewState["enforceSSL"] = value;
 }
 }

We use view state here to streamline things, but other than that, this is a simple Boolean
property.

Now, because this property may be set fairly late in the life cycle of the Master Page, you
can’t act on it in OnInit. Instead, you check the value of this property in OnPreRender and redirect
then (if necessary):

 protected override void OnPreRender(EventArgs e)
 {
 if (EnforceSSL)
 {
 if (!Request.IsSecureConnection)
 {
 Response.Redirect(
 Request.Url.AbsoluteUri.ToLower().Replace(
 "http://", "https://"), true);
 }
 }
 else if (Request.IsSecureConnection)
 {
 Response.Redirect(Request.Url.AbsoluteUri.ToLower().Replace(
 "https://", "http://"), true);
 }
 }

With this scheme, the user is only aware that something is going on when logging in. At
this point the user is redirected from a secure to a nonsecure connection. From that point on,

Darie-Watson_4681C12.fm Page 483 Monday, September 12, 2005 6:50 AM

484 C H A P T E R 1 2 ■ A D D I N G C U S T O M E R A C C O U N T S

the user is redirected from secure to nonsecure connections transparently—secure when needed,
nonsecure when not. Users will, of course, always be able to tell what type of connection they
have, because the standard “padlock” symbol is displayed as per usual. The URL will also be
there to reassure them.

The code behind required for SSL secured pages is

 protected override void OnInit(EventArgs e)
 {
 (Master as BalloonShop).EnforceSSL = true;
 base.OnInit(e);
 }

This code needs to be added to Login.aspx.cs, Register.aspx.cs, CustomerDetails.
aspx.cs, and Checkout.aspx.cs. Note that the call to base.OnInit(e) is required for proper
themes functionality. Without this call, the ASP.NET theme doesn’t get applied, and the CSS
styles, and so on won’t be loaded.

Summary
In this chapter, you’ve implemented a customer account system that customers can use
to store their details for use during order processing. You’ve looked at many aspects of the
customer account system, including encrypting sensitive data, and securing web connections
for obtaining it.

You started by creating a set of classes in a new namespace called SecurityLib for hashing
and encrypting strings, and a secure credit card representation that makes it easy to exchange
credit card details between the encrypted and decrypted format.

After this, you implemented a customer login scheme using a new user role called Customers.
This required some, but not many modifications to the existing Forms Authentication scheme,
as well as the addition of a registration page. You also added customer details functionality
using the ASP.NET Membership controls and the SecurityLib namespace and classes. After all
this was implemented, you prepared the way for a new order process with a new checkout page.

Finally, we looked at how to secure data passing over the Internet using secure SSL connec-
tions. This involved obtaining and installing a certificate from a known certification authority
(VeriSign, for example), restricting access to SSL where appropriate, and modifying the redirection
code slightly to use SSL connections.

In the next chapter, we’ll look at how to create the framework for the order-processing
pipeline, enabling you to automate even more of the supply process.

Darie-Watson_4681C12.fm Page 484 Monday, September 12, 2005 6:50 AM

485

■ ■ ■

C H A P T E R 1 3

Advanced Customer Orders

The BalloonShop e-commerce application is shaping up nicely. You’ve added customer
account functionality, and you’re keeping track of customer addresses and credit card infor-
mation, which is stored in a secure way. However, you’re not currently using this information—
you’re delegating responsibility for this to PayPal.

In this chapter, you’ll make the modifications required for customers to place orders that
are associated with their user profile. The main modification here is that the customer associated
with an order will be identified by a new piece of information in the Orders table, and much of
the rest of the modifications will be made to use this information.

In the next chapter, you’ll start to implement a more sophisticated order system, and the
code you’ll write in this chapter will facilitate this. You’ll be adding various new data structures
and data access classes to get ready for this. Because of this, you’ll be making some modifica-
tions that won’t seem necessary at this stage, but they’ll make your life easier later on.

Also in this chapter, you’ll take a look at dealing with another common feature of e-commerce
sites: tax and shipping charges. Many options are available for implementing this functionality,
but we’ll just examine a simple way of doing things and lay the groundwork for your own
further development.

Implementing Customer Order Functionality
This section is divided into two parts as follows:

• Placing customer orders: In this section, you’ll enable customers to place orders.

• Accessing customer orders: In this section, you’ll enable the order-processing system in
later chapters to access customer orders.

Placing Customer Orders
To enable customers to place orders using ASP.NET membership, you need to make several
modifications. You’ll modify the database and business tier to enable customer orders to be
placed and provide new code in the presentation tier to expose this functionality.

Database Modifications

As mentioned previously, the first thing to do is modify the database to make it ready to hold
information about customer orders.

Darie-Watson_4681C13.fm Page 485 Wednesday, September 14, 2005 9:27 AM

486 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

The Orders Table

Currently the Orders table doesn’t allow for as much information as you’ll need to implement
customer orders. There are also some modifications that you’ll need in later chapters, so you
need to add the new columns shown in Table 13-1 to the Orders table.

All except the first of these columns are related to advanced order processing, including
credit card transactions, and you’ll look at these columns in more detail later. You might also
wonder why the CustomerID column is of type uniqueidentifier, which is quite reasonable.
The reason is simply because this is how users are identified in the ASP.NET membership
system. Effectively, this column provides a link to the aspnet_Users membership table, in the
ASPNETDB database.

Note that you won’t be using some of the columns that already exist in the Orders table,
such as Verified and Completed. This is because this information is now encapsulated in the
Status column. You also won’t need the old fields relating to customer identification, such as
CustomerName, because now this information is stored elsewhere. Don’t delete these deprecated
columns, however, or you’ll lose backward compatibility with code earlier in this book.

■Note To enable this database to be used with both the code in this section of the book and the code in the
earlier part of this book, it’s necessary to make the new columns nullable, because earlier data won’t supply
values for them.

The CreateCustomerOrder Stored Procedure

Currently, the CreateOrder stored procedure is used to add orders to the database:

CREATE PROCEDURE CreateOrder
(@CartID char(36))
AS
/* Insert a new record into Orders */
DECLARE @OrderID int
INSERT INTO Orders DEFAULT VALUES

Table 13-1. The Orders Table

Column Name Column Type Description

CustomerID uniqueidentifier The ID of the customer that placed the order

Status int The current status of the order, which you’ll use in
later chapters to determine what stage of order
processing has been reached; default value 0

AuthCode varchar(50) The authentication code used to complete the
customer credit card transaction

Reference varchar(50) The unique reference code of the customer credit
card transaction

Darie-Watson_4681C13.fm Page 486 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 487

/* Save the new Order ID */
SET @OrderID = @@IDENTITY
/* Add the order details to OrderDetail */
INSERT INTO OrderDetail
 (OrderID, ProductID, ProductName, Quantity, UnitCost)
SELECT
 @OrderID, Product.ProductID, Product.Name,
 ShoppingCart.Quantity, Product.Price
FROM Product JOIN ShoppingCart
ON Product.ProductID = ShoppingCart.ProductID
WHERE ShoppingCart.CartID = @CartID
/* Clear the shopping cart */
DELETE FROM ShoppingCart
WHERE CartID = @CartID
/* Return the Order ID */
SELECT @OrderID

When an order is created in this new system, more data is added to the database, so you
need to use a different (although very similar) stored procedure, CreateCustomerOrder (the
differences are shown in bold):

CREATE PROCEDURE CreateCustomerOrder
(@CartID char(36),
 @CustomerID uniqueidentifier)
AS
/* Insert a new record into Orders */
DECLARE @OrderID int
INSERT INTO Orders (CustomerID) VALUES (@CustomerID)
/* Save the new Order ID */
SET @OrderID = @@IDENTITY
/* Add the order details to OrderDetail */
INSERT INTO OrderDetail
 (OrderID, ProductID, ProductName, Quantity, UnitCost)
SELECT
 @OrderID, Product.ProductID, Product.Name,
 ShoppingCart.Quantity, Product.Price
FROM Product JOIN ShoppingCart
ON Product.ProductID = ShoppingCart.ProductID
WHERE ShoppingCart.CartID = @CartID
/* Clear the shopping cart */
DELETE FROM ShoppingCart
WHERE CartID = @CartID
/* Return the Order ID */
SELECT @OrderID

The new data here is the inclusion of a CustomerID value with the order.

Darie-Watson_4681C13.fm Page 487 Wednesday, September 14, 2005 9:27 AM

488 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

Business Tier Modifications

To use your new stored procedure, you need to modify the ShoppingCartAccess class. Rather
than removing the old CreateOrder method, however, add the following method:

 // Create a new order with customer ID
 public static string CreateCommerceLibOrder()
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CreateCustomerOrder";
 // create parameters
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CustomerId";
 param.Value =
 Membership.GetUser(
 HttpContext.Current.User.Identity.Name)
 .ProviderUserKey;
 param.DbType = DbType.Guid;
 param.Size = 16;
 comm.Parameters.Add(param);
 // return the result table
 return GenericDataAccess.ExecuteScalar(comm);
 }

This new method, CreateCommerceLibOrder, is more or less the same as the old order-placing
code, but there is a new parameter to use: @CustomerID. The GUID to use for this customer iden-
tification is obtained using the ASP.NET membership classes. You obtain a MembershipUser class
using Membership.GetUser by passing the name of the current user obtained from the current
context. Next, you use the ProviderUserKey property of the MembershipUser object you receive
to obtain the unique GUID that identifies the current user.

Note the naming of this new method, which includes the name CommerceLib. In later chapters,
this name helps identify the new code that is associated with the new, advanced order-processing
scheme.

Presentation Tier Modifications

You’ll use the preceding method in the checkout page you added in the last chapter. You’ll do
this in the following exercise, as well as add an order confirmation page that users will be redi-
rected to after placing an order.

Darie-Watson_4681C13.fm Page 488 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 489

Exercise: Adding Customer Orders to BalloonShop

1. Modify the placeOrderButton_Click method in Checkout.aspx.cs as follows:

 protected void placeOrderButton_Click(object sender,
 EventArgs e)
 {
 // Store the total amount because the cart
 // is emptied when creating the order
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 // Create the order and store the order ID
 string orderId = ShoppingCartAccess.CreateCommerceLibOrder();
 // Redirect to the confirmation page
 Response.Redirect("OrderPlaced.aspx");
 }

2. Add a new Web Form to the project called OrderPlaced.aspx by using the BalloonShop.master
Master Page:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
 AutoEventWireup="true" CodeFile="OrderPlaced.aspx.cs"
 Inherits="OrderPlaced" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="contentPlaceHolder" runat="Server">

 Thank you for your order, please come again!

</asp:Content>

3. Add the following title-setting code and method override to the code-behind file for this form,
OrderPlaced.aspx.cs:

 protected override void OnInit(EventArgs e)
 {
 (Master as BalloonShop).EnforceSSL = true;
 base.OnInit(e);
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Order Placed";
 }

Darie-Watson_4681C13.fm Page 489 Wednesday, September 14, 2005 9:27 AM

8213592a117456a340854d18cee57603

490 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

4. Modify web.config as follows:

 <!-- Only existing customers can access OrderPlaced.aspx -->
 <location path="OrderPlaced.aspx">
 <system.web>
 <authorization>
 <allow roles="Customers" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

5. Place an order or two using the new system to check that the code works. You’ll need to log on to do
this and supply enough details to get past the validation on the checkout page.

How It Works: Adding Customer Orders to BalloonShop

The code added in this exercise is very simple and hardly merits much discussion. Still, you may want to modify the
text displayed on OrderPlaced.aspx to include additional information that customers might require after placing
an order. Also, note that this new page is secured via SSL and the Customer role. Customers who aren’t logged in
won’t need to see this page.

After you’ve implemented more of the new ordering code, you’ll be able to provide more information to customers,
such as sending them confirmation emails and enabling them to check on order statuses, past and present. For
now, however, this is as far as we can take things.

Accessing Customer Orders
After orders have been placed, you’ll need to access them. This involves various modifications
to the database business tier to provide new data structures and access code. Although essential
in the next chapter and beyond, for now, you’ll implement a simple (admin only) test form to
access customer order data.

Database Modifications

You only need to make one modification here: Add a stored procedure to get access to the new
information in the modified Orders table. Add the following stored procedure to the BalloonShop
database:

CREATE PROCEDURE CommerceLibOrderGetInfo
(@OrderID int)
AS
SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,

Darie-Watson_4681C13.fm Page 490 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 491

 Reference
FROM Orders
WHERE OrderID = @OrderID

This is very similar to the existing OrderGetInfo stored procedure, but rewritten to take
into account the new columns.

Business Layer Modifications

The current order access code—stored in App_Code/OrdersAccess.cs—and the data for an
order can be wrapped in a struct called OrderInfo. This struct is then used by various methods
to manipulate order details.

The OrderInfo struct doesn’t give you access to the new data stored in the Orders table,
and it doesn’t allow you to access order details or customer and credit card information. In
short, you need something a little more advanced.

To achieve this, add a new class called CommerceLibAccess to the App_Code directory. You’ll
actually store two other classes in the same file, as per code in previous chapters (excepting the
fact that in previous chapters only structs have shared files with a main class). Having a single
file makes it easy to group classes that are functionally linked. All the classes in this file will
facilitate data access, and you’ll start by looking with a class to wrap rows in the OrderDetail
table. Before doing this, however, add the following namespace references to the
CommerceLibAccess.cs file:

using System.Data.Common;
using System.Text;
using System.Collections.Generic;
using System.Web.Profile;
using SecurityLib;

These namespaces provide the class required for us to access and process order and
customer information.

The CommerceLibOrderDetailInfo Class

Add the following class to CommerceLibAccess.cs:

/// <summary>
/// Wraps order detail data
/// </summary>
public class CommerceLibOrderDetailInfo
{
 public int OrderID;
 public int ProductID;
 public string ProductName;
 public int Quantity;
 public double UnitCost;
 public string ItemAsString;

Darie-Watson_4681C13.fm Page 491 Wednesday, September 14, 2005 9:27 AM

492 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 public double Subtotal
 {
 get
 {
 return Quantity * UnitCost;
 }
 }

 public CommerceLibOrderDetailInfo(DataRow orderDetailRow)
 {
 OrderID = Int32.Parse(orderDetailRow["OrderID"].ToString());
 ProductID = Int32.Parse(orderDetailRow["ProductId"].ToString());
 ProductName = orderDetailRow["ProductName"].ToString();
 Quantity = Int32.Parse(orderDetailRow["Quantity"].ToString());
 UnitCost = Double.Parse(orderDetailRow["UnitCost"].ToString());
 // set info property
 Refresh();
 }

 public void Refresh()
 {
 StringBuilder sb = new StringBuilder();
 sb.Append(Quantity.ToString());
 sb.Append(" ");
 sb.Append(ProductName);
 sb.Append(", $");
 sb.Append(UnitCost.ToString());
 sb.Append(" each, total cost $");
 sb.Append(Subtotal.ToString());
 ItemAsString = sb.ToString();
 }
}

This class wraps a row from the OrderDetail table. Note that we aren’t using a struct for
this functionality. This is because structs can’t have constructors, and to make initialization
easier, this class uses a constructor that takes a DataRow object to initialize itself. This constructor
simply parses the OrderID, ProductID, ProductName, Quantity, and UnitCost columns and associates
them with public fields. We could hide these fields by making them private, and expose them
via properties, but for our purposes this access scheme is fine—and is a lot quicker to type in!

The constructor finishes with a call to a publicly accessible Refresh method, which sets a
utility field called ItemAsString. This field, as you will see later, makes it easier for us to quickly
extract a descriptive piece of text concerning the data contained in a CommerceLib➥

OrderDetailInfo instance.
Subtotal is another piece of information exposed by this class. Like ItemAsString, this is

really just for convenience and simply returns the number of items multiplied by the cost of a
single item.

Darie-Watson_4681C13.fm Page 492 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 493

The GetOrderDetails Method

The first method to add to the CommerceLibAccess class is one that obtains the OrderDetail rows
associated with an order. Add the following method to the class:

 public static List<CommerceLibOrderDetailInfo>
 GetOrderDetails(string orderId)
 {
 // use existing method for DataTable
 DataTable orderDetailsData = OrdersAccess.GetDetails(orderId);
 // create List<>
 List<CommerceLibOrderDetailInfo> orderDetails =
 new List<CommerceLibOrderDetailInfo>(
 orderDetailsData.Rows.Count);
 foreach (DataRow orderDetail in orderDetailsData.Rows)
 {
 orderDetails.Add(
 new CommerceLibOrderDetailInfo(orderDetail));
 }
 return orderDetails;
 }

There are several things to note here. First, this class returns a generic list of
CommerceLibOrderDetailInfo objects. The (in my view, quite fabulous) generic list classes make
it easy to perform complex list operations on data without writing any of the code, and they are
great timesavers.

We already have a similar method to this one in the OrdersAccess class, so we start by using
that method to get a DataTable containing the data we are interested in. Next we take each row
in that table, create an instance of the CommerceLibOrderDetailInfo class from it, and add it to
the generic list of objects.

The CommerceLibOrderInfo Class

Add the following class to CommerceLibAccess.cs:

/// <summary>
/// Wraps order data
/// </summary>
public class CommerceLibOrderInfo
{
 public int OrderID;
 public string DateCreated;
 public string DateShipped;
 public string Comments;
 public int Status;
 public string AuthCode;
 public string Reference;

Darie-Watson_4681C13.fm Page 493 Wednesday, September 14, 2005 9:27 AM

494 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 public MembershipUser Customer;
 public ProfileCommon CustomerProfile;
 public SecureCard CreditCard;

 public double TotalCost;
 public string OrderAsString;
 public string CustomerAddressAsString;

 public List<CommerceLibOrderDetailInfo> OrderDetails;

 public CommerceLibOrderInfo(DataRow orderRow)
 {
 OrderID = Int32.Parse(orderRow["OrderID"].ToString());
 DateCreated = orderRow["DateCreated"].ToString();
 DateShipped = orderRow["DateShipped"].ToString();
 Comments = orderRow["Comments"].ToString();
 Status = Int32.Parse(orderRow["Status"].ToString());
 AuthCode = orderRow["AuthCode"].ToString();
 Reference = orderRow["Reference"].ToString();
 Customer = Membership.GetUser(
 new Guid(orderRow["CustomerID"].ToString()));
 CustomerProfile =
 (HttpContext.Current.Profile as ProfileCommon)
 .GetProfile(Customer.UserName);
 CreditCard = new SecureCard(CustomerProfile.CreditCard);
 OrderDetails =
 CommerceLibAccess.GetOrderDetails(
 orderRow["OrderID"].ToString());
 // set info properties
 Refresh();
 }

 public void Refresh()
 {
 // calculate total cost and set data
 StringBuilder sb = new StringBuilder();
 TotalCost = 0.0;
 foreach (CommerceLibOrderDetailInfo item in OrderDetails)
 {
 sb.AppendLine(item.ItemAsString);
 TotalCost += item.Subtotal;
 }
 sb.AppendLine();
 sb.Append("Total order cost: $");
 sb.Append(TotalCost.ToString());
 OrderAsString = sb.ToString();

Darie-Watson_4681C13.fm Page 494 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 495

 // get customer address string
 sb = new StringBuilder();
 sb.AppendLine(Customer.UserName);
 sb.AppendLine(CustomerProfile.Address1);
 if (CustomerProfile.Address2 != "")
 {
 sb.AppendLine(CustomerProfile.Address2);
 }
 sb.AppendLine(CustomerProfile.City);
 sb.AppendLine(CustomerProfile.Region);
 sb.AppendLine(CustomerProfile.PostalCode);
 sb.AppendLine(CustomerProfile.Country);
 CustomerAddressAsString = sb.ToString();
 }
}

This class wraps a row from the Orders table and is a little more complicated than the
CommerceLibOrderDetailInfo class. Again, a constructor is used that takes a DataRow object to
initialize the class, but this time you need to create user and credit card data using the data
extracted.

To obtain this additional information, the code starts by getting an instance of the user
references by the order using the GUID stored in CustomerID. The ASP.NET membership system
makes this easy—you simply pass the GUID to Membership.GetUser and receive a MembershipUser
object. From this object, you can find out the name of the user and pass that to the GetProfile
method of the ProfileCommon object currently in use. Strangely, this method isn’t a static method,
so you need to access the current instance from the current context to do this.

After you’ve obtained a ProfileCommon instance for the customer, you simply store it in a
publicly accessible field, just like the other order information. This will make it easy for you
later, because you’ll be able to access customer profile information with very simple syntax.
From the information stored in the ProfileCommon instance, you also initialize an instance of
SecureCard, giving you speedy access to customer credit card details when you need them.

Next, the constructor uses the GetOrderDetails method described previously to obtain the
details of the order using the OrderId obtained from the DataRow. Again, this is to enable you to
access these order details directly through the CommerceLibOrderInfo class, which is another
time-saving operation.

Finally, a Refresh method similar to the one in CommerceLibOrderDetailInfo is used to
initialize some utility fields: TotalCost, OrderAsString, and CustomerAddressAsString. You’ll
use all of these for more speedy access to order details later.

The GetOrder Method

The last thing to add to the CommerceLibAccess class is a method to obtain an order, in the form
of a CommerceLibOrderInfo object. To do this, you use the new CommerceLibOrderGetInfo stored
procedure. Add the following method to CommerceLibAccess:

Darie-Watson_4681C13.fm Page 495 Wednesday, September 14, 2005 9:27 AM

496 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 public static CommerceLibOrderInfo GetOrder(string orderID)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderGetInfo";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // obtain the results
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 DataRow orderRow = table.Rows[0];
 // save the results into an CommerceLibOrderInfo object
 CommerceLibOrderInfo orderInfo =
 new CommerceLibOrderInfo(orderRow);
 return orderInfo;
 }

Because we’ve made the data structures nice and simple, there’s not really much to shout
about here. You get a command in the standard way, using GenericDataAccess.CreateCommand,
configure it for your new stored procedure, use it to get a DataTable, and use the first row in the
resulting table to initialize a CommerceLibOrderInfo instance. You’ve already done all the hard
work here, in the constructor for CommerceLibOrderInfo.

Presentation Tier Modifications

You haven’t added anything to require any data tier modifications yet, but you have imple-
mented a lot of code that is used behind the scenes. To test this code, you’ll implement a
simple test form that enables administrators to view order information. You’re not going to
implement massive changes to the order administration code at this stage, because you’ll just
end up modifying it later after you’ve finished the new order-processing system.

Exercise: Viewing Customer Orders on a Test Form

1. Add a new Web Form to the BalloonShop application called OrderTest.aspx by using the
Admin.master Master Page:

<%@ Page Language="C#" MasterPageFile="~/Admin.master"
 AutoEventWireup="true" CodeFile="OrderTest.aspx.cs"
 Inherits="OrderTest" %>

Darie-Watson_4681C13.fm Page 496 Wednesday, September 14, 2005 9:27 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 497

<asp:Content ID="Content1"
 ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">

 BalloonShop Customer Order Access Test

</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="contentPlaceHolder2" runat="Server">
 Order number:
 <asp:TextBox runat="server" ID="orderIDBox" />

 <asp:Button runat="server" ID="goButton" Text="Go" />

 <asp:Label runat="server" ID="resultLabel" />

 Customer address:

 <asp:Label runat="server" ID="addressLabel" />

 Customer credit card:

 <asp:Label runat="server" ID="creditCardLabel" />

 Order details:

 <asp:Label runat="server" ID="orderLabel" />
</asp:Content>

2. Switch to Design View and double-click on the Go button to add an event handler.

3. Modify the code for the event handler as follows:

 protected void goButton_Click(object sender, EventArgs e)
 {
 try
 {
 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderIDBox.Text);
 resultLabel.Text = "Order found.";

Darie-Watson_4681C13.fm Page 497 Wednesday, September 14, 2005 9:27 AM

498 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 addressLabel.Text =
 orderInfo.CustomerAddressAsString.Replace(
 "\n", "
");
 creditCardLabel.Text = orderInfo.CreditCard.CardNumberX;
 orderLabel.Text =
 orderInfo.OrderAsString.Replace("\n", "
");
 }
 catch
 {
 resultLabel.Text =
 "No order found, or order is in old format.";
 addressLabel.Text = "";
 creditCardLabel.Text = "";
 orderLabel.Text = "";
 }
 }

4. Modify web.config as follows:

 <!-- Only administrators are allowed to access OrderTest.aspx -->
 <location path="OrderTest.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

5. Log into the BalloonShop Web Application as an administrator and navigate to the OrderTest.aspx
page (by typing in the URL, as no page links to this test form).

6. Using the Database Explorer in Visual Web Developer Express or any other tool capable of examining
data in SQL Server 2005 tables, determine the OrderId of an order in the Orders table that contains
a value for CustomerID (that is, an order placed since making the modifications earlier in this chapter).
Note that the Status field in the database for the order must be 0 or you’ll receive an error. It should be
0 already, if you set the default value for the Status column to 0 earlier in this chapter.

7. Enter the OrderID value in the text box on OrderTest.aspx and click Go. A typical result is shown
in Figure 13-1.

Darie-Watson_4681C13.fm Page 498 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 499

Figure 13-1. Retrieved order details

How It Works: Viewing Customer Orders on a Test Form

The simple code in this exercise uses the data tier classes defined earlier to access a customer order. The code is
notable for its simplicity. The order information is obtained in a single line of code in the event handler for the Go
button:

 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderIDBox.Text);

Darie-Watson_4681C13.fm Page 499 Wednesday, September 14, 2005 9:27 AM

500 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

After an instance of CommerceLibOrderInfo has been obtained, the event handler simply populates some Label
controls on the page using some of the utility members you created earlier. Note that both CustomerAddressAsString
and OrderAsString return a plain text string, so to view it in HTML format, you replace the end-of-line characters
with line break elements, for example:

 addressLabel.Text =
 orderInfo.CustomerAddressAsString.Replace(
 "\n", "
");

The event handler code also checks for exceptions when obtaining order information, which may occur for nonexistent
orders or orders placed before the implementation of customer orders.

Tax and Shipping Charges
One feature that is common to many e-commerce web sites is adding charges for tax and/or
shipping. Obviously this isn’t always the case—digital download sites have no need to charge
for shipping, for example, because no physical shipment is involved. However, the chances are
fairly high that you’ll want to include additional charges of one kind or another in your orders.

In fact, this can be very simple, although not always. It really depends on how complicated
you want to make things. In this chapter, we’ll keep things simple and provide basic but exten-
sible functionality for both tax and shipping charges. First, let’s discuss the issues.

Tax Issues
The subject of tax and e-commerce web sites has a complicated history. To begin with, you
could usually get away with anything. Taxing was poorly enforced, and many sites simply
ignored tax completely. This was especially true for international orders, where it was often
possible for customers to avoid paying tax much of the time—unless orders were intercepted
by customs officers!

Then more people started to become aware of e-commerce web sites, and taxation bodies
such as the IRS realized that they were losing a lot of money—or at least not getting all that they
could. A flurry of activity ensued as various organizations worldwide attempting to hook in to
this revenue stream. A range of solutions was proposed, and some solutions were even imple-
mented with varied complexity and mixed results. Now, things are becoming a little more settled.

The key concept to be aware of when thinking about tax is a nexus. A nexus is as “a suffi-
cient presence in the taxing jurisdiction to justify the collection of tax.” Effectively, this means
that when shipping internationally, you may in most situations not be responsible for what
happens unless your company has a significant presence in the destination country. When
shipping internally to a country (or within, say, the European Union), you probably will be
responsible. The legislation is a little unclear, and we certainly haven’t examined the laws for
every country in the world, but this general rule tends to hold true.

The other key issues can be summed up by the following:

• Taxation depends on where you are shipping from and where you are shipping to.

• National rules apply.

• The type of product you are selling is important.

Darie-Watson_4681C13.fm Page 500 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 501

Some countries have it easier than others. Within the United Kingdom, for example, you
can charge the current VAT rate on all purchases where it applies (some types of product are
exempt or charged at a reduced rate) and be relatively happy that you’ve done all you can. If
you want to take things one step further, you can consider an offshore business to ship your
goods (Amazon does it, so why shouldn’t you?). Other countries, notably the United States,
have a much more complex system to deal with. Within the United States, sales tax varies not
just from state to state, but often within states as well. In fact, pretty much the only time you’ll
know exactly what to do is when you are shipping goods to a customer in the same tax area as
your business. At other times . . . well, to be perfectly honest, your guess is as good as ours.
Many states are aware of the issue, and may well have resolved things by the time you read this,
but this is far from certain. Recent estimates (from http://www.offshore-e-com.com/) put the
loss of revenue from e-commerce trading at between $300 million and $3.8 billion annually;
the margin of error here probably informs you that the officials are as confused about all this as
we are. Calls have gone out to provide a “taxation calculator” where a source and target ZIP
code could be used to obtain a tax rate, but as far as we know, no such service exists yet.

In this book, the taxation scheme you add is as simple as possible. A database table will
include information concerning various tax rates that can be applied, and the choice of these
will for now depend on the shipping region of the customer. All products are considered to be
taxable at the same rate. This does leave a lot to be desired, but at least tax will be calculated
and applied. You can replace it with your own system later.

Shipping Issues
Shipping is somewhat simpler to deal with than tax, although again you can make things as
complicated as you want. Because sending out orders from a company that trades via an
e-commerce frontend is much the same as sending out orders from, say, a mail order company,
the practices are very much in place and relatively easy to come to grips with. There may be
new ways of doing things at your disposal, but the general principles are well known.

You may well have an existing relationship with a postal service from pre-online trading
times, in which case, it’s probably easiest to keep things as close to the “old” way of doing
things as possible. However, if you’re just starting out, or revising the way you do things, you
have plenty of options to consider.

The simplest option is not to worry about shipping costs at all, which makes sense if there
are no costs, for example, in the case of digital downloads. Alternatively, you could simply
include the cost of shipping in the cost of your products. Or you could impose a flat fee regard-
less of the items ordered or the destination. However, some of these options could involve
customers either overpaying or underpaying, which isn’t ideal.

The other extreme involved is accounting for the weight and dimensions of all the products
ordered and calculating the exact cost yourself. This can be simplified slightly, because some
shipping companies (including FedEx, and so on) provide useful APIs to help you. In some
cases, you can use a dynamic system to calculate the shipping options available (overnight,
three to four days, and so on) based on a number of factors, including package weight and
delivery location. The exact methods for doing this, however, can vary a great deal between
shipping companies, and we’ll leave it to you to implement such a solution if you require it.

In this book, we’ll again take a simple line. For each shipping region in the database, you’ll
provide a number of shipping options for the user to choose from, each of which will have an
associated cost. This cost is simply added to the cost of the order. This is the reason why, in
Chapter 12, you included a ShippingRegion table—its use will soon become apparent.

Darie-Watson_4681C13.fm Page 501 Wednesday, September 14, 2005 9:27 AM

502 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

Implementing Tax and Shipping Charges
As expected, you need to make several modifications to BalloonShop to enable the tax and
shipping schemes outlined previously. You have two more database tables to add, Tax and
Shipping, as well as modifications to make to the Orders table. You’ll need to add new stored
procedures and make some modifications to existing ones. Some of the business tier classes
need modifications to account for these changes, and the presentation tier must include a
method for users to select a shipping method (the taxing scheme is selected automatically).
So, without further ado, let’s get started.

Database Modifications

In this section, you’ll add the new tables and modify the Orders table and stored procedures.

The Tax Table

The Tax table simply provides a number of tax options that are available, each of which has a
name and a percentage tax rate. Table 13-2 shows the table structure that you’ll need to add.

These columns are not nullable. Figure 13-2 shows the data to add to this table.

Figure 13-2. Data for the Tax table

The Shipping Table

The Shipping table is also very simple. It provides a number of shipping options, each of which
has a name, a cost, and an associated shipping region. Table 13-3 shows the table structure that
you’ll need to add.

Table 13-2. The Tax Table

Column Name Column Type Description

TaxID int The ID of the tax option. This column is the primary
key and should be configured as an identity so that it
will be auto-numbered.

TaxType varchar(100) A text description of the tax option.

TaxPercentage float The percentage tax rate for this option.

Darie-Watson_4681C13.fm Page 502 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 503

These columns are not nullable. Figure 13-3 shows the data to add to this table.

Figure 13-3. Data for the Shipping table

Orders Table Modifications

The modifications to the Orders table are to associate an order with one entry each from the Tax
and Shipping tables, as shown in Table 13-4.

CommerceLibOrderGetInfo Modifications

The existing CommerceLibOrderGetInfo stored procedure now needs to include the tax and
shipping data for an order. The new stored procedure is as follows:

Table 13-3. The Shipping Table

Column Name Column Type Description

ShippingID int The ID of the shipping option. This column is the
primary key and identity.

ShippingType varchar(100) A text description of the shipping option.

ShippingCost money The cost (to the customer) of the shipping option.

ShippingRegionID int The ID of the shipping region that this option applies to.

Table 13-4. Orders Table Modifications

Column Name Column Type Description

TaxID int The ID of the tax option to use for the order

ShippingID int The ID of the shipping option to use for the order

Darie-Watson_4681C13.fm Page 503 Wednesday, September 14, 2005 9:27 AM

8213592a117456a340854d18cee57603

504 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

ALTER PROCEDURE CommerceLibOrderGetInfo
(@OrderID int)
AS
SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,
 Reference,
 Orders.ShippingID,
 ShippingType,
 ShippingCost,
 Orders.TaxID,
 TaxType,
 TaxPercentage
FROM Orders
LEFT OUTER JOIN Tax ON Tax.TaxID = Orders.TaxID
LEFT OUTER JOIN Shipping ON Shipping.ShippingID = Orders.ShippingID
WHERE OrderID = @OrderID

Here there are two joins to the Tax and Shipping tables, both of which are LEFT OUTER joins
so that data will be retrieved from the Orders table regardless of a value of TaxID and ShippingID
(to enable backward compatibility among other issues).

CreateCustomerOrder Modifications

You also need to modify CreateCustomerOrder so that a tax and a shipping option are added
when an order is added. The modifications are as follows:

ALTER PROCEDURE CreateCustomerOrder
(@CartID char(36),
 @CustomerID uniqueidentifier,
 @ShippingID int,
 @TaxID int)
AS
/* Insert a new record into Orders */
DECLARE @OrderID int
INSERT INTO Orders (CustomerID, ShippingID, TaxID)
VALUES (@CustomerID, @ShippingID, @TaxID)
/* Save the new Order ID */
SET @OrderID = @@IDENTITY
/* Add the order details to OrderDetail */
INSERT INTO OrderDetail
 (OrderID, ProductID, ProductName, Quantity, UnitCost)

Darie-Watson_4681C13.fm Page 504 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 505

SELECT
 @OrderID, Product.ProductID, Product.Name,
 ShoppingCart.Quantity, Product.Price
FROM Product JOIN ShoppingCart
ON Product.ProductID = ShoppingCart.ProductID
WHERE ShoppingCart.CartID = @CartID
/* Clear the shopping cart */
DELETE FROM ShoppingCart
WHERE CartID = @CartID
/* Return the Order ID */
SELECT @OrderID

The two new parameters to deal with are @ShippingID and @TaxID.

The CommerceLibShippingGetInfo Stored Procedure

You need to add a new stored procedure so that a list of shipping options associated with a
shipping region can be obtained. The CommerceLibShippingGetInfo stored procedure achieves this:

CREATE PROCEDURE CommerceLibShippingGetInfo
(@ShippingRegionID int)
AS
SELECT ShippingID,
 ShippingType,
 ShippingCost
FROM Shipping
WHERE ShippingRegionID = @ShippingRegionID

Business Layer Modifications

To work with the new database tables and stored procedures, you need to make several changes
to CommerceLibAccess.cs. You need to add two structs to represent tax and shipping options,
TaxInfo and ShippingInfo. You also need to give access to shipping info based on shipping
regions and modify CommerceLibOrderInfo to use the tax and shipping structs. You must modify
CreateCommerceLibOrder in ShoppingCartAccess to configure tax and shipping for new orders
as well.

The TaxInfo and ShippingInfo Structs

These structs use very simple code, which you can add to the top of CommerceLibAccess.cs:

/// <summary>
/// Wraps tax data
/// </summary>
public struct TaxInfo
{
 public int TaxID;
 public string TaxType;
 public double TaxPercentage;
}

Darie-Watson_4681C13.fm Page 505 Wednesday, September 14, 2005 9:27 AM

506 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

/// <summary>
/// Wraps shipping data
/// </summary>
public struct ShippingInfo
{
 public int ShippingID;
 public string ShippingType;
 public double ShippingCost;
 public int ShippingRegionId;
}

There’s not much to comment on here. The fields in the struct simply match up to the
columns in the associated tables.

The GetShippingInfo Method

This method obtains a List<ShippingInfo> object containing shipping information for a shipping
region. If it’s not there already, this code requires a reference to the System.Collections.Generic
namespace in the file. Add this method to the CommerceLibAccess class:

 public static List<ShippingInfo> GetShippingInfo(
 int shippingRegionId)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibShippingGetInfo";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@ShippingRegionId";
 param.Value = shippingRegionId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // obtain the results
 DataTable table = GenericDataAccess.ExecuteSelectCommand(comm);
 List<ShippingInfo> result = new List<ShippingInfo>();
 foreach (DataRow row in table.Rows)
 {
 ShippingInfo rowData = new ShippingInfo();
 rowData.ShippingID = int.Parse(row["ShippingId"].ToString());
 rowData.ShippingType = row["ShippingType"].ToString();
 rowData.ShippingCost =
 double.Parse(row["ShippingCost"].ToString());
 rowData.ShippingRegionId = shippingRegionId;
 result.Add(rowData);
 }
 return result;
 }

Darie-Watson_4681C13.fm Page 506 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 507

Here the ID of a shipping region is accepted as a parameter and used to access the
CommerceLibShippingGetInfo stored procedure added earlier. The collection is assembled
from row data.

CreateCommerceLibOrder Modifications

This method, in ShoppingCartAccess.cs, needs modifying as follows (again, a reference to
System.Collections.Generic may be necessary):

 public static string CreateCommerceLibOrder(int shippingId,
 int taxId)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CreateCustomerOrder";
 // create parameters
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CartID";
 param.Value = shoppingCartId;
 param.DbType = DbType.String;
 param.Size = 36;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@CustomerId";
 param.Value =
 Membership.GetUser(
 HttpContext.Current.User.Identity.Name)
 .ProviderUserKey;
 param.DbType = DbType.Guid;
 param.Size = 16;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@ShippingId";
 param.Value = shippingId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@TaxId";
 param.Value = taxId;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // return the result table
 return GenericDataAccess.ExecuteScalar(comm);
 }

Darie-Watson_4681C13.fm Page 507 Wednesday, September 14, 2005 9:27 AM

508 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

Here two more parameters have been added to match up with the revised stored procedure
CreateCustomerOrder.

CommerceLibOrderInfo Modifications

This class requires several modifications. First, you need to add two new fields for tax and
shipping info:

public class CommerceLibOrderInfo
{
 ...
 public ShippingInfo Shipping;
 public TaxInfo Tax;

Next, the constructor needs to be modified to extract this new data from the row returned
by the CommerceLibOrderGetInfo stored procedure:

 public CommerceLibOrderInfo(DataRow orderRow)
 {
 ...
 CreditCard = new SecureCard(CustomerProfile.CreditCard);
 OrderDetails =
 CommerceLibAccess.GetOrderDetails(
 orderRow["OrderID"].ToString());
 // Get Shipping Data
 if (orderRow["ShippingID"] != DBNull.Value
 && orderRow["ShippingType"] != DBNull.Value
 && orderRow["ShippingCost"] != DBNull.Value)
 {
 Shipping.ShippingID =
 Int32.Parse(orderRow["ShippingID"].ToString());
 Shipping.ShippingType = orderRow["ShippingType"].ToString();
 Shipping.ShippingCost =
 double.Parse(orderRow["ShippingCost"].ToString());
 }
 else
 {
 Shipping.ShippingID = -1;
 }
 // Get Tax Data
 if (orderRow["TaxID"] != DBNull.Value
 && orderRow["TaxType"] != DBNull.Value
 && orderRow["TaxPercentage"] != DBNull.Value)

Darie-Watson_4681C13.fm Page 508 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 509

 {
 Tax.TaxID = Int32.Parse(orderRow["TaxID"].ToString());
 Tax.TaxType = orderRow["TaxType"].ToString();
 Tax.TaxPercentage =
 double.Parse(orderRow["TaxPercentage"].ToString());
 }
 else
 {
 Tax.TaxID = -1;
 }
 // set info properties
 Refresh();
 }

Note here that checks are made for null values for tax and shipping information. If data
isn’t found for tax information, TaxID will be set to -1. Similarly, no shipping data will result in
ShippingID being -1. If all is well, these situations shouldn’t occur, but just in case they do
(especially if you end up modifying the tax and shipping schemes), this will prevent an error
from occurring.

Finally, the Refresh method needs to include tax and shipping costs in its calculation of
total cost and in its creation of the OrderAsString field:

 public void Refresh()
 {
 // calculate total cost and set data
 StringBuilder sb = new StringBuilder();
 TotalCost = 0.0;
 foreach (CommerceLibOrderDetailInfo item in OrderDetails)
 {
 sb.AppendLine(item.ItemAsString);
 TotalCost += item.Subtotal;
 }
 // Add shipping cost
 if (Shipping.ShippingID != -1)
 {
 sb.AppendLine("Shipping: " + Shipping.ShippingType);
 TotalCost += Shipping.ShippingCost;
 }

Darie-Watson_4681C13.fm Page 509 Wednesday, September 14, 2005 9:27 AM

510 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 // Add tax
 if (Tax.TaxID != -1 && Tax.TaxPercentage != 0.0)
 {
 double taxAmount = Math.Round(TotalCost * Tax.TaxPercentage,
 MidpointRounding.AwayFromZero) / 100.0;
 sb.AppendLine("Tax: " + Tax.TaxType + ", $"
 + taxAmount.ToString());
 TotalCost += taxAmount;
 }
 sb.AppendLine();
 sb.Append("Total order cost: $");
 sb.Append(TotalCost.ToString());
 OrderAsString = sb.ToString();
 ...
 }

The calculation of the tax amount involves some mathematical functionality from the
System.Math class, but otherwise it’s all simple stuff.

Presentation Layer Modifications

Finally we come to the presentation layer. In fact, due to the changes we’ve made, the only
changes to make here are to the checkout page.

Checkout.aspx Modifications

The .aspx page simply needs a means of selecting a shipping type prior to placing an order.
This can be achieved using a drop-down list:

 <asp:Label ID="InfoLabel" runat="server" CssClass="InfoText" />

 Shipping type:
 <asp:DropDownList ID="shippingSelection" runat="server" />

 <asp:Button ID="placeOrderButton" runat="server"
 CssClass="ButtonText" Text="Place order"
 OnClick="placeOrderButton_Click" />
</asp:Content>

Now you need to populate this list and/or hide it in the code behind.

Checkout.aspx.cs Modifications

The code behind for this page already checks to see whether an order can be placed in
PopulateControls, based on whether a valid address and credit card have been entered. You
can use this information to set the visibility of the new list control (shippingSelection) and
populate the shipping option list accordingly. The code to modify is as follows:

Darie-Watson_4681C13.fm Page 510 Wednesday, September 14, 2005 9:27 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 511

 private void PopulateControls()
 {
 ...
 placeOrderButton.Visible = addressOK && cardOK;
 shippingSelection.Visible = addressOK && cardOK;

 // Populate shipping selection
 if (addressOK && cardOK)
 {
 int shippingRegionId = int.Parse(Profile.ShippingRegion);
 List<ShippingInfo> shippingInfoData =
 CommerceLibAccess.GetShippingInfo(shippingRegionId);
 foreach (ShippingInfo shippingInfo in shippingInfoData)
 {
 shippingSelection.Items.Add(
 new ListItem(shippingInfo.ShippingType,
 shippingInfo.ShippingID.ToString()));
 }
 shippingSelection.SelectedIndex = 0;
 }
 }

This code uses the CommerceLibAccess.GetShippingInfo method added earlier, and creates
ListItem controls dynamically for adding to the drop-down list. Note also that a valid selection
in the list is ensured by setting the initially selected item in the drop-down list to the item with
an index of 0, that is, the first entry in the list.

Next, you need to modify the placeOrderButton_Click event handler to create an order
with tax and shipping option references. For the shipping option, you use the selected item in
the drop-down list; for the tax option, you make an arbitrary selection based on the shipping
region of the customer and the items you added earlier to the Tax table.

 protected void placeOrderButton_Click(object sender,
 EventArgs e)
 {
 // Store the total amount because the cart
 // is emptied when creating the order
 decimal amount = ShoppingCartAccess.GetTotalAmount();
 // Get shipping ID or default to 0
 int shippingId = 0;
 try
 {
 shippingId = int.Parse(shippingSelection.SelectedValue);
 }
 catch
 {
 }

Darie-Watson_4681C13.fm Page 511 Wednesday, September 14, 2005 9:27 AM

512 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

 // Get tax ID or default to "No tax"
 string shippingRegion =
 (HttpContext.Current.Profile as ProfileCommon).ShippingRegion;
 int taxId;
 switch (shippingRegion)
 {
 case "2":
 taxId = 1;
 break;
 default:
 taxId = 2;
 break;
 }

 // Create the order and store the order ID
 string orderId =
 ShoppingCartAccess.CreateCommerceLibOrder(shippingId, taxId);
 // Redirect to the conformation page
 Response.Redirect("OrderPlaced.aspx");
 }

Note that this is one of the most crucial pieces of code in this chapter. Here you’ll most
likely make any modifications to the tax and shipping systems if you decide to add your own
system, because choices are made on this page. The database and business layer changes are
far more generic—although that’s not to say that modifications wouldn’t be necessary.

Exercise: Testing Tax and Shipping Charges

1. Before testing that the new system is working for tax and shipping charges, use the OrderTest.aspx
page to check that old orders are unaffected. The information retrieved for an old order should be unaffected
because the data is unchanged.

2. Place a new order, preferably with a customer in the United States/Canada shipping region (as this is
currently the only region where tax is applied). Notice that on the checkout page you must select a
shipping option, as shown in Figure 13-4.

Darie-Watson_4681C13.fm Page 512 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 513

Figure 13-4. Selecting a shipping region

3. After placing the order, check the OrderID of the order in the database and then retrieve the order
using OrderTest.aspx. The result is shown in Figure 13-5.

Darie-Watson_4681C13.fm Page 513 Wednesday, September 14, 2005 9:27 AM

514 C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S

Figure 13-5.Order including tax and shipping charges

How It Works: Testing Tax and Shipping Charges

In this chapter leading up to this example, you’ve pretty much examined how the tax and shipping charges operate,
but let’s recap.

First, the customer is required to select a shipping region for their address. Without this shipping region being
selected, visitors cannot place orders, because they cannot select a shipping option. When a visitor places an order,
the shipping region selected is attached to the order in the Orders table. The tax requirement for the order is also
attached, although this requires no user input (and is currently selected using a very simple algorithm, although this
wouldn’t be difficult to change).

Next, when you use the CommerceLibOrderInfo class, the tax and shipping is automatically taken into account
in both the total cost and text representation of the order.

Darie-Watson_4681C13.fm Page 514 Wednesday, September 14, 2005 9:27 AM

C H A P T E R 1 3 ■ A D V A N C E D C U S T O M E R O R D E R S 515

Further Development

There are several ways to proceed from here. Perhaps the first might be to add an administra-
tion system for tax and shipping options. This hasn’t been implemented here partly because it
would be trivial given the experience you’ve had so far in this book, and partly because the
techniques laid out here are more of a template for development then a fully developed way of
doing things. There are so many options to choose from for both tax and shipping calculations
that only the basics are discussed here.

Hooking into online services for tax and shipping cost calculations is an attractive option;
for shipping services, this is very much a possibility. In fact, the services offered by shipping
companies such as FedEx use a similar way of going about things as the credit card gateway
companies we’ll look at later in this book. Much of the code you’d have to write to access these
services will be very similar to that for credit card processing, although of course you’ll have to
adapt it to get the specifics right. Sadly, there may be more major changes required, such as
adding weights and dimensions to products, but that very much depends on what products
you are selling. For items in the BalloonShop catalog, many products are lighter than air, so
shipping could be very cheap.

Summary
In this chapter, you’ve extended the BalloonShop site to enable customers to place orders
using all the new data and techniques introduced in Chapter 12. Much of the modification
made in this chapter lays the groundwork for the order pipeline to be used in the rest of this
book. You’ve also included a quick way to examine customer orders, although this is by no
means a fully fleshed out administration tool—that will come later.

You also implemented a simple system for adding tax and shipping charges to orders. This
system is far from being a universal solution, but it works and it’s simple. More importantly,
the techniques can easily be built on to introduce more complex algorithms and user interac-
tion to select tax and shipping options and price the order accordingly.

From the next chapter onward, you’ll be expanding on the customer ordering system even
more by starting to develop a professional order pipeline for order processing.

Darie-Watson_4681C13.fm Page 515 Wednesday, September 14, 2005 9:27 AM

Darie-Watson_4681C13.fm Page 516 Wednesday, September 14, 2005 9:27 AM

517

■ ■ ■

C H A P T E R 1 4

Order Pipeline

In this and the next chapter, you’ll build your own order-processing pipeline that deals with
credit card authorization, stock checking, shipping, sending email notifications, and so on. In
fact, we’ll leave the credit card processing specifics until Chapter 16, but we’ll show you where
this process fits in before then.

Order pipeline functionality is an extremely useful capability for an e-commerce site
because it allows you to track orders at every stage in the process, and provides auditing infor-
mation that you can refer to at a later date or if something goes wrong during the order processing.
You can do all this without relying on a third party’s accounting system, which also can reduce
costs. The first section of this chapter discusses what we actually mean by an order pipeline
and the specifics that apply to the BalloonShop application.

Such a system can be implemented in various ways, and many people recommend that
you use a transactional system such as MTS (Microsoft Transaction Server), or COM+ (Component
Object Model+) in more recent operating systems. However, this method adds its own compli-
cations and doesn’t give you that much that you can’t achieve using standard .NET assemblies.
Although it’s possible to create COM+ components using .NET, the code implementation is
more complicated, and debugging code can be tricky. For this reason, we’ll stick with the .NET
platform here, which has the added advantage that it makes code easier to understand and
debug. The bulk of this chapter deals with constructing such a system, which also involves a
small modification of the way things currently work and some additions to the database you’ve
been using. However, the code in this chapter isn’t much more complicated than the code
you’ve already been using. The real challenges are in the design of the system.

By the end of Chapter 15, you’ll be able to follow the progress of customer orders as they
pass through various stages of the order pipeline. Although no real credit card processing takes
place, you’ll end up with a fairly complete system, including a new administration web page
that can be used by suppliers to confirm that they have items in stock and to confirm that
orders have been shipped. To start with, however, you need a bit more background about what
we are actually trying to achieve.

Defining an Order Pipeline
Any commercial transaction, whether in a shop on the street, over the Internet, or anywhere
else, has several related tasks that must be carried out before it can be considered complete.
For example, you can’t simply remove an item of clothing from a fashion boutique without
paying for it and say that you have bought it—remuneration is (unfortunately!) an integral part

Darie-Watson_4681C14.fm Page 517 Friday, September 16, 2005 5:26 AM

8213592a117456a340854d18cee57603

518 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

of any purchase. In addition, a transaction can only complete successfully if each of the tasks
carried out completes successfully. If a customer’s credit card is rejected, for example, then no
funds can be taken from it, so a purchase can’t be made.

The sequence of tasks carried out as part of a transaction is often thought of in terms of a
pipeline. In this analogy, orders start at one end of the pipe and come out of the other end
when they are completed. Along the way, they must pass through several pipeline sections,
each of which is responsible for a particular task or a related group of tasks. If any pipeline
section fails to complete, then the order “gets stuck” and might require outside interaction
before it can move further along the pipeline, or it might be canceled completely.

For example, the simple pipeline shown in Figure 14-1 applies to transactions in a street shop.

Figure 14-1. Transactions for a street shop

Here the last section might be optional, and might involve additional tasks such as gift-
wrapping. The payment stage might also take one of several methods of operation, because the
customer could pay using cash, credit card, gift certificates, and so on.

As you’ll see in the next section, the e-commerce purchasing pipeline becomes longer, but
isn’t really any more complicated.

Understanding the BalloonShop Order Pipeline
In BalloonShop, the pipeline will look like the one in Figure 14-2.

Figure 14-2. The BalloonShop order pipeline

The tasks carried out in these pipeline sections are, in order:

• Customer Notification: An email is sent notifying the customer that order processing has
started and confirming the items to be sent and the address that goods will be sent to.

• Credit Card Authorization: The credit card used for purchasing is checked, and the total
order amount is set aside (although no payment is taken at this stage).

• Stock Check: An email is sent to the supplier with a list of the items that have been
ordered. Processing continues when the supplier confirms that the goods are available.

• Payment: The credit card transaction is completed using the funds set aside earlier.

Darie-Watson_4681C14.fm Page 518 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 519

• Shipping: An email is sent to the supplier confirming that payment for the items ordered
has been taken. Processing continues when the supplier confirms that the goods have
been shipped.

• Customer Notification: An email is sent notifying the customer that the order has been
shipped, and thanking them for using the BalloonShop web site.

■Note In terms of implementation, as you’ll see shortly, there are actually more stages than this, because
the stock check and shipping stages consist of two pipeline sections: one for sending the email and one that
waits for confirmation.

As orders flow through this pipeline, entries are added to a new database table called
Audit. These entries can be examined to see what has happened to an order and are an excellent
way of identifying problems if they occur. Each entry in the Orders database also will be flagged
with a status, identifying which point in the pipeline it has reached.

To process the pipeline, you’ll create classes representing each stage. These classes carry
out the required processing and then modify the status of the order in the Orders database to
advance the order. You’ll also need a coordinating class (or processor), which can be called for
any order and will execute the appropriate pipeline stage class. This processor will be called
once when the order is placed, and in normal operation, will be called twice more: once for
stock confirmation and once for shipping confirmation.

To make life easier, you’ll also define a common interface supported by each pipeline
stage class to enable the order processor class to access each stage in a standard way. You’ll also
define several utility functions and expose several common properties in the order processor
class, which will be used as and when necessary by the pipeline stages. For example, the ID of
the order should be accessible to all pipeline stages, so to save code duplication, you’ll put that
information in the order processor class.

Now, let’s get on to the specifics. You’ll build a series of classes that we’ll refer to collectively
as the CommerceLib classes. These classes could be contained in a separate assembly, but for
simplicity, we’ll include them in the BalloonShop code. This also simplifies access to customer
information because you’ll have access to the user profile classes defined by ASP.NET, as used
in the last chapter. To differentiate the code from the existing code, however, you’ll place all the
CommerceLib files in a subdirectory of the App_Code directory and in a CommerceLib namespace. The
CommerceLib directory will contain the following classes:

• OrderProcessor: The main class for processing orders.

• OrderProcessorException: The custom exception class for use in the order processor and
pipeline sections.

• IPipelineSection: The interface definition for pipeline sections.

• Customer, OrderDetails, OrderDetail: The classes used to store data extracted from the
database, for ease of access.

• PSInitialNotification, PSCheckFunds, PSCheckStock, PSStockOK, PSTakePayment,
PSShipGoods, PSShipOK, PSFinalNotification: The pipeline section classes.

Darie-Watson_4681C14.fm Page 519 Friday, September 16, 2005 5:26 AM

520 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

The progress of an order through the pipeline as mediated by the order processor relates
to the pipeline shown earlier (see Figure 14-3).

Figure 14-3. CommerceLib pipeline processing

The process shown in Figure 14-3 is divided into three sections as follows:

• Customer places order.

• Supplier confirms stock.

• Supplier confirms shipping.

Darie-Watson_4681C14.fm Page 520 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 521

The first stage is as follows:

1. When the customer confirms an order, Checkout.aspx creates the order in the database
and calls OrderProcessor to begin order processing.

2. OrderProcessor detects that the order is new and calls PSInitialNotification.

3. PSInitialNotification sends an email to the customer confirming the order and
advances the order stage. It also instructs OrderProcessor to continue processing.

4. OrderProcessor detects the new order status and calls PSCheckFunds.

5. PSCheckFunds checks that funds are available on the customer’s credit card and stores
the details required to complete the transaction if funds are available. If this is successful,
then the order stage is advanced and OrderProcessor is told to continue.

6. OrderProcessor detects the new order status and calls PSCheckStock.

7. PSCheckStock sends an email to the supplier with a list of the items ordered, instructs
the supplier to confirm via OrderAdmin.aspx, and advances the order status.

8. OrderProcessor terminates.

The second stage is as follows:

1. When the supplier confirms that stock is available, OrderAdmin.aspx calls
OrderProcessor to continue order processing.

2. OrderProcessor detects the new order status and calls PSStockOK.

3. PSStockOK advances the order status and tells OrderProcessor to continue.

4. OrderProcessor detects the new order status and calls PSTakePayment.

5. PSTakePayment uses the transaction details stored earlier by PSCheckFunds to complete
the transaction, advances the order status, and tells OrderProcessor to continue.

6. OrderProcessor detects the new order status and calls PSShipGoods.

7. PSShipGoods sends an email to the supplier with a confirmation of the items ordered,
instructs the supplier to ship these goods to the customer, and advances the order status.

8. OrderProcessor terminates.

The third stage is as follows:

1. When the supplier confirms that the goods have been shipped, OrderAdmin.aspx calls
OrderProcessor to continue order processing.

2. OrderProcessor detects the new order status and calls PSShipOK.

3. PSShipOK enters the shipment date in the database, advances the order status, and tells
OrderProcessor to continue.

Darie-Watson_4681C14.fm Page 521 Friday, September 16, 2005 5:26 AM

522 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

4. OrderProcessor detects the new order status and calls PSFinalNotification.

5. PSFinalNotification sends an email to the customer confirming that the order has
been shipped and advances the order stage.

6. OrderProcessor terminates.

If anything goes wrong at any point in the pipeline processing, such as a credit card being
declined, an email is sent to an administrator. This administrator then has all the information
necessary to check what has happened, get in contact with the customer involved, and cancel
or replace the order if necessary.

No point in this process is particularly complicated; it’s just that a lot of code is required to
put this into action!

Building the Order Pipeline
Building this pipeline involves adding a lot of code, so to simplify things, this process is broken
down into stages. First, you’ll add the basic framework and include a “dummy” pipeline section to
check that things are working. Next, you’ll add additional functionality that will be required by
the “real” pipeline sections. Then, in the next chapter you’ll add these pipeline sections, before
integrating credit card functionality in Chapter 16.

The Basic Order Pipeline
To start with, then, let’s add the basics.

Database Modifications

There isn’t much to change in the database at this point, but you do need to add a new table,
Audit, and associated stored procedures.

The Audit Table

During order processing, one of the most important functions of the pipeline is to maintain an
up-to-date audit trail. The implementation of this involves adding records to a new database
table called Audit. You need to create this table with fields as shown in Table 14-1.

Table 14-1. The Audit Table

Column Name Column Type Description

AuditID int Primary key, also set as table identity

OrderID int The ID of the order that the audit entry applies to

DateStamp datetime The date and time that the audit entry was created,
default value GETDATE()

Message varchar(512) The text of the audit entry

MessageNumber int An identifying number for the audit entry type

Darie-Watson_4681C14.fm Page 522 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 523

Entries will be added by OrderProcessor and by individual pipeline stages to indicate
successes and failures. These can then be examined to see what has happened to an order,
an important function when it comes to error checking.

The MessageNumber column is interesting because it allows you to associate specific
messages with an identifying number. It would be possible to have another database table
allowing you to match these message numbers with descriptions, although this isn’t really
necessary, because the scheme used for numbering (as you’ll see later in the chapter) is
descriptive. In addition, the Message column already provides human-readable information.

The CreateAudit Stored Procedure

Now that you have the new Audit table, you need a way to add entries. You’ll do this with the
following stored procedure:

CREATE PROCEDURE CreateAudit
(@OrderID int,
 @Message nvarchar(512),
 @MessageNumber int)
AS

INSERT INTO Audit (OrderID, Message, MessageNumber)
VALUES (@OrderID, @Message, @MessageNumber)

Business Tier Modifications

There are several new classes to consider here, as well as a new method to add to the
CommerceLibAccess class you created earlier. The new classes we’ll look at in this section are

• CommerceLibException: A standard exception to be used by the order processor.

• OrderProcessorMailer: Utility class allowing the order processor to send emails with
simple syntax.

• IPipelineSection: Standard interface for pipeline sections.

• OrderProcessor: Controlling class for order processing.

• PSDummy: Test pipeline section.

You’ll also need to modify the BalloonShopConfiguration class to include additional order
processor configuration properties.

The CreateAudit Method

This method is a wrapper around the CreateAudit stored procedure added earlier and uses
standard code. Add the following code to the CommerceLibAccess class:

 public static void CreateAudit(int orderID, string message,
 int messageNumber)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();

Darie-Watson_4681C14.fm Page 523 Friday, September 16, 2005 5:26 AM

524 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

 // set the stored procedure name
 comm.CommandText = "CreateAudit";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Message";
 param.Value = message;
 param.DbType = DbType.String;
 param.Size = 512;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@MessageNumber";
 param.Value = messageNumber;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 GenericDataAccess.ExecuteNonQuery(comm);
 }

You’ll see more details about the messageNumber parameter used for auditing later in the
chapter, when we analyze the order-processor functionality in an exercise.

The OrderProcessorException Class

This is the first new class that you’ll add to the CommerceLib library. If you haven’t already done
so, you need to add a subdirectory called CommerceLib to the BalloonShop App_Code directory.

Add a new class to this directory called CommerceLibException with the following code:

namespace CommerceLib
{
 /// <summary>
 /// Standard exception for order processor
 /// </summary>
 public class OrderProcessorException : ApplicationException
 {
 private int sourceStage;

 public OrderProcessorException(string message,
 int exceptionSourceStage) : base(message)
 {
 sourceStage = exceptionSourceStage;
 }

Darie-Watson_4681C14.fm Page 524 Friday, September 16, 2005 5:26 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 525

 public int SourceStage
 {
 get
 {
 return sourceStage;
 }
 }
 }
}

This code extends the base exception class ApplicationException, adding an integer prop-
erty called SourceStage. This property allows you to identify the pipeline section (if any) that is
responsible for throwing the exception.

Note that we use ApplicationException instead of Exception as the base class for this new
exception class. This is recommended because the base Exception class is the base class for
all exceptions; that is, both application and runtime exceptions. ApplicationException derives
directly from Exception and should be used for exceptions thrown from application code.
Another class, SystemException, which also derives directly from Exception, is used by runtime
code. This distinction gives you a simple way to see roughly what code is generating exceptions
even before examining any exceptions thrown. The Microsoft recommendation is to neither
catch nor throw SystemException derived classes in your code. In practice, however, we often
do, because often try...catch blocks have a default catch block to catch all exceptions.

BalloonShop Configuration Modifications

The BalloonShopConfiguration class already includes a number of configuration properties
for the site, or, to be more specific, allows access to properties stored in web.config. The
OrderProcessor class (which you’ll add shortly) needs various additional pieces of information
in order to function. The new code to add to this class is as follows:

public static class BalloonShopConfiguration
{
 ...

 // Returns the email address for customers to contact the site
 public static string CustomerServiceEmail
 {
 get
 {
 return
 ConfigurationManager.AppSettings["CustomerServiceEmail"];
 }
 }

 // The "from" address for auto-generated order processor emails
 public static string OrderProcessorEmail
 {
 get

Darie-Watson_4681C14.fm Page 525 Friday, September 16, 2005 5:26 AM

526 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

 {
 return
 ConfigurationManager.AppSettings["OrderProcessorEmail"];
 }
 }

 // The email address to use to contact the supplier
 public static string SupplierEmail
 {
 get
 {
 return ConfigurationManager.AppSettings["SupplierEmail"];
 }
 }
}

The new settings exposed by this class are as follows:

• CustomerServiceEmail: The email address that customers can use to send in queries
about orders.

• OrderProcessorEmail: An email address used as the “from” address for emails sent from
the order processor to the administrator.

• SupplierEmail: The email address of the product supplier, so that the order processor
can send order notifications ready for picking/shipping.

For testing purposes, you can set all of these settings to your email address. Later you will
probably want to change some or all of these appropriately.

■Note Depending on the size of your enterprise, you may have multiple suppliers, in which case you’ll probably
want to store supplier information in the BalloonShop database and associate each product or product range
with a different supplier. To keep things simple, however, the code in this book assumes that you only have
one supplier—which may well use the same email address as the site administrator.

You also need to add the relevant properties to the <appSettings> section of web.config:

 <appSettings>
 ...
 <add key="CustomerServiceEmail" value="<yourEmail>" />
 <add key="OrderProcessorEmail" value="<yourEmail>" />
 <add key="SupplierEmail" value="<yourEmail>" />
 </appSettings>

Obviously, you need to replace the values <yourEmail> and <yourEmail> with values appro-
priate to your system.

Darie-Watson_4681C14.fm Page 526 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 527

The OrderProcessorMailer Class

This class enables code to send emails during order processing. Add a new class to the
App_Code/CommerceLib directory with code as follows:

namespace CommerceLib
{
 /// <summary>
 /// Mailing utilities for OrderProcessor
 /// </summary>
 public static class OrderProcessorMailer
 {
 public static void MailAdmin(int orderID, string subject,
 string message, int sourceStage)
 {
 // Send mail to administrator
 string to = BalloonShopConfiguration.ErrorLogEmail;
 string from = BalloonShopConfiguration.OrderProcessorEmail;
 string body = "Message: " + message
 + "\nSource: " + sourceStage.ToString()
 + "\nOrder ID: " + orderID.ToString();
 Utilities.SendMail(from, to, subject, body);
 }
 }
}

The only method of this class, MailAdmin, uses the Utilities.SendMail method to send an
email to the site administrator by using settings from BalloonShopConfiguration. Later, when
we need to send mails to customers and suppliers, we’ll add more code to this class.

The IPipelineSection Interface

This IPipelineSection interface is implemented by all pipeline section classes, so that
OrderProcessor can use them in a standard way. Add the following interface definition in
a file called IPipelineSection.cs in the App_Code/CommerceLib directory:

namespace CommerceLib
{
 /// <summary>
 /// Standard interface for pipeline sections
 /// </summary>
 public interface IPipelineSection
 {
 void Process(OrderProcessor processor);
 }
}

This interface exposes a single method, Process, that OrderProcessor will use to process an
order through the pipeline stage in question. This method includes a reference to the calling

Darie-Watson_4681C14.fm Page 527 Friday, September 16, 2005 5:26 AM

528 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

class, so that pipeline sections will have access to order information and utility methods
exposed by the OrderProcessor class.

The OrderProcessor Class

As is probably apparent now, the OrderProcessor class (which is the class responsible for
moving an order through the pipeline) is a little more complicated than the classes you’ve seen
so far in this chapter. However, you can start simply and build up additional functionality as
needed. To start with, you’ll create a version of the OrderProcessor class with the following
functionality:

• Dynamically selects a pipeline section supporting IPipelineSection

• Adds basic auditing data

• Gives access to the current order and customer details

• Gives access to administrator mailing

• Mails the administrator in case of error

The code for this class, which you should also add to the App_Code/CommerceLib directory,
is as follows:

namespace CommerceLib
{
 /// <summary>
 /// Main class, used to obtain order information,
 /// run pipeline sections, audit orders, etc.
 /// </summary>
 public class OrderProcessor
 {
 internal IPipelineSection CurrentPipelineSection;
 internal bool ContinueNow;
 internal CommerceLibOrderInfo Order;

 public OrderProcessor(string orderID)
 {
 // get order
 Order = CommerceLibAccess.GetOrder(orderID);
 }

 public OrderProcessor(CommerceLibOrderInfo orderToProcess)
 {
 // get order
 Order = orderToProcess;
 }

 public void Process()
 {

Darie-Watson_4681C14.fm Page 528 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 529

 // configure processor
 ContinueNow = true;

 // log start of execution
 CreateAudit("Order Processor started.", 10000);

 // process pipeline section
 try
 {
 while (ContinueNow)
 {
 ContinueNow = false;
 GetCurrentPipelineSection();
 CurrentPipelineSection.Process(this);
 }
 }
 catch (OrderProcessorException ex)
 {
 MailAdmin("Order Processing error occurred.",
 ex.Message, ex.SourceStage);
 CreateAudit("Order Processing error occurred.", 10002);
 throw new OrderProcessorException(
 "Error occurred, order aborted. "
 + "Details mailed to administrator.", 100);
 }
 catch (Exception ex)
 {
 MailAdmin("Order Processing error occurred.", ex.Message,
 100);
 CreateAudit("Order Processing error occurred.", 10002);
 throw new OrderProcessorException(
 "Unknown error, order aborted. "
 + "Details mailed to administrator.", 100);
 }
 finally
 {
 CommerceLibAccess.CreateAudit(Order.OrderID,
 "Order Processor finished.", 10001);
 }
 }

 public void CreateAudit(string message, int messageNumber)
 {
 CommerceLibAccess.CreateAudit(Order.OrderID, message,
 messageNumber);
 }

Darie-Watson_4681C14.fm Page 529 Friday, September 16, 2005 5:26 AM

530 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

 public void MailAdmin(string subject, string message,
 int sourceStage)
 {
 OrderProcessorMailer.MailAdmin(Order.OrderID, subject,
 message, sourceStage);
 }

 private void GetCurrentPipelineSection()
 {
 // select pipeline section to execute based on order status
 // for now just provide a dummy
 CurrentPipelineSection = new PSDummy();
 }
 }
}

This class includes two constructors, which are used to initialize the order processor with
order information by either using the ID of an order or by simply using a CommerceLibOrderInfo
instance. The class also includes its own versions of the CommerceLibAccess.CreateAudit and
OrderProcessorMailer.MailAdmin methods, both of which are time savers that enable you to
call these methods with the order ID parameter filled in automatically.

We’ll walk through the rest of the code here shortly. Suffice to say for now that the only
pipeline section used is PSDummy, which you’ll add next.

The PSDummy Class

The PSDummy class is a dummy pipeline section that you’ll use in your basic pipeline implemen-
tation to check that things are working correctly. Add this class to the App_Code/CommerceLib
directory:

namespace CommerceLib
{
 /// <summary>
 /// Summary description for PSDummy
 /// </summary>
 public class PSDummy : IPipelineSection
 {
 public void Process(OrderProcessor processor)
 {
 processor.CreateAudit("PSDoNothing started.", 99999);
 processor.CreateAudit("Customer: "
 + processor.Order.Customer.UserName, 99999);
 processor.CreateAudit("First item in order: "
 + processor.Order.OrderDetails[0].ItemAsString, 99999);
 processor.MailAdmin("Test.", "Test mail from PSDummy.", 99999);
 processor.CreateAudit("PSDoNothing finished.", 99999);
 }
 }
}

Darie-Watson_4681C14.fm Page 530 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 531

The code here uses the AddAudit and MailAdmin methods of OrderProcessor to show that
the code has executed correctly. Again, we’ll look at this code in more detail shortly.

Presentation Tier Modifications

All you need to do now for the order processor to process an order is to add some very simple
code to the checkout page.

Checkout Page Modifications

Modify the code in placeOrderButton_Click in Checkout.aspx.cs as follows:

using CommerceLib;

...

 protected void placeOrderButton_Click(object sender, EventArgs e)
 {
 ...
 // Create the order and store the order ID
 string orderId = ShoppingCartAccess.CreateCommerceLibOrder(
 shippingId, taxId);
 // Process order
 OrderProcessor processor = new OrderProcessor(orderId);
 processor.Process();
 // Redirect to the conformation page
 Response.Redirect("OrderPlaced.aspx");
 }

Exercise: Basic Order Processing

1. Open the BalloonShop Web Application in a browser.

2. Log in as a customer you’ve previously created, add some products to your cart, and place an order.

3. Check your inbox for new mail. An example of this is shown in Figure 14-4.

Darie-Watson_4681C14.fm Page 531 Friday, September 16, 2005 5:26 AM

8213592a117456a340854d18cee57603

532 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

Figure 14-4. Email from PSDummy

4. Examine the Audit table in the database to see the new entries. An example is shown in Figure 14-5
(note that the dates are in dd/mm/yyyy format in this figure).

Figure 14-5. Audit table entries from PSDummy

How It Works: Basic Order Processing

The main body of the OrderProcessor class is the Process method, which is called by the Checkout.aspx
(and will be called later by the order admin pages) to process an order. The order to be processed is set by the
constructor of OrderProcessor as noted earlier and is indicated either by an ID or a CommerceLibOrderInfo
object.

The first thing that Process does is set ContinueNow to true and log the start of its execution in the Audit table:

 public void Process()
 {
 // configure processor
 ContinueNow = true;

 // log start of execution
 CreateAudit("Order Processor started.", 10000);

Darie-Watson_4681C14.fm Page 532 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 533

■Note 10000 is the message number to store for the audit entry—we’ll look at these codes in more detail
in a little while.

Next we come to the order processing itself. The model used here checks the Boolean ContinueNow field before
processing a pipeline section. This allows sections to specify either that processing should continue when they’re
finished with the current task (by setting ContinueNow to true) or that processing should pause (by setting
ContinueNow to false). This is necessary because you need to wait for external input at certain points along the
pipeline, such as checking whether stock is available.

The pipeline section to process is selected by the private GetCurrentPipelineSection method, which eventually
selects a section based on the status of the order, but currently just has the job of setting the Current➥

PipelineSection field to an instance of PSDummy:

 private void GetCurrentPipelineSection()
 {
 // select pipeline section to execute based on order status
 // for now just provide a dummy
 CurrentPipelineSection = new PSDummy();
 }

Back to Process, you see this method being called in a try block:

 // process pipeline section
 try
 {
 while (ContinueNow)
 {
 ContinueNow = false;
 GetCurrentPipelineSection();

Note that ContinueNow is set to false in the while loop—the default behavior is to stop after each pipeline
section.

After you have a pipeline section, you need to process it. All sections support the simple IPipelineSection
interface, defined as follows:

 public interface IPipelineSection
 {
 void Process(OrderProcessor processor);
 }

All pipeline sections use a Process method to perform their work, and this method requires an OrderProcessor
reference because the pipeline sections need access to the order and customer details exposed by the order
processor.

The last part of the while loop (and try block) in OrderProcessor calls this method:

 CurrentPipelineSection.Process(this);
 }
 }

Darie-Watson_4681C14.fm Page 533 Friday, September 16, 2005 5:26 AM

534 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

This calls the Process method in PSDummy, which we’ll come back to shortly.

The last part of the Process method in OrderProcessor involves catching exceptions, which might be
OrderProcessorException instances or other exception types. In either case, you send an email to the
administrator using the MailAdmin method (we’ll cover this in a little while), add an audit entry, and throw
a new OrderProcessorException that can be caught by users of the OrderProcessor class:

 catch (OrderProcessorException ex)
 {
 MailAdmin("Order Processing error occurred.",
 ex.Message, ex.SourceStage);
 CreateAudit("Order Processing error occurred.", 10002);
 throw new OrderProcessorException(
 "Error occurred, order aborted. "
 + "Details mailed to administrator.", 100);
 }
 catch (Exception ex)
 {
 MailAdmin("Order Processing error occurred.", ex.Message,
 100);
 CreateAudit("Order Processing error occurred.", 10002);
 throw new OrderProcessorException(
 "Unknown error, order aborted. "
 + "Details mailed to administrator.", 100);
 }

Regardless of whether processing is successful, you add a final audit entry saying that the processing has completed.

 finally
 {
 CommerceLibAccess.CreateAudit(Order.OrderID,
 "Order Processor finished.", 10001);
 }
 }

At this point, it’s worth examining the message number scheme chosen for order-processing audits. In all cases, the
audit message number is a five-digit number. The first digit of this number is either 1 if an audit is being added by
OrderProcessor, or 2 if the audit is added by a pipeline section. The next two digits are used for the pipeline stage
that added the audit (which maps directly to the status of the order when the audit was added). The final two digits
uniquely identify the message within this scope. For example, so far you’ve seen the following message numbers:

• 10000: Order processor started.

• 10001: Order processor finished.

• 10002: Order processor error occurred.

Later you’ll see a lot of these that start with 2, as you get on to pipeline sections, and include the necessary infor-
mation for identifying the pipeline section as noted previously. We hope you’ll agree that this scheme allows for
plenty of flexibility, although you can, of course, use whatever numbers you see fit. As a final note, numbers ending
in 00 and 01 are used for starting and finishing messages for both the order processor and pipeline stages, whereas 02
and above are for other messages. There is no real reason for this apart from consistency between the components.

Darie-Watson_4681C14.fm Page 534 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 535

The PSDummy class that is used in this skeleton processor performs some basic functions to check that things are
working correctly:

 public class PSDummy : IPipelineSection
 {
 public void Process(OrderProcessor processor)
 {
 processor.CreateAudit("PSDoNothing started.", 99999);
 processor.CreateAudit("Customer: "
 + processor.Order.Customer.UserName, 99999);
 processor.CreateAudit("First item in order: "
 + processor.Order.OrderDetails[0].ItemAsString, 99999);
 processor.MailAdmin("Test.", "Test mail from PSDummy.",
 99999);
 processor.CreateAudit("PSDoNothing finished.", 99999);
 }
 }

The code here uses the AddAudit and .MailAdmin methods of OrderProcessor to generate something to show
that the code has executed correctly. Note that the numbering schemes outlined previously aren’t used there, as this
isn’t a real pipeline section.

That was a lot of code to get through, but it did have the effect of making the client code very simple:

 // Process order
 OrderProcessor processor = new OrderProcessor(orderId);
 processor.Process();

Short of setting all the configuration details in web.config, there is very little to do because OrderProcessor
does a lot of work for you. It’s worth noting that the code you have at this point is for the most part a consequence
of the design choices made earlier. This is an excellent example of how a strong design can lead straight to powerful
and robust code.

Adding More Functionality to OrderProcessor
You need to add a few more bits and pieces to the OrderProcessor class to make it fully functional
for use with the pipeline sections that you’ll add in the next chapter.

You need to look at

• Updating the status of an order

• Setting and getting credit card authentication details

• Setting the order shipment date

Database Modifications

All the modifications in this section are stored procedures.

Darie-Watson_4681C14.fm Page 535 Friday, September 16, 2005 5:26 AM

536 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

The CommerceLibOrderUpdateStatus Stored Procedure

Each pipeline section needs the capability to change the status of an order, advancing it to the
next pipeline section. Rather than simply incrementing the status, this functionality is kept
flexible, just in case you end up with a more complicated branched pipeline. This requires a
new stored procedure, CommerceLibOrderUpdateStatus:

CREATE PROCEDURE CommerceLibOrderUpdateStatus
(@OrderID int,
 @Status int)
AS

UPDATE Orders
SET Status = @Status
WHERE OrderID = @OrderID

The CommerceLibOrderSetAuthCode Stored Procedure

In Chapter 16, when we deal with credit card usage, you’ll need to set data in the AuthCode and
Reference fields in the Orders table.

This requires a new stored procedure, CommerceLibOrderSetAuthCode:

CREATE PROCEDURE CommerceLibOrderSetAuthCode
(@OrderID int,
 @AuthCode nvarchar(50),
 @Reference nvarchar(50))
AS

UPDATE Orders
SET AuthCode = @AuthCode, Reference = @Reference
WHERE OrderID = @OrderID

The CommerceLibOrderSetDateShipped Stored Procedure

When an order is shipped, you should update the shipment date in the database, which can
simply be the current date. The new stored procedure to do this, CommerceLibOrder➥

SetDateShipped, is as follows:

CREATE PROCEDURE CommerceLibOrderSetDateShipped
(@OrderID int)
AS

UPDATE Orders
SET DateShipped = GetDate()
WHERE OrderID = @OrderID

Business Tier Modifications

Next you need to modify CommerceLibAccess to use the new stored procedures. All the methods
in this section act in much the same way as some of the other methods of CommerceLibAccess
that you’ve seen already.

Darie-Watson_4681C14.fm Page 536 Friday, September 16, 2005 5:26 AM

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 537

The UpdateOrderStatus Method

This method calls the CommerceLibOrderUpdateStatus stored procedure:

 public static void UpdateOrderStatus(int orderID, int status)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderUpdateStatus";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Status";
 param.Value = status;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 GenericDataAccess.ExecuteNonQuery(comm);
 }

The SetOrderAuthCodeAndReference Method

This method uses the CommerceLibOrderSetAuthCode stored procedure to set the AuthCode and
Reference fields in Orders:

 public static void SetOrderAuthCodeAndReference(int orderID,
 string authCode, string reference)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderSetAuthCode";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@AuthCode";
 param.Value = authCode;
 param.DbType = DbType.String;

Darie-Watson_4681C14.fm Page 537 Friday, September 16, 2005 5:26 AM

538 C H A P T E R 1 4 ■ O R D E R P I P E L I N E

 param.Size = 50;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Reference";
 param.Value = reference;
 param.DbType = DbType.String;
 param.Size = 50;
 comm.Parameters.Add(param);
 // execute the stored procedure
 GenericDataAccess.ExecuteNonQuery(comm);
 }

The SetOrderDateShipped Method

The last method to add to CommerceLibAccess, SetOrderDateShipped, is as follows:

 public static void SetOrderDateShipped(int orderID)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderSetDateShipped";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // execute the stored procedure
 GenericDataAccess.ExecuteNonQuery(comm);
 }

CommerceLibOrderInfo Modifications

Finally, for convenience, you can allow the preceding methods to be called via the
CommerceLibOrderInfo class. This enables you to skip the orderID parameter, because
CommerceLibOrderInfo instances know what their IDs are. You can also update local fields while
you make the changes. This requires the following new methods on the CommerceLibOrderInfo
class:

 public void UpdateStatus(int status)
 {
 // call static method
 CommerceLibAccess.UpdateOrderStatus(OrderID, status);
 // update field
 Status = status;
 }

Darie-Watson_4681C14.fm Page 538 Friday, September 16, 2005 5:26 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 4 ■ O R D E R P I P E L I N E 539

 public void SetAuthCodeAndReference(string authCode,
 string reference)
 {
 // call static method
 CommerceLibAccess.SetOrderAuthCodeAndReference(OrderID,
 authCode, reference);
 // update fields
 AuthCode = authCode;
 Reference = reference;
 }

 public void SetDateShipped()
 {
 // call static method
 CommerceLibAccess.SetOrderDateShipped(OrderID);
 // update field
 DateShipped = DateTime.Now.ToString();
 }

Summary
You’ve started to build the backbone of the application and prepared it for the lion’s share of
the order pipeline processing functionality, which you’ll implement in Chapter 15.

Specifically, we’ve covered the following:

• The basic framework for your order pipeline

• The database additions for auditing data and storing additional required data in the
Orders table

• How to put orders into the pipeline when they are placed in BalloonShop

In the next chapter, you’ll go on to implement the order pipeline.

Darie-Watson_4681C14.fm Page 539 Friday, September 16, 2005 5:26 AM

Darie-Watson_4681C14.fm Page 540 Friday, September 16, 2005 5:26 AM

541

■ ■ ■

C H A P T E R 1 5

Implementing the Pipeline

In the last chapter, you completed the basic functionality of the OrderProcessor component,
which is responsible for moving orders through pipeline stages. You’ve seen a quick demon-
stration of this using a dummy pipeline section, but you haven’t yet implemented the pipeline
discussed at the beginning of the last chapter.

In this chapter, you’ll add the required pipeline sections so that you can process orders
from start to finish, although you won’t be adding full credit card transaction functionality
until the next chapter.

We’ll also look at the web administration of orders by modifying the order admin pages
added earlier in the book to take into account the new order-processing system.

Considering the Code for the Pipeline Sections
The OrderProcessor code is complete, except for one important section—the pipeline stage
selection. Rather than forcing the processor to use PSDummy, you actually want to select one of
the pipeline stages outlined in Chapter 14, depending on the status of the order. Before you do
this, let’s run through the code for each of the pipeline sections in turn, and some new utility
code, which will take you to the point where the order pipeline is complete apart from actual
credit card authorization.

Business Tier Modifications
The first thing we’ll look at in this section is some modifications to the OrderProcessorMailer
class that are required for pipeline sections to send mail to customers and suppliers. After that,
we’ll move on to the pipeline sections; each section requires a new class in the App_Code/
CommerceLib folder. (Remember that this code is available in the Source Code area of the Apress
web site at http://www.apress.com). By the time you get to the next “Exercise” section, you
should have eight new classes with the following names (they all start with PS, short for Pipe-
line Section):

• PSInitialNotification

• PSCheckFunds

• PSCheckStock

• PSStockOK

Darie-Watson_4681C15.fm Page 541 Friday, September 16, 2005 10:36 AM

542 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

• PSTakePayment

• PSShipGoods

• PSShipOK

• PSFinalNotification

We’ll discuss the classes you are creating as you go.

OrderProcessorMailer Modifications

The OrderProcessorMailer class needs two new methods, MailCustomer and MailSupplier.
The new methods to add to OrderProcessorMailer are as follows:

 public static void MailCustomer(MembershipUser customer,
 string subject, string body)
 {
 // Send mail to customer
 string to = customer.Email;
 string from = BalloonShopConfiguration.CustomerServiceEmail;
 Utilities.SendMail(from, to, subject, body);
 }

 public static void MailSupplier(string subject, string body)
 {
 // Send mail to supplier
 string to = BalloonShopConfiguration.SupplierEmail;
 string from = BalloonShopConfiguration.OrderProcessorEmail;
 Utilities.SendMail(from, to, subject, body);
 }

These methods use properties from BalloonShopConfiguration and the Utilities.
SendMail method to send mail to customers and suppliers.

OrderProcessor Modifications

As with MailAdmin, we’ll provide some new methods in OrderProcessor for mailing so that pipe-
line sections don’t use OrderProcessorMailer directly. The code for this is simply two new
methods as follows:

 public void MailCustomer(string subject, string message)
 {
 OrderProcessorMailer.MailCustomer(Order.Customer, subject,
 message);
 }

 public void MailSupplier(string subject, string message)
 {
 OrderProcessorMailer.MailSupplier(subject, message);
 }

Darie-Watson_4681C15.fm Page 542 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 543

Doing this is really according to personal taste. It wouldn’t really matter if order pipeline
sections used OrderProcessorMailer methods, although in the case of MailCustomer it does
simplify the syntax slightly.

ThePSInitialNotification Class

PSInitialNotification is the first pipeline stage and is responsible for sending an email to the
customer confirming that the order has been placed. The code for this class starts off in what
will soon become a very familiar fashion (the autogenerated using statements aren’t shown
here for brevity):

using System.Text;

namespace CommerceLib
{
 /// <summary>
 /// 1st pipeline stage - used to send a notification email to
 /// the customer, confirming that the order has been received
 /// </summary>
 public class PSInitialNotification : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSInitialNotification started.",
 20000);

The code contains one additional using statement; the class itself, which implements the
IPipelineSection interface; a private field for storing a reference to the order processor; and
then the IPipelineSection.Process method implementation. This method starts by storing
the reference to OrderProcessor, which all the pipeline sections will do because using the
members it exposes (either in the Process method or in other methods) is essential. An audit
entry is also added using the numbering scheme introduced earlier (the initial 2 signifies that
it’s coming from a pipeline section, the next 00 means that it’s the first pipeline section, and the
final 00 shows that it’s the start message for the pipeline section).

The remainder of the Process method sends the email, using the MailCustomer method of
OrderProcessor. A private method, GetMailBody(), is used to build a message body, which we’ll
look at shortly:

 try
 {
 // send mail to customer
 orderProcessor.MailCustomer("BalloonShop order received.",
 GetMailBody());

Darie-Watson_4681C15.fm Page 543 Friday, September 16, 2005 10:36 AM

544 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

After the mail is sent, you add an audit message to change the status of the order and tell
the order processor that it’s okay to move straight on to the next pipeline section:

 // audit
 orderProcessor.CreateAudit(
 "Notification e-mail sent to customer.", 20002);
 // update order status
 orderProcessor.Order.UpdateStatus(1);
 // continue processing
 orderProcessor.ContinueNow = true;
 }

If an error occurs, an OrderProcessor exception is thrown:

 catch
 {
 // mail sending failure
 throw new OrderProcessorException(
 "Unable to send e-mail to customer.", 0);
 }

If all goes according to plan, the Process method finishes by adding a final audit entry:

 // audit
 processor.CreateAudit("PSInitialNotification finished.", 20001);
 }

The GetMailBody method is used to build up an email body to send to the customer using
a StringBuilder object for efficiency. The text uses customer and order data, but follows a
generally accepted e-commerce email format:

 private string GetMailBody()
 {
 // construct message body
 StringBuilder sb = new StringBuilder();
 sb.Append("Thank you for your order! The products you have "
 + "ordered are as follows:\n\n");
 sb.Append(orderProcessor.Order.OrderAsString);
 sb.Append("\n\nYour order will be shipped to:\n\n");
 sb.Append(orderProcessor.Order.CustomerAddressAsString);
 sb.Append("\n\nOrder reference number:\n\n");
 sb.Append(orderProcessor.Order.OrderID.ToString());
 sb.Append(
 "\n\nYou will receive a confirmation e-mail when this "
 + "order has been dispatched. Thank you for shopping "
 + "at BalloonShop!");
 return sb.ToString();
 }
 }
}

Darie-Watson_4681C15.fm Page 544 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 545

When this pipeline stage finishes, processing moves straight on to PSCheckFunds.

The PSCheckFunds Class

The PSCheckFunds pipeline stage is responsible for making sure that the customer has the required
funds available on a credit card. For now, you’ll provide a dummy implementation of this, and
just assume that these funds are available.

The code starts in the same way as PSInitialNotification, although without the reference
to the System.Text namespace:

namespace CommerceLib
{
 /// <summary>
 /// 2nd pipeline stage - used to check that the customer
 /// has the required funds available for purchase
 /// </summary>
 public class PSCheckFunds : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSCheckFunds started.", 20100);

Even though you aren’t actually performing a check, you set the authorization and reference
codes for the transaction to make sure that the code in OrderProcessor works properly:

 try
 {
 // check customer funds
 // assume they exist for now
 // set order authorization code and reference
 orderProcessor.Order.SetAuthCodeAndReference("AuthCode",
 "Reference");

You finish up with some auditing, the code required for continuation, and error checking:

 // audit
 orderProcessor.CreateAudit("Funds available for purchase.",
 20102);
 // update order status
 orderProcessor.Order.UpdateStatus(2);
 // continue processing
 orderProcessor.ContinueNow = true;
 }

Darie-Watson_4681C15.fm Page 545 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

546 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 catch
 {
 // fund checking failure
 throw new OrderProcessorException(
 "Error occured while checking funds.", 1);
 }
 // audit
 processor.CreateAudit("PSCheckFunds finished.", 20101);
 }
 }
}

When this pipeline stage finishes, processing moves straight on to PSCheckStock.

The PSCheckStock Class

The PSCheckStock pipeline stage sends an email instructing the supplier to check stock availability:

using System.Text;

namespace CommerceLib
{
 /// <summary>
 /// 3rd pipeline stage – used to send a notification email to
 /// the supplier, asking whether goods are available
 /// </summary>
 public class PSCheckStock : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSCheckStock started.", 20200);

Mail is sent in a similar way to PSInitialNotification, using a private method to build up
the body. This time, however, we use MailSupplier:

 try
 {
 // send mail to supplier
 orderProcessor.MailSupplier("BalloonShop stock check.",
 GetMailBody());

As before, you finish by auditing and updating the status, although this time you don’t tell
the order processor to continue straight away:

Darie-Watson_4681C15.fm Page 546 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 547

 // audit
 orderProcessor.CreateAudit(
 "Notification e-mail sent to supplier.", 20202);
 // update order status
 orderProcessor.Order.UpdateStatus(3);
 }
 catch
 {
 // mail sending failure
 throw new OrderProcessorException(
 "Unable to send e-mail to supplier.", 2);
 }
 // audit
 processor.CreateAudit("PSCheckStock finished.", 20201);
 }

The code for building the message body is simple; it just lists the items in the order and
tells the supplier to confirm via the BalloonShop web site (using the order administration page
OrdersAdmin.aspx, which you’ll modify later):

 private string GetMailBody()
 {
 // construct message body
 StringBuilder sb = new StringBuilder();
 sb.Append("The following goods have been ordered:\n\n");
 sb.Append(orderProcessor.Order.OrderAsString);
 sb.Append("\n\nPlease check availability and confirm via ");
 sb.Append("http://balloonshop.apress.com/OrdersAdmin.aspx");
 sb.Append("\n\nOrder reference number:\n\n");
 sb.Append(orderProcessor.Order.OrderID.ToString());
 return sb.ToString();
 }
 }
}

Note that the URL used here isn’t a real one—you should replace it with a URL of your
own. When this pipeline stage finishes, processing pauses. Later, when the supplier confirms
that stock is available, processing moves on to PSStockOK.

The PSStockOK Class

The PSStockOK pipeline section doesn’t do much at all. It just confirms that the supplier has
the product in stock and moves on. Its real purpose is to look for orders that have a status corre-
sponding to this pipeline section and know that they are currently awaiting stock confirmation.

Darie-Watson_4681C15.fm Page 547 Friday, September 16, 2005 10:36 AM

548 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

namespace CommerceLib
{
 /// <summary>
 /// Summary description for PSStockOK
 /// </summary>
 public class PSStockOK : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSStockOK started.", 20300);
 // the method is called when the supplier confirms that stock is
 // available, so we don't have to do anything here except audit
 orderProcessor.CreateAudit("Stock confirmed by supplier.",
 20302);
 // update order status
 orderProcessor.Order.UpdateStatus(4);
 // continue processing
 orderProcessor.ContinueNow = true;
 // audit
 processor.CreateAudit("PSStockOK finished.", 20301);
 }
 }
}

When this pipeline stage finishes, processing moves straight on to PSTakePayment.

The PSTakePayment Class

The PSTakePayment pipeline section completes the transaction started by PSCheckFunds. As with
that section, you only provide a dummy implementation here.

namespace CommerceLib
{
 /// <summary>
 /// 5th pipeline stage – takes funds from customer
 /// </summary>
 public class PSTakePayment : IPipelineSection
 {
 private OrderProcessor orderProcessor;

Darie-Watson_4681C15.fm Page 548 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 549

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSTakePayment started.", 20400);
 try
 {
 // take customer funds
 // assume success for now
 // audit
 orderProcessor.CreateAudit(
 "Funds deducted from customer credit card account.",
 20402);
 // update order status
 orderProcessor.Order.UpdateStatus(5);
 // continue processing
 orderProcessor.ContinueNow = true;
 }
 catch
 {
 // fund checking failure
 throw new OrderProcessorException(
 "Error occured while taking payment.", 4);
 }
 // audit
 processor.CreateAudit("PSTakePayment finished.", 20401);
 }
 }
}

When this pipeline stage finishes, processing moves straight on to PSShipGoods.

The PSShipGoods Class

The PSShipGoods pipeline section is remarkably similar to PSCheckStock, because it sends an
email to the supplier and stops the pipeline until the supplier has confirmed that stock has
shipped. This operation should not be combined with PSCheckStock because after you’ve
checked that the goods are in stock, you need to take payment before shipping the goods.

using System.Text;

namespace CommerceLib
{
 /// <summary>
 /// 6th pipeline stage – used to send a notification email to
 /// the supplier, stating that goods can be shipped
 /// </summary>

Darie-Watson_4681C15.fm Page 549 Friday, September 16, 2005 10:36 AM

550 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 public class PSShipGoods : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSShipGoods started.", 20500);
 try
 {
 // send mail to supplier
 orderProcessor.MailSupplier("BalloonShop ship goods.",
 GetMailBody());
 // audit
 orderProcessor.CreateAudit(
 "Ship goods e-mail sent to supplier.", 20502);
 // update order status
 orderProcessor.Order.UpdateStatus(6);
 }
 catch
 {
 // mail sending failure
 throw new OrderProcessorException(
 "Unable to send e-mail to supplier.", 5);
 }
 // audit
 processor.CreateAudit("PSShipGoods finished.", 20501);
 }

As before, a private method called GetMailBody is used to build the message body for the
email sent to the supplier:

 private string GetMailBody()
 {
 // construct message body
 StringBuilder sb = new StringBuilder();
 sb.Append(
 "Payment has been received for the following goods:\n\n");
 sb.Append(orderProcessor.Order.OrderAsString);
 sb.Append("\n\nPlease ship to:\n\n");
 sb.Append(orderProcessor.Order.CustomerAddressAsString);
 sb.Append(
 "\n\nWhen goods have been shipped, please confirm via ");
 sb.Append("http://balloonshop.apress.com/OrdersAdmin.aspx");
 sb.Append("\n\nOrder reference number:\n\n");
 sb.Append(orderProcessor.Order.OrderID.ToString());

Darie-Watson_4681C15.fm Page 550 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 551

 return sb.ToString();
 }
 }
}

Again, the URL used here isn’t a real one. When this pipeline stage finishes, processing
pauses. Later, when the supplier confirms that the order has been shipped, processing moves
on to PSShipOK.

The PSShipOK Class

The PSShipOK pipeline section is very similar to PSStockOK, although it has slightly more to do.
Because you know that items have shipped, a shipment date value can be added to the Orders
table. Technically, this isn’t really necessary, because all audit entries are dated. However, this
method ensures that all the information is easily accessible in one database table.

namespace CommerceLib
{
 /// <summary>
 /// 7th pipeline stage - after confirmation that supplier has
 /// shipped goods
 /// </summary>
 public class PSShipOK : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSShipOK started.", 20600);
 // set order shipment date
 orderProcessor.Order.SetDateShipped();
 // audit
 orderProcessor.CreateAudit("Order dispatched by supplier.",
 20602);
 // update order status
 orderProcessor.Order.UpdateStatus(7);
 // continue processing
 orderProcessor.ContinueNow = true;
 // audit
 processor.CreateAudit("PSShipOK finished.", 20601);
 }
 }
}

When this pipeline stage finishes, processing moves straight on to PSFinalNotification.

Darie-Watson_4681C15.fm Page 551 Friday, September 16, 2005 10:36 AM

552 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

The PSFinalNotification Class

The last pipeline section—PSFinalNotification—is very similar to the first, in that it sends
email to the customer. This section confirms that the order has shipped:

using System.Text;

namespace CommerceLib
{
 /// <summary>
 /// 8th pipeline stage - used to send a notification email to
 /// the customer, confirming that the order has been shipped
 /// </summary>
 public class PSFinalNotification : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSFinalNotification started.",
 20700);
 try
 {
 // send mail to customer
 orderProcessor.MailCustomer("BalloonShop order dispatched.",
 GetMailBody());
 // audit
 orderProcessor.CreateAudit(
 "Dispatch e-mail sent to customer.", 20702);
 // update order status
 orderProcessor.Order.UpdateStatus(8);
 }
 catch
 {
 // mail sending failure
 throw new OrderProcessorException(
 "Unable to send e-mail to customer.", 7);
 }
 // audit
 processor.CreateAudit("PSFinalNotification finished.", 20701);
 }

It uses a familiar-looking GetMailBody method to build the body of the email:

Darie-Watson_4681C15.fm Page 552 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 553

 private string GetMailBody()
 {
 // construct message body
 StringBuilder sb = new StringBuilder();
 sb.Append("Your order has now been dispatched! The following "
 + "products have been shipped:\n\n");
 sb.Append(orderProcessor.Order.OrderAsString);
 sb.Append("\n\nYour order has been shipped to:\n\n");
 sb.Append(orderProcessor.Order.CustomerAddressAsString);
 sb.Append("\n\nOrder reference number:\n\n");
 sb.Append(orderProcessor.Order.OrderID.ToString());
 sb.Append("\n\nThank you for shopping at BalloonShop!");
 return sb.ToString();
 }
 }
}

When this pipeline section finishes, the order status is changed to 8, which represents a
completed order. Further attempts to process the order using OrderProcessor result in an
exception being thrown.

The GetCurrentPipelineSection Method

There’s one more thing to add to OrderProcessor now that you have the proper pipeline
section classes—a full implementation of GetCurrentPipelineSection.

 private void GetCurrentPipelineSection()
 {
 // select pipeline section to execute based on order status
 switch (Order.Status)
 {
 case 0:
 CurrentPipelineSection = new PSInitialNotification();
 break;
 case 1:
 CurrentPipelineSection = new PSCheckFunds();
 break;
 case 2:
 CurrentPipelineSection = new PSCheckStock();
 break;
 case 3:
 CurrentPipelineSection = new PSStockOK();
 break;
 case 4:
 CurrentPipelineSection = new PSTakePayment();
 break;

Darie-Watson_4681C15.fm Page 553 Friday, September 16, 2005 10:36 AM

554 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 case 5:
 CurrentPipelineSection = new PSShipGoods();
 break;
 case 6:
 CurrentPipelineSection = new PSShipOK();
 break;
 case 7:
 CurrentPipelineSection = new PSFinalNotification();
 break;
 case 8:
 throw new OrderProcessorException(
 "Order has already been completed.", 100);
 default:
 throw new OrderProcessorException(
 "Unknown pipeline section requested.", 100);
 }
 }

This method simply consists of a large switch statement that selects a pipeline section to
execute based on the status of the order being processed.

Presentation Tier Modifications
In a little while, you’ll be implementing a new order admin system, allowing suppliers to mark
orders as “in stock” or “shipped.” Before that, however, you can check that things are working
okay by providing a new test page. In fact, you can simply modify the OrderTest.aspx page you
used earlier in the book. You’ll do this in the following exercise and then we’ll analyze the results.

Exercise: Testing the Order Pipeline

1. Modify the code in OrderTest.aspx to add new user interface items as follows:

 ...
 Order details:

 <asp:Label runat="server" ID="orderLabel" />

 Process order:

 <asp:Button ID="processButton" runat="server" Text="Go"
 Enabled="False" OnClick="processButton_Click" />

 <asp:Label ID="processResultLabel" runat="server" />
</asp:Content>

Darie-Watson_4681C15.fm Page 554 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 555

2. Modify the code for goButton_Click in OrderTest.aspx.cs as follows:

using CommerceLib;

...

 protected void goButton_Click(object sender, EventArgs e)
 {
 try
 {
 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderIDBox.Text);
 resultLabel.Text = "Order found.";
 addressLabel.Text =
 orderInfo.CustomerAddressAsString.Replace(
 "\n", "
");
 creditCardLabel.Text = orderInfo.CreditCard.CardNumberX;
 orderLabel.Text = orderInfo.OrderAsString.Replace(
 "\n", "
");
 processButton.Enabled = true;
 processResultLabel.Text = "";
 }
 catch
 {
 resultLabel.Text =
 "No order found, or order is in old format.";
 addressLabel.Text = "";
 creditCardLabel.Text = "";
 orderLabel.Text = "";
 processButton.Enabled = false;
 }
 }

3. Add a new click handler for the processButton button in OrderTest.aspx.cs as follows:

 protected void processButton_Click(object sender, EventArgs e)
 {
 try
 {
 OrderProcessor processor =
 new OrderProcessor(orderIDBox.Text);
 processor.Process();
 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderIDBox.Text);
 processResultLabel.Text = "Order processed, status now: "
 + orderInfo.Status.ToString();
 }

Darie-Watson_4681C15.fm Page 555 Friday, September 16, 2005 10:36 AM

556 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 catch
 {
 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderIDBox.Text);
 processResultLabel.Text =
 "Order processing error, status now: "
 + orderInfo.Status.ToString();
 }
 }

4. Save the new files, log in, browse to the OrderTest.aspx page, select an existing order by its ID, and
then click on the button to process the first phase of the order.

5. Check your (customer account) mail for the customer notification email. An example is shown here:

Thank you for your order! The products you have ordered are as
follows:

1 Love Rose, $12.99 each, total cost $12.99
1 Love Cascade Hearts, $12.99 each, total cost $12.99
Shipping: By air (10 days, $35)

Total order cost: $60.98

Your order will be shipped to:

Charles Darwin
2nd Hut On The Left
The Beach
The Island
Santa Cruz

The Galapagos Islands

Order reference number:

11

You will receive a confirmation e-mail when this order has been
dispatched. Thank you for shopping at BalloonShop!

Darie-Watson_4681C15.fm Page 556 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 557

6. Check your (administrator) mail for the stock check email (as shown next).

The following goods have been ordered:

1 Love Rose, $12.99 each, total cost $12.99
1 Love Cascade Hearts, $12.99 each, total cost $12.99
Shipping: By air (10 days, $35)

Total order cost: $60.98

Please check availability and confirm via
http://balloonshop.apress.com/OrdersAdmin.aspx

Order reference number:

11

7. Continue processing on the OrderTest.aspx page by clicking the button again, calling
OrderProcessor.Process for the second time.

8. Check your mail for the ship goods email:

Payment has been received for the following goods:

1 Love Rose, $12.99 each, total cost $12.99
1 Love Cascade Hearts, $12.99 each, total cost $12.99
Shipping: By air (10 days, $35)

Total order cost: $60.98

Please ship to:

Charles Darwin
2nd Hut On The Left
The Beach
The Island
Santa Cruz

The Galapagos Islands

Darie-Watson_4681C15.fm Page 557 Friday, September 16, 2005 10:36 AM

558 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

When goods have been shipped, please confirm via
http://balloonshop.apress.com/OrdersAdmin.aspx

Order reference number:

11

9. Continue processing on the OrderTest.aspx page by clicking the button again, calling
OrderProcessor.Process for the third time.

10. Check your mail for the shipping confirmation email:

Your order has now been dispatched! The following products have
been shipped:

1 Love Rose, $12.99 each, total cost $12.99
1 Love Cascade Hearts, $12.99 each, total cost $12.99
Shipping: By air (10 days, $35)

Total order cost: $60.98

Your order has been shipped to:

Charles Darwin
2nd Hut On The Left
The Beach
The Island
Santa Cruz

The Galapagos Islands

Order reference number:

11

Thank you for shopping at BalloonShop!

11. Examine the new audit entries for the order (see Figure 15-1).

Darie-Watson_4681C15.fm Page 558 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 559

Figure 15-1. Audit entries for completed order

How It Works: Testing the Order Pipeline

The example code tested your order pipeline by causing a single order to be processed by each pipeline section in
turn, and providing the expected results. The modifications to the OrderTest.aspx page and code behind provided a
button that simply called the OrderProcessor.Process method on the order being viewed. The other modifica-
tions to the code were to enable or disable the processing button depending on whether an order is being viewed.

One interesting point to note is what happens if you continue to try to process an order after it has been completed.
The result of clicking the processing button again is shown in Figure 15-2.

Darie-Watson_4681C15.fm Page 559 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

560 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

Figure 15-2. Order completed error

If you check your mail, you’ll see the details:

Message: Order has already been completed.
Source: 100
Order ID: 11

The error message mailed to the administrator should be enough to get started in detective work, finding out what
has happened.

Darie-Watson_4681C15.fm Page 560 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 561

Administering BalloonShop Orders
The current order administration page, implemented in OrdersAdmin.aspx and
AdminUserControls\OrderDetailsAdmin.aspx, is no longer applicable to your order system.
Now you have new data to handle, new functionality required for suppliers, and an audit trail
to display.

This means you need to make several modifications. You’ll start, as usual, with the data-
base modifications, which require several new stored procedures. Moving on to the business
tier, you’ll need to update several methods and add several more to give access to the new
stored procedures and allow the presentation tier to obtain and update data. Finally, in the
presentation tier, you’ll need to update the files responsible for order administration.

Note that your new data structures mean that customer-related information, including the
customer name, email address, and postal address, are no longer editable by administrators. It
would be possible to do this, but because customers can edit that information themselves, we
won’t implement it here. In fact, at some point, it might be nice to add a customer administra-
tion page, usable by administrators, to check on customer activity and edit customer accounts.
We’ll leave this task to you because by the end of this book, you’ll be familiar with all the necessary
techniques.

Database Modifications
As noted, the required additions here are all stored procedures. In addition, they all start with
the string CommerceLib to distinguish them from earlier additions. This is especially necessary
as many of these stored procedures (and the business tier methods that use them) will replace
or upgrade existing functionality.

The CommerceLibOrderGetAuditTrail Stored Procedure

This stored procedure gets the Audit table entries that are associated with a given order:

CREATE PROCEDURE CommerceLibOrderGetAuditTrail
(@OrderID int)
AS
SELECT OrderID,
 AuditID,
 DateStamp,
 Message,
 MessageNumber
FROM Audit
WHERE OrderID = @OrderID

The CommerceLibOrdersGetByCustomer Stored Procedure

This stored procedure gets the orders that have been made by a specific customer by using the
GUID that identifies a customer:

Darie-Watson_4681C15.fm Page 561 Friday, September 16, 2005 10:36 AM

562 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

CREATE PROCEDURE CommerceLibOrdersGetByCustomer
(@CustomerID uniqueidentifier)
AS
SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,
 Reference,
 Orders.ShippingID,
 ShippingType,
 ShippingCost,
 Orders.TaxID,
 TaxType,
 TaxPercentage
FROM Orders
LEFT OUTER JOIN Tax ON Tax.TaxID = Orders.TaxID
LEFT OUTER JOIN Shipping ON Shipping.ShippingID = Orders.ShippingID
WHERE CustomerID = @CustomerID

The CommerceLibOrdersGetByDate Stored Procedure

This stored procedure mirrors the OrdersGetByDate stored procedure used earlier in the book.
As with that stored procedure, this one gets the orders that were placed between two dates. The
difference here is that different data is returned:

CREATE PROCEDURE CommerceLibOrdersGetByDate
(@StartDate smalldatetime,
 @EndDate smalldatetime)
AS

SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,
 Reference,
 Orders.ShippingID,
 ShippingType,
 ShippingCost,
 Orders.TaxID,
 TaxType,
 TaxPercentage

Darie-Watson_4681C15.fm Page 562 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 563

FROM Orders
LEFT OUTER JOIN Tax ON Tax.TaxID = Orders.TaxID
LEFT OUTER JOIN Shipping ON Shipping.ShippingID = Orders.ShippingID
WHERE DateCreated BETWEEN @StartDate AND @EndDate
ORDER BY DateCreated DESC

The CommerceLibOrdersGetByRecent Stored Procedure

This stored procedure replaces the OrdersGetByRecent stored procedure. It obtains the most
recent orders that have been placed, where the number of orders to return is selected by a
parameter:

CREATE PROCEDURE CommerceLibOrdersGetByRecent
(@Count smallint)
AS

SET ROWCOUNT @Count

SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,
 Reference,
 Orders.ShippingID,
 ShippingType,
 ShippingCost,
 Orders.TaxID,
 TaxType,
 TaxPercentage
FROM Orders
LEFT OUTER JOIN Tax ON Tax.TaxID = Orders.TaxID
LEFT OUTER JOIN Shipping ON Shipping.ShippingID = Orders.ShippingID
ORDER BY DateCreated DESC

SET ROWCOUNT 0

The CommerceLibOrdersGetByStatus Stored Procedure

Again, this stored procedure is a replacement. However, this time the new stored procedure
actually replaces two earlier ones: OrdersGetUnverifiedUncanceled and OrdersGetVerified➥

Uncompleted. Because this information is now represented by a single status field, you can
provide a single, more versatile stored procedure:

Darie-Watson_4681C15.fm Page 563 Friday, September 16, 2005 10:36 AM

564 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

CREATE PROCEDURE CommerceLibOrdersGetByStatus
(@Status int)
AS
SELECT OrderID,
 DateCreated,
 DateShipped,
 Comments,
 Status,
 CustomerID,
 AuthCode,
 Reference,
 Orders.ShippingID,
 ShippingType,
 ShippingCost,
 Orders.TaxID,
 TaxType,
 TaxPercentage
FROM Orders
LEFT OUTER JOIN Tax ON Tax.TaxID = Orders.TaxID
LEFT OUTER JOIN Shipping ON Shipping.ShippingID = Orders.ShippingID
WHERE Status = @Status

The CommerceLibOrderUpdate Stored Procedure

Finally, this stored procedure replaces the OrderUpdate stored procedure used earlier, making
use of your new data:

CREATE PROCEDURE CommerceLibOrderUpdate
(@OrderID int,
 @DateCreated smalldatetime,
 @DateShipped smalldatetime = NULL,
 @Status int,
 @Comments varchar(200),
 @AuthCode varchar(50),
 @Reference varchar(50),
 @ShippingID int,
 @TaxID int)
AS
UPDATE Orders
SET DateCreated=@DateCreated,
 DateShipped=@DateShipped,
 Status=@Status,
 Comments=@Comments,
 AuthCode=@AuthCode,
 Reference=@Reference
WHERE OrderID = @OrderID

Darie-Watson_4681C15.fm Page 564 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 565

Business Tier Modifications
The modifications in this section apply mainly to the CommerceLibAccess and CommerceLib➥

OrderInfo classes. However, to give easy access to audit trail info, you also need to add a new
class, called (surprisingly enough) CommerceLibAuditInfo.

Apart from allowing access to your new data, you have one more thing to add, which you’ll
do first. You need to provide a human-readable version of order statuses, which you’ll use later
to display information in the order admin page.

Adding Human-Readable Status Information

You can store order status strings in any number of places. One option is to store them in the
database, perhaps in a table called Status. You could then link to the Orders table by matching
the existing Orders.Status field to, say, Status.StatusID.

However, it’s reasonable to regard status information as static. Although the Orders table
is capable of containing any integer for an order status, the CommerceLib code uses order status
information in a more formal way. The statuses that exist, in fact, are a consequence of the
pipeline structure we’ve chosen, which is independent of the database. For this reason, you
should include status information in your code.

You could store human-readable status strings in web.config, in an external resource file
(useful for multilingual sites), or anywhere else you choose. In this chapter, you’ll put this
information in a static read-only string array in the CommerceLibAccess class, where you can
access it from wherever you choose. The indexes of the entries in the array match the status
values that are used in your order pipeline. Add the following member to CommerceLibAccess:

 public static readonly string[] OrderStatuses =
 {"Order placed, notifying customer", // 0
 "Awaiting confirmation of funds", // 1
 "Notifying supplier—stock check", // 2
 "Awaiting stock confirmation", // 3
 "Awaiting credit card payment", // 4
 "Notifying supplier—shipping", // 5
 "Awaiting shipment confirmation", // 6
 "Sending final notification", // 7
 "Order completed", // 8
 "Order cancelled"}; // 9

Note the one new status here—Order cancelled, with a value of 9—for when you want to
cancel a customer order.

For the purposes of data binding to the CommerceLibOrderInfo class, you also provide a
new public property to expose order statuses as strings. Add the following member to
CommerceLibOrderInfo:

Darie-Watson_4681C15.fm Page 565 Friday, September 16, 2005 10:36 AM

566 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 public string StatusAsString
 {
 get
 {
 try
 {
 return CommerceLibAccess.OrderStatuses[Status];
 }
 catch
 {
 return "Status unknown";
 }
 }
 }

The CommerceLibAuditInfo Class

You’ll expose audit trail data via this new class, which is very similar to (although simpler than)
the CommerceLibOrderInfo and CommerceLibOrderDetailInfo classes added earlier. As with
these classes, you can add CommerceLibAuditInfo to the CommerceLibAccess.cs file:

/// <summary>
/// Wraps audit trail data
/// </summary>
public class CommerceLibAuditInfo
{
 #region Private Fields
 private int auditID;
 private int orderID;
 private DateTime dateStamp;
 private string message;
 private int messageNumber;
 #endregion

 #region Public Properties
 public int AuditID
 {
 get
 {
 return auditID;
 }
 }
 public int OrderID
 {

Darie-Watson_4681C15.fm Page 566 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 567

 get
 {
 return orderID;
 }
 }
 public DateTime DateStamp
 {
 get
 {
 return dateStamp;
 }
 }
 public string Message
 {
 get
 {
 return message;
 }
 }
 public int MessageNumber
 {
 get
 {
 return messageNumber;
 }
 }
 #endregion

 #region Constructor
 public CommerceLibAuditInfo(DataRow auditRow)
 {
 auditID = (int)auditRow["AuditID"];
 orderID = (int)auditRow["OrderID"];
 dateStamp = (DateTime)auditRow["DateStamp"];
 message = auditRow["Message"] as string;
 messageNumber = (int)auditRow["messageNumber"];
 }
 #endregion
}

The constructor of this class uses a DataRow object to initialize the class, so next you need a
method to get the audit trail for an order.

The GetOrderAuditTrail Method

To get the audit trail for an order, you’ll add a new method to CommerceLibAccess called
GetOrderAuditTrail, which uses the ID of an order to get audit entries via the

Darie-Watson_4681C15.fm Page 567 Friday, September 16, 2005 10:36 AM

568 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

CommerceLibOrderGetAuditTrail stored procedure. Here you can use generic collections by
returning audit information in the form of a List<CommerceLibAuditInfo> class.

Add the following method to CommerceLibAccess:

 public static List<CommerceLibAuditInfo> GetOrderAuditTrail(
 string orderID)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderGetAuditTrail";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // obtain the results
 DataTable orderAuditTrailData =
 GenericDataAccess.ExecuteSelectCommand(comm);
 // create List<>
 List<CommerceLibAuditInfo> orderAuditTrail =
 new List<CommerceLibAuditInfo>(
 orderAuditTrailData.Rows.Count);
 foreach (DataRow orderAudit in orderAuditTrailData.Rows)
 {
 orderAuditTrail.Add(new CommerceLibAuditInfo(orderAudit));
 }
 return orderAuditTrail;
 }

CommerceLibOrderInfo Modifications

To bind to a CommerceLibOrderInfo, you need to do one more thing. Unfortunately, data-bindable
objects such as DataGrid don’t work with public fields, only properties. This means that every
one of the public fields in CommerceLibOrderInfo, for example OrderID, needs to be exposed via
a property. For example:

 public int OrderID;

needs to be replaced with

 private int orderID;

Darie-Watson_4681C15.fm Page 568 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 569

 public int OrderID
 {
 get
 {
 return orderID;
 }
 set
 {
 orderID = value;
 }
 }

Here the private field uses a lowercase first letter to differentiate it from the public property.
Yes, this set of changes is very annoying. Unfortunately, we have no alternative. Another thing
to change is where tax and shipping info gets set in the constructor. Here you must refer to the
private fields for shipping and tax info rather than the properties:

 // Get Shipping Data
 if (orderRow["ShippingID"] != DBNull.Value
 && orderRow["ShippingType"] != DBNull.Value
 && orderRow["ShippingCost"] != DBNull.Value)
 {
 shipping.ShippingID =
 Int32.Parse(orderRow["ShippingID"].ToString());
 shipping.ShippingType = orderRow["ShippingType"].ToString();
 shipping.ShippingCost =
 double.Parse(orderRow["ShippingCost"].ToString());
 }
 else
 {
 shipping.ShippingID = -1;
 }
 // Get Tax Data
 if (orderRow["TaxID"] != DBNull.Value
 && orderRow["TaxType"] != DBNull.Value
 && orderRow["TaxPercentage"] != DBNull.Value)
 {
 tax.TaxID = Int32.Parse(orderRow["TaxID"].ToString());
 tax.TaxType = orderRow["TaxType"].ToString();
 tax.TaxPercentage =
 double.Parse(orderRow["TaxPercentage"].ToString());
 }
 else
 {
 tax.TaxID = -1;
 }

Darie-Watson_4681C15.fm Page 569 Friday, September 16, 2005 10:36 AM

570 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

CommerceLibOrderDetailInfo Modifications

As with CommerceLibOrderInfo, fields need to be upgraded to properties here. For example,

 public int ProductID;

needs to be replaced with

 private int productID;

 public int ProductID
 {
 get
 {
 return productID;
 }
 set
 {
 productID = value;
 }
 }

Exposing an Audit Trail via CommerceLibOrderInfo

The CommerceLibOrderInfo class is already versatile, as it exposes customer and order detail
information on the fly. You can extend this class even further by allowing access to audit trail
information directly. First, you need to add a new private field to CommerceLibOrderInfo to
hold this data:

 private List<CommerceLibAuditInfo> auditTrail;

Next, you need to give access to this field via a property. Here you can use a “lazy initialization”
scheme and only load the audit trail when it’s requested. When this happens, you use the new
CommerceLibAccess.GetOrderAuditTrail method to obtain the audit trail data:

 public List<CommerceLibAuditInfo> AuditTrail
 {
 get
 {
 if (auditTrail == null)
 {
 auditTrail = CommerceLibAccess.GetOrderAuditTrail(
 orderID.ToString());
 }
 return auditTrail;
 }
 }

Darie-Watson_4681C15.fm Page 570 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 571

The ConvertDataTableToOrders Method

Next you need to add several methods to CommerceLibAccess to let the order admin page obtain
lists of CommerceLibOrderInfo objects by using various filters. In all cases, you can return this
information in the form of a List<CommerceLibOrderInfo> generic collection. Because the generic
GenericDataAccess.ExecuteSelectCommand method you use to get data returns a DataTable, it
makes sense to provide a standard way to convert between these list types. Along the way, you
can discard invalid or old data (such as existing orders from the code in the first part of this book).

Add the following method to CommerceLibAccess:

 public static List<CommerceLibOrderInfo>
 ConvertDataTableToOrders(DataTable table)
 {
 List<CommerceLibOrderInfo> orders =
 new List<CommerceLibOrderInfo>(table.Rows.Count);
 foreach (DataRow orderRow in table.Rows)
 {
 try
 {
 // try to add order
 orders.Add(new CommerceLibOrderInfo(orderRow));
 }
 catch
 {
 // can't add this order
 }
 }
 return orders;
 }

The GetOrdersByCustomer Method

This is the first of the new CommerceLibAccess methods that will use the ConvertData➥

TableToOrders method added in the last section. In this case, the method passes the GUID ID of
a customer to the CommerceLibOrdersGetByCustomer stored procedure and returns the resultant
orders in the form of a List<CommerceLibOrderInfo> collection.

Add the following method to CommerceLibAccess:

 public static List<CommerceLibOrderInfo> GetOrdersByCustomer(
 string customerID)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrdersGetByCustomer";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@CustomerID";
 param.Value = new Guid(customerID);

Darie-Watson_4681C15.fm Page 571 Friday, September 16, 2005 10:36 AM

572 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 param.DbType = DbType.Guid;
 comm.Parameters.Add(param);
 // obtain the results
 return ConvertDataTableToOrders(
 GenericDataAccess.ExecuteSelectCommand(comm));
 }

The GetOrdersByDate Method

Similarly, this method uses the CommerceLibOrdersGetByDate stored procedure to get the orders
between two dates.

Add the following method to CommerceLibAccess:

 public static List<CommerceLibOrderInfo> GetOrdersByDate(
 string startDate, string endDate)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrdersGetByDate";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@StartDate";
 param.Value = startDate;
 param.DbType = DbType.Date;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@EndDate";
 param.Value = endDate;
 param.DbType = DbType.Date;
 comm.Parameters.Add(param);
 // obtain the results
 return ConvertDataTableToOrders(
 GenericDataAccess.ExecuteSelectCommand(comm));
 }

The GetOrdersByRecent Method

This method uses the CommerceLibOrdersGetByRecent stored procedure to get the most recently
placed orders. The number of orders to return is determined by the count parameter.

Add the following method to CommerceLibAccess:

 public static List<CommerceLibOrderInfo> GetOrdersByRecent(
 int count)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();

Darie-Watson_4681C15.fm Page 572 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 573

 // set the stored procedure name
 comm.CommandText = "CommerceLibOrdersGetByRecent";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@Count";
 param.Value = count;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // obtain the results
 return ConvertDataTableToOrders(
 GenericDataAccess.ExecuteSelectCommand(comm));
 }

The GetOrdersByStatus Method

The last order obtaining stored procedure to use is CommerceLibOrdersGetByStatus.
Add the following method to CommerceLibAccess:

 public static List<CommerceLibOrderInfo> GetOrdersByStatus(
 int status)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrdersGetByStatus";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@Status";
 param.Value = status;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // obtain the results
 return ConvertDataTableToOrders(
 GenericDataAccess.ExecuteSelectCommand(comm));
 }

The UpdateOrder Method

The last business tier addition to make is a method for updating orders. Previously you’ve
achieved this using the OrderAccess.Update method, which used an OrderInfo struct parameter to
specify the data to update. Now you have a more “active” representation of order data, namely
CommerceLibOrderInfo, so this is no longer a suitable option. Instead, you’ll simply have a
parameter for each field you want to update.

Add the following method to CommerceLibAccess:

Darie-Watson_4681C15.fm Page 573 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

574 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 public static void UpdateOrder(int orderID,
 string newDateCreated, string newDateShipped,
 int newStatus, string newAuthCode, string newReference,
 string newComments)
 {
 // get a configured DbCommand object
 DbCommand comm = GenericDataAccess.CreateCommand();
 // set the stored procedure name
 comm.CommandText = "CommerceLibOrderUpdate";
 // create a new parameter
 DbParameter param = comm.CreateParameter();
 param.ParameterName = "@OrderID";
 param.Value = orderID;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@DateCreated";
 param.Value = DateTime.Parse(newDateCreated);
 param.DbType = DbType.DateTime;
 comm.Parameters.Add(param);
 // The DateShipped parameter is sent only if data is available
 if (newDateShipped != null)
 {
 param = comm.CreateParameter();
 param.ParameterName = "@DateShipped";
 param.Value = DateTime.Parse(newDateShipped);
 param.DbType = DbType.DateTime;
 comm.Parameters.Add(param);
 }
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Status";
 param.Value = newStatus;
 param.DbType = DbType.Int32;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@AuthCode";
 param.Value = newAuthCode;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Reference";
 param.Value = newReference;
 param.DbType = DbType.String;

Darie-Watson_4681C15.fm Page 574 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 575

 comm.Parameters.Add(param);
 // create a new parameter
 param = comm.CreateParameter();
 param.ParameterName = "@Comments";
 param.Value = newComments;
 param.DbType = DbType.String;
 comm.Parameters.Add(param);
 // update the order
 GenericDataAccess.ExecuteNonQuery(comm);
 }

One point to note here concerns the newDateShipped parameter, which is an instance of a
string, but might be null. Here you can use the HasValue property to see if a value has been
supplied and must also use the Value parameter to pass a value to the SQL parameter, because
this expects a plain DateTime value.

Presentation Tier Modifications
As noted earlier, to tie in to the new order information you need to modify both
OrdersAdmin.aspx and OrderDetailsAdmin.ascx. The modifications vary between fairly major
and quite subtle, because you’ll be using roughly the same look and feel.

Modifying the OrdersAdmin.aspx Page

This page could be modified in all manner of ways to achieve the new functionality you want.
In some setups, it might be better not to use this page at all, but rather implement this function-
ality as a Windows Forms application. This may be appropriate, for example, if your suppliers
are in-house and on the same network. Alternatively, it might be better to combine this Windows
Forms approach with web services.

Whichever method you choose, the basic functionality is the same: Suppliers and admin-
istrators should be able to view a list of orders that need attention and edit them or advance
them in the pipeline manually. This is simply a case of calling the OrderProcess.Process
method as described earlier.

To simplify things in this section, you’ll use the same page for both administrators and
suppliers. This might not be ideal in all situations, because you might not want to expose all
order details and audit information to external suppliers. However, for demonstration purposes,
this reduces the amount of code you have to get through. In a more advanced setup, you could
provide a new Suppliers role in the existing security setup and restrict the functionality of this
page accordingly.

As a starting point, you’ll take the existing OrdersAdmin.aspx code and rewrite it to provide
the functionality required. In fact, you can simplify the code slightly to achieve this, because
you won’t need to update order data as completely as you did before.

The first thing to change is the list of filters that can be used to obtain orders. Specifically,
you’ll add two new ones for obtaining orders by customer or by ID and replace the filters for
“unverified, uncanceled” and “verified, uncompleted” orders. The two replacements will be
for supplier use—to display orders awaiting stock or shipment.

The most interesting new addition here is the filter for orders by customer. You’ll simplify
things here by providing a drop-down selection of customer names, which you can obtain

Darie-Watson_4681C15.fm Page 575 Friday, September 16, 2005 10:36 AM

576 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

(along with IDs) from the ASPNETDB.MDF database. You can set up a connection to this database
by dragging an SqlDataSource control (call it CustomerNameDS) onto the existing OrdersAdmin.aspx
form and following the wizard steps. The exact process for doing this varies depending on your
configuration, but the important thing is to use the following SQL query when requested:

SELECT vw_aspnet_Users.UserName, vw_aspnet_Users.UserId
 FROM vw_aspnet_Users
 INNER JOIN aspnet_UsersInRoles
 ON vw_aspnet_Users.UserId = aspnet_UsersInRoles.UserId
 INNER JOIN aspnet_Roles
 ON aspnet_UsersInRoles.RoleId = aspnet_Roles.RoleId
 WHERE (aspnet_Roles.RoleName = 'Customers')

You’ll likely be prompted to save the connection string along the way, which is a sensible
thing to do in case you want to use this database again in the future. You’ll end up with code
similar to the following:

 <asp:SqlDataSource ID="CustomerNameDS" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:BalloonShopAspNetDBConnectionString %>"
 SelectCommand="SELECT vw_aspnet_Users.UserName,
 vw_aspnet_Users.UserId FROM vw_aspnet_Users INNER JOIN
 aspnet_UsersInRoles ON vw_aspnet_Users.UserId =
 aspnet_UsersInRoles.UserId INNER JOIN aspnet_Roles ON
 aspnet_UsersInRoles.RoleId = aspnet_Roles.RoleId WHERE
 (aspnet_Roles.RoleName = 'Customers')" />

Next, replace the code in OrdersAdmin.aspx for the existing filters with the following:

 Show orders by customer
 <asp:DropDownList ID="userDropDown" runat="server"
 DataSourceID="CustomerNameDS" DataTextField="UserName"
 DataValueField="UserId" />
 <asp:Button ID="byCustomerGo" runat="server"
 CssClass="AdminButtonText" Text="Go"
 OnClick="byCustomerGo_Click" />

 Get order by ID
 <asp:TextBox ID="orderIDBox" runat="server" Width="77px" />
 <asp:Button ID="byIDGo" runat="server" CssClass="AdminButtonText"
 Text="Go" OnClick="byIDGo_Click" />

 Show the most recent
 <asp:TextBox ID="recentCountTextBox" runat="server" MaxLength="4"
 Width="40px">20</asp:TextBox>
 orders
 <asp:Button ID="byRecentGo" runat="server"
 CssClass="AdminButtonText" Text="Go"

Darie-Watson_4681C15.fm Page 576 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 577

 OnClick="byRecentGo_Click" />

 Show all orders created between
 <asp:TextBox ID="startDateTextBox" runat="server" Width="72px" />
 and
 <asp:TextBox ID="endDateTextBox" runat="server" Width="72px" />
 <asp:Button ID="byDateGo" runat="server"
 CssClass="AdminButtonText" Text="Go"
 OnClick="byDateGo_Click" />

 Show all orders awaiting stock check
 <asp:Button ID="awaitingStockGo" runat="server"
 CssClass="AdminButtonText" Text="Go"
 OnClick="awaitingStockGo_Click" />

 Show all orders awaiting shipment
 <asp:Button ID="awaitingShippingGo" runat="server"
 CssClass="AdminButtonText" Text="Go"
 OnClick="awaitingShippingGo_Click" />

 ...

The next line after this code (indicated by the ellipsis) should be the errorLabel label. You
can leave this label, and the validation controls that follow, as they are.

Note that the userDropDown control includes the UserId field as its DataValueField. The
data for each item is therefore the GUID value that identifies a user, making data retrieval in
the code behind very easy, as you’ll see shortly.

Next you need to change the columns in the grid control, the GridView that displays order
information. You’ll leave the styling unchanged, however. The modified set of columns is
as follows:

 <Columns>
 <asp:BoundField DataField="OrderID" HeaderText="Order ID"
 ReadOnly="True" SortExpression="OrderID" />
 <asp:BoundField DataField="DateCreated"
 HeaderText="Date Created" ReadOnly="True"
 SortExpression="DateCreated" />
 <asp:BoundField DataField="DateShipped"
 HeaderText="Date Shipped" ReadOnly="True"
 SortExpression="DateShipped" />
 <asp:BoundField DataField="StatusAsString" HeaderText="Status"
 ReadOnly="True" SortExpression="StatusAsString" />
 <asp:BoundField DataField="CustomerName"
 HeaderText="Customer Name" ReadOnly="True"
 SortExpression="CustomerName" />
 <asp:ButtonField CommandName="Select" Text="Select" />
 </Columns>

Darie-Watson_4681C15.fm Page 577 Friday, September 16, 2005 10:36 AM

578 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

Finally, you need to modify the reference to the OrderDetailsAdmin.ascx user control
slightly. As you’ll see shortly, this user control will now contain a drop-down list control bound
to a list of order statuses. To simplify your code, this control requires access to viewstate infor-
mation, so viewstate needs to be enabled:

 <uc1:OrderDetailsAdmin id="orderDetailsAdmin" runat="server">
 </uc1:OrderDetailsAdmin>

Now we can move on to OrdersAdmin.aspx.cs. In fact, you can delete all the existing code
apart from the Page_Load and grid_SelectedIndexChanged methods. Next, add the following
using statement at the top of the file:

using System.Collections.Generic;

This is required for the generic lists you’ll be using. Now you need to supply one method
for each Go button. You’ll do this in the order they appear in the user interface, starting with the
customer filter:

 // Display orders by customer
 protected void byCustomerGo_Click(object sender, EventArgs e)
 {
 try
 {
 List<CommerceLibOrderInfo> orders =
 CommerceLibAccess.GetOrdersByCustomer(
 userDropDown.SelectedValue);
 grid.DataSource = orders;
 if (orders.Count == 0)
 {
 errorLabel.Text =
 "
Selected customer has made no orders.";
 }
 }
 catch
 {
 errorLabel.Text = "
Couldn't get the requested orders!";
 }
 finally
 {
 grid.DataBind();
 }
 }

Here you get the necessary data with a single line of code. You simply call CommerceLibAccess.
GetOrdersByCustomer, passing in the selected value from the userDropDown control added
previously. Now you can see the benefit of storing the GUID that identifies users in the drop-
down list control.

Darie-Watson_4681C15.fm Page 578 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 579

After you have a list of orders in the form of a List<CommerceLibOrderInfo> collection, you
can simply bind that collection to grid. The generic collection classes are ideal for this sort
of use.

There’s also an additional piece of error-checking code here—a check to see if any orders
have been returned. If any orders have been returned, you bind the data to the grid as usual (it
won’t be visible, so this is fine), but report the error via the errorLabel control. The errorLabel
control is also used if an error occurs.

Next we have the filter for a single order. This is necessary for suppliers who, as you may
recall, receive an email including the order ID. This means that they can quickly jump to the
order that requires their attention. The code is as follows:

 // Display single order only
 protected void byIDGo_Click(object sender, EventArgs e)
 {
 try
 {
 // clear order list with empty order list
 List<CommerceLibOrderInfo> orders =
 new List<CommerceLibOrderInfo>();
 grid.DataSource = orders;
 // Save the ID of the selected order in the session
 Session["AdminOrderID"] = orderIDBox.Text;
 // Display the order details admin control
 orderDetailsAdmin.Visible = true;
 }
 catch
 {
 errorLabel.Text = "
Couldn't get the requested order!";
 }
 finally
 {
 grid.DataBind();
 }
 }

Note that a generic list is still used to bind to grid here. The only difference is that it will
only ever contain a single item.

As a shortcut, the code in this method also stores the retrieved order information automat-
ically. You may recall from earlier chapters that the OrderDetailsAdmin.ascx control uses a
value stored in session state to bind to an order, so you simply set this value and make the
control visible.

If an error occurs, you report it via errorLabel in the standard way.
The remainder of the new button click handler methods operate in much the same way.

Each one calls one of the new methods of the CommerceLibAccess class to obtain a list of orders,
and then binds that list to the grid control or displays an error. Next up is the method for
obtaining recent orders:

Darie-Watson_4681C15.fm Page 579 Friday, September 16, 2005 10:36 AM

580 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 // Display the most recent orders
 protected void byRecentGo_Click(object sender, EventArgs e)
 {
 try
 {
 int recordCount = Int32.Parse(recentCountTextBox.Text);
 List<CommerceLibOrderInfo> orders =
 CommerceLibAccess.GetOrdersByRecent(recordCount);
 grid.DataSource = orders;
 if (orders.Count == 0)
 {
 errorLabel.Text = "
No orders to get.";
 }
 }
 catch
 {
 errorLabel.Text = "
Couldn't get the requested orders!";
 }
 finally
 {
 grid.DataBind();
 }
 }

Then we have the method for getting orders between two dates:

 // Display orders that happened in a specified period of time
 protected void byDateGo_Click(object sender, EventArgs e)
 {
 try
 {
 string startDate = startDateTextBox.Text;
 string endDate = endDateTextBox.Text;
 List<CommerceLibOrderInfo> orders =
 CommerceLibAccess.GetOrdersByDate(startDate, endDate);
 grid.DataSource = orders;
 if (orders.Count == 0)
 {
 errorLabel.Text =
 "
No orders between selected dates.";
 }
 }
 catch
 {
 errorLabel.Text = "
Couldn't get the requested orders!";
 }

Darie-Watson_4681C15.fm Page 580 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 581

 finally
 {
 grid.DataBind();
 }
 }

And finally, two methods for getting orders that are either awaiting a stock check or
shipment, both of which use CommerceLibAccess.GetOrdersByStatus:

 // Display orders awaiting stock
 protected void awaitingStockGo_Click(object sender, EventArgs e)
 {
 try
 {
 List<CommerceLibOrderInfo> orders =
 CommerceLibAccess.GetOrdersByStatus(3);
 grid.DataSource = orders;
 if (orders.Count == 0)
 {
 errorLabel.Text = "
No orders awaiting stock check.";
 }
 }
 catch
 {
 errorLabel.Text = "
Couldn't get the requested orders!";
 }
 finally
 {
 grid.DataBind();
 }
 }

 // Display orders awaiting shipping
 protected void awaitingShippingGo_Click(object sender, EventArgs e)
 {
 try
 {
 List<CommerceLibOrderInfo> orders =
 CommerceLibAccess.GetOrdersByStatus(6);
 grid.DataSource = orders;
 if (orders.Count == 0)
 {
 errorLabel.Text = "
No orders awaiting shipment.";
 }
 }

Darie-Watson_4681C15.fm Page 581 Friday, September 16, 2005 10:36 AM

582 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 catch
 {
 errorLabel.Text = "
Couldn't get the requested orders!";
 }
 finally
 {
 grid.DataBind();
 }
 }

The only differences between these two methods are the status code passed and the error
messages possible.

The next thing to modify in this file is to tie the new order ID text box to the appropriate
button in Page_Load:

 protected void Page_Load(object sender, EventArgs e)
 {
 // Set the title of the page
 this.Title = BalloonShopConfiguration.SiteName +
 " : Orders Admin";
 // associate the check boxes with their buttons
 Utilities.TieButton(this.Page, orderIDBox, byIDGo);
 Utilities.TieButton(this.Page, recentCountTextBox, byRecentGo);
 Utilities.TieButton(this.Page, startDateTextBox, byDateGo);
 Utilities.TieButton(this.Page, endDateTextBox, byDateGo);
 }

Finally, you need to make a minor modification to the grid_SelectedIndexChanged method.
This is because we have reconfigured the OrderDetailsAdmin.ascx control to use viewstate, and
because of this, it will remember the state of its Visible property. This control is hidden to start
off with, since no data is displayed. When you select an order, this user control must be displayed,
so you need to make sure Visible is set to true. The code modification is as follows:

 // Load the details of the selected order
 protected void grid_SelectedIndexChanged(object sender, EventArgs e)
 {
 // Save the ID of the selected order in the session
 Session["AdminOrderID"] =
 grid.DataKeys[grid.SelectedIndex].Value.ToString();

 // Display order if it's not already being displayed
 orderDetailsAdmin.Visible = true;
 }

Modifying the OrderDetailsAdmin.ascx Control

The other control to modify is OrderDetailsAdmin.ascx, which shows the details of an order.
Earlier in the book, this control also included the capability to modify order data, but we’re
removing most of this functionality here, as mentioned earlier. We’re also providing the capability

Darie-Watson_4681C15.fm Page 582 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 583

for orders to be pushed along the pipeline when they are stuck at the Awaiting Confirmation of
Stock and Awaiting Confirmation of Shipment stages. Finally, you’ll add a second DataGrid
control where audit trail data will be displayed.

The first modifications will be to the OrderDetailsAdmin.ascx, starting with the order
information display table. This table needs to be modified as follows:

<table class="AdminPageText">
 <tr>
 <td width="130">Total Cost:</td>
 <td><asp:Label ID="totalCostLabel" runat="server"
 CssClass="ProductPrice" /></td>
 </tr>
 <tr>
 <td width="130">Date Created:</td>
 <td><asp:TextBox ID="dateCreatedTextBox" runat="server"
 Width="400px" enabled="false" /></td>
 </tr>
 <tr>
 <td width="130">Date Shipped:</td>
 <td><asp:TextBox ID="dateShippedTextBox" runat="server"
 Width="400px" /></td>
 </tr>
 <tr>
 <td width="130">Status:</td>
 <td><asp:DropDownList ID="statusDropDown" runat="server" /></td>
 </tr>
 <tr>
 <td width="130">Authorization Code:</td>
 <td><asp:TextBox ID="authCodeTextBox" runat="server"
 Width="400px" /></td>
 </tr>
 <tr>
 <td width="130">Reference Number:</td>
 <td><asp:TextBox ID="referenceTextBox" runat="server"
 Width="400px" /></td>
 </tr>
 <tr>
 <td width="130">Comments:</td>
 <td><asp:TextBox ID="commentsTextBox" runat="server"
 Width="400px" /></td>
 </tr>
 <tr>
 <td width="130">Customer Name:</td>
 <td><asp:TextBox ID="customerNameTextBox" runat="server"
 Width="400px" enabled="false" /></td>
 </tr>

Darie-Watson_4681C15.fm Page 583 Friday, September 16, 2005 10:36 AM

584 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 <tr valign="top">
 <td width="130">Shipping Address:</td>
 <td><asp:TextBox ID="shippingAddressTextBox" runat="server"
 Width="400px" Height="200px" TextMode="MultiLine"
 enabled="false" /></td>
 </tr>
 <tr valign="top">
 <td width="130">Shipping Type:</td>
 <td><asp:TextBox ID="shippingTypeTextBox" runat="server"
 Width="400px" enabled="false" /></td>
 </tr>
 <tr>
 <td width="130">Customer Email:</td>
 <td><asp:TextBox ID="customerEmailTextBox" runat="server"
 Width="400px" enabled="false" /></td>
 </tr>
</table>

Apart from the fields removed and the additional fields added, note that the order status is
displayed in a DropDownList, and that the customer data fields have their enabled attribute set
to false. This is because editing of this data is no longer allowed.

Next, the buttons beneath this table need replacing as follows:

<asp:Button ID="editButton" runat="server" CssClass="AdminButtonText"
 Text="Edit" Width="100px" OnClick="editButton_Click" />
<asp:Button ID="updateButton" runat="server"
 CssClass="AdminButtonText" Text="Update" Width="100px"
 OnClick="updateButton_Click" />
<asp:Button ID="cancelButton" runat="server"
 CssClass="AdminButtonText" Text="Cancel" Width="100px"
 OnClick="cancelButton_Click" />

<asp:Button ID="processOrderButton" runat="server"
 CssClass="AdminButtonText" Text="Process Order"
 Width="310px" OnClick="processOrderButton_Click" />

<asp:Button ID="cancelOrderButton" runat="server"
 CssClass="AdminButtonText" Text="Cancel Order"
 Width="310px" OnClick="cancelOrderButton_Click" />

The buttons for marking the order as verified or completed are replaced with a single
button for processing the order. You’ll change the text on this button as appropriate, because
you can also use it when suppliers are checking stock or shipping orders. The cancel order
button has also changed slightly, in keeping with the new scheme.

Finally, you need to add a new DataGrid for the audit trail, using the same style as the
DataGrid for order details:

<asp:Label ID="Label1" runat="server" CssClass="AdminPageText"
 Text="Order audit trail:" />

Darie-Watson_4681C15.fm Page 584 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 585

<asp:GridView ID="auditGrid" runat="server"
 AutoGenerateColumns="False" BackColor="White"
 BorderColor="#E7E7FF" BorderStyle="None" BorderWidth="1px"
 CellPadding="3" GridLines="Horizontal" Width="100%">
 <FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />
 <RowStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
 <Columns>
 <asp:BoundField DataField="AuditID" HeaderText="Audit ID"
 ReadOnly="True" SortExpression="AuditID" />
 <asp:BoundField DataField="DateStamp" HeaderText="Date Stamp"
 ReadOnly="True" SortExpression="DateStamp" />
 <asp:BoundField DataField="MessageNumber"
 HeaderText="Message Number" ReadOnly="True"
 SortExpression="MessageNumber" />
 <asp:BoundField DataField="Message" HeaderText="Message"
 ReadOnly="True" SortExpression="Message" />
 </Columns>
 <PagerStyle BackColor="#E7E7FF" ForeColor="#4A3C8C"
 HorizontalAlign="Right" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <AlternatingRowStyle BackColor="#F7F7F7" />
</asp:GridView>

Next you come to the code behind OrderDetailsAdmins.ascx. The first modifications
here are to remove the button handlers you no longer need (markVerifiedButton_Click,
markCompletedButton_Click, and markCanceledButton_Click) and add a reference to CommerceLib.
Next, you need to populate the list items in the statusDropDown control. You do this in Page_Load,
but only when not in postback mode (or if no items yet exist), because otherwise we’d lose the
selected item:

 protected void Page_Load(object sender, EventArgs e)
 {
 // populate statuses if necessary
 if (!IsPostBack || statusDropDown.Items.Count == 0)
 {
 for (int index = 0; index <
 CommerceLibAccess.OrderStatuses.Length; index++)
 {
 statusDropDown.Items.Add(
 new ListItem(CommerceLibAccess.OrderStatuses[index],
 index.ToString()));
 }
 }
 }

Darie-Watson_4681C15.fm Page 585 Friday, September 16, 2005 10:36 AM

586 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

This code uses the static string array added to CommerceLibAccess earlier. The next modifi-
cation is to PopulateControls(), because the data we are populating is different. The new
version of this method starts as follows:

 // populate the form with data
 private void PopulateControls()
 {
 // obtain order ID from the session
 string orderId = Session["AdminOrderID"].ToString();
 // obtain order info
 CommerceLibOrderInfo orderInfo =
 CommerceLibAccess.GetOrder(orderId);
 // populate labels and text boxes with order info
 orderIdLabel.Text = "Displaying Order #" + orderId;
 totalCostLabel.Text = String.Format("{0:c} ",
 orderInfo.TotalCost);
 dateCreatedTextBox.Text = orderInfo.DateCreated.ToString();
 dateShippedTextBox.Text = orderInfo.DateShipped.ToString();
 statusDropDown.SelectedIndex = orderInfo.Status;
 authCodeTextBox.Text = orderInfo.AuthCode;
 referenceTextBox.Text = orderInfo.Reference;
 commentsTextBox.Text = orderInfo.Comments;
 customerNameTextBox.Text = orderInfo.CustomerName;
 shippingAddressTextBox.Text = orderInfo.CustomerAddressAsString;
 shippingTypeTextBox.Text = orderInfo.Shipping.ShippingType;
 customerEmailTextBox.Text = orderInfo.Customer.Email;

This is very similar to the original code, but uses a CommerceLibOrderInfo object to populate
the (slightly different) fields. Because you’ve changed the buttons too, you need to decide
which of them to enable and what text to display on the order processing button.

 // Decide which one of the buttons should
 // be enabled and which should be disabled
 switch (orderInfo.Status)
 {
 case 8:
 case 9:
 // if the order was canceled or completed...
 processOrderButton.Text = "Process Order";
 processOrderButton.Enabled = false;
 cancelOrderButton.Enabled = false;
 break;
 case 3:
 // if the order is awaiting a stock check...
 processOrderButton.Text = "Confirm Stock for Order";
 processOrderButton.Enabled = true;
 cancelOrderButton.Enabled = true;
 break;

Darie-Watson_4681C15.fm Page 586 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 587

 case 6:
 // if the order is awaiting shipment...
 processOrderButton.Text = "Confirm Order Shipment";
 processOrderButton.Enabled = true;
 cancelOrderButton.Enabled = true;
 break;
 default:
 // otherwise...
 processOrderButton.Text = "Process Order";
 processOrderButton.Enabled = true;
 cancelOrderButton.Enabled = true;
 break;
 }

A switch statement is used here to enable or disable buttons according to the current status.
The rest of the code in PopulateControls() binds order info and audit trail data and is as follows:

 // fill the data grid with order details
 grid.DataSource = orderInfo.OrderDetails;
 grid.DataBind();

 // fill the audit data grid with audit trail
 auditGrid.DataSource = orderInfo.AuditTrail;
 auditGrid.DataBind();
 }

The SetEditMode method is also slightly different because the controls to enable or disable
have changed:

 // enable or disable edit mode
 private void SetEditMode(bool enable)
 {
 dateShippedTextBox.Enabled = enable;
 statusDropDown.Enabled = enable;
 authCodeTextBox.Enabled = enable;
 referenceTextBox.Enabled = enable;
 commentsTextBox.Enabled = enable;
 editButton.Enabled = !enable;
 updateButton.Enabled = enable;
 cancelButton.Enabled = enable;
 }

The code for the Edit and Cancel buttons remains unchanged, but Update needs rewriting
to use the new business tier method. The code is as follows:

 // update order information
 protected void updateButton_Click(object sender, EventArgs e)
 {
 try
 {

Darie-Watson_4681C15.fm Page 587 Friday, September 16, 2005 10:36 AM

8213592a117456a340854d18cee57603

588 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

 // Get new order data
 int orderID = int.Parse(Session["AdminOrderID"].ToString());
 string dateCreated = dateCreatedTextBox.Text;
 string dateShipped = dateShippedTextBox.Text;
 int status = int.Parse(statusDropDown.SelectedValue);
 string authCode = authCodeTextBox.Text;
 string reference = referenceTextBox.Text;
 string comments = commentsTextBox.Text;
 // Update the order
 CommerceLibAccess.UpdateOrder(orderID, dateCreated,
 dateShipped, status, authCode, reference, comments);
 }
 catch
 {
 // In case of an error, we simply ignore it
 }
 // Exit edit mode and populate the form again
 SetEditMode(false);
 PopulateControls();
 Page.DataBind();
 }

Again, the code is only slightly different. You extract the data in a similar way, but use
several local variables rather than a single OrderInfo instance. These variables are passed to
CommerceLibAccess.UpdateOrder to update the order.

The code for the order-processing button is, thanks to the order processor class, very simple:

 // continue order processing
 protected void processOrderButton_Click(object sender, EventArgs e)
 {
 string orderId = Session["AdminOrderID"].ToString();
 OrderProcessor processor = new OrderProcessor(orderId);
 processor.Process();
 PopulateControls();
 }

You instantiate an OrderProcessor instance for the selected order (found from the string in
the session state) and call Process(). This same call works for suppliers and administrators.
Whatever stage the order has reached, this call attempts to push it forward. After order processing
(which may involve a lot of work, but should be quick if all goes well), you repopulate the order
data to update it.

Finally, you have the code required to cancel an order, which just means setting the status
to 9. The code is already in place to do this, and you call it as follows:

Darie-Watson_4681C15.fm Page 588 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 589

 // cancel order
 protected void cancelOrderButton_Click(object sender, EventArgs e)
 {
 string orderId = Session["AdminOrderID"].ToString();
 CommerceLibAccess.UpdateOrderStatus(int.Parse(orderId), 9);
 PopulateControls();
 }

Testing the Order Administration Page
All that remains now is to check that everything is working properly. To do this, use the web
interface to place an order and then examine it via the OrdersAdmin.aspx page. You should see
that the order is awaiting confirmation of stock, as shown in Figure 15-3.

Figure 15-3. Order awaiting stock confirmation

Click Select and scroll down until the button for confirming stock appears, as shown in
Figure 15-4.

Darie-Watson_4681C15.fm Page 589 Friday, September 16, 2005 10:36 AM

590 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

Figure 15-4. Confirm Stock button

Click the Confirm Stock for Order button, and the order is processed. Because this happens
very quickly, you are soon presented with the next stage, a prompt to confirm shipment. Click
the Confirm Order Shipment button and the order is completed.

If you scroll down further, you can see all audit trail messages that have been stored in the
database concerning this order, as shown in Figure 15-5.

Darie-Watson_4681C15.fm Page 590 Friday, September 16, 2005 10:36 AM

C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E 591

Figure 15-5. Audit trail messages for this order

Summary
You’ve taken giant strides toward completing your e-commerce application in this chapter.
Now you have a fully audited, secure backbone for the application.

Specifically, we’ve covered the following:

• Modifications to the BalloonShop application to enable your own pipeline processing

• The basic framework for the order pipeline

Darie-Watson_4681C15.fm Page 591 Friday, September 16, 2005 10:36 AM

592 C H A P T E R 1 5 ■ I M P L E M E N T I N G T H E P I P E L I N E

• The database additions for auditing data and storing additional required data in the
Orders table

• The implementation of most of the order pipeline, apart from those sections that deal
with credit cards

• A simple implementation of an order administration web page

The only thing missing that needs to be added before you can deliver this application to
the outside world is credit card processing functionality, which we’ll look at in the next chapter.

Darie-Watson_4681C15.fm Page 592 Friday, September 16, 2005 10:36 AM

593

■ ■ ■

C H A P T E R 1 6

Credit Card Transactions

The last thing you need to do before launching the e-commerce site is enable credit card
processing. In this chapter, we’ll look at how you can build this into the pipeline you created in
the last chapter.

We’ll start by looking at the theory behind credit card transactions, the sort of organiza-
tions that help you achieve credit card processing, and the sort of transactions that are possible.
Moving on, we’ll take two example organizations and discuss the specifics of their transaction
APIs (Application Program Interfaces, the means by which you access credit card transaction
functionality). After this, you’ll build a new set of classes to help you use one of these transaction
APIs via some simple test code.

Finally, you’ll integrate the API with the BalloonShop e-commerce application and order-
processing pipeline.

Learning the Credit Card Transaction
Fundamentals
Banks and other financial institutions use secure networks for their transactions, based on
the X.25 protocol rather than TCP/IP (Transmission Control Protocol/Internet Protocol, the
primary means by which data is transmitted across the Internet). X.25 isn’t something you
need to know anything about, apart from the fact that it’s a different protocol for networking
and isn’t compatible with TCP/IP. As such, X.25 networks are completely separate from the
Internet, and although it’s possible to get direct access to them, this is unlikely to be a reasonable
option. To do so, you might have to enter into some serious negotiation with the owner of the
network you want to use. The owner will want to be 100% sure that you are a reliable customer
who is capable of enforcing the necessary safeguards to prevent an attack on the system. The
owner of the network won’t be handing out these licenses to just anyone, because most people
can’t afford the security measures required (which include locking your servers in a cage,
sending daily backup tapes down a secure chute, having three individuals with separate keys
to access these tapes, and so on).

The alternative is to go via a gateway provider. This enables you to perform your side of the
credit card transaction protocol over the Internet (using a secure protocol), while relying on
your chosen gateway to communicate with X.25 networks. Although there is a cost involved
with this (it’s a fact of life, unfortunately), at least the provider has reached some deal with
financial institutions to keep costs low. This saving is passed on to you (after the gateway takes

Darie-Watson_4681C16.fm Page 593 Friday, September 16, 2005 10:39 AM

594 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

its share), so it’s likely to be much cheaper than having your own X.25 connection. This method
is also cheaper than using a third party such as PayPal, because you only need the minimum
functionality when you’re handling your own order pipeline. You don’t need, for example, to
use all the order-auditing functionality offered by a company such as PayPal, because in the
last chapter, you already built all this functionality.

Working with Credit Card Payment Gateways
Unlike with PayPal, to work with a gateway organization, you first need to open a merchant
bank account. This can be done at most banks and will get you a merchant ID that you can use
when signing up with the gateway. The next step is to find a suitable gateway. Unfortunately,
this can be a lot of hard work, as you’ll have to shop around for the best deal!

It isn’t hard to find a gateway, but it is hard to find the right one. Literally hundreds of
companies are ready to take a cut of your sales. A quick search on the Internet for “credit card
gateway” will get you a long list. The web sites of these companies are for the most part pure
brochureware—you’ll find yourself reading through pages of text about how they are the best
and most secure at what they do, only to end up with a form to fill in so that a customer service
representative can call you to “discuss your needs.” In the long run, you can rest assured that
at least you will probably only have to go through the procedure once.

You’ll probably find that most of the organizations offering this service offer similar pack-
ages, so there may be very little that influences your choice. However, key points to look for
include which banks they will do business with (your merchant bank account will have to be at
one of these), which currencies they deal in, and, of course, what the costs are.

In this chapter, we’ll look at two of the few organizations that are easy to deal with—DataCash
and VeriSign PayFlow Pro.

Table 16-1 shows some of the gateway services available.

DataCash

DataCash is a UK-based credit card gateway organization. Unfortunately, this means that
you’ll need a UK merchant bank account if you want to use it in your final application, but you
don’t have to worry about this for now. The reason for using DataCash in this chapter is that
you don’t have to do very much to get access to a rather useful test account—you don’t even
need a merchant bank account. All you need is a business email address, as it is DataCash
policy that personal addresses can’t be used for signing up. As you’ll see later in this chapter,

Table 16-1. Gateway Services

United States Web Address United Kingdom Web Address

First Data http://www.firstdata.com/ WorldPay http://www.worldpay.com/

Cardservice
International

http://www.cardservice.com/ DataCash http://www.datacash.com/

VeriSign Pay
Flow Pro

http://www.verisign.com/ VeriSign Pay
Flow Pro

http://www.verisign.com/

ICVerify http://www.icverify.com/

Darie-Watson_4681C16.fm Page 594 Friday, September 16, 2005 10:39 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 595

you can perform test transactions using so-called “magic” credit card numbers supplied by
DataCash, which will accept or decline transactions without performing any actual financial
transactions. This is fantastic for development purposes, because you don’t want to use your
own credit cards for testing!

The important point to bear in mind is that the techniques covered in this chapter apply to
every existing credit card gateway. The specifics may change slightly if you switch to a different
organization, but you’ll have done most of the hard work already.

■Note Before you ask, no, we’re not sales representatives for DataCash. It’s just that we’ve spent many
hours (days?) looking into credit card transactions, and so far we’ve yet to find a more developer-friendly way
of getting started.

PayFlow Pro

PayFlow Pro is a service supplied by the globally recognized Internet company VeriSign. This
company has established itself as an excellent resource for Internet security and e-commerce
applications, so it comes as no surprise that VeriSign has an entry in the competitive credit
card gateway arena.

In fact, the first edition of this book did not cover the PayFlow Pro service. However,
because readers have had great success with it, we feel obliged to cover it here.

■Note The authors of this book are in no way affiliated with VeriSign.

Understanding Credit Card Transactions
Whichever gateway you use; the basic principles of credit card transactions are the same. First,
the sort of transactions you’ll be dealing with in an e-commerce web site are known as Card
Not Present (CNP) transactions, which means you don’t have the credit card in front of you,
and you can’t check the customer signature. This isn’t a problem; after all, you’ve probably
been performing CNP transactions for some time now: online, over the phone, by mail, and so
on. It’s just something to be aware of should you see the CNP acronym.

Several advanced services are offered by various gateways, including cardholder address
verification, security code checking, fraud screening, and so on. Each of these adds an additional
layer of complexity to your credit card processing, and we’re not going to go into details here.
Rather, this chapter provides a starting point from which you can add these services if required.
With all these optional extras, the choice will involve how much money is passing through your
system and a trade-off between the costs of implementation and the potential costs if some-
thing goes wrong that could be prevented if you use these extra services. If you are interested
in these services, the customer service representative mentioned previously will be happy to
explain things.

You can perform several types of transaction, including the following:

Darie-Watson_4681C16.fm Page 595 Friday, September 16, 2005 10:39 AM

596 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

• Authorization: Basic type, checks card for funds and deducts them.

• Preauthorization: Checks cards for funds and allocates them if available, but doesn’t
deduct them immediately.

• Fulfillment: Completes a preauthorization transaction, deducting the funds already
allocated.

• Refund: Refunds a completed transaction or simply puts money on a credit card.

Again, the specifics vary, but these are the basic types.
In this chapter, you’ll use the pre/fulfill model, in which you don’t take payment until just

before you instruct your supplier to ship goods. This has been hinted at previously by the structure
of the pipeline you created in the last chapter.

Implementing Credit Card Processing
Now that we’ve covered the basics, we need to look at how to get things working in the BalloonShop
application using the DataCash system. First, you need to obtain a test account with DataCash:

1. Go to http://www.datacash.com/.

2. Head to the Apply Now section of the web site and click Get a Test Account.

3. Enter your details and submit.

4. From the email you receive, make a note of your account username and password, as
well as the additional information required for accessing the DataCash reporting system.

The next step is normally to download one of DataCash’s toolkits for easy integration.
However, because DataCash doesn’t provide a .NET-compatible implementation, you must
use the XML API for performing transactions. Basically, this involves sending XML requests to
a certain URL using an SSL connection and deciphering the XML result. This is easy to do in .NET.

■Note After we look at DataCash in detail, we’ll examine the PayFlow Pro system, although we won’t show
the code implementation. The code is, however, available in the Source Code area of the Apress web site
(http://www.apress.com) for this book.

Considering the DataCash XML API
You’ll be doing a lot of XML manipulation when communicating with DataCash because you’ll
need to create XML documents to send to DataCash and extract data from XML responses. In
this section, we’ll take a quick look at the XML required for the operations you’ll be performing
and the responses you can expect.

Darie-Watson_4681C16.fm Page 596 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 597

Preauthentication Request

When you send a preauthentication request to DataCash, you need to include the following
information:

• DataCash username (known as the DataCash Client)

• DataCash password

• A unique transaction reference number (explained later in this section)

• The amount of money to be debited

• The currency used for the transaction (USD, GBP, and so on)

• The type of the transaction (for preauthentication, the code pre is used)

• The credit card number

• The credit card expiry date

• The credit card issue date (if applicable to the type of credit card being used)

• The credit card issue number (if applicable to the type of credit card being used)

The reference number must be a number between 6 and 12 digits long, which you choose
to uniquely identify the transaction with an order. Because you can’t use a short number, you
can’t just use the order ID values you’ve been using until now for orders. However, you can use
this order ID as the starting point for creating a reference number, simply by adding a high
number, such as 1,000,000. You can’t duplicate the reference number in any future transactions,
so you can be sure that after a transaction is completed, it won’t execute again, which might
otherwise result in charging the customer twice. This does mean, however, that if a credit card
is rejected, you might need to create a whole new order for the customer, but that shouldn’t be
a problem if required.

The XML request is formatted in the following way, with the values detailed previously
shown in bold:

<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Authentication>
 <password>DataCash password</password>
 <client>DataCash client</client>
 </Authentication>
 <Transaction>
 <TxnDetails>
 <merchantreference>Unique reference number</merchantreference>
 <amount currency='Currency Type'>Cash amount</amount>
 </TxnDetails>
 <CardTxn>
 <method>pre</method>

Darie-Watson_4681C16.fm Page 597 Friday, September 16, 2005 10:39 AM

598 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

 <Card>
 <pan>Credit card number</pan>
 <expirydate>Credit card expiry date</expirydate>
 </Card>
 </CardTxn>
 </Transaction>
</Request>

Response to Preauthentication Request

The response to a preauthentication request includes the following information:

• A status code number indicating what happened; 1 if the transaction was successful, or
one of several other codes if something else happens. For a complete list of return codes
for a DataCash server, log in to https://testserver.datacash.com/software/download.cgi
with your account details and download the relevant document.

• A reason for the status, which is basically a string explaining the status in English. For a
status of 1, this string is ACCEPTED.

• An authentication code used to fulfill the transaction.

• A reference code for use by DataCash.

• The time that the transaction was processed.

• The mode of the transaction, which is TEST when using the test account.

• Confirmation of the type of credit card used.

• Confirmation of the country that the credit card was issued in.

• The authorization code used by the bank (for reference only).

The XML for this is formatted as follows:

<?xml version="1.0" encoding="utf-8"?>
<Response>
 <status>Status code</status>
 <reason>Reason</reason>
 <merchantreference>Authentication code</merchantreference>
 <datacash_reference>Reference number</datacash_reference>
 <time>Time</time>
 <mode>TEST</mode>
 <CardTxn>
 <card_scheme>Card Type</card_scheme>
 <country>Country</country>
 <issuer>Card issuing bank</issuer>
 <authcode>Bank authorization code</authcode>
 </CardTxn>
</Response>

Darie-Watson_4681C16.fm Page 598 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 599

Fulfillment Request

For a fulfillment request, you need to send the following information:

• DataCash username (known as the DataCash Client)

• DataCash password

• The type of the transaction (for fulfillment, you use the code fulfil)

• The authentication code received earlier

• The reference number received earlier

Optionally, you can include additional information, such as a confirmation of the amount
to be debited from the credit card, although this isn’t really necessary.

This is formatted as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Authentication>
 <password>DataCash password</password>
 <client>DataCash client</client>
 </Authentication>
 <Transaction>
 <HistoricTxn>
 <reference>Reference Number</reference>
 <authcode>Authentication code</authcode>
 <method>fulfil</method>
 </HistoricTxn>
 </Transaction>
</Request>

Fulfillment Response

The response to a fulfillment request includes the following information:

• A status code number indicating what happened; 1 if the transaction was successful, or
one of several other codes if something else happens. Again for a complete list of the
codes, log in to https://testserver.datacash.com/software/download.cgi with your
account details and download the relevant document.

• A reason for the status, which is basically a string explaining the status in English. For a
status of 1, this string is FULFILLED OK.

• Two copies of the reference code for use by DataCash.

• The time that the transaction was processed.

• The mode of the transaction, which is TEST when using the test account.

The XML for this is formatted as follows:

Darie-Watson_4681C16.fm Page 599 Friday, September 16, 2005 10:39 AM

600 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

<?xml version="1.0" encoding="utf-8"?>
<Response>
 <status>Status code</status>
 <reason>Reason</reason>
 <merchantreference>Reference Code</merchantreference>
 <datacash_reference>Reference Code</datacash_reference>
 <time>Time</time>
 <mode>TEST</mode>
</Response>

Exchanging XML Data

You could build up the XML documents shown previously piece by piece, but the .NET Frame-
work allows you to do things in a much better way. The solution presented here involves XML
serialization. It’s possible to configure any .NET class so that it can be serialized as an XML
document, and that XML documents also can be used to instantiate classes. This involves
converting all public fields and properties into XML data and is the basis for the web services
functionality in .NET.

The default behavior for this is to create XML documents with elements named the same
as the public fields and properties that you are serializing. For example, you might have the
following class and member:

public class TestClass
{
 public string TestMember;
}

This is serialized as follows:

<?xml version="1.0" encoding="utf-8"?>
<TestClass>
 <TestMember>Value</TestMember>
</TestClass>

You can override this behavior using XML serialization attributes. You can force pieces of
data to be formatted in elements with custom names, as attributes, as plain text, and so on.

For example, you could force the previous class to serialize as an attribute as follows:

public class TestClass
{
 [XmlAttribute("TestAttribute")]
 public string TestMember;
}

The [XmlAttribute()] part means that the member that follows should be serialized as an
attribute, and the string parameter names the attribute. This class now serializes as follows:

Darie-Watson_4681C16.fm Page 600 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 601

<?xml version="1.0" encoding="utf-8"?>
<TestClass TestAttribute="Value" />

You can use several of these attributes, and you’ll see some of them in the example that
follows. This example demonstrates how you can create classes that represent DataCash
requests and responses, which are capable of serializing to and deserializing from an XML
representation. This makes it easy to send data to DataCash and allows you to use the full
power of .NET classes to provide an intelligent way of accessing data.

In the example that follows, you’ll create the classes necessary to exchange data with DataCash
and try out these classes using some simple client code. Note that several classes are used to
build up the XML because the structure involves several nested elements rather than a flat
structure.

Exercise: Communicating with DataCash

1. Create a new subdirectory in the App_Code directory of BalloonShop, called DataCashLib.

2. Add the following classes starting with AmountClass:

using System.Xml.Serialization;

namespace DataCashLib
{
 public class AmountClass
 {
 [XmlAttribute("currency")]
 public string Currency;

 [XmlText()]
 public string Amount;
 }
}

3. Add the following class, AuthenticationClass (note that all the classes that follow have a using
reference to System.Xml.Serialization and are in the DataCashLib namespace, just like the
preceding AmountClass, but this extra code isn’t shown from now on to save space):

public class AuthenticationClass
{
 [XmlElement("password")]
 public string Password;

 [XmlElement("client")]
 public string Client;
}

Darie-Watson_4681C16.fm Page 601 Friday, September 16, 2005 10:39 AM

8213592a117456a340854d18cee57603

602 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

4. Add the following class, CardClass:

public class CardClass
{
 [XmlElement("pan")]
 public string CardNumber;

 [XmlElement("expirydate")]
 public string ExpiryDate;

 [XmlElement("startdate")]
 public string StartDate;

 [XmlElement("issuenumber")]
 public string IssueNumber;
}

5. Add the following class, CardTxnRequestClass:

public class CardTxnRequestClass
{
 [XmlElement("method")]
 public string Method;

 [XmlElement("Card")]
 public CardClass Card = new CardClass();
}

6. Add the following class, CardTxnResponseClass:

public class CardTxnResponseClass
{
 [XmlElement("card_scheme")]
 public string CardScheme;

 [XmlElement("country")]
 public string Country;

 [XmlElement("issuer")]
 public string Issuer;

 [XmlElement("authcode")]
 public string AuthCode;
}

Darie-Watson_4681C16.fm Page 602 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 603

7. Add the following class, HistoricTxnClass:

public class HistoricTxnClass
{
 [XmlElement("reference")]
 public string Reference;

 [XmlElement("authcode")]
 public string AuthCode;

 [XmlElement("method")]
 public string Method;

 [XmlElement("tran_code")]
 public string TranCode;

 [XmlElement("duedate")]
 public string DueDate;
}

8. Add the following class, TxnDetailsClass:

public class TxnDetailsClass
{
 [XmlElement("merchantreference")]
 public string MerchantReference;

 [XmlElement("amount")]
 public AmountClass Amount = new AmountClass();
}

9. Add the following class, TransactionClass:

public class TransactionClass
{
 [XmlElement("TxnDetails")]
 public TxnDetailsClass TxnDetails = new TxnDetailsClass();
 private CardTxnRequestClass cardTxn;

 private HistoricTxnClass historicTxn;

Darie-Watson_4681C16.fm Page 603 Friday, September 16, 2005 10:39 AM

604 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

 [XmlElement("CardTxn")]
 public CardTxnRequestClass CardTxn
 {
 get
 {
 if (historicTxn == null)
 {
 if (cardTxn == null)
 {
 cardTxn = new CardTxnRequestClass();
 }
 return cardTxn;
 }
 else
 {
 return null;
 }
 }
 set
 {
 cardTxn = value;
 }
 }

 [XmlElement("HistoricTxn")]
 public HistoricTxnClass HistoricTxn
 {
 get
 {
 if (cardTxn == null)
 {
 if (historicTxn == null)
 {
 historicTxn = new HistoricTxnClass();
 }
 return historicTxn;
 }
 else
 {
 return null;
 }
 }
 set
 {
 historicTxn = value;
 }
 }
}

Darie-Watson_4681C16.fm Page 604 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 605

10. Add the following class, DataCashRequest (this class also requires using references to
System.Net, System.Text, and System.IO):

[XmlRoot("Request")]
public class DataCashRequest
{
 [XmlElement("Authentication")]
 public AuthenticationClass Authentication =
 new AuthenticationClass();

 [XmlElement("Transaction")]
 public TransactionClass Transaction = new TransactionClass();

 public DataCashResponse GetResponse(string url)
 {
 // Configure HTTP Request
 HttpWebRequest httpRequest = WebRequest.Create(url)
 as HttpWebRequest;
 httpRequest.Method = "POST";

 // Prepare correct encoding for XML serialization
 UTF8Encoding encoding = new UTF8Encoding();

 // Use Xml property to obtain serialized XML data
 // Convert into bytes using encoding specified above and
 // get length
 byte[] bodyBytes = encoding.GetBytes(Xml);
 httpRequest.ContentLength = bodyBytes.Length;

 // Get HTTP Request stream for putting XML data into
 Stream httpRequestBodyStream =
 httpRequest.GetRequestStream();

 // Fill stream with serialized XML data
 httpRequestBodyStream.Write(bodyBytes, 0, bodyBytes.Length);
 httpRequestBodyStream.Close();

 // Get HTTP Response
 HttpWebResponse httpResponse = httpRequest.GetResponse()
 as HttpWebResponse;
 StreamReader httpResponseStream =
 new StreamReader(httpResponse.GetResponseStream(),
 System.Text.Encoding.ASCII);

 // Extract XML from response
 string httpResponseBody = httpResponseStream.ReadToEnd();
 httpResponseStream.Close();

Darie-Watson_4681C16.fm Page 605 Friday, September 16, 2005 10:39 AM

606 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

 // Ignore everything that isn't XML by removing headers
 httpResponseBody = httpResponseBody.Substring(
 httpResponseBody.IndexOf("<?xml"));

 // Deserialize XML into DataCashResponse
 XmlSerializer serializer =
 new XmlSerializer(typeof(DataCashResponse));
 StringReader responseReader =
 new StringReader(httpResponseBody);

 // Return DataCashResponse result
 return serializer.Deserialize(responseReader)
 as DataCashResponse;
 }

 [XmlIgnore()]
 public string Xml
 {
 get
 {
 // Prepare XML serializer
 XmlSerializer serializer =
 new XmlSerializer(typeof(DataCashRequest));

 // Serialize into StringBuilder
 StringBuilder sb = new StringBuilder();
 StringWriter sw = new StringWriter(sb);
 serializer.Serialize(sw, this);
 sw.Flush();

 // Replace UTF-16 encoding with UTF-8 encoding
 string xml = sb.ToString();
 xml = xml.Replace("utf-16", "utf-8");
 return xml;
 }
 }
}

11. Add the following class, DataCashResponse (which needs additional using references to System.Text
and System.IO):

[XmlRoot("Response")]
public class DataCashResponse
{
 [XmlElement("status")]
 public string Status;

Darie-Watson_4681C16.fm Page 606 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 607

 [XmlElement("reason")]
 public string Reason;

 [XmlElement("information")]
 public string information;

 [XmlElement("merchantreference")]
 public string MerchantReference;

 [XmlElement("datacash_reference")]
 public string DatacashReference;

 [XmlElement("time")]
 public string Time;

 [XmlElement("mode")]
 public string Mode;

 [XmlElement("CardTxn")]
 public CardTxnResponseClass CardTxn;

 [XmlIgnore()]
 public string Xml
 {
 get
 {
 // Prepare XML serializer
 XmlSerializer serializer =
 new XmlSerializer(typeof(DataCashResponse));
 // Serialize into StringBuilder
 StringBuilder sb = new StringBuilder();
 StringWriter sw = new StringWriter(sb);
 serializer.Serialize(sw, this);
 sw.Flush();

 // Replace UTF-16 encoding with UTF-8 encoding
 string xml = sb.ToString();
 xml = xml.Replace("utf-16", "utf-8");
 return xml;
 }
 }
}

12. Now you’ve finished adding the classes, so add a new Web Form to the root of BalloonShop called
DataCashLibTest.aspx, for testing (use the standard BalloonShop Master Page for now).

Darie-Watson_4681C16.fm Page 607 Friday, September 16, 2005 10:39 AM

608 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

13. Add a single multiline TextBox control to the page called OutputBox and make it big enough to see
plenty of text.

14. Add using references to DataCashLib and System.Text to the top of DataCashLibTest.aspx.cs.

15. Modify the code in Program.cs as follows, replacing the values for dataCashClient and
dataCashPassword with your own values (obtained when you signed up with DataCash). You’ll also
have to change the Merchant Reference number to be a different value, or else you’ll get a duplicate
reference response returned to you (this class needs using references to System.IO, System.Xml.
Serialization, and DataCashLib):

static void Main(string[] args)
{
 // Initialize variables
 DataCashRequest request;
 XmlSerializer requestSerializer =
 new XmlSerializer(typeof(DataCashRequest));
 DataCashResponse response;
 XmlSerializer responseSerializer =
 new XmlSerializer(typeof(DataCashResponse));
 StringBuilder xmlBuilder;
 StringWriter xmlWriter;
 string dataCashUrl =
 "https://testserver.datacash.com/Transaction";
 string dataCashClient = "99341800";
 string dataCashPassword = "bbdNsX7p";

 // Construct pre request
 request = new DataCashRequest();
 request.Authentication.Client = dataCashClient;
 request.Authentication.Password = dataCashPassword;
 request.Transaction.TxnDetails.MerchantReference = "9999999";
 request.Transaction.TxnDetails.Amount.Amount = "49.99";
 request.Transaction.TxnDetails.Amount.Currency = "GBP";
 request.Transaction.CardTxn.Method = "pre";
 request.Transaction.CardTxn.Card.CardNumber =
 "4444333322221111";
 request.Transaction.CardTxn.Card.ExpiryDate = "10/07";

 // Display pre request
 Console.WriteLine("Pre Request:");
 xmlBuilder = new StringBuilder();
 xmlWriter = new StringWriter(xmlBuilder);
 requestSerializer.Serialize(xmlWriter, request);
 Console.WriteLine(xmlBuilder.ToString());
 Console.WriteLine();

Darie-Watson_4681C16.fm Page 608 Friday, September 16, 2005 10:39 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 609

 // Get pre response
 response = request.GetResponse(dataCashUrl);

 // Display pre response
 Console.WriteLine("Pre Response:");
 xmlBuilder = new StringBuilder();
 xmlWriter = new StringWriter(xmlBuilder);
 responseSerializer.Serialize(xmlWriter, response);
 Console.WriteLine(xmlBuilder.ToString());
 Console.WriteLine();

 // Construct fulfil request
 request = new DataCashRequest();
 request.Authentication.Client = dataCashClient;
 request.Authentication.Password = dataCashPassword;
 request.Transaction.HistoricTxn.Method = "fulfill";
 request.Transaction.HistoricTxn.AuthCode =
 response.MerchantReference;
 request.Transaction.HistoricTxn.Reference =
 response.DatacashReference;

 // Display fulfil request
 Console.WriteLine("Fulfil Request:");
 xmlBuilder = new StringBuilder();
 xmlWriter = new StringWriter(xmlBuilder);
 requestSerializer.Serialize(xmlWriter, request);
 Console.WriteLine(xmlBuilder.ToString());
 Console.WriteLine();

 // Get fulfil response
 response = request.GetResponse(dataCashUrl);

 // Display fulfil response
 Console.WriteLine("Fulfil Response:");
 xmlBuilder = new StringBuilder();
 xmlWriter = new StringWriter(xmlBuilder);
 responseSerializer.Serialize(xmlWriter, response);
 Console.WriteLine(xmlBuilder.ToString());

 // Await user input to finish
 Console.ReadKey();

}

Darie-Watson_4681C16.fm Page 609 Friday, September 16, 2005 10:39 AM

610 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

16. Now build and run the solution. The text displayed in the OutputBox text box is as follows:

Pre Request:
<?xml version="1.0" encoding="utf-16"?>
<Request xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Authentication>
 <password>bbdNsX7p</password>
 <client>99341800</client>
 </Authentication>
 <Transaction>
 <CardTxn>
 <method>pre</method>
 <Card>
 <pan>4444333322221111</pan>
 <expirydate>10/07</expirydate>
 </Card>
 </CardTxn>
 <TxnDetails>
 <merchantreference>9999999</merchantreference>
 <amount currency="GBP">49.99</amount>
 </TxnDetails>
 </Transaction>
</Request>

Pre Response:
<?xml version="1.0" encoding="utf-16"?>
<Response xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <status>1</status>
 <reason>ACCEPTED</reason>
 <merchantreference>9999999</merchantreference>
 <datacash_reference>4000200041287947</datacash_reference>
 <time>1122838608</time>
 <mode>TEST</mode>
 <CardTxn>
 <card_scheme>VISA</card_scheme>
 <country>United Kingdom</country>
 <authcode>953441</authcode>
 </CardTxn>
</Response>

Darie-Watson_4681C16.fm Page 610 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 611

Fulfil Request:
<?xml version="1.0" encoding="utf-16"?>
<Request xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Authentication>
 <password>bbdNsX7p</password>
 <client>99341800</client>
 </Authentication>
 <Transaction>
 <HistoricTxn>
 <reference>4000200041287947</reference>
 <authcode>9999999</authcode>
 <method>fulfill</method>
 </HistoricTxn>
 <TxnDetails>
 <amount />
 </TxnDetails>
 </Transaction>
</Request>

Fulfil Response:
<?xml version="1.0" encoding="utf-16"?>
<Response xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <status>1</status>
 <reason>FULFILLED OK</reason>
 <merchantreference>4000200041287947</merchantreference>
 <datacash_reference>4000200041287947</datacash_reference>
 <time>1122838608</time>
 <mode>TEST</mode>
</Response>

17. Log on to https://testserver.datacash.com/reporting2 to see the transaction log for your
DataCash account (note that this view takes awhile to update, so you might not see the transaction right
away). This report is shown in Figure 16-1, with a more detailed view in Figure 16-2.

Darie-Watson_4681C16.fm Page 611 Friday, September 16, 2005 10:39 AM

612 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

Figure 16-1. DataCash transaction report

Darie-Watson_4681C16.fm Page 612 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 613

Figure 16-2. DataCash transaction report details

How It Works: Communicating with DataCash

You’ve created code to represent the XML documents that you’re exchanging. Two root classes—DataCashRequest
and DataCashResponse—encapsulate XML requests and responses. These classes contain instances of the other
classes defined, which contain instances of other classes, and so on, relating to the structure of the XML documents
described earlier.

Each of the members of these classes has an associated XML serialization attribute, matching the data with the way
it will be formatted when the request or response classes are serialized. For example, many of the string members
appear as follows:

 [XmlElement("status")]
 public string Status;

Darie-Watson_4681C16.fm Page 613 Friday, September 16, 2005 10:39 AM

614 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

The Status field will be formatted as follows:

<status>Status data</status>

The correct capitalization is included while at the same time allowing you to set the status data using standard
PascalCasing format.

■Note PascalCasing is where variable names start with a capital letter, and each subsequent word in the
name also has a capital letter, such as ThisIsAVariable. One alternative scheme is camelCasing, where
the first word isn’t capitalized, for example thisIsAVariable. The capitalization in the names of these
casing schemes serves as a reminder of their usage.

One of the classes used, TransactionClass, is slightly more complicated than the others, because the
<Transaction> element contains one of either <CardTxn> or <HistoricTxn>, depending on whether the
request is a pre request or a fulfil request. Instead of using fields, this class uses properties that ensure that
only one of these two elements is used.

The DataCashRequest class also has a method called GetResponse that sends the request and packages the
returned response as a DataCashResponse class. In the code to do this, you start by creating an HttpWebRequest
instance for the URL supplied as a parameter:

 public DataCashResponse GetResponse(string url)
 {
 HttpWebRequest httpRequest = WebRequest.Create(url)
 as HttpWebRequest;

This request is then defined as a POST request with the appropriate encoding:

 httpRequest.Method = "POST";
 UTF8Encoding encoding = new UTF8Encoding();

■Note HTTP requests can be sent in a number of formats, the most common being GET and POST. The
difference here is that GET requests have just a URL and header information; POST requests have all this plus
a message body. Think of an HTTP POST request as if it were an email, with the HTTP response being the
email reply. In both cases, header information is like the address and subject of the email, and body informa-
tion is like the message body of an email.

Next you need to supply the body of the POST request, which is the XML document you want to send. To do this,
you get the serialized version of the data contained in the object via the Xml property (which simply serializes the
DataCashRequest instance into XML, by using the XML serialization attributes):

 byte[] bodyBytes = encoding.GetBytes(Xml);

Darie-Watson_4681C16.fm Page 614 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 615

You also need to specify the length of the data contained in the HTTP header for the request:

 httpRequest.ContentLength = bodyBytes.Length;

Next you take the XML data and place it into the request via standard stream manipulation code:

 Stream httpRequestBodyStream =
 httpRequest.GetRequestStream();
 httpRequestBodyStream.Write(bodyBytes, 0, bodyBytes.Length);
 httpRequestBodyStream.Close();

After you have the request class, you can obtain the response, also via stream manipulation:

 HttpWebResponse httpResponse = httpRequest.GetResponse()
 as HttpWebResponse;
 StreamReader httpResponseStream =
 new StreamReader(httpResponse.GetResponseStream(),
 System.Text.Encoding.ASCII);
 string httpResponseBody = httpResponseStream.ReadToEnd();
 httpResponseStream.Close();

You only need the XML data contained in this stream, so clip off the headers at the beginning of the data returned
before deserializing it. You do this using the String.Substring method to obtain the section of the string that
starts with "<?xml", the location of which is found using the String.IndexOf method.

 httpResponseBody =
 httpResponseBody.Substring(
 httpResponseBody.IndexOf("<?xml"));
 XmlSerializer serializer =
 new XmlSerializer(typeof(DataCashResponse));
 StringReader responseReader =
 new StringReader(httpResponseBody);

Finally, you cast the deserialized object into a DataCashResponse object for further manipulation:

 return serializer.Deserialize(responseReader)
 as DataCashResponse;
 }

After the transaction has completed, you can check that everything has worked properly via the DataCash reporting
web interface.

Integrating DataCash with BalloonShop
Now you have a new set of classes that you can use to perform credit card transactions. However,
you need to modify a few things to integrate it with your existing e-commerce application
and pipeline.

Darie-Watson_4681C16.fm Page 615 Friday, September 16, 2005 10:39 AM

8213592a117456a340854d18cee57603

616 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

Business Tier Modifications
In fact, all the modifications you’ll make to BalloonShop occur at the business tier because
we’ve slipped in the data and presentation tier modifications already. We also have AuthCode
and Reference fields ready to use for the database. In the presentation tier, we have the user
interface elements in place to check on these values. All you have to do is make the PSCheckFunds
and PSTakePayment pipeline sections work.

Modifying the BalloonShopConfiguration Class

Before modifying the pipeline itself, you have to modify the order-processor configuration,
because you now have three new pieces of information that CommerceLib requires to operate:

• DataCash Client

• DataCash password

• DataCash URL

You can give access to this information via the BalloonShopConfiguration class as with the
other similar information required for order processing. Add the following three properties to
BalloonShopConfiguration:

 // DataCash client code
 public static string DataCashClient
 {
 get
 {
 return ConfigurationManager.AppSettings["DataCashClient"];
 }
 }

 // DataCase password
 public static string DataCashPassword
 {
 get
 {
 return ConfigurationManager.AppSettings["DataCashPassword"];
 }
 }

 // DataCash server URL
 public static string DataCashUrl
 {
 get
 {
 return ConfigurationManager.AppSettings["DataCashUrl"];
 }
 }

Darie-Watson_4681C16.fm Page 616 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 617

This uses information in the web.config file of BalloonShop. Modify web.config as follows,
supplying your own client and password data as before:

 <appSettings>
 ...
 <add key="DataCashClient" value="99110400" />
 <add key="DataCashPassword" value="rUD27uD" />
 <add key="DataCashUrl"
 value="https://testserver.datacash.com/Transaction" />
 </appSettings>

Modifying the PSCheckFunds Pipeline Section Class

The final changes involve modifying the pipeline section classes that deal with credit card
transactions. The infrastructure for storing and retrieving authentication code and reference
information has already been included, via the
OrderProcessor.SetOrderAuthCodeAndReference method and the AuthCode and Reference
properties.

The modifications to PSCheckFunds are as follows:

using DataCashLib;

namespace CommerceLib
{
 /// <summary>
 /// 2nd pipeline stage - used to check that the customer
 /// has the required funds available for purchase
 /// </summary>
 public class PSCheckFunds : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSCheckFunds started.", 20100);
 try
 {
 // check customer funds via DataCash gateway
 // configure DataCash XML request
 DataCashRequest request = new DataCashRequest();
 request.Authentication.Client =
 BalloonShopConfiguration.DataCashClient;
 request.Authentication.Password =
 BalloonShopConfiguration.DataCashPassword;

Darie-Watson_4681C16.fm Page 617 Friday, September 16, 2005 10:39 AM

618 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

 request.Transaction.TxnDetails.MerchantReference =
 orderProcessor.Order.OrderID.ToString()
 .PadLeft(6, '0').PadLeft(7, '5');
 request.Transaction.TxnDetails.Amount.Amount =
 orderProcessor.Order.TotalCost.ToString();
 request.Transaction.TxnDetails.Amount.Currency = "GBP";
 request.Transaction.CardTxn.Method = "pre";
 request.Transaction.CardTxn.Card.CardNumber =
 orderProcessor.Order.CreditCard.CardNumber;
 request.Transaction.CardTxn.Card.ExpiryDate =
 orderProcessor.Order.CreditCard.ExpiryDate;
 if (orderProcessor.Order.CreditCard.IssueDate != "")
 {
 request.Transaction.CardTxn.Card.StartDate =
 orderProcessor.Order.CreditCard.IssueDate;
 }
 if (orderProcessor.Order.CreditCard.IssueNumber != "")
 {
 request.Transaction.CardTxn.Card.IssueNumber =
 orderProcessor.Order.CreditCard.IssueNumber;
 }
 // get DataCash response
 DataCashResponse response =
 request.GetResponse(
 BalloonShopConfiguration.DataCashUrl);
 if (response.Status == "1")
 {
 // update order authorization code and reference
 orderProcessor.Order.SetAuthCodeAndReference(
 response.MerchantReference,
 response.DatacashReference);
 // audit
 orderProcessor.CreateAudit(
 "Funds available for purchase.", 20102);
 // update order status
 orderProcessor.Order.UpdateStatus(2);
 // continue processing
 orderProcessor.ContinueNow = true;
 }
 else
 {
 // audit
 orderProcessor.CreateAudit(
 "Funds not available for purchase.", 20103);
 // mail admin

Darie-Watson_4681C16.fm Page 618 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 619

 orderProcessor.MailAdmin("Credit card declined.",
 "XML data exchanged:\n" + request.Xml + "\n\n"
 + response.Xml, 1);
 }
 }
 catch
 {
 // fund checking failure
 throw new OrderProcessorException(
 "Error occured while checking funds.", 1);
 }
 // audit
 processor.CreateAudit("PSCheckFunds finished.", 20101);
 }
 }
}

Modifying the PSTakePayment Pipeline Section Class

The modifications to PSTakePayment are as follows:

using DataCashLib;

namespace CommerceLib
{
 /// <summary>
 /// 5th pipeline stage – takes funds from customer
 /// </summary>
 public class PSTakePayment : IPipelineSection
 {
 private OrderProcessor orderProcessor;

 public void Process(OrderProcessor processor)
 {
 // set processor reference
 orderProcessor = processor;
 // audit
 orderProcessor.CreateAudit("PSTakePayment started.", 20400);
 try
 {
 // take customer funds via DataCash gateway
 // configure DataCash XML request
 DataCashRequest request = new DataCashRequest();
 request.Authentication.Client =
 BalloonShopConfiguration.DataCashClient;

Darie-Watson_4681C16.fm Page 619 Friday, September 16, 2005 10:39 AM

620 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

 request.Authentication.Password =
 BalloonShopConfiguration.DataCashPassword;
 request.Transaction.HistoricTxn.Method =
 "fulfill";
 request.Transaction.HistoricTxn.AuthCode =
 orderProcessor.Order.AuthCode;
 request.Transaction.HistoricTxn.Reference =
 orderProcessor.Order.Reference;
 // get DataCash response
 DataCashResponse response =
 request.GetResponse(
 BalloonShopConfiguration.DataCashUrl);
 if (response.Status == "1")
 {
 // audit
 orderProcessor.CreateAudit(
 "Funds deducted from customer credit card account.",
 20402);
 // update order status
 orderProcessor.Order.UpdateStatus(5);
 // continue processing
 orderProcessor.ContinueNow = true;
 }
 else
 {
 // audit
 orderProcessor.CreateAudit(
 "Error taking funds from customer credit card account.",
 20403);
 // mail admin
 orderProcessor.MailAdmin(
 "Credit card fulfillment declined.",
 "XML data exchanged:\n" + request.Xml + "\n\n" +
 response.Xml, 1);
 }
 }
 catch
 {
 // fund checking failure
 throw new OrderProcessorException(
 "Error occured while taking payment.", 4);
 }
 // audit
 processor.CreateAudit("PSTakePayment finished.", 20401);
 }
 }
}

Darie-Watson_4681C16.fm Page 620 Friday, September 16, 2005 10:39 AM

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 621

Testing the Pipeline
Now that you have all this in place, it’s important to test with a few orders. You can do this
easily by making sure you create a customer with “magic” credit card details. As mentioned
earlier in the chapter, these are numbers that DataCash supplies for testing purposes and can
be used to obtain specific responses from DataCash. A sample of these numbers is shown in
Table 16-2; a full list is available on the DataCash web site.

Going Live
Moving from the test account to the live one is now simply a matter of replacing the DataCash
information in web.config. After you have set up a merchant bank account, you can use these
details to set up a new DataCash account, obtaining new client and password data along the
way. You also need to change the URL that you send data to—it needs to be the live server. The
URL for this is https://transaction.datacash.com/Transaction. Other than removing the test
user accounts from the database, this is all you need to do before exposing your newly completed
e-commerce application to customers.

Using the PayFlow Pro API
To use PayFlow Pro, you need to sign up via the web site, which you can access at http://
www.verisign.com/products/payflow/pro/. After you register, you can log on to the VeriSign
Manager web site and download the API and documentation necessary to use PayFlow Pro.

One advantage that PayFlow Pro has over DataCash is the provision of a .NET API, simpli-
fying communications with the credit card gateway. However, one disadvantage is that the
syntax required to use it is a little more convoluted. Instead of sending and receiving XML files,

Table 16-2. DataCash Credit Card Test Numbers

Card Type Card Number Return Code Description Sample Message

Switch 4936000000000000001 1 Authorized with random
auth code.

AUTH CODE ??????

4936000000000000019 7 Decline the transaction. DECLINED

6333000000000005 1 Authorized with random
auth code.

AUTH CODE ??????

6333000000000013 7 Decline the transaction. DECLINED

6333000000123450 1 Authorized with random
auth code.

AUTH CODE ??????

Visa 4242424242424242 7 Decline the transaction. DECLINED

4444333322221111 1 Authorized with random
auth code.

AUTH CODE ??????

4546389010000131 1 Authorized with random
auth code.

AUTH CODE ??????

Darie-Watson_4681C16.fm Page 621 Friday, September 16, 2005 10:39 AM

622 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

you send and receive strings consisting of name-value pairs, separated by ampersands. Effectively,
you use a similar syntax to query strings appended to URLs.

The .NET API comes with instructions for installing the various DLLs necessary to communi-
cate with the PayFlow Pro gateway and includes sample code to test things out. The C# test
application starts with the following declarations:

using System;
using PayFlowPro;

class PFProdotNETExample
{
 public static void Main()
 {
 PFPro pfpro = new PFPro();
 string Response;

 int pCtlx;

These variables are used to send and receive a string that authorizes a credit card transac-
tion. Four more variables must be set to values used when signing up with PayFlow Pro:

 string User = "user";
 string Vendor = "vendor";
 string Partner = "partner";
 string Password = "password";

You probably won’t have to change the following variable definitions in this example
unless you use a proxy server. Note that port 443 is used for communications, which is the
same as saying, “use https”; that is, it causes an SSL connection to be used.

 string HostAddress = "test-payflow.verisign.com";
 int HostPort = 443;
 string ParmList = "&TRXTYPE=S&TENDER=C&ACCT=5105105105105100
 &EXPDATE=1209&AMT=14.42&COMMENT1[3]=123
 &COMMENT2=Good Customer&INVNUM=1234567890
 &STREET=5199 JOHNSON&ZIP=94588";
 int Timeout = 30;
 string ProxyAddress = "";
 int ProxyPort = 0;
 string ProxyLogon = "";
 string ProxyPassword = "";

The most important variable here is ParmList (shown with extra spacing here for clarity),
which includes most of the parameters required for the transaction, including the credit card
details, transaction amount, and transaction type. A transaction type of S (shorthand for Sale)
is used, which is an Authorization type transaction in PayFlow Pro. Alternatively, you can use
transaction types of A (for Authorization) and D (for Delayed Capture) to perform a pre/fulfil
type transaction.

The rest of the parameters required are created from the values set earlier in the code, and
the two parameter strings are concatenated:

Darie-Watson_4681C16.fm Page 622 Friday, September 16, 2005 10:39 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S 623

 string UserAuth = "USER=" + User + "&VENDOR=" + Vendor +
 "&PARTNER=" + Partner + "&PWD=" + Password;

 ParmList = UserAuth + ParmList;

Next, after some basic information output, the transaction is carried out. This involves
creating a context in which to carry out the transaction, which just means configuring the API
with host information, and so on, getting a response to the transaction query, and destroying
the context:

 Console.WriteLine("Running PFProdotNETExample using C#...");
 Console.WriteLine("");

 pCtlx = pfpro.CreateContext(HostAddress, HostPort, Timeout,
 ProxyAddress, ProxyPort, ProxyLogon, ProxyPassword);

 Response = pfpro.SubmitTransaction(pCtlx, ParmList);

 pfpro.DestroyContext(pCtlx);

 Console.WriteLine(Response);
 }
}

The result is along the lines of

RESULT=0&PNREF=VXYZ00912465&ERRCODE=00&AUTHCODE=09TEST&AVSADDR=Y&AVSZIP=N&

■Note To carry out a successful transaction, you must first configure your account in the VeriSign Manager.
Specifically, most test transactions will fail due to no transaction amount ceiling being set and failure of
address verification (AVS). If you set a suitably high amount ceiling and disable AVS, you can carry out
successful transactions.

You can use the information in the PayFlow Pro documentation to decipher this as follows:

• RESULT=0: A value of 0, as shown here, means a successful transaction. Any other number
indicates an error.

• PNREF= VXYZ00912465: A unique reference number assigned by VeriSign.

• ERRCODE=00: Error code.

• AUTHCODE=09TEST: Approval code.

• AVSADDR=Y&AVSZIP=N: Address verification information.

When using pre/fulfil transactions, you need to use the PNREF value as the ORIGID parameter in
the fulfillment stage.

Darie-Watson_4681C16.fm Page 623 Friday, September 16, 2005 10:39 AM

624 C H A P T E R 1 6 ■ C R E D I T C A R D T R A N S A C T I O N S

Integrating PayFlow Pro with BalloonShop

As with DataCash, you need to modify things in a few places to use this API. Rather than showing all
the code for this, we can just review the steps required:

• Add configuration settings to web.config. For PayFlow Pro, you need to set user, vendor,
partner, and password settings for verification, and the host to send data to (test-payflow.
verisign.com for testing). Optionally, you could configure other context information
here, matching the values shown in the test code in the last section (port, timeout, and
proxy information).

• Modify OrderProcessorConfiguration to give access to these configured values.

• Modify PSCheckFunds and PSTakePayment to use this new information to communicate
with PayFlow Pro. This involves building a request string, interpreting response strings,
and storing authorization codes in the database as with DataCash.

In addition, to use the PayFlow Pro library, you need to add a reference to BalloonShop
to use PFProdotNET.dll (the .NET API for PayFlow Pro) and copy the certs directory to the
C:\WINDOWS\system32 directory (as described in the sample application documentation).

The downloadable code for this chapter includes a version of BalloonShop modified to use
PayFlow Pro and the modifications to BalloonShop required to use this new code.

Summary
In this chapter, you’ve completed the e-commerce application by integrating BalloonShop
with credit card authorization. Short of putting your own products in, hooking it up with your
suppliers, getting a merchant bank account, and putting it on the web, you’re ready to go.
Okay, so that’s still a lot of work, but none of it is particularly difficult. We’ve done the hard
work for you.

Specifically, in this chapter, we’ve looked at the theory behind credit card transactions on
the web and looked at one full implementation—DataCash. You created a set of classes that
can be used to access DataCash and integrated it with your application. We also looked at
PayFlow Pro. The code required to use this credit card gateway is included in the Source Code
area for this book on the Apress web site (http://www.apress.com).

Darie-Watson_4681C16.fm Page 624 Friday, September 16, 2005 10:39 AM

625

■ ■ ■

C H A P T E R 1 7

Integrating Amazon Web
Services

In the dynamic world of the Internet, sometimes it isn’t enough to just have an important web
presence; you also need to interact with functionality provided by third parties to achieve your
goals. So far in this book, you already saw how to integrate external functionality to process
payments from your customers.

In this chapter, you’ll learn new possibilities for integrating functionality from an external
source, this time through a web service. A web service is a piece of functionality that is exposed
through a web interface using standard Internet protocols such as HTTP. The messages
exchanged by the client and the server are encoded using an XML-based protocol named SOAP
(Simple Object Access Protocol) or by using REST (Representational State Transfer). You’ll
learn more about these technologies a bit later.

The beauty of using web services is that the client and the server can use any technology,
any language, and any platform. As long as they exchange information with a standard protocol
such as SOAP over HTTP, there’s no problem if the client is a cell phone, and the server is a Java
application running on a SUN server, for example.

The possibilities are exciting, and we recommend you purchase a book that specializes in
web services to discover more about their world. Have a look at the list of public web services
at http://www.xmethods.net to get an idea of the kinds of external functionality you can inte-
grate into your application.

In this chapter, you’ll learn how to integrate the Amazon E-Commerce Service (ECS; web
services interface provided by Amazon.com, formerly known as Amazon Web Services—AWS)
to sell Amazon.com products through your BalloonShop web site.

You already have an e-commerce web site that sells balloons to its customers. You can go
further and make some more money from their passion for balloons by incorporating some
other kinds of balloon-related gifts from Amazon.com into your site. For free? Oh no . . . You’ll
display Amazon.com’s product details on your site, but the final checkout will be processed by
Amazon.com, and Amazon.com will deliver in your bank account a small commission fee for
purchases made from your web site. Sounds like easy money, doesn’t it?

In this chapter, you’ll learn how to use ECS to add a special department called “Amazon
Balloons” to your web store, which you can see in Figure 17-1. This will be a “special” department
in that it will be handled differently than the others—for example, payment is handled directly
by Amazon when the visitor wants to buy a product. This chapter explores just a small subset
of ECS’s full power, so if you really want to make a fortune out of this service, you should dig
deeper to find more substance.

Darie-Watson_4681C17.fm Page 625 Tuesday, September 20, 2005 5:01 AM

626 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

Figure 17-1. Integrating the “Amazon Balloons” department into BalloonShop

The rest of this chapter is divided into two parts. In the first part, you’ll learn how to access
the Amazon E-Commerce Service (ECS); in the second part, you’ll implement this functionality
in the BalloonShop web site.

■Tip The code in this chapter is independent of the rest of the site, so all you need to get started integrating
Amazon functionality is the code from the first four chapters (so you have a working product catalog). Of
course, with minor adjustments, you can also adapt this code to your own personal solutions.

Accessing the Amazon E-Commerce Service
Most service providers (including Amazon.com) use SOAP or REST (or both) to expose web
services functionality to Internet client programs. You can choose to make a web service request
by using either REST or SOAP, and you get the exact same results with both options. In this
chapter, you’ll learn how to access ECS 4.0 using both REST and SOAP.

Darie-Watson_4681C17.fm Page 626 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 627

REST (Representational State Transfer) uses carefully crafted URLs with specific name-
value pairs to call specific methods on the servers. REST is considered to be the easiest way to
communicate with the web services that expose this interface. Nonofficial sources say that 85%
of ECS clients went the REST way. When using REST, all you have to do to perform an Amazon
search is to make a classical HTTP GET request and you’ll receive the response in XML format.

SOAP (Simple Object Access Protocol) is an XML-based standard for encoding the infor-
mation transferred in a web service request or response. SOAP is fostered by a number of
organizations, including powerful companies such as Microsoft, IBM, and Sun.

When accessing ECS, you can send the request either through REST or by sending a SOAP
message. The web service returns an XML response with the data you requested. You’ll learn
more about REST and SOAP by playing with ECS.

You need to understand that in this chapter we’ll touch just a bit of the functionality
provided by the Amazon ECS. A serious discussion on the subject would probably need a separate
book, but what you’ll see in this chapter is enough to get you on the right track. Also, be aware
that in this chapter we integrate functionality from Amazon U.S., but similar web service function-
ality is provided by the other Amazon branches.

■Note You can find a number of links to articles that discuss accessing ECS with REST and SOAP at
http://www.aspnetworld.com/articles/2004032401.aspx.

Creating Your Amazon E-Commerce Service Account
You can reach the official documentation for ECS at http://www.amazon.com/webservices. You
can find the latest version of the documentation at http://www.amazon.com/gp/aws/sdk/—
bookmark this URL as you’ll find it very useful. Before moving on, you need to create your
account with the Amazon ECS. To access ECS, you need a Subscription ID, which is like a password
that identifies your account in the ECS system. If you don’t already have one, apply now for a
Subscription ID at http://www.amazon.com/gp/aws/registration/registration-form.html/—
the Subscription ID is a string of 20 characters, such as 1R4EY7DQY0ATN521WQR2.

Getting an Amazon Associate ID
The Subscription ID you created earlier is your key to retrieving data through the Amazon ECS.
This data allows you to compose the “Amazon Balloons” department that you saw in Figure 17-1.

What the Subscription ID can’t do is give you a commission from the Amazon.com products
that you sell through your web site. To get your money, you need to apply to get an Associate
ID. The Associate ID is used in the Buy From Amazon links you’ll display in your special Amazon
department, and it’s the key that Amazon uses to identify you as the origin of that sale.

The Associate ID can even be used in static web pages that contain links to Amazon.com
products, and it doesn’t require you to also have an ECS Subscription ID, which has different
purposes.

So before moving further, if you want to get any money out of your “Amazon Balloons”
department, go get your Associate ID from http://associates.amazon.com/gp/associates/
apply/main.html. Otherwise, if at the moment you’re just interested in learning about the ECS,
feel free to skip this step for now.

Darie-Watson_4681C17.fm Page 627 Tuesday, September 20, 2005 5:01 AM

628 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

Accessing Amazon Web Services Using REST
REST web services are accessed by requesting a properly formed URL. Try the following link
in your browser (don’t forget to replace the string [Your Subscription ID] with your real
Subscription ID that you got earlier):

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&SubscriptionId=[Your Subscription ID]
&Operation=ItemLookup
&IdType=ASIN
&ItemId=1590594681

Your browser will display an XML structure with information about the book you are
reading now (see Figure 17-2).

Figure 17-2. The XML response of a web service request

Darie-Watson_4681C17.fm Page 628 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 629

■Caution Always remember to replace [Your Subscription ID] with your own Subscription ID. The
figures display the Subscription ID the authors used when writing the book, but obviously, you should use your own.

Pretty cool, huh? You have just seen REST in action. Every product in the Amazon database
has a unique identifier called an ASIN (Amazon.com Standard Item Number). For books, the
ASIN is the book’s ISBN (this book has the ASIN 1590594681).

The web service request you just made tells ECS the following: I have a Subscription ID
(SubscriptionId=[Your Subscription ID]), and I want to make an item lookup operation
(Operation=ItemLookup) to learn more about the product with the 1590594681 ASIN
(IdType=ASIN&ItemId=1590594681).

You didn’t get much information about this book in this example—no price or availability
information and no links to the cover picture or customer reviews. ECS 4 introduces a finer
control of the data you want to receive using response groups (a response group is a set of data
about the product).

■Note At the time of writing, ECS offers a list of more than 35 possible response groups. In this book, we’ll
only explain the purpose of the response groups we’re using for BalloonShop; for the complete list, visit the
official ECS documentation.

So let’s ask for some more data by using response groups. At the end of the link you’ve
composed earlier, add the following string to get more specific information about the book:
&ResponseGroup=SalesRank,Request,Small,Images,OfferSummary. The complete link should
look like this now:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&SubscriptionId=[Your Subscription ID]
&Operation=ItemLookup
&IdType=ASIN
&ItemId=1590594681
&ResponseGroup=Request,SalesRank,Small,Images,OfferSummary

The new XML response from Amazon.com includes more details about the Amazon.com
item as shown in Figure 17-3.

Darie-Watson_4681C17.fm Page 629 Tuesday, September 20, 2005 5:01 AM

8213592a117456a340854d18cee57603

630 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

Figure 17-3. The XML response of a web service request

We’ve just mixed five response groups: SalesRank, Request, Small, Images, and OfferSum-
mary. To learn more about the response groups, go to http://www.amazon.com/gp/aws/sdk/,
click the HTML link for the latest version of the documentation, click the Response Groups link,
expand the API Reference entry, and click Response Groups. Here’s the description for the five
response groups used in the previous example:

• Request response group is a default response group in every kind of operation, and it
returns the list of name-value pairs you used to make the request.

• SalesRank response group returns data about the current Amazon.com sales rank of
the product.

• Small response group returns general item data (ASIN, item name, URL, and so on)
about items included in the response. This is a default response group for an ItemLookup
operation (like we have in this example).

• Images response group gives you the addresses for the three pictures (small, medium,
and large) for each item in the response.

• OfferSummary response group returns price information for each item in the response.

Darie-Watson_4681C17.fm Page 630 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 631

To populate the future “Amazon Balloons” department, you’ll search the Amazon.com
Toys department for the “balloons” keyword. The REST URL looks like this:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&SubscriptionId=[Your Subscription ID]
&Operation=ItemSearch
&SearchKeywords=balloons
&SearchIndex=Toys
&ResponseGroup=Request,Medium

Accessing Amazon Web Services Using SOAP
Using SOAP, you use a very complex API to access the needed Amazon.com functionality. The
following code, which performs the same search operation for balloons that you did earlier
with REST, is using the AWSECommerceService, ItemSearch, ItemSearchRequest, and
ItemSearchResponse objects from the Amazon API to perform the operation:

// Create Amazon objects
AWSECommerceService amazonService = new AWSECommerceService();
ItemSearch itemSearch = new ItemSearch();
ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
ItemSearchResponse itemSearchResponse;
// Set up Amazon objects
itemSearch.SubscriptionId = "your Subscription ID";
itemSearchRequest.Keywords = "balloons";
itemSearchRequest.SearchIndex = "Toys";
itemSearchRequest.ResponseGroup = new string[] {"Request", "Medium"};
itemSearch.Request = new AmazonEcs.ItemSearchRequest[1] { itemSearchRequest };
// Perform the search
itemSearchResponse = amazonService.ItemSearch(itemSearch);

Analyzing all the possibilities offered by ECS would be the subject of a whole book, but we’ve
done our best to comment the code and make it self-documenting and easy to understand. For
detailed information on each of the ECS objects used, consult the ECS documentation.

Integrating the Amazon E-Commerce Service
with BalloonShop
The goal is to allow your customers to buy some Amazon.com balloons through your web
store. For this, you’ll add a special department named “Amazon Balloons,” with no categories,
to your departments list. When this department is clicked, your products list will be populated
with some Amazon.com products, each of them having a Buy from Amazon link attached to it
instead of the usual Add to Cart link.

Darie-Watson_4681C17.fm Page 631 Tuesday, September 20, 2005 5:01 AM

632 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

■Caution If you want to add this kind of functionality for your real e-commerce web site, you’ll probably
want to customize this functionality. Don’t forget to read (and comply to) the Amazon E-Commerce Service
terms and conditions, before using this service in the real world.

Figure 17-4 shows the new “Amazon Balloons” department you’re going to add.

Figure 17-4. Displaying Amazon products in BalloonShop

After you have the Subscription ID, and eventually the Associate ID, ready, it’s time to
decide what Amazon products you want added to your future “Amazon Balloons” department.
For the purposes of BalloonShop, we’ve decided to retrieve the results by doing a search on the
“balloons” keyword, on the Toys Amazon store, as shown earlier.

Writing the Amazon Access Code
Follow the steps in the exercise to build the code that accesses Amazon ECS system using both
SOAP and REST.

Darie-Watson_4681C17.fm Page 632 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 633

Exercise: Accessing Amazon ECS

1. Let’s begin by adding a Web Reference to the Amazon ECS. This is only required if you plan to access
ECS through SOAP. Right-click the project entry in Solution Explorer and choose Add Web Reference.

2. In the dialog box that appears, enter the address of the ECS Web Service:

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

3. Click Go.

4. Change the Web Reference name to something easier to type, such as AmazonEcs, and click Add
Reference (see Figure 17-5). A new folder in your project named App_WebReferences will contain
your new reference to the Amazon ECS.

Figure 17-5. Adding a new Web Reference to your project

5. Open web.config and add the following configuration parameters:

<appSettings>
 <add key="CartPersistDays" value="10" />
 <add key="MailServer" value="localhost" />
 <add key="EnableErrorLogEmail" value="false" />
 <add key="ErrorLogEmail" value="cristian_darie@yahoo.com" />
 <add key="ProductsPerPage" value="6"/>
 <add key="ProductDescriptionLength" value="60"/>
 <add key="SiteName" value="BalloonShop"/>

Darie-Watson_4681C17.fm Page 633 Tuesday, September 20, 2005 5:01 AM

634 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

 <add key="AmazonRestUrl"
 value="http://webservices.amazon.com/onca/xml?Service=AWSECommerceService"/>
 <add key="AmazonSubscriptionID" value="1R4EY7DQY0ATN521WQR2"/>
 <add key="AmazonAssociateID" value="cristiand-20"/>
 <add key="AmazonSearchKeywords" value="balloons"/>
 <add key="AmazonSearchIndex" value="Toys"/>
 <add key="AmazonResponseGroups" value="Request,Medium"/>
 <add key="AmazonEcs.AWSECommerceService"
value="http://soap.amazon.com/onca/soap?Service=AWSECommerceService"/>
</appSettings>

6. Add the following properties to the BalloonShopConfiguration class to allow for easier retrieval of
the data you saved to web.config:

// Amazon ECS REST URL
public static string AmazonRestUrl
{
 get
 {
 return ConfigurationManager.AppSettings["AmazonRestUrl"];
 }
}

// Subscription ID to access ECS
public static string SubscriptionId
{
 get
 {
 return ConfigurationManager.AppSettings["AmazonSubscriptionID"];
 }
}

// the Amazon.com associate ID
public static string AssociateId
{
 get
 {
 return ConfigurationManager.AppSettings["AmazonAssociateID"];
 }
}

// keywords used to do the Amazon search
public static string SearchKeywords
{

Darie-Watson_4681C17.fm Page 634 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 635

 get
 {
 return ConfigurationManager.AppSettings["AmazonSearchKeywords"];
 }
}

// search location
public static string SearchIndex
{
 get
 {
 return ConfigurationManager.AppSettings["AmazonSearchIndex"];
 }
}

// the Amazon response groups
public static string ResponseGroups
{
 get
 {
 return ConfigurationManager.AppSettings["AmazonResponseGroups"];
 }
}

7. Add a new class named AmazonAccess to your App_Code folder.

8. Start coding your new class by adding references to the System.Xml and AmazonEcs namespaces:

using System.Xml;
using AmazonEcs;

9. Continue by adding the GetResponseTable method, which returns a configured DataTable object to
be filled with the Amazon search results. This DataTable will ultimately be returned to the presentation
tier, which will display the product data to the visitors.

public class AmazonAccess
{
 public AmazonAccess()
 {
 //
 // TODO: Add constructor logic here
 //
 }

Darie-Watson_4681C17.fm Page 635 Tuesday, September 20, 2005 5:01 AM

636 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

 // returns a configured DataTable object that can be read by the UI
 private static DataTable GetResponseTable()
 {
 DataTable dt = new DataTable();
 dt.Columns.Add(new DataColumn("ASIN", Type.GetType("System.String")));
 Columns.Add(new DataColumn("ProductName", Type.GetType("System.String")));
 dt.Columns.Add(new DataColumn("ProductPrice",
Type.GetType("System.String")));
 dt.Columns.Add(new DataColumn("ProductImageUrl", Type.GetType
("System.String")));
 return dt;
 }
}

10. Add the GetAmazonDataWithSoap method, which does pretty much what it says.

// perform the Amazon search with SOAP and return results as a DataTable
public static DataTable GetAmazonDataWithSoap()
{
 // Create Amazon objects
 AWSECommerceService amazonService = new AWSECommerceService();
 ItemSearch itemSearch = new ItemSearch();
 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
 ItemSearchResponse itemSearchResponse;
 // Setup Amazon objects
 itemSearch.SubscriptionId = BalloonShopConfiguration.SubscriptionId;
 itemSearchRequest.Keywords = BalloonShopConfiguration.SearchKeywords;
 itemSearchRequest.SearchIndex = BalloonShopConfiguration.SearchIndex;
 itemSearchRequest.ResponseGroup =
BalloonShopConfiguration.ResponseGroups.Split(',');
 itemSearch.Request = new AmazonEcs.ItemSearchRequest[1]
{ itemSearchRequest };

 // Will store search results
 DataTable responseTable = GetResponseTable();
 // If any problems occur, we prefer to send back empty result set
 // instead of throwing exception
 try
 {
 itemSearchResponse = amazonService.ItemSearch(itemSearch);
 Item[] results = itemSearchResponse.Items[0].Item;
 // Browse the results
 foreach (AmazonEcs.Item item in results)
 {
 // product with incomplete information will be ignored
 try
 {

Darie-Watson_4681C17.fm Page 636 Tuesday, September 20, 2005 5:01 AM

8213592a117456a340854d18cee57603

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 637

 //create a datarow, populate it and add it to the table
 DataRow dataRow = responseTable.NewRow();
 dataRow["ASIN"] = item.ASIN;
 dataRow["ProductName"] = item.ItemAttributes.Title;
 dataRow["ProductImageUrl"] = item.SmallImage.URL;
 dataRow["ProductPrice"] = item.OfferSummary.LowestNewPrice.
FormattedPrice;
 responseTable.Rows.Add(dataRow);
 }
 catch
 {
 // Ignore products with incomplete information
 }
 }
 }
 catch (Exception e)
 {
 // ignore the error
 }
 // return the results
 return responseTable;
}

11. Finally, add the GetAmazonDataWithRest method:

// perform the Amazon search with REST and return results as a DataTable
public static DataTable GetAmazonDataWithRest()
{
 // The response data table
 DataTable responseTable = GetResponseTable();
 // Compose the Amazon REST request URL
 string amazonRequest = string.Format("{0}&SubscriptionId=
{1}&Operation=ItemSearch&Keywords={2}&SearchIndex={3}&ResponseGroup={4}",
 BalloonShopConfiguration.AmazonRestUrl,
 BalloonShopConfiguration.SubscriptionId,
 BalloonShopConfiguration.SearchKeywords,
 BalloonShopConfiguration.SearchIndex,
 BalloonShopConfiguration.ResponseGroups);
 // If any problems occur, we prefer to send back empty result set
 // instead of throwing exception
 try
 {
 // Load the Amazon response
 XmlDocument responseXmlDoc = new XmlDocument();
 responseXmlDoc.Load(amazonRequest);
 // Prepare XML document for searching
 XmlNamespaceManager xnm = new XmlNamespaceManager

Darie-Watson_4681C17.fm Page 637 Tuesday, September 20, 2005 5:01 AM

638 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

(responseXmlDoc.NameTable);
 xnm.AddNamespace("amz", "http://webservices.amazon.com/
AWSECommerceService/2005-07-26");
 // Get the list of Item nodes
 XmlNodeList itemNodes = responseXmlDoc.SelectNodes("/amz:Item
SearchResponse/amz:Items/amz:Item", xnm);
 // Copy node data to the DataTable
 foreach (XmlNode itemNode in itemNodes)
 {
 try
 {
 // Create a new datarow and populate it with data
 DataRow dataRow = responseTable.NewRow();
 dataRow["ASIN"] = itemNode["ASIN"].InnerText;
 dataRow["ProductName"] =

itemNode["ItemAttributes"]["Title"].InnerText;
 dataRow["ProductImageUrl"] = itemNode["SmallImage"]["URL"].InnerText;
 dataRow["ProductPrice"] = itemNode["OfferSummary"]
["LowestNewPrice"]["FormattedPrice"].InnerText;
 // Add the row to the results table
 responseTable.Rows.Add(dataRow);
 }
 catch
 {
 // Ignore products with incomplete information
 }
 }
 }
 catch
 {
 // Ignore all possible errors
 }
 return responseTable;
}

How It Works: Working with Amazon ECS

The important points you need to understand from this exercise follow:

• The search parameter commands were saved to web.config, so you can do various changes to the
behavior of the “Amazon Balloons” pages without modifying any C# code.

• To enable accessing ECS, you added a Web Reference to its WDSL file. Visual Studio was kind enough
to do the rest for you, giving you direct access to the classes exposed by Amazon. To make your life
even easier, you wrote a reference to the AmazonEcs namespace at the beginning of your file.

• The heart of the AmazonAccess class is composed of the two GetAmazon... methods, which offer
identical functionality to the presentation tier, but using different access technologies: one uses SOAP;
the other uses REST.

Darie-Watson_4681C17.fm Page 638 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 639

To understand these two methods, we suggest starting with the REST one. After composing the REST URL, the
request is submitted to Amazon, and the results are saved to an XML document (which will look something like what
you saw in Figure 17-1 and Figure 17-2).

 // Load the Amazon response
 XmlDocument responseXmlDoc = new XmlDocument();
 responseXmlDoc.Load(amazonRequest);

The logic that follows is extremely simple. On the retrieved XML document we make an Xpath query to filter the
Item nodes, because these contain the data we’re interested in. By analyzing the response hierarchy, you will know
what nodes to ask for to get your data. We also catch and ignore the eventual exceptions that can happen in case
one of the nodes we’re trying to query doesn’t exist.

Although the logic is simple enough, its implementation details can look a bit confusing if you’re not used to parsing
and working with XML documents. We strongly recommend that you grab some additional documentation on that
topic, as its importance to everyday development projects has increased dramatically in the past few years.

GetAmazonDataWithSoap does the exact same actions, but this time by using the Amazon ECS API and the
classes provided by it, instead of manually parsing an XML response file.

Implementing the Presentation Tier
Let’s have another look at what we want to achieve in Figure 17-1 and Figure 17-4.

Exercise: Displaying Amazon.com Products in BalloonShop

1. Open DepartmentsList.ascx in Source View and add the FooterStyle element, like this:

 <FooterTemplate>
 »
 <a href="AmazonProducts.aspx"
class='<%# Request.AppRelativeCurrentExecutionFilePath ==
"~/AmazonProducts.aspx" ? "DepartmentSelected" : "DepartmentUnselected" %>' >
 Amazon Balloons

 «
 </FooterTemplate>
 <FooterStyle CssClass="DepartmentListContent" />
</asp:DataList>

2. Add a new Web User Control to your UserControls folder, named AmazonProductsList.ascx.

3. While AmazonProductsList.ascx is in Source View, add this bit of code to it:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile=
"AmazonProductsList.ascx.cs"
 Inherits="AmazonProductsList" %>
<asp:DataList ID="list" runat="server" RepeatColumns="2"

Darie-Watson_4681C17.fm Page 639 Tuesday, September 20, 2005 5:01 AM

640 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

 EnableViewState="False">
 <ItemTemplate>
 <table height="100" cellpadding="0" align="left">
 <tr>
 <td valign="top" align="center" width="110">
 <img src='<%# Eval("ProductImageUrl") %>' border="0" />
 </td>
 <td valign="top" width="250">

 <%# Eval("ProductName") %>

 Price:
 <%# Eval("ProductPrice") %>

 <a target="_blank" href="http://www.amazon.com/exec/obidos/ASIN/
<%# Eval("ASIN") %>/ref=nosim/<%# BalloonShopConfiguration.AssociateId %>">
 Buy From Amazon

 </td>
 </tr>
 </table>
 </ItemTemplate>
</asp:DataList>

4. Switch to the code-behind file, and complete the Page_Load method with the following code:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // fill the DataList with Amazon products. Calling any of
 // GetAmazonDataWithRest or GetAmazonDataWithSoap should return
 // the same results
 list.DataSource = AmazonAccess.GetAmazonDataWithRest();
 list.DataBind();
 }
}

5. Add a new Web Form to your solution named AmazonProducts.aspx based on the
BalloonShop.master Master Page.

Darie-Watson_4681C17.fm Page 640 Tuesday, September 20, 2005 5:01 AM

C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S 641

6. Open AmazonProducts.aspx in Source View and modify it like this:

<%@ Page Language="C#" MasterPageFile="~/BalloonShop.master"
AutoEventWireup="true" CodeFile="AmazonProducts.aspx.cs" Inherits=
"AmazonProducts" Title="Balloonshop : Balloons from Amazon" %>
<asp:Content ID="Content1" ContentPlaceHolderID="contentPlaceHolder"
 Runat="Server">
 Balloons From Amazon

 Browse these wonderful balloons
 that Amazon.com offers:

</asp:Content>

7. Switch AmazonProducts.aspx to Design View and drag the AmazonProductsList.ascx control
from solution explorer to the bottom of the page, as shown in Figure 17-6.

Figure 17-6. Designing the Amazon page

How It Works: Displaying Amazon.com Products in BalloonShop

In this exercise, you simply updated BalloonShop to display Amazon.com products by employing the techniques you
studied in the first part of the chapter. The new functionality isn’t especially complex, but the possibilities are
exciting. When the Buy from Amazon links are clicked, Amazon.com associates that customer and what she
purchases to your Associate ID (which is mentioned in the links).

Darie-Watson_4681C17.fm Page 641 Tuesday, September 20, 2005 5:01 AM

642 C H A P T E R 1 7 ■ I N T E G R A T I N G A M A Z O N W E B S E R V I C E S

The code-behind file AmazonProductsList.ascx.cs calls AmazonAccess.GetAmazonDataWithRest() to
get the data to populate the list of products. This data is read to build the Amazon links to the retrieved products:

 <a target="_blank" href="http://www.amazon.com/exec/obidos/ASIN/
<%# Eval("ASIN") %>/ref=nosim/<%# BalloonShopConfiguration.AssociateId %>">

However, you must know that Amazon offers many ways in which you can allow your visitors to buy their products.
If you log in to the Associates page, you’ll see a number of link types you can build and integrate into your web site.

Perhaps the most interesting and powerful is the possibility to create and manage Amazon shopping carts from your
C# code, by using the Amazon API. If you’re really into integrating Amazon.com into your web site, you should study
the ECS documentation carefully and make the most of it.

Summary
In this chapter, you learned how to access Amazon Web Services using REST and SOAP. You
can use the same techniques when accessing any kind of external functionality exposed
through these protocols.

Congratulations, you have just finished your journey into learning about building
e-commerce web sites with Beginning ASP.NET 2.0 E-Commerce in C# 2005: From Novice to Profes-
sional! You have the knowledge to build your own customized solutions that are even more
interesting and powerful than what we showed you in this book. We really hope you enjoyed
reading this book, and we wish you good luck with your own personal development projects!

Darie-Watson_4681C17.fm Page 642 Tuesday, September 20, 2005 5:01 AM

643

■ ■ ■

A P P E N D I X A

Installing the Software

The good news is that all the software required to follow this book and build the BalloonShop
Web Application is freely downloadable from the Internet. This appendix covers the installation
process for the following required programs:

• Visual Web Developer 2005 Express Edition

• SQL Server 2005 Express Edition

• SQL Server Express Manager

• IIS 5.x

What Do These Programs Do?
Although the question sounds a bit funny, it’s actually good to have a quick overview of the
products you’re about to install.

Visual Web Developer 2005 is the lightweight Visual Studio product that allows you to
build ASP.NET 2.0 applications. This is the toy you’ll use all the way in this book to build your
BalloonShop web site. The installation process automatically installs the .NET Framework 2.0,
in case you don’t already have it on your system.

In the process of installing Visual Web Developer 2005, you’ll be given the option to install
SQL Server 2005 Express Edition along with it, and we suggest you do so. You need SQL Server
2005 Express Edition anyway, and the interaction with Visual Web Developer 2005 sometimes
works better if they’re installed together.

SQL Server 2005 will be used as your database engine. The first thing to say about SQL
Server 2005 Express Edition is that it’s free, but it’s entirely compatible with the commercial
versions of SQL Server 2005. This means that as well as providing the perfect system for you to
learn and experiment with, a complete Web Application can initially be produced and distrib-
uted without incurring any costs for the database server. If the system expands at a later date,
it can be ported to the commercial distribution of SQL Server with next to no effort.

All the features that Express Edition supports are also supported by the other versions of
SQL Server, but the converse is not true. However, none of this extra functionality is required
for this book.

Some of the limitations of SQL Server Express are that it supports only one CPU (but it can
be installed on any server), it can use maximum 1GB addressable RAM, the maximum database

Darie-Watson_4681AppA.fm Page 643 Wednesday, September 14, 2005 9:23 AM

8213592a117456a340854d18cee57603

644 A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E

size is limited to 4GB, and the many enterprise features are (obviously) not present. Visit http://
www.microsoft.com/sql/2005/productinfo/sql2005features.asp to find the feature comparison
list for the various versions of SQL Server 2005.

Installing Visual Web Developer 2005 Express
Edition and SQL Server 2005 Express Edition
The following steps describe the process to install and activate Visual Web Developer 2005
Express Edition and SQL Server 2005 Express Edition.

■Note The installation steps were tested with the beta 2 versions of Visual Web Developer 2005 Express
Edition and SQL Server 2005 Express Edition.

1. Go to http://lab.msdn.microsoft.com/express/, find the Visual Web Developer 2005
Express Edition box, and click Learn More Now. Click Download Now. You’ll download
a file named vwdsetup.exe.

2. After download completes, execute vwdsetup.exe. You’ll be taken through a number of
setup screens. The important one is where you’re asked to choose optional products
that you might want to install. Check to install SQL Server 2005 Express Edition. You
might also want to install Microsoft MSDN Express Library 2005 Beta 2, which contains
the product documentation.

You’ll eventually get to the Download screen, where the setup program downloads
other necessary components from the Microsoft site. After the download completes,
the process continues by installing the downloaded components.

3. After installation is complete, you’re informed that you must complete a registration
process to get your free activation key in a maximum of 30 days. Follow the activation
procedure to get the activation key, which will be something like NGBQ2KCKL31KXX.

4. Execute Visual Web Developer product by choosing Start ➤ All Programs ➤ Visual Web
Developer 2005 Express Edition. The product will look something like Figure A-1.

Darie-Watson_4681AppA.fm Page 644 Wednesday, September 14, 2005 9:23 AM

A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E 645

Figure A-1. The Start Page in Visual Web Developer 2005

5. If you already have a registration key, go to Help ➤ Activate Product. In the page that
opens, enter the activation key and then click Activate Now.

Installing SQL Server 2005 Express Manager
SQL Server 2005 Express Manager is a very useful tool that allows you to access and manipulate
your databases and execute SQL queries on them. This tool is not necessary, but it certainly is
useful, and it’s free, so we highly recommend you install it.

■Note You need the SQL Express Manager to easily execute the SQL Scripts provided in the Source Code
area for this book on the Apress web site (http://www.apress.com).

Darie-Watson_4681AppA.fm Page 645 Wednesday, September 14, 2005 9:23 AM

646 A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E

The installation procedure is very simple. First, go to http://lab.msdn.microsoft.com/
express/, find the Visual Web Developer 2005 Express Edition box, and click Learn More Now.
In the page that opens, find a link named Download SQL Server 2005 Express Manager, which
will get you to the download page of the product. Download and install it.

After the product is installed, you’ll find it by choosing Start ➤ All Programs ➤ Microsoft
SQL Server 2005 ➤ SQL Server Express Manager. When executing the program, first you’ll
need to add login credentials to the database. If you installed the product using default data,
the Server Instance will be (local)\SqlExpress. Leave Windows Authentication checked and
click Connect. You should be presented with a window as shown in Figure A-2.

Figure A-2. SQL Express Manager

Installing the IIS 5.x Web Server
Previous versions of Visual Studio required you to have IIS on the local machine to build and
run Web Applications. This was inconvenient for users whose operating system didn’t support
IIS, such as Windows XP Home Edition.

Visual Web Developer 2005 Express Edition, on the other hand, contains a built-in web
server (Cassini), so you don’t need IIS any more. The code in this book has been tested with
both Cassini and IIS, so you can safely use either, but if you have a choice, we suggest you work
with IIS. It offers better performance and guarantees that your site looks on the development
machine the same as it will look on the production machines (which will run IIS, obviously).

Darie-Watson_4681AppA.fm Page 646 Wednesday, September 14, 2005 9:23 AM

A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E 647

The following pages are for users who prefer using IIS and don’t already have it installed
on their machines. We’ll look at the installation process for IIS on Windows 2000 Professional
and Windows XP Professional together because they don’t differ significantly. The main differ-
ence is that Windows 2000 installs IIS 5.0, whereas Windows XP installs IIS 5.1. The options for
installing are exactly the same; the only thing that might differ is the look of the dialog boxes.

Because your computer might be already running IIS 5.x, we’ll describe a process for
checking whether this is the case as part of the installation process. You should also note that
to install anything (not just ASP.NET, but literally anything) on Windows 2000/XP, you need to
be logged in as a user with administrative rights.

Installing IIS 5.x on a Web Server Machine
To install IIS 5.x, follow these steps:

1. Go to the Control Panel and select the Add or Remove Programs icon. The dialog box
shown in Figure A-3 appears, displaying a list of your currently installed programs.

Figure A-3. The Add or Remove Programs window

2. Select the Add/Remove Windows Components icon on the left side of the dialog box to
get to the screen that allows you to install new Windows components (see Figure A-4).
Make sure the Internet Information Services (IIS) check box is checked.

Darie-Watson_4681AppA.fm Page 647 Wednesday, September 14, 2005 9:23 AM

648 A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E

Figure A-4. Installing new Windows components

3. While Internet Information Services (IIS) is checked, click the Details button. This takes
you to the dialog box shown in Figure A-5. There are a few options here for installing
various optional bits of functionality. Make sure the FrontPage 2000 Server Extensions
entry is checked. The Internet Information Services Snap-In is also very desirable, as
you’ll see in the book, so make sure this is checked, too. You need to check SMTP Service
if you’ll want to send administrative emails through your own server, as shown in
Chapter 3. The last component, World Wide Web Server, is the most important, because
it’s the server that allows your computer to serve web pages to its clients.

Figure A-5. IIS dialog box

4. For the purpose of this installation, make sure all the check boxes in this dialog box are
checked. Then, click OK to return to the previous dialog box.

Darie-Watson_4681AppA.fm Page 648 Wednesday, September 14, 2005 9:23 AM

A P P E N D I X A ■ I N S T A L L I N G T H E S O F T W A R E 649

IIS starts up automatically as soon as your installation is complete, and thereafter when-
ever you boot up Windows.

IIS installs most of its bits and pieces under the (Windows root)\system32\inetsrv direc-
tory. However, more interesting to you at the moment is the \Inetpub\wwwroot directory, which
is also created at this time. This directory is the default root web directory, and contains subdi-
rectories that will provide the home for the web page files that you create. When loading http://
localhost/ in Internet Explorer, the application in \Inetpub\wwwroot is loaded by default. In
Chapter 2, you learn how to create the BalloonShop virtual directory under the root virtual
directory (so it’s accessible through http://localhost/BalloonShop), and make it point to a
custom physical folder (not a subfolder of \Inetpub\wwwroot).

Working with IIS
Having installed IIS web server software onto your machine, you’ll need some means of
administering its contents and settings. In this section, you’ll meet the user interface provided
for IIS 5.x.

Whenever you need to administer IIS, you can simply call up the Internet Information
Services administration applet (see Figure A-6) by choosing Control Panel ➤ Administrative Tools.

Figure A-6. The IIS Administration tool

Having opened the IIS applet, you can perform all your web-management tasks from this
window. For example, you can stop or start the web server or the SMTP server. You will need to
start the SMTP server to be able to send emails from this machine. The properties of the web
site are accessible via the Default Web Site node.

To test that your IIS installation actually works, you can try loading the web address of
your computer in a web browser such as Internet Explorer. You can access the default address
through http://127.0.0.1/ (127.0.0.1 is the IP of the local computer), or alternatively through
http://localhost/ (localhost is an alias for the 127.0.0.1 address), or http://computer_name/.
You can view or change your computer’s name through the Control Panel ➤ System applet
(there you’ll find a tab named Computer Name or Network Identification).

In the book, in any examples that require you to specify a web server name, the server
name will be shown as localhost, implicitly assuming that your web server and browser are
being run on the same machine. If they reside on different machines, you simply need to
substitute the computer name of the appropriate web server machine.

Darie-Watson_4681AppA.fm Page 649 Wednesday, September 14, 2005 9:23 AM

Darie-Watson_4681AppA.fm Page 650 Wednesday, September 14, 2005 9:23 AM

8213592a117456a340854d18cee57603

651

■ ■ ■

A P P E N D I X B

Project Management
Considerations

It feels great to finish building a complete e-commerce store, doesn’t it? For the purposes of
this book, we dealt with many design issues on a chapter-by-chapter basis, while also presenting
the theory concepts. However, in real-world projects, many times you’ll need to do the whole
design work from the start. This appendix discusses how to manage building complete solutions in
a professional manner.

Maybe it seems easier to just start coding without any upfront design, and with some luck,
you might even create something that works the second day; however, when it comes to large
projects, you’ll face a lot of problems in the long term by doing that.

A project’s life cycle includes more than simply coding away and building something ready
to run—it should not be done hastily. For example, for almost any real-world software project,
a critical part of its success is the database design, even if it’s only a small part of the project’s
cycle. This makes perfect sense if you think that e-commerce sites, web portals, search engines,
and customer interfaces for service providers (banking, IT, insurance, and so on) are all basi-
cally interfaces to a backend database.

Of course, the way you display the data and the reports you present to the visitor also play
an important role in the success of the software. However, you can think of the database as the
foundation of a house; if you did something wrong there, no matter how nice or trendy the
house looks, it will still be torn down by the first wind.

Developing Software Solutions
The technical design of a software solution is only a part of a software project’s life cycle. To
give you an idea of the steps involved in managing a complete software solution, imagine a
real-world example, such as building an ERP (Enterprise Resource Planning) application for a
clothing factory.

First of all, you need to know exactly what the client needs from the software, so you talk
to the client about the goals of implementing such software in its network. This is the stage of
gathering system requirements and software requirements for the application you need to build.

Darie-Watson_4681AppB.fm Page 651 Thursday, September 15, 2005 10:54 AM

652 A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S

After the project manager fully understands the customer’s requirements and discusses a
budget allocation and a timeline for the project, a team of analysts works with the customer’s
commercial office to get information about the tasks performed in the factory, the work schedule,
and the manufacturing equipment they have. Your analysts must be in touch with the region’s
economic regime, the employer’s legal obligations, the import/export conditions, and so on—
facts that are clarified with the commercial, economic, and personnel departments of the
company. The analysts build the database and describe the reports and the operations that the
software must do.

After adjustments (if necessary) by the customer, the analytical part ends by adding a
written annex to the contract with all these features agreed on by the customer and a timeline.
After this, any modification in the database structure, the reports, or software functionality will
be charged extra.

Next, the design team creates a user-friendly, attractive interface that can be presented to
the customer and changed to fit the customer’s artistic taste. After this phase is completed, the
coding part begins. This shouldn’t take a long time because the programmers know exactly
what they need to do. When they finish coding, the software is installed on a test platform at the
customer site, and the customer team simulates using the software for a definite period of
time. During the testing period, the eventual programming and design bugs are revealed and
fixed by the programmers. At the end of this phase, the customer should have a software appli-
cation that runs by the agreed specifications and deploys on the production machines. That’s
the end of the project; the final payments are made, and every modification the customer asks
for in the future is billed.

That was a short version of a story about commercial software. Of course, the theory doesn’t
apply the same for all software projects. In the case of smaller projects, such as many e-commerce
sites, several, if not all, the tasks can be performed by a single person.

Considering the Theory Behind Project
Management
Many theories exist about how to manage the software development life cycle (SDLC). No
model is deemed the best, because choosing a SDLC model depends on the particularities
of your project. We’ll take a look at the most popular project-management theories in the
following pages.

The Waterfall (or Traditional) Method
The Waterfall method, also known as the traditional method, is the father of all methodologies.
It consists of breaking the software project into six or seven phases that must be processed in
sequential order to deliver the final product. The input of each phase consists of the output of
the preceding one (see Figure B-1).

Darie-Watson_4681AppB.fm Page 652 Thursday, September 15, 2005 10:54 AM

A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S 653

Figure B-1. The Waterfall model

Establishing the requirements is the first phase and can be divided in two as shown in
Figure B-1. First, you must establish the system requirements of the project; at the end of this
phase, you have a paper describing all the hardware needed for implementing, testing, and
deploying the application. You also need the software platforms your application will be devel-
oped and tested on. The first two phases must include an opportunity study at the beginning
and a feasibility study at the end. Basically, the first question is “Do we really need this from the
business point of view?” After you establish the requirements, the feasibility study provides a
high-level cost and benefit analysis so that a ROI (return of investment) can be estimated.

In the Analysis phase, the analysts work with the customer to fully understand the customer
needs. They have to spend time with the customer’s staff to define the software functionalities,
transcribing them in a professional analysis for the software engineers.

In the Program Design phase, the design team reads the specifications of the analysis and
develops some prototypes that the customer must agree on. Usually, that is throwaway code.

In the Coding phase, programmers effectively code the application. This happens after the
customer agrees on the software design delivered by the Program Design phase.

If a testing platform is provided, the programmers install the application there and test all
the functionalities of the software. All the bugs discovered are corrected, and at the end of the
testing phase, the software must be ready to go in production. If a testing platform is not provided,
the programmers have to simulate or conduct the testing on the actual platform the software
will run on; however, at the end of the testing phase, the programmers must install a fresh copy
of the bug-free software they created.

Everything is completed after deployment at the beginning of the Operations phase.

Darie-Watson_4681AppB.fm Page 653 Thursday, September 15, 2005 10:54 AM

654 A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S

■Note Every phase has a feedback to the precedent phase where new ideas can be added and errors
are corrected.

Advantages of the Waterfall Theory

The main advantages of the Waterfall method are its simplicity and the fact that everything is
documented and agreed upon with the customer. This leads to some important benefits:

• Because everything is planned from the start, it’s easy for the project manager to
correctly estimate project costs and timelines.

• The rigorous initial planning makes the project goals clear.

• All requirements are analyzed and validated by the customer, so the customer can estimate
the benefits incurred by the software application before it’s actually implemented.

Disadvantages of the Waterfall Theory

The disadvantages of the Waterfall model are

• The customer is not able to see the product until it’s completely finished. At that stage,
it can be very expensive to make any changes to the project.

• It has little flexibility for scope changes during the project’s development.

• The architecture limitations are often not discovered until late in the development cycle.

• Because testing happens at the end of the coding phase, unexpected problems with the
code might force developers to find quick fixes at the expense of the planned
architecture.

• The Waterfall method doesn’t work on projects whose requirements can’t be rigorously
planned from the start.

The Spiral Method
As a development of the Waterfall method, the Spiral method is more suitable for large, expensive,
and complicated projects. Barry Boehm first described it in 1988 as an iterative waterfall in
which every iteration provides increased software capability (see Figure B-2, which represents the
diagram created by Barry Boehm).

Darie-Watson_4681AppB.fm Page 654 Thursday, September 15, 2005 10:54 AM

A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S 655

Figure B-2. The Spiral model

It consists of a spiral divided into four quadrants. Each quadrant represents a management
process: Identify, Design, Construct, and Evaluate. The system goes through four cycles of
these four processes:

• Proof-of-concept cycle: Define the business goals, capture the requirements, develop a
conceptual design, construct a “proof-of-concept,” establish test plans, and conduct a
risk analysis. Share results with user.

• First-build cycle: Derive system requirements, develop logic design, construct first build,
and evaluate results. Share results with user.

Darie-Watson_4681AppB.fm Page 655 Thursday, September 15, 2005 10:54 AM

656 A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S

• Second-build cycle: Derive subsystem requirements, produce physical design, construct
second build, and evaluate results. Share results with user.

• Final-build cycle: Derive unit requirements, produce final design, construct final build,
and test all levels. Seek user acceptance.

The main advantages of the Spiral method proposed by Boehm are

• The entire application is built while working with the client.

• Any gaps in the Requirement phase of the Waterfall method are identified as work
progresses.

• The spiral representation conveys very clearly the cyclical nature of the project and the
progression through its lifespan.

However, the Spiral method has some disadvantages of its own:

• Requires serious discipline on the part of the client.

• Executive control can be difficult because in most projects the client is not responsible
for the schedule and budget.

■Note The Spiral method is more suitable for software in which the entire problem is well defined from the
start, such as modeling and simulating software.

The Rapid Application Development (RAD) Method
RAD is another common project-management method that is, in essence, “try before you buy.”
Whereas in the Waterfall and even Spiral methods, the client was working with a lot of docu-
mentation, in the RAD approach, the client works with the software as it’s being developed.
The belief is that the client can produce better feedback when working with a live system as
opposed to working strictly with documentation. When using RAD as a project-management
method, customer rejection is significantly less when going into production.

The RAD method consists of the following phases:

• Business modeling

• Data modeling

• Process modeling

• Application generation

• Testing and turnover

Darie-Watson_4681AppB.fm Page 656 Thursday, September 15, 2005 10:54 AM

A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S 657

The RAD approach allows rapid generation and change of user interface features. The
client works with the software just like in the production environment.

The main disadvantage of RAD is that the client will always want more enhancements to
the software—not always important ones—and the developer must try to satisfy the client’s
needs. This can result in an unending cycle of requirements, going away from the main
purpose of the project.

Extreme Programming (XP) Methodology
Extreme Programming (XP) is a very controversial method not only because it’s the newest, but
also because it eliminates a lot of phases from the traditional Waterfall method. XP is simple
and based on communication, feedback, and courage.

The professional analysts are replaced with the client, who is very active in the process.
The client writes a document named “User Stories,” which is a simple description of the desired
functionality of the software. The programmers read the document and give an estimated
timeframe of every functionality implementation. After receiving the time estimates, the
customer chooses a group of functionalities to be developed first. This is called an iteration.

The developers use a test-driven design in the implementation phase, meaning that a
testing method for the desired functionality is conceived before the code is actually written.
Usually, every piece of code is written by a programmer under the supervision of another
programmer who tests the functionality of the code.

After the code for the entire iteration is complete, it’s then given an acceptance test with
the customer, who approves (or disapproves) the iteration. The programmer keeps developing
or improving code for that iteration until it passes the acceptance test.

The software is deployed in a number of releases, composed of one or more iterations; the
software gets to the final release when all iterations that contain all the functionalities described
in the User Stories document pass the acceptance test.

Picking a Method
More project management methods exist than the ones described so far. Because no single
method is best, a good project manager must know in theory a little about all of them to choose
the best one for the current project. Choosing the wrong tactic for a project might lead to failure,
so the project manager must carefully consider all options before choosing how to deal with a
particular project. A strategy like this will never work: “Okay, we have to build an e-commerce
site. Let’s do XP with this one, and maybe we’ll Spiral the next one!”

In many cases, it’s best to use a mix of methods to suit your project. For example, if the
client doesn’t know for sure what it wants, you can use bits of XP and collaborate closely with
the client during the development based on a User Stories document, add a few steps from the
Waterfall method, and do some RAD on the way.

Anyway, it’s very important to keep some of these procedures in mind for your next
projects, because the way you manage your projects can save you time, money, and stress.

Darie-Watson_4681AppB.fm Page 657 Thursday, September 15, 2005 10:54 AM

8213592a117456a340854d18cee57603

658 A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S

Understanding the E-Commerce Project Cycle
For most e-commerce projects, your best bet will be something with a Waterfall flavor, but with
a bit of changes here or there.

If you have some knowledge about management and a good artistic spirit for web design,
after you read this book, the e-commerce project can be a “one man show.” First of all, you
need to organize the tasks so that they take place in a logical, sequential order.

Understanding the customer needs should not be difficult. The customer wants an e-store
where a range of products can be advertised and bought. You need to know the type of products
the customer wants on the site and a little about future strategy (today the customer is only
selling balloons, but in the future the customer might want to sell candies). This is very important
because the database and the whole architecture must be designed from the start to support
future changes. You might also want to find out how the shipping department is organized to
optimize the handling and shipping process.

Most of the customers require artistic and functional design, so, in most cases, the next
phase is creating a web prototype. Whether you do it yourself or hire a web designer, the proto-
type should be only a web site template—only HTML code with something like “Product Name
Here” instead of an actual product—without the need of any databases. Depending on the
artistic taste of the customer, you might have to build several prototypes until you agree on a
design. Alternatively, you can create a more complex prototype that has some basic function-
ality and even a simple database behind the scenes. The prototype will help you get a feel about
how the final application will work and can help you get some initial feedback from the future
users. With ASP.NET 2.0, you can very easily write simple throwaway interfaces using the new
data-bound controls and data-binding techniques. After you’ve passed the prototypes phase,
it’s time to start implementing the real application.

Designing the database is, as we said, a critical phase of the project. The logical database
design is developed from the requirements-gathering phase, and is agreed on with the customer.
The logical design of a database describes what data you need to store and the relationships
between different entities of data (such as the relationship between products and departments),
but doesn’t include strict implementation details, such as the associate table used to physically
implement Many-to-Many relationships. If you’re an advanced database designer, you’ll create an
optimal physical database structure yourself.

A number of tools—such as Microsoft Visio—enable you to design the database visually.
These tools have very powerful features for designing relational database structures, and even
generate the SQL code to turn them into real databases. Regardless of the database engine
you’re using, design your tables in a visual way (even with a pen and paper) rather than writing
SQL queries.

If you don’t have resources to buy such an expensive program (yeah, the really professional
ones can be very expensive), you can use Visual Web Developer, which is free and comes
packed with some useful diagramming features.

Next, you implement the data tier objects. This is the place you start playing with your
database because you need to implement the data access logic that will support the other tiers
in your application. In the process, you’ll probably want to populate the database with some
fictive examples to have a base for testing your queries. Before writing the queries as data tier
objects, test them using a visual interface to the database engine that allows executing and

Darie-Watson_4681AppB.fm Page 658 Thursday, September 15, 2005 10:54 AM

A P P E N D I X B ■ P R O J E C T M A N A G E M E N T C O N S I D E R A T I O N S 659

debugging SQL queries. This will make your life easier when debugging the SQL code, because
as all SQL developers know, the code doesn’t always work as you expect it to the first time.

After the data tier is in place, you can continue by building the middle tier of your applica-
tion. In the middle tier, you implement the error-handling, data-manipulation strategies and
the business logic for your project. In this book, you learned some good techniques, but you
might want to choose other ones for your particular project.

Building the user interface (the ASP.NET Web Forms, Web User Controls, and Master
Pages) should be the next step. You already have a prototype that is usable only for design,
because at the stage you created the prototypes, you didn’t have a functional foundation.
Usually, interface prototypes in software projects are throwaway code, but the ASP.NET forms
and controls generate the actual look of your web site (with the design the customer agreed on).

A final testing phase is very important at the end of the project. The database will be popu-
lated with real records, and a simulation is made to test the efficiency of the ordering process.
Every process should be tested before going into production, so you must give your customer
enough time to test every functionality of the site, to make some test orders, and to evaluate the
shipping process. During this stage, any programming errors should be revealed for you to
correct.

After the code is ready and tested on your local machine, the next step is to find/provide a
hosting solution. Perhaps the best strategy is to host the project at a specialized provider, and
if the site proves to be successful, the customer can invest in its own hosting solution.

Maintaining Relationships with Your Customers
In the ideal project, you include all the possible clauses in a contract; after you deliver the site
and finish the project, you never want to hear from the customer again, except for developing
new functionalities or changing the design, in which case, you charge the customer extra.

The most unwanted thing would be for the customer to ask you to make changes without
paying for them, and that’s possible if you are not careful with the contract and with the tools
you provide the customer for administration.

For example, many e-commerce sites have poor catalog admin pages, which are nightmares
for the programmers. Avoiding such a nightmare can be possible by providing proper tools and
interfaces for the customer and, most importantly, describing how they work (eventually a
user’s manual). Many programmers don’t take this detail seriously and prefer to bring the site
up with an incomplete or hard-to-use catalog admin page, not knowing what’s coming.

If the database is complicated, you must describe all the fields in a manual and how they
must be completed; if an error occurs when the customer tries to submit a form to a database,
you have to make the error page as eloquent as possible. Also, try to work with the persons who
will use the tools you provide in the design stage and take a couple of hours to instruct them
personally on how to use the tools. This will save you a lot of explanations over the phone or
even going to the customer’s office without being paid.

Darie-Watson_4681AppB.fm Page 659 Thursday, September 15, 2005 10:54 AM

Darie-Watson_4681AppB.fm Page 660 Thursday, September 15, 2005 10:54 AM

661

Index

■Symbols
% (percent) wildcard, 172

* wildcard, 66

■A
Add or Remove Programs icon, Control

Panel, 646

Add to Cart button, 212, 329

Add to Cart link, 631

Add Web Reference, 633

AddAudit method, OrderProcessor, 531, 535

AddDepartment stored procedure, 244

AddItem method, 325–326

AddProduct method, ShoppingCartAccess
class, 320

Add/Remove Windows Components icon, 647

administrators. See authenticating
administrators

Administrators role, 418, 448

Admin.master, 482

Admin.master master page, 365, 496

AdminOrderID session variable, 380

ADO.NET overview, 71

Advanced Encryption Standard (AES), 424

aliases, 125

Allow Nulls column, Department table, 59

all-words search, 169

ALTER PROCEDURE, 68

Amazon Balloons, 625

Amazon E-Commerce service, 625–626

accessing

accessing Amazon Web Services using
REST, 628–631

accessing Amazon Web services using
SOAP, 631

creating account, 627

getting Amazon Associate ID, 627

overview, 626–627

integrating with BalloonShop

implementing presentation tier,
639–642

overview, 631–632

writing Amazon access code, 632–639

Amazon Web Services (AWS). See Amazon
E-Commerce service

AmazonAccess class, 635, 638

Amazon.com Standard Item Number
(ASIN), 629

AmazonEcs namespace, 633, 635, 638

AmazonProducts.aspx file, 640–641

AmazonProductsList.ascx file, 639

AmountClass class, 601

Analysis phase of project management, 653

AnonymousTemplate, LoginView control, 449

any-words search, 169

APIs (Application Program Interfaces), 593

App_Code directory class, CommerceLib
namespace, 519

App_Code folder, 369, 384, 457, 491, 541,
601, 635

App_Code/CommerceLib folder, 527–528

App_Data folder, 229

Application Program Interfaces (APIs), 593

ApplicationException class, 525

<appSettings> section, web.config file, 526

Apress web site, 43

Darie-Watson_4681Index.fm Page 661 Monday, September 19, 2005 10:22 AM

662 ■I N D E X

architecture

three-tier, 13–14, 16–18, 22–23

two-tier, 18

AS keyword, three-tier, 122

ASIN (Amazon.com Standard Item
Number), 629

ASP.NET 2.0

code behind page, 20–21

and declarative security, 229–230

HTML Server Controls, 22

Master Pages, 21

overview, 19

and three-tier architecture, 22–23

Web clients and Web servers, 19–20

Web Forms, 21

Web Server Controls, 22

Web User Controls, 21–22

ASP.NET validator controls, 372, 374

aspnet_Users membership table, 486

ASPNETDB.MDF database, 576

AspNetSqlMembershipProvider provider, 453

.aspx extension, 21, 510

AssignProductToCategory method, 298

AssignProductToCategory stored procedure,
295–296

Associate ID, 627

asymmetric encryption, 424

Audit database table, 519

Audit table, 522–523, 561

AuditID column, Audit table, 522

AuthCode column, Orders table, 486

AuthCode field, 536, 616

AuthCode property, 617

authenticating administrators, 227–230

ASP.NET 2.0 and using declarative
security, 229–230

implementing security, 230–243

overview, 227–228

authentication code, 598

AuthenticationClass class, 601

authorization, 227–228, 596

author’s web site, 43

AutoGenerateColumns property, 376, 390

AutoNumber column, 59

AWS (Amazon Web Services). See Amazon
E-Commerce service

■B
backups, for defending site, 5

BalloonShop class, CommerceLib
directory, 519

BalloonShop Configuration class, 525–526

BalloonShop order administration

business tier modifications

adding human-readable status
information, 565–566

CommerceLibAuditInfo class, 566–567

CommerceLibOrderDetailInfo
modifications, 570

CommerceLibOrderInfo class, 568–569

ConvertDataTableToOrders method, 571

exposing an audit trail via
CommerceLibOrderInfo, 570

GetOrderAuditTrail method, 567–568

GetOrdersByCustomer method,
571–572

GetOrdersByDate method, 572

GetOrdersByRecent method, 572–573

GetOrdersByStatus method, 573

overview, 565

UpdateOrder method, 573, 575

database modifications

CommerceLibOrderGetAuditTrail
stored procedure, 561

CommerceLibOrdersGetByCustomer
stored procedure, 561–562

CommerceLibOrdersGetByDate stored
procedure, 562–563

CommerceLibOrdersGetByRecent
stored procedure, 563

Darie-Watson_4681Index.fm Page 662 Monday, September 19, 2005 10:22 AM

663■I N D E X

CommerceLibOrdersGetByStatus
stored procedure, 563–564

CommerceLibOrderUpdate stored
procedure, 564

overview, 561

overview, 561

presentation tier modifications

modifying OrderDetailsAdmin.ascx
control, 582, 584–587, 589

modifying OrdersAdmin.aspx page,
575–579, 581–582

overview, 575

testing Order Administration page,
589–590

BalloonShopConfiguration class, 70, 81, 523,
616–617, 634

BalloonShopConnection connection
string, 461

BalloonShop.master Master Page, 331, 335,
489, 640

BalloonShop.master.cs, 482

Binary, VarBinary type, 58

bool value, 280

Boolean operators, 171

browsers, with cookies disabled, 325

business field email address, 212

business tier, 13

BusinessObjects folder, 140

Button control, 185

Buy From Amazon links, 627, 631, 641

■C
C#, 23, 136

cancel_return parameter, 219

CancelDestinationPageUrl property,
CreateUserWizard control, 450

Canceled bit, 389

Card Not Present (CNP) transactions, 595

CardClass class, 602

CardNumberX property, 446

<CardTxn> element, 614

CardTxnRequestClass, 602

CardTxnResponseClass, 602

Cart Admin page, 348–352

CartID parameter, ShoppingCartAddItem,
318, 320, 322

CartSummary.ascx file, Web User Control, 331

Cascading Style Sheets (CSS) file, 90

Cassini web server, 27

catalog administration

administering categories

CategoriesAdmin Web User Control, 270

middle-tier methods for, 267–270

overview, 266

stored procedures for, 266–267

administering departments

customizing GridView with template
columns, 263–266

DepartmentsAdmin user control,
249–263

middle-tier methods for, 244–248

overview, 243

stored procedures for, 244

administering product details

middle-tier methods for, 298–301

overview, 293–294

ProductsAdmin Web user control,
302–309

stored procedures for, 295–297

administering products

middle-tier methods for, 280–284

overview, 277–278

ProductsAdmin Web user control,
284–293

stored procedures for, 278–280

authenticating administrators

ASP.NET 2.0 and using declarative
security, 229–230

implementing security, 230–243

overview, 227–228

preparing to create catalog administration
page, 221–227

Darie-Watson_4681Index.fm Page 663 Monday, September 19, 2005 10:22 AM

664 ■I N D E X

CatalogAccess class, 70, 81, 140–142, 182,
245–246, 267, 298, 410

CatalogAccess.cs file, 139

Catalog.aspx Web Form, 153

catch block, 80, 525

CategoriesAdmin user control, 267, 270

CategoriesAdmin.ascx

how works, 276–277

implementing, 270–276

CategoriesAdmin.ascx Web User Control, 266

CategoriesList, 148

category administration

CategoriesAdmin Web User Control, 270

middle-tier methods for, 267–270

overview, 266

stored procedures for, 266–267

CategoryDetails struct, 141

CategoryID column, 266

CategoryID field, 110

CategoryID field name, Category Table, 112

CategoryID parameter, 148

CategoryID value, 296

CategoryIndex value, 207

CausesValidation property, 378

Certificate Signing Request (CSR), 480

certs directory, 624

Char data type, 57

CheckBoxField column, 284

checkout, PayPal, 212–213

Checkout button, 361–363

checkout page, 474–479

Checkout.aspx.cs file, 510–512, 514

checkoutButton_Click, 218

Click event method, 200

client-server architecture, 18

client-side scripting technologies, 20

client-side validation, 372, 374

CNP (Card Not Present) transactions, 595

code-behind model, ASP.NET 1.0, 21

Coding phase of project management, 653

coding standards, 26–27

columns, 56–58

customizing GridView with, 263–264

identity columns, 59

nullable, 59

unique, 56

COM+ (Component Object Model+), 517

comm object, 135

Command object, 74

commands, issuing, 74–76

CommandText property, 74

Comments field, 358

CommerceLib class, 519

CommerceLib code, 565

CommerceLib folder, 541

CommerceLib library, 524

CommerceLib method, 488

CommerceLib string, 561

CommerceLibAccess class, 491, 493, 506,
523, 565, 579

CommerceLibAccess method, 495, 571

CommerceLibAccess.cs file, 491

CommerceLibAuditInfo class, 566–567

CommerceLibException class, 523–524

CommerceLibOrderDetailInfo class,
491–492, 495, 566, 570

CommerceLibOrderGetAuditTrail stored
procedure, 561, 568

CommerceLibOrderGetInfo stored
procedure, 503–504

CommerceLibOrderInfo class, 493–495,
508–510, 514, 530, 532, 538–539,
565–566, 568–571, 586

CommerceLibOrderSetAuthCode stored
procedure, 536–537

CommerceLibOrderSetDateShipped stored
procedure, 536

CommerceLibOrdersGetByCustomer stored
procedure, 561–562, 571

Darie-Watson_4681Index.fm Page 664 Monday, September 19, 2005 10:22 AM

8213592a117456a340854d18cee57603

665■I N D E X

CommerceLibOrdersGetByDate stored
procedure, 562–563, 572

CommerceLibOrdersGetByRecent stored
procedure, 563, 572

CommerceLibOrdersGetByStatus stored
procedure, 563–564, 573

CommerceLibOrderUpdate stored
procedure, 564

CommerceLibOrderUpdateStatus stored
procedure, 536

CommerceLibShippingGetInfo stored
procedure, 505, 507

Community Starter Kit (CSK), 172

CompareValidator control, 374, 381

Completed bit, 389

Component Object Model+ (COM+), 517

ComputeHash method, 423

Configure Data Source control, 461

ConnectionString property, 72

constraints, 54

ContinueDestinationPageUrl property,
CreateFormWizard control, 468

ContinueDestinationPageUrl property,
CreateUserWizard control, 450

ContinueNow field, 533

ControlToCompare property, 374

ControlToValidate property, 373

ConvertDataTableToOrders method, 571

Convert.ToBase64String utility function, 423

cookies, 321, 325

COUNT aggregate function, 406

count parameter, 572

CreateAudit method, CommerceLibAccess,
523–524, 530

CreateAudit stored procedure, 523

CreateCategory stored procedure, 266–267

CreateCommand method, 77

CreateCommand method,
GenericDataAccess class, 139, 496

CreateCommerceLibOrder method, 488,
507–508

CreateConnection object, 77

CreateCustomerOrder stored procedure,
486–487, 504–505

CreateDecryptor method, 433

CreateOrder stored procedure, 359–360

CreateParameter method, 135

CreateProduct stored procedure, 278–279

CreateUserButtonText property,
CreateUserWizard control, 450

CreateUserWizard control, 448, 450

CreateXml method, 445

credit card transactions

implementing. See DataCash XML API

integrating DataCash with BalloonShop

business tier modifications, 616–620

going live, 621

overview, 615

testing the pipeline, 621

overview, 593–596

payment gateways

DataCash, 594–595

overview, 594

PayFlow Pro, 595

using PayFlow Pro API, 623–624

cross-selling, 401

cryptographic stream, 425

CSK (Community Starter Kit), 172

CSR (Certificate Signing Request), 480

CSS (Cascading Style Sheets) file, 90

CssClass property, 90, 374

Current property, HttpContext class, 471

CurrentPipelineSection field, 533

custom shopping cart

administering

deleting products that exist in carts, 346

overview, 346

removing old shopping carts, 346–347

Darie-Watson_4681Index.fm Page 665 Monday, September 19, 2005 10:22 AM

666 ■I N D E X

business tier implementation

and browsers with cookies disabled, 325

generating shopping cart IDs, 320–322

overview, 320

shopping cart access functionality,
325–329

data tier implementation

overview, 317

ShoppingCartAddItem, 318

ShoppingCartGetItems, 319

ShoppingCartGetTotalAmount, 320

ShoppingCartRemoveItem, 318

ShoppingCartUpdateItem, 319

designing, 314

overview, 311–312, 314

presentation tier implementation

adding, 343

creating Add to Cart buttons, 329

displaying shopping cart, 335

editing product quantities, 341

overview, 329

showing shopping cart summary,
331–332

storing shopping cart information, 314–315

customer accounts, 417–418

checkout page, 474–479

customer details

overview, 455

user profiles in ASP.NET 2.0, 455–456

user profiles in BalloonShop, 456–474

customer logins, 448–455

overview, 417–419

SecurityLib classes

encryption, 423–447

hashing, 420–423

overview, 419

setting up secure connections

enforcing SSL connections, 480–482

including redirections to enforce
required SSL connections, 482–484

obtaining SSL certificate, 480

overview, 479

customer details page, 418

customer needs, 658

customer orders. See also tax and shipping
charges

accessing

business layer modifications, 491–496

database modifications, 490–491

overview, 490

presentation tier modifications, 496–500

creating OrdersAdmin Web form, 365–366

displaying existing orders

business tier methods, 369–372

client-side validation and using
ASP.NET validator controls, 372–374

database stored procedures, 368–369

implementing user interface, 374–381

overview, 367

implementing order-placing system

adding Checkout button, 361–363

overview, 353–355

storing orders in database, 355–360

order details

business tier methods, 384–389

creating user interface, 389–399

database stored procedures, 381–384

overview, 381

overview, 353

placing

business tier modifications, 488

database modifications, 485–487

overview, 485

presentation tier modifications, 488–490

processing, 4, 7–8

reducing costs of, 3

customer relationships, 659

Customer table, 357

CustomerAddressAsString, 500

CustomerID column, Orders table, 486

Darie-Watson_4681Index.fm Page 666 Monday, September 19, 2005 10:22 AM

667■I N D E X

customers

acquiring, 2

acquiring information about, 7

bringing back, 4

making spend more, 2–3

servicing, 4

Customers role, 448

CustomerServiceEmail class, 526

CustomValidator control, 373

■D
Data Encryption Standard (DES), 424

data tables

columns and data types, 56–58

department table, 53–54

identity columns, 59

indexes, 60

nullable columns and default values, 59

overview, 53

primary keys, 54–55

unique columns, 56

data tier, 14

data tier objects, implementing, 658

data types, 56–58

database, communicating with

overview, 63–64

SQL (Structured Query Language)

DELETE statement, 67

INSERT statement, 66–67

overview, 64–65

SELECT statement, 65–66

UPDATE statement, 67

stored procedures, 68

database, designing, 658

DataCash, 594–595

communicating with, 601

integrating with BalloonShop

business tier modifications, 616–620

going live, 621

overview, 615

testing the pipeline, 621

DataCash XML API

exchanging XML data, 600–615

fulfillment request, 599

fulfillment response, 599–600

overview, 596

preauthentication request, 597–598

response to preauthentication request, 598

dataCashClient, 608

DataCashLib class, 608

DataCashLibTest.aspx file, 607

dataCashPassword, 608

DataCashRequest class, 605, 613–614

DataCashResponse class, 606, 613

DataCashResponse object, 615

DataGrid control, 583

DataKeyNames property, 376

DataList control, 90, 94, 148, 157, 213

DataRow object, 384, 495

DataTable class, 75

DataTable object, 384, 635

date_created field, 407

DateAdded field, 318

DATEDIFF function, 347

DateShipped field, 358, 384

DateStamp column, Audit table, 522

DateTime type, 57

DbCommand class, 135

DbCommand object, 139

DbDataReader object, 125

DbParameter instance, 135

DbParameter object, 136

DbProviderFactory class, 77

declarative security, and ASP.NET 2.0,
229–230

Decrypt method, 430, 432

DecryptData method, 443, 445

decryptor object, 425

Delete button, 294

DELETE command, 67

DeleteCategory stored procedure, 267

Darie-Watson_4681Index.fm Page 667 Monday, September 19, 2005 10:22 AM

668 ■I N D E X

DeleteDepartment stored procedure, 244

DeleteProduct method, 298

DeleteProduct stored procedure, 297, 346

deleting products in carts, 346

department administration

customizing GridView with template
columns, 263–266

DepartmentsAdmin user control, 249–263

middle-tier methods for, 244–248

overview, 243

stored procedures for, 244

Department data table, 52

Department table, 51–61

Department-Category relation, 108

DepartmentDetails object, 140–141

DepartmentID field, 110, 112, 266

DepartmentID parameter, 147

DepartmentID query string, 224

DepartmentIndex query string parameter, 207

DepartmentsAdmin control, 245

DepartmentsAdmin user control, 249–250

DepartmentsAdmin.ascx file, 250

DepartmentsList control, 90

DepartmentsList user control, 94

DepartmentsList.ascx file, 52, 91, 639

DES (Data Encryption Standard), 424

Description field name

Category Table, 112

Product table, 117

Digital Signature Algorithm (DSA), 424

Display property, 373

DisplayMode property, 374

DISTINCT clause, 133

DropDownList control, 584

DSA (Digital Signature Algorithm), 424

Duration parameter, OutputCache page
directive, 206

■E
e-commerce project cycle, 658–659

ECS Web Service, 633

Edit button, 223

Edit button, Secure Communications
section, 480

Edit Categories button, 224

EditButton button, 473

<EditItemTemplate> template, 464

email, sending, 81

EnableValidation property, 374

EnableViewState property, 381

Encrypt method, StringEncryptor class, 430

EncryptData method, 443, 445

_encryptedData member, 445

encryption, 423–477

encryptor object, 425

errorLabel control, 577, 579

ErrorMessage property, 374

exact-match search, 169

Exception class, 80

exceptions, catching and handling, 78–80

Execute method, SqlCommand class, 75

ExecuteNonQuery method

GenericDataAccess class, 244

SqlCommand class, 75

ExecuteReader method, 75, 125

ExecuteScalar method

DbCommand object, 320

GenericDataAccess class, 244

SqlCommand class, 75

SqlCommand object, 328

ExecuteSearch method, 200

ExecuteSelectCommand method,
GenericDataAccess, 571

Extreme Programming (XP) methodology, 657

Darie-Watson_4681Index.fm Page 668 Monday, September 19, 2005 10:22 AM

669■I N D E X

■F
fields, 53

final testing phase, 659

final-build cycle, 656

finally block, 80

first page, building, 33–37

first-build cycle, 655

flexible architecture, 13

FooterStyle element, 639

<FooterTemplate> template, 462

for loop, 184

FOREIGN KEY constraint, 110–111, 346, 357

foreign keys, 110

Forms authentication method, 228

<forms> definition, web.config file, 482

FormView control, 455, 473

FROM keyword, 67

FrontPage 2000 Server Extensions entry, 648

full-text search feature, 171, 195

■G
gateway providers, 593

gateway services, 594

generic data access code, implementing,
76–78

GenericDataAccess class, 70–71, 81, 244

GET request, HTTP, 627

GetAllProductsInCategory method, 278, 280

GetAmazonDataWithRest() method,
AmazonAccess class, 642

GetAmazonDataWithRest method, 637

GetAmazonDataWithSoap method, 636

GetByDate method, 370–371

GetByRecent method, 370

GetCategoriesInDepartment method, 143

GetCategoriesInDepartment stored
procedure, 131

GetCategoriesWithoutProduct method, 298

GetCategoriesWithoutProduct stored
procedure, 295

GetCategoriesWithProduct method, 298

GetCategoriesWithProduct stored
procedure, 295

GetCategoryDetails method, 141–142

GetCategoryDetails stored procedure, 130

GetCurrentPipelineSection method, 533,
553–554

GETDATE() function, 318, 358

GetDepartmentDetails method, 139–141

GetDepartmentDetails stored procedure,
130, 141

GetDepartments stored procedure, 51, 68

GetDetails method, 386

GetInfo method, 385–386, 394

GetItems method, 328

GetMailBody() method, 543, 550

GetOrder method, 495–496

GetOrderAuditTrail method,
CommerceLibAccess class,
567–568, 570

GetOrderDetails method, 493, 495

GetOrdersByCustomer method, 571–572

GetOrdersByCustomer stored procedure,
CommerceLibAccess class, 578

GetOrdersByDate method, 572

GetOrdersByRecent method, 572–573

GetOrdersByStatus method, 573

GetProductDetails method, 142–143

GetProductDetails stored procedure, 130

GetProductRecommendations stored
procedure, 407

GetProductsInCategory method, 133,
146–147

GetProductsInCategory stored procedure,
132–133

GetProductsOnCatalogPromotion method,
143, 145

GetProductsOnCatalogPromotion stored
procedure, 131–132

GetProductsOnDepartmentPromotion
method, 145–146

GetProductsOnDepartmentPromotion
stored procedure, 133–134

Darie-Watson_4681Index.fm Page 669 Monday, September 19, 2005 10:22 AM

670 ■I N D E X

GetRecommendations method, 410

GetResponseTable method, 635

GetShippingInfo method,
CommerceLibAccess class,
506–507, 511

GetTotalAmount method, 328–329

GetUnverifiedUncanceled method, 371

GetUser() method, Membership class, 495

GetVerifiedUncompleted method, 371–372

grid_SelectedIndexChanged method, 578, 582

GridView control, 249, 341, 380

customizing with template columns,
263–264

setting fields of, 376, 391

growth, designing for, 12–13

GUID value, 577

■H
hashed form, 228

hashing, 228–229, 420–423

HasValue property, 575

header, adding to main page, 38, 40–41

Header control, 38, 90

<HeaderTemplate> template, 462

HeaderText property, 374

<HistoricTxn> element, 614

HistoricTxnClass class, 603

howManyPages parameter, 144

HTML Server Controls, 22

HTTP (Hypertext Transfer Protocol), 203, 479

HttpWebRequest class, 614

Hypertext Transfer Protocol (HTTP), 203, 479

■I
ID parameter, 530

IDENTITY column, 177

IDENTITY column, Category table, 267

identity columns, 59

IDs, shopping cart, generating, 320–322

IIS (Internet Information Services) 5.x Web
Server, 646–649

IIS (Internet Information Services) check
box, 647

Image variable type, 58

Image1FileName field name, Product
table, 117

Image2FileName field name, Product
table, 117

ImageField grid column, 284

implementing paging, 177–178

indexes, 60

IndexOf method, String class, 615

Inetpub\wwwroot directory, 649

initialization vector (IV), 425

input parameters, 135

INSERT INTO variable, 128

INSERT statement, 66–67, 360

<InsertItemTemplate> template, 462

installing

IIS 5.x on a Web Server Machine, 647–649

IIS 5.x Web Server, 646–647

SQL Server 2005

Express Edition, 644–645

Express Manager, 645–646

Visual Web Developer 2005 Express
Edition, 644–645

Int data type, 57

Internet Information Services (IIS) 5.x Web
Server, 646–649

Internet Information Services (IIS) check
box, 647

Internet Information Services Snap-In, 648

Internet payment service providers, 210. See
also PayPal

IPipelineSection class, 523

IPipelineSection class, CommerceLib
directory, 519

IPipelineSection interface, 527–528, 533, 543

IPipelineSection.Process method, 543

isDecrypted flag, 446

isEncrypted flag, 445

IsPostBack property, Page class, 201

Darie-Watson_4681Index.fm Page 670 Monday, September 19, 2005 10:22 AM

671■I N D E X

ItemAsString utility field, 492

ItemTemplate, DataList control, 213

<ItemTemplate> template, 462

iterations, 657

IV (initialization vector), 425

■J
Java applets, 20

JavaScript, 20

JOIN clause, 123

joining data tables, 123–125

junction tables, Product-Category
relationship, product catalog, 109

■K
key-pair method, 424

■L
Label control, 90

LEFT function, 122

List<CommerceLibAuditInfo> class, 568

List<CommerceLibOrderInfo> collection,
571, 579

List<ShippingInfo> object, 506

Location parameter, OutputCache page
directive, 206

logic, adding to site

catching and handling exceptions, 78–80

connecting to SQL server, 71–72

implementing generic data access code,
76–78

issuing commands and executing stored
procedures, 74–76

sending emails, 81

writing business tier code, 81–82

Login control, 229

LoginName control, 230

logins, customer, 448–455

LoginStatus control, 230

LoginView control, 230, 449

■M
Macromedia Flash, 20

MailAdmin method, OrderProcessor class,
531, 534–535

MailAdmin method,
OrderProcessorMailer, 530

MailCustomer method, OrderProcessor,
542–543

MailMessage class, 81

MailSupplier method, 542

main page, adding header to, 38, 40–41

Managed Data Providers for SQL Server, 76

many-to-many relationships, 107, 109–110

MarkCanceled method, 389

MarkCompleted method, 389

MarkVerified method, 388

Master Pages, 21, 482

MembershipUser class, 472, 488, 495

MemoryStream object, 432

Message column, Audit table, 522

MessageNumber column, Audit table, 522

messageNumber parameter, 524

Microsoft Passport authentication, 418

Microsoft Transaction Server (MTS), 517

middle tier of application, building, 659

MIN aggregate function, 347

MinimumValue property, 374

money, making with e-commerce sites, 3–4

Money data type, 57

MoveProductToCategory method, 298

MoveProductToCategory stored
procedure, 296

MTS (Microsoft Transaction Server), 517

■N
Name field name

Category Table, 112

Product table, 117

Darie-Watson_4681Index.fm Page 671 Monday, September 19, 2005 10:22 AM

8213592a117456a340854d18cee57603

672 ■I N D E X

newDateShipped parameter, 575

nexus, 500

nonmatching words, 176

nonsecure connection, 483

n-Tier Architecture, 17

NULL value, 59

nullable columns, 59

NVarChar data type, 57

■O
ObjectDataSource control, 455, 461, 472

od1 instance, OrderDetail class, 404

od2 instance, OrderDetail class, 404

OnCatalogPromotion field name, Product
table, 117

OnDepartmentPromotion field name,
Product table, 117

one-to-many relationships, 107–108

OnInit property, 483

OnPreRender event handler, 473

Operations phase of project
management, 653

Operator property, 374

OracleCommand method, 77

Order Administration page, 589–590

ORDER BY clause, 406

order pipeline

BalloonShop order pipeline, 518–522

building

adding more functionality to
OrderProcessor, 535–539

business tier modifications, 523–531

database modifications, 522–523

overview, 522

presentation tier modifications, 531–535

defining, 517–518

overview, 517

OrderAccess.Update method, 573

OrderAsString field, 500, 509

OrderDetail table, 356–359, 404

OrderDetailsAdmin control, 381–382, 389,
398–399

OrderDetailsAdmin.ascx control, 363, 391,
579, 582, 584–587, 589

OrderGetDetails stored procedure, 382–383

OrderGetInfo stored procedure, 381–382, 491

OrderID column, Audit table, 522

OrderID field, 355

OrderID primary key, 358

OrderInfo instance, 588

OrderInfo object, 385, 394

OrderInfo parameter, 386

OrderInfo struct, 384–385, 491, 573

OrderMarkCanceled stored procedure,
382, 384

OrderMarkCompleted stored procedure,
382, 384

OrderMarkVerified stored procedure,
382–384

OrderProcessor class, 519, 523, 525, 528–530,
541–543, 588

adding more functionality to

business tier modifications, 536–539

database modifications, 535–536

overview, 535

OrderProcessorConfiguration class, 624

OrderProcessorEmail class, 526

OrderProcessorException class, 519, 524–525

OrderProcessorException instances, 534

OrderProcessorMailer class, 523, 527,
541–542

OrderProcessor.Process method, 557

orders. See customer orders

Orders database, 519

Orders table, 355–359, 486, 503, 565

OrdersAccess class, 369, 385, 394, 493

OrdersAccess.cs file, 384

OrdersGetByDate stored procedure, 368–369

OrdersGetByRecent stored procedure,
368, 370

Darie-Watson_4681Index.fm Page 672 Monday, September 19, 2005 10:22 AM

673■I N D E X

OrdersGetUnverifiedUncanceled stored
procedure, 369

OrdersGetVerifiedUncompleted stored
procedure, 369

OrderUpdate stored procedure, 382–383

Out parameter, 135

output cache, 206–208

output parameters, 135–136

OutputBox text box, 610

OutputCache page directive, 206–207

■P
Page_Load event, 200, 468, 582, 585

Page_Load method, 578, 640

Page_PreRender method, 394

pageNumber parameter, 144

paging, implementing using SQL Server
2005, 126–127

param3 property, 456

param4 property, 456

parameter strings, 622

ParameterDirection.Output, 136

parameters, 129, 135–136

ParmList, 622

PasswordHasher class, 420

PasswordHasher.cs file, SecurityLib
class, 419

PasswordRegularExpression parameter,
CreateUserWizard control, 454

passwordStrengthRegularExpression
parameter, 453

PayFlow Pro gateway, 622

PayFlow Pro library, 624

PayFlow Pro service, 595

payments. See PayPal

PayPal, 6–7

cost of, 7

getting started with, 211

integrating shopping cart and checkout,
212–213

lack of freedom with, 7

overview, 209

shopping cart, 314

Single Item Purchases feature, 218–219

percent (%) wildcard, 172

performance improvement

handling postback, 199–201

managing ViewState, 203–204

overview, 199

using output cache, 206–208

pipeline implementation

business tier modifications

GetCurrentPipelineSection method,
553–554

OrderProcessor class, 542–543

OrderProcessorMailer class, 542

overview, 541–542

PSCheckFunds class, 545–546

PSCheckStock class, 546–547

PSFinalNotification class, 552–553

PSShipGoods class, 549–551

PSShipOK class, 551

PSStockOK class, 547–548

PSTakePayment class, 548–549

ThePSInitialNotification class, 543–545

overview, 541

presentation tier modifications, 554–560

Place Order button, 218

placeOrderButton_Click event handler, 511

placeOrderButton_Click method,
Checkout.aspx.cs file, 489

PopulateControls() method, 361, 394, 478,
510, 586–587

postback, 199–201, 585

preauthorization, 596

Price field name, Product table, 117

PRIMARY KEY constraint, 56, 59, 110

primary keys, 54–55

private field, 569

Process() method, 543, 588

Darie-Watson_4681Index.fm Page 673 Monday, September 19, 2005 10:22 AM

674 ■I N D E X

Process() method, OrderProcessor class,
532–533

Process method, OrderProcess class, 575

processButton button, OrderTest.aspx.cs
file, 555

processing orders, 4, 7–8

product administration

middle-tier methods for, 280–284

overview, 277–278

product details

middle-tier methods for, 298–301

overview, 293–294

ProductsAdmin Web user control,
302–309

stored procedures for, 295–297

ProductsAdmin Web user control,
284–293

stored procedures for, 278–280

product catalog

adding custom error page, 100

adding logic to the site

catching and handling exceptions,
78–80

connecting to SQL server, 71–72

implementing generic data access code,
76–78

issuing commands and executing stored
procedures, 74–76

overview, 70

sending emails, 81

writing business tier code, 81–82

communicating with database

overview, 63–64

SQL (Structured Query Language),
64–67

stored procedures, 68

completing business tier code

GetCategoriesInDepartment, 143

GetCategoryDetails, 141–142

GetDepartmentDetails, 139–141

GetProductDetails, 142–143

GetProductsInCategory, 146–147

GetProductsOnCatalogPromotion,
143–145

GetProductsOnDepartmentPromotion,
145–146

overview, 136–139

data tables

columns and data types, 56–58

department table, 53–54

identity columns, 59

indexes, 60

nullable columns and default values, 59

overview, 53

primary keys, 54–55

unique columns, 56

Department/Category/Product tables,
data storage, 106

displaying list of departments, 94

overview, 90

themes, skins, and styles, 90–91

implementing presentation tier

displaying department and category
details, 153

displaying list of categories, 148

displaying product details, 165

displaying product lists, 157

overview, 147–148

overview, 45–46, 105

previewing, 47, 49

querying new data

joining data tables, 123–125

overview, 122

retrieving short product descriptions,
122–123

showing products page by page,
125–128

relationships between, diagram, 106

storing new data, 105–110

adding categories, 111–114

adding products, 116–117

Darie-Watson_4681Index.fm Page 674 Monday, September 19, 2005 10:22 AM

675■I N D E X

enforcing table relationships with
FOREIGN KEY constraint, 110–111

using ADO.NET with parameterized
stored procedures

getting results back from output
parameters, 136

overview, 135

using input parameters, 135

using output parameters, 135–136

what it looks like, 46–47

writing new stored procedures

GetCategoriesInDepartment, 131

GetCategoryDetails, 130

GetDepartmentDetails, 130

GetProductDetails, 130

GetProductsInCategory, 132–133

GetProductsOnCatalogPromotion,
131–132

GetProductsOnDepartmentPromotion,
133–134

overview, 129–130

product ranking, calculating WordCount
using, 176–177

product recommendations

business tier implementation, 410–412

data tier implementation

adding product recommendations,
407–408

adding shopping cart
recommendations, 409–410

overview, 403–407

dynamic recommendations, 402

overview, 401

Product table, 294, 358, 360, 406

Product.aspx file, 165

ProductCategory table, 294

ProductDescriptionLength configuration
setting, 137

ProductDetails struct, 142

ProductDetailsAdmin.ascx control, 293,
302–309

ProductID column, 124

ProductID field, 110, 117, 346

ProductID parameter,
ShoppingCartAddItem, 318

ProductID value, 296

ProductRecommendations.ascx control, 412

products, offering, 4

ProductsAdmin control, 284–293

ProductsList user control, 191, 213

ProductsList.ascx control, 207

ProductsList.ascx web control, 157, 170

ProductsPerPage configuration setting, 136

<profile> element, 455

ProfileCommon class, 456, 471, 495

ProfileCommon object, 495

ProfileDataSource control, 461

ProfileWrapper class, 470

ProfileWrapper private fields, 460

Program Design phase of project
management, 653

project management

developing software solutions, 651–652

e-commerce project cycle, 658–659

maintaining relationships with
customers, 659

overview, 651

picking a method, 657

theory behind

Extreme Programming (XP)
methodology, 657

overview, 652

Rapid Application Development (RAD)
method, 656–657

Spiral method, 654–656

Waterfall (or Traditional) method,
652–654

proof-of-concept cycle, 655

ProviderUserKey property, 488

PSCheckFunds class, 545–546, 617,
619–620, 624

PSCheckStock class, 546–547

Darie-Watson_4681Index.fm Page 675 Monday, September 19, 2005 10:22 AM

676 ■I N D E X

PSDummy class, 523, 530–531

PSFinalNotification class, 519, 552–553

PSShipGoods class, 519, 549, 551

PSShipOK class, 519, 551

PSStockOK class, 547–548

PSTakePayment class, 548–549, 619–620, 624

■Q
Quantity field, 358

querying new data

joining data tables, 123–125

overview, 122

retrieving short product descriptions,
122–123

showing products page by page

implementing paging using SQL Server
2005, 126–127

overview, 125–126

using table variables, 127–128

■R
RAD (Rapid Application Development)

method, 656–657

RangeValidator control, 373, 381

Rapid Application Development (RAD)
method, 656–657

RC2 (Ron’s Code or Rivest’s Cipher), 424

RDBMS (Relational Database Management
Systems), 64

recommendations. See product
recommendations

records, 53

Reference column, Orders table, 486

Reference field, 536, 616

reference number, 597

Reference property, 617

Refresh method, 495, 509

Register link, 452

registering sites, 2

registration page, 418

Relational Database Management Systems
(RDBMS), 64

relationships

enforcing with FOREIGN KEY constraint,
110–111

maintaining with customers, 659

many-to-many relationships, 109–110

one-to-many relationships, 108

overview, 107

releases, software, 657

RemoveItem method, 327–328

RemoveProductFromCategory method, 298

RemoveProductFromCategory stored
procedure, 297

removing old shopping carts, 346–347

REPLACE function, 174, SQL Server

Representational State Transfer (REST),
625–631

Request.IsSecureConnection, 482

Require Secure Channel (SSL) box, 480

requireSSL attribute, 482

Response Groups link, 630

responsibilities. See roles

REST (Representational State Transfer),
625–631

return parameter, 219

risks, e-commerce sites, 4–5

Rivest-Shamir-Adleman (RSA), 424

RoleGroup Template, 451

roles, 228

Roles class, 455

Ron’s Code or Rivest’s Cipher (RC2), 424

ROW_NUMBER() function, 126, 177

RSA (Rivest-Shamir-Adleman), 424

■S
scalable architecture, 13

search keys, 172

Search method, 182

SearchBox control, 200

SearchBox.ascx control, 184–185, 200

SearchCatalog method, 182

Darie-Watson_4681Index.fm Page 676 Monday, September 19, 2005 10:22 AM

677■I N D E X

SearchCatalog stored procedure, 172, 182

calculating product ranking using
WordCount, 176–177

overview, 175

passing search string to stored
procedure, 175

searching the catalog

choosing how to search, 169–170

implementing business tier, 182–184

implementing custom search engine

overview, 171

searching by counting number of
appearances, 173–174

searching for product data in search
string, 172–173

searching for similar words, 174

searching using WHERE and LIKE, 172

implementing paging, 177–178

implementing presentation tier

creating search box, 185

displaying search results, 191

overview, 184–185

overview, 169

SearchCatalog stored procedure

calculating product ranking using
WordCount, 176–177

overview, 175

passing search string to stored
procedure, 175

smarter searching, 195–197

writing the code, 178

second-build cycle, 656

secure connections, setting up

enforcing SSL connections, 480–482

including redirections to enforce required
SSL connections, 482–484

obtaining an SSL certificate from
VeriSign, 480

overview, 479

Secure Sockets Layer (SSL), 479

certificates, 480

connections, 5

SecureCard class, 434, 447, 470

SecureCard instance, 446

SecureCard object, 446

SecureCard.cs file, 419

SecureCardException.cs file, 419

SecureLib library, 433

security, catalog administration, 229–230

Security tab, ASP.NET Web Site
Administration Tool, 449

SecurityLib classes

encryption, 423–447

hashing, 420–423

overview, 419

SecurityLibTester.aspx, 421–422

SEH (Structured Exception Handling), 432

SELECT clause, 124

SELECT query, 122, 126

SELECT statement, 65–66, 75, 172, 368

SelectedIndexChanged event handler, 380

SendMail method, Utilities class, 363,
527, 542

serialization attributes, XML, 600

server-side control, 22

server-side validation, 372

session data, 314

session handling, 321–322

SET ROWCOUNT statement, 368

SetEditMode method, 396, 587

SetOrderAuthCodeAndReference method,
537–538, 617

SetOrderDateShipped method, 538

SHA1Managed instance, 423

Shared parameter, OutputCache page
directive, 206

shipping. See tax and shipping charges

Darie-Watson_4681Index.fm Page 677 Monday, September 19, 2005 10:22 AM

678 ■I N D E X

Shipping table, 502–503

ShippingCost column, Shipping table, 503

ShippingID column, 503

ShippingInfo struct, 505–506

ShippingRegion fields, ShippingRegion
table, 461

shippingRegion property, 473

ShippingRegion table, 457

ShippingRegionID column, Shipping
table, 503

ShippingType column, Shipping table, 503

shopping carts. See also custom
shopping cart

creating, 6–7

PayPal, 212–213

ShoppingCart table, 315–319, 346, 360

ShoppingCartAccess class, 320, 360, 410, 488

and cart IDs, 324

preparing, 322–324

ShoppingCartAddItem stored procedure,
317–318

ShoppingCart.aspx control, 218, 335, 353

ShoppingCartGetItems stored procedure,
317, 319

ShoppingCartGetTotalAmount stored
procedure, 317, 320

shoppingCartId property,
ShoppingCartAccess class, 320, 322

ShoppingCartRemoveItem stored
procedure, 317–318

ShoppingCartUpdateItem stored procedure,
317, 319

ShowMessageBox property, 374

Simple Object Access Protocol (SOAP), 625,
627, 631

Single Item Purchases feature, 218–219

site skeleton

adding header to main page, 38–41

building first page, 33–37

overview, 31–33

SiteName configuration, 137

size property, DbParameter, 135

.skin extension, 91

SkinID property, 91

skins, 90–91

SMTP Service, 648

SmtpClient class, 81

SmtpMail class, 81

SOAP (Simple Object Access Protocol), 625,
627, 631

Solution Explorer, 633

SOUNDEX function, 195

SourceStage integer property, 525

sp_executesql stored procedure, 175

Spiral method, 654, 656

SQL (Structured Query Language), 25

DELETE statement, 67

INSERT statement, 66–67

overview, 64–65

SELECT statement, 65–66

UPDATE statement, 67

SQL Server 2005, 24–25

data types, 57

Express Edition, 18, 41, 643–645

Express Manager, 645–646

implementing paging using, 126–127

SQL Server, connecting to, 71–72

SQL Server Database, creating, 41–43

SQL Server Express Manager, 64

SQL Server Managed Data Provider, 76

SQL Server Management Studio, 42

SqlCommand object, 74, 77

SqlConnection class, 71–72

SqlDataSource control, 461, 576

SSL (Require Secure Channel) box, 480

SSL (Secure Sockets Layer), 479

certificates, 480

connections, 5

Darie-Watson_4681Index.fm Page 678 Monday, September 19, 2005 10:22 AM

8213592a117456a340854d18cee57603

679■I N D E X

starting e-commerce site

Balloon Shop example, 8–9

creating shopping carts, 6–7

getting customers, 2

getting sites up, 6

making customers spend more, 2–3

making money, 3–4

overview, 1

processing orders, 7–8

reducing costs of orders, 3

risks and threats, 4–5

stateless protocol, 321

status code number, 598

Status column, 486

Status int column, Orders table, 486

Status table, 565

statusDropDown control, 585

stored procedures, 25

executing, 74–76

overview, 68

saving query as, 68

using ADO.NET with parameterized
stored procedures, 135–136

writing new

GetCategoriesInDepartment, 131

GetCategoryDetails, 130

GetDepartmentDetails, 130

GetProductDetails, 130

GetProductsInCategory, 132–133

GetProductsOnCatalogPromotion,
131–132

GetProductsOnDepartmentPromotion,
133–134

overview, 129–130

storing new data, 105–110

adding categories, 111–114

adding products, 116–117

enforcing table relationships with
FOREIGN KEY constraint, 110–111

StreamReader object, 433

string members, 613

string parameter, 600

StringBuilder object, 544

StringEncryptor class, 426, 433

StringEncryptor.cs file, 419

StringEncryptorException exception,
432–433

Structured Exception Handling (SEH), 432

Structured Query Language. See SQL

subqueries, 127, 408

Subscription ID, 627

Substring method, String class, 615

SUM function, 382

SupplierEmail class, 526

symmetric encryption, 424

System.Collections.Generic namespace, 506

System.Data.Common namespace, 77, 369

System.Data.SqlClient parameter, 77

SystemException class, 525

System.Math class, 510

System.Security.Cryptography
namespace, 424

System.Text namespace, 545

System.Web.Mail namespace, 81

System.Xml namespace, 635

■T
table joins, 123

tables

joining, 123–125

relationships

enforcing with FOREIGN KEY
constraint, 110–111

many-to-many, 109–110

one-to-many, 108

overview, 107

Darie-Watson_4681Index.fm Page 679 Monday, September 19, 2005 10:22 AM

680 ■I N D E X

tax and shipping charges

implementing

business layer modifications, 505–510

database modifications, 502–505

further development, 515

overview, 502

presentation layer modifications,
510–514

overview, 500

shipping issues, 501

tax issues, 500–501

Tax table, 502, 511

TaxID int column

Orders table, 503

Tax table, 502

TaxInfo struct, 505–506

TaxType column, Tax table, 502

template columns, 263–264

test-driven design, 657

Text, NText type, 57

TextBox control, 185, 223

TextChanged event, 185

themes, 90–91

ThePSInitialNotification class, 543–545

three-tier architecture, 13–23

throw statement, 80

TieButton method, 185, 372

TOP keyword, 126, 406

TotalAmount field, 382

Traditional (Waterfall) method, 652–654

<Transaction> element, 614

TransactionClass, 603, 614

Transact-SQL (T-SQL), 25, 63–64, 126

try block, 80

try-catch-finally construct, 79

T-SQL (Transact-SQL), 25, 63–64, 126

two-tier architecture, 18

TxnDetailsClass class, 603

Type property, 374

■U
unique columns, 56

UNIQUE constraint, 110

UniqueIdentifier type, 57

Update method, 386, 388

Update Quantities button, 361

UPDATE statement, 67

UpdateCategory stored procedure, 267

UpdateDepartment stored procedure, 244

UpdateItem method, 326–327

UpdateOrder method, 573, 575

UpdateOrder stored procedure,
CommerceLibAccess, 588

UpdateOrderStatus method, 537

UpdateProduct stored procedure, 279–280

UpdateProfile method, 472

up-selling, 401

user interface, building, 659

user profiles, 418–474

UserControls folder, 390, 639

User-Defined function, 173, SQL Server

userDropDown control, 577–578

UserId field, 577

UserInfo control name, 222

Utilities class, 82, 185, 363, 527, 542

utility functions, 519

■V
ValidationSummary control, 373

validator controls, 372

Value parameter, 575

VarChar data type, 57, 135

VarChar variable, 175

VaryByControl parameter, OutputCache
page directive, 206

VaryByCustom parameter, OutputCache
page directive, 207

VaryByHeader parameter, OutputCache
page directive, 207

VaryByParam parameter, OutputCache page
directive, 207

Darie-Watson_4681Index.fm Page 680 Monday, September 19, 2005 10:22 AM

681■I N D E X

VB .NET, 23

VBScript, 20

Verified bit, 388

Verified field, 358

verified orders, 354

VeriSign, 480, 595, 621

__VEWSTATE hidden form field, 203

View Cart button, 212

ViewState, 203–204

viewstate information, 578

ViewState mechanism, 200

Visible property, 582

Visual C# Express, 419

Visual Studio. See Visual Web Developer

Visual Web Developer, 23, 27–30, 263, 644

Visual Web Developer 2005, 18, 21, 23–24,
643–645

vwdsetup.exe, 644

■W
Waterfall (or Traditional) method, 652–654

Web clients and Web servers, 19–20

Web Forms, 21

web prototype, 658

Web reference name, 633

Web Server controls, 22

Web servers, 19–20

Web service, defined, 625

Web User controls, 21–22, 32, 639

web.config file, 45, 418

Webmonkey site, 5

Website Payments Standard Integration
Guide, PayPal, 212

WHERE clause, 67, 127, 172

Windows Authentication, 418, 646

WordCount function, 174, 176–177, 195

wordSeparators array, 184

World Wide Web Server, 648

■X
Xml property, 614

XP (Extreme Programming)
methodology, 657

■Y
<yourEmail> value, 526

Darie-Watson_4681Index.fm Page 681 Monday, September 19, 2005 10:22 AM

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03

Darie-Watson_4681Index.fm Page 682 Monday, September 19, 2005 10:22 AM

	Beginning ASP.NET 2.0 E-Commerce in C# 2005: From Novice to Professional
	Table of Content
	Chapter 1 Starting an E-Commerce Site
	Chapter 2 Laying Out the Foundations
	Chapter 3 Creating the Product Catalog: Part I
	Chapter 4 Creating the Product Catalog: Part II
	Chapter 5 Searching the Catalog
	Chapter 6 Improving Performance
	Chapter 7 Receiving Payments Using PayPal
	Chapter 8 Catalog Administration
	Chapter 9 Creating a Custom Shopping Cart
	Chapter 10 Dealing with Customer Orders
	Chapter 11 Making Product Recommendations
	Chapter 12 Adding Customer Accounts
	Chapter 13 Advanced Customer Orders
	Chapter 14 Order Pipeline
	Chapter 15 Implementing the Pipeline
	Chapter 16 Credit Card Transactions
	Chapter 17 Integrating Amazon Web Services
	Appendix A Installing the Software
	Appendix B Project Management Considerations
	Index

