
TM

ASP.NET
Your visual blueprint for 

creating Web applications on the .NET framework

by Danny Ryan and Tommy Ryan

®

From

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY • Cleveland, OH • Indianapolis, IN 

&

013617-6 FM.F  9/26/01  2:27 PM  Page i



Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
Copyright © 2002 Hungry Minds, Inc. 
Certain designs/text/illustrations copyright © 1992–2001 maranGraphics, Inc., used
with maranGraphics’ permission. All rights reserved. No part of this book,
including interior design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of the publisher.
maranGraphics, Inc.
5755 Coopers Avenue
Mississauga, Ontario, Canada
L4Z 1R9
Library of Congress Control Number: 2001090695
ISBN: 0-7645-3617-6
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1V/RX/RQ/QR/IN 
Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers
Limited in the United Kingdom; by IDG Norge Books for Norway; by IDG Sweden
Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for
Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop Information Inc. for
Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for Germany, Austria and
Switzerland; by Distribuidora Cuspide for Argentina; by LR International for Brazil;
by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de
Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland. 
For U.S. corporate orders, please call maranGraphics at 800-469-6616 or fax
905-890-9434. 
For general information on Hungry Minds’ products and services please contact our
Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at
317-572-3993 or fax 317-572-4002. 
For sales inquiries and reseller information, including discounts, premium and bulk
quantity sales, and foreign-language translations, please contact our Customer Care
Department at 800-434-3422, fax 317-572-4002, or write to Hungry Minds, Inc.,
Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN
46256. 
For information on licensing foreign or domestic rights, please contact our Sub-
Rights Customer Care Department at 212-884-5000.
For information on using Hungry Minds’ products and services in the classroom or
for ordering examination copies, please contact our Educational Sales Department
at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other publicity information, please
contact our Public Relations department at 317-572-3168 or fax 317-572-4168.
For authorization to photocopy items for corporate, personal, or educational use,
please contact Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.
Screen shots displayed in this book are based on pre-released software and are
subject to change. 

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES
OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES. 

Trademark Acknowledgments

Permissions

Hungry Minds, the Hungry Minds logo, Visual, the Visual logo, Read
Less - Learn More and related trade dress are registered trademarks
or trademarks of Hungry Minds, Inc., in the United States and/or
other countries and may not be used without written permission.
The maranGraphics logo is a registered trademark or trademark of
maranGraphics, Inc. Visual Studio is a registered trademark or
trademark of Microsoft Corporation. All other trademarks are the
property of their respective owners. Hungry Minds, Inc. and
maranGraphics, Inc. are not associated with any product or vendor
mentioned in this book.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS
AND TECHNIQUES DESCRIBED IN THIS BOOK,
THE AUTHORS HAVE CREATED VARIOUS NAMES,
COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS, AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY
RESEMBLANCE OF THESE FICTITIOUS NAMES,
ADDRESSES, PHONE AND FAX NUMBERS, AND SIMILAR
INFORMATION TO ANY ACTUAL PERSON, COMPANY
AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL. 

maranGraphics

Certain text and illustrations by maranGraphics, Inc., used
with maranGraphics’ permission.

is a trademark of
Hungry Minds, Inc.

ASP.NET: Your visual blueprint for creating Web
applications on the .NET framework

U.S. Trade Sales

Contact Hungry Minds
at (800) 434-3422
or (317) 572-4002.

U.S. Corporate Sales

Contact maranGraphics
at (800) 469-6616 or
fax (905) 890-9434.

013617-6 FM.F  9/26/01  2:27 PM  Page ii



ASP.NET
Your visual blueprint for 

creating Web applications on the .NET framework

013617-6 FM.F  9/26/01  2:27 PM  Page iii



maranGraphics is a family-run business 
located near Toronto, Canada.

At maranGraphics, we believe in producing great
computer books — one book at a time.

maranGraphics has been producing high-technology
products for over 25 years, which enables us to offer the
computer book community a unique communication
process.

Our computer books use an integrated communication
process, which is very different from the approach used
in other computer books. Each spread is, in essence, a
flow chart — the text and screen shots are totally
incorporated into the layout of the spread. Introductory
text and helpful tips complete the learning experience. 

maranGraphics’ approach encourages the left and right
sides of the brain to work together — resulting in faster
orientation and greater memory retention.

Above all, we are very proud of the handcrafted nature
of our books. Our carefully-chosen writers are experts
in their fields, and spend countless hours researching

and organizing the content for each topic. Our artists
rebuild every screen shot to provide the best clarity
possible, making our screen shots the most precise and
easiest to read in the industry. We strive for perfection,
and believe that the time spent handcrafting each
element results in the best computer books money
can buy.

Thank you for purchasing this book. We hope you
enjoy it!

Sincerely,

Robert Maran

President

maranGraphics

Rob@maran.com

www.maran.com

www.hungryminds.com/visual

013617-6 FM.F  9/26/01  2:27 PM  Page iv



Hungry Minds, Inc.: John Kilcullen, CEO; Bill Barry, President and COO; John Ball, Executive VP, Operations &
Administration; John Harris, Executive VP and CFO

Hungry Minds Technology Publishing Group: Richard Swadley, Senior Vice President and Publisher; Mary Bednarek,
Vice President and Publisher, Networking; Walter R. Bruce III, Vice President and Publisher; Joseph Wikert, Vice
President and Publisher, Web Development Group; Mary C. Corder, Editorial Director, Dummies Technology; Andy
Cummings, Publishing Director, Dummies Technology; Barry Pruett, Publishing Director, Visual/Graphic Design

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing

Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Michael Violano, Vice President, International Sales and Sub Rights

Acquisitions, Editorial, and 
Media Development

Project Editor
Jade L. Williams

Acquisitions Editor
Jen Dorsey

Product Development Supervisor
Lindsay Sandman

Copy Editor
Timothy Borek

Technical Editor
John Paul Purdum
Editorial Manager 

Rev Mengle
Media Development Manager
Laura Carpenter VanWinkle

Permissions Editor
Carmen Krikorian

Media Development Specialist
Marisa E. Pearman

Editorial Assistants
Amanda Foxworth 
Candace Nicholson

Production

Book Design
maranGraphics®

Production Coordinator 
Nancee Reeves

Layout
LeAndra Johnson, Adam Mancilla,

Kristin Pickett, Jill Piscitelli, 
Betty Schulte, Erin Zeltner

Screen Artists 
Ronda David-Burroughs,

David Gregory, Mark Harris, 
Jill Proll

Cover Illustration 
Russ Marini
Proofreaders

Laura L. Bowman,
Andy Hollandbeck, Susan Moritz

Angel Perez, Marianne Santy
Indexer

TECHBOOKS Production Services
Special Help 

Microsoft Corporation, 
Diana Conover, Richard Graves,

Leslie Kersey

CREDITS

ACKNOWLEDGMENTS

013617-6 FM.F  9/26/01  2:27 PM  Page v



Danny Ryan: Danny Ryan graduated from Georgia Tech with a degree in Industrial and Systems Engineering.
Danny has more than three years of training experience and more than five years of consulting experience,
most involving Fortune 500 companies. Danny has two years of “big-five” consulting experience with
PricewaterhouseCoopers. Danny’s area of focus is consulting for Microsoft Internet technologies including
Microsoft ASP.NET, C#, SQL Server 2000, BizTalk Server 2000, and Commerce Server 2000. Danny has used
several processes for software development including variants of the Rational Unified Process and the Microsoft
Solutions Framework. On projects, Danny normally plays the role of Project Manager. His certifications include
MCSE, MCSD, MCT, and MCP + Internet. Danny is a recent instructor of XML, MSF Design, Microsoft Site Server
3.0, Interdev 6.0, and other Web Development classes. You can contact Danny at dryan@threewill.com or learn
more about him at http://www.threewill.com/people/dryan.

Tommy Ryan: Tommy graduated from Clemson University with a degree in Chemical Engineering. Tommy has more
than twelve years of technical project experience and more than four years of pure software consulting experience.
Tommy’s area of focus is consulting for Microsoft Internet technologies, including Microsoft ASP.NET, C#, SQL Server
2000, BizTalk Server 2000, and Commerce Server 2000. Like Danny, Tommy has used several processes for software
development, including variants of the Rational Unified Process, and the Microsoft Solutions Framework. On projects,
Tommy normally plays the role of Technical Lead. His certifications include MCSE, MCSD, MCT, and MCP + Internet.
Tommy is a recent instructor of MSF Design, Microsoft Site Server 3.0, Interdev 6.0, and several of the Visual Basic 6.0
classes. Tommy is also the co-author of another Visual blueprint book on building Internet application with C#. You
can contact Tommy at tryan@threewill.com or learn more about him at http://www.threewill.com/people/tryan.

Both Danny and Tommy would like to thank Extreme Logic and all of the exceptional people that we worked with there.
Special thanks to Wain Kellum, Keith Landers, Saima Adney, Alicia Ford, Bruce Harple, and Nancy Wehunt — along with
all of the team members that we worked with on projects including: Anthony Yott, Brian Erwin, Dave Cohen, Alan Fraser,
Jerry Rasmussen, Tim Coalson, Jim Davis, Stacy Parrish, Chris Cumpton, John Underwood, Desiree Tuvell, Rich Sabo, Teo
Lachev, John Camp, Scott Matthews, Jennifer Aase, Amy Bauland, Russell Groover, Todd Ransom, David Steyer, Tony
Heffner, Sean Gerety, Jason Etheridge, Julie Kellum, Ashley Aiken, and Tammy Conaway.

We would like to thank the clients that we have worked with during the past couple of years for challenging us to be
better consultants, including Nick Callivas, Brian Blinco, Jay Dalke, Bob Hughes, and Harwell Thrasher. 

We would also like to thank Megan Mathews and Joe Chancey of Drew Eckl & Farnham LLP, and Eddie Scott and
Brad Pearce of Jackson, Reece, and Scott for the great service they provide.

We would like to thank all of the hardworking people at Hungry Minds for helping us produce this book —
especially Jennifer Dorsey, Jade Williams, and our Editors. Jennifer made sure that we were taken care of well. Jade
did an awesome job of editing our work — we appreciate how hard she worked on this book, and we are very
thankful that she was our Production Editor.

Tommy would like to thank his colleagues at W.L. Gore and Associates who helped him start his professional career,
including John Reaney, Mark Fundakowsi, Diccon Bancroft, John Pysczynski, Pamela Perdue, Erik Nightwine, Debra
Raup, Ray Edmanson, Bob McCleary, Lawrence Anderson, Wolfgang Holma, and Line 10 Production Team; the
WinCC Team at Siemens that helped him in his transition to being a Microsoft geek, including Emilio Matt, Rob
Bohm, Bob Meads, Rich Miceli, Charlie Moore, Jörg Allmendinger, and Rene Wolf; and his extended family and
friends for the support in the things outside of work including Joe and Rosemarie Markiewicz, Robert and Donna
Philips, Joe and Jan Markiewicz, Chuck and Mary Hanson, Rob and Gretchen Pfeiffer, and Reverend Joe Ciccone CSP.

Danny would like to thank: his friends for their support while writing the book, especially Dan Bassett and family,
Nitin Dixit, Ellen Wu, Amy Bauland, Lisa and Stephen Cox and family, Jennifer and Wyatt Gordon, Danielle and Otan
Ayan, Jack and Lisa Swift and family, Chikako and Takashi Asai and family, Robin Moon, Catherine Williams, Asad
Jafari, Dan and Kelly Clark and family, Darnel Barnes and family, the Harding family, the Heap family, Kitty Pinto,
Wendy Marinaccio, and Erica Pearlberg; everyone involved in the Jamaica trip for their good work including Father
Kevin Hargaden, Shannon Smith, Michelle Basket, Ana Nerio, and everyone who sponsored the trip; the members of
the MHS 10 Year Reunion Committee for picking up my slack including Sydney Whitmer, Tina Shamblin, and
Jennifer Gordon; and finally, past colleagues who have made a difference in my life including Ivan Lee, Neil Russo,
Jeff Shaw, Bobby Lee, Matthew Thayer, and Steve Johnston.

ABOUT THE AUTHORS

AUTHORS’ ACKNOWLEDGMENTS

013617-6 FM.F  9/26/01  2:27 PM  Page vi



We dedicate this book to our family.

Dad, thank you for teaching us by example what it means to live a life based on principles.

Mom, thank you for showing us in a real way how to live according to the most important
principle, unconditional love.

Linda, thank you for having faith in us and for being the support we needed to write this book —
we could not have done this without you.

Alex, Austin, Madeline, thanks for keeping us company while writing the book and keeping
Kiki out of the office while we were working.

Deanna, we wish you all the best with your writing — you’re the true writer in the family and
we look forward to reading your book.

Bobby and Ashley, we wish you a wonderful lifetime together full of laughter, love, and great
memories.

013617-6 FM.F  9/26/01  2:27 PM  Page vii



viii

TABLE OF CONTENTS

HOW TO USE THIS BOOK ............................................................................xiv

1) GETTING STARTED WITH ASP.NET
Introduction to ASP.NET  ....................................................................................................2
Install Internet Information Server 5.0 ..............................................................................4
Install the .NET Framework ................................................................................................6
Change the Home Directory in IIS ....................................................................................8
Add a Virtual Directory in IIS ..........................................................................................10
Set a Default Document for IIS ........................................................................................14
Change Log File Properties for IIS ..................................................................................16
Stop, Start, or Pause a Web Site ......................................................................................18

2) WEB DEVELOPMENT BASICS
Browse Your Default Web Site ........................................................................................20
Explore a Web Site ............................................................................................................22
Open a Template File ........................................................................................................24
Save a File to the Default Web Site ................................................................................25
Create an HTML Page ........................................................................................................26
Create an ASP Page ..........................................................................................................28
Create an ASP.NET Web Page ..........................................................................................30
Add an Event Handler to an ASP.NET Page ....................................................................32

3) C# BASICS
Write Your First C# Application ........................................................................................34
Compile a C# Application ................................................................................................36
Format Your Code  ............................................................................................................38
Declare a Variable ..............................................................................................................40
Initialize a Variable ............................................................................................................42
Access Properties ..............................................................................................................44
Make Decisions Using Conditional Statements ..............................................................46
Work with Arrays ..............................................................................................................48
Control Logic Using Iterative Statements ........................................................................50
Concatenate a String ........................................................................................................52
Convert a Variable ............................................................................................................54
Enumerate a Collection ....................................................................................................56

013617-6 FM.F  9/26/01  2:27 PM  Page viii



ix

Declare and Use Methods ................................................................................................58
Implement Exception Handling ........................................................................................62
Convert a Console Application to an ASP.NET Web Page ............................................64

4) WORK WITH HTML CONTROLS
Introduction to HTML Controls ......................................................................................66
Process Requests to the Server ........................................................................................68
Create a Form Button  ......................................................................................................70
Create an HTML 4.0 Button  ............................................................................................72
Create a Graphical Button  ..............................................................................................73
Request Single Line Input  ................................................................................................74
Request Multiple Line Input  ............................................................................................76
Request Boolean Input  ....................................................................................................77
Request a Selection from a Group ..................................................................................78
Request Input from a Drop-Down List ............................................................................79
Create a Link  ....................................................................................................................80
Render an Image  ..............................................................................................................82
Build a Table  ......................................................................................................................84
Store Hidden Information on a Form  ............................................................................86
Upload Files  ......................................................................................................................88

5) WORK WITH WEB CONTROLS
Introduction to Web Controls ..........................................................................................90
Create a Button for Posting Data  ....................................................................................92
Create a Hyperlinked Button  ..........................................................................................94
Create a Graphical Button  ..............................................................................................95
Request Text Input  ............................................................................................................96
Request Boolean Input ......................................................................................................98
Request a Selection from a Group ................................................................................100
Request Input from a Drop-Down List ..........................................................................102
Request Dates from a Calendar ....................................................................................104
Create a Link  ..................................................................................................................106

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

013617-6 FM.F  9/26/01  2:27 PM  Page ix



x

TABLE OF CONTENTS

5) WORK WITH WEB CONTROLS (CONTINUED)
Render an Image  ............................................................................................................107
Build a Table  ....................................................................................................................108
Manipulate Text  ..............................................................................................................110
Add a Placeholder for Controls ......................................................................................111
Provide a Container for Controls ..................................................................................112
Display Advertisement Banners  ....................................................................................114
Validate Required Fields  ................................................................................................116
Compare Two Fields for Validation  ..............................................................................118
Check the Boundaries of Input  ....................................................................................120
Validate with Regular Expressions  ................................................................................122
Summarize Validation Errors  ........................................................................................124

6) ACCESS DATA WITH ASP.NET
Introduction to Data Access with ASP.NET ..................................................................126
Display Repeating Data  ..................................................................................................128
Display Complex Lists ....................................................................................................130
Display SQL Data  ............................................................................................................132
Insert Data into a SQL Database ....................................................................................134
Update Data from a SQL Database ..............................................................................136
Delete Data from a SQL Database ................................................................................138
Sort Data from a SQL Database  ....................................................................................140
Execute Stored Procedures  ............................................................................................142
Work with Master-Detail Relationships ........................................................................144
Work with XML Data Sources ........................................................................................146
Transform and Display XML ............................................................................................148

7) WORK WITH WEB SERVICES
Introduction to Web Services..........................................................................................150
Create a Simple Web Service ........................................................................................152
Test a Web Service ..........................................................................................................154
Using a Parameter with a Web Service ........................................................................156
Return an Array from a Web Service ............................................................................158
Return an Enumerated Type from a Web Service ........................................................160
Return an Object from a Web Service ..........................................................................162
Return XML from a Web Service ....................................................................................164

013617-6 FM.F  9/26/01  2:27 PM  Page x



xi

Return SQL Data from a Web Service ..........................................................................166
Work with the Session Object in a Web Service ..........................................................168
Work with the Application Object in a Web Service ..................................................170
Create a Client Web Page for a Web Service ..............................................................172
Create a Client Console Application for a Web Service ............................................174

8) CREATE CUSTOM COMPONENTS
Create a Simple Component ..........................................................................................176
Create a Stateful Component ........................................................................................180
Create a Two-Tier Web Form ..........................................................................................184
Create a Three-Tier Web Form ......................................................................................188
Use a Code-behind for Your ASP.NET Page ..................................................................192

9) USING ASP.NET COMPONENTS
Read Form Data with Request.Form ..............................................................................194
Display Data with Request.Params ................................................................................196
Write Output Using Response.Write ............................................................................198
Redirect Using Response.Redirect ................................................................................200
Check for Web Browser Types ......................................................................................202
Send an E-Mail Using ASP.NET ......................................................................................204
Use the ASP.NET Page Cache ..........................................................................................206
Use the ASP.NET Data Cache ..........................................................................................208

10) ASP.NET APPLICATIONS AND 
STATE MANAGEMENT

Introduction to Applications and State Management ..................................................210
Create a Global.asax File ................................................................................................212
Using Processing Directives in the Global.asax file ......................................................216
Using Server-Side Objects in the Global.asax File ......................................................218
Using Application Event Handlers in the Global.asax File ..........................................220
Using Application State ..................................................................................................222
Using Session State ..........................................................................................................226
Work with Cookies ..........................................................................................................230
Work with Page State ......................................................................................................234

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

013617-6 FM.F  9/26/01  2:27 PM  Page xi



xii

TABLE OF CONTENTS

11) CONFIGURE YOUR ASP.NET APPLICATIONS
Add Application Settings ................................................................................................236
Set Standard Configuration ............................................................................................238
Add Custom Settings ......................................................................................................240

12) DEBUG YOUR ASP.NET APPLICATIONS
Enable Page-Level Debugging ........................................................................................242
Enable Custom Error Handling ......................................................................................244
Handle Errors Programmatically ....................................................................................246
Use a Page-Level Trace ....................................................................................................248
Use an Application-Level Trace ......................................................................................250

13) SECURITY AND ASP.NET
Using Windows Authentication ......................................................................................252
Using Forms Authentication  ..........................................................................................256
Authorize Users ................................................................................................................260

14) LOCALIZATION AND ASP.NET
Set Up Encoding ..............................................................................................................262
Using CultureInfo ............................................................................................................264
Using RegionInfo ..............................................................................................................266
Localize with the Page Control  ....................................................................................268
Create and Use Resources ..............................................................................................270
Use Resource Manager Information ..............................................................................272

15) MIGRATE FROM ASP TO ASP.NET
Work with Multiple Server-Side Languages ..................................................................274
Work with Script Blocks ..................................................................................................276
Using Render Functions ..................................................................................................278
Using Page Directives ......................................................................................................280
Migrate VBScript to VB.NET Syntax ..............................................................................282
Migrate JScript to JScript.NET Syntax ............................................................................286

013617-6 FM.F  9/26/01  2:27 PM  Page xii



xiii

JAVASCRIPT:
Your visual blueprint 
for building portable 

Java programs

APPENDIX A: ASP.NET QUICK REFERENCE............................288

APPENDIX B: C#, VB, AND JSCRIPT LANGUAGE 
EQUIVALENTS ....................................................................292

APPENDIX C: WHAT’S ON THE CD-ROM ....................................300

HUNGRY MINDS END-USER LICENSE AGREEMENT ......304

INDEX ................................................................................................................................306

ASP.NET:
Your visual blueprint for creating 

Web applications on the .NET framework

013617-6 FM.F  9/26/01  2:27 PM  Page xiii



xiv

HOW TO USE THIS BOOK

ASP.NET: Your visual blueprint for creating Web
applications on the .NET framework uses straightforward
examples to teach you many of the tasks required to write
Web applications on the .NET framework.
To get the most out of this book, you should read each
chapter in order, from beginning to end. Each chapter
introduces new ideas and builds on the knowledge
learned in previous chapters. Once you become familiar
with ASP.NET, this book can be used as an informative
desktop reference.

Who This Book Is For
If you are looking for a resource that will help you quickly
get started creating ASP.NET Web pages, ASP.NET: Your
visual blueprint for creating Web applications on the .NET
framework. This book will walk you through the basics that
you need to get started and familiarize yourself with the
essentials of working with ASP.NET. This book also
demonstrates advanced features of ASP.NET, such as
creating custom components, configuration, debugging,
security, and migration to ASP.NET from ASP 3.0. 
No prior experience with ASP.NET is required, but
familiarity with the operating system installed on your
computer is an asset.
Experience with programming languages is also an asset,
but even if you have no programming experience, you can
use this book to learn the essentials you need to work
with ASP.NET.  The C# programming language is used for
most of the tasks in this book.

What You Need To Use This Book
To perform the tasks in this book, you need a computer
with an operating system on which you can install the .NET
framework.  The tasks in this book are developed using
Windows 2000 with IIS 5.0 installed.  The computer will
also need to have a text editor to create code, such as
Notepad.  Visual Studio 7.0 is not required to do the tasks
in this book, although you can use it if you want. Many of
the tasks in this book require a Web browser, such as
Internet Explorer. 

The Conventions In This Book
A number of typographic and layout styles are used
throughout ASP.NET: Your visual blueprint for creating Web
applications on the .NET framework to distinguish
different types of information.

Courier Font

Indicates the use of C#, VB, or Jscript variable names,
keywords, and other elements of ASP.NET code.

Bold
Indicates information that you must type.

Italics
Indicates a new term being introduced.

An Apply It section usually contains a segment of code
that takes the lesson you just learned one step further.
Apply It sections offer inside information and pointers that
can be used to enhance the functionality of your code.

An Extra section provides additional information about the
task you just accomplished. Extra sections often contain
interesting tips and useful tricks to make working with
ASP.NET easier and more efficient.

The Organization Of This Book
ASP.NET: Your visual blueprint for creating Web
applications on the .NET framework contains 15 chapters
and three appendices.
The first chapter, Getting Started with ASP.NET, explains how
you can install the .NET framework and configure many of
the options available when setting up your Web site.

013617-6 FM.F  9/26/01  2:27 PM  Page xiv



xv

Chapter 2, Web Development Basics, presents the
fundamentals of working with ASP.NET including
exploring and browsing your Web site, opening and
saving files, and creating your first ASP.NET Web page.
This chapter also shows you how to use the sample
program templates on the CD-ROM.
Chapter 3, C# Basics, introduces you to the C#
programming language, including how to work with
variables, conditional statements, arrays, looping
structures, strings, collections, and exception handling.
This will prepare you for the material in later chapters if
you are not familiar with the C# programming language.
Chapter 4, Work with HTML Controls, gets you started
with creating Web pages in ASP.NET that have buttons,
text boxes, check-boxes, drop-down lists, and tables.  
Chapter 5, Work with Web Controls, will show you how to
add many of the common controls to Web pages like text
boxes using ASP.NET Web controls.  The chapter then
demonstrates how to add special controls like calendars
and advertisement banners.  Finally, the chapter explains
how to validate user input in ASP.NET.
Chapter 6, Access Data with ASP.NET, explains how to use
some of the controls you will use to display data like the
Repeater and the DataGrid control. You will see how to
insert, update, delete, and sort data.  The chapter also
covers working with stored procedures and XML.
Chapter 7, Work with Web Services, explains how you can
create, test, and consume Web services.  The chapter
explains how to return a number of data types including
arrays, enumerations, objects, XML, and SQL Data.  You
see how to create clients for the Web service, including a
Web page client and a Console client.
Chapter 8, Create Custom Components, explains how to
create components, build a two-tier and a three-tier Web
Form, and store code in Code-behind components for
your ASP.NET Web pages.
Chapter 9, Using ASP.NET Components, explains how to
work with components not covered in other chapters
including the Browser Capabilities component and
components necessary to send e-mail.  Page and Data
caching of your ASP.NET Web pages is covered as well.

Chapter 10, ASP.NET Applications and State Management,
explains how to work with application and session state
with ASP.NET.  It also covers working with cookies and page
state.
Chapter 11, Configure Your ASP.NET Applications,
describes the process for setting and retrieving
configuration information for your ASP.NET application.
Chapter 12 introduces you to debugging your ASP.NET
applications.
Chapter 13, Security and ASP.NET, shows you several
different ways to secure your ASP.NET applications.
Chapter 14, Localization and ASP.NET, walks you through
how to globalize your ASP.NET application for different
cultures, locales, and languages.
The final chapter explains some of the details about
migrating to ASP.NET, including migrating code from
VBScript to VB.NET and other important issues to address
when migrating.
The Appendices include useful tables of reference
material and a summary of important elements of
ASP.NET syntax and the C#, VB, and Jscript languages.

What Is On The CD-ROM
The CD-ROM in the back of this book contains the
sample code from each of the two-page lessons, as well as
the code from most of the Apply It sections. This saves
you from having to type the code and helps you quickly
get started creating ASP.NET programs. The CD-ROM also
contains several shareware and evaluation versions of
programs that can help you work with ASP.NET. An 
e-version of this book is also available on the companion
disc.

JAVASCRIPT:
Your visual blueprint for

building dynamic Web pages
ASP.NET:

Your visual blueprint for creating
Web applications on the .NET framework

013617-6 FM.F  9/26/01  2:27 PM  Page xv



INTRODUCTION TO ASP.NET 

2

Web Servers

The previous version of Active Server Pages was ASP
3.0. ASP.NET and ASP 3.0 can both run on Internet
Information Server (IIS) 5.0 with Windows 2000 and
Windows XP. You can have your ASP.NET and your ASP
3.0 applications run on the same server.

If you use Windows 95, 98, ME, or NT, and you want to
run ASP.NET applications, you can install Windows NT or
XP in addition to your other operating system by creating
a dual-boot machine. This will enable you to run two
operating systems on one machine, giving you the ability
to run ASP.NET and keeping your original operating
system intact. You will have to devote around 5GB of
disk space to install the operating system (OS), the .NET
Framework SDK, and any other supporting applications,
such as SQL Server 2000. To separate the files associated
for each OS, you should create a separate partition for
the new OS.

Versions

The ASP.NET Framework is supported on Windows 2000
and Windows XP. ASP.NET applications will run on IIS
5.0 for these operating systems.

Web Services is supported on all platforms supported
by the Microsoft .NET Framework SDK, except
Windows 95.

Windows XP, Windows 2000, Windows NT 4 with
Service Pack 6a, Windows ME, Windows 98, Windows
98 SE, and Windows 95 all support the Microsoft .NET
Framework SDK.

Language Support

ASP.NET has built-in support for three languages: Visual
Basic (VB), C#, and JScript. You can install support for
other .NET-compatible languages as well.

Tools

Microsoft designed ASP.NET to work with WYSIWYG
HTML editors and other programming tools. Or, you can
even use a simple text editor like Notepad. The Notepad
text editor is used in this book’s code samples. If you want
more support from your development environment for
coding, you can use Microsoft Visual Studio.NET. Using a
tool such as Microsoft Visual Studio.NET enables you to
take advantage of other features such as GUI support of
drag and drop Server Controls and debugging support.

Web Forms

ASP.NET Web Forms gives you the ability to create Web
pages on the .NET platform. Web Forms enable you to
program against the controls that you put on your Web
pages. You can either use a Server Control that is built
into ASP.NET or create your own custom Server
Controls. These Server Controls are used for
controlling HTML tags on a Web page. By using Web
Forms, you can build user interface code as effectively
as your Business Services code, reusing and packaging
the code in a well-designed manner.

Web Services

ASP.NET Web Services gives you the ability to access
server functionality remotely. Using Web Services,
businesses can expose their data and/or component
libraries, which in turn can be obtained and
manipulated by client and server applications. Web
Services enable the exchange of data in client-server or
server-server scenarios, using standards like HTTP and
XML messaging to move data across firewalls. Web
services are not tied to a particular component
technology or object-calling convention. As a result,
programs written in any language, using any component
model, and running on any operating system can access
Web services.

ASP.NET is a programming framework developed
by Microsoft for building powerful Web
applications.

ASP.NET

023617-6 Ch01.F  9/26/01  9:39 AM  Page 2



3

State and Application

ASP.NET provides a simple framework that enables Web
developers to write logic that runs at the application
level. Developers can write this code in either the
global.asax text file or in a compiled class. This logic can
include application-level events, but developers can
easily extend this framework to suit the needs of their
Web application. ASP application code, written in the
global.asa file, is supported in ASP.NET. You can simply
rename global.asa to global.asax when upgrading
from ASP.

Data Access

Accessing databases from ASP.NET applications is a
common technique for displaying dynamic information
to Web site visitors. ASP.NET makes it easier than ever
to access databases for this purpose and provides for
managing the data in the database.

Performance

A big difference between ASP 3.0 and ASP.NET is how
your code is run on the server. With ASP.NET, your code
is compiled into executable classes. With ASP 3.0, code
often needs to be interpreted. With ASP 3.0, any server-
side code is most likely going to have to be interpreted
by the Web server, unless it is cached. If you want to
avoid interpreted code in ASP 3.0, you need to put the
code into a COM component.

Power

With ASP.NET, you now have access to the common
language runtime (or CLR). Running on the CLR gives
access to many of the features available in the .NET
Framework, such as debugging, security, data access,
language interoperability, and more.

Configuration

ASP.NET configuration settings are stored in XML-based
files, which are text files easily accessible for reading
and writing. Each of your applications can have a
distinct configuration file. You can extend the
configuration scheme to suit your requirements.

Security

The .NET Framework and ASP.NET provide default
authorization and authentication schemes for Web
applications. You can easily remove, add to, or replace
these schemes depending upon the needs of your
application.

Migration from ASP to ASP.NET

Simple ASP pages can easily be migrated to ASP.NET
applications. ASP.NET offers complete syntax and
processing compatibility with ASP applications.
Developers simply need to change file extensions from
.asp to .aspx to migrate their files to the ASP.NET
framework. They can also easily add ASP.NET
functionality to their applications with ease, sometimes
by simply adding just a few lines of code to their ASP
files. For additional information on handling migration
issues, see page 282.

GETTING STARTED WITH ASP.NET 1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 3



Microsoft Internet Information Server (IIS) is
the Web server software that you can use to
create, administer, and host Web sites for the

ASP.NET framework. You can install the software from
all versions of the Windows 2000 CD-ROM disc.
Because Internet Information Server 5.0 is installed by
default when installing Windows 2000 in a new
installation, you may not need to install the software.
If you have upgraded to Windows 2000 from a
previous version of Windows, make sure that Internet
Information Server 5.0 exists after the upgrade
process.

IIS comes as a Windows Component and can be
installed from the Windows Component Wizard.

The Windows Component Wizard becomes available
when you select Add/Remove Programs from the
Control Panel.

In this wizard, you should install at least the Common
Files, which installs the programs you need to run IIS
5.0: IIS Snap-In, which is an interface for administering
your Web sites, and World Wide Web Server, which
enables users to access your Web sites.

After installing IIS 5.0, restart the Web server. IIS 5.0
services are set to automatically start when your
computer reboots, so the software will be ready for
you to install the .NET Framework upon rebooting.

4

ASP.NET

Internet Information Services (IIS) 22.0 MB

⁄ Insert the Windows 2000 
CD-ROM into your CD-ROM 
drive.

Note: If the Microsoft Windows  
2000 dialog box appears, close the 
dialog box.

¤ In the Control Panel, 
double-click Add/Remove 
Programs.

� The Add/Remove Programs 
window appears.

‹ Click Add/Remove 
Windows Components.

� The Windows Components 
Wizard dialog box appears 
listing the installation size of 
the component you can add 
or remove.

› Click      next to Internet 
Information Services to select 
it (     changes to     ).

� This area displays a 
description of the Internet 
Information Services 
subcomponents.

ˇ Click Details.

INSTALL INTERNET INFORMATION SERVER 5.0

INSTALL INTERNET INFORMATION
SERVER 5.0

023617-6 Ch01.F  9/26/01  9:39 AM  Page 4



Internet Information Services (IIS) 22.0 MB

� The Internet Information 
Services (IIS) dialog box 
opens.

Á Click      next to each 
subcomponent you want to 
install (     changes to     ).

‡ Click OK to confirm your 
selections and close the 
dialog box.

° Click Next to install the 
parts of the Internet 
Information Services and 
subcomponents you selected.

� When the installation is 
complete, a message appears 
confirming the successful 
installation of IIS.

· Click Finish to close the 
Wizard.

Note: You should now restart your 
computer.

GETTING STARTED WITH ASP.NET

You have several other IIS subcomponents that
you can install. If you choose Documentation, it
will install help files and samples to assist you
with administering IIS. File Transfer Protocol
(FTP) Server installs support for uploading and
downloading files using FTP sites. If you are
using Visual Studio or FrontPage for working
with any of your sites, you may want to install
FrontPage 2000 Server Extensions. The Internet
Services Manager (HTML) is a Web-based
version of the administration functionality that
enables you to administer the server using a
browser. Install the NNTP service if you need
support for network news. Install the SMTP
service if you need support for e-mail
functionality.

You can administer IIS through the Internet Services
Manager, which is available from Start ➪ Programs
➪ Administrative Tools ➪ Internet Services Manager.
Because this tool is designed as a Microsoft
Management Console Snap-In, you can add it to
your own custom console along with any other
Snap-Ins that you use often.

5

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 5



⁄ Insert the CD-ROM with 
the .NET SDK and run the 
setup.exe file.

Note: This task assumes that you 
have the installation program on 
CD-ROM. You can also install the 
.NET SDK from a local drive or a 
network drive.

� The .NET Framework SDK 
Setup page appears.

¤ Click Next to continue.

� The license agreement for 
the software appears in the 
middle of the dialog box. You 
may need to scroll down to 
see the entire license 
agreement.

‹ Click „ next to I accept 
the agreement to accept the 
software license („ changes 
to ´).

› Click Next to continue.

After you have the IIS installed on your Web
server, you can install the Microsoft .NET
Framework SDK. You can take two paths to get

the .NET Framework installed on your machine. The
first path is to install the .NET Framework SDK. This
install includes the necessary runtime to process your
ASP.NET applications and also has documentation for
using the .NET Framework. The second way to get
the Microsoft .NET Framework installed on your
machine is to install Visual Studio.NET. This path gets
the .NET Framework along with Microsoft’s
development tool for ASP.NET applications.

The process for installing the .NET Framework SDK
starts with obtaining the setup program. When you

run the setup program, you may be required to
update certain software on your server. For instance,
your version of the Microsoft Data Access
Components (MDAC) may need updating to a more
recent version. The installation process includes
accepting a software agreement, specifying which
parts of the .NET SDK to install, and specifying where
the .NET SDK is installed.

When installing .NET SDK make sure that you have
enough hard drive space for the installation. As of
Beta 2, you need 311MB to complete the installation.

INSTALL THE .NET FRAMEWORK

6

INSTALL THE .NET FRAMEWORK

ASP.NET

023617-6 Ch01.F  9/26/01  9:39 AM  Page 6



� A dialog box appears 
allowing you to specify 
whether to install the .NET 
software, samples, and 
documentation.

ˇ Click     next to Software 
Development Kit to select it 
(     changes to     ).

Á Click     next to SDK 
Samples to select it (   
changes to     ).

‡ Click Next to continue.

� The Destination Folder 
window appears.

° Click Next to select the 
default folder and to 
continue.

� The .NET SDK is installed.

GETTING STARTED WITH ASP.NET

You can download the latest .NET Platform SDK
from http://msdn.microsoft.
com/downloads/. This task uses Build
1.0.2914 of the .NET Platform SDK. You can also
go to the Microsoft newsgroups for the .NET
Platform SDK by going to http://msdn.
microsoft.com/newsgroups/.

Before installing the .NET Platform SDK, be sure
to check the release notes for any special
instructions. These notes will let you know what
issues are present in the build that you are
installing. The availability of namespaces on
each operating system changes quite often. For
example, going from Beta 1 to Beta 2 of the .NET
Platform SDK, ASP.NET and transactions from
managed code support were dropped for
Windows NT 4.0.

Be careful when searching the Web for source code
that runs on the .NET Runtime. The namespace
names have changed often, especially from Beta 1
to Beta 2. In particular, data access framework
classes changed dramatically.

7

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 7



Default Web Site

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the 
Administrative Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

‹ Click      to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Click the Web site whose 
home directory you want to 
change.

ˇ Click the Properties 
button (    ).

� The Default Web Site 
Properties dialog box 
appears.

Á Click the Home  
Directory tab.

‡ Click Browse to open the 
Browse for Folder dialog box.

The location where the files for your Web site are
stored is called the home, or root, directory. You
can specify which directory on your Web server

is the home directory. Any files that are in any of the
subdirectories of the home directory will be available
as well. Make sure that this home directory, along
with any of its subdirectories, has proper file system
security applied. If someone bypasses the security of
IIS, you must make sure that they only have read
access permissions to the files. There are only a few
exceptions to this rule.

You can also set up virtual directories to make other
directories that are not underneath your home

directory available for your Web site. See page 10 for
more information on virtual directories.

The default location for the Web site that is created
when installing IIS is C:\Inetpub\wwwroot\. You
can change this location to be another directory of
your choice.

When users come to your Web site, the document
that they first see is the default document. The default
document must be placed in the home directory. See
page 14 for information on setting the default
document.

CHANGE THE HOME DIRECTORY IN IIS

8

CHANGE THE HOME DIRECTORY IN IIS

ASP.NET

023617-6 Ch01.F  9/26/01  9:39 AM  Page 8



° Click the directory you 
want to set as your new 
home directory.

· Click OK to set the new 
home directory and to close 
the dialog box.

� The new home directory 
appears in the Local Path.

‚ Click OK to close the 
properties dialog box.

— Close the Internet 
Information Services window.

GETTING STARTED WITH ASP.NET

There are several options you can choose when
specifying a home directory. Follow steps 1 to 5 on
page 8 and then select the option you want to use.
Use the table below to determine which option is
best for setting the location of the home directory.

9

1

OPTION DESCRIPTION

A directory located on this computer Use this option for specifying a directory located on the Web
server as the home directory. This is the most common choice.

A share located on another computer Use this option if you want to specify a share directory as the home
directory. You can specify the user that you want to connect as
using the Connect As button.

A redirection to a URL Use this option if you want to have users redirected to another
URL when they are trying to access any part of your site.

023617-6 Ch01.F  9/26/01  9:39 AM  Page 9



After you have installed Internet Information
Server (IIS), you can configure your Web sites.
Each Web site will have its own home directory.

For example, the default Web site that is created
when installing IIS will have a home directory located
at C:\Inetpub\wwwroot. All of the subdirectories
of this directory will be accessible to your users. For
example, suppose that your site is available at
www.mylifetimegoals.com. You add a
subdirectory under your default directory (for
example, C:\Inetpub\wwwroot\test). After that
subdirectory is added, you access the files in that
directory using www.mylifetimegoals.com/test
as your URL.

Virtual directories give you the ability to access
directories that are not necessarily a subdirectory
under your home directory. For example, you can
create a virtual directory with the alias virtual and
map it to any physical directory (for example,
C:\virtual). You can then access the files in virtual
by using the address www.mylifetimegoals.
com/virtual.

Having virtual directories is helpful if you have files
located on another server. You may have files on one
server that are shared by sites that are distributed
across multiple Web servers. This sharing can be
accomplished by accessing this shared location
through a virtual directory.

ADD A VIRTUAL DIRECTORY IN IIS

ASP.NET

10

Default Web Site b Site

New

Virtual Directory

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the 
Administrative Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

‹ Click     to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Click the Web site in 
which you want to add the 
virtual directory.

ˇ Click Action ➪ New ➪ 
Virtual Directory.

ADD A VIRTUAL DIRECTORY IN IIS

023617-6 Ch01.F  9/26/01  9:39 AM  Page 10



GETTING STARTED WITH ASP.NET

Virtual directories can also be set using Windows
Explorer. Select the folder you want to set up as
a virtual directory in Windows Explorer. Click
the File Menu, then choose Properties. Then
click the Web Sharing tab and select the Web
site you want to make the virtual directory with.
Click the Share This Folder option. In the Edit
Alias dialog box, specify an alias and set the
appropriate access and application permissions.
Click OK when you finish. Then click OK again to
close out the Properties dialog box.

You can also remove a virtual directory you no
longer need from IIS. Perform steps 1 through 3 to
open the Internet Information Services window, and
then select the virtual directory you want to
remove. Click the Delete button and then click Yes
in the dialog box that appears. Removing a virtual
directory does not remove the actual directory and
its contents from the computer.

11

� The Virtual Directory 
Creation Wizard appears.

Á Click Next to continue. ‡ Type an alias for the 
virtual directory.

° Click Next to continue.

CONTINUED

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 11



· Type the path to the 
directory in which you want 
to create a virtual directory.

� You can also click Browse 
to locate the directory on 
your computer.

‚ Click Next to continue. — Click     next to the 
appropriate access 
permissions (    changes       
to    ).

± Click Next to continue.

After you specify the path to the directory that
you want to set up as a virtual directory, you
can set access permissions for the directory. You

have a choice of five settings to choose from or
combine.

The Read permission enables users to access Web
pages. Select this setting for a virtual directory
containing contents that you want to make available for
users to view. The Read permission is turned on by
default.

The Run scripts permission enables scripts to run in
the directory. Select this setting for virtual directories
containing ASP pages. The Run scripts permission is
turned on by default.

The Execute permission enables applications to run in
the virtual directory. For security reasons, the Execute
permission is rarely enabled.

The Write permission enables the creation of files in
the directory. Select this setting for virtual directories
that have ASP pages that create files on the server
side.

The Browse permission enables users to view the list of
all the subdirectories and pages that the virtual directory
contains. When a user specifies a URL that contains a
directory and does not specify the name of the page,
then a list of files and subdirectories appears. If there is
a default document in that directory, it will appear
instead of the directory listing.

ADD A VIRTUAL DIRECTORY IN IIS 

ASP.NET

12

ADD A VIRTUAL DIRECTORY IN IIS (CONTINUED)

023617-6 Ch01.F  9/26/01  9:39 AM  Page 12



books

� The wizard confirms that 
you have successfully created 
a new virtual directory.

¡ Click Finish. � The new virtual directory 
appears under the Web site 
you selected.

™ Click      to close the 
Internet Information   
Services window.

GETTING STARTED WITH ASP.NET

Like home directories in Web sites, virtual
directories can be specified as either a directory
on a Web server, a share on another computer,
or as a redirection to a URL. The option to
create a virtual directory map to a network share
or URL is not available from the virtual directory
creation Wizard. To work around this, initially
set out the virtual directory to be mapped to the
directory. Then, change this by accessing the
properties of the virtual directory and specifying
a network share or URL.

You can also use virtual directories to isolate
unstable sections of your Web application. A virtual
directory enables you to choose the application
protection level, unlike normal subdirectories of the
Web site. Choose High (Isolated) for virtual
directories that contain code that needs isolation
from the rest of the site.

13

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 13



Default Web Site

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the 
Administrative Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

‹ Click      to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Click the Web site that 
you want to set as your 
default document.

ˇ Click the Properties 
button (    ).

� The Default Web Site 
Properties dialog box 
appears.

Á Click the Documents tab.

‡ Click      Enable Default 
Document to select it             
(    changes to     ).

The document that is sent to a user’s browser, if
no specific page is requested, is called the
default document. You can specify zero to many

filenames for IIS to look for when searching for the
default document. If IIS does not find the document
that matches the specified filenames, it sends back an
error message. When directory browsing is set for the
requested directory, the user sees a list of files and
subdirectories instead of an error.

You can specify a different set of default documents
for each directory in a Web site. When specifying a
default document, you can also set the order in which

IIS looks for a match. It starts from the top of the list
and searches downward, sending the first document it
finds.

You should keep in mind some of the de facto
standards when choosing the list of filenames to use
in the list of default documents. Filenames like
index.htm, default.aspx, default.asp,
default.htm, default.html, and home.htm are
some of the most common filenames used for default
documents. Sticking with this as a standard will help
when it comes to troubleshooting the site.

SET A DEFAULT DOCUMENT FOR IIS

ASP.NET

14

SET A DEFAULT DOCUMENT FOR IIS

023617-6 Ch01.F  9/26/01  9:39 AM  Page 14



home.htm

° Click Add to open the 
Add Default Document 
dialog box.

· Type the name of the new 
default document.

‚ Click OK to add the new 
default document to your list.

� The new default document 
is added to the list.

— Click an arrow button (   
or     ) to move the document 
up or down in the list.

± Click OK to confirm   
your changes and close the 
dialog box.

Note: If the Inheritance Override 
dialog box appears, click Cancel to 
close the dialog box.

¡ Click      to close the IIS 
window.

GETTING STARTED WITH ASP.NET

15

Another option on the Documents tab for the Web Site
Properties page is the document footer. This option is an
easy and convenient way to put a footer at the bottom of all
documents on your site. To do this, create a file with some
HTML formatting. You should not put HTML tags such as
<TITLE> or <BODY>, because they are already a part of
the pages in your site. Perform steps 1 to 6 below to display
the Documents tab of the Default Web Site Properties
dialog box. Click Enable Document Footer and then click the
Browse button to locate the HTML file you created.

HTML Footer File Example:
<bold>Copyright 2001</bold>

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 15



Default Web Site

W3C Extended Log File Format

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the 
Administrative Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

‹ Click      to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Click the Web site that 
you want to change.

ˇ Click the Properties 
button (    ).

� The Default Web Site 
Properties dialog box appears.

Á Click the Web Site tab.

‡ Click     next to Enable 
Logging to enable the Web 
site to log information (     
changes to     ).

Note: This option maybe enabled by 
default.

° Click     to open the 
Active log format menu.

· Click to select the log file 
format that you want to use.

‚ Click Properties to open 
the Extended Logging 
Properties dialog box.

Internet Information Server log files contain
information about requests made to your Web
server. At the time of their request, you can have

IIS log a number of different details about the
request. When the Enable Logging option is checked
in your Web Site tab of the Properties window for
your Web site, IIS logs requests.

You can choose the format in which you want the log
files to be saved. The default format of W3C extended
format should work for most cases, unless you have a
program that requires some other format.

You can specify how often you want log files to be
created for your Web site. For busier sites, hourly is

appropriate. You can choose to put your log file
information in the same log file by choosing
Unlimited file size. You can also specify the location
of the log file in the Web server. The default location
of the log file is in the System32\Logfiles
directory in the Windows operating system directory.

You should only use logging when it is necessary.
Logging can have an impact on site performance due
to its need to write to the file system. It can also be
an issue if you are not removing old log files. You do
not want your log files to fill up your hard drive.

CHANGE LOG FILE PROPERTIES FOR IIS

ASP.NET

16

CHANGE LOG FILE PROPERTIES FOR IIS

023617-6 Ch01.F  9/26/01  9:39 AM  Page 16



— Click „ to select the time 
period that you want to use 
to create new log files („ 
changes to ´).

± Type the path of the 
directory where you want to 
store log files.

� You can also click Browse 
to select a directory on the 
computer.

¡ Click OK to confirm the 
log file properties that you 
specify.

™ Click OK to close the 
Properties dialog box.

£ Click      to close the 
Internet Information Services 
window.

GETTING STARTED WITH ASP.NET

17

You can select extended properties for assistance
when troubleshooting. Click the Extended
Properties tab and then click each desired
extended logging option.

Log File Example:
2001-04-20 15:26:22 127.0.0.1 - 127.0.0.1 80 GET /quickstart/aspplus/Default. aspx - 200
Mozilla/4.0+(compatible;+MSIE+6.0b;+Windows+NT+5.0;+COM++1.0.2615)

2001-04-20 15:26:22 127.0.0.1 - 127.0.0.1 80 GET /quickstart/aspplus/images/

aspplus2.gif - 304 Mozilla/4.0+(compatible;+MSIE+6.0b;+Windows+NT+5.0; +COM++1.0.2615)

2001-04-20 15:26:22 127.0.0.1 - 127.0.0.1 80 GET /quickstart/aspplus/doc/

toolbar.aspx - 200 Mozilla/4.0+(compatible;+MSIE+6.0b;+Windows+NT+5.0; +COM++1.0.2615)

2001-04-20 15:26:23 127.0.0.1 - 127.0.0.1 80 GET /quickstart/aspplus/doc/

quickstart.aspx - 200 Mozilla/4.0+(compatible;+MSIE+6.0b;+Windows+NT+5.0; +COM++1.0.2615)

2001-04-20 15:32:10 127.0.0.1 - 127.0.0.1 80 GET /quickstart/aspplus/doc/

whatisaspx.aspx - 200 Mozilla/4.0+(compatible;+MSIE+6.0b;+Windows+NT+5.0; +COM++1.0.2615)

1

023617-6 Ch01.F  9/26/01  9:39 AM  Page 17



*devserver

Default Web Site (Stopped)

STOP A WEB SITE

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the 
Administrative Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

‹ Click     to expand the list 
of Web sites on the Web 
server (     changes to     ).

› To stop a Web site, click 
the Web site.

ˇ Click the Stop button (    ).

� The Web site stops.

AWeb site sometimes needs to be stopped, such
as when you need to perform file maintenance,
backups, or virus checks on the site. Stopping a

Web site from running causes an immediate
interruption of service for all users accessing the site.
Any activity being performed by the Web site, such as
processing an ASP.NET page or creating a file, is
stopped immediately.

Some Web site configuration tasks can be performed
while the site is running, but do not take effect until
the site is restarted. You can stop and then start the
site to apply the changes. Starting a Web site you

previously stopped also enables users to once again
access information on the site.

Web sites can also be paused. Pausing a Web site
does not stop the site from completing any activities
that are in progress, but it prevents any new activity
on the Web site. For busy Web sites, it is common for
Web site administrators to first pause the Web site
and then wait until all activity has ceased before
stopping the Web site.

With ASP.NET applications, you should not have many
reasons for stopping or pausing the Web server.

STOP, START, OR PAUSE A WEB SITE

ASP.NET

18

STOP, START, OR PAUSE A WEB SITE

023617-6 Ch01.F  9/26/01  9:39 AM  Page 18



Default Web Site Default Web Site (Paused)

START A WEB SITE

⁄ To start a Web site, click 
the Web site.

¤ Click the Start button (     ).

� The Web site restarts.

PAUSE A WEB SITE

⁄ To pause a Web site, click 
the Web site.

¤ Click the Pause        
button (     ).

� The Web site pauses.

� To resume running the 
Web site, click the Pause 
button again.

GETTING STARTED WITH ASP.NET

You can stop and start a Web server using the
iisreset command. Using this command to
stop or start a Web server will stop or start all the
Web sites on the server. At the Command Prompt
on the Web server, type iisreset / followed by the
action you want to perform.

19

1

COMMAND DESCRIPTION

iisreset /restart Stop and then restart the Web server.

iisreset /start Start the Web server.

iisreset /stop Stop the Web server.

iisreset /reboot Restart the computer.

iisreset /rebootonerror Restart the computer if an error occurs while stopping,
starting, or pausing the Web server.

iisreset /status Stop and then restart the Web server.

iisreset /? Display information about the iisreset command.

023617-6 Ch01.F  9/26/01  9:39 AM  Page 19



You can use the Internet Services Manager (ISM)
Application to open pages into a browser for
files that are on your Web site. You can open

this tool directly from the Start menu or use the
Snap-in console that is available in the Computer
Management Console Application.

This administrative tool enables you to configure your
Web site and navigate through all of the content on
the site. You also can use the tool to open the Web
site locally into your browser. You can also use the

ISM tool to go to a specific directory or page in your
Web site and browse from there. IIS Admin gives you
an Explorer-like view of your Web site so it is very
intuitive for you to go to any specific area of your site.
Having this tool enables you to easily locate any page
in your site and view it in a browser, versus having to
type the entire URL.

If you choose a Web or directory to browse, the
default document will appear. See page 14 for more
information on setting a default document.

BROWSE YOUR DEFAULT WEB SITE

ASP.NET

⁄ In the Control Panel, 
double-click Administrative 
Tools to open the Administrative 
Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

Administrative Tools

Internet Services Manager

20

BROWSE YOUR DEFAULT WEB SITE

033617-6 Ch02.F  9/26/01  9:40 AM  Page 20



The Internet Services Manager is useful for
browsing your Web site, but if you are browsing
the same page multiple times, then you should
look at some other alternatives. One alternative
is to add the URL to your list of favorites in your
browser.

You can also launch a page from a shortcut on
your desktop. You can create a shortcut by right-
mouse clicking on your desktop and choosing the
option off of the pop-up menu (New ➪ Shortcut).
This brings up a dialog box that takes you through
a wizard to configure the shortcut.

You can also browse your site with other tools,
like your development environment tool. One
example is using Visual Studio .NET (VS.NET).
VS.NET has a project explorer built into the
development environment. From the project
explorer you can launch any file you choose.
You even have the option of choosing which
browser to use.

21

‹ Click      to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Right-click Default Web 
Site to open the pop-up menu.

ˇ Click Browse.

� The Default Web site 
appears.

Note: The IIS 5.0 Documentation 
opens.

Default Web Site

WEB DEVELOPMENT BASICS 2

033617-6 Ch02.F  9/26/01  9:40 AM  Page 21



⁄ In the Control Panel, 
double-click Administrative 
Tools to open the Administrative 
Tools window.

¤ Double-click Internet 
Services Manager to open the 
Internet Information Services 
window.

Administrative Tools

Internet Services Manager

You can use the Internet Services Manager (ISM)
Application to explore content on your Web site
in Windows Explorer. You can open this tool

directly from the Start menu or use the snap-in
console that is available in the Computer
Management Console Application.

This administrative tool enables you to configure your
Web site and navigate through all of the content on
the site. The tool gives you a Windows Explorer–like
interface for navigating through the hierarchy of the
site. You have the option to launch Windows Explorer
from any directory of the site.

Being able to launch Windows Explorer from any
location in the ISM tool is very convenient. The ISM

tool’s interface displays a virtual structure of your
Web site.

There are cases in which you want to access the
physical files or directories in your Web site. These
cases could be when you want to set file/directory
permissions or open a file directly for editing.

Exploring your site through ISM is a useful feature
when your site is composed of many virtual
directories. With virtual directories, when you choose
the Explore action from ISM, it loads up the directory
to which the virtual directory is mapped. If the
virtual directory is mapped to a share, the share
appears in Windows Explorer.

EXPLORE A WEB SITE

EXPLORE A WEB SITE

ASP.NET

22

033617-6 Ch02.F  9/26/01  9:40 AM  Page 22



‹ Click      to expand the list 
of Web sites on the Web 
server (     changes to     ).

› Right-click Default Web 
Site to open the pop-up menu.

ˇ Click Explore.

� The Windows Explorer 
displays the directory where 
the files for the Default Web 
site are located.

Default Web Site

wwwroot

WEB DEVELOPMENT BASICS

An alternative way to get to the Internet Services
Manager is to open the Computer Management
Console. This console can be reached by right-
mouse clicking on the “My Computer” icon on
the desktop and choosing Manage from the 
pop-up menu. You can also get to the Computer
Management Console through the Control Panel.

The Computer Management Console is a very
useful console when it comes to managing your
Web site. You can connect to other machines on
your network and manage resources on those
machines that are used by your Web site. For
example, you can maintain the shares that are
exposed by a remote machine. For a share, you can
give the share name, path, and security rights.
Shares are sometimes used for virtual directories in
your Web sites. See page 10 for information on
how to create a virtual directory.

23

2

033617-6 Ch02.F  9/26/01  9:40 AM  Page 23



⁄ Start your text editor.

¤ Click File ➪ Open.

‹ Click     to select the 
folder that contains your 
Code Templates.

› Click     to select All Files 
from the drop-down list.

ˇ Click to select a template. 

Á Click Open to open the 
template.

� The template file loads into 
your text editor.

Note: If you installed the software from 
the CD, the path to the Code Templates 
directory is C:\Program Files\Visual 
ASP.Net\Code Templates\ plus the 
filename for the specific html template, 
such as GenericTemplate.htm.

Note: You can open 
the template from the CD at 
D:\VISUALASPNET\Code Templates\.

OPEN A TEMPLATE FILE

ASP.NET

24

You can use template files to shorten the time it
takes to program your applications. Template
files also help promote more consistent use of

programming standards.

Template files are files with common code that can be
used across an application. For example, this book
uses a template file, GenericTemplate.aspx, as a
starting point for creating an ASP.NET Web page.

There are many repetitive lines of code in creating an
application. For example, Web Forms have several
lines of code that are very similar page after page,
with the exception of the content between the HTML
opening and closing tags, which changes.

After you have built several Web applications, you can
determine the classifications of pages and

components that you build. When you see patterns of
repetitive code, this is an opportunity to make a
generic template that you can create for future use.

Templates are commonly used in this book to help
you learn a task. By using the templates, you can save
time by not having to create the basic HTML code for
every page.

You can simply open the file directly from the CD
with your text editor. Or, to avoid going to the CD
drive, you can copy the files onto your hard drive.

After opening the template and making the necessary
changes, you may want to save the file to the Web
server for later requests.

OPEN A TEMPLATE FILE

033617-6 Ch02.F  9/26/01  9:40 AM  Page 24



25

WEB DEVELOPMENT BASICS

⁄ Click File ➪ Save As.

¤ Click to select the folder 
where you want to store your 
file.

� If the folder where you 
want to store the files is not 
onscreen, click the Save in    
to select the folder.

‹ Type a name for the file.

› Click Save to save the Web 
page.

Note: To enable the file to load 
automatically in the Default Web 
site, save the file to the root directory 
(C:\Inetpub\wwwroot\) as Default.htm.

ˇ Browse to the Default Web 
site at http://localhost.

Note: See page 20 for instructions on 
browsing the Default Web site.

� The Web page appears in 
the Default Web site.

Note: See page 14 for more 
information about the default 
document in IIS.

You can save your files to the Default Web site so
that you and others can request the file from the
Web server.

The Default Web site is a Web site that is on your
Web server when you install Internet Information
Server 5.0. If you have not mapped the Default Web
site to another location, the default location for the
Default Web site is C:\InetPub\wwwroot. That is
the path you should use if you have not changed the
default configuration.

If your Web server is on a different machine than the
physical files of your Web site, you need to save the
files on the file share that is designated for your Web

site, as opposed to a local drive on the Web server. To
find the physical location of where your Web site files
are stored, see page 22.

Common files that will make up your Web sites
include Web Forms, Code-behind Pages, Web
Services/Web Service Clients, components, and
configuration files. Unlike ASP 3.0 sites that use
components, ASP.NET applications are self-describing
and do not require registry entries. Therefore, you
can simple copy the application with XCOPY or FTP.
Copy deployment works in most cases, but there are
other configurations that take a few more steps to
properly configure.

SAVE A FILE TO THE DEFAULT WEB SITE

2

SAVE A FILE TO THE DEFAULT WEB SITE

033617-6 Ch02.F  9/26/01  9:40 AM  Page 25



⁄ Start your text editor.

¤ Click File ➪ Open.

‹ Click     to select the 
folder that contains your 
Code Templates.

› Click     to select All Files 
from the drop-down list.

ˇ Click to select a template. 

Á Click Open to open the 
template.

‡ Type a description of the 
page between the <H3> tags.

° Position the cursor 
insertion point between 
the <BODY> tags and 
create a form for collecting 
information about user 
comments.

· Add additional HTML 
controls to the form to collect 
information.

‚ Add a Submit button to 
the form.

Open...             Ctrl+O

You can use a text editor to create a Web page. A
Web page should, at a minimum, have the
<HTML> and the <BODY> tags in it. The tags in

your HTML page give your Web browser specific
instructions for displaying the page to the user. Most
tags have an opening and a closing tag that affect the
text between the tags. The closing tag should have a
forward slash (/) in it. It is common to type tags in
uppercase letters to make the tags stand out from the
text in the Web page.

The <HTML> tag identifies a document as a Web
page. You must place the HTML markup that you
want to appear in the Web browser between the
<BODY> tags.

You can create an HTML page with a form on it to
gather input from a user. A form can be placed
anywhere between the <BODY> tags in an HTML
page. The action attribute in the <FORM> tag tells
which page should process the form when the user
submits the form.

Forms are the best way to collect input from a user.
You will consistently use forms if you are building an
interactive site. HTML forms are a big part of how the
ASP.NET has implemented its Framework, as you will
see with Web Forms.

CREATE AN HTML PAGE

CREATE AN HTML PAGE

ASP.NET

26

033617-6 Ch02.F  9/26/01  9:40 AM  Page 26



— Click File ➪ Save As. 

± Click to select the Default 
Web Site folder where you 
want to store your file.

� If the Default Web Site 
folder is not onscreen, click 
the Save in     to select the 
folder.

¡ Type SubmitComments.htm 
as your filename.

™ Click Save to save and 
close the dialog box.

£ Browse to the saved Web 
page at http://localhost 
/SubmitComments.htm.

Note: See page 20 for instructions on 
browsing the default Web site.

� The Web page appears 
with the form on it.

Note: If you click the Send 
Comments button on this form, 
a File not Found error will appear 
onscreen because you have not 
created the page.

Save As...

WEB DEVELOPMENT BASICS

Several elements on an HTML form enable you to collect and/or display
information. An example of an element is a textbox. For each element that you
have, you can have a number of attributes. An example of an attribute for the
textbox is the maxlength property, which tells the Web browser the maximum
number of characters that the user should be able to type into the textbox.

To build a form, here are some examples of commonly used form elements:

27

2

FORM ELEMENTS DESCRIPTION

Text Box A text box enables users to enter a single line of text, such as a First Name.

Text Area The TEXTAREA element displays a large text area that enables users to enter several 
lines or paragraphs of text.

Password Box A password box enables users to enter text into a text box while masking what they
are typing in with asterisks.

Drop-Down List The SELECT element displays a drop-down list that enables users to select an option
from a list of several options.

Check Box Check boxes enable users to select one or more options.

Radio Button Radio buttons enable users to select only one of several options.

Submit Button A submit button enables users to send data in the form to the ASP page that will
process the data.

033617-6 Ch02.F  9/26/01  9:40 AM  Page 27



⁄ Start your text editor.

¤ Click File ➪ Open.

‹ Click     to select the 
folder that contains your 
Code Templates.

› Click     to select All Files 
from the drop-down list.

ˇ Click to select a template. 

Á Click Open to open the 
template.

‡ Declare the scripting 
language used for the page.

° Type a description of the 
page between the <H3> tags 
and press Enter.

· Type the HTML and ASP 
code to display what the user 
fills in on the form.

Open...             Ctrl+O

You can create an ASP 3.0 page to process a form
that is submitted from an HTML page. ASP 3.0
pages and ASP.NET pages can coexist on the

same Web site. Saving your ASP 3.0 pages with an
.asp extension allows the Web server to determine
how to properly process the file.

Adding ASP code to an HTML page enables you to
create dynamic, interactive Web pages. ASP code is
inserted into HTML code using code declaration
blocks. Code declaration blocks are defined using
<script> tags that contain a RUNAT attribute value
set to “server.” You can use <% and %> as a
shorthand replacement for declaring server-side

code. The server-side code blocks tell the Web server
where the ASP code begins and ends. This tells the
Web server which areas need to be processed before
being sent to the user’s Web browser.

You can use the ASP 3.0 object model to interact with
Web servers’ requests and responses to users. The
Request.Form statement enables you to access
information passed by a form to a Web server. The
Response.Write statement enables you to
manipulate the response to a user’s request. This
statement enables you to modify the HTML sent in
the response dynamically, enabling you to customize
responses to user requests.

CREATE AN ASP PAGE

CREATE AN ASP PAGE

ASP.NET

28

033617-6 Ch02.F  9/26/01  9:40 AM  Page 28



‚ Click File ➪ Save As.

— Click to select the Default 
Web Site folder where you 
want to store your file.

� If the Default Web Site 
folder is not onscreen, click 
the Save in     to select the 
folder.

± Type ReceiveComments.asp 
as your filename.

¡ Click Save to save and 
close the dialog box.

Note: You will need to copy 
SubmitComments.htm to 
C:\InetPub\wwwroot\ from the 
installation directory or the CD.

™ Browse to the saved Web 
page at http://localhost 
/SubmitComments.htm.

Note: See page 20 for instructions 
on browsing the default Web site.

� The Web page appears with 
the form on it.

£ Type your information 
into the fields on the form.

¢ Click the Send Comments 
button.

� The Web page echoes 
back the information that you 
filled in on the form.

Save As...

WEB DEVELOPMENT BASICS

29

With proper use of the ASP 3.0 object model, you can
generically display all of the information that was posted
by any HTML form. The following code, written in
VBScript, will display all of the form variables submitted.

Example:
<P><STRONG>Form Collection</STRONG> </P>

<P>

<% 

For Each Item in Request.Form

For intLoop = 1 to Request.Form(Item).Count 

Response.Write Item & " = " &
Request.Form(Item)(intLoop) 

%> 

<br>

<% Next

Next %>

</P>

2

033617-6 Ch02.F  9/26/01  9:40 AM  Page 29



⁄ Start your text editor.

¤ Click File ➪ Open.

‹ Click     to select the 
folder that contains your 
Code Templates.

› Click     to select All Files 
from the drop-down list.

ˇ Click to select a template. 

Á Click Open to open the 
template.

‡ Type a description of the 
page between the <H3> tags.

° Click between the <BODY> 
tags and create a form for 
collecting information about 
user comments.

· Add additional HTML 
controls to the form to collect 
information.

‚ Add a Submit button to 
the form.

Open...             Ctrl+O

You can create an ASP.NET Web Form that
provides the HTML to render the user interface
and processes requests from a user. You can do

this by having the page submit to itself. To start the
ASP.NET page, declare what language you will use on
the page. Then add the standard HTML to the page,
including the <HTML> and the <BODY> tags.

When you are ready to create the form for the page,
you need to use the correct tags to do this. However,
with ASP.NET, you must set up both the form and the
controls on the form to run server-side. You can do
this by setting the RUNAT attribute equal to Server.
For more information about server-side controls, see
Chapter 5, Introduction to Server-side Controls.

With ASP.NET Framework, the model for processing
and responding to user requests is to use the same
Web file(s) for collecting user input and displaying
results. This model could be implemented with ASP
3.0, but you would typically see a separate page for
collecting input and displaying results of submitted
input. This model of sending requests to the same
page that collects user input is called postback.
Postbacks are an integral part of the event-handling
model that is available in ASP.NET Web Forms.

CREATE AN ASP.NET WEB PAGE

CREATE AN ASP.NET WEB PAGE

ASP.NET

30

033617-6 Ch02.F  9/26/01  9:40 AM  Page 30



— Click File ➪ Save As.

± Click to select the Default 
Web Site folder where you 
want to store your file.

� If the Default Web Site 
folder is not onscreen, click 
the Save in     to select the 
folder.

¡ Type Comments.aspx as 
your filename.

™ Click Save to save and 
close the dialog box.

£ Browse to the saved Web 
page at http://localhost 
/Comments.aspx.

Note: See page 20 for instructions 
on browsing the default Web site.

� The Web page appears 
with the form on it.

Note: If you click the Send 
Comments button on this form, 
nothing significant should happen 
because no code has been created 
for when the page submits the form 
to itself.

Save As...

WEB DEVELOPMENT BASICS

Creating a Web Form that submits to itself,
postback, is a common Web development
technique. When you configure your Web Forms
to postback, you will need a placeholder for
displaying information when the page comes
back to the user. You can put an empty SPAN tag
into your Web Form as a placeholder for
displaying results back to the user.

With ASP.NET Web Forms, you can either have your
server-side code imbedded in the Web Form,
extension is .aspx, or place the code in a code-
behind page, in the case of C# the extension is .cs.
The concept of code-behind pages is a new feature
that was not available in ASP 3.0. Code-behind
pages enable you to separate code from
presentation (HTML). This is a cleaner programming
model that is closer to what is available to event-
driven programming tools that programmers have
had for years.

31

2

033617-6 Ch02.F  9/26/01  9:40 AM  Page 31



⁄ Start your text editor.

¤ Click File ➪ Open.

‹ Click     to select the 
folder that contains your 
Code Templates.

› Click     to select All Files 
from the drop-down list.

ˇ Click to select a template. 

Á Click Open to open the 
template.

‡ Declare the language used 
for the page.

° Declare a script block to 
run server-side.

· Create an event handler.

‚ Add the ONCLICK event 
handler to the form and call 
the event created.

Open...             Ctrl+O

You can add code to your ASP.NET pages to
respond to your user’s interaction, for example,
clicking a button or an image. In Web

development, you are presented with a challenge
when programming for events. If you want to process
events on the Web server, you need to forward the
event captured by the browser to the Web server
along with the state of the page.

Processing user interactions to elements on your Web
page (events) on the Web server is simplified for you
in ASP.NET. To configure this, you need to do a few
things to properly configure your Web Form. First,

make sure your HTML form has the RUNAT attribute
set to Server. Next you need to add an additional
attribute to the element that is capturing the user
interaction. This attribute determines what function is
called when the event occurs. For example, you can
add an OnClick attribute to the button that calls a
function to process the form. From within the
function, you can set the <SPAN> placeholder’s
InnerHTML property to display some HTML based
on results of processing the event.

Note that this is only one of several ways to configure
events for your Web Forms.

ADD AN EVENT HANDLER 
TO AN ASP.NET PAGE

ADD AN EVENT HANDLER TO AN ASP.NET PAGE

ASP.NET

32

033617-6 Ch02.F  9/26/01  9:40 AM  Page 32



— Click File ➪ Save As.

± Click to select the Default 
Web Site folder where you 
want to store your file.

� If the Default Web Site 
folder is not onscreen, click 
the Save in     to select the 
folder.

¡ Type 
SubmitReceiveComments.aspx 
as your filename.

™ Click Save to save and 
close the dialog box.

£ Browse to the saved Web 
page at http://localhost 
/SubmitReceive 
Comments.aspx.

� The Web page appears with 
the form on it.

¢ Type your information into 
the fields on the form.

∞ Click the Send Comments 
button.

� The Web page echoes 
back the information that you 
filled in on the form.

Save As...

WEB DEVELOPMENT BASICS

The Web Forms architecture gives you the ability
to run server-side code when client-side events
are fired. This is how you can run C# code when
the button is clicked. The Web Forms framework
handles virtually all of the mechanics of
capturing, transmitting, and interpreting the
event and handling it appropriately on the server.

Instead of responding to events on the server, you can
write client-side script that handles events on your
Web page. These scripts are interpreted by the client’s
browser. Because users can have one of many
browsers, you are not assured that the event-handling
code will run properly. Also you are not assured that
the user will access your page with a browser that can
interpret script. There are programmatic ways to
address these issues, but you will find that server-side
code is a more reliable way to process events.

33

2

033617-6 Ch02.F  9/26/01  9:40 AM  Page 33



The C# (pronounced C sharp) language is a
valuable asset in the .NET Framework. You can
use C# to create standalone executables or to

create dynamic content on a Web form.

If you are new to the C# language, you may want
to start applying it by creating the simplest C#
application possible. There are many types of
applications that can be built with the C# language.
Some of the more common ones that you can create
are Windows applications, Web services, ASP.NET
applications, and console applications. If you want
the simplest application, a console application is a
good choice.

Starting with the C# language, you can create a
standard “Hello World” console application. To write
your first application, you need a text editor, like
Notepad, to generate the source code. The file type
that typically holds C# code is a class file. A C# class
is a text file saved as a *.cs file. You can compile
this class with the C# compiler (csc.exe) at the
command prompt which creates an executable
(*.exe) file.

In C# applications, you can use Namespace aliases to
easily leverage the .NET Framework classes. Namespace
aliases are used to reference classes in the .NET
Framework.

WRITE YOUR FIRST C# APPLICATION

ASP.NET

⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
type static void Main() and 
press Enter to create the 
Main function.

Á Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the Main 
function.

‡ Between the curly braces, 
type in the code to print out 
"Hello World using C#!".

34

WRITE YOUR FIRST C# APPLICATION

043617-6 Ch03.F  9/26/01  9:40 AM  Page 34



The C# language is case sensitive. This will be one
of the first bugs you will find when compiling your
C# application. To avoid problems with case
sensitivity, you can use an editor and compiler that
assists by being compliant with the case sensitivity.

35

Save

C:\CSharp\FirstApp.cs

Ctrl+S

° Click File ➪ Save to open 
the Save As dialog box.

· Type a name for the file.

‚ Click Save. � The source file saves to the 
directory and can now be 
compiled.

Note: You can save all of your console 
applications in a specific directory 
(example: C:\CSharp).

C# BASICS 3

If you are familiar with object-oriented
programming, you may know that a class defines
the operations an object can perform, such as
methods, events, or properties, and defines a
value that holds the state of the object. Although
a class generally includes both definition and
implementation, it can have one or more
members that have no implementation.

An instance of a .NET Framework class is an
object. You can access an object’s services by
calling its methods and accessing its properties,
events, and fields. Each language chooses its own
syntax for creating instances of classes.

043617-6 Ch03.F  9/26/01  9:40 AM  Page 35



Run...

⁄ Click Start ➪ Run. � The Run dialog box 
appears.

¤ Type cmd in the Open 
field.

‹ Click OK to open the 
command line window.

Once you have created your C# source file,
you can compile the file into an executable
program that you can run. A compiler is a

utility program that takes a source file — a readable
text file — and converts it into a executable file — a
binary file that the operating system of the computer
knows how to run.

To compile the application, open the command
prompt and go to the directory where the source file
is located (for example: C:\Csharp). You can use the
csc.exe command to invoke the C# compiler. To

specify the source file that you want to compile,
simply type a space and then the name of the file that
you want to compile.

When this command is run, the source file is used by
the C# compiler to create an executable program. If
you created a console application, you can then run
this executeable program by typing the name of the
file. A console application is an executable program
that can be run from the command line. The C#
compiler has many options that you can specify
when compiling an application.

COMPILE A C# APPLICATION

36

ASP.NET

COMPILE A C# APPLICATION

043617-6 Ch03.F  9/26/01  9:40 AM  Page 36



› Change directories to the 
source file location by using 
the cd command.

Note: In this example, the command is 
cd C:\Csharp.

ˇ Compile the class at the 
command prompt using the 
csc command.

Note: In this example, the command is 
csc FirstApp.cs.

� An executable file is 
created from the source file.

Á Run the program by typing 
the name of the executable 
file and pressing Enter.

� The program displays the 
Hello World using C#! 
message.

You can specify another filename for the
executable application that you create. To do
this, use the /out switch followed by a colon
and type the name of the executable file that
you want to create. For example, to compile
the FirstApp.cs source file to an executable file
named HelloWord.exe, you would type csc
/out:HelloWorld.exe FirstApp.cs

You can view all of the options for the C#
compiler by typing csc /? at the command line.
Because the options list is long and could scroll
outside of the viewable window, type csc /? |
more to see the options one screen at a time.

37

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 37



⁄ Open your text editor.

¤ Type the name of the 
namespace you want to 
create and press Enter.

‹ Type { }, placing the 
opening and closing curly 
braces on separate lines.

› Between the curly braces, 
press Tab and type // to begin 
a single line comment, add 
the comment details, and 
then press Enter.

ˇ Type using System; to 
import the System 
namespace and press Enter.

Á Add a documentation 
comment by typing /// 
followed by the comment.

‡ Type the name of the class 
you want to create followed 
by {}, placing the opening 
and closing braces on 
separate lines.

Well-formatted code makes your code easier
to read, maintain, and reuse. Formatting 
your code professionally is an important

consideration in development. Before your
development team starts coding, they should write
a coding guidelines document. These guidelines
should include all the standards that determine how
your organization formats code professionally. If 
these guidelines are not set at the beginning, the
code will look as though many individual developers,
as opposed to a coordinated development group,
created the code. Formatting code is a discipline that
is carried out during the coding, not at the end of it.
If developers wait until after the coding to assemble
guidelines, the task will most likely not get done.

When formatting your code, be sure to put in white
space, comments, and indents. Most developers have
good structure to their code, but skip over the task of
commenting, which is necessary for capturing the
why, what, when, and how of their code. Commenting
your code while producing it facilitates better
communication within the development team and
helps with the maintainability. If you do not comment
when you code, you may end up not documenting
the code. A common mistake for development teams
is putting off commenting until the very last part of
the project and then never getting back to complete
the task.

FORMAT YOUR CODE 

38

ASP.NET

FORMAT YOUR CODE

043617-6 Ch03.F  9/26/01  9:40 AM  Page 38



° To create a flower box, 
type / to specify a multiple 
line comment.

· Type in the details of the 
class.

‚ To end the flower box, 
type / to specify the end of a 
multiple line comment.

— Type public static void 
Main() followed by { }, 
placing the opening and 
closing curly braces on 
separate lines, to create the 
Main function.

± Within the Main function, 
add a single line comment by 
typing //.

¡ Type the comment.

™ Type the remaining code, 
adding comments on the line 
before the code.

To properly format code, you must keep several
concepts in mind. Whitespace is where you
control the density of your code; this whitespace
includes blank lines. Also, consider the amount
of code on each line, as well as indention.
Indention is a key part of giving structure to your
code. You will need to know your language’s
proper syntax when formatting your code. The
key parts of the formatting that are affected by
syntax are how you show a line continuation, a
line end, and the keywords used for comments.
The line end is notated by the semicolon (;) and
the line continuation is the carriage return and
line feed (just strike the enter key in your editor).
In C# you can comment a single line or multiple
lines. A single line is notated by // and a
multiple line is notated by /* at the beginning of
the first line and */ at the end of the last line.

39

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 39



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
specify the body of the class.

ˇ Between the curly braces, 
type static void Main() and 
press Enter to create the 
Main function.

Á Type { }, placing the 
opening and closing curly 
braces on separate lines.

You can structure the way you store information
with variables. When you declare variables, you
set up locations in memory where your program

can store the many values it needs to perform its task.
Defining a variable enables you to assign an easy-to-
remember name to a memory location.

In the real world, you deal with many classifications
of information. This information could be a date,
money, a person’s name, or an age. When you build
applications that use this information, you will need
to temporarily store these values for later use in the
application.

Using variables in C# requires declaration and
initialization. Declaration tells the application how to

allocate memory for the information you want to
store. This is the first step in using variables and is
required before you perform the initialization.
Initialization is setting an initial value for the variable.

To declare a variable in C#, you will need to determine
what type of information you want to store. The type
of information you are storing will determine what the
proper data type to use is. If you are storing
someone’s first name, you can use the string data 
type for its storage. If you are storing someone’s age,
you can use one of the integer data types.

DECLARE A VARIABLE

40

ASP.NET

DECLARE A VARIABLE

043617-6 Ch03.F  9/26/01  9:40 AM  Page 40



‡ Between the curly braces, 
type two statements to 
declare and initialize a 
variable on separate lines and 
then press Enter.

° Type a statement to 
declare and initialize a 
variable on the same line 
and press Enter.

41

C# BASICS 3
You must declare and initialize variables
before using them to avoid an error.
Failing to initialize a variable produces a
runtime error.

TYPE THIS:

namespace DeclareInitializeVariables
{

using System;

/// <summary>
///      Summary description for ApplyIt.
/// </summary>
public class ApplyVariableDeclaration
{

public void ApplyIt()
{

string sTest;

// Executing this line will give you the following error:
Console.WriteLine (sTest);

}
}

}

RESULT:

Compile error = “Use of unassigned local variable ‘sTest’”

043617-6 Ch03.F  9/26/01  9:40 AM  Page 41



Save

C:\Csharp\DeclareInitializeVariables.cs

Ctrl+S

⁄ Type the statement to 
declare and initialize a 
multiple variable of the same 
type on the same line and 
press Enter.

¤ Add the 
Console.Writeline 
function to write the values 
for the variables to the 
console screen.

‹ Click File ➪ Save.

› Type a name for the file.

ˇ Click Save.

� The source file saves to the 
directory and can now be 
compiled.

Note: You can save all of your Console 
applications in a specific directory 
(example: C:\CSharp).

After you declare a variable, you initialize it by
giving it a value. This value can come directly
from the result of an operation by adding two

numbers or concatenating a string, from the return of
a method, or from the value of a property or field on
an object.

When choosing a name for a variable, you need to
give it a meaningful name. This lets you know what
is in its storage without having to search through the
code to find out what data type was used when it 
was declared. If you are storing someone’s first
name in a variable, you should give it a name like
strFirstName. The convention used in

strFirstName is Hungarian notation. Using this
naming convention tells us the data type of the
variable and the classification of the information
(a first name).

.NET has a common set of data types that all .NET-
compliant languages use. Having a Common Type
System (CTS) is one of the foundations of the .NET
platform that allows cross-language compatibility.
The CTS is a formal specification that details how a
type is defined. When you initialize a variable, you
need to make sure that you pass data that can be
stored in that type; otherwise a runtime error
will occur.

INITIALIZE A VARIABLE

42

ASP.NET

INITIALIZE A VARIABLE 

043617-6 Ch03.F  9/26/01  9:40 AM  Page 42



Run...

Á Click Start ➪ Run to open 
the Run dialog box.

� The Run dialog box 
appears.

‡ Type cmd in the Open 
field.

° Click OK.

· Change directories to 
where 
DeclareInitialize 
Variables.cs is located 
by using the cd command.

‚ Compile the class at the 
command prompt with the 
csc command.

Note: See page 36 for more 
information on compiling and running 
a file.

— Run the program by typing 
the name of the executable 
file and pressing Enter.

� The program displays the 
message about the initialized 
variables.

You need to know what data types are available to
you in C# to properly store data. The following 
table outlines the intrinsic data types used by C#.

C# DATA TYPE DESCRIPTION SAMPLE CODE

Object The ultimate base type of all other types object o = null;

String String type; a string is a sequence of string s = “hello”;
Unicode characters

Sbyte (byte) 8-bit signed integral type (unsigned) sbyte val = 12;

Short (ushort) 16-bit signed integral type (unsigned) short val = 12;

int (uint) 32-bit signed integral type (unsigned) int val = 12;

long (ulong) 64-bit signed integral type (unsigned) long val1 = 12;long val2 = 34L;

float (double) Single-precision floating point type float val = 1.23F;
(double precision)

bool Boolean type; either true or false bool val1 = true;bool val2 = false;

char Character type; a char value is a char val = ‘h’;
Unicode character

decimal Precise decimal type with 28 decimal val = 1.23M;
significant digits

43

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 43



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare variable to hold a 
Date Time string.

You can access the attributes of an object by
using properties. A property is a member that
provides access to an attribute of an object or a

class. Examples of properties include the length of a
string, the size of a font, the caption of a window, and
the name of a customer.

Many objects in the .NET Framework have very
useful properties. For example, you can use the
DateTime object from the System class for a few
handy properties. You can use the Now property to
get a date/time stamp for the current date and time,
or you can use the Today property to get the current
date.

Accessing properties requires the class that defines
the object to be available for use in your application.
When using a .NET implicit object, you will need to
make sure that the namespace for that class is
imported. Next, you will qualify the class and the
property that you want to access. You can do this
by fully qualifying the class and its property (for
example: System.DateTime.Now) or taking a
shortcut that does not include the name of the
base class that is referenced (for example:
DateTime.Now).

ACCESS PROPERTIES

44

ASP.NET

ACCESS PROPERTIES

043617-6 Ch03.F  9/26/01  9:40 AM  Page 44



‡ Access the Now property 
from the DateTime class 
that is part of the "System" 
Framework class.

° Send this value to the 
console.

· Save as the class name.

Note: See page 35 for more 
information on saving a file.

‚ Compile and run the 
program.

� The program displays the 
message about the date and 
time.

AccessProperties.cs - Notepad

Object-oriented languages have three import
concepts for working with objects. To work with
an object, you will need to know what properties,
methods, and events are. This chapter covers
these three concepts. Properties describe
attributes of your object. For example, you could
represent a pencil as an object. Some of the
properties of this object would be its length,
color, and thickness of lead.

Properties are a natural extension of fields. They
are both named members with associated types,
and the syntax for accessing fields and properties
is the same. In general, you should expose
properties instead of public fields. With
properties you have better control over the
storage and access of the information stored.
You will want to use Get and Set accessors to
control reading and writing to properties.

45

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 45



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function that 
reads in the arguments from 
the command line.

Á Use the Console.Write 
function to write a message 
to the console for collecting a 
character.

‡ Declare a character 
variable and read the user 
input into the variable.

Note: Only the first character is read, 
not the line.

You will typically use conditional statements in
your code to enforce business logic. Conditional
statements (selection statements in the C#

specification) are for making decisions in your code.

You have two main ways to implement conditional
code, the if and switch statements. You will
commonly use the if statement for a single
comparison that has code that needs to execute 
when the comparison yields true and when the
comparison yields false. The switch statement
works best when multiple comparisons with one
value are used for controlling the execution of code.

Both the if and switch statements are controlled by
Boolean expressions. Boolean expressions yield either

a true or false value. With the if statement, if the
Boolean expression evaluates to true, the first
embedded section of code runs. After this is done,
control is transferred to the end of the if statement.
If the Boolean expression evaluates to false, the
control then goes to the second embedded section
of code. After this second embedded section runs,
control goes to the end of the if statement.

The if and the switch statements can both be
used to control conditional flow. It is up to you to
determine which construct will best solve your
programming problem.

MAKE DECISIONS USING CONDITIONAL
STATEMENTS

46

ASP.NET

MAKE DECISIONS USING CONDITIONAL STATEMENTS

043617-6 Ch03.F  9/26/01  9:40 AM  Page 46



° Create an if-then 
statement to determine 
whether the input was a 
number.

· Write the appropriate 
message to the console.

‚ Save the file as the class 
name.

Note: See page 35 for more 
information on saving a file.

— Compile and run the 
program.

� The program displays the 
message about the character 
the user input.

MakeStatements - Notepad

After evaluating and converting a switch 
statement to the governing type, you can 
execute the statement several ways.

47

C# BASICS 3

IF . . . THEN . . .

A constant specified in case a label is equal to Control is transferred to the statement list following 
the value of the switch expression the matched case label.

No constant matches the value of the switch Control is transferred to the statement list following 
expression, and a default label is present the default label.

No constant matches the value of the switch Control is transferred to the end point of the switch
expression, and no default label is present statement.

043617-6 Ch03.F  9/26/01  9:40 AM  Page 47



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines.

ˇ Between the curly braces, 
create the Main function.

Á Declare an array 
variable for holding the goals 
and a string variable for the 
question to the user.

‡ Store goals in an array for 
displaying a message to the 
console.

° Store responses in another 
array.

You can create arrays when working with a set of
variables of the same data type that are related
to each other. For example, you may use an

array to hold a list of states. Because the state names
will all be string data types, you would define a string
array of 52 members.

Arrays are a variable type, so you will need to declare
and initialize them just like you need to declare and
initialize a string variable type. When declaring an
array, you will determine the data type needed for
storing members of the array and you will determine
the number of members in the array.

With arrays, the default lower bound of the array is 0.
So when you access the first member of the State List
array, strStateList[ ], you would reference this
member with strStateList[0]. If this State List
array was defined to contain 52 members, then the
last member would be referenced as
strStateList[51].

Arrays allow you to optimize lines of code. You can
do so by iterating through all the members of the
array with a standard For or For Each construct. If
you structure your code this way, you do not have to
add any lines of code if new members are added to
the array.

WORK WITH ARRAYS

48

ASP.NET

WORK WITH ARRAYS

043617-6 Ch03.F  9/26/01  9:40 AM  Page 48



· Write the message to the 
console.

‚ Save the file as the class 
name.

Note: See page 35 for more 
information on saving a file.

— Compile and run the 
program.

� The program displays the 
message about the goal list 
and options.

WorkArrays - Notepad

You can use the Array class provided in the 
.NET Framework to manipulate and sort 
the members of the array.

49

C# BASICS 3

TYPE THIS:

using System;
namespace ApplyArrays
{

class ApplyArrays
{

static void Main()
{

// Initialize an array in same line as declare
string[] sGoalList = {“Hike the Appalachian Trail”,

“Run a marathon”,
“Give $1 million to worthwhile causes”};

// Write the members of sGoalList to the console before modifying
Console.Write(“Before sort:\n”);
Console.WriteLine(“{0}\n{1}\n{2}\n”,sGoalList);
// Write the sGoalList to the console after sorting
Array.Sort(sGoalList);
Console.WriteLine(“\nAfter the sort:”);
Console.WriteLine(“{0}\n{1}\n{2}\n”,sGoalList);

}
}

}

RESULT:

Before sort:

Hike the Appalachian Trail

Run a marathon

Give $1 million to worthwhile
causes

After the sort:

Give $1 million to worthwhile
causes

Hike the AppalachiÏan Trail

Run a marathon

043617-6 Ch03.F  9/26/01  9:40 AM  Page 49



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare variables for use 
by the case statement and 
the if-then logic.

‡ Create a case statement.

You need to use iterative statements when a
section of code needs to execute more than
once. For example, after creating an array, you

may use an iterative statement to work with every
member of that array. There are multiple ways to
implement an iterative statement. Your choice is
based on the requirements of the logic you are
implementing.

There are four iteration statements to choose from:
while, do, for, and foreach. With the chosen
statement, you will need to create a Boolean
expression that is evaluated each time the loop is
executed. After choosing a statement, you will write
code that is embedded within the statement.

Each iterative statement handles a loop differently.
The while statement will execute 0 or more times.
The do statement will execute 1 or more times. The
foreach statement is used for enumerating elements
in a collection. The for statement has more structure
than the while and do statements. You have three
optional parameters used to operate loops, which are
an initializer, condition, and iterator.

Within all the iterative statements, the embedded
code can use either a break or continue statement.
The break statement will transfer the control to the
end of the iterative statement and stop the iteration.
The continue statement will transfer control to the
end of the iterative statement and then perform
another iteration.

CONTROL LOGIC USING ITERATIVE
STATEMENTS

50

ASP.NET

CONTROL LOGIC USING ITERATIVE STATEMENTS

043617-6 Ch03.F  9/26/01  9:40 AM  Page 50



ControlLogic - Notepad

° Create an if-then 
statement.

· Use the Writeline 
method to send the 
appropriate value to the 
console.

‚ Save as the class name.

Note: See page 35 if you need more 
information on saving a file.

— Compile and run the 
program.

� The program displays the 
message about the goal set.

You will find that while statements work well with 
applying business logic. The following is a simple 
example of using a while loop.

51

C# BASICS 3

TYPE THIS:

using System;
class ApplyWhileStatements 
{

public static void Main() 
{

int n = 1;

while (n < 6) 
{

Console.WriteLine(“Current value of n is {0}”, n);
n++;

}
}

}

RESULT:

Current value of n is 1

Current value of n is 2

Current value of n is 3

Current value of n is 4

Current value of n is 5

043617-6 Ch03.F  9/26/01  9:40 AM  Page 51



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare two string 
variables.

‡ Concatenate the strings 
together.

You will find many cases that you need to
programmatically build a string by concatenating
two or more strings together. You can work with

two variables of string data type and join them
together into a single string. Programmers call this
process string concatenation. You will use the +
operator in C# to concatenate the two strings
together.

You can format a message to the user by using a
combination of string variables and literals that are in
quotation marks. For example, say you have a variable
like strUserName and you have populated that
variable with the User’s Name. You want to format a

message which welcomes the user using their name.
To do this, you would use the statement "Welcome,
" + strUsername.

There are several ways to concatenate two or more
string sources. You can use either the arithmetic
operator + operator or the += assignment operator.
The + operator would be used to combine strings in
the order that they appear in the expression. The +=
assignment would be used to append a string to an
existing string. Remember that as you append your
strings, you will have to include the spacing inside the
double quotes of your string to have proper spacing
between words.

CONCATENATE A STRING

52

ASP.NET

CONCATENATE A STRING

043617-6 Ch03.F  9/26/01  9:40 AM  Page 52



ConcatenateString.cs - Notepad

° Concatenate the strings 
within a statement.

· Write the two statements 
to the console.

‚ Save as the class name.

Note: See page 35 for more 
information on saving a file.

— Compile and run the 
program.

� The program displays the 
message about the 
concatenated strings.

You can shorten the code required to concatenate a string
to itself by using the += assignment operator. The sample
below passes arguments into a console application from
the command line and builds a single string that puts all
the command line parameters into one string.

53

C# BASICS 3

COMPILE THIS:

using System;   
public class ApplyStringConcatenation
{

public static void Main(String[] args)
{

String strDynamicString = “”;

// Loop through the arguments and concatenate into one string
for(int i = 0; i < args.Length; i++)
{

strDynamicString += args[i] + “; “;
}

// Write the result of the concatenated string to the console
Console.WriteLine(“Your goal list is: “ + 

strDynamicString);
}
}

RESULT:

Your goal list is:  Run a
marathon; Go to top of
Empire State Building;

TYPE THIS:

<program name>.exe “Run a 
marathon” “Go to top of 
Empire State Building”

043617-6 Ch03.F  9/26/01  9:40 AM  Page 53



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare a byte variable 
and initialize the value to 3.

‡ Declare an integer 
variable and initialize the 
value to the byte variable 
created.

° Output the two values to 
the console.

Note: This is an example of an implicit 
conversion.

You will want to convert variables when
performing operations that require all variables
to be the same data type. For example, suppose

you want to add numbers together, and the numbers
are held in string variables. Some languages, like
Visual Basic 6, will do an implicit conversion, but not
in the case of C#. Another example of where you may
want to convert is using a method on a class. For
example, the Response.Write method expects a
string data type to be passed for the first parameter. If
another data type is passed, a runtime error will
occur.

Many functions are available to convert from one data
type to another data type. So, the first thing to do

when converting from one data type to another data
type is to look up the appropriate function for the
conversion. An example of a function that you will
use often is the function that converts to a string. To
use this method, you simply use the ToString()
method call at the end of the variable.

There are two different types of conversions: an
implicit conversion and an explicit conversion. An
implicit conversion is done when you cast another
variable into a variable of a different data type. Be
careful when you do this, because sometimes the
variable you are casting into cannot hold the original
variable.

CONVERT A VARIABLE

54

ASP.NET

CONVERT A VARIABLE

043617-6 Ch03.F  9/26/01  9:40 AM  Page 54



ConvertVariables.cs - Notepad

· Declare a long variable 
and initialize the value to the 
maximum value for a long 
variable.

‚ Declare an integer 
variable and initialize the 
value to the byte variable 
created.

Note: This is an example of an explicit 
conversion.

— Output the two values to 
the console.

± Save as the class name.

Note: See page 35 for more 
information on saving a file.

¡ Compile and run the 
program.

� The program displays the 
message about the byte and 
long variable conversions.

55

C# BASICS 3
The following example represents a class definition that does 
several different types of conversions. The first conversion 
changes the data type from a number to a string. The second
conversion demonstrates a conversion from a string to a 
number. Finally, the dates are converted into different formats.

Example:
using System;
public class ApplyConversion
{

static void Main()
{

string strExample = “1.2”;
string strDate;

// This is how to convert a string to number
double dblValue = Double.Parse(strExample);

// This is how numerics are converted to strings
string strDoubleValue = dblValue.ToString();

// This is conversion of full dates to other data types
strDate = DateTime.Now.ToLocalTime().ToString();
strDate = DateTime.Now.ToLongTimeString();
strDate = DateTime.Now.ToShortDateString();

}
}

043617-6 Ch03.F  9/26/01  9:40 AM  Page 55



Untitled - Notepad

⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the 
class you want to create 
and press Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare an integer 
variable and initialize the 
value to 0.

‡ Declare a collection of 
integers.

° Add the foreach 
statement to display all the 
members over 5.

ENUMERATE A COLLECTION

56

ASP.NET

Collections give you a sophisticated way to work
with a group of items. One collection type is
a single-dimension array. When programming

with a single-dimension array, you can use the
foreach statement to iterate through the collection.

Looping through a collection, you can use any of the
iteration statements that are available in C#. If you
use a while or a do statement, you will have to
manually move through the collection using the
MoveNext method and then check to see when
you have reached the end of the collection. This will
work, but you will find that using the foreach
statement will eliminate the work required to move
to the next member and to keep track of where you
are in the collection.

The foreach statement automatically increments 
the position in the collection and automatically stops
after the last member has been evaluated. The
foreach statement will also put you at the first
member of that collection when entering the
foreach statement the first time.

Also, with the collection, the statement includes an
iteration variable that holds an instance of the
member at the current position. You are most likely
to use this instance in your embedded statement.

ENUMERATE A COLLECTION

043617-6 Ch03.F  9/26/01  9:40 AM  Page 56



EnumerateCollection.cs - Notepad

· Output the results to the 
console.

‚ Save as the class name.

Note: See page 35 for more 
information on saving a file.

— Compile and run the 
program.

� The program displays the 
message about the results.

You can use a for statement instead of a foreach
statement. Note how much extra programming 
you must do to make this work.

Example:
static void Main()

{

int iCount = 0;

int[] iNumberList = new int [] {0,1,2,5,7,8,11};

for (int i=0; i<iNumberList.Length; i++)

{

if (iNumberList[i]>5)

{

iCount++;      

}

}

Console.WriteLine(“Out of {0} numbers, found {1} Numbers that were greater
than five.”,

iNumberList.GetLength(0), iCount) ;

}

57

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 57



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Declare a string 
variable to hold the date, and 
a character variable to 
hold the user input.

‡ Write a message about the 
types of formats to the 
console.

Methods are members of an object or class that
implement a computation or action. You can
use methods to hold a section of code that

may be used more than one time. Methods are built
into classes using method declarations.

Many objects in the .NET Framework classes contain
useful methods. For example, the .NET Framework
DateTime class has several methods that can be used,
such as the ToLongDateString method, which
converts a Date or DateTime to a long version of a
Date (for example: Thursday, May 30, 2002).

Programmers also use methods to encapsulate
functionality. For example, you could represent a

printer as an object. One of the methods could be
PrintPage. This method could take in a parameter
that is a stream of data to be printed and could return
a value that indicates whether the data printed
successfully. Consider a Calculator object as
another example. This object could have several
methods like Add, Subtract, Multiply, and
Divide. The Subtract method could take in two
parameters that are integer data types and return an
integer. The Subtract method would contain
functionality that would take one parameter and
subtract the other parameter and return the result.

DECLARE AND USE METHODS

58

ASP.NET

DECLARE AND USE METHODS

043617-6 Ch03.F  9/26/01  9:40 AM  Page 58



° Read the input from the 
console.

· Call the 
GetFormattedDate 
function with the user input 
and put into the variable for 
the current date.

‚ Write the message about 
the current date to the 
console.

You have many methods to leverage from 
objects in the .NET Framework.

59

C# BASICS 3

TYPE THIS:

using System;   
public class ApplyNETFramework
{

public static void Main()
{

Console.WriteLine(System.DateTime.Now.ToLongTimeString());
}

}

RESULT:

output would be: 10:12:12 PM

CONTINUED

043617-6 Ch03.F  9/26/01  9:40 AM  Page 59



— Create the 
GetFormattedDate 
function, which returns a 
string.

± Declare a string 
variable to hold the return 
value.

¡ Create a case statement 
to handle the different types 
of formats.

Working in an object-oriented language, you
will find three important concepts:
properties, methods, and events. Methods

hold operations that can have 0 to many input
parameters and 0 to one return values. Methods
enable the developer to hide (encapsulate) the
difficulty of a coding task by placing complicated
sections of code in a method. If the signature of the
method (input parameters and return values) is well
thought out, the developer can change how he
implements the code and not affect the consumer of
that method. If the developer has to change the
signature of that method, the consumer of the
method will not function any more, although this

problem can be solved via overloaded functions.
A signature change includes any of the following:
adding or subtracting input parameters or return
values; changing the data type of an input parameter
or return value.

When you are new to ASP.NET development, you use
many methods that are available from the .NET
Framework. As you get comfortable with developing
in ASP.NET, you will find that you will start creating
your own custom methods. Taking this approach will
reduce the number of lines you will have to write in
your code and make the code itself easier to
maintain.

DECLARE AND USE METHODS

60

ASP.NET

DECLARE AND USE METHODS (CONTINUED)

043617-6 Ch03.F  9/26/01  9:40 AM  Page 60



DeclareUseMethods.cs - Notepad

™ Create the different cases 
for the user input, formatting 
the return variable 
appropriately.

£ Save as the class name.

Note: See the section “Write Your First 
C# Application,” earlier in this chapter, 
if you need more information on 
saving a file.

¢ Compile and run the 
program.

� The program displays the 
options for different dates and 
times and displays results for 
the current date and time.

61

A method has four possible signatures.

Example:
using System;

public class DeclareUseMethodsExtra
{

// Public operation that takes no parameters and has no return
public static void MySubRoutine()
{

// code goes here
}

// Public operation that takes parameters and has no return
public static void MySubRoutine(int intParam)
{

// code goes here
}

// Public operation that takes no parameters and has a return
public static string MySimpleFunction()
{

// code goes here
return “MyReturn”;

}

// Public operation that takes in parameters and has a return
public static int MyAddFunction(int intParam1, int intParam2)
{

return intParam1 + intParam2;
}

}

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:40 AM  Page 61



⁄ Open your text editor.

¤ Type using System; to 
import the System 
namespace and press Enter.

‹ Type the name of the class 
you want to create and press 
Enter.

› Type { }, placing the 
opening and closing curly 
braces on separate lines, to 
set off the body of the class.

ˇ Between the curly braces, 
create the Main function.

Á Create a new variable of 
type Implement 
ExceptionHandling.

‡ Use the try statement to 
create a new string 
variable set to null, and use 
this variable to call 
EvaluateString.

° Use the catch statement 
to write out the exception.

When programmatically working with errors,
you need to understand exception handling.
No matter how good a developer you are,

you cannot avoid runtime errors. For example,
suppose your program tries to read a file that does
not exist. How would you handle this? You would first
try to access the file and then, if there is a failure, you
would want to have code that runs if the error occurs.
If the error occurred, you may want to ask the user to
pick a new path for that file and then try again.

If you do not code for handling errors, your code
would either stop executing or would move on to the
next executable statement. Moving on to the next
statement is acceptable in some cases, but not all.

The exception handling in C# is performed by using
the keywords try and catch. The code that you
want to “try” goes in a block of code after the try
statement. After that try code block, you would put in
a catch statement. The code that you want to
execute in the event that an error occurs would go
into a block of code that is after the catch
statement.

IMPLEMENT EXCEPTION 
HANDLING

62

ASP.NET

IMPLEMENT EXCEPTION HANDLING

043617-6 Ch03.F  9/26/01  9:40 AM  Page 62



DeclareUseMethods.cs - Notepad

· Create a function called 
EvaluateString.

‚ Use this function to raise an 
ArgumentNullException 
error.

— Save as the class name.

Note: See page 35 for more 
information on saving a file.

± Compile and run the 
program.

� The program displays the 
error that was raised.

Exceptions can be thrown in two different ways. A 
throw statement can be executed programmatically 
or it can happen at runtime where the processing of 
the C# statement causes the error (like dividing by zero).
Below is a table of common exception classes:

63

C# BASICS 3

EXCEPTION DESCRIPTION

System.OutOfMemoryException Thrown when an attempt to allocate memory (via new) fails.

System.StackOverflowException Thrown when the execution stack is exhausted by having too
many pending method calls; typically indicative of very deep
or unbounded recursion.

System.NullReferenceException Thrown when a null reference is used in a way that causes
the referenced object to be required.

System.InvalidCastException Thrown when an explicit conversion from a base type or
interface to a derived type fails at runtime.

System.ArrayTypeMismatchException Thrown when a store into an array fails because the actual
type of the stored element is incompatible with the actual
type of the array.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an index that
is less than zero or outside the bounds of the array fails.

System.ArithmeticException A base class for exceptions that occur during arithmetic
operations, such as DivideByZeroException and
OverflowException.

043617-6 Ch03.F  9/26/01  9:41 AM  Page 63



⁄ Open the 
ConvertToWebPage 
Template.aspx template 
file from the CD-ROM.

¤ Open the console 
application source file, 
DeclareUseMethods.cs, 
from the CD-ROM.

‹ Copy the 
GetFormattedDate 
function from 
DeclareUseMethods.cs 
source file.

You can migrate code from a console application to
an ASP.NET Web Page. The coding is very similar,
but you need to adjust code that deals with the

user interface. With the console application, your user
interface is the command line. With the ASP.NET Web
page, your user interface is a Web browser.

You can reuse many parts of the console application.
In fact, except for the code pertaining to the user
interface, much of the code will remain the same. The
process for converting the console application is to
create a user interface in HTML that gathers

appropriate information. For example, you will use a
drop-down list box in this task to prompt the user for
the type of format in which they would like to see the
date.

Console applications are closer to a procedural style of
programming. The user interface is very simple, and
users do not have many ways to interact with the
program, except for command-line parameters. Moving
from console applications to ASP.NET applications, you
will need to understand how to use event handlers. To
learn more about event handlers, see page 32.

CONVERT A CONSOLE APPLICATION TO
AN ASP.NET WEB PAGE

64

ASP.NET

CONVERT A CONSOLE APPLICATION TO AN ASP.NET WEB PAGE

043617-6 Ch03.F  9/26/01  9:41 AM  Page 64



› Paste the 
GetFormattedDate 
function into the <SCRIPT> 
section of the ASP.NET Web 
page.

� Scroll down the page to 
view the 
SubmitBtn_Click 
function in the page, which 
calls the 
GetFormattedDate 
function.

� A Submit button calls the 
SubmitBtn_Click 
function.

ˇ Save the file and request 
from the Web server.

Á Select a date format.

‡ Click the Submit button.

� The date appears in the 
format selected.

Leverage the use of components when you write
a console application that eventually becomes an
ASP.NET application. When implementing your
application functionality, encapsulate logical
units of code behind methods in the classes that
make up the component. If you program in this
way, you will be able to reuse the code when
migrating to a new user interface (Windows
application or ASP.NET application). Also, if you
put your code into components, you will be able
to share these components with future or
existing applications.

You will typically not choose to write console
applications if you build a production application.
There are cases in which you would choose a
console application. Some examples of useful
console-type applications include testing out
programming syntax, building quick test harnesses,
building administrative applications, or building
debugging tools.

65

C# BASICS 3

043617-6 Ch03.F  9/26/01  9:41 AM  Page 65



ASP.NET

66

BASICS OF HTML SERVER CONTROLS

HTML server controls are essentially HTML elements
that the server can process. This processing can occur
before sending the Web page to the user and/or when
the page is posted back to the server. All HTML server
controls (also known as HTML controls) map directly to
an HTML element. Also, “the properties of” almost
every HTML control are identical to the corresponding
HTML element’s attribute.

HTML controls are defined in the
System.Web.UI.HtmlControls namespace. You can
create an HTML control in most cases simply by adding
the RUNAT="Server" attribute within the tag of the
HTML element. If you incorrectly set the RUNAT
attribute on the HTML element, you lose all server-side
processing capabilities. You want to give each HTML
control a unique ID attribute so you have a way to
reference the control in your server-side code.

You can set attributes for the HTML controls to
establish control properties and to handle events.
Property attributes configure how the control appears
and behaves as an HTML element on a Web page. In
most cases, the property attributes map directly to the
standard attributes on the HTML 4.0 element. For
example, the ID attribute on an HTML control renders
in the client’s browser as an ID attribute on the HTML
element, too. As for handling events, you distinguish
events as attributes on an HTML control to map an
HTML control’s event to a procedure that will process
the event. For example, when working with the
HTMLButton control, you can add an attribute

onServerClick to map to a function that is called
when the user clicks the button.

HTML server controls derived from the HtmlInput
abstract class need to be within an HtmlForm control.
For all HTML server controls, overlapping tags are not
allowed — you need to make sure that the HTML tags
are properly closed and cleanly nested.

The .NET Framework provides classes to handle the
most commonly used HTML elements. For HTML
elements that corresponding HTML controls, lacking
the HtmlGenericControl class. You can
programmatically read and write to attributes on the
HTML element and map events to server-side code.
Note that any attribute declared on an HTML server
control is added to the HtmlGenericControl’s
Attribute collection and can be manipulated
in server-side code. For example, with a <body
ID="Body" RUNAT="Server"> element, you can
programmatically attribute on a body tag change the
bgcolor.netframeworkoffers with the following
code:
Body.Attributes["bgcolor"] = "blue";).

All HTML controls are derived from the HtmlControl
abstract class. Within this abstract class, there are two
other abstract classes, HtmlContainerControl and
HtmlInputControl, which contain all HTML controls,
except for the HtmlImage class, which is derived
directly from the HtmlControl abstract class.

You can take standard HTML elements and
control these elements on your Web server with
HTML server controls. This gives you control

over attributes of these elements while processing
server-side code.

ASP.NET

INTRODUCTION TO 
HTML CONTROLS

053617-6 Ch04.F  9/26/01  9:41 AM  Page 66



WORK WITH HTML CONTROLS

All HTML Controls

On the HtmlControl abstract class, you can find the
following properties, which are commonly used across
all HTML controls.

Attributes (Read) — Collection of all attribute name
and value pairs expressed on a server control tag
within a selected ASP.NET page 

Disabled (Read/Write) — A value that indicates
whether the disabled attribute is included when the
browser renders an HTML control. Including this
attribute makes the control read-only.

Style (Read) — All Cascading Style Sheet (CSS)
properties applied to a specified HTML server control
in an .aspx file 

TagName (Read) — The element name of a tag
containing a RUNAT="Server" attribute

HTML Input Controls

HtmlInputControl derived controls map to the
standard HTML input elements that are part of an
HTML form. These HTML elements function without a
separate closing tag. They include a Type attribute that
defines the type of input control they render on a Web
page.

HtmlInputControl derived classes share the
following properties:

Name (Read/Write) — A unique identifier name for
the HtmlInputControl

Value (Read/Write) — The contents of an input
control 

Type (Read) — The type of HtmlInputControl

HTML Container Controls

HtmlContainerControl’s derived controls map to
HTML elements requiring opening and closing tags,
such as the <select>, <a>, <button>, and <form>
elements.

HtmlContainerControl’s derived classes share the
following common properties:

InnerHtml (Read/Write) — The HTML content
found between the opening and closing tags of the
specified HTML control 

InnerText (Read/Write) — All text between the
opening and closing tags of the specified HTML
control 

HTML Image Control

The HtmlImage server control is the only concrete
class derived directly from the HtmlControl abstract
class. The common properties for this control are:

Align (Read/Write) — The alignment of the image
relative to other Web page elements 

Alt (Read/Write) — The alternative caption that
the browser displays if an image is unavailable or
currently downloading to the user’s browser 

Border (Read/Write) — The width of a frame for
an image 

Height (Read/Write) — The height of the image 

Src (Read/Write) — The source of the image file to
display 

Width (Read/Write) — The width of the image

CLASSIFICATIONS OF HTML CONTROLS

67

4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 67



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user. 

› Add a form to the page and 
give the form an ID attribute 
and set the RUNAT attribute 
to "Server".

ˇ Add a button using the 
OnServerClick event to call the 
buttonContinue_OnClick 
function.

Á Add a <span> tag 
on the form to display 
a message to the user.

You can use the HTMLForm control to process
requests on the server to fire off events where
server-side code is executed, giving you the

ability to access information on the form and process
this information accordingly. Because your code is
running server-side, you have access to the entire set
of .NET Framework classes of running client-side, with
your code dependent on the user’s Web browser and
operating system. Running client-side script places
you are at the mercy of your user’s environment.
Problems may arise due to configuration issues and
limitations of the user’s machine or browser.

Employing an HTMLForm control is much like using an
ordinary HTML form. An HTMLForm control requires
you to add the RUNAT attribute to your form tag,
setting the value equal to Server. This value tells
ASP.NET that you want to use the HTMLForm control,
as opposed to an ordinary HTML form. For example,
you can use the HTMLForm control to fire off an event
on the server. You can then use this event to do a
many of things, such as collecting information from
the form, navigating to an appropriate page based on
form input, and displaying a message to the user by
using a <span> tag.

PROCESS REQUESTS TO THE SERVER

68

ASP.NET

PROCESS REQUESTS TO THE SERVER

053617-6 Ch04.F  9/26/01  9:41 AM  Page 68



� �Add the 

��������������:�����	1  

function between the �67��  

tags.	 �Set the  ���),$�

 

property of the ���
��  

tag on the form.
 �Save the file and request it 

from the Web server.Note: See pages 20 to 25 for 

instructions on saving a file to the 

Web server and then requesting 

the file using the IIS Admin. �Click the Continue 

button.� �A continue message 

appears.

When working with forms, you often useACTION and METHOD attributes. The ACTION
attribute tells the Web browser where to send
the form dat a. In most cases with ASP.NET, you
do not use this attribute, so by default the
browser posts to the page where the form is
located, enabling you to validate the form dat a
before sending the user to the next page or to
display a message on the page the user was
viewing. The METHOD attribute tells the Web

browser whether to send the form dat a to the
Web server via the URL in the query string (this
would be a GET) or through the HT TP Request

(this would be a POST). A <POST> allows you tosend more form dat a to the ser ver.

You can also set the DISABLED attribute. Thedefault value for this attribute is false , but you canchange it to true if you want a non-editableversion of the form. When you do this, the formcontrols appear grayed out.

69

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:419AM  Page 69



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the 
user. 

› Add a form to the page 
with a RUNAT attribute set to 
"Server". 

ˇ Add an HTMLInputText 
control for the name and the 
password and label them.

Á Add an 
HTMLInputButton on 
the page and have it call the 
SubmitBtn_Click function 
for the OnServerClick 
event.

‡ Add an HTMLSpan 
control on the page to display 
the results of the login.

You can use a form button to control actions that
take place on an HTML form, to submit a form
to the Web server, or to reset the contents of

the form. You can provide the capability to submit
a form by placing a submit button (<input
TYPE="submit">) on the form. To enable the
user to reset all controls on a form, you can use the
reset button (<input TYPE="reset">).

If you want to process a server-side HTMLForm, you
typically use the HTMLInput control. To ensure that
the HTMLInput control sends the form to the server,
set the TYPE attribute to Submit. You can write code

that will run only when the page is submitted to the
server by implementing the OnServerClick event.

You can create a simple login page to test for a
static password by adding a couple of
HTMLInputText controls on the page. See page 74
for more details. You can create two types of text
boxes: one for text and another for a password. After
creating these, you can place a <Submit> button and
a <Reset> button on the form. You implement both
of these buttons using the HTMLInputButton
control.

CREATE A FORM BUTTON 

70

ASP.NET

CREATE A FORM BUTTON 

053617-6 Ch04.F  9/26/01  9:41 AM  Page 70



° Create a SubmitBtn_Click 
function to check the password.

· Use an if statement 
to check the password and 
display the message using 
the HTMLSpan control on 
the page.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

— Type in a name and a 
correct password.

± Click the Submit button.

� A message appears 
notifying you if your 
password is correct. 

Note: Try entering an incorrect 
password.

71

WORK WITH HTML CONTROLS 4
For the convenience of your user, you can add a clear
button to the page that will clear out the contents of the
form. There is an input of type-Reset that reasets the form
to original values. This example clears all contents despite
the original value.

TYPE THIS:

void ResetBtn_Click(object Source, EventArgs e) {
inputName.Value = "";
inputPassword.Value = "";

}

Then, add an HTMLInputButton with the TYPE attribute set to Button. For
this control, use the OnServerClick event to call the ClearBtn_Click event.

<INPUT TYPE="Button" OnServerClick="ClearBtn_Click" RUNAT="Server">

RESULT:

A Web page that allows the user to click the Clear button to clear the form

053617-6 Ch04.F  9/26/01  9:41 AM  Page 71



ASP.NET

⁄ Open the 
WelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a Continue button 
with the HTMLButton 
control to the form and call the 
Button_OnClick function for 
the onServerClick event.

‹ Set the STYLE 
attribute for the button.

› Set the background 
color of the button for the 
onMouseOver event.

ˇ Set the background 
color for the button for 
the onMouseOut event.

Á Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and requesting the file 
using the IIS Admin.

‡ Position your mouse over 
the button.

� The button background 
color changes.

° Click Continue and move 
the mouse off the button.

� The button background 
color changes back.

� A continue message 
appears.

72

CREATE AN HTML 4.0 BUTTON 

If you are working with a user that has a Web
browser that supports the HTML 4.0 <button>
element, you can use the HTMLButton control to

create a button with some nice features. Note that the
<button> element is defined in the HTML 4.0
specification; therefore, it is supported only in
Microsoft Internet Explorer version 4.0 and above
(Other popular browsers like Navigator and Opera,
currently do not support the <button> element). With
HTML 4.0, you can use some client-side events to
customize the look, feel, and behavior of buttons.

An HTMLButton control needs to reside on an
HTMLForm control within your page to fully utilize this

control. As when adding other controls, give each of the
HTMLButton controls an ID and set the RUNAT
attribute equal to Server.

You can use the two DHTML events, onMouseOver
and onMouseOut, to set button properties. For
example, you can change a button’s background color
whenever a user positions the mouse cursor over the
button. This feature lets the user know that he or she
can click the button. You can use the onMouseOver
event to change the background color. To change the
background color back to the original setting when
the user moves the mouse cursor away from the
button, use the onMouseOut event.

CREATE AN HTML 4.0 BUTTON 

053617-6 Ch04.F  9/26/01  9:41 AM  Page 72



⁄ Open the 
WelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add an HTMLInputImage 
control to the form and call the 
Button_OnClick function.

‹ Set the SRC attribute for 
the button.

› Set the image for the 
onMouseOver event.

ˇ Set the image for the 
onMouseOut event.

Á Change the parameters 
on the Button_OnClick 
function from EventArgs 
to ImageClickEventArgs.

‡ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The light is red.

° Move your mouse over 
the button and click.

� The light changes to green 
and a continue message 
appears.

73

You can use an image as a form-submitting
button as well. If you target HTML
4.0 compatible Web browsers, you can also

employ the onMouseOver and onMouseOut events to
change the image dynamically.

The HTMLInputImage must be on an HTMLForm
control, on an ASP.NET page. As with adding other
Web controls, you must specify the ID attribute and
set the RUNAT attribute equal to Server. You may
also want to set the <SRC> attribute for the

HTMLInputImage control. This setting tells the Web
browser where to locate the image. For the SRC
attribute, specify the path to the image relative to the
root directory of your Web server.

You can use the onMouseOver and the onMouseOut
events to set the properties of your images. Using
these events, you can change the SRC of the image to
a new value. When the user moves the mouse cursor
off the image, you can change the image back to the
original setting by using the onMouseOut event.

CREATE A GRAPHICAL BUTTON 

WORK WITH HTML CONTROLS 4

CREATE A GRAPHICAL BUTTON 

053617-6 Ch04.F  9/26/01  9:41 AM  Page 73



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to 
the user. 

› Add an HTML form 
control to the page. 

ˇ Add HTMLInputText 
controls for the name and 
the password and label them.

Á Add an HTMLInputButton 
on the page and have it call the 
SubmitBtn_Click function 
for the OnServerClick event.

‡ Add an HTMLSpan 
control on the page to 
display the results of the 
login.

Atext box is a common control that is used on
forms for enabling users to enter text into a
form. You can use an ASP.NET page to process

your text boxes as server controls, enabling you to
work with the text box’s properties, such as the length
and type, in your code.

To indicate that the text boxes are HTMLInputText
controls rather than ordinary text boxes, add an ID
attribute and a RUNAT attribute set to Server and
make sure that it is on an HTMLForm control. You
should specify what type of text box it is. Two valid
text box types are Password and Text.

You can create a simple login page to test for a static
password. To do this, you can add a couple of
HTMLInputText controls to the page. The first
control lets the user enter a name and has the TYPE
property set to Text to indicate that it is an ordinary
text box. The second control has the TYPE set to
Password to specify that it is input for a password.
For security purposes the password text box displays
asterisks, rather than the characters you are typing.

REQUEST SINGLE LINE INPUT 

74

ASP.NET

REQUEST SINGLE LINE INPUT 

053617-6 Ch04.F  9/26/01  9:41 AM  Page 74



° Create a function called 
SubmitBtn_Click to check 
the password.

· Add an if statement 
to check the password and 
display the message using 
the HTMLSpan control on 
the page.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

— Type in a name and the 
incorrect password.

± Click the Submit button.

� A message appears 
notifying you if your 
password is correct.

You can create a read-only text box by setting
the Disabled property of the HTMLInputText
control to true.

Example:
Enter Name: <INPUT ID="inputName" TYPE="Text"
SIZE="40" RUNAT="Server" VALUE="Guest"
DISABLED="true">

You can programmatically hide the text boxes
from the user by setting the Visible property
of the HTMLInputText control equal to false.

Example:
Enter Name: <INPUT ID="inputName"
TYPE="Text"SIZE="40" RUNAT="Server"
VISIBLE="false">

You can limit the number of characters that a user
can type into a text box. The MAXLENGTH property
is used for this purpose.

Example:
Enter Name: <INPUT ID="inputName" TYPE="Text"
SIZE="40" RUNAT="Server" MAXLENGTH="40">

75

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 75



ASP.NET

⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code 
Templates directory.

¤ Add an HTMLTextArea 
control to the form and set the 
COLS and ROWS attributes.

‹ Add the code in the 
SubmitBtn_Click 
function to echo back 
the contents of the 
HTMLTextArea control.

› Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

ˇ Fill in a suggestion.

Á Click the Submit button.

� A message appears 
displaying the suggestion. 

76

REQUEST MULTIPLE LINE INPUT 

You can use the <textarea> tag to create input
boxes that have more than one row. This gives
the user more space to type input on the form.

You can implement this as an HTMLTextArea control
so that you can easily access the contents of the
control, as well as set the properties of the control.

An HTMLTextArea control needs to reside on an
HTMLForm control within your page to take full
advantage of this control. As with adding other
controls, you should give each of the HTMLTextArea
controls an ID and set the RUNAT attribute equal to
Server.

You can specify the number of columns and the
number of rows for the control to size it properly. Use
ROWS and COLS properties to modify the height and
width respectively. You can modify the text of the
HTMLTextArea by using the InnerHTML or
InnerText properties. Use InnerHTML if you desire
to format the text when you update the
HTMLTextArea.

You can gather suggestions from users by giving them
an HTMLTextArea control to fill in on a server form.
You should also add an HTMLInputButton and call a
function using that control’s onServerClick event.
The suggestions can be echoed back to the user by
setting the InnerHTML property of the <span> tag.

REQUEST MULTIPLE LINE INPUT

053617-6 Ch04.F  9/26/01  9:41 AM  Page 76



⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code Templates 
directory.

¤ Add an HTMLInputCheckBox 
control to the form and set the 
VALUE attribute.

‹ Add the code in the 
SubmitBtn_Click 
function to send an 
appropriate message 
back to the user.

› Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

ˇ Check the check box.

Á Click the Submit button.

� A message appears 
displaying the suggestion. 

77

Check boxes are convenient when you need to
have the user respond to a yes/no or true/false
question. The HTMLInputCheckBox control

gives you a server-side control to work with when you
need to ask these types of questions. The
HTMLInputCheckBox control is similar to the
HTMLInputRadioButton control, but is used more
often when you want the user to select zero to many
options from a list of options. For example, you could
have a registration form, and on that form you could
ask for one or more of the person’s hobbies by
providing check boxes. You should use the
HTMLInputRadioButton control when you want the
user to select only one option from a list of options.

You can initialize the check box to be either checked
or not checked. When the form is submitted, you can
see if the control was checked by looking at the
Checked property of the control. If the Checked
property is true, the user has checked the control.

You can set the VALUE attribute of the
HTMLInputCheckBox to either be a key or the actual
value of what the check box is representing. For
example, setting the VALUE attribute as Have more
goals to choose from displays this in the
message that is echoed back to the user.

REQUEST BOOLEAN INPUT 

WORK WITH HTML CONTROLS

REQUEST BOOLEAN INPUT

4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 77



ASP.NET

⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code 
Templates directory.

¤ Add multiple 
HTMLInputRadioButton 
controls to the form and set 
NAME attributes.

‹ Add the code in the 
SubmitBtn_Click 
function to send an 
appropriate message 
back to the user.

› Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

ˇ Check the first radio 
button.

Á Click the Submit button.

� A message appears 
displaying the suggestion. 

78

REQUEST A SELECTION FROM A GROUP

Sometimes you may want to have a user select a
single option from a group of choices. In these
cases, you can use the <input type="radio">

tag to create a radio button. The HTML control in
ASP.NET that represents this HTML is the
HTMLInputRadioButton control. By using the
HTML control, you can now work with it on the
server.

After you create your HTMLForm, you can add a series
of multiple HTMLInputRadioButton controls to
your HTMLForm. Each control must have a unique
value for the ID attribute, but the NAME attribute for a
group of controls should be the same. By doing this,

the user can select only one option from the group.
When you want to inspect information on a unique
member of the radio button group, you can access it
by the ordinal reference in the array created
(radio[0].checked checks the first member in the
radio button array).

You can set the radio button that is initially selected
by setting the CHECKED attribute to true. If this is
not set, none of the radio buttons are selected until
the user clicks a radio button. You can ask questions
which have multiple choices for an answer and force
the user into selecting one of the options by using the
HTMLInputRadioButton control.

REQUEST A SELECTION FROM A GROUP

053617-6 Ch04.F  9/26/01  9:41 AM  Page 78



⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code 
Templates directory.

¤ Add an HTMLSelect control 
and a number of options to the 
form.

‹ Add the code in the 
SubmitBtn_Click 
function to send an 
appropriate message 
back to the user.

› Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

ˇ Click     and select the 
first option from the drop-
down list.

Á Click the Submit button.

� A message appears 
displaying the suggestion. 

79

Another option for allowing a user to select a
single option from a group of options is using
the <select> tag. This tag creates a drop-

down list box from which the user can select a single
value. You can use the HTMLSelect control to
implement the <select> tag. The <select> tag is
also useful when you have a large number of options
and little space to display the options.

To fully leverage this control, you could use the data-
binding capabilities. For example, if you have an array
of values, you can bind to this array by using the

Datasource property and the DataBind method of
the HTMLSelect control.

When creating the HTMLSelect control
programmatically, you can use the SELECTEDINDEX
attribute to specify which option the user sees when
the list box appears. If this is not set, the first option
displays. If you want to enable users to select more
that one item from the list, you can include the
controls MULTIPLE attribute and set it equal to true.

Like the HTMLInputRadioButton control, you can
ask questions which have multiple options for answers
and allow only one of the options to be chosen.

REQUEST INPUT FROM A 
DROP-DOWN LIST

WORK WITH HTML CONTROLS

REQUEST INPUT FROM A DROP-DOWN LIST

4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 79



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user.

› Add a form to the page 
with a RUNAT attribute set to 
"Server". 

ˇ Place an anchor with 
a RUNAT attribute set to 
"Server" on the page for 
the user to click.

You can work with the anchor tag, <a>,
programmatically by using the HTMLAnchor
control. This control gives you the ability to both

set and get information from the <a> tags that you
create on your ASP.NET pages. When using the <a>
tag as an HTML server control, it must have an
opening and closing tag.

The HREF attribute for the anchor tag is the URL
that the user gets sent to when clicking the anchor
tag. The anchor tag surrounds the text, or HTML, that
will be hyperlinked in the user’s Web browser. To
build your anchor tags dynamically, you can use the
combination of a data repeater and data binding to

create parts of the anchor tag. To properly configure a
bound anchor tag, you should bind the HREF
attribute and the text between the <a> and </a>
tags.

While the page is loading, you can set the properties
for an HTMLAnchor control. For example, you can set
the HREF property to equal the URL that you want
the user to navigate upon clicking the link. You can
also set the InnerText property of the HTMLAnchor
control. This text is what the user clicks to request
another resource on the Web server.

CREATE A LINK 

80

ASP.NET

CREATE A LINK

053617-6 Ch04.F  9/26/01  9:41 AM  Page 80



Á Add the Page_Load 
function between the 
<HEAD> tags.

‡ Set the HREF property 
of the anchor on the form.

° Set the InnerText 
property of the anchor on 
the form.

· Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The anchor appears 
properly.

You can override the redirect of the
HTMLAnchor control by implementing the
ServerClick event.

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void aWebsite_OnClick(object Source,
EventArgs e) {

aWebsite.InnerText="You clicked?";

}

</SCRIPT>

<A ID="aWebsite" RUNAT="Server"
HREF="http://www.mylifetimegoals.com"
onServerClick="aWebsite_OnClick">

Go To Home Page for My Lifetime Goals Website

</A>

You can set the attributes for the anchor tag in the
HTML as well.

Example:
<A ID="aWebsite" RUNAT="Server"
HREF="http://www.mylifetimegoals.com">

Go To Home Page for My Lifetime Goals Website

</A>

81

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 81



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user. 

› Add a form to the page 
with a RUNAT attribute set to 
"Server". 

ˇ Add an HTMLSelect 
control on the page so the 
user can select a goal type.

Á Add a button on the page 
for the user to click and use the 
OnServerClick event to call 
the SubmitButton_Click 
function.

‡ Add an Image control on 
the page and set the source for 
the image control.

You can use the HTMLImage control to have
programmatic control over the images on your
Web pages. You can use the control to change

the properties of the image. For example, you can
dynamically change the source of the image so that a
graphic can be replaced with another graphic.

You can use the HTMLImage control on your ASP.NET
Web pages by adding the ID and by setting the RUNAT
attribute to Server on the <img> tag. You need to
set the SRC attribute that tells the Web browser the
location of the image to load. You could do this in the
Page_Load event by setting the property

programmatically, or you could set the property by
adding the SRC attribute in the <image> tag.

There are a number of other attributes that you can
set for the HTMLImage control such as the image
border size, the width and height of the image, and
the alignment of the image. For example, you can
have a list of graphics in a drop-down list box. When
the user selects a graphic by name and clicks the
Apply button, the browser updates the graphic on
the page. The initial image that appears is set in the
<img> tag when designing the page.

RENDER AN IMAGE 

82

ASP.NET

RENDER AN IMAGE

053617-6 Ch04.F  9/26/01  9:41 AM  Page 82



° Add the 
SubmitButton_Click 
function.

· Set the InnerHTML 
property of the span on the 
form in the Sub.

‚ Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The Travel graphic 
appears.

— Click     and select 
Educational as the goal type.

± Click the Apply button.

� The Educational graphic 
appears.

You can use the ALT property to display a
message when the user places the mouse pointer
over the image.
<FORM RUNAT="Server">

<IMG ID="imageGoalImages"
SRC="/visualaspdotnet/Chapter04/Code/images/tr
avel.gif" 

ALT="Picture of a road and a distant planet
earth" RUNAT="Server"/>

</FORM>

To change the size of the image, you can set the
WIDTH and HEIGHT properties of the image.

Example:
<FORM RUNAT="Server">

<IMG ID="imageGoalImages"
SRC="/visualaspdotnet/Chapter04/Code/images/tr
avel.gif" 

WIDTH="100" HEIGHT="100" RUNAT="Server"/>

</FORM>

You can use the BORDER property to display a
border around the image by setting it to a value
greater than zero. The default setting of zero
displays no border around the image.

Example:
<FORM RUNAT="Server">

<IMG ID="imageGoalImages"
SRC="/visualaspdotnet/Chapter04/Code/images/
travel.gif" 

BORDER="2" RUNAT="Server"/>

</FORM>

83

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 83



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a form to the page. 

ˇ Add a table to the page 
and set the BORDER attribute 
equal to 1.

Á Add the Page_Load 
function.

‡ Create and initialize a 
variable to be a counter for 
the rows.

° Create and initialize a 
variable for the number of 
cells and a variable for the 
number of rows.

· Create and initialize an 
array for the contents of the 
table.

You can use the HTMLTable control to
dynamically create and modify tables in your
ASP pages. You can also use the HTMLTable

control to set properties for the table, including the
background color, cell spacing and padding, and
border size and color.

You can create the table in one of the events like the
page_load event, before the page is generated like
the Page_Load event. You can place a <table> tag
on your page like you would do with an ordinary
HTML or ASP page. To create an HTMLTable control
on your ASP.NET page, you need to add the ID and
RUNAT attributes to the table. As with other HTML
controls, you need to set the RUNAT attribute to
Server.

When working with the HTMLTable control, you
need to work with a couple of other controls,
including the object that represents a cell, the
HTMLTableCell control, and an object that
represents a row, the HTMLTableRow control. It is
best to work with these objects as collections. To do
this, you can use their respective collection objects,
the HTMLTableCellCollection and
HTMLTableRowCollection objects.

You can build out a table from an array while the
page is loading. You can use the HTMLTable,
HTMLTableCell, and HTMLTableRow controls to
accomplish this.

BUILD A TABLE 

84

ASP.NET

BUILD A TABLE

053617-6 Ch04.F  9/26/01  9:41 AM  Page 84



‚ Process each row 
with a for loop. 

— Create a new 
HTMLTableRow for 
each row.

± Process each cell in 
the row with a for loop. 

¡ Create a new 
HTMLTableCell for each 
cell and add the value in 
the array to the cell.

™ Add the cell to the row.

£ Add the row to the table.

¢ Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� A table appears with the 
contents of your array.

You can specify the cell padding, cell spacing,
border color, and background color for the table.

Example:
<FORM RUNAT="Server">

<TABLE ID="tableExample" Border="1"
CellPadding="5" CellSpacing="0"
BorderColor="Black" BgColor="#C0C0C0"
RUNAT="Server" />

</FORM>

You can specify a number of properties for the
table cells by  setting the horizontal and vertical
alignment of the cells.

Example:
HtmlTableCell cell = new HtmlTableCell();

cell.Align="Right";

cell.VAlign="Top";

You can use table row properties to format a table
with alternating colors for each row.

Example:
HtmlTableRow row = new HtmlTableRow();

if (rowcount%2 == 1)

row.BgColor="#C0C0C0"; 

rowcount++; 

85

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 85



⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code 
Templates directory.

¤ Add an HTMLTextBox 
control to the form.

‹ Add an 
HTMLInputHidden 
control to the form.

› Set the hidden value of 
the variable to what was 
entered into the text box.

You can store information on your forms with a
hidden variable. Users cannot see the data in
hidden variables. Because users can view the

source of the HTML to see the hidden variables, you
should not use this technique with sensitive or secure
information. Also, because the data is being posted
back and forth between the Web browser and the
Web server, you do not want to place too much
information in hidden variables.

HTMLInputHidden controls are typically used for
retaining state from one page to the next page. You
can find that sometimes storing data in

HTMLInputHidden controls is a good alternative to
managing state in Session variables. See page 226
for details on managing state with Session variables.
You should store important state into
HTMLInputHidden controls when the user clicks the
submit button on the form.

For example, you can create a page that posts back to
itself and simply moves the data from the text box
and puts it into a hidden variable. When this is done,
you can check for the hidden variable by viewing the
source for the Web page.

STORE HIDDEN INFORMATION
ON A FORM 

86

ASP.NET

STORE HIDDEN INFORMATION ON A FORM

053617-6 Ch04.F  9/26/01  9:41 AM  Page 86



ˇ Save the file and request it 
from the Web server.

� The ASP.NET Web page 
appears. 

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

Á Type in a suggestion.

‡ Click the Submit button.

° Click View ➪ Source from 
the menu in Internet Explorer.

� The source for the 
page appears and the 
hiddenSuggestions 
tag contains the suggestion.

Source

When you viewed the source, you
may have noticed that there was
another hidden variable on the
form that you did not create. This
hidden variable is used for state
information for controls on the
form. ASP.NET automatically
creates this variable.

If you ever want to
programmatically remove an
input tag from the page that the
user receives, you can set the
Visibility property equal to
false. This will remove the tag
from the response to the user,
even though the .aspx file has
an <input> tag marked up in
the document.

87

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 87



⁄ Open the 
SuggestionsTemplate.aspx 
template from the Code 
Templates directory.

¤ Add the ENCTYPE 
attribute and specify that 
the form will be posting 
multipart form data.

‹ Add a message and an 
HTMLInputFile control 
to the form.

› In the SubmitBtn_Click 
function, check to make sure 
there is a filename entered.

ˇ Post the file up to the Web 
server and set the message for 
the <SPAN> tag.

Á Catch the exception if 
the post was unsuccessful 
and set the message to 
reflect an error.

People who visit your Web sites can upload files
to your Web server using the HTMLInputFile
control. They can choose a local file, and then

have that file uploaded to the Web server. For some
applications, having the user upload a file of a
predetermined format is a more convenient way of
inputting data, as opposed to having the user type all
of the information into a form.

To be able to send a file, you are required to modify
the HTMLForm control to contain the attribute
name/value pair of ENCTYPE="multipart/
form-data". This attribute instructs the Web

browser that one of the controls is a file that needs to
be uploaded to the server. On the form, you can then
add an HTMLInputFile control by using the
<input> tag and setting the attribute’s
TYPE="File" and RUNAT="Server".

After a user selects a file by using the HTMLInputFile
control, the user will submit the form to the server,
sending the file up with the HTTP request. To place
the file on the server’s file system, you need to write
some code that will check for the file, save the file if
available, and do some exception handling if there is
a problem.

UPLOAD FILES 

88

ASP.NET

UPLOAD FILES

053617-6 Ch04.F  9/26/01  9:41 AM  Page 88



‡ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

° Click the Browse button.

� The Choose file dialog box 
appears. 

· Select a file to upload to 
the Web server.

‚ Click Open.

� The path and filename 
appear in the text box.

— Click the Submit button.

� A message appears 
notifying you that the file 
successfully uploaded to the 
Web server.

Because there is a chance that users could overwrite files on the 
Web server when uploading files, you may want to make sure the 
names of files are unique. One way of doing this is by using the System.
Guid class. The following modifications to the SubmitBtn_Click
function would save files to the Temporary directory using a GUID,
which stands for a Globally Unique Identifier. See the complete source 
code on the CD-ROM, Chapter04\Code\HTMLInputFile_ai.aspz.

<SCRIPT LANGUAGE="C#" RUNAT="Server">

void SubmitBtn_Click(object Source, EventArgs e) {

if (fileSuggestions.PostedFile != null) {

string stringFileName = System.Guid.NewGuid().ToString();

try {

fileSuggestions.PostedFile.SaveAs("c:\\temp\\" + stringFileName + ".txt");

spanMessage.InnerHtml = "File uploaded successfully to " + 

"c:\\temp\\" + stringFileName + ".txt";

}

catch (Exception exc) {

spanMessage.InnerHtml = "Error saving file" +                

"c:\\temp\\" + stringFileName + ".txt" + exc.ToString();

}

}

}

89

WORK WITH HTML CONTROLS 4

053617-6 Ch04.F  9/26/01  9:41 AM  Page 89



ASP.NET has provided expanded capabilities over
the HTML server controls with the Web server
controls. There is overlap in coverage for these

controls, but the way you program with these controls
is unified across these controls.

INTRODUCTION TO WEB CONTROLS

ASP.NET

90

Basics of Web Form Controls

Web server controls are a close cousin to the HTML
server controls covered in Chapter 4. At first glance, you
may not understand why Web form controls (also
known as Web controls) exist and you may get the two
confused. Just like HTML controls, Web controls are
HTML elements that can be processed on the server.
This processing can occur before sending the Web page
to the user and/or when the page is posted back to the
server. Unlike HTML controls, Web controls do not
always map directly to an HTML element. Also, a Web
control’s properties are not identical to the
representative HTML element’s attribute.

Seeing the high-level differences and similarities between
Web server controls and HTML server controls
(especially the overlap of representation for HTML
elements), you should ask, “Why Web controls?” The
answer is “uniformity and ease of use.” Web server
controls use consistent naming conventions and
programming models across the controls in the
namespace for Web controls. The Web controls wrap
common HTML elements and give a consistent interface
(hiding the programmers from the inconsistencies that
cause a longer learning curve for Web development).

Web controls are defined in the
System.Web.UI.WebControls namespace. Web
forms have a slightly different convention than HTML

controls. Web controls all have the ASP namespace
prefix in front of every control in the
System.Web.UI.WebControls namespace. Like
an HTML control, each tag needs to contain the
RUNAT="Server" attribute within it. You also want
to give each Web control a unique ID attribute, so that
you have a way to reference the control in your server-
side code.

You can set attributes for the Web controls to set
properties of the control and handle events. Property
attributes configure how the control will appear and
behave as an HTML element on a Web page. As for
handling events, you mark up events as attributes on a
Web control. This gives you the ability to map a Web
control’s event to a procedure that will process the
event. For example, when working with the
ASP:ImageButton control, you can add an attribute
onServerClick to map to a function that is called
when the user clicks the button.

When working with Web controls, you may find the
syntax foreign if you have not previously worked with
XML. The requirement for the notation is similar to
building well-formed XML documents (like closing all
tags). For all HTML server controls, you should make
sure that the HTML tags are properly closed and cleanly
nested (overlapping tags are not allowed).

Working with Web Controls
The System.Web.UI.WebControls namespace has
a few controls that enable you to have better control
over your HTML page display. Because you can
systematically create many of these controls when the
page is loading, you can work with the
ASP:Placeholder control to specify where on the
Web page the controls should be placed. Another feature
that controls the layout of a Web page is the
ASP:Panel control. This control acts as a container for
other controls and can be shown and hidden using code.

Classifications of Web Controls
Web controls overlap with the HTML controls by
representing many of the same HTML elements that
are available with HTML controls, but Web controls
also have a list of very rich controls like the
ASP:Calendar control. These rich controls are
usually made up of many HTML elements that can
collectively render the rich control. There are many
Web controls to choose from and they can be classified
as Basic, Rich, List, Data List, and Validation controls. The
following tables summarize these controls:

063617-6 Ch05.F  9/26/01  9:41 AM  Page 90



WORK WITH WEB CONTROLS

91

List Web Controls

CLASS BRIEF DESCRIPTION

CheckBoxList Multiselection check box
group.

DropDownList Drop-down list which
allows the user to select
a single item.

ListBox List box control that
allows single or multiple
item selection.

RadioButtonList List control that
encapsulates
a group of radio button
controls.

Data List Web Controls

CLASS BRIEF DESCRIPTION

DataGrid Data-bound list control that displays the
items from a data source in a table.

DataList Data-bound list control that displays
items using templates.

Rich Web Controls

CLASS BRIEF DESCRIPTION

AdRotator Displays an advertisement banner on a
Web page.

Calendar Displays a single month calendar that
enables the user to select dates and
move to the next or previous month.

Basic Web Controls
CLASS BRIEF DESCRIPTION HTML ELEMENT(S) CLASS
CLASS DESCRIPTION HTML EQUIVALENT

Button Push button control. <button></button>

CheckBox Check box that enables the user to select <input type="checkbox"/>
a true or false condition.

RadioButton Radio button control (derived from <input type="radio"/>
CheckBox class).

HyperLink Hyperlink used to link to another resource. <a></a>

Image Image. <img></img>

ImageButton Image that responds to mouse clicks <input type="image"/>
(derived from Image).

Label Label control. <span></span>

LinkButton Displays a hyperlink style button control <a><img/></a>
on a Web page.

Panel Represents a control that acts as a container <div></div>
for other controls.

Table Constructs a table and defines its properties. <table></table>

TableCell Represents a cell in a Table control. <td></td>

TableRow Represents a row in a Table control. <tr></tr>

TextBox Constructs a text box and defines its properties. <input type="text"/> or
<input type="password"/>
or <textarea></textarea>

5

WEB CONTROLS

063617-6 Ch05.F  9/26/01  9:41 AM  Page 91



⁄ Open the 
WebWelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a Button Web 
control on the page for the 
user to click.

‹ Set the TEXT attribute 
equal to Continue.

› Set an initial style for the 
button.

You can place a control on your Web forms for
users to click in order to submit a form to the
Web server for processing. Developers use

button controls most frequently for this purpose. This
chapter also looks at the LinkButton Web control
and the ImageButton control, which you can use
for the same purpose.

Buttons are the natural choice for a control that
needs to submit form data back to a server. The
ASP:Button control, <ASP:BUTTON
ID="cmdButton" TEXT="Continue"
RUNAT="Server" />, generates an HTML Input
Submit Button tag, <input type="submit"
name="cmdButton" value="Continue"

id="cmdButton" />, in the client’s browser. With
this Web server control, you have all the capabilites of
the standard HTML input submit button plus the
extended properties and state management that is
avaliable for server controls.

This section demonstrates how to create a form that
uses the Button Web control to forward users to the
second step in a process. This section uses client-side
code to create a rollover behavior for the button.
When the user clicks the button, the browser sends
a message letting the user know the process is
continuing to the next step. At this point, you can
redirect the user to the next page in the process.

CREATE A BUTTON FOR POSTING DATA 

92

ASP.NET

CREATE A BUTTON FOR POSTING DATA

063617-6 Ch05.F  9/26/01  9:41 AM  Page 92



ˇ Add the code for the 
onMouseOver event to set 
the background color of the 
button to silver.

Á Add the code for the 
onMouseOut event to set the 
background color for the 
button back to white.

‡ Add the onClick event 
to call the 
Button_OnClick function.

° Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting the 
file using the IIS Admin.

· Click the Continue button.

� A message appears. 

The Button Web control has a couple of additional properties that you can
use to handle some of the programming problems you have with standard
HTML 4.0 Buttons. If you have more than one button, the CommandName
and Argument are useful attributes that can store information that is
associated with the button and can be used in the event handler.

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void Button_OnClick(object Source, EventArgs e) 

{

labelMessage.Text="You are continuing to Step 2..." 

+ "</BR>" + "Your Command Name was " 

+ buttonContinue.CommandName + ".</BR>" +

"Your Command Argument was " 

+ buttonContinue.CommandArgument + ".</BR>";

}

</SCRIPT>

<ASP:BUTTON ID="buttonContinue" 

TEXT="Continue"

STYLE="height=30;width:100" 

onMouseOver="this.style.backgroundColor='Silver'" 

onMouseOut="this.style.backgroundColor='White'" 

onClick="Button_OnClick" 

CommandName="Move" 

CommandArgument="Homepage"

RUNAT="Server"/>

93

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:41 AM  Page 93



⁄ Open the 
WebWelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a LinkButton Web 
control to the page and have 
it call the Button_OnClick 
when the onClick event is 
fired.

‹ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

› Click the link.

� A message appears. 

Like the Button Web control, you can use the
LinkButton Web control to give your users a
way to submit forms. This control looks like a

normal hyperlink that a user can click, but it gives
you the ability to process the form data by calling a
subroutine when the onclick event is detected. This
subroutine will run before the user is sent to the page
designated in the link.

The LinkButton Web control takes an anchor tag,
<a>, and extends its capabilities to function like
an HTML input submit button. ASP 3.0 requires
programmers to complete extra work to take anchor
tags and enable them to submit forms. In ASP.NET,
this capability is built in.

The LinkButton Web control resides on a server
form on your ASP.NET page. The LinkButton
control is created with the <ASP:LINKBUTTON> tag.
Remember that you need to add an ID attribute and
set the RUNAT attribute to 'Server'. To handle the
event when the user clicks the link, you should add an
attribute for the onClick event. For the function that
you call in the onClick event, create the code that
processes the form data. When you finish processing
the form, you can redirect the user to another page.

You can use the LinkButton control on a page that
lets the user move to a second step in a process. To
do this, you must open a template file and declare the
LinkButton control and set the appropriate
attributes and event handlers.

CREATE A HYPERLINKED BUTTON 

94

ASP.NET

CREATE A HYPERLINKED BUTTON

063617-6 Ch05.F  9/26/01  9:41 AM  Page 94



⁄ Open the 
WebWelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a ImageButton Web 
control to the page.

‹ Set the initial value for the 
image.

› Call the 
Button_OnClick when the 
onClick event is fired for 
the ImageButton Web 
control.

ˇ Add the onMouseOver 
and onMouseOut event 
handlers to create the 
rollover effect.

Á Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� A red light appears. 

‡ Position your mouse over 
the stoplight and click.

� A green light appears with 
a continuing message.

95

WORK WITH WEB CONTROLS

You can use an image for a button on a form to
create an animated button. You can do this if
you use an ImageButton Web control in

combination with some client-side code to create a
rollover effect.

The ImageButton Web control will reside on a
server form on your ASP.NET page. The
ImageButton control is created with the
<ASP:IMAGEBUTTON/> tag. As with other HTML and
Web controls, set the RUNAT="Server" attribute in
the tag. To set the image for the control, set the
IMAGEURL to the path and the filename of the image
that you wish to display. To create a rollover effect,

add the onMouseOver and onMouseOut event
handlers. Set onMouseOver to the path and
filename of the image you want to display when the
user puts their mouse on the image. You should use
the onMouseOut event to set the image back to the
original image path and filename when the user
moves the mouse off the image.

The result of using an ImageButton Web control on
a form will generate an <input type="image">
tag in the user’s browser. This Web control addresses
a common Web programming need, the ability to use
an image as a button.

CREATE A GRAPHICAL BUTTON 

5

CREATE A GRAPHICAL BUTTON

063617-6 Ch05.F  9/26/01  9:41 AM  Page 95



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Type a heading for the 
page.

‹ Type a message to the user. 

› Type a Server form to the 
page.

ˇ Add a Button Web 
control that calls the 
SubmitBtn_Click for the 
onClick event.

Á Add a Label control for 
the message.

‡ Add a single-line text box 
and set the WIDTH attribute 
to 200 pixels.

° Add a password and set 
the WIDTH attribute to 200 
pixels.

You can use the TextBox Web control to enable
a user to type information into a form. Users can
type in information such as text, numbers, and

dates. You can work with a couple different types of
text boxes, including a single-line text box, a multi-
line text box, and a password text box.

The TextBox Web control resides on a server form
on your ASP.NET page. You can create the TextBox
control with the <ASP: TEXTBOX /> tag. As with
other HTML and Web controls, set the
RUNAT="Server" attribute in the tag. The type of
text box is specified by setting the TEXTMODE
attribute. The values for TEXTMODE are
SingleLine, Multiline, and Password.

You can create a simple login page to test for a static
password. To do this, first add a single-line text box
for the user to type his or her login name. Then, add a
password text box. To enable users to submit the
form, you can add a button which calls a server-side
function. In that function, you can check what the
user entered in the password box against a value.
Depending upon success or failure of the password,
you can format an appropriate message to display
using a label on the form.

REQUEST TEXT INPUT 

96

ASP.NET

REQUEST TEXT INPUT

063617-6 Ch05.F  9/26/01  9:41 AM  Page 96



· Create a function called 
SubmitBtn_Click to 
check the password.

‚ Add an if statement to 
check the password and 
display the message using the 
Label Web control on the 
page.

— Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

± Type in a name and a 
correct password.

¡ Click the Submit button.

� A message appears 
notifying you that the 
password is correct.

You can create a text box that is read only by
setting the Disabled attribute of the TextBox
Web control to True.

Example:
Enter Name: <ASP:TEXTBOX ID="inputName" 
TEXTMODE="SingleLine" TEXT="" WIDTH="200px" 
RUNAT="Server" DISABLED="True"/>

You can programmatically hide the text boxes
from the user by setting the Visible attribute
of the TextBox Web control equal to False.

Example:
Enter Name: <ASP:TEXTBOX ID="inputName"
TEXTMODE="SingleLine" TEXT="" WIDTH="200px"
RUNAT="Server" VISIBLE="False"/>

You can limit the number of characters that a user
can type into a textbox. with the MAXLENGTH
attribute.

Example:
Enter Name: <ASP:TEXTBOX ID="inputName"
TEXTMODE="SingleLine" TEXT="" WIDTH="200px"
RUNAT="Server" MAXLENGTH="40"/>

You can create a multiple line textbox by setting the
TEXTMODE attribute to MultiLine.

Example:
Enter Name: <ASP:TEXTBOX ID="inputName"
TEXTMODE="MultiLine" TEXT="" WIDTH="200px"
RUNAT="Server" MAXLENGTH="40"/>

97

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:41 AM  Page 97



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Type a heading for the 
page.

‹ Type a message to the 
user.

› Add a server form to the 
page.

ˇ Add a Button Web 
control that calls the 
SubmitBtn_Click for the 
onClick event.

Á Add a Label control for 
the message.

‡ Add a CheckBox Web 
server control.

Some Web page form questions that you ask your
users require a yes/no or true/false response. For
these types of responses, you can use the

CheckBox Web server control. This control functions
similarly to the HTMLInputCheckBox HTML server
control.

The CheckBox Web control will reside on a server
form on your ASP.NET page. The CheckBox control is
created with the <ASP: CHECKBOX > tag. You need
an ID attribute to give the control a name, which is
how you reference it in code. As with other Web
server controls, set the RUNAT attribute to Server.

Use the TEXT attribute to set what is displayed to
users for that check box. To process the check box,
you should use the Checked property to see
whether it is set to true. If set to true, that means
that the user clicked the check box.

You can use multiple check boxes on one Web form.
In this case of multiple check boxes, you can use the
CheckBoxList Web server control. For most cases,
you will create a multi selection check box group
dynamically by binding the control to a data source.
See page 128 for how controls are data bound.

REQUEST BOOLEAN INPUT

98

ASP.NET

REQUEST BOOLEAN INPUT

063617-6 Ch05.F  9/26/01  9:41 AM  Page 98



° Create a function called 
SubmitBtn_Click to 
check the password.

· Add an if statement to 
check whether the control 
was checked and set the 
appropriate message.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

— Click to select the check 
box.

± Click the Submit button.

� The suggestion echoes 
back.

You can use the CheckBoxList Web server
control for working with multiple check boxes.

Example:
<FORM RUNAT="Server">

<P/>

<ASP:CHECKBOXLIST ID="checkboxlistSuggestions"
RUNAT="Server">

<ASP:LISTITEM>Have more goals to choose
from.</ASP:LISTITEM>

<ASP:LISTITEM>Have more goal
categories.</ASP:LISTITEM>

<ASP:LISTITEM>Make the goal setting wizard
easier.</ASP:LISTITEM>

</ASP:CHECKBOXLIST>

<P/>

<ASP:BUTTON TEXT="Submit"
OnClick="SubmitBtn_Click" RUNAT="Server"/>

<P/>

<ASP:LABEL ID="labelMessage" RUNAT="SERVER"/>

</FORM>

To respond to a Web form that contains multiple
check boxes, you can use the event handler code.

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void SubmitBtn_Click(object Source,
EventArgs e) {

String sMessage = "";

for (int i=0; i <
checkboxlistSuggestions.Items.Count; i++) {

if ( checkboxlistSuggestions.
Items[ i ].Selected ) {

sMessage = sMessage +
checkboxlistSuggestions.Items[i].Text;

sMessage = sMessage + "<BR />";

}  

}     

if (sMessage != "") {

labelMessage.Text ="Your suggestions"
+ "are...<BR />" + sMessage;

}

else {

labelMessage.Text = "You have no
suggestions.";

}

}

</SCRIPT>

99

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:41 AM  Page 99



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Type a heading for the 
page.

‹ Type a message to the 
user.

› Add a server form to the 
page.

ˇ Add a Button Web 
control that calls the 
SubmitBtn_Click for the 
onClick event.

Á Add a Label control for 
the message.

‡ Add a RadioButton 
Web server control for each 
of the radio button options 
and set the GROUPNAME 
attribute for the controls to be 
the same so they are in a 
group.

You can use radio buttons to have a user select a
single option from a group of choices. The
RadioButton control functions similarly to the

HTMLRadioButton server control.

To employ the RadioButton Web server control on
your server form, you must first declare a
RadioButton Web server control with the
<ASP:RadioButton RUNAT="Server"> tag. Then,
you must give each radio control button that you
want a unique ID attribute. To associate a group of
radio buttons, set the GROUPNAME attribute to be the
same for all controls in the group. You can also
specify which of the radio buttons is checked when

the user requests the page. You can do this by setting
the CHECKED attribute for the radio button to True.

Radio buttons are typically implemented in groups of
two or more, where you force the user to choose one
option out of a list of options. To conveniently work
with a group of radio control buttons, you can use the
RadioButtonList Web server control.

In this example, you are asking a question that
requires only one answer from a group of answers. To
do this, you create a form with multiple
RadioButton Web server controls in the same
group. When the user submits the form, the Checked
property of the controls formats a message.

REQUEST A SELECTION FROM A GROUP

100

ASP.NET

REQUEST A SELECTION FROM A GROUP

063617-6 Ch05.F  9/26/01  9:41 AM  Page 100



° Create a function called 
SubmitBtn_Click to 
check the suggestion 
selected.

· Add an if statement to 
check whether the control 
was checked and send the 
appropriate message.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

— Click to select the first 
radio button.

± Click the Submit button.

� The suggestion echoes 
back.

You can use the RadioButtonList Web server
control for working with multilple RadioButton
Web server controls.

Example:
<FORM RUNAT="Server">

<P/>

<ASP:RADIOBUTTONLIST
ID="radiobuttonlistSuggestions"
RUNAT=”Server”>

<ASP:LISTITEM>Fewer Goals</ASP:LISTITEM>

<ASP:LISTITEM>More Goals</ASP:LISTITEM>

<ASP:LISTITEM>Same Number of
Goals</ASP:LISTITEM>

</ASP:RADIOBUTTONLIST>

<P/>

<INPUT TYPE="Submit" VALUE="Submit"
OnServerClick="SubmitBtn_Click"
RUNAT="Server">

<P/>

<ASP:LABEL ID="labelMessage" RUNAT="Server"/>

</FORM>

By using this RadioButtonList Web server
control, you can use the SelectedIndex property
to find out which radio button was selected.

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void SubmitBtn_Click(object Source, EventArgs e)
{

if
(radiobuttonlistSuggestions.SelectedIndex > -1)
{ 

labelMessage.Text = "You suggested "
+ radiobuttonlistSuggestions.SelectedItem.Text;

}

}

</SCRIPT>     

101

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:41 AM  Page 101



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Type a heading for the 
page.

‹ Type a message to the 
user.

› Add a server form to the 
page.

ˇ Add a Button Web 
control that calls the 
SubmitBtn_Click for the 
onClick event.

Á Add a Label control for 
the message.

‡ Add a DropDownList 
Web server control and set its 
attributes.

° Add ListItem Web 
server controls for each 
option.

You can use a drop-down list box for soliciting
input from a user where you want to give a
group of options and require the user to select

only one of the options. The DropDownList Web
server control gives you a way to create this HTML
control and work with the control programmatically.

The DropDownList Web control resides on a server
form on your ASP.NET page. The DropDownList
control is created with the <ASP: DROPDOWNLIST >
tag. You need to add an ID attribute and set the RUNAT
attribute to Server for the control to work properly.
To present a list of options, the drop-down list box

holds each option in its own tag, <ASP:LISTITEM>.
To process the DropDownList Web server control,
you can use the SelectedItem.Text property to
find the value of the option that was selected.

You can use the DropDownList Web server control
and the ListItem controls to display a form for
gathering input for suggestions. The DropDownList
control is used to generate a drop-down list box on a
form. When the user submits the form, the Web
server reads the selected value as a property of the
DropDownList control and echoes the suggestion
back to the user.

REQUEST INPUT FROM A 
DROP-DOWN LIST

102

ASP.NET

REQUEST INPUT FROM A DROP-DOWN LIST

063617-6 Ch05.F  9/26/01  9:41 AM  Page 102



· Create a function called 
SubmitBtn_Click to 
check the input.

‚ Set the label according to 
the input received from the 
user.

— Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

± Click      to select an 
option.

¡ Click the Submit button.

� The suggestion echoes 
back on screen.

103

WORK WITH WEB CONTROLS

As with the rest of the Web server controls, you can data-bind
the control to a data source.

TYPE THIS:

<HTML><HEAD>
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void Page_Load(Object Sender, EventArgs E) {
if (!IsPostBack) {

ArrayList alSuggestions = new ArrayList();
alSuggestions.Add ("Fewer Goals");
alSuggestions.Add ("More Goals");
alSuggestions.Add ("Same Number of Goals");
dropdownlistSuggestions.DataSource = alSuggestions;
dropdownlistSuggestions.DataBind();

}
void SubmitBtn_Click(object Source, EventArgs e) {

labelMessage.Text ="Your suggestion is..."
+ dropdownlistSuggestions.SelectedItem.Text + ".";

}
</SCRIPT></HEAD><BODY>

<FORM RUNAT="Server" ID="Form1">
<P /><ASP:DROPDOWNLIST ID="dropdownlistSuggestions" 
RUNAT="Server" />
<ASP:BUTTON TEXT="Submit" OnClick="SubmitBtn_Click" 

RUNAT="Server" ID="Button1" /><P />
<ASP:LABEL ID="labelMessage" RUNAT="Server" />

</FORM></BODY>
</HTML>

RESULT:

A drop-down list
appears with the
three suggested goals
and a submit button.

5

063617-6 Ch05.F  9/26/01  9:41 AM  Page 103



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Type a heading for the 
page.

‹ Type a message to the 
user.

› Add a server form to the 
page.

ˇ Add a Label control for 
the message.

Á Add a Calendar control to 
the page and have the control 
call the Date_Selected 
function for the 
onSelectionChanged 
event.

You can use the Calendar Web server control
when you need a user to select a valid date.
This is one of the richest Web server controls

available in the ASP.NET Framework. You can have
users select different ranges for dates as well,
including weeks and months. The Calendar control
can be generated using only HTML, so the control
works with most browser types.

The Calendar Web control will reside on a server
form on your ASP.NET page. The Calendar control
is created with the <ASP: CALENDAR> tag. You need
to add an ID attribute and set the RUNAT attribute to
Server for the control to run properly. To determine
which date a user selects, you can write an event

handler for the SelectionChanged event. In the
event handling code, you should check for the
SelectedDate property to retrieve the date that the
user chooses.

The Calendar control supports four date selection
modes. You can select any single day with the Day
mode. If you want to give the option for selecting
single day or a week at a time, you can set the mode
to DayWeek. You can give your users all the section
options (select a day, week, or month) by setting the
mode to DayWeekMonth. The last option, None, will
disable selection of the calendar.

REQUEST DATES FROM A CALENDAR

104

ASP.NET

REQUEST DATES FROM A CALENDAR

063617-6 Ch05.F  9/26/01  9:42 AM  Page 104



‡ Create the 
Date_Selected function.

° Set the label according to 
the input received from the 
user.

· Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� A calendar appears.

‚ Click to select a date.

� The date echoes back.

You can set a number of properties for the Calendar
control to customize the control. The following code
can customize the control in a number of ways, such as
enabling the user to select a week or a month at a time
as opposed to just a single date.

Example:
<ASP:CALENDAR ID="calendarGoal" RUNAT="Server"

onSelectionChanged="Date_Selected"

DAYNAMEFORMAT="FirstLetter" 

SELECTIONMODE="DayWeekMonth"

FONT-NAME="Verdana" FONT-SIZE="12px"

HEIGHT="180px" WIDTH="230px"

TODAYDAYSTYLE-FONT-BOLD="True"

DAYHEADERSTYLE-FONT-BOLD="True"

OTHERMONTHDAYSTYLE-FORECOLOR="Gray"

TITLESTYLE-BACKCOLOR="Navy"

TITLESTYLE-FORECOLOR="White"

TITLESTYLE-FONT-BOLD="True"

SELECTEDDAYSTYLE-BACKCOLOR="LightBlue"

SELECTEDDAYSTYLE-FONT-BOLD="True"

105

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 105



ASP.NET

⁄ Open the WebVisit 
HompageLinkTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a HyperLink Web 
server control to the form.

‹ Add the code to set the 
HREF and Text properties 
for the HyperLink 
control.

› Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The page appears with a 
HyperLink.

106

CREATE A LINK 

To create a hyperlink programmatically with Web
server controls, you can use the HyperLink
control. You can use this control to set

properties for the hyperlink, including where the user
is directed to when clicking the hyperlink and what
text represents the hyperlink.

If you want to create a link programmatically, you can
use the Page_Load event to set the hyperlink’s
properties. To create a HyperLink Web server
control on an ASP.NET page, you must add the
<ASP:HYPERLINK RUNAT="Server"> tag to
the page. You should also add an ID attribute for the
control so that you can reference it in your code.

The HREF for the anchor tag represents the URL that
the user gets sent to after clicking the anchor tag. The
anchor tag surrounds the text, or HTML, that is
hyperlinked (underlined) in the user’s Web browser.

The following example lets you use the Page_Load
event to set the properties for the HyperLink Web
server control. You must set the HREF and the TEXT
properties. When you request the ASP.NET Web page
from the server, the Page_Load event fires and the
server creates the anchor tag using the code in the
server-side event.

CREATE A LINK

063617-6 Ch05.F  9/26/01  9:42 AM  Page 106



⁄ Open the 
WebGoalTypesTemplate.aspx 
template from the Code
Templates directory.

¤ Add an Image 
control to the server 
form.

‹ Save the file and request it  
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The page appears with the 
Travel image.

› Click to select the 
Educational goal type from 
the drop-down list box.

ˇ Click the Apply button.

� The image is updated with 
the Education image.

107

You can use the Image Web server control to
work with your images. For example, you can
use the Image control to specify what image

appears when the page first displays. Then, through
code, you can easily replace this image.

The Image Web server control functions very similarly
to the HTMLImage control. The Image Web control
will reside on a server form on your ASP.NET page. The
Image control is created with the <ASP: IMAGE >
tag. You will then need to add an ID attribute and set
the RUNAT attribute to Server. You can then add
code on your page that modifies this control. You can

set the IMAGEURL attribute for mapping the path of
the image source file.

The Image Web server control does not support
any events, which separates it from most of the other
Web server controls. One attribute that is useful is the
ALTERNATETEXT attribute. This displays if the user’s
Web browser has graphics turned off or the source
for the graphic is missing. This text for this attribute
will also show as pop-up help text (if the user holds
the mouse pointer over the image). You can make the
pop-up help text different than the alternative text by
using the TOOLTIP attribute.

WORK WITH WEB CONTROLS 5

RENDER AN IMAGE

RENDER AN IMAGE 

063617-6 Ch05.F  9/26/01  9:42 AM  Page 107



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user.

› Add a form to the page.

ˇ Add a table to the page 
and set the BORDER attribute 
equal to 1.

Note: You need to give the form an 
ID attribute and set the RUNAT 
attribute to "Server".

Á Add the Page_Load 
function.

‡ Create and initialize a 
variable for counting rows.

° Create and initialize 
variables for number of rows 
and number of cells.

· Create and initialize an 
array for the contents of the 
table.

You can use the Table Web server control to
dynamically create and modify tables in your ASP
pages. You can also use the Table Web server

control to set table properties such as background
color, cell spacing and padding, and border size and
color. You can use the HTML server control HTMLTable
for the same purpose as this control.

You can populate the table in one of the events, such
as Page_Load, before the page is generated. The
Table Web control will reside on a server form on
your ASP.NET page. The Table control is created with
the <ASP: Table> tag. You need to add an ID
attribute and set the RUNAT attribute to Server for
the control to work properly.

When working with the Table Web control, you can
work with several other controls. This includes the
object that represents a cell, the TableCell control,
and an object that represents a row, the TableRow
control.

Because you normally work with these members
of the TableCell and TableRow controls as
collections, you can use their respective collection
objects, the TableCellCollection and
TableRowCollection objects. With these
collections, you can create an iterative statement that
will loop through all members of the collections and
make programmatic modifications to each item in the
table.

BUILD A TABLE 

108

ASP.NET

BUILD A TABLE

063617-6 Ch05.F  9/26/01  9:42 AM  Page 108



‚ Process each row with a 
for loop.

— Create a new 
HTMLTableRow for         
each row.

± Process each cell in the 
row with a for loop.

¡ Create a new 
HTMLTableCell for each 
cell and add the value in the 
array to the cell.

™ Add the cell to the row.

£ Add the row to the table.

¢ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� A table with the contents 
of your array appears.

109

Not only can you add literals to a table cell, but you can also add
other controls. The full page for this example is available on the CD.

TYPE THIS:

void Page_Load(Object sender, EventArgs e) {

string[] sGoalList = {"Hike the Appalachian
Trail",

"Give $1 million to worthwhile causes"};

int iRows = sGoalList.GetUpperBound(0) + 1;

for (int i=0; i<iRows; i++) {            

TableRow trGoals = new TableRow();    

TableCell tcGoals = new TableCell();

tcGoals.Controls.Add

(new
LiteralControl(sGoalList[i]));

trGoals.Cells.Add(tcGoals);

TableCell tcGoal2s = new
TableCell();

tcGoal2s.Controls.Add(new
CheckBox());

trGoals.Cells.Add(tcGoal2s);

Table1.Rows.Add(trGoals);

}}

RESULT:

A table that contains
a list of goals with
a checkbox next to
each.

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 109



ASP.NET

⁄ Open the 
WebWelcomeTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a Text box to the page.

� Note the Label control on 
the page.

‹ Add a button to the pages 
that calls the 
Button_OnClick event.

› Modify the code in the 
Button_OnClick event so 
that the label is updated with 
the text from the text box.

ˇ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

Á Type a message in the  
text box.

‡ Click the Submit button.

� A message appears.

110

MANIPULATE TEXT 

The Label Web server control is used for
displaying text on a Web page. You can work
with the Label control in your code and

programmatically change the properties of the label,
including the text that appears.

You can use the Label Web control to identify the
purpose of controls that you arrange on a Web form.
For example, you can have 3 TextBox controls on a
form. You need to identify what each TextBox
contains.

The Label Web control will reside on a server form
on your ASP.NET page. The Label control is created

with the <ASP: Label> tag. You will need an ID
attribute to give the control a name, which is how you
reference it in code. As with other Web server
controls, set the RUNAT attribute to Server. Like the
Image Web server control, the Label Web server
control does not support any events.

For example, you can have a form that takes input
using a TextBox control. After filling in the text box,
users can click a button, which fires off an event that
can read what was in the text box and update a
Label control on the form with this value.

MANIPULATE TEXT

063617-6 Ch05.F  9/26/01  9:42 AM  Page 110



⁄ Open the 
WebVisitHomepage 
Template.aspx template 
from the Code Templates 
directory.

¤ Add a Placeholder 
control to the form.

‹ Create an HTML server 
control and set its properties.

› Add the control to the 
Placeholder control.

ˇ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The HTMLAnchor control 
appears where the 
placeholder is located.

111

You can use the Placeholder Web server
control to hold other controls on your ASP.NET
Web pages. This is a convenient way to specify

where on your page you want to put controls. It is
especially useful if you want to create all of your form
controls programmatically.

You can use the Placeholder Web server control
almost anywhere on your ASP.NET Web page. It does
not have to be on a server form, but if you are adding
controls for a form, you should make sure that it is
between the <form> tags. You should then create the

control and add the control to the placeholder using
the Placeholder.Controls.Add method.

The Placeholder control does not generate any
HTML back to the Web browser, but is used only to
specify the location of controls that you add at
runtime. Placeholder controls are very useful in
dynamically loading controls on a Web page. If you
do not know which control should be on the page or
how many controls should be on the page until the
page is requested, then you should use the
Placeholder control.

WORK WITH WEB CONTROLS 5

USE A PLACEHOLDER FOR CONTROLS

ADD A PLACEHOLDER FOR CONTROLS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 111



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Create a server form.

› Create a Panel control 
and give it an ID.

ˇ Type a message to the 
user.

Á Add a button for the user 
to click and call the 
Button_OnClick function 
for the onClick event.

‡ Create a Panel control 
and give it an ID and set the 
VISIBLE attribute for the 
control to False.

° Add a message to the user 
about being on the second 
step.

The Panel control can be used as a container for
other controls on your ASP.NET Web pages. The
control is very useful if you wish to hide a

specific group of controls.

The Panel Web control resides on a server form on
your ASP.NET page. The Panel control is created with
the <ASP: Panel> tag. You will need an ID attribute
to give the control a name, which is how you
reference it in code. You can set the initial value of
attributes when you declare the control. For example,
you can set the VISIBLE attribute to False, which
would initially hide the control.

You use the Panel control to break the Web page
into sections of the Web page the user can view.
Therefore, you treat the Panel control as a container
for other controls. As the user interacts with your
page, you can hide Panels or make them visible.
This gives the effect of seeing multiple pages, when
in fact they are viewing different Panels of the
same page.

For example, you can create a page that first displays
one panel. When the user finishes the page and clicks
a Submit button, the first panel can be hidden and
the second panel can be displayed. This would give
users the impression that they have moved to
another page.

PROVIDE A CONTAINER FOR CONTROLS

112

ASP.NET

PROVIDE A CONTAINER FOR CONTROLS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 112



· Create the 
Button_OnClick function.

‚ Set the Visible property 
of the first panel to False.

— Set the Visible property 
of the second panel to True.

± Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� The first panel appears.

¡ Click the Continue button.

� The second panel appears 
informing you that you are on 
step 2.

You can use the Panel control’s properties to give an improved visual effect as
the user moves to the next step in a process. For example, you can change the
BACKCOLOR property to give a nice visual effect as the user moves from one panel
to the next. You can also set the HEIGHT and the WIDTH properties for the panel.

Example:
<ASP:PANEL ID="panelStep1" HEIGHT="100px" WIDTH="300px" 

BACKCOLOR="Silver" RUNAT="SERVER"/>

Are you ready to set your goals? Click the Continue button to go to Step 2.

<P/>

<ASP:BUTTON ID="buttonContinue" RUNAT="Server" 

onClick="Button_OnClick" TEXT="Continue"/>

</ASP:PANEL>

<ASP:PANEL ID="panelStep2" BACKCOLOR="Gold" 

HEIGHT="100px" WIDTH="300px" RUNAT="SERVER" VISIBLE="False"/>

You are on Step 2.

<P/>

</ASP:PANEL>

113

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 113



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a server form to the 
page.

› Add an AdRotator Web 
server control to the page and 
specify the location of the 
advertisement file.

ˇ View the contents of the 
advertisement file.

Many Web sites use advertisement banners to
generate income. ASP.NET gives you an
AdRotator control that supports the process

of displaying advertisements. The control supports
displaying advertisements randomly. Each time a new
page appears or is refreshed, an advertisement is
selected.

The process of declaring the AdRotator control on
your ASP.NET Web page is simple. Add the
<ASP:AdRotator RUNAT="Server"> tag to the
place on the page where you want the banner to be
displayed. Then, create or modify a separate XML
format file, called the advertisement file. This file
contains the details about the advertisements. The

details include the location of the graphic, the URL
that the user is sent to when clicking the banner, and
how often the advertisement should be displayed.
Having this information in a separate XML file makes
it easy to maintain the advertisements. The XML can
be generated automatically through some server-side
process or a programmer can modify it directly in the
XML document.

For example, you can add advertisements to a Web
page by declaring the AdRotator control. You can
then modify an advertisement file with details on
your ads. After you have done this, you can display an
advertisement on your Web page. If you click Refresh,
another advertisement may display.

DISPLAY ADVERTISEMENT BANNERS 

114

ASP.NET

DISPLAY ADVERTISEMENT BANNERS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 114



Á Save the file and request 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

� An advertisement appears. ‡ Press F5 to refresh the 
Web page.

� Another advertisement 
may appear.

The elements of an Advertisement file are as follows:

• The root node of the XML file is the <Advertisements> element, which contains one too many
<Ad> elements. Each of the <Ad> elements contain details on different advertisemts. The child nodes
to the <Ad> element are the <ImageURL>, <NavigateURL>, <AlternateText>, <Keywords>, and
<Impressions> elements.

• The <ImageURL> element is the path and filename for the graphic to be displayed on the banner.

• The <NavigateURL> element is the URL that the user will be sent to when clicking the advertisement.

• The <AlternateText> element is what will be displayed if the Web browser has graphics turned off
or displayed as help text when the user places the mouse pointer over the banner.

• The <Keywords> element describes the category under which the advertisement falls. You can use
this element to filter out specific ads for different sections of your Web site.

• The control uses the <Impressions> element as a weighting for how often the advertisement should
be displayed relative to the other advertisements.

115

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 115



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user.

› Add a server form to the 
page.

ˇ Add another message to 
the user.

Á Add a TextBox control to 
the form.

‡ Add a Button control to 
the form.

° Add a 
RequiredFieldValidator 
control to the page and 
specify a name for the control 
by adding the ID attribute.

You can use the RequiredFieldValidator
control on your ASP.NET Web pages to specify
which controls on your page require input. This

is a convenient way to enable very basic validation on
your pages. The RequiredFieldValidator checks
to make sure that the user has changed a control’s
value from the initial value. You can use the control
with most form controls, like the textbox and the
dropdown list box.

To set this up, you have to create a
RequiredFieldValidator control for each of the
fields that you want to require input. You must then

declare the control at the location you want the error
message to be displayed, and specify which control
to validate by setting the CONTROLTOVALIDATE
attribute equal to the ID of the control to validate.
Finally, you specify the validation message for the
user by setting the TEXT attribute.

For example, you can create a simple form that has
the user input their login name. Because you always
want the user to input something for the field, you
can use the RequiredFieldValidator control to
ensure that something was entered into the field.

VALIDATE REQUIRED FIELDS 

116

ASP.NET

VALIDATE REQUIRED FIELDS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 116



· Within the 
RequiredFieldValidator 
control, set the validation 
message by specifying the 
TEXT attribute.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

Note: Do not fill in the login name 
box.

— Click the Submit button.

� A validation message 
appears.

117

WORK WITH WEB CONTROLS

You can also validate other controls. For example, you can validate a
drop-down list box. To do this, you need to set the INITIALVALUE
attribute for the REQUIREDFIELDVALIDATOR element equal to the
value that associates that the user has not selected an option.

TYPE THIS:

<HTML>
<BODY>
<FONT FACE ="Verdana">
<H3>Welcome to mylifetimegoals.com</H3>
What suggestions do you have for improving our site?
<FORM RUNAT="Server">
<ASP:DROPDOWNLIST ID="dropdownlistSuggestions" RUNAT="Server">

<ASP:LISTITEM>Choose</ASP:LISTITEM>
<ASP:LISTITEM>Fewer Goals</ASP:LISTITEM>
<ASP:LISTITEM>More Goals</ASP:LISTITEM>
<ASP:LISTITEM>Same Number of Goals</ASP:LISTITEM>

</ASP:DROPDOWNLIST>
<P/><ASP:BUTTON TEXT="Submit" RUNAT="Server"/><P/>
<ASP:REQUIREDFIELDVALIDATOR ID="requiredfieldvalidatorInputName"
CONTROLTOVALIDATE="dropdownlistSuggestions" TEXT="You must select a 
suggestion!" INITIALVALUE="Choose" RUNAT="Server"/>
</FORM>
</FONT>
</BODY>
</HTML>

RESULT:

A page with a drop-
down list appears that
requires a selection to
be made before
submitting the page.

5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 117



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user.

› Add a server form to the 
page.

ˇ Add a message to the user 
and TextBox control to the 
form.

Á Add another message to 
the user and TextBox 
control to the form.

‡ Add a Button control to 
the form.

° Add the 
CompareValidator 
control to the page.

You can compare two values on a form when
submitting a form to the server. To do so, you
can use the CompareValidator control that

comes with ASP.NET. You can do this comparision
based on a number of operations, including: checking
the controls to see if they are equal to each other, if
one is greater than or equal to another, or if one is
less than another.

To use this validation control, you must first create the
two controls to use as criteria for the validation. You
then need to create a CompareValidator control for
each comparision you would like to make. The syntax
for declaring a CompareValidator control is
<ASP:COMPAREVALIDATOR RUNAT="Server">.

After you declare the control, you must specify the
control to validate with the CONTROLTOVALIDATE
attribute, the control to compare with the
CONTROLTOCOMPARE attribute, and finally the
operator with the OPERATOR attribute. After you have
set these, you can then designate the validation
message to be displayed with the TEXT attribute.

For example, you can create a form that requires one
of the answers to be less than or equal to another
one of the answers. If the input is invalid, you would
then display a validation message.

COMPARE TWO FIELDS FOR VALIDATION 

118

ASP.NET

COMPARE TWO FIELDS FOR VALIDATION

063617-6 Ch05.F  9/26/01  9:42 AM  Page 118



· Within the 
CompareValidator 
control, set the validation 
message by specifying the 
TEXT attribute.

‚ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

— Fill in the form with a 
smaller number for the first 
question.

± Click the Submit button.

� A validation message 
appears.

119

WORK WITH WEB CONTROLS

You can programmatically check to see if the values
for two controls are equal.

TYPE THIS:

<HTML>
<BODY>
<FONT FACE ="Verdana">
<H3>Welcome to mylifetimegoals.com</H3>
Please help us by taking the following survey.
<FORM RUNAT="Server">
How many goal-setting sites have visited you this month? 
<ASP:TEXTBOX ID="inputTimesVisitedGoalSites" 
TEXTMODE="SingleLine" TEXT="" WIDTH="50px" RUNAT="Server"/>
<BR/>
How many visits to www.mylifetimegoals.com this month? 
<ASP:TEXTBOX ID="inputTimesVisitedMyLifetimeGoals" 
TEXTMODE="SingleLine" TEXT="" WIDTH="50px" RUNAT="Server"/>
<P/><ASP:BUTTON TEXT="Submit" RUNAT="Server"/><P/>
<ASP:COMPAREVALIDATOR ID="comparevalidatorInputName"
CONTROLTOVALIDATE="inputTimesVisitedMyLifetimeGoals"
CONTROLTOCOMPARE = "inputTimesVisitedGoalSites" 
OPERATOR="Equal" TYPE="String" 
TEXT="Answer 1 must equal to Answer 2." RUNAT="Server"/>
</FORM>
</FONT>
</BODY>
</HTML>

RESULT:

The result is a page that
collects values for two
questions. When the form is
submitted, it checks to see if
the values in the two text
boxes are equal. If they are
not equal, then a message is
displayed.

5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 119



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a server form to the 
page.

ˇ Add a message to the user 
and TextBox control to the 
form.

Á Add a Button control to 
the form.

‡ Add the 
RangeValidator control to 
the page.

Developers often need to validate a control
based on a range of values. For these cases,
you can use the RangeValidator Web server

control. You can have different types of ranges,
including ranges based on currency, dates, double-
type data, integer-type data, and string data. If the
user does not type input that falls within a valid
range, a validation message appears, and the user
gets a chance to correct the form and resubmit it.

After you place a control on a server form,
you can then use the <ASP:RANGEVALIDATOR
RUNAT="Server"> tag to declare a

RangeValidator control. You must then specify the
type of data you want to check, such as setting the
type to Date. Then you need to specify the
MAXIMUMVALUE and MINIMUMVALUE attributes to
give the range for valid input. To set the validation
message, you add the TEXT attribute and set it equal
to the message.

For example, you can check a control to ensure that
the user has put a date that falls within a specific
range of dates. If the date falls outside this range, a
validation message is displayed.

CHECK THE BOUNDARIES OF INPUT 

120

ASP.NET

CHECK THE BOUNDARIES OF INPUT

063617-6 Ch05.F  9/26/01  9:42 AM  Page 120



° Within the 
RangeValidator control, 
set the validation message by 
specifying the TEXT attribute.

· Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

‚ Fill in the form with a date 
outside the range.

� A validation message 
appears.

121

WORK WITH WEB CONTROLS

You can use the Calendar Web server control in
combination with the RangeValidator control so
the user does not need to type in a date, but can
select the date from the Calendar control.

TYPE THIS:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="C#" RUNAT="Server">
void Date_Selected(object s, EventArgs e) {

inputMessage.Text = calendarGoal.SelectedDate.ToShortDateString();
}
</SCRIPT></HEAD><BODY>
<FONT FACE ="Verdana">
<H3>Welcome to mylifetimegoals.com</H3>
Select the date you wish to accomplish this goal by.
<FORM RUNAT="Server">
<ASP:CALENDAR ID="calendarGoal" 
onSelectionChanged="Date_Selected" RUNAT="Server" />
<P/><ASP:TEXTBOX ID="inputMessage" RUNAT="Server" />
<P/><ASP:BUTTON TEXT="SubmitDate" RUNAT="Server"/>
<P/><ASP:RANGEVALIDATOR ID="rangeValDate" TYPE="Date" 
CONTROLTOVALIDATE="inputMessage" MAXIMUMVALUE="1/1/2002" 
MINIMUMVALUE="1/1/1990" 
TEXT="Please enter a date between 1/1/1990 and 1/1/2002." 
RUNAT="Server"/>
</FORM>
</FONT>
</BODY>
</HTML>

RESULT:

The result is a page
that contains a
calendar server
control for selecting
a date. When the date
is selected and then
submitted, the
date is validated on
the server. If the date
does not fall within
the specified date
range, a message is
displayed to the user.

5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 121



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for the 
page.

‹ Add a message to the user.

› Add a server form to the 
page.

ˇ Add a message to the user 
and TextBox control to the 
form.

Á Add a Button control to 
the form.

‡ Add the Regular 
ExpressionValidator 
control to the page.

You may encounter situations where you have to
be very specific about validating the text that a
user inputs. For these situations, you can use the

RegularExpressionValidator control. This
control lets you use regular expressions for your
criteria to determine whether the input is valid.
Regular expressions are a pattern-matching language
used for processing text. For more information on
pattern matching, see Microsoft’s MSDN site
(msdn.microsoft.com).

Using the RegularExpressionValidator
control is much like using the other validation
controls. On the form containing the control you
wish to validate, declare the control with the
<ASP:RegularExpressionValidator

RUNAT="Server"> tag. You then need to specify the
control to validate with the CONTROLTOVALIDATE
attribute. Next, use the VALIDATIONEXPRESSION
attribute to indicate what you wish to use for the
regular expression. Finally, specify the validation
message using the TEXT attribute.

For example, you can use a simple regular expression
to ensure that the user has filled in a text box with a
ZIP Code. In the regular expression, you can just
check to make sure that five numbers where entered.
If the text box does not contain five numbers, you can
display a message back to the users and enable them
to correct the input and resubmit the form for
validation and processing.

VALIDATE WITH REGULAR EXPRESSIONS

122

ASP.NET

VALIDATE WITH REGULAR EXPRESSIONS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 122



° Within the 
RegularExpressionValidator 
control, set the validation message 
by specifying the TEXT attribute.

· Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

‚ Type in an invalid zip 
code.

— Click the Submit button.

� A message appears.

Regular Expressions are commonly used for validating fields.
Here are some useful examples of Regular Expressions.

123

WORK WITH WEB CONTROLS 5

CODE DESCRIPTION

\d{3}-\d{2}-\d{4} Testing for a valid Social Security Number.

\d{5}(-\d{4})? Testing for valid US postal code.

((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4} Testing for a valid US phone number.

((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4} Testing for a valid e-mail address.

http://([\w-]\.)+[\w-](/[\w- ./?%=]*)? Testing for a valid URL.

\d{4}-?\d{4}-?\d{4}-?\d{4} Testing for Visa Credit Card.

063617-6 Ch05.F  9/26/01  9:42 AM  Page 123



⁄ Open the 
WebValidationTemplate.aspx 
template from the Code 
Templates directory.

� You can scroll down 
to view the form 
controls on the page.

� You can scroll down to 
view the validation controls 
on the page.

Most of your forms will perform validations on
the different controls on your forms. To
organize the validation errors that occur on

your page, you can use the ValidationSummary
Web server control to display a summary of the
validation. This is especially convenient for users
because they will see a list of all the validation errors
for the form, not just the first validation error.
Because the summary appears on the same page as
the form, the user can address the issues immediately
and resubmit the form.

You can use the ValidationSummary control to
collect the validation results from all validated

controls. You should place the ValidationSummary
control where you would like the summary message
to be displayed. You can then specify the format for
the summary. It is best to specify a header message
for the validation summary, which is done with the
HEADERTEXT attribute. The output of this control can
be set with the DISPLAYMODE attribute.

For example, you can create a suggestion form that
has all of the form controls and their associated
validation controls. For this form, you can put a
ValidationSummary control at the top to display all
of the validation errors that were triggered upon
submission.

SUMMARIZE VALIDATION ERRORS 

124

ASP.NET

SUMMARIZE VALIDATION ERRORS

063617-6 Ch05.F  9/26/01  9:42 AM  Page 124



¤ Add the ValidationSummary 
control to the page and set the 
properties for the control.

‹ Save the file and request it 
from the Web server.

Note: See pages 20 to 25 for 
instructions on saving a file to the 
Web server and then requesting 
the file using the IIS Admin.

› Fill out invalid input in 
each field.

ˇ Click the Submit button.

� A message appears 
showing all the validation 
errors.

You can choose from three different formats when
displaying your Validation Summary. They are specified
using the DISPLAYMODE attribute for the
ValidationSummary control.

The default mode is the bullet list.

<ASP:VALIDATIONSUMMARY ID="validationsummarySurvey"
DISPLAYMODE="BulletList" RUNAT="Server"
HeaderText="The following issues occurred:"/>

You can also specify a simple list.

<ASP:VALIDATIONSUMMARY ID="validationsummarySurvey"
DISPLAYMODE="List" RUNAT="Server" HeaderText="The
following issues occurred:"/>

Finally, you can format the summary as a Paragraph.

<ASP:VALIDATIONSUMMARY ID="validationsummarySurvey"
DISPLAYMODE="SingleParagraph" RUNAT="Server"
HeaderText="The following issues occurred:"/>

125

WORK WITH WEB CONTROLS 5

063617-6 Ch05.F  9/26/01  9:42 AM  Page 125



Data access is an intergral part of creating
dynamic web content. RDBMS (Relational
Database Management System) storage is very

commonly used in Web applications. ASP.NET
provides data access to RDBMS storage via ADO.NET.

INTRODUCTION TO DATA
ACCESS WITH ASP.NET

ASP.NET

BASICS OF DATA ACCESS

In this chapter, you will look at how to work with
databases in ASP.NET using ADO.NET technology. The
origin of where the data is provided is called the data
source. To get to this data, you can use a couple of
controls that are supplied by ADO.NET. These controls
include a Connection object, which is used to make the
connection to the database. An important property of the
Connection object is the Connection string, which is
used to specify how to open the database. Another control
used for data access is the Command object, which is
especially useful when executing a stored procedure. The
Command object enables you to specify the parameters for
the stored procedure. When you have a connection, you
can then use a control called a Data Adapter to retrieve
the data. You can use the DataSet object as the target for
this data.

After you have the data from the data source, you will
probably want to display this data on the Web page. To
do this, you can bind the data to a control. There are
several controls to which you can bind data. These
include the Repeater, DataList, and DataGrid
controls. The simplest control is the Repeater control.
It enables you to create simple header, footer, and item
templates for data. For more complex lists, you can
work with the DataList control. This control allows
for more complex formatting of your data. The
DataGrid control is the most functional control
available in ASP.NET for dealing with data. You have
many formatting options for the DataGrid control,
including paging and support for editable columns.

CONTROLS USED TO ACCESS A DATABASE

Connection

Connections are the starting point to data access. You
need to give connection parameters to establish a
connection. After those parameters are set (typically
through the ConnectionString property), you will
invoke the Open method to create an active connection.
The following table provides Key Properties and
Methods of the SQLConnection class, which is the class
for connections with Microsoft SQL Server databases.

PROPERTY DESCRIPTION

ConnectionString (read/write) String used to
open a SQL Server database.

Database (read) Name of the current (or
soon to be) connected
database.

DataSource (read) Name of SQL Server
instance with which to connect.

126

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 126



ACCESS DATA WITH ASP.NET

127

CONTROLS USED TO ACCESS A DATABASE (CONTINUED)

Command

The Command object in
ADO.NET is very similar
to its cousin ADO.
Commands are important
for stored procedures and
you still want to use
stored procedures in your
data access routines (for
both security and
performance reasons).
The following table
provides Key Properties
and Methods of the
SQLCommand class, which
is the class for commands
with Microsoft SQL Server
databases.

CONTROLS USED TO DISPLAY DATA

Repeater Control 

The simplest control for binding data is the Repeater control that
enables you to create simple header, footer, and item templates for
displaying data.

DataList Control 

For more complex lists, you can work with the DataList control.
Like the Repeater control, it uses templates for specifying how to
display data.

DataGrid Control

The DataGrid control is the most
functional control available in ASP.NET for
dealing with data. You can define different
types of columns with the DataGrid.

6

PROPERTY DESCRIPTION

CommandText (read/write) The T-SQL statement or stored procedure to
execute at the data source.

CommandType (read/write) A value indicating how the CommandText property
is to be interpreted.

Connection (read/write) The SqlConnection used by this instance of the
SqlCommand.

Parameters (read) The SqlParameterCollection.

METHOD DESCRIPTION

Cancel Cancels the execution of a SqlCommand.

CreateParameter Creates a new instance of a SqlParameter object.

ExecuteNonQuery Executes a T-SQL statement against the Connection and
returns the number of rows affected.

DataAdapter

A DataAdapter object
bridges the source data
and the DataSet so that
retrievals and updates
can occur. The following
table provides Key
Properties and Methods
of the DataAdapter class.

PROPERTY DESCRIPTION

AcceptChangesDuringFill (read/write) A value indicating whether AcceptChanges
is called on a DataRow after it is added to the DataTable.

TableMappings (read) A collection that provides the master mapping
between a source table and a DataTable.

METHOD DESCRIPTION

Fill Adds or refreshes rows in the DataSet to match those in
the data source using the DataSet name, and creates a
DataTable named Table.

GetFillParameters Retrieves the parameters set by the user when executing a
SQL SELECT statement.

Update Calls the respective INSERT, UPDATE, or DELETE
statements for respective action in the specified DataSet
from a DataTable named Table.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 127



⁄ Open 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a Server Form to the 
page.

ˇ Declare a Repeater 
control on the page and give 
it an ID.

Á Add the header 
template tags and begin a 
new table with a heading.

‡ Add the item template 
tags and output the data 
items from the Repeater 
control.

° Add the footer 
template tags and end the 
table.

You can use the Repeater Web server control to
format data into custom lists. To format the lists,
you can use templates to define the layout of

the data. This includes headers and footers, as well as
alternating or separate rows of data.

You can work with the Repeater control by adding
<ASP:REPEATER RUNAT="Server"> to your
ASP.NET Web page. You should give the control an ID
so that you can reference it in code. To bind the
control to the data source, you must first set the
DataSource property and then call the DataBind
method. You can then use the templates to format the
output.

The Repeater control can support several different
types of templates. Use an ItemTemplate when you
want to format output for each row in the data
source. The ItemTemplate is a required template.
The AlternatingItemTemplate formats output as
well, although the template is applied only to every
other row of the data. You can use the
HeaderTemplate and FooterTemplate for output
that comes before the items and after the items,
respectively. The SeparatorTemplate is used to
specify formatting between rows of data. For
example, you can specify a horizontal line in HTML.

DISPLAY REPEATING DATA 

DISPLAY REPEATING DATA

128

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 128



· Add the Page_Load 
function to the page.

‚ Create an array list.

— Add some travel goals to 
the array list.

± Set the data source for the 
Repeater control to the 
array list.

¡ Bind the Repeater 
control to the array list data.

™ Save the file and request it 
from the Web server.

� A properly formatted table 
appears with the data from 
the array list.

129

ACCESS DATA WITH ASP.NET 6

You can use the following Repeator control to display the
data in comma delimited format by binding the Reaper
control to an array list and using a comma as the
SeparatorTemplate. The first set of code can be put into
the Page_Load event and the second set into a server-side
form to perform the databinding. See the full source code
at Chapter06/Code/ASPRepeater_ai.aspx.

TYPE THIS:

repeaterCommaDelimited.DataSource = alTravelGoals;
repeaterCommaDelimited.DataBind();
<ASP:REPEATER ID="repeaterCommaDelimited" RUNAT="Server">
<HEADERTEMPLATE>
<B>Travel Goals</B><BR/>
</HEADERTEMPLATE>
<ITEMTEMPLATE>
<%# Container.DataItem %>
</ITEMTEMPLATE>
<SEPARATORTEMPLATE>, </SEPARATORTEMPLATE>
</ASP:REPEATER>

RESULT:

The items from the
data source appear in
a comma-separated
list.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 129



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading and a 
message to the user.

‹ Add a Server Form to the 
page.

› Declare a DataList 
control on the page and give 
it an ID.

ˇ Add an item template 
to the page and output the 
goal items.

Á Import the System.Data 
namespace.

‡ Add the Page_Load 
function.

° Create a data table 
variable.

· Create a data row 
variable.

‚ Add a column to the data 
table.

— For each row, add a row 
and set the value for the Goal 
column.

You can use the DataList Web server control to
format complex lists. This control shares many
similar features with the Repeater control, but

it has additional features, such as specifying the
direction of the list as well as some additional
template-formatting options.

You can work with the DataList control by adding
<ASP:DATALIST RUNAT="Server"> to your ASP.NET
Web page. Give the control an ID attribute so that you
can reference it in code. To bind the control to the data
source, you should first set the DataSource property
and then call the DataBind method. You can then use
the templates to format the output.

The DataList supports a number of templates. For
example, each row in the data source utilizes the
ItemTemplate. The AlternatingItemTemplate
formats every other row in the datasource. If you
want to have a table use different colors on
alternating rows to aid in the readability of the table,
you can use the AlternatingItemTemplate.
You can use the HeaderTemplate and
FooterTemplate to format a header and footer.
You can specify what should be output between
each row with the SeparatorItem template.
SelectedItemTemplate describes the format when
a user selects an item. EditItemTemplate describes
the format when a user edits an item.

DISPLAY COMPLEX LISTS

DISPLAY COMPLEX LISTS

130

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 130



± Create a DataView from 
the table that was created.

¡ Set the data source for the 
data list.

™ Bind the data list to the 
data source.

£ Save the file and request it 
from the Web server.

� A properly formatted table 
appears with the data from 
the data table.

131

ACCESS DATA WITH ASP.NET 6

You can select from many options when formatting
the DataList. Type the following code into a
server-side form. See the full source code at
Chapter06/Code/ASPDataList_ai.aspx.

TYPE THIS:

<ASP:DATALIST ID="datalistTravelGoals" RUNAT="Server"
BORDERCOLOR="Black"
CELLPADDING="5"
FONT-NAME="Verdana" FONT-SIZE="12px"
HEADERSTYLE-FORECOLOR="White"
HEADERSTYLE-FONT-BOLD="True"
HEADERSTYLE-BACKCOLOR="Navy"
ALTERNATINGITEMSTYLE-BACKCOLOR="LightBlue">

RESULT:

This produces a
formatted list of the
data provided.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 131



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add the control to the 
page.

ˇ Import the System.Data 
and System.Data. 
SqlClient namespaces.

Á Add the Page_Load 
function.

‡ Create a 
SQLConnection object 
and use a connection string 
to connect to the database.

The DataGrid Web server control is a very
flexible control for working with data. It
supports advanced features to enable paging,

editing of data, and sorting of data. The DataGrid
control generates an HTML table (along with other
HTML elements, depending on how the DataGrid is
configured) to support these features. For server-side
databinding, this is the most common control that
you use. Without this control, you would be required
to write many more lines of server side code to
display data.

The process you use to work with a DataGrid
resembles that of the Repeater and DataList
controls if you just want to use the control for

displaying data. Because this example includes a
database, you need to look at a few more new
objects: SQLConnection, SQLDataAdapter, and
SQLDataSet.

The SQLConnection object, found in the
System.Data.SqlClient namespace, is used to
create a connection from the Web server to the SQL
server database. The SQLDataAdapter, also in the
System.Data.SqlClient namespace, represents
the connection and the commands to execute on the
database. The SQLDataSet, from the System.Data
namespace, will use the SQLDataAdapter to retrieve
data from the SQL Server data source.

DISPLAY SQL DATA 

DISPLAY SQL DATA

132

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 132



° Create a 
SQLDataAdapter and set 
the SQL statement to retrieve 
business type books using the 
SQLConnection object.

· Create a new DataSet 
object.

‚ Add the 
SQLDataAdapter to 
populate the DataSet.

— Set the DataGrid Data 
Source property to the 
DataSet.

± Bind the DataGrid to the 
DataSet.

¡ Save the file and request 
the file from the Web server.

� A message appears.

133

ACCESS DATA WITH ASP.NET 6

There are many options availabe to enhance the
viewing and controlling of data with the DataGrid. To
see some of these options, type the following code into
a server-side form. See the full source code at
Chapter06/Code/ASPDataGrid_ai.aspx.

TYPE THIS:

<ASP:DATAGRID ID="datagridTitles" RUNAT="Server" SHOWHEADER="False"
BORDERCOLOR="Black"
CELLPADDING="5"
FONT-NAME="Verdana" FONT-SIZE="12px"
HEADERSTYLE-FORECOLOR="White"
HEADERSTYLE-FONT-BOLD="True"
HEADERSTYLE-BACKCOLOR="Navy"
ALTERNATINGITEMSTYLE-BACKCOLOR="LightBlue"

/>

RESULT:

This produces a
formatted HTML table
that contains the
results of the query to
the pubs database.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 133



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page and set its 
properties.

ˇ Import the System.Data 
and System.Data. 
SqlClient namespaces.

Á Create the Page_Load 
event.

‡ Create a 
SQLConnection object and 
use a connection string to 
connect to the database.

° Create a 
SQLDataAdapter object 
and set the SQL statement to 
retrieve business type books 
using the SQLConnection 
object.

· Create an insert command 
for the titles table and read it 
into a string variable.

You can use ASP.NET to create Web pages that
insert data into your SQL databases. To do this,
you need to work with a couple of .NET

framework objects. The first object that you need
to use is the Connection object, which will be used
to establish a connection to your database. The most
important property for this object is
ConnectionString, which can specify the server,
the user ID and password, and the database to
connect to when creating the connection.

When you have a connection, you can use the
Command object to execute a SQL statement that

inserts a row of data into the database. You normally
read this data from a form control on your ASP.NET
Web page. After you set the SQL statement, you open
the connection, execute the command, and then
close the connection.

After you have inserted the data into the database, to
confirm that the data insert was successful, you can
use a bound DataGrid control. After the data is
inserted, you will excute the Command object to
select data that contains the new data (see page 132
for details on how to do this).

INSERT DATA INTO A SQL DATABASE

INSERT DATA INTO A SQL DATABASE

134

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 134



‚ Use the insert command 
string and the connection 
object to create a 
SQLCommand object.

— Open, execute, and then 
close the connection to the 
database with the 
SQLCommand object.

± Populate the DataSet 
object.

¡ Set the DataSource and 
DataBind properties of the 
DataGrid on the page. 

™ Save the file and request it 
from the Web server.

� A new record appears in 
the titles table.

135

ACCESS DATA WITH ASP.NET 6

You are most likely inserting
data based on what a user
fills out on a form. To do
this, you need to read this
data from the form and put
it in your INSERT SQL
string. The following code
shows how to read one of
the parameters for an insert
from a form control. This
code executes in an event
where the user clicks a
Submit button. See
Chapter06/Code/
ASPInsert_ai.aspx for
the full source.

TYPE THIS:

String insertCmd = "INSERT INTO titles(title_id, title, type, pub_id,
price, advance, royalty, 

ytd_sales, notes, pubdate) VALUES(@Id, 'How to Reach Your Business
Goals', 'business', '0736', 25.00, 1000.00, 10, 1000, 'A practical
how-to book on reaching even the most difficult business goals.
Full of helpful tips, examples, and case studies.', '2001-06-12
00:00:00.000')";

SqlCommand sqlcommandTitles = new SqlCommand(insertCmd, 
sqlconnectionPubs);

sqlcommandTitles.Parameters.Add(new SqlParameter("@Id",
SqlDbType.NVarChar, 6));
sqlcommandTitles.Parameters["@Id"].Value = inputTitleId.Text;

RESULT:

A page that asks for a book ID. When a valid ID is provided, you get a
DataGrid control with the row that was added to the database.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 135



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page and set its 
properties.

ˇ Import the System.Data 
and 
System.Data.SqlClient 
namespaces.

Á Create the Page_Load 
event.

‡ Create a 
SQLConnection object and 
use a connection string to 
connect to the database.

° Create a 
SQLDataAdapter and set 
the SQL statement to retrieve 
business type books using the 
SQLConnection object.

· Create an update 
command for the titles table 
and read it into a string 
variable.

You can use ASP.NET to create Web pages that
can update data in a SQL database. Most of your
applications require updating data that is

persisted in a SQL Database. One way of updating
data is by executing SQL UPDATE statements.

SQL UPDATE statements are typically built from
information the user provides. The current data that is
in the SQL Database is retrieved and displayed to the
user. The user changes the values that need to be
updated and then submits the information for
updating. For example, you can update a price in a
book database through a Web page.

To update data in a SQL database, you use the
SQLConnection and SQLCommand objects. The

SQLConnection object creates a connection to the
database. After you have a connection, you create an
SQLCommand object and specify the SQL string to be
executed against the database. Because you are most
likely building this SQL string from user input, you
can read the information off of an HTML or Web
server control. After your SQL string is constructed,
you can then open a connection using the
SQLConnection object. To send your custom SQL
statement to the database, you can use the
SQLCommand object. After completing your database
access code, make sure you close the connection to
the database.

UPDATE DATA FROM A SQL DATABASE

UPDATE DATA FROM A SQL DATABASE

136

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 136



‚ Use the insert command 
string and the connection 
object to create a 
SQLCommand object.

— Open, execute, and then 
close the connection to the 
database with the 
SQLCommand object.

± Populate the DataSet 
object.

¡ Set the DataSource and 
DataBind properties of the 
DataGrid on the page. 

™ Save the file and request it 
from the Web server.

� A record is updated from 
the titles table. The price is 
now $35, as opposed to $25.

137

ACCESS DATA WITH ASP.NET 6

You can update data based on what a user fills out on a
form. To do this, you should read this data from the form
and put it in your SQL UPDATE string. The following
code shows how to read one of the parameters for an
insert off a form control. This code executes in an event
when the user clicks a Submit button. Please see
Chapter06/Code/ASPUpdate_ai.aspx for the full
source.

TYPE THIS:

String updateCmd = "UPDATE titles SET price = 35.00
WHERE title_id = @Id";

SqlCommand sqlcommandTitles = new
SqlCommand(updateCmd, sqlconnectionPubs);

sqlcommandTitles.Parameters.Add(new
SqlParameter("@Id", SqlDbType.NVarChar, 6));

sqlcommandTitles.Parameters["@Id"].Value =
inputTitleId.Text;

RESULT:

This produces a page
that asks for a title ID.
When a valid ID is
provided, you get an
updated price in a
DataGrid control.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 137



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page and set its 
properties.

ˇ Import the System.Data 
and 
System.Data.SqlClient 
namespaces.

Á Create the Page_Load 
event.

‡ Create a 
SQLConnection object 
and use a connection string 
to connect to the database.

° Create a 
SQLDataAdapter object and 
set the SQL statement to 
retrieve business type books 
using the SQLConnection 
object.

· Create a delete command 
for the titles table and read it 
into a string variable.

You can use ASP.NET to create Web pages that
can delete data from your SQL Databases. This
is not as common as updating and inserting

data, but is possible from a Web Page. The most
common use of deleting data is in administrative
applications that are used to maintain data in your
application.

As with inserting and updating data, you use the
SQLConnection and SQLCommand objects to delete
data from your SQL database. You use the
SQLConnection object to create a connection to the
database. After you have a connection, you create a
SQLCommand object and specify the SQL string to be
executed against the database. Because you are most

likely building this SQL string from user input, you
can read the information off an HTML or Web server
control. After your SQL string is formatted and set,
you can then open a connection using the
SQLConnection object. Next, you can execute the
command. Finally, you should close the connection to
the database.

There are alternatives when it comes to deleting rows
of data from a database. Some developers will add a
flag to a database table that indicates if the data is
active or not. This active flag can be used to archive
data when performing maintenance on your
database.

DELETE DATA FROM A SQL DATABASE

DELETE DATA FROM A SQL DATABASE

138

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 138



‚ Use the delete command 
string and the connection 
object to create a 
SQLCommand object.

— Open, execute, and then 
close the connection to the 
database with the 
SQLCommand object.

± Populate the DataSet 
object.

¡ Set the DataSource and 
DataBind properties of the 
DataGrid on the page. 

™ Save the file and request it 
from the Web server.

� The record disappears 
from the titles table.

139

ACCESS DATA WITH ASP.NET 6
You probably delete data based on what a user fills out on a
form. To do this, you need to read this data from the form
and put it in your DELETE SQL string. The following code
shows how to read one of the parameters for an insert off a
form control. This code executes in an event where the user
clicks a Submit button. Please see Chapter06/Code/
ASPDelete_ai.aspx for the full source.

TYPE THIS:

String deleteCmd = "DELETE FROM titles WHERE title_id = @Id";
SqlCommand sqlcommandTitles = new SqlCommand(deleteCmd, sqlconnectionPubs);
sqlcommandTitles.Parameters.Add(new SqlParameter("@Id", SqlDbType.NVarChar, 6));
sqlcommandTitles.Parameters["@Id"].Value = inputTitleId.Text;

RESULT:

This produces a page that asks for a title ID. When a valid ID is provided, you
get an updated DataGrid control that shows a list of books that are in the 
pubs database (minus the record for the title that you deleted).

073617-6 Ch06.F  9/26/01  9:42 AM  Page 139



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page and set its 
properties.

ˇ Import the System.Data 
and System.Data. 
SqlClient namespaces.

Á Create the Page_Load 
event.

‡ Create a 
SQLConnection object and 
use a connection string to 
connect to the database.

° Create a 
SQLDataAdapter and set 
the SQL statement to retrieve 
business-type books using the 
SQLConnection object.

· Create a DataSet object.

‚ Populate the DataSet 
object.

ASP.NET Web pages provide some nice sorting
features that you can use when working with
SQL Data. When you work with large sets of

data, it is very important to have sorting capabilities.

First, you need to retrieve the desired data into a
DataView using a DataSet. See page 132 to see
how a DataSet is created. After you have this data in
your DataView, you can use the Sort property to
specify the column on which to sort. After you sort
the data, you can set the data source for the control
to the sort data and bind the data.

The DataGrid control provides the ability to sort
data by clicking on column headers. This is a nice
feature, and can easily be done by creating an event
procedure for the DataGrid’s OnSortCommand
event. In this event, you capture the
SortExpression on the DataGrid control and
pass it to a function that would sort the data and
rebind to the DataGrid control. You can control the
direction of the sort by appending ASC (for ascending
order) and DESC (for descending order) to the end of
the Sort property of the DataView that you use for
binding to the DataGrid control.

SORT DATA FROM A SQL DATABASE 

SORT DATA FROM A SQL DATABASE

140

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 140



— Create a DataView based 
on the DataSet that was 
filled.

± Sort the DataView on the 
title column with the Sort 
command.

¡ Set the DataSource and 
DataBind properties of the 
DataGrid on the page. 

™ Save the file and request it 
from the Web server.

� The table is sorted based 
on the Title column.

141

ACCESS DATA WITH ASP.NET 6
You can sort data by using the SortExpression Property on the DataGrid control. The
first set of code goes into a server-side form and the second part goes into a server-side
script block. Please see Chapter06/Code/ASPSort_ai.aspx for the full source.

TYPE THIS:

<ASP:DATAGRID ID="datagridTitles" RUNAT="Server" ALLOWSORTING="True" OnSortCommand="datagridTitles_Sort"/>
protected void datagridTitles_Sort
(Object sender, DataGridSortCommandEventArgs e) {

BindGrid(e.SortExpression);
}
public void BindGrid(String sortfield) {
SqlDataAdapter sqldataadapterTitles = new SqlDataAdapter("select title, notes, price"+
"from titles where type='business'", sqlconnectionPubs);

DataSet datasetTitles = new DataSet();
sqldataadapterTitles.Fill(datasetTitles, "titles");
DataView Source = datasetTitles.Tables["titles"].DefaultView;
Source.Sort = sortfield;
datagridTitles.DataSource=Source;
datagridTitles.DataBind();

}

RESULT:

This produces a DataGrid control that sorts the table by the column that is clicked.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 141



⁄ Open the 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page and set its 
properties.

ˇ Import the System.Data 
and System.Data. 
SqlClient namespaces.

Á Create the Page_Load 
event.

‡ Create a 
SQLConnection object and 
use a connection string to 
connect to the database.

° Create a 
SQLDataAdapter and set 
stored procedure using the 
SQLConnection object.

· Set the command type for 
the SQLAdapter.

‚ Add a parameter to the 
Command object.

Using stored procedures in your applications
produces faster and more secure data access as
compared to running SQL Statements directly

against your database. Stored procedures are
precompiled SQL statements that can be cached in
memory on your database server. Stored procedures
are a good way to control what types of queries you
allow your users to execute. Stored procedures can
be allowed or disallowed based on what type of user
is accessing the system. Also, by using stored
procedures, you will have all your SQL in one place
and not distributed throughout your code. This makes
maintenance much easier.

Stored procedures can have zero to many
parameters. Parameters enable you to pass data to

the stored procedure. This data can be used by the
stored procedure in a SELECT statement to filter data
with the WHERE clause. This parameter data can also
be used in INSERT, UPDATE, or DELETE statements
to modify data in your database. Like the ad hoc
queries, you are probably reading a majority of the
data for the parameters for the stored procedures
from controls on your Web page.

With stored procedures, you can also raise explicit
errors if a problem occurs while executing the SQL
that is in a stored procedure. It is good practice to
inspect for these errors after the stored procedure
returns control back to your server-side code.

EXECUTE STORED PROCEDURES 

EXECUTE STORED PROCEDURES

142

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 142



— Set the value for the 
command.

± Create a DataSet object.

¡ Populate the DataSet 
object.

™ Set the DataSource and 
DataBind properties of the 
DataGrid on the page. 

£ Save the file and request it 
from the Web server.

� The authors with a royalty 
percentage of 50% appear.

143

ACCESS DATA WITH ASP.NET 6
You can also read the parameters for your stored procedures from a form control on your ASP.NET Web
page. After users complete a form, they can click a Submit button, and the data can be read off the form
at that time. The first section of code goes into the body of an HTML page and the second section of code
goes into the click event of the button. Please see Chapter06/Code/ASPStoredProcedure_
ai.aspx for the full source.

TYPE THIS:

<FORM RUNAT="Server">
<ASP:DATAGRID ID="datagridTitles" RUNAT="Server" SHOWHEADER="False" VISIBLE="False"/>
<P/>
Enter the royalty percentage
<P/>
<ASP:TEXTBOX ID="inputPercentage" TEXTMODE="SingleLine" TEXT="" WIDTH="200px" RUNAT="Server"/><BR/>
<ASP:BUTTON OnClick="SubmitBtn_Click" TEXT="Submit" RUNAT="Server"/>
</FORM>
sqldataadapterTitles.SelectCommand.Parameters["@Percentage"].Value =
inputPercentage.Text;

RESULT:

This produces a page that asks for a royalty percentage. When the percentage is submitted, a
DataGrid control that contains a list of author IDs that meet the stored procedures criteria results.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 143



⁄ Open 
DataGridTemplate.aspx 
from the Code Templates 
directory.

¤ Add the SQL statement to 
retrieve a couple of columns 
from the titles table. 

‹ Add the DataGrid to the 
page and set properties.

› Configure a special 
column with the
<COLUMNS> tag.

ˇ Specify the title_id 
column as an 
<ASP:HYPERLINKCOLUMN> 
and set the other properties 
of the column.

Á Save the file as the 
master file.

Web developers commonly work with the
Master-Detail relationship when creating
ASP.NET Web pages. The Master-Detail

relationship usually appears as a column containing a
list of items. When a user clicks an item in that
column, another page with details about that
particular item appears. A classic example of this is
a customer order system, where you have a list of
customer orders and for each order you have one or
many items that make up an order.

To create a Master-Detail relationship, you work with
two pages. The first page contains a DataGrid bound
to data from a SQL database. You must define one of

the columns in the DataGrid as the column where the
user can click by using the <ASP:HYPERLINKCOLUMN>
tag. You then need to specify the field with the
DATANAVIGATEURLFIELD attribute, the page to be
linked to and how to format the URL with the
DATANAVIGATEURLFORMATSTRING attribute, and the
text for the column with the TEXT attribute.

After you finish the master page, you have to create
the detail page. On the detail page, you use the data
that was passed via the URL to execute a SQL query
against the database. You can then display the results
with another DataGrid or any other bound control
that best suits the detail data display.

WORK WITH MASTER-DETAIL
RELATIONSHIPS

WORK WITH MASTER-DETAIL RELATIONSHIPS

144

ASP.NET

073617-6 Ch06.F  9/26/01  9:42 AM  Page 144



‡ Open 
DataGridTemplate.aspx 
from the Code Templates 
directory.

° Add the SQL statement 
to retrieve the data based on 
what was passed through 
the URL.

· Save the file as the detail 
file.

‚ Request the master file 
from the Web server.

— Click the Details button.

� The full details about the 
title are displayed.

You can use the Hyperlink column to link an
item on a master list to a detail table for the
master item selected. To have a column
represented by a button, you could also use the
ButtonColumn or the EditCommandColumn.
Here are the definintions for the ButtonColumn
and EditCommandColumn.

Example:
<asp:ButtonColumn

ButtonType="LinkButton|PushButton"

Command="BubbleText"

DataTextField="DataSourceField"

DataTextFormatString="FormatString"

FooterText="FooterText"

HeaderImageUrl="url"

HeaderText="HeaderText"

ReadOnly="True|False"

SortField="DataSourceFieldToSortBy"

Text="ButtonCaption"

Visible="True|False"

/>

<asp:EditCommandColumn

ButtonType="LinkButton|PushButton"

CancelText="CancelButtonCaption"

EditText="EditButtonCaption"

FooterText="FooterText"

HeaderImageUrl="url"

HeaderText="HeaderText"

ReadOnly="True|False"

SortField="DataSourceFieldToSortBy"

UpdateText="UpdateButtonCaption"

Visible="True|False"

/>

145

ACCESS DATA WITH ASP.NET 6

073617-6 Ch06.F  9/26/01  9:42 AM  Page 145



⁄ Open 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading for the 
page.

‹ Add a message to the user. 

› Add a DataGrid control 
to the page.

ˇ Import the System.IO 
and the System.Data 
namespaces.

Á Add the Page_Load 
function to the page.

‡ Create a new DataSet 
object.

° Create a FileStream 
object and open the XML file 
on the Web server in Read 
mode.

· Create a StreamReader 
object and read in the file 
from the FileStream 
object.

‚ Read the XML into the 
DataSet.

— Close the FileStream 
object.

ASP.NET makes it easy for you to work with XML
Data Sources. XML is a W3C (www.w3c.org)
specified standard that is well accepted in the

software development industry for describing data in
text files. There are many companies that are adapting
XML as a standard for transporting lightweight data.
XML has become instrumental in having disparate
systems to have a way to communicate to each other.

Sometimes you may wish to keep certain data in XML
files on your Web server. XML is a very convenient
way to store and transport data in your applications.
You store XML documents in standard, nonbinary text

files. This makes it easy to work with the documents.
You can use any text-based viewer to inspect your
XML documents.

To work with the XML file, you must first work with
the FileStream object to open the file. Next, you
need a StreamReader object for reading the byte
stream from the FileStream object. The DataSet
object has a ReadXML method that you can use to
read the stream. After it has been read in, you can use
a DataView based on the DataSet. Finally, the
DataView can be bound to a DataGrid.

WORK WITH XML DATA SOURCES

146

ASP.NET

WORK WITH XML DATA SOURCES

073617-6 Ch06.F  9/26/01  9:42 AM  Page 146



± Create a new DataView 
and initialize it with the 
values read into the dataset.

¡ Set the DataSource for 
the DataGrid.

™ Bind the DataGrid.

£ Save the file and request it 
from the Web server.

� The goal category names 
and IDs appear.

If you change the index on the DataSet, you get
the list of all of the goals as opposed to the goal
categories.

Example:
DataView Source = new
DataView(datasetGoals.Tables[1]);

ADO.NET provides disconnected data access by
leveraging the simplicity and power of XML. The
architecture of ADO.NET is very tightly bound to
the .NET XML framework. ADO.NET and the .NET
XML framework converge in the DataSet
object. The native serialization format of the
DataSet in XML is a perfect choice for moving
data between tiers (including remote locations,
like the client’s browser).

XML is a key enabling technology for the .NET
Platform. To create XML for your applications, you
can select data out of Microsoft SQL Server 2000 as
XML. Microsoft SQL Server 2000 has made
enhancements to the OLE DB provider (SQLOLEDB)
to allow XML documents to be set as command text
and to return result sets as a stream.

147

ACCESS DATA WITH ASP.NET 6

073617-6 Ch06.F  9/26/01  9:42 AM  Page 147



⁄ Open and review the XML 
document that you want to 
transform. 

¤ Open and review the style 
sheet that is going to be used 
for the transformation.

Acommon task when working with XML
documents is to transform an XML document
with an XSL Transform document (also referred

to as a XSLT style sheet or document). The XSLT
document has information about how to format the
data contained in the XML document. The XSLT
document is described in XML like syntax. The
specification for how to properly write an XSLT
document can be found from the World Wide Web
Consortium (www.w3c.org).

The purpose of doing transformations is to either
create a new XML data source, format XML into a

presentation markup language like HTML (HyperText
Markup Language) or WML (Wireless Markup
Language), or to do both. The XML server control
<ASP:XML> makes performing transformations
simple. To work with the XML control, you need to
create a server form on an ASP.NET Web page. You
must set two important attributes on the control. The
first, DOCUMENTSOURCE, specifies the location of the
XML document; the second, TRANSFORMSOURCE,
indicates the location of the XSLT document. Add an
ID attribute and give the control a unique name so
that you can work with the control in code.

TRANSFORM AND DISPLAY XML

148

ASP.NET

TRANSFORM AND DISPLAY XML

073617-6 Ch06.F  9/26/01  9:42 AM  Page 148



‹ Open 
GenericTemplate.aspx 
from the Code Templates 
directory.

› Add a server form to the 
page.

ˇ Add an <ASP:XML> tag 
and set its document source 
equal to the filename of the 
style sheet and the transform 
source equal to the XML 
document.

Á Save the file and request 
the file from the Web server.

� The XML document is 
transformed and output as 
HTML to the Web browser.

149

ACCESS DATA WITH ASP.NET 6
You can do transformations programmatically. This gives you a
chance to ensure that the transformation executes without errors.
The following code transforms an XML document using a style sheet.

TYPE THIS:

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Xml" %>
<%@ Import Namespace="System.Xml.Xsl" %>
<HTML>
<HEAD>
<SCRIPT LANGUAGE="C#" RUNAT="Server">
void Page_Load(Object sender, EventArgs e) {

XmlDocument xmldocumentGoals = new XmlDocument();
xmldocumentGoals.Load(Server.MapPath("goals.xml"));
XslTransform xsltransformGoals = new XslTransform();
xsltransformGoals.Load(Server.MapPath("goals.xsl"));
xmlGoals.Document = xmldocumentGoals;
xmlGoals.Transform = xsltransformGoals;

}
</SCRIPT>
</HEAD>
<BODY>
<FONT FACE="Verdana">
<FORM RUNAT="Server">
<ASP:XML ID="xmlGoals" RUNAT="Server" />
</FORM>
</FONT>
</BODY>
</HTML>

RESULT:

This produces an HTML
page that is a result of
transforming goals in an
XML document to HTML.

073617-6 Ch06.F  9/26/01  9:42 AM  Page 149



BENEFITS OF WEB SERVICES

Web Services enable you to expose business logic and
data over the internet. The protocols for accessing Web
Services are open standards which make them available
for consumption or production by any platform.

One of the large benefits of Web Services is the ability
to pull data or apply business logic from many disparate
systems and roll them into one application. For
example, you can have a Web Service Client that
accesses data from several servers’ Web Services. This is
advantageous for rolling up several data sources in your
organization or for combining Web Services from
different companies to create an application that
leverages the “best in breed” in services that are
provided on the Web.

As seen in the diagram, a user’s browser can access a
Web server’s data in one of two ways. One way is the
traditional way via an Active Server Page (ASPX) which

is a presentation layer that can connect to business
services that obtain data from a SQL data store. The
other way is by accessing Web Services through a Web
Service Client that has the potential to access one to
many Web Services on one to many Web servers. This
provides new capabilities in distributed computing.

Another benefit to Web Services is security. Exposing
Web Services over HTTP, where the communication
port can be explicitly set, allows for better control over
security. The security issues are easier to control than
Distributed Component Object Model (DCOM) access,
which is over the range of ports that are allocated for
Remote Procedure Calls (RPC). Also, for HTTP access
over a single port, there are many well-established
products that can provide control over port access and
HTTP commands in packets.

INTRODUCTION TO WEB SERVICES

ASP.NET

150

WEB SERVICE BASICS

Web Services are units of application logic that provide
data and services to other applications. Web Services are
the next generation for programming Internet-based
applications. Web Services combine the best aspects of
component-based development and the Web.
Applications can access Web Services through standard
protocols and data formats like HTTP, XML, and SOAP.

ASP.NET Web Services provide the simplest way to
implement Web Services. ASP.NET Web Services
automatically generate Web Services Description
Language, WSDL, and Web Services Discovery, Disco,
files for your Web Services. You can use ASP.NET Web
Services to implement a Web Service listener that

accesses a business façade implemented as a managed
class using any compliant .NET language. The .NET
Framework SDK also provides tools to generate proxy
classes that client applications can use to access Web
Services.

A Web Service interface is defined strictly in terms of
the messages the Web Service accepts and generates. In
ASP.NET, Web Services are implemented with Web
Methods that have input parameters and a return value.
Consumers of ASP.NET Web Services can be
implemented on any platform in any programming
language, as long as they can create and consume the
messages defined for the Web Service interface.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 150



WORK WITH WEB SERVICES

BENEFITS OF WEB SERVICES (CONTINUED)

Web
Browser

Web Server

Web Server

Web Service High Level Architecture

Web
Service
Client

ASPX Listener

Business Facade Layer

Business Logic Layer

Data Access Layer

Data

Internet

WEB SERVICE PROTOCOLS AND STANDARDS

ASP.NET Web Services support service requests using
SOAP over HTTP, as well as HTTP GET or POST.

The use of XML is central to the architecture of the .NET
Platform, and Web Services is no exception. The most
feature-rich access is through Simple Object Access
Protocol (SOAP). SOAP is a lightweight XML protocol that
defines the two way communication that occurs between
Web Service Clients and Servers. For Microsoft-based
Web Services, the SOAP specification defines a set of
rules for how to use XML to represent data, define
message envelops — requests and responses — bindings
to the HTTP protocol, and RPC over HTTP.

Although SOAP is the preferred way to access Web
Services, you can also easily access a Service with an
HTTP GET or POST. With the HTTP GET, you call a Web
Service with parameters by providing a URL with a
query string that holds the parameters. For example,
you can call the Web Service with the following URL,
http://server/ WebService.asmx/
WebMethod?name=value. Where server is the
Web server path to the where the Web Service is
located, WebService.asmx is the Web Services
file, WebMethod is the desired Web Method on the
Web Service, and ?name=value is the parameter for
the Web Method.

151

7

083617-6 Ch07.F   9/26/01  9:43 AM  Page 151



⁄ Open a new document in 
your text editor.

¤ Add a WebService 
directive to the page.

‹ Set the Language in the 
directive.

› Give the WebService 
class a name. 

ˇ Create an alias for the 
System namespace.

Á Create an alias for the 
System.Web.Service 
namespace.

Web Services allow your business objects over
HTTP. You can create a very simple Web
Service in relatively few steps.

Web Services enable client applications to
communicate to server components over the internet
using the HTTP protocol. Web Services are requested
over HTTP by HTTP-GET, HTTP-POST, or HTTP-SOAP.
The most functional access method is HTTP-SOAP
access. The SOAP access formats requests and
responses from client to server with messages using
XML for formatting the message contents.

To write a Web Service, you create a text file with an
.asmx extension. You must add a directive at the top

of the page to specify the Web Service language, the
class that implements the Web Service, and optionally
the assembly containing the implementation.
The assembly is required if you do not include the
Web Service class inside of your ASMX file. The
assembly needs to be in the /bin directory
underneath the Web application that contains the
Web Service.

For the class that is either embedded in the Web
Service file, *.asmx, or in a separate file, *.cs, you
must determine which methods in your class are
exposed to Web Service clients. To expose methods
in a class to Web Service clients, you must apply the
WebService attribute to a public method.

CREATE A SIMPLE WEB SERVICE

152

ASP.NET

CREATE A SIMPLE WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 152



‡ Create the 
SimpleWebService class 
as a WebService.

° Create a WebMethod by 
placing the attribute before 
the method declaration.

· Add a public method 
that returns a string variable.

‚ Set the return value for the 
function.

— Save the file to the Web 
server with an .asmx 
extension.

153

WORK WITH WEB SERVICES 7
Using the System.Random class to create pseudo-random numbers and a simple
switch statement you can create a Web Service that returns a random daily goal.

TYPE THIS:

<%@ WebService Language="C#" Class="SimpleWebService_ai" %>
using System;
using System.Web.Services;

public class SimpleWebService_ai : WebService {
[WebMethod] public string GetRandomDailyGoal() {

Random randomNumber = new Random();
int intNumberOfGoals = 3;
string stringGoal = "";
int intRandomNumber = randomNumber.Next(intNumberOfGoals);
switch(intRandomNumber){

case 0:
stringGoal = "Drink 8 glasses of water."; break;

case 1:
stringGoal = "Exercise for 30 minutes."; break;

case 2:
stringGoal = "Call your Mom."; break;

default:
goto case 2;

}
return stringGoal;
}

}

RESULT:

A Web Service that will
generate a random daily
goal each time the service
is requested.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 153



⁄ Open a Web browser and 
navigate to the Web Service 
file.

� The Web Service class 
appears. 

� The WebMethod appears 
as a hyperlink. 

¤ Click the hyperlink.

‹ Scroll down the page to 
view samples of a SOAP, 
HTTP Get, and HTTP Post 
request and response for the 
Web Service.

After you create your Web Service, you can test
it. ASP.NET automatically generates pages for
testing a Web Service when the Web Service

ASMX file is requested with your Web browser. You
can use these pages to see what is returned from the
Web Service.

You do not need to create any additional pages for
testing out a simple Web Service. Simply request the
Web Service file — *.asmx— with your Web
browser. The first page that you see displays the Web
Service class name and all of the Web methods that

are available for that Web Service class. You can click
the Web Method name that you want to test. The
next page displays an Invoke button that you can use
to call the Web Method. If you have parameters for
the Web Method, you will see a text box for entering
each parameter value. After you click Invoke, another
instance of Internet Explorer opens, and the XML that
is generated from the request displays the results. If
you do not have a Web Service to test, see page 152.

TEST A WEB SERVICE

154

ASP.NET

TEST A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 154



› Click the Invoke button. � The HTTP Post response 
appears.

155

WORK WITH WEB SERVICES

You can create a custom test page if you have special testing needs. The
following is a Web page that you can use to create a custom testing page. The
response from the Web Service will remain in the same Web browser window.

TYPE THIS:

<HTML>
<HEAD>

</HEAD>
<BODY>
<FONT FACE ="Verdana">

<H3>Test the Simple Web Service</H3>

<FORM ACTION='http://localhost/visualaspdotnet/Chapter07/Code/SimpleWebService.asmx/SayWelcomeStatement'>
<INPUT TYPE="Submit" VALUE="Test">
</FORM>

</FONT>
</BODY>
</HTML>

RESULT:

A test page that is very similar to the automatically generated test page for a Web Service.

7

083617-6 Ch07.F   9/26/01  9:43 AM  Page 155



⁄ Open the WebServices 
Template.aspx template 
from the Code Templates 
directory.

¤ Rename the class to 
ParameterWebService.

‹ Create a WebMethod with 
a parameter in the function 
signature.

› Use the parameter the 
caller passes to the 
WebMethod for formatting 
the welcome statement.

For most of your Web Services, you will want to
pass parameters when invoking a Web Service
method. These parameters give the method

context to the Web client’s specific needs from the
Web Service. For example, a Web Service client can
make a request for its goals for the next three
months. Parameters that would be useful in this Web
Service request are the customer’s ID and the time
frame for requesting goals (the next three months).

Creating a Web Service that accepts data for a
parameter requires the same steps that it takes to
create a Web Service without parameters. However,

in the function declaration for the Web Method, you
must specify information on the parameter type and
parameter name for each parameter needed to
invoke the method. After you do this, you can use the
data passed to the Web Service by referencing it by
the parameter name.

Testing a Web Service method that has parameters is
very similar to testing a method without parameters.
The only difference is that the test page will include
labeled text boxes for each parameter that is specified
on the Web Service method.

USING A PARAMETER
WITH A WEB SERVICE

156

ASP.NET

USING A PARAMETER WITH A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 156



ˇ Save the file and request it 
from the Web server.

Á Click the WebMethod 
to test.

‡ Fill in your name for the 
parameter.

° Click the Invoke button.

� The parameterized 
welcome message appears.

157

WORK WITH WEB SERVICES

You can create a Web Service method by leveraging other
methods in the class that implement the Web Service. The
following sample demonstrates this concept in a Web Service
class (refer to this book’s CD-ROM for an expanded example).

TYPE THIS:

public class ParameterWebService_ai : WebService {
[WebMethod] public string GetRandomGoal(string stringGoalTimeLength) {

stringGoalTimeLength = stringGoalTimeLength.ToUpper();
if (stringGoalTimeLength != "DAILY" & stringGoalTimeLength != "YEARLY")

stringGoalTimeLength = "DAILY";
string stringGoal = "";
int intRandomNumber = 1;  // Replace this with random number.

if (stringGoalTimeLength == "DAILY")
stringGoal = DailyGoal(intRandomNumber);

else if (stringGoalTimeLength == "YEARLY")
stringGoal = YearlyGoal(intRandomNumber);

return stringGoal;
}
public string YearlyGoal (int intRandomNumber) {

string stringGoal = "Yearly Goals";
return stringGoal;

}     
public string DailyGoal (int intRandomNumber) {

string stringGoal = "Daily Goal";
return stringGoal;

}     
}

RESULT:

A Web Service that
will give a goal based
on the time frame
provided. This Web
Service method will
utilize other methods
in the Web Service
class.

7

083617-6 Ch07.F   9/26/01  9:43 AM  Page 157



⁄ Open the WebServices 
Template.asmx template 
from the Code Templates 
directory.

¤ Rename the class to 
ArrayWebService.

‹ Create a WebMethod that 
returns a string array.

› Create a string array 
variable for holding the goals.

You can return more complex data types from
your Web Services. For example, you can return
arrays from a Web Service. Having the ability to

return arrays from a Web Service enables you to pass
back to the client a dynamic number of return values.
With arrays, the return values will all be of the same
data type, such as strings, integers, and so on.

To return an array from a Web Service, you need to
first create a Web Service file containing a Web
Method. The Web Method must define the array for
the return type. In the Web Method, write the code
that populates the array and specifies the return as
the newly created array. When you test the Web
Service, the array is designated by the

ArrayOfDataType element, and each member in
the array will be a child element specified by the
name of the data type. For example, the return that is
an array of strings would generate the following XML:

<ArrayOfString>

<string>First string member</string> 

<string>Second string member</string> 

<string>Third string member</string> 

</ArrayOfString>

With this returned array, the client can work with the
returned array to present the data in the client
application. Note that arrays are zero based.
Therefore, the first member of the array will be
accessed with arrayName[0].

RETURN AN ARRAY
FROM A WEB SERVICE

158

ASP.NET

RETURN AN ARRAY FROM A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 158



ˇ Read the goals into the 
array.

Note: The array is zero based.

Á Return the string array. ‡ Save the file and test the 
Web Service.

� The Web Service returns 
an array.

Note:  The ArrayOfString element is 
used.

Note: Nested string elements are used 
for the string array.

159

WORK WITH WEB SERVICES 7

You can create a Web Service that returns a string array with a variable
number of members based on an input parameter. For example, the
following Web Service creates a string array with either one, two, or
three goals returned based on the number of goals requested.

TYPE THIS:

<%@ WebService Language="C#" Class="ArrayWebService_ai" %>
using System;
using System.Web.Services;

public class ArrayWebService_ai : WebService {
[WebMethod] 
public string[] GetGoals(int intNumberOfGoals) {

if (intNumberOfGoals > 3) intNumberOfGoals = 3;
if (intNumberOfGoals < 1) intNumberOfGoals = 1;
string[] stringarrayGoals = new string[intNumberOfGoals];
stringarrayGoals[0] = "Regular exercise at the gym (3 days a week)";

if (intNumberOfGoals == 2 | intNumberOfGoals ==3)
stringarrayGoals[1] = "A patient better driver";

if (intNumberOfGoals == 3)
stringarrayGoals[2] = "Keep in contact with old friends";

return stringarrayGoals;
}

}

RESULT:

An array of goals. The
number of goals
returned is dependent
on the number the
client provides.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 159



⁄ Open the WebServices 
Template.aspx template  
from the Code Templates 
directory.

¤ Rename the class to 
EnumeratedTypeWebService.

‹ Create a public 
enumeration for the 
GoalType.

› Create three enumerated 
types.

Returning enumerations from a Web Service is
useful when you have a set of fixed values for a
variable. For example, you can define an

enumeration to classify the types of goals a user can
set in your application.

First you must add the definition of the enumeration
into your Web Service file. After creating the
enumeration, you can use the enumeration name as
the return type for your Web Method. To return an
enumeration, you can use the name of the
enumeration and the desired member to return,
separated by a period. For example, you can return
the Travel member from the GoalType enumeration
by using return GoalType.Travel.

To create an enumeration, you can set constant values
for each enumeration or let the value for the constant
be created automatically. For client applications that
use Web Services with enumerations, you need to
determine if the client application needs to work with
the enumeration by its name or value. If you work
with the enumeration by name, you need to define
the enumeration in the client application to be able
to access the value for the enumeration. If the client
application is not aware of the enumeration, you will
pass back the enumeration’s value.

RETURN AN ENUMERATED
TYPE FROM A WEB SERVICE

160

ASP.NET

RETURN AN ENUMERATED TYPE FROM A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 160



ˇ Add a WebMethod that 
returns the GoalType 
enumeration.

Á Return the value for a 
specific enumeration.

‡ Save the file and test the 
Web Service. 

� The GoalType element 
and value appear.

161

WORK WITH WEB SERVICES 7

Instead of returning the enumeration by name, you can 
return the constant value for the enumeration.

TYPE THIS:

<%@ WebService Language="C#" Class="EnumeratedTypeWebService_ai" %>
using System;
using System.Web.Services;

public enum GoalType{
Career = 1,
Educational = 2,
Travel = 3
}

public class EnumeratedTypeWebService_ai : WebService {

[WebMethod]
public int GetGoalTypeConstantValue(GoalType goaltypeMember) {

return (int) goaltypeMember;
}

}

RESULT:

This Web Service
takes in an
enumeration
member and returns 
its constant value.
For example, when
you test this with
“Travel” for the
goaltypeMember,
the response is 3.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 161



⁄ Open the WebServices 
Template.aspx template  
from the Code Templates 
directory.

¤ Rename the class to 
ObjectWebService.

‹ Create a public class for 
goals.

› Create GoalId, Type, 
and Name properties for a 
goal.

Returning objects from a Web Service enables
you to pass very complex return information to
the Web Service Client. You can define your

own objects and return objects from a Web Service.
For example, you can define a Goal class and return
a Goal object from your Web Service.

You can return an object from a Web Service if the
Web Service has access to a class declaration. The
class declaration defines which members are parts of
the class. For example, adding a GoalId property to
the class and specifying the data type for the property
allows for storage of a Goal Identifier. This would be

repeated for other required members of the class.
With this class, you can use the name of the class as
the return type for the Web Method.

In a Web Method that returns a class, you create a
new object as the object type defined in the Web
Service file and then populate the properties of the
object. This stateful object can then be passed back
to the client. The client uses the returned object to
obtain values it needs by accessing the object’s
properties. For more information on working with
objects and object properties, see page 44.

RETURN AN OBJECT
FROM A WEB SERVICE

162

ASP.NET

RETURN AN OBJECT FROM A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 162



ˇ Add a WebMethod that 
returns the Goal class.

Á Create a new Goal 
variable.

‡ Set the GoalId, Type, 
and Name properties.

° Return the object.

· Save the file and test the 
Web Service. 

� The Goal object returns 
from the Web Service.

163

WORK WITH WEB SERVICES 7

You can determine which instance of an object to return
based on an input parameter of the Web Services Method.

TYPE THIS:

<%@ WebService Language="C#" Class="ObjectWebService_ai" %>
using System; using System.Web.Services;

public class Goal{
public int GoalId; public string Type; public string Name;

}
public class ObjectWebService_ai : WebService {

[WebMethod] public Goal GetTravelGoal(int intGoalId) {
Goal goalUser = new Goal();
switch(intGoalId){

case 1:
goalUser.GoalId = 1; goalUser.Type = "Travel";
goalUser.Name = "Travel to all seven continents";  
break;

case 2:
goalUser.GoalId = 2; goalUser.Type = "Travel";
goalUser.Name = "Travel to Asia";  
break;

default:
goto case 2;

}
return goalUser;

}
}

RESULT:

A Web Service that
will return an object
that has a state that
depends on what is
passed into the Web
Service Method. The
return is a stateful
Goal object.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 163



⁄ Open the WebServices 
Template.asmx template 
from the CD-ROM.

¤ Rename the class to 
XMLWebService.

‹ Add an alias for the 
System.Xml namespace.

› Add a WebMethod that 
returns the XmlDocument 
class.

Returning XML from a Web Service is useful
when passing hierarchical data back to a Web
Service Client. When passing back XML, you can

construct your own XML strings or use the XML
framework classes to simplify the construction of the
XML. For example, you can build a list of goals along
with any important attributes of those goals in an
XML document and return this XML from your Web
Service.

To return XML from a Web Service, you need to build
XML in the Web Service Method. The XML that is
built in the Web Service Method can originate from a

variety of sources. Your can build XML: a) from
scratch by concatenating strings that represent your
XML; b) from scratch using the System.XML
namespace; c) by loading an existing XML document;
d) by transforming an XML document with an XSLT
document into a new XML document; or e) by using
Microsoft’s SQL Server’s XML query engine.

This is not an exhaustive list of XML sources, but it
gives you a good idea of the possibilities. See pages
146 to 149 for more.

RETURN XML FROM A WEB SERVICE

164

ASP.NET

RETURN XML FROM A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 164



ˇ Create a new 
XmlDocument variable.

Á Load an XML string into 
the XmlDocument.

‡ Return the XmlDocument 
variable.

° Save the file and test the 
Web Service.  

� The XmlDocument 
returns from the Web Service.

165

WORK WITH WEB SERVICES 7

You can load an external XML document using the
System.XML namespace. For example, the Web Service
below returns all Goals in the goals.xml document.
Notice the use of the Server.MapPath function that
returns the location of the file on the server.

TYPE THIS:

<%@ WebService Language="C#" Class="XMLWebService_ai" %>

using System;
using System.Web.Services;
using System.Xml;

public class XMLWebService_ai : WebService {
[WebMethod]
public XmlDocument GetAllGoals(){

XmlDocument xmldocumentGoals = new XmlDocument();
xmldocumentGoals.Load(Server.MapPath("goals.xml"));
return xmldocumentGoals;     

}
}

RESULT:

A Web Service that
returns an XML
document from the
Web server that
contains a list of goals.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 165



⁄ Open the WebServices 
Template.asmx template 
from the Code Templates 
directory.

¤ Rename the class to 
SQLDataWebService.

‹ Add an alias for the 
System.Data and 
System.Data.SqlClient 
namespaces.

› Add a WebMethod that 
returns the DataSet class.

ˇ Create a new 
SqlConnection object to 
connect to the database and 
initialize the connection with 
the connection string to 
connect to the Pubs database.

Having the ability to access databases from a Web
Service enables you to build applications that
require data from various sources. Originating

data from a SQL data store is one way to provide
interoperability between applications. The SQL data
can be central data storage for any application that can
connect and issue commands against the SQL data
store. This shared data is one way to enable
applications to interact with each other.

There are a number of steps that you have to take to
provide SQL Data from your Web Service. The first is
to add the SQL.Data and the SQL.Data.SQLClient
aliases so you can work with the objects in those

namespaces. The SQL.Data.SQLClient is optimized
to Microsoft SQL Server databases; if you want access
to other SQL data stores, you can reference the
SQL.Data.OleDb namespace. You can then create a
Web Method that will return a DataSet object. In the
Web Method, you create a connection to the
database, retrieve the data using a SQL statement, and
return the data that was retrieved.

When creating Web Services that access data, you
need to also consider what parameters you need to
return the data (for example, primary keys). To learn
more about working with data access, see page 126.

RETURN SQL DATA
FROM A WEB SERVICE

166

ASP.NET

RETURN SQL DATA FROM A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 166



Á Create a new 
SqlDataAdapter variable 
that uses the 
SqlConnection object and 
a SQL string for retrieving 
business titles.

‡ Create a DataSet object.

° Fill the DataSet object 
using the SqlDataAdapter 
object.

· Return the DataSet 
object.

‚ Save the file and test the 
Web Service. 

� The SQL data returns from 
the Web Service.

� Note the SQL data in the 
response.

167

WORK WITH WEB SERVICES 7
The task returned the business titles as a Web Service. You can also provide a Web
Service that takes in the type of book and returns the SQL data for that type of book.

TYPE THIS:

<%@ WebService Language="C#" Class="SQLDataWebService_ai" %>
using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;

public class SQLDataWebService_ai {
[WebMethod] public DataSet GetTitles(string stringTitleType) {

stringTitleType = stringTitleType.ToLower();
if (stringTitleType != "trad_cook" & 

stringTitleType != "mod_cook" & stringTitleType != "business")
stringTitleType = "business";

string stringSQLStatement = "select title, notes, price " +
"from titles where type='" + stringTitleType + "'";

SqlConnection sqlconnectionPubs = new SqlConnection
("server=(local)\\NetSDK;uid=QSUser;pwd=QSPassword;"
+ "database=pubs");

SqlDataAdapter sqldataadapterTitles = new SqlDataAdapter 
(stringSQLStatement, sqlconnectionPubs);

DataSet datasetTitles = new DataSet();
sqldataadapterTitles.Fill(datasetTitles, "Titles");
return datasetTitles;

}
}

RESULT:

This produces a Web
Service that returns a
DataSet for the type
of title requested.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 167



⁄ Open the WebServices 
Template.asmx template 
from the Code Templates 
directory.

¤ Rename the class to 
SessionWebService.

‹ Add a WebMethod that 
returns a string variable with 
the Session state enabled.

› Add an if statement to 
initialize the Session 
variable.

Working with the Session object in a Web
Service gives your Web Services the
capability to have variables that can be used

across different requests to Web Services during the
same user session.

The process for using the Session object is simple.
When you declare the Web Method that uses
Session, you need to specify that Session is
enabled. You do this by adding (EnableSession =
true) just after WebMethod. By default, WebMethods
do not have Session enabled. After enabling the
session, you can access the Session object.

You can use Session to track state from page to
page requests for a particular user. You can work
with the Session object in different states such
as New Session, Existing Session, and
Abandoned Session.

You can use New session when the user does not
have an existing valid session. New session enables
you to initialize the Session object by setting any
Session variables to any initial value. You can use
Existing Session on subsequent requests to
update or access Session variables. You can use
Abandoned Session when the Session times out
or you abandon the session. You will need to perform
any cleanup necessary that is associated with the
Session object. For more information on working
with the Session object, see page 226.

WORK WITH THE SESSION OBJECT
IN A WEB SERVICE

168

ASP.NET

WORK WITH THE SESSION OBJECT IN A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 168



ˇ Add an else statement to 
increment the Session 
variable by one.  

Á Return a formatted 
message to the user using the 
Session variable.

‡ Save the file and test the 
Web Service.  

� The Web Service returns a 
message about the number of 
times the service has been 
accessed.

° Refresh the Web page.

� The number of times the 
service has been accessed is 
incremented.

169

WORK WITH WEB SERVICES 7

With the session Web Service, you can retain state across requests to a Web Service.

TYPE THIS:

<%@ WebService Language="C#" Class="SessionWebService_ai" %>
using System;
using System.Web.Services;

public class SessionWebService_ai : WebService {

[ WebMethod(EnableSession=true) ]
public String RememberName(string stringName) {

string stringPreviousName = "";
string stringCurrentName = "";

if (Session["sessionName"] == null) {
stringPreviousName = "Null";

}
else {

stringPreviousName = Session["sessionName"].ToString();
}
Session["sessionName"] = stringName;
stringCurrentName = stringName;
return "The previous value for the session variable was " + 

stringPreviousName + ".  The new value for the session variable is "
+ stringCurrentName + ".";

}
}

RESULT:

This produces a
Web Service that
returns information
on the current
request and
preceding request.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 169



⁄ Open the WebServices 
Template.aspx template 
from the Code Templates 
directory.

¤ Rename the class to 
ApplicationWebService.

‹ Add a WebMethod that 
returns a string variable with 
the Session state disabled.

› Add an if statement to 
initialize the Application 
variable. 

You can work with the Application object in a
Web Service to enable your Web Services to use
variables across all requests to Web Services.

The Application object does not require Session
to be enabled, so you can either leave the Web
Method definition as the default or add the
EnableSession=false statement to explicitly
disable Session. Application data is available in your
ASP.NET applications.

In many ways, working with the Application object
is similar to working with the Session object. You
have the ability to initialize Application variables
when the Application object is accessed and there

is not an existing Application object. You can
access or update Application variables each time a
page is requested. You also have the ability to clean
up objects or other memory when the Application
shuts down.

You want to be aware that all issues associated with
the Application object are applicable when using
the Application object in Web Services. For
example, you need to lock Application variables to
ensure the serial access to Application variables.
To learn more about working with the Application
object, see page 222.

WORK WITH THE APPLICATION
OBJECT IN A WEB SERVICE

170

ASP.NET

WORK WITH THE APPLICATION OBJECT IN A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 170



ˇ Add an else statement 
to increment the 
Application variable 
by one.  

Á Return a formatted 
message to the user using 
the Application variable.

‡ Save the file and test the 
Web Service.

� The Web Service returns a 
message about the number of 
times the service has been 
accessed.

° Refresh the Web page.

� The number of times the 
service has been accessed is 
incremented.

171

WORK WITH WEB SERVICES 7

To prevent corruption of your Application variables, it is a good
idea to lock the Application variable before you update it.

TYPE THIS:

<%@ WebService Language="C#" Class="ApplicationWebService_ai" %>
using System; 
using System.Web.Services;

public class ApplicationWebService_ai : WebService {
[ WebMethod(EnableSession=false)]
public String UpdateAppCounter() {

if (Application["applicationHitCounter"] == null) {
Application.Lock();
Application["applicationHitCounter"] = 1;
Application.UnLock();

}
else {

Application.Lock();
Application["applicationHitCounter"] = 

((int) Application["applicationHitCounter"]) + 1;
Application.UnLock();

}   
return "This service has been accessed " + 

Application["applicationHitCounter"].ToString() + 
" times.";

}
}

RESULT:

This produces a Web
Service that returns
the current hit count
of a Web Service.
Note that the
updating of the
Application
variable, which
keeps track of the
count, is locked
during the update.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 171



⁄ Open the command 
prompt.

¤ Change directories to 
where the Web Service is 
located.

‹ Run  the wsdl command 
to create a proxy class for the 
Web Service.

› Compile the proxy class to 
the /bin directory.

� The proxy class is created 
and compiled.

ˇ Open 
GenericTemplate.aspx 
from the Code Templates 
directory. 

Á Add a form to the page.

‡ Add a Label control to 
the form.

To consume a Web Service, you can create Web
Service Clients. ASP.NET framework creates
clients for you automatically if you access the

Web Service file (*.asmx) directly. For your custom
applications, you need to create your own client to
call Web Services.

You need to walk through a couple of steps to enable
a Client Web Page. The first is to create a service
definition file. This can be created using the disco
command and passing the URL to the Web Service.
This will create a service definition file. You then need
to use this service definition file to create a proxy

class for the Web Class. You use the wsdl command
to pass the service definition file name to it. The
result of running this command is a proxy class that
you now need to compile to the bin directory as a
library. You can use the csc command to compile the
class.

After you compile the class, you can then import the
namespace of the Web Service into the Web Page
that will consume the Web Service. On the client
Web page, you create an instance of the Web Service
just like any other .NET object. After you create an
instance, you can call methods from the Web Service.

CREATE A CLIENT WEB PAGE
FOR A WEB SERVICE

172

ASP.NET

CREATE A CLIENT WEB PAGE FOR A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 172



° Add the Page_Load 
function to the page.

· Create a new instance of 
SimpleWebService.

‚ Set the result of calling the 
SayWelcomingMessage 
from the 
SimpleWebService into a 
string variable.

— Update the Label control 
with the result.

± Save the file and request it 
from the Web server.

� A welcome message from 
the Web Service appears.

173

WORK WITH WEB SERVICES 7

You can also pass data to a Web Service from a control on a form on a Web page. To run this code, you
need to run the ClientWebService_ai.bat that creates and compiles the proxy classes for this code.

TYPE THIS (IN THE SERVER SCRIPT BLOCK):

protected void Page_Load(Object Src, EventArgs E){

if (!Page.IsPostBack){

SimpleWebService simplewebserviceMessage = new SimpleWebService();

string stringMessage = simplewebserviceMessage.SayWelcomeStatement();

labelMessage.Text = stringMessage;}

else{

ParameterWebService parameterwebserviceMessage = new ParameterWebService();

string stringMessage =   

parameterwebserviceMessage.SayWelcomeStatement(textboxName.Text);

labelMessage.Text = stringMessage;          }}

RESULT:

A Web page displays the greeting. If you submit the page with your name,
it will call a different Web Service that customizes greeting with your name in it.

083617-6 Ch07.F   9/26/01  9:43 AM  Page 173



⁄ Open a new document in 
your text editor.

¤ Import the System 
namespace.

‹ Create a new class.

› Create the Main function.

ˇ Create an integer variable 
in the Main function.

Á Create a new instance of 
ApplicationWebService.

‡ Set the result of calling the 
UpdateApplication 
Counter from the 
ApplicationWebService 
into an integer variable.

° Format and write the 
result to the command line.

You can use a Console Application as a test
harness for a Web Service. ASP.NET Web
Services can be easily consumed by WinForm

Applications or Console Applications.

Accessing a Web service from a console application
requires many of the same steps as accessing it from a
Web page. The first step is to create a service
definition file by using the disco command and
passing the URL to the Web Service. This will create a
service definition file. You then need to use this
service definition file to create a proxy class for the
Web Class. You can use the wsdl command to pass

the service definition file name to it. The result of
running this command is a proxy class that you now
need to compile to the bin directory as a library. You
can use the csc command to compile the class.

After you have compiled the class, you can then
import the namespace of the Web Service into the
Console Application that will consume the Web
Service. Within the Console Application, you can
create an instance of the Web Service. After you have
created an instance, you can call methods from the
Web Service and display results to the console.

CREATE A CLIENT CONSOLE
APPLICATION FOR A WEB SERVICE

174

ASP.NET

CREATE A CLIENT CONSOLE APPLICATION FOR A WEB SERVICE

083617-6 Ch07.F   9/26/01  9:43 AM  Page 174



· Open the command 
prompt.

‚ Change directories to 
where the Web Service is 
located.

— Run the wsdl command 
to create a proxy class for the 
Web Service.

± Compile the console class 
and the Web Service.

� The proxy class is created 
and compiled and the 
console application is 
compiled.

¡ Run the created 
executable a couple 
of times.

� A message from the Web 
Service appears about the 
number of times the Web 
Service has been accessed.

175

WORK WITH WEB SERVICES 7

You can also pass data to the Web Service from the Console
Application via a command line parameter. To run this code, you
need to run the ConsoleWebService_ai.bat that creates and
compiles a proxy class and Web Service Client for this code.

TYPE THIS:

using System;

class ConsoleWebService{
public static void Main(string[] args) {

int intInitialize = Convert.ToInt32(args[0]);
if (intInitialize >= 0) {

ApplicationWebService_ai 
applicationwebserviceCounter = new 

ApplicationWebService_ai();

string strHitCountMessage = 
applicationwebserviceCounter.

UpdateApplicationCounter(intInitialize);
Console.WriteLine(strHitCountMessage);

}
}  

}

RESULT:

C:\>ConsoleWebService_ai.bat

C:\ >ApplicationWebService_ai.exe 10

This service has been accessed 10 time(s).

083617-6 Ch07.F   9/26/01  9:43 AM  Page 175



Components enable you to encapsulate business
logic that can be reused across several
applications. You can create managed classes in

C# or any other .NET compliant language to create
your reusable components.

The process for creating a simple component starts
with creating a C# source file. In this source file you
first declare the namespace for the classes contained
in the source file. In your C# source file, you need to
add functions to hold your business logic. For
instance, in the simple component example you have
a function, called SayWelcomeStatement, that
returns the same string message to any caller. Note as

well that you create an alias to the System namespace
in the C# source file.

When you finish creating the code, you need to
compile the program using the csc command at the
command prompt. You use this compiler to create a
DLL with your source code. To use the component on
Web pages in your site, you need to place the
compiled DLL in the /bin directory of the Web site.
To reference the component, you need to import the
namespace that you specified in the source file. After
you have done this, you can create an instance of the
class created and call functions in that class.

CREATE A SIMPLE COMPONENT

ASP.NET

⁄ Open a new document in 
your text editor.

¤ Create a new namespace.

‹ Add an alias to the 
System namespace.

› Create a public class.

ˇ Create a public function 
that returns a string variable.

Á Return a message to the 
caller. 

‡ Save the file.

Note: In this example, the file is 
being saved to the default Web site 
location at C:\InetPub\wwwroot.

176

CREATE A SIMPLE COMPONENT

093617-6 Ch08.F  9/26/01  9:43 AM  Page 176



Aliases enable you to reference classes without full qualification of the
class. Aliases are set by placing the using keyword before a
namespace. Using aliases can help reduce the length of your code,
making it easier to read.

Example:
Using Transformer = system.xml. xsl.xsltransform;

Batch files are very useful to take care of repetitive tasks like compiling
a component. For example, the C# components for this chapter all
come with batch files on the CD-ROM that have the csc commands
for compiling the component. Look in the Code directory for this
chapter and find a batch file with the same name as the component
you create in the task (for example, SimpleComponent.bat is
used to create SimpleComponent). Open this file with a text
editor and find the following source: csc /t:library
/out:bin\SimpleComponent.dll SimpleComponent.cs.
You can use these batch files by simply typing in the name of the
component (for example, SimpleComponent) while at the command
prompt. Note: You must navigate to the directory where the batch file
and the component source code are located.

177

cmd

Run. . .

° Click Start ➪ Run to open 
the dialog box.

· Type cmd in the Open 
field.

‚ Click OK to open the 
command prompt.

— Change directories to 
where you saved the source 
file by using the cd 
command.

± Create a /bin directory 
for your compiled libraries.

¡ Use the csc command to 
compile the class at the 
command prompt.

Note: See page 34 for instructions 
on compiling.

CREATE CUSTOM COMPONENTS 8

CONTINUED

093617-6 Ch08.F  9/26/01  9:43 AM  Page 177



™ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

£ Import the 
SimpleComponent 
namespace.

¢ Add the Page_Load 
function.

∞ Create a new variable of 
type SimpleComponent.

§ Create a new string 
variable and read the result of 
SayWelcomeStatement 
into that string.

¶ Set the label on the 
page equal to what was 
returned from 
SayWelcomeStatement.

• Add a server form.

ª Add a label to the server 
form.

Components enable you to create distributed,
reusable architectures. If you put your business
logic and data access into components, you

put yourself in a better situation for addressing
application development challenges. The challenges
can be issues with security, scalability, performance,
stability, or reusability.

In terms of reusability, when you create components
in .NET with managed code, you need to decide if the
component is part of a private assembly or a global
assembly. In many cases, you put components into
private assemblies. This is the simplest way to create,
manage, and use components. No special registration
process is needed for a private assembly, except for

putting the compiled DLL in the /bin directory of
your Web site. Using private assemblies for your
components makes it very simple to deploy ASP.NET
applications. All you need to do is xcopy the files to a
Web server.

Global assemblies entail more detail. A global
assembly needs to be put in the Global Assembly
Cache (GAC). This is required to register a global
assembly. If the component is registered in the global
assembly, then you do not have the ability to just
xcopy the files for moving a Web site. You will also
need to incorporate a registration process for your
global assemblies.

CREATE A SIMPLE COMPONENT 

178

ASP.NET

CREATE A SIMPLE COMPONENT (CONTINUED)

093617-6 Ch08.F  9/26/01  9:43 AM  Page 178



º Save the file and request it 
from the Web server.

� A welcome message 
appears. 

You can package up multiple components into
deployable units called assemblies. Assemblies
are how the .NET Framework manages
components for: deployment, version control,
reuse, activation scoping, and security
permissions. When creating an assembly, you
need to decide on whether you want the
assembly to be private or global. There are pros
and cons to either choice. The main benefit for
choosing private assemblies is the ease of use,
especially with deployment. Private assemblies
support the xcopy deployment, which is not
available for COM components.

To support some of the advanced features of .NET
components, like sharing a component across
multiple applications, you will need to create a
global assembly. Each computer where the common
language runtime is installed has a machine-wide
code cache called the global assembly cache. You
should share assemblies by installing them into the
global assembly cache only when you need to.
Typically, for ASP.NET applications you will create
private assemblies and put them into the /bin
directory of your Web site.

179

CREATE CUSTOM COMPONENTS 8

093617-6 Ch08.F  9/26/01  9:43 AM  Page 179



⁄ Open a new document in 
your text editor.

¤ Create a new namespace.

‹ Add an alias to the 
System and System.Text 
namespace.

› Create a public class.

ˇ Create a private 
string variable for holding 
state.

Á Initialize the private 
string variable when an 
instance of the class 
is created. 

‡ Add a public string 
variable that has a method to 
read the value of the 
private string variable 
and a method to write to the 
private string variable. 

° Add a function that 
returns a string.

For most cases, your applications only use
components that do not hold any state between
calls to the component (stateless components). If

you have an application that makes multiple calls to a
component and these calls rely on common state,
then you will want to have attributes on your classes
to hold this state. The state can be provided by
setting properties on the class programmatically on
your Web page or state can be set in the initialization
of the class.

Like a simple component, the process for creating a
stateful component starts with creating a C# source
file. You first declare the namespace and then add any
aliases that you need. For example, if you want to

build strings, you can add an alias for the
System.Text namespace to get access to the
StringBuilder class.

To create a property for the class, you first create a
private variable. Next, you will want to add some
code for initializing the variable when the class is
created. Then, you will need to create a public
variable that will be used to read and write to the
private variable. After you finish creating the code to
create the property, you need to compile the program
using the csc command at the command prompt.
Finally, you need to create the Web page that uses
this component.

CREATE A STATEFUL COMPONENT

180

ASP.NET

CREATE A STATEFUL COMPONENT

093617-6 Ch08.F  9/26/01  9:43 AM  Page 180



· Create a 
StringBuilder variable 
and initialize with a message.

‚ Use an if statement to 
customize the message to 
the user if the Name property 
is set.

— Use an else statement 
to handle the case where 
the Name property has not 
been set.

± Return the 
StringBuilder variable.

¡ Go to the command 
prompt.

™ Compile the component 
using the csc command.

181

CREATE CUSTOM COMPONENTS 8
You can create a Web page containing a form used for 
updating the Name property of the stateful component.

TYPE THIS:

<%@ Import Namespace="StatefulComponent" %>
<HTML>
<HEAD><SCRIPT LANGUAGE="C#" RUNAT="Server">
public void Page_Load(Object sender, EventArgs E){

if (!Page.IsPostBack){
StatefulComponent statefulcomponentMessage = new StatefulComponent();
string stringMessage = statefulcomponentMessage.SayWelcomeStatement();
labelMessage.Text = stringMessage;

}
else{

StatefulComponent statefulcomponentMessage = new StatefulComponent();
statefulcomponentMessage.Name = textboxName.Text;
string stringMessage = statefulcomponentMessage.SayWelcomeStatement();
labelMessage.Text = stringMessage;     

}
}
</SCRIPT></HEAD>
<BODY>
<FONT FACE ="Verdana"><FORM RUNAT="Server">
<H3><ASP:LABEL ID="labelMessage" RUNAT="Server" /></H3>
<P/><ASP:TEXTBOX ID="textboxName" TEXT="Type your name here." 
RUNAT="Server" WIDTH="300px"/><P/>
<ASP:BUTTON ID="buttonPersonalize" RUNAT="Server" TEXT="Personalize"/>
</FORM></FONT></BODY></HTML>

RESULT:

A Web page
allows you to
put your name
in a text box
that is used to
give you a
personal
greeting when
the form is
posted back to
the server.

CONTINUED

093617-6 Ch08.F  9/26/01  9:43 AM  Page 181



£ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¢ Import the 
StatefulComponent 
namespace.

∞ Add the Page_Load 
function.

§ Create a new variable of 
type StatefulComponent.

¶ Set the Name property for 
the StatefulComponent.

• Create a new string 
variable and read the result of 
SayWelcomeStatement 
into that string.

You need to be cautious when using stateful
components on a Web page. You need to
understand that Web applications are by default

a stateless model. This is one of the toughest
programming challenges when moving from Win32
applications to Web applications on the Windows
platform.

When a component is created for a Web page or Web
Service, the state will only be available during the
lifetime of the user’s request of the resource (Web
page or Web Service). When the request is done, the

components used in the Web page or Web Service
are released to .NET’s garbage collection. The .NET
Framework’s garbage collector manages the
allocation and release of memory for your
application. Because this is how the Web server
operates, you do not put state that needs to be held
across pages in the standard components used by
your Web application. There are mechanisms built
into the .NET framework to enable you to manage
state across pages in a site. The Session object is
one common mechanism that is available to you.
See page 210 for details on state management.

CREATE A STATEFUL COMPONENT 

182

ASP.NET

CREATE A STATEFUL COMPONENT (CONTINUED)

093617-6 Ch08.F  9/26/01  9:43 AM  Page 182



ª Set the label on the page 
equal to what was 
returned from 
SayWelcomeStatement.

º Add a server form.

– Add a label to the server 
form.

≠ Save the file and request it 
from the Web server.

� A welcome message 
appears that displays the 
value set for the Name 
property. 

You can control your stateful components that
persist data with fields and properties by
initializing them with object constructors. You
can also control the assignment of properties
with validation code.

Example:
using System;   
public class Goal
{

private String m_strDescription;
public Goal() 
{

m_strDescription = null;      
}
public String Name 
{

get 
{

return m_strDescription;
}
set 
{

if (value.Length < 30)
m_strDescription = value;

}
}

}

183

CREATE CUSTOM COMPONENTS 8

093617-6 Ch08.F  9/26/01  9:43 AM  Page 183



⁄ Open a new document in 
your text editor.

¤ Create a new namespace.

‹ Add an alias to the 
System, System.Data, and 
System.Data.SqlClient 
namespaces.

› Create a public class.

ˇ Create a 
private string variable 
for holding state.

Á Initialize the 
private string variable 
when an instance of the class 
is created. 

‡ Add a public string 
variable that has a method to 
read the value of its variable 
and a method to write to the 
private string variable. 

° Add a function that 
returns a string.

· Add the Get and Set 
functions for the 
public string, which 
work with the 
private variable.

You can abstract your data access from your Web
page by putting the data access code into a
component. This gives you separation between

presentation and data. This separation is useful if you
want to have the flexibility of changing the database
or data access without having to rewrite your
presentation code and HTML.

The first step to creating a Web Application that is
split into two tiers is to create a Data Access Layer. To
create a data access layer, start by creating a C#
source file. In this source file, you add code related to
connecting to your data source. See page 126 for

detail on how to program with ADO.NET (.NET
framework classes that are used for data access). After
you have a connection to the database, you need to
add functions to retrieve data from the data source.
This can be done with SQL Select statements or
stored procedures.

When you are done creating the component, you can
compile it to the /bin directory as a library and use it
on a Web page.

CREATE A TWO-TIER WEB FORM

184

ASP.NET

CREATE A DATA LAYER

093617-6 Ch08.F  9/26/01  9:43 AM  Page 184



‚ Create a function that 
returns a DataView.

— Create a 
SqlConnection that uses 
the stringConnection 
property.

± Create a 
SQLDataAdapter variable 
that uses the connection to 
get all business titles.

¡ Create a DataSet and fill 
with the data retrieved with 
the SQLDataAdapter.

™ Return the default view 
from the DataSet. 

£ Go to the command 
prompt.

¢ Compile the component 
using the csc command.

You can create a function in the data layer that takes the title type as a parameter. The following
code shows you how to do this. The connection string is used to construct the class.

Example:
namespace DataLayer_ex {

using System; 

using System.Data; 

using System.Data.SqlClient;

public class DataObject {

private string _stringConnection;

public DataObject(String connStr){

_stringConnection = connStr;

}

public DataView GetTitlesForType(string stringTitleType) {     

SqlConnection sqlconnectionPubs = new SqlConnection(_stringConnection);

SqlDataAdapter sqldataadapterTitles = new SqlDataAdapter 

("select title, notes, price from" " titles where type='" 

+ stringTitleType + "'", sqlconnectionPubs);

DataSet datasetTitles = new DataSet();

sqldataadapterTitles.Fill(datasetTitles, "Titles");

return datasetTitles.Tables["Titles"].DefaultView;

}

}
}

185

CREATE CUSTOM COMPONENTS 8

CONTINUED

093617-6 Ch08.F  9/26/01  9:43 AM  Page 185



∞ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

§ Import the DataLayer 
namespace.

¶ Add a server form to the 
page. 

• Add a DataList to the 
page to display the results.

ª Add an ItemTemplate 
to the page to describe the 
output for each item in the 
result set. 

The skill set for a developer that creates
presentation layer code and layout is different
than for a developer who writes data access

code. Two-tiered Web applications allow for your
Web application code to be in separate files, which
makes it beneficial if you want to divide work based
on developers’ skill sets. Having separate files yields
fewer problems with source control and allows for
parallel development efforts. That is, two people can
work on the same part of the site together by having
separate files for presentation and data.

The Web Forms you create in ASP.NET for accessing
data access components need to import the
namespace for the data access component. This is
done using the @Import directive at the top of the
page. Next, you can place a Server form containing
controls on the page to display the data. One way to
display data is using a DataList control. See page
130 for more information on working with the
DataList control. After you have specified what to
show in the DataList, you can create the code to
populate the control. You can use the Page_Load
function to do this.

CREATE A TWO-TIER WEB FORM

186

ASP.NET

CREATE A TWO-TIER WEB FORM

093617-6 Ch08.F  9/26/01  9:43 AM  Page 186



º Add the Page_Load 
function to the page.

– Create a new instance of 
the DataObject class and 
set the connection string.

≠ Set the DataSource of 
the DataList on the Web 
page to the function in the 
data access Layer that returns 
the business titles.

‘  Bind the DataList.

“ Save the file and request it 
from the Web server.

� The title, notes, and price 
appear for the business titles 
from the pubs database using 
the data layer. 

187

CREATE CUSTOM COMPONENTS 8
You can create a Web page that retrieves different types of titles based on user input by
putting the following code into a server-side script block. You need to compile
DataObject_ai.cs with DataObject_ai.bat to have this sample run. To see the
full source code for this example, see TwoTierWebForm_ai.aspx on the CD-ROM.

TYPE THIS:

public void Page_Load(Object sender, EventArgs E) {
if (!IsPostBack) {

DataObject dataobjectPubs = new DataObject("server=(local)
\\NetSDK;uid=QSUser;pwd=QSPassword;database=pubs");

datalistTitles.DataSource = dataobjectPubs.GetTitlesForType("business");
datalistTitles.DataBind();
labelTitleType.Text = "business"; } }

public void Submit_Click(Object sender, EventArgs E) {
DataObject dataobjectPubs = new DataObject("server=(local)\\NetSDK;

uid=QSUser;pwd=QSPassword;database=pubs");
datalistTitles.DataSource = dataobjectPubs.GetTitlesForType

(dropdownlistTitleTypes.SelectedItem.Value.ToString());
datalistTitles.DataBind();
labelTitleType.Text = dropdownlistTitleTypes.SelectedItem.Text.

ToString().ToLower();          
}

RESULT:

A data-bound list displays a list of books that are 
dependent on which title type is chosen by the user.

093617-6 Ch08.F  9/26/01  9:43 AM  Page 187



⁄ Open a new document in 
your text editor.

¤ Create a new namespace.

‹ Add an alias to the 
System, System.Data, 
System.Data.SqlClient, 
and the DataLayer 
namespaces.

› Create a public class. 

ˇ Create a private 
DataObject class from the 
DataLayer namespace.

Á Add the code to initialize 
the BusinessObject 
connection string.

Abusiness tier enables you to encapsulate
business rules or logic into components.
These business tier components enable you to

automate business processes that your company uses.
With Web applications, you can break your code out
into three tiers—Data, Business, and Presentation.
This allows you to consolidate all data access code
into one component, all of the code related to
business logic into another component, and all of the
code for the user interface in the Web page.

Like the Data Access Layer, the Business Layer will be
implemented as a C# component. In this component,
you can set the connection string when the class is

created. You then need to add a function that will call
the Data Access Layer to retrieve the data necessary
to apply the business logic. After all the code
necessary for mimicking your business process is put
in place, you need to compile the business
component to the /bin directory as a library.

Using a business component on a Web page is the
same as using a data access component. Now that
you have put a Business Layer between your Data
Access Layer and your Web Page, you can change the
Presentation Layer without having to rewrite business
logic or data access code.

CREATE A THREE-TIER WEB FORM

188

ASP.NET

CREATE A BUSINESS LAYER

093617-6 Ch08.F  9/26/01  9:43 AM  Page 188



‡ Add the function that calls 
GetBusinessTitles from 
the Data Layer.

° Go to the command 
prompt.

· Compile the component 
using the csc command.

189

CREATE CUSTOM COMPONENTS 8

You can extend the Business Layer by adding the 
GetTitlesForType function. This Business 
Layer uses the Extra Data Access Layer.

TYPE THIS:

namespace BusinessLayer_ai {
using System;
using System.Data;
using System.Data.SqlClient;
using DataLayer_ex;
public class BusinessObject {     

private DataObject dataobjectPubs;                   
public BusinessObject() {
dataobjectPubs = new  

DataObject("server=(local)\\NetSDK;uid=QSUser;pwd=QSPassword;database=pubs");
}          
public DataView GetBusinessTitles() {

return dataobjectPubs.GetBusinessTitles();
}
public DataView GetTitlesForType(string stringTitleType) {

return dataobjectPubs.GetBusinessTitles(stringTitleType);
}          

}
}

RESULT:

A business layer
that is between the
user interface layer
and the data access
layer.

CONTINUED

093617-6 Ch08.F  9/26/01  9:43 AM  Page 189



‚ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

— Import the 
BusinessLayer namespace.

± Add a server form to the 
page. 

¡ Add a DataList to the 
page to display the results. 

™ Add an ItemTemplate 
to the page to describe the 
output for each item in the 
result set. 

Implementing a Business Layer into a tiered
application allows for clean separation between
business logic and the user interface. This gives you

the flexibility of having multiple user interfaces for
your application without having to rewrite business
and data access code.

The business layer is a critical part of your application
and is where you need to truly understand the rules
that enforce good business practices. Sometimes these
practices need to ensure that you interact with the
database without compromising data integrity. This can
be done with transactional code. The business layer is
traditionally the location for where transactional code
is placed to ensure integrity of your data stores.

To write code that uses your business component,
you need to import the namespace for the business
component. This is done using the @Import directive
at the top of the page. If you are pulling data back
from your business component, you can place a
Server form on the page with a control to display the
data. One way to display data is using a DataList
control. See page 130 for more information on
working with the DataList control. After you have
specified what to show in the DataList, you can
then create the code to populate the control. You can
use the Page_Load function to do this.

CREATE A THREE-TIER WEB FORM 

190

ASP.NET

CREATE A THREE-TIER WEB FORM

093617-6 Ch08.F  9/26/01  9:43 AM  Page 190



£ Add the Page_Load 
function to the page.

¢ Create a new instance of 
the DataObject class and 
set the connection string.

∞ Set the DataSource of 
the DataList on the Web 
page to the function in the 
Data Access Layer that 
returns the business titles.

§  Bind the DataList.

¶ Save the file and request it 
from the Web server.

� The title, notes, and price 
appear for the business titles 
from the pubs database using 
the business and data layers. 

191

CREATE CUSTOM COMPONENTS 8
You can use a business layer to control access to data. To run this 
sample, you need to compile DataObject_ai.cs and 
BusinessObject_ai.cs to the /bin directory as a library 
(using the DataObject_ai.bat and BusinessObject_ai.bat
batch files, respectively). Then place the following code into a 
server-side script block. To see the full source code for this example,
see ThreeTierWebForm_ai.aspx on the CD-ROM.

TYPE THIS:

public void Page_Load(Object sender, EventArgs E) {
if (!IsPostBack) {

BusinessObject businessobjectPubs = new
BusinessObject("server=(local)\\NetSDK;uid=QSUser; " +
"pwd=QSPassword;database=pubs");

datalistBusinessTitles.DataSource = businessobjectPubs.GetBusinessTitles();
datalistBusinessTitles.DataBind();
labelTitleType.Text = "business"; } }

public void Submit_Click(Object sender, EventArgs E) {
BusinessObject businessobjectPubs = new  

BusinessObject("server=(local)\\NetSDK;uid=QSUser; " +
"pwd=QSPassword;database=pubs");

datalistTitles.DataSource = 
businessobjectPubs.GetTitlesForType
(dropdownlistTitleTypes.SelectedItem.Value.ToString());

datalistTitles.DataBind();
labelTitleType.Text = dropdownlistTitleTypes.SelectedItem.Text.ToString().ToLower;  

}

RESULT:

A data bound
list that displays
a list of books
that are
dependent on
which title type
is chosen by the
user.

093617-6 Ch08.F  9/26/01  9:43 AM  Page 191



⁄ Open your text editor.

¤ Create an alias to the 
BusinessLayer, System, 
System.Web.UI, and 
System.Web.UI.Web
Controls.

‹ Create a public class of 
type Page.

› Create a public variable 
of type DataList. 

ˇ Open the 
ThreeTierWebForm.aspx 
template from the Code 
Templates directory.

Á Add a Page directive at 
the top of the page and an 
Inherits attribute with a 
value of the class name and a 
Src attribute with the value 
of the filename.

‡ Cut the Page_Load event 
handler from the file.

° Save the file as the class 
name to the Default Web site.

You can store your code in a separate file, called
a Code-behind, which allows for you to clearly
separate the code from presentation. This

enables people with Web design skills to work on
pages separately from the Web programmers. This is a
big advantage in the ASP.NET framework and was not
available in ASP 3.0. In ASP 3.0, your server-side code
had to be inline with your HTML (on the same page).

To utilize a Code-behind in your ASP.NET page, you
add two attributes to the page directive. One of the
attributes is the Inherits attribute, which you can

use to specify the class which you want to use in your
Code-behind. The next attribute, the Src attribute,
specifies the location of the file that contains the
Code-behind code. In the Code-behind file, you can
implement event handlers as if they were on the page
that uses the Code-behind. For example, a common
event handler is the Page_Load event.

All the code in the Code-behind is server-side code
that may require round trips to the Web server. To
avoid this, you need to use client-side code in the
Web form.

USE A CODE-BEHIND FOR
YOUR ASP.NET PAGE

192

ASP.NET

USE A CODE-BEHIND FOR YOUR ASP.NET PAGE

093617-6 Ch08.F  9/26/01  9:43 AM  Page 192



· Paste the Page_Load 
event handler into the 
CodeBehind page. 

‚ Save the file and request it 
from the Web server.

� The title, notes, and price 
appear for the business titles 
from the pubs database using 
the business and data layers 
in a Code-behind. 

193

CREATE CUSTOM COMPONENTS 8

You can use an event handler fired from a control as well.
This code example calls the Button_OnClick event
handler on the Code-behind page. The first section of
code is to associate the Code-behind page with the
aspx page, this goes at the top of the aspx page. The
second section of code goes into the Code-behind page.

TYPE THIS AT THE TOP OF THE WEB FORM:

<%@ Page Inherits="CodeBehind_ai" Src="CodeBehind_ai.cs" %>

TYPE THIS IN THE CODE-BEHIND PAGE:

using BusinessLayer;
using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class CodeBehind_ai : Page {

public Label labelMessage;

public void Button_OnClick(object Source, EventArgs e)";{
labelMessage.Text="You are going to Step 2...";

}
}

RESULT:

The Web page
calls the Code-
behind when the
button is clicked.

093617-6 Ch08.F  9/26/01  9:43 AM  Page 193



The HTTPRequest object enables you to read 
the HTTP values sent by a user during a Web
request. This way of working with user input is

how you typically access user input with ASP 3.0,
giving you a backward compatibility. There is no true
backward compatibility using C# as the language; but
if you are using VB, it is compatible.

You can use Request.Form and Request.
QueryString methods to read data that is submitted
from another Web page. In order to specify which
control you want to access, you need to know the
control’s name or ID. For example, you can use the
drop-down list box in the task that has an ID of
dropdownlistSuggestions. To read the 

value of this control, you can use Request.
Form["dropdownlistSuggestions"].

The configuration of your HTML form determines if
you use the Form or QueryString to retrieve form
data. The HTML form has a METHOD attribute. If this
attribute is set to POST, then you need to use
Request.Form to obtain user input from the HTML
form. If set to METHOD="GET", then you need to use
Request.QueryString. Both of the properties on
the Request object (Form and QueryString)
contain a NameValueCollection collection class.
The NameValueCollection class represents a sorted
collection of associated String keys and String
values that can be accessed either with the key or index.

READ FORM DATA WITH REQUEST.FORM

ASP.NET

⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user. 

› Add a form to the page. 

ˇ Place a drop-down list box 
on the page with suggestions 
for choosing the suggested 
number of goals.

Á Add a button control to 
the page.

‡ Add a label control to 
the page.

194

READ FORM DATA WITH REQUEST.FORM

103617-6 Ch09.F  9/26/01  9:44 AM  Page 194



You can pass data in a URL by appending name-value pairs to the end
of the address. Note the METHOD="GET" for the form variable.

195

° Add the Page_Load 
function.

· Add an if statement to 
make sure that the code will 
only run when posting to the 
page.

‚ Add the Request.Form 
method to retrieve the value 
that was selected in the 
drop-down list box.

— Save the file and request it 
from the Web server. 

± Click     and select a 
suggestion.

¡ Click the Submit button.

� The suggestion you chose 
appears. 

USING ASP.NET COMPONENTS 9

TYPE THIS:

<HTML>
<HEAD><SCRIPT LANGUAGE="C#" RUNAT="Server">
public void Page_Load(Object sender, EventArgs E) {

if (IsPostBack) {

labelButtonExample.Text =
Request.QueryString["dropdownlistSuggestions"].ToString();

}
}
</SCRIPT></HEAD>
<BODY>
<FONT FACE ="Verdana">
<H3>Welcome to mylifetimegoals.com</H3>
What suggestions do you have for improving our site?
<FORM RUNAT="Server" METHOD="GET">
<P/>
<ASP:DROPDOWNLIST ID="dropdownlistSuggestions" RUNAT="Server">

<ASP:LISTITEM>Fewer Goals</ASP:LISTITEM>
<ASP:LISTITEM>More Goals</ASP:LISTITEM>
<ASP:LISTITEM>Same Number of Goals</ASP:LISTITEM>

</ASP:DROPDOWNLIST>
<ASP:BUTTON ID="buttonExample" RUNAT="Server" TEXT="Submit"/><P/>
<ASP:LABEL ID="labelButtonExample" RUNAT="Server"/>
</FORM>
</FONT></BODY></HTML>

RESULT:

A Web page that,
when a selection is
made and the form
is submitted, places
the form values into
the query string.

103617-6 Ch09.F  9/26/01  9:44 AM  Page 195



⁄ Open the 
Suggestions.htm template 
from the Code Templates 
directory.

¤ Add the ACTION value to 
the form.

� The contents of the page  
contain a suggestions form.

‹ Save the file.

› Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

ˇ Add a heading to the file.

Á Add a message to the file.

‡ Add the script delimiters.

° Call the 
GetRequestParams 
function.

You can use the Request object’s Params
method to obtain a combined collection of
QueryString, Form, ServerVariables, and

Cookies items. This will give you most of the data
that is in a Web request. Before ASP.NET, this
combined collection of the QueryString, Form,
ServerVariables, and Cookies items was the
default collection of the Request object. This
information is still available directly from the
Request object, but to be more explicit, you can
access through Params.

You can pull request information from any page that
requests a Web page and allows server-side code.
Therefore, a simple HTML page can be the source for
the Request.Params collection. For example, you

can pull form data from an HTML form on a simple
html page. To do this, you will need to have the HTML
form post to the Web page that will process the HTTP
request. On this processing page you can use the
Request.Params collection to obtain any form data.

If you are not sure of the requesting page’s form
method, then the Params collection is very useful.
The method you use determines if the form data is
available in the Form collection (METHOD="POST")
or the QueryString collection (METHOD="GET").
Because the Params collection has both of these
collections combined, you can just pull the value 
from Params.

DISPLAY DATA WITH REQUEST.PARAMS

196

ASP.NET

DISPLAY DATA WITH REQUEST.PARAMS

103617-6 Ch09.F  9/26/01  9:44 AM  Page 196



197

USING ASP.NET COMPONENTS 9

· Add the GetRequestParams 
function and code from the file 
GetRequestParams.aspx 
located in the Code Templates 
directory. 

‚ Save the file and request it 
from the Web server.

— Request the first Web page 
that you created in this task.

± Click     and select a 
suggestion.

¡ Click the Submit button.

� Request data displays 
from looping through the 
Request.Params 
collection.

You can just display the form variables using the following code:

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

public void GetRequestForm() {

int intCounter1;

NameValueCollection namevaluecollectionForm;

namevaluecollectionForm=Request.Form; 

String[] stringarrayForm1 = namevaluecollectionForm.AllKeys;

for (intCounter1 = 0; intCounter1 < stringarrayForm1.Length; intCounter1++) {

Response.Write("Form: " + stringarrayForm1[intCounter1] + "<BR/>");

}

}

</SCRIPT>

<% GetRequestForm(); %>

</FORM>

</FONT>

</BODY>

</HTML>

103617-6 Ch09.F  9/26/01  9:44 AM  Page 197



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user. 

› Add a form to the page. 

ˇ Place a drop-down list box 
on the page with suggestions 
for choosing the suggested 
number of goals.

Á Add a button control to 
the page.

You can use the HTTPResponse class to interact
with the responses given to Web requests. One
common task for the HTTPResponse is to write

custom HTML in the response to a user’s page
request. Writing custom HTML can be accomplished
with the Write method of the Response object.
Note that the methods and properties of the
HTTPResponse class are exposed through ASP.NET’s
intrinsic Response object.

To get user input to display in a new HTML element,
you can programmatically add HTML elements/
tags with Response.Write. When using the

Response.Write to customize the HTML markup 
of a page, you need to know where you want to have
the tag(s) placed. You can place in a placeholder tag
in which you can insert HTML SPAN or DIV tags), or
you can use the script delimiters inline to the HTML.

If you are posting a page back to itself, you can check
the IsPostBack property of the page to determine
if it is the first time you are displaying the page or if
you have posted back to the same page. In some
cases, you will only want to run certain server-side
code after a page is posted back to itself.

WRITE OUTPUT USING RESPONSE.WRITE

198

ASP.NET

WRITE OUTPUT USING RESPONSE.WRITE

103617-6 Ch09.F  9/26/01  9:44 AM  Page 198



‡ Add a set of script 
delimiters after the button.

° Add an if statement to 
make sure that the code will 
only run when posting to the 
page.

· Add the Request.Form 
method to retrieve the value 
that was selected in the drop-
down list box.

‚ Add the 
Response.Write method 
to write the value selected in 
the drop-down list box.

— Save the file and request it 
from the Web server.

� The Web page for 
submitting suggestions 
appears.

± Click     and select a 
suggestion.

¡ Click the Submit button.

� The suggestion you chose 
appears.

If you were passing this information via the query string, the code
would look a little different compared to posting through a form.
See ASPResponse_ai.aspx for the full example on the CD.

Example:
<% @ PAGE LANGUAGE="C#" %>

<H3>Welcome to mylifetimegoals.com</H3>

What suggestions do you have for improving our site?

<FORM RUNAT="Server" METHOD="GET">

<P/>

<ASP:DROPDOWNLIST ID="dropdownlistSuggestions" RUNAT="Server">

<ASP:LISTITEM>Fewer Goals</ASP:LISTITEM>

<ASP:LISTITEM>More Goals</ASP:LISTITEM>

<ASP:LISTITEM>Same Number of Goals</ASP:LISTITEM>

</ASP:DROPDOWNLIST>

<ASP:BUTTON ID="buttonExample" RUNAT="Server" TEXT="Submit"/><P/>

<%      if (IsPostBack) {

Response.Write(Request.QueryString["dropdownlistSuggestions"]); 

}

%>

</FORM>

199

USING ASP.NET COMPONENTS 9

103617-6 Ch09.F  9/26/01  9:44 AM  Page 199



⁄ Open the 
Suggestions.htm 
template from the Code 
Templates directory.

¤ Add the ACTION value to 
the form.

� The contents of the page 
contains a suggestions form.

‹ Save the file.

› Open a new document in 
your text editor.

ˇ Add the page directive, set 
the language to C#, and buffer 
the page.

Á Add a pair of script 
delimiters.

‡ Request the data from 
the drop-down list box and 
read it into a string 
variable.

You can use the HTTPResponse class to redirect
users to other pages besides the page they
originally requested. One situation where you

can use a redirect is when you delete an existing page
off of your Web site. For example, if you come up
with a new naming convention for pages on your site,
you can keep the old pages on the site with a redirect
to the replacement page. You can also use a redirect
to handle an error on a Web page. When the error
occurs, you can redirect them to a standard error
page. Another common use of redirects is on a page

that processes the user’s request and redirects the
user based on what is in the user’s Request object.

To redirect a user’s request, you can use Response.
Redirect. When performing redirects, you need to
make sure that no HTTP response packets have been
sent to the user requesting the page. If any HTTP
packets have been sent and you perform a redirect,
you will generate a server error. To avoid getting this
server error, you can buffer the response by adding
the page directive at the top of the file and setting
Buffer=True.

REDIRECT USING RESPONSE.REDIRECT

200

ASP.NET

REDIRECT USING RESPONSE.REDIRECT

103617-6 Ch09.F  9/26/01  9:44 AM  Page 200



° Create a switch 
statement using the 
string variable.

· Add a case for each of 
the options that redirects 
to the appropriate page.

‚ Save the file and request 
from the Web server.

— Copy the files 
FewerGoals.aspx, 
MoreGoals.aspx, 
SameGoals.aspx, and 
ErrorGoals.aspx from 
the CD-ROM to your working 
directory.

� The page with suggestions 
appears.

± Click     and select a 
suggestion.

¡ Click the Submit button.

� You are redirected to a 
page according to the option 
you have selected.

You can create a page that accepts a page name from
the QueryString and redirects the user to that page.

201

USING ASP.NET COMPONENTS 9

TYPE THIS:

<% @ PAGE LANGUAGE="C#" Buffer="True"%>

<%
if (Request.QueryString["pageName"] != null) {

string stringPageName = Request.QueryString["pageName"]
.ToString();

Response.Redirect(stringPageName);
} 
else {

Response.Redirect(Request.Url.ToString() + 
"?pageName=ie.aspx");

}
%>

RESULT:

A request to this page with
a query string equal to
pageName=request.aspx
will redirect the request to
the request.aspx page.
If the page is not specified,
then you are redirected to
ie.aspx.

103617-6 Ch09.F  9/26/01  9:44 AM  Page 201



⁄ Open a new document in 
your text editor.

¤ Add the page directive, 
set the language for the page 
to C#, and buffer the page.

‹ Add a pair of script 
delimiters.

› Create a new variable of type 
HttpBrowserCapabilities 
and initialize the variable by 
using the Request.Browser 
property.

ˇ Create a new variable 
of type string and read 
the Web browser type 
property into the string.

You can use the HttpBrowserCapabilities
class to find out the properties of a user’s Web
browser. You can then use this information in

your code to determine what the proper response to
your client should be. Perhaps you might redirect the
user to another page based on the browser type. You
could also use the HttpBrowserCapabilities
class for information to do custom logging that tracks
what types of browsers are accessing your site.

Some sites that you build with depend on browser
capabilities for making decisions on what is sent to
the user of the site. For example, you might have a
few pages on your site that can be enhanced with
ActiveX controls. Before sending the ActiveX control

in the response, you want to check to see whether
the users support ActiveX controls. If they do not, you
can redirect them to a page that is implemented
without an ActiveX control.

To use the HttpBrowserCapabilities 
class, you need to create a variable of type
HttpBrowserCapabilities. With this variable,
you can use the Request.Browser property to
return all of the information about the user’s Web
browser. After you have this information, you can use
the property of interest. For example, the Browser
property is used to determine where to send the user.

CHECK FOR WEB BROWSER TYPES

202

ASP.NET

CHECK FOR WEB BROWSER TYPES

103617-6 Ch09.F  9/26/01  9:44 AM  Page 202



Á Create a case statement 
using the string variable.

‡ Add a case for each of 
the options that redirects to 
the appropriate page.

° Save the file.

· Copy IE.aspx and 
Other.aspx from the 
CD-ROM to your working 
directory.

‚ Request the file from the 
Web server.

� You are redirected to a 
page according to your Web 
browser type. 

The following code is a sampling of all the information that you can collect
about a Web browser by using the HTTPBrowserCapabilities object.
See ASPBrowserCapabilities_ai.aspx on the CD for the full example.

203

USING ASP.NET COMPONENTS 9

TYPE THIS:

<H3><%=Request.Url.ToString()%></H3>
Here is all the data from Request.Browser.<P/>
<%
HttpBrowserCapabilities hbcBrowser = Request.Browser;
Response.Write( "Type = " + hbcBrowser.Type + "<BR/>" );
Response.Write( "Name = " + hbcBrowser.Browser + "<BR/>" );
Response.Write( "Version = " + hbcBrowser.Version + "<BR/>" );
Response.Write( "Supports Frames = " 

+ hbcBrowser.Frames + "<BR/>" );
Response.Write( "Supports Tables = " 

+ hbcBrowser.Tables + "<BR/>" );
Response.Write( "Supports Cookies = " 

+ hbcBrowser.Cookies + "<BR/>" );
Response.Write( "Supports ActiveX Controls = " 

+ hbcBrowser.ActiveXControls + "<BR/>" );
%>
</FORM>

RESULT:

http://localhost:81/new/ASP
BrowserCapabilities_ai1.
aspx

Here is all the data from
Request.Browser.

Type = IE6
Name = IE
Version = 6.0b
Supports Frames = True
Supports Tables = True
Supports Cookies = True
Supports ActiveX Controls =

True

103617-6 Ch09.F  9/26/01  9:44 AM  Page 203



⁄ Open the Suggestions 
Template template from the 
Code Templates directory.

¤ Import the 
System.Web.Mail 
namespace.

‹ In the SubmitBtn_Click 
function, create a string 
variable for creating your 
message.

› Set the message contents 
in HTML, using the selected 
value from the drop-down 
list box.

ˇ Create a new variable 
of MailMessage type.

Á Set the From property 
for the MailMessage.

‡ Set the To property for 
the MailMessage.

° Set the Subject property 
for the MailMessage.

You can send e-mail from your ASP.NET Web
pages with the System.Web.Mail namespace
to respond to a request that a user makes on

your site. E-mail gives you a convenient means to
send users feedback, such as receipts, confirmation
notes, and other information that a user likes to have
for future reference. You can also use e-mail to work
with other systems; for example, an encrypted e-mail
containing order information can be sent from your
Web site to another system for processing.

To send e-mail from an ASP.NET Web page, first
import the System.Web.Mail namespace. In this
namespace, you can work with a couple of objects.

The most important is the MailMessage object that
has many of the properties that you need to send an
e-mail. You can set the message From, To, Subject,
Body, and BodyFormat properties when creating
the e-mail. To send the prepared mail message, you
need to work with the SMTPMail object.

To send the e-mail message, you need an SMTP
server. SMTP mail service is built into Microsoft
Windows 2000. To ensure that your Web server is not
blocked, mail is queued by default on a Windows
2000 system.

SEND AN E-MAIL USING ASP.NET

204

ASP.NET

SEND AN E-MAIL USING ASP.NET

103617-6 Ch09.F  9/26/01  9:44 AM  Page 204



· Set the Body property for 
the MailMessage, using the 
string variable in which 
you have placed the message.

‚ Set the BodyFormat 
property for the 
MailMessage to 
MailFormat.Html.

— Add the SMTPMail’s Send 
method to send the message.

± Update the Text property 
for the label on the page to 
reflect that the mail has 
been sent.

¡ Save the file and request 
from the Web server.

� The page with suggestions 
appears.

™ Click     and select a 
suggestion.

£ Click the Submit button.

� The message appears, 
notifying you of the e-mail's 
status. 

The e-mail format can either be HTML format or Text format. Because some e-mail clients will not
format HTML files, you may wish to send e-mail in Text format. Many sites allow the user to specify
whether they wish to receive e-mail in HTML or Text format.

You can let the user select the priority of the e-mail message with a drop-down list box. See
ASPMail_ai.aspx on the CD for an example of using this in a full aspx page.

Example:
String stringMailPriority = 

dropdownlistMailPriority.SelectedItem.Text;

switch(stringMailPriority) {
case "High":

mailmessageSuggestion.Priority = MailPriority.High;
break;

case "Normal":
mailmessageSuggestion.Priority = MailPriority.Normal;
break; 

case "Low":
mailmessageSuggestion.Priority = MailPriority.Low;
break;

default:
mailmessageSuggestion.Priority = MailPriority.Normal;
break;

}     

205

USING ASP.NET COMPONENTS 9

103617-6 Ch09.F  9/26/01  9:44 AM  Page 205



⁄ Open the 
DatagridTemplate.aspx 
template from the Code 
Templates directory.

¤ Add the OutputCache 
directive to set the duration of 
the page cache to 60 seconds.

‹ Add a message to the page 
by updating the label with the 
current time.

Note: The page-generation message 
will update only when the code in 
the Page_Load function is run.

› Save the file and request it 
from the Web server.

One way of increasing performance for your
ASP.NET Web pages is to cache pages on the
Web server. When using a page cache, ASP.NET

does not generate a new response for a Web page
every time it is requested. This performance
optimization can be used on pages that are accessed
frequently and or have little to no personalization on
them.

The process for setting up page caching is simple. On
the page you wish to cache, add an OutputCache
directive at the top of the page and add a Duration
attribute for the directive. The Duration will specify
how long to cache the page in seconds. There will be

cases when you may want a page generated based on
the request made. For example, you may want to have
another version of the page generated when
something varies in the request’s query string.

When caching pages, ASP.NET is smart about sending
cached pages. For example, if a page is requested
with a query string that is different from the cached
page, then ASP.NET will regenerate the page and
cache this new page (keeping the original page
cached). The next time the page is requested, it will
check to see whether that version of the page is
cached before reprocessing the page.

USE THE ASP.NET PAGE CACHE

206

ASP.NET

USE THE ASP.NET PAGE CACHE

103617-6 Ch09.F  9/26/01  9:44 AM  Page 206



� You can observe that the 
generated time is 9:31:40 AM.

ˇ Press F5 to refresh 
the page.

� You can observe the 
generated time is the same 
as before (9:31:40 AM), 
indicating you are viewing 
a cached page.

Á Wait for more than 60 
seconds and refresh the Web 
page.

� The generated time 
updates, indicating that the 
cached page was not used.

If you want to cache the page per user session,
you can cache based on the users cookie.
Authentication cookies are used to map a user to
a session. Open two instances of Internet Explorer
and note the generated times for each instance
and note they are not sharing the same cached
page. See ASPPageCache_ex1.aspx on the CD
for a page that demonstrates this directive.

Example:
<%@ OutputCache Duration="60"
VaryByHeader="Cookie" %>

You can bypass a cached page each time the user
submits different Form or QueryString data to a
page. See ASPPageCache_ex2.aspx on the CD
for a page that demonstrates this directive.

Example:
<%@ OutputCache Duration="60" VaryByParam="*" %>

207

USING ASP.NET COMPONENTS 9

103617-6 Ch09.F  9/26/01  9:44 AM  Page 207



⁄ Open the 
DatagridTemplate.aspx 
template from the Code 
Templates directory.

¤ Create a new DataView 
variable.

‹ Try to read the DataView 
out of the page cache.

› If there was nothing in the 
cache to retrieve, get a new 
DataView.

ˇ Create the new 
DataView.

Á Cache the DataView.

‡ Update the label on the 
page to show that the 
DataSet was created 
explicitly.

° Add an else message to 
indicate that the data cache 
was used.

· Update the 
DataSource to be 
dataviewTitles.

You can increase performance on your ASP.NET
Web pages by placing data for your Web pages
in a cache on the Web server. When using a data

cache, you can cache a dataset on the Web server so
that you do not have to go back to the database
when the page is refreshed.

To place data into the cache, you can use
Cache["name"] = value, where name is the
name you want to access the information by in
code and value is the value for the name. To read
the data out of the cache, you can use variable =
Cache["name"]. Note that for storing data into

cache, you cast the data in the cache to a DataView
data type. With the cache, you can set memory and
duration by respectively setting the length of the
cache and setting a sliding expiration for the cache.

When caching data on your Web pages, you need to
check to see if the cache exists before using it. If it
does not exist —for instance, it expires— then you
execute the code necessary to retrieve the data from
the database again. One way of checking to see if the
cache exists is by checking to see if the cache is null.

USE THE ASP.NET DATA CACHE

208

ASP.NET

USE THE ASP.NET DATA CACHE

103617-6 Ch09.F  9/26/01  9:44 AM  Page 208



‚ Save the file and request it 
from the Web server.

� The business titles from the 
pubs database appear.

— Scroll down to see the 
message about the DataSet 
being created explicitly.

± Press F5 to refresh the 
page.

¡ Scroll down to see the 
message about the DataSet 
being retrieved from the 
cache.

You can specify how long the data is in the cache. The
following code will expire the data cache after one minute.

Example:
Cache.Insert("cacheTitles", dataviewTitles, 

null,DateTime.Now.AddMinutes(1), TimeSpan.Zero );

You can base expiration on the last time the cache was
accessed by using a sliding expiration.

Example:
Cache.Insert("cacheTitles", dataviewTitles,

null,DateTime.MaxValue, TimeSpan.FromMinutes(1) );

25

209

USING ASP.NET COMPONENTS 9

103617-6 Ch09.F  9/26/01  9:44 AM  Page 209



INTRODUCTION TO ASP.NET 
APPLICATIONS AND STATE MANAGEMENT

ASP.NET

210

ASP.NET

ASP.NET APPLICATIONS

An ASP.NET Application is how you can separate one
application domain from another. An ASP.NET
Application is set up as a Web site or a virtual directory
that has been configured as an application in Internet
Information Server (IIS). All resources under the Web
site or virtual directory are part of the application,
unless the resource is in a subdirectory that has been
configured as another application.

Within an ASP.NET Application, you can independently
control security, process isolation, and shared data. The
Web sites you build can include multiple Web
applications as part of the Web site, or one main
application for your entire site.

Having one or more Web applications on your Web site
depends on several factors. Some of the more
important factors that you should be aware of are:

Application Protection

One benefit of separate Web applications is the control
of where your Web application’s process runs. This
process is the management of threads that are
allocated to running processing instructions for your
application. Process Isolation is determined by the
Application Protection setting in the IIS MMC
(Microsoft Management Console for IIS). You have
three options to choose from on a Web site for what
process isolation you need. The levels of Application
Protection are:

Low (IIS Process)
This provides the best performance but is the least
stable. This means that if your Web application
crashes, the whole Web server comes down.
Medium (Pooled)
Runs in a central process where all ‘’pooled”
applications run. This is second in performance
compared to low isolation and will not bring down
IIS when it crashes, but will bring down all other
pooled applications.
High (Isolated)
Runs in its own process. This is the most stable
option, but its performance is not as good as low
isolation (due to interprocess communication
between the Web application and IIS).

Security Model

All applications have several security options that can
be set across the site, directory level, or even down to
file level through the IIS MMC’s Directory/File Security
tab in the Properties dialog box. Depending on which
option you choose for Application Protection, you can
have more or less control on security for your entire
application. The setting that you choose for Application
Protection will determine which COM+ Application will
contain your application. With low and medium
protection levels, you will have to share the COM+
Application with other Web applications. In the case of
low protection, you will share the COM+ Application
with IIS. With the high protection level, your
application will have its own COM+ Application.

Shared Information

Each ASP.NET application will have its own set of
resources to manage global data in your application.
When you start storing state into global locations, you
exhaust server resources (primarily memory). See the
section on application state management on page 211
for global storage options with Application and Session
objects. If you find that you are storing large amounts of
data in global storage and this data can be separated
into logical independent domains, then it is time to
segment into one or more separate ASP.NET
applications.

After your Web site or virtual directory is set up as an
application, add a simple file with an .aspx extension
to it. When you request this file through your Web
server, the .NET runtime creates the ASP.NET application
context.

210

113617-6 Ch10.F  9/26/01  9:44 AM  Page 210



ASP.NET APPLICATIONS AND STATE MANAGEMENT

211

WORKING WITH AND EXTENDING ASP.NET APPLICATIONS

Global.asax

Each ASP.NET Application you create will only use one
Global.asax file. The Application will look for this
file in the root directory of the site.

The Global.asax file contains code for certain
events that are used during the lifetime of your
ASP.NET application, including code that executes
when the application starts and finishes, as well as code
for custom events. With the Global.asax file, you can
also configure settings for your application, including
declaring namespaces and server-side objects for use
throughout the application.

Application Directives

Application directives give you the ability to specify
additional information about your application. You can
work with three application directives in ASP.NET:
Application, Import, and Assembly.

Server-side Objects

You can declare server-side objects in the Global.asax
file for use in your application. You can specify the
scope of the object based upon how often your
application uses the object. Most of the time, you will
declare server-side objects at the page level. You can
also specify the scope to be at the application or
session level. Be careful with this scope, because you
will be keeping the object in memory for an infinite
amount of time, causing inefficient use of memory.

Custom Modules

You can extend the Global.asax file to execute more
that just the standard events. You can create your own
event-handling code for when specific events occur in
your application.

APPLICATION STATE MANAGEMENT

HTTP Application

When ASP.NET creates your application, it will create
multiple instances of an application object. You can
write code to overwrite what happens by default when
each of these application objects are created or
destroyed.

Application Object

You may wish to have certain variables available from
any page on your site, for any user, and at any time.
These variables can be any Common Type System
complaint data type, including a server-side object. You
will use the Application object to store these
variables for the life of the application.

Session Object

You may wish to have variables that are specific to a user
for the life of their visit to your application. For this, you
can use the Session object. You can initialize the
Session variables in the Session_Start event handle
in the Global.asax file. These variables can then be
easily read and updated for each individual user.

Cookies

Cookies enable you to store information on the user’s
browser. A cookie can be either a single piece of
information or an entire collection. After you store the
cookie on the user’s browser, you can later access the
cookie and take appropriate action.

10

113617-6 Ch10.F  9/26/01  9:44 AM  Page 211



⁄ Start your text editor 
to create a Global.asax 
file.

¤ Type <SCRIPT LANUAGE="C#" 
RUNAT="Server"> and press Enter 
twice.

‹ Type </SCRIPT>.

› To create the event handler 
for when the application starts, 
click between the <SCRIPT> 
and </SCRIPT> tags, type 
void Application_Start() {, and 
press Enter.

ˇ Press Tab to indent, type 
the code you want to execute 
when the application starts, 
and press Enter.

Note: This code will create an 
Application variable.

Note: Indent the code so that 
it is easier to read.

Á Type } to finish the 
event handler and press 
Enter.

You can use the Global.asax file to create
special subroutines, called event handlers, which
are executed by the Web server when specific

events occur. An application can only have one
Global.asax file.The purpose of the Global.asax
file in ASP.NET is similar to its purpose in ASP 3.0. You
should place this file in the root directory of the
application. The extension of .asax tells the Web
server that it is a Global Application file.

The Application_Start event fires when a user
accesses the first .aspx page after you do one of the
following things: a) reboot the Web server, b) stop
and restart the World Wide Web service, c) update
the global.asax file, or d) deploy the application

for the first time. Getting the first .aspx page served
requires a little extra time because the code in the
Application_Start event is being executed. You
can use this event to set variables using the
Application object, to write application
information to a log file, or to do anything else that is
required when the application starts.

The Application_End event is fired when the Web
server is being shut down. You can use this event to
clean up variables created in the
Application_Start event, to log any additional
Application information, or to execute any other
functionality required when shutting down the
application.

CREATE A GLOBAL.ASAX FILE

212

ASP.NET

CREATE A GLOBAL.ASAX FILE

113617-6 Ch10.F  9/26/01  9:44 AM  Page 212



Save              Ctrl+S

‡ To create the event handler 
for when the application ends, 
click between the <SCRIPT> 
and </SCRIPT> tags, type 
void Application_End() {, and 
press Enter.

° Press Tab to indent, type 
the code you want to execute 
when the application ends, 
and press Enter.

· Type } to finish the event 
handler and press Enter.

‚ Click File ➪ Save to open 
the dialog box.

You can specify the language you want to use in
the <SCRIPT> tag by setting the language
attribute. This could include C# or VB. You will
always want to specify the RUNAT attribute to
run at the server because that is where the
Application and Session objects are located.
Here is what the <SCRIPT> tag would look like
when using C# as the language:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

The Global.asax file is an optional file. When
ASP.NET finds no Global.asax file, the
assumption is that there is no need to code for
the application and session events.

The Global.asax file is configured so that you
cannot request it as a URL. You should set up
permissions on the file so that unauthorized users
cannot read or update the file, especially if you have
any sensitive configuration information in the file.

You do not need to stop the Web server when
updating the Global.asax file. When you save
changes to the Global.asax file, ASP.NET
automatically detects that you have changed the
file. ASP.NET then restarts the application.

213

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

CONTINUED

113617-6 Ch10.F  9/26/01  9:44 AM  Page 213



— Click     to select the 
folder where you want to 
store your file.

± Type a name for the Web 
page.

� You can save the file to 
the C:\Inetpub\wwwroot\  
directory with the filename of 
Global.asax.

¡ Click Save to save the 
Web page.

� The Default Web site now 
has a Global.asax file.

™ To create the event handler 
for when the session starts, 
click between the <SCRIPT> 
and </SCRIPT> tags, type 
void Session_Start() {, and 
press Enter.

£ Press Tab to indent, type 
the code you want to execute 
when the application starts, 
and press Enter.

Note: This code will write a 
message when the session starts 
and create a session variable.

¢ Type } to finish the event 
handler and press Enter.

You can insert event handlers to indicate when a
user’s session starts and ends. For more
information about sessions and the Session

object, see page 226.

The Session_Start event fires when a new user
accesses his or her first ASP page from your ASP.NET
application. ASP.NET takes care of the details of
determining whether the user is new. When ASP.NET
determines that the user is new, the code in the
Session_Start event is executed for the user. This
code is run before any of the code on the ASP page
that was requested. You can use this event for many

purposes, including setting variables for the user,
redirecting the user to a login page, or using any
other code that you want to run when a user first
shows up to your Web site.

The Session_End event fires when the user’s
session times out, which happens when the time
between requesting pages is greater than the time-
out period set for the application, or when the
session is abandoned programmatically. You can use
this event to clean up variables created in the
Session_Start event or execute any other cleanup
code required when users leave your site.

CREATE A GLOBAL.ASAX FILE 

214

ASP.NET

CREATE A GLOBAL.ASAX FILE (CONTINUED)

113617-6 Ch10.F  9/26/01  9:44 AM  Page 214



∞ To create the event handler 
for when the session ends, 
click between the <SCRIPT> 
and </SCRIPT> tags, type 
void Session_End() {, and 
press Enter.

§ Press Tab to indent, type 
the code you want to execute 
when the application ends, 
and press Enter.

¶ Type } to finish the event 
handler and press Enter.

• Save the file.

� This example is saving the 
Global.asax to the default 
Web site.

ª Request an ASP.NET Web 
page from the default Web 
site.

� The message about the 
session event handler 
appears.

Note: You can request any 
ASP.NET Web page in the default 
Web site. In the example, the 
Comments.aspx ASP.NET Web 
page is requested.

215

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10
If you want to track statistics on your site, you can log
information from Global.asax to a file.

Example:
<% @ Import Namespace="System.IO" %>

<SCRIPT LANGUAGE="C#" RUNAT="Server">

void Application_Start() {

FileStream filestreamLog = new FileStream("applogging.txt", FileMode.Append, 

FileAccess.Write );

StreamWriter streamwriterLog = new StreamWriter(filestreamLog);

streamwriterLog.WriteLine("{0}", String.Concat("The application started at" 

,DateTime.Now));

streamwriterLog.Close();

streamwriterLog.Close();

}

</SCRIPT>

113617-6 Ch10.F  9/26/01  9:44 AM  Page 215



Open...           Ctrl+O

⁄ Start the text editor to edit 
the Global.asax file.

¤ Click File ➪ Open.

‹ Click     to select the Code 
Templates directory and open 
the UsingImportDirective 
GlobalTemplate.asax file.

› Click Open to open the 
template.

Note: You can open another 
Global.asax file that you want 
to use as an import directive.

ˇ Type the ASP.NET script 
delimiters (<% %>) and press 
Enter.

Á Position the insertion 
point after the first ASP.NET 
script delimiter (<%) and 
type a space followed by 
@ Import Namespace="".

You can use processing directives in the
Global.asax file to specify settings used in
your application. The three classifications of

directives are Application, Assembly, and
Import directives. With the Application
directive, you can set two attributes, Inherits
and Description. The Inherits attribute is used
to set which .NET base class the global.asax file
uses for all instances of global.asax. The ASP.NET
application compiler uses this information to compile
a new application that extends the specified class.
The Description attribute gives a short description
of your application. You can place both attributes in
the same directive.

The next directive that you could use is the Assembly
directive. This directive links an assembly to the
application. This makes classes in the assembly available
to your application. Another directive that appears
similar to the Assembly directive is the Import
directive. You can use the Import directive to import
.NET namespaces. The Import directive assumes that
the assembly that contains the namespace is already
available. After you import a namespace, you can
reference classes in the namespace without giving the
full qualification to the class.

As with page-level directives, you should place the
application-level directives at the top of the
Global.asax file. You should also place the directive
name/value pair within the ASP.NET script delimiters.

USING PROCESSING DIRECTIVES
IN THE GLOBAL.ASAX FILE

216

ASP.NET

USING THE IMPORT DIRECTIVE

113617-6 Ch10.F  9/26/01  9:44 AM  Page 216



Save As...

‡ Position the insertion point 
between the quotation marks 
(" ") and type the namespace 
you want to import.

° Click File ➪ Save As to 
open the dialog box.

· Click     to select the 
folder where you want to 
store your file.

‚ Type a name for the Web 
page.

— Click Save to save the 
Web page.

Note: Click the Yes button if you 
are prompted about replacing the 
file.

� The namespace is now 
declared for all pages on 
the site.

The Assembly directive lets you link
components to namespaces that have been
imported with the Import directive.

Example:

<%@ Assembly Name="MyAssembly.dll" %>

Another directive you can use in your
Global.asax file is the Application directive.
The Inherits attribute defines the new
application base class. This will need to be a
compiled .NET class on your server. You can also
specify a friendly name for the application with the
Description attribute.

Example
<%@ Application Inherits=" MySampleApp.Object"
Description=
"Sample Description"%>

217

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

113617-6 Ch10.F  9/26/01  9:44 AM  Page 217



Open...           Ctrl+O

⁄ Start the text editor to edit 
the Global.asax file.

¤ Click File ➪ Open.

‹ Click     to select the Code 
Templates directory and open 
the DeclareServer 
SideObjectGlobal 
Template.asax file.

› Click Open to open 
the template.

Note: You can open another 
Global.asax file that you want to 
use as a server-side object.

ˇ Click where you want to 
declare a server-side object 
and type <OBJECT 
RUNAT="Server".

Note: Objects must be declared 
outside the <SCRIPT> tags.

Á Type SCOPE= and the 
scope of the object.

Note: The scope of an object can 
be Session, Application, or 
AppInstance.

‡ Type ID= and the name 
you want to reference the 
object by within your ASP 
pages.

You can use the <OBJECT> tag in the
Global.asax file to declare an object for use
throughout your ASP.NET application. You should

place the <OBJECT> tag outside the code declaration
blocks. Therefore, you can place the <OBJECT> tag
before or after the <SCRIPT> tags, but not before any
processing directives (<%@ Directive %>). For more
about processing directives, see page 216.

The scope of the server-side objects are either for the
entire application, per application instance, or per
user session. You can set this using the scope
attribute. When the scope attribute is set to
application, there is a single object that is

available for all users, on every page, at any time.
When the scope is set to appinstance, there are
multiple objects. There is one for each application
instance, which is available to all users, on every page,
at any time. When set to session, each user session
manages a unique copy of the object.

Because of the scope of these variables, you should
use caution when deciding what you place into
memory. Use Session and Application level scope
with caution. See pages 222 to 229 to see other issues
associated with using the Application object and
Session objects.

USING SERVER-SIDE OBJECTS
IN THE GLOBAL.ASAX FILE

218

ASP.NET

USING SERVER-SIDE OBJECTS IN THE GLOBAL.ASAX FILE 

113617-6 Ch10.F  9/26/01  9:44 AM  Page 218



Save As...

° Type CLASS= "">.

· Between the quotation 
marks (""), type the kind of 
object you want to declare.

‚ Click where you want to 
close the <OBJECT> tag and 
type </OBJECT>.

— Click File ➪ Save As to 
open the dialog box.

± Click     to select the 
folder where you want to 
store your file.

¡ Type a name for the 
Web page.

™ Click Save to save the 
Web page.

Note: Click the Yes button if you are 
prompted about replacing the file.

Note: A System.Collections.ArrayList 
variable with a name of Items will be 
available for each session created for 
the default Web site.

219

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

After a server-side object has been declared in the
Global.asax properly, you can access the object from any
ASP page in your application. You reference the object by its
ID. For example, if a System.Collections.ArrayList
object has been declared in the Global.asax file with an ID
of Items, you can use the object on any ASP page.

TYPE THIS:

<OBJECT RUNAT="Server" ID="Items"
CLASS="System.Collections.ArrayList"/>

RESULT:

After this object is placed in the
Global.asax file, you can then
work with the Items array list on any
page.

113617-6 Ch10.F  9/26/01  9:44 AM  Page 219



Open...           Ctrl+O

⁄ Start the text editor to edit 
the Global.asax file.

¤ Click File ➪ Open.

‹ Navigate to the Code 
Templates directory and 
open the DeclareServer 
SideObjectGlobal 
Template.asax file.

› Click Open to open 
the template.

Note: You can open another 
Global.asax file if you want.

ˇ To create the event 
handler for request, click 
between the <SCRIPT> and 
</SCRIPT> tags, type void 
Application_BeginRequest() { , 
and press Enter.

Á Type } to finish the event 
handler and press Enter.

‡ To create the event 
handler to end the request, 
click between the <SCRIPT> 
and </SCRIPT> tags, type 
void Application_EndRequest() 
{ , and press Enter.

° Press Tab to indent, type } 
to finish the event handler, 
and press Enter.

You have eighteen supported application events
in ASP.NET Applications for writing application-
specific code. You also have the capability to

create you own custom application level events.
Typically, you will use the built-in events. You can use
any of these built-in events by implementing the
event handlers for these events in the Global.asax
file. This is done in the Global.asax file with the
following naming convention
Application_EventName(appropriateevent
argumentsignature).

Usually, you will add parameters to get more
contextual information on the event. This is a typical
event handler signature that includes parameters —

Application_EventName (Object sender,
EventArgs e). The sender tells you who raised this
event and the EventArgs gives you further context
about why the event was raised. The sender and
EventArgs are not required parameters of the event
handler, but it is good practice to include these
parameters.

Some applications’ events are raised for each request
to the application, and others just occur under special
conditions. For example, you can also use the
BeginRequest and EndRequest events for code
that you want to execute each time a user makes a
request. Place this in the Global.asax file between
the <SCRIPT> tags.

USING APPLICATION EVENT HANDLERS
IN THE GLOBAL.ASAX FILE

220

ASP.NET

USING THE BEGINREQUEST AND ENDREQUEST METHODS

113617-6 Ch10.F  9/26/01  9:44 AM  Page 220



Save As...

· Click File ➪ Save As to 
open the dialog box.

‚ Click     to select the 
folder where you want to 
store your file.

— Type a name for the Web 
page.

± Click Save to save the 
Web page.

Note: Click the Yes button if you are 
prompted about replacing the file.

¡ Request an ASP.NET Web 
page from your site to initiate 
the creation of a new 
application.

� The BeginRequest and 
EndRequest methods are 
called on the page.

Note: In this example, the 
Comments.aspx file was requested. 

Note: The Web browser is in 
full-screen mode in this screenshot 
so you can see all of the event 
messages.

ASP.NET uses a pool of HttpApplication
instances to service requests made by your
application. These managed instances handle
their requests for the lifetime of the request.
With ASP.NET, you can write code that will run
when HttpApplication instances are created
and destroyed.

You can write code in the Global.asax file to
override the creation and destruction methods for
the HttpApplication instance, the Init, and
the Dispose methods. The Init method executes
for each HttpApplication instance that is
created, whereas the Dispose method executes
when the HttpApplication instance is destroyed.

Example:
<%

public void Init(){
"Init override code goes here

}
public void Dispose()

" Dispose override code goes here
}

%>

221

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

113617-6 Ch10.F  9/26/01  9:44 AM  Page 221



⁄ Open CreateApplication 
Template.aspx from the Code 
Templates directory, click where 
you want to create application 
information, and type 
Application[""]=.  

¤ Between the quotation 
marks (""), type the name 
of the Application 
variable you want to 
create. 

‹ After the equal sign 
(=), type a value for the 
Application variable 
in quotes.

› Save the page as 
CreateApplication.aspx 
to the Default Web site and 
display the ASP.NET page in 
a Web browser.

� The Application 
variable is set, and a 
message appears.

Note: After the page is executed, 
you can access the information 
stored in the Application variable.

You can share global information throughout
your application by using the
HttpApplicationState class. This class

stores state in Application variables that are
available to all users of the site. An instance of the
HttpApplicationState class is created the first
time any user requests a URL resource from within
your ASP.NET application.

Creating and using Application variables is very
simple. However, you need to weigh the benefits of
simplicity against the cost of memory. The memory
allocated for these application level variables is not
released until the Web application is shut down or
the variable is removed or replaced programmatically.

Application variables should only hold information
that is necessary for all users of the site. You will also
find it beneficial to place objects that take a long time
to instantiate and are used frequently in
Application variables. If the instantiation is
expensive, you want to keep the object around after
the client is done using the object, so the next client
does not pay the same instantiation penalty. This
being said, you still need to limit the number of
objects and other variable types stored in the
application, due to the constraint of available memory
on your server.

USING APPLICATION STATE

222

ASP.NET

USING APPLICATION STATE

113617-6 Ch10.F  9/26/01  9:44 AM  Page 222



ˇ Open ReadApplication 
Template.aspx from the Code 
Templates directory, click where 
you want to access application 
information, and type 
Application[""].  

Á Between the quotation 
marks (""), type the name of 
the Application variable 
you want to read.

‡ Use the ToString() 
function to convert the 
variable to a string and 
place a Response.Write (); 
around code that accesses 
the Application 
variable.

° Save the page as 
ReadApplication.aspx 
and display the ASP.NET page 
in a Web browser.

� The Application 
variable’s value appears.

Because everyone can access the Application object, you
should lock the object when updating. When you finish updating
the variable, you can unlock the variable to free it for further
updating. It is not required to unlock (it will be automatically
unlocked when the page goes out of scope), but it is good to
explicitly unlock.

Example:
<%

Application.Lock

Application["applicationSiteName"] = "My Sample Site";

Application.UnLock

%>

223

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

CONTINUED

113617-6 Ch10.F  9/26/01  9:44 AM  Page 223



· Open UpdateApplication 
Template.aspx from the Code 
Templates directory.

‚ Click where you want to 
update the Application 
variable and type Application 
["applicationSiteMotto"] = "";.

— Between the quotation 
marks (""), type the 
updated value.

± Save the page as 
UpdateApplication.aspx 
to the default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
the result of updating the 
application information.

All users of your site share Application
variables. You can create Application
variables on any ASP.NET page on your site.

However, programmers often use the
Application_Start event handler to create your
Application variables.

After you create the variables, you can read them
from any page on the site. Because of the scope of
Application variables, you should generally
practice using Application variables for read-only
data that is accessed often across the entire site.
Application settings and common lookup values are
good candidates for Application variables. For
example, you can store state codes in an

Application variable. Note that you can also
update and delete Application variables from any
page on your Web site at any time.

Synchronization support is not built into
Application variables. You must explicitly use the
Lock and Unlock methods provided by the
HttpApplicationState class in order to
synchronize requests in a multi-user environment.
Note that this can impact scalability by blocking other
requests to the Application when you are updating or
reading a value with a lock in place. Another
scalability issue of using the Application object is that
its state can not be shared across multiple servers.

USING APPLICATION STATE 

224

ASP.NET

USING APPLICATION STATE (CONTINUED)

113617-6 Ch10.F  9/26/01  9:44 AM  Page 224



¡ Open DeleteApplication 
Template.aspx from the Code 
Templates directory.

™ Click where you want to 
delete the Application 
variable and type Application. 
Contents.Remove("");.

£ Between the quotation 
marks (""), type the name 
of the variable you want 
to delete.

¢ Save the page as 
DeleteApplication.aspx 
to the default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
the result of deleting the 
application information.

225

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

You can treat the Application variables as a collection. This enables you
to access all of the variables in your application in a looping structure.

TYPE THIS:

<%
Application["applicationSiteName"] = "My Lifetime Goals";
Application["applicationSiteMotto"] = "Out goal
is to help you reach yours";

%>

The Application variables have been set.<BR/><BR/>
The Application variables are:<BR/><BR/>

<%
int intCount = Application.Count.ToInt32();

for ( int i= 0; i < intCount; i++ ) {
Response.Write(Application.GetKey(i).ToString());
Response.Write(" = ");
Response.Write(Application.Get(i).ToString());
Response.Write("<BR/>");

}

%>

RESULT:

The application
variables have been
set.

The application
variables are:

applicationSiteName =
My Lifetime Goals

applicationSiteMotto =
Our goal is to help
you reach yours

113617-6 Ch10.F  9/26/01  9:44 AM  Page 225



⁄ Open CreateSession 
Template.aspx from the 
Code Templates directory 
and type Session[""] = .

¤ Between the quotation 
marks (""), type the session 
variable you want to create. 

‹ After the equal sign (=), 
type a value for the session 
variable in quotes.

› Save the page as 
CreateSession.aspx 
to the Default Web site and 
display the ASP.NET page 
in a Web browser.

Note: After this page has been 
executed, you can access the 
information stored in the session 
variable.

You can manage user-specific information from
page to page in your application by using the
HttpSessionState class. This class stores

state in Session variables that are tied back to the
requesting client. An instance of the
HttpApplicationState class is created the first
time the client requests a URL resource from within
your ASP.NET application or when the client requests
a URL resource after the session has expired or has
been programmatically abandoned.

Session state management is critical to building Web
applications that rely on information that crosses from
one page to the next. Page personalization
demonstrates the benefits of using Session variables.
For personalization, you might load a user’s

preferences at the beginning of his session and access
the Session variables on each page request to
customize the user’s page presentation.

Starting the session will initiate the Session_Start
event handler. The Session_Start event handler is
the most common location for initializing Session
variables (Session["sessionvariable"]="some
value";). After a Session variable has been
initialized in the Global.asax file or any page in the
Web application, you can read this data from any
page in the Web application (string strStorage
= Session["sessionvariable"];). Using
Session variables are not the only way to manage
session data, but they are one of the easiest ways.

USING SESSION STATE

226

ASP.NET

USING SESSION STATE

113617-6 Ch10.F  9/26/01  9:44 AM  Page 226



ˇ Open ReadSession 
Template.aspx from the 
Code Templates directory 
and click where you want to 
access application information 
and type Session[""].

Á Between the quotation 
marks (""), type the session 
variable you want to read.

‡ For the value to appear 
as output on the Web page, 
use the ToString() function to 
convert the variable to a string 
and place a Response.Write (); 
around code that accesses the 
Application variable.

° Save the page as 
ReadSession.aspx to the 
Default Web site and display 
the ASP.NET page in a Web 
browser.

� The Web browser displays 
the result of reading the 
application information.

227

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10

The Session object has many properties that you can configure. One of the important
properties is the Session.Timeout. This value determines the amount of time that a
user can go idle on your site without having to obtain a new session. You can set this
property and read from this property.

TYPE THIS:

<%
Session.Timeout = 5;
Response.Write("The Session Timeout is currently " + Session.Timeout + 

" minutes.");

%>

RESULT:

The Session Timeout is currently 5 minutes.

CONTINUED

113617-6 Ch10.F  9/26/01  9:44 AM  Page 227



· Open UpdateSession 
Template.aspx from the 
Code Templates directory.

‚ Click where you want to 
update the session variable 
and type Session["sessionUser 
FavoriteColor"] = "";.

— Between the quotation 
marks (""), type the updated 
value.

± Save the page as 
UpdateSession.aspx 
to the Default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
the result of updating the 
session information.

Web applications on IIS, by design, do not
retain state as the user goes from page to
page on the site. Therefore, you must have

some mechanism of tracking information from page
to page. Using the Session object is one of the
easiest ways to manage user-specific information.

Session state management has improved with
ASP.NET Applications. Session objects in ASP 3.0
could not be shared across Web forms, and therefore,
many developers would avoid the use of Session in
their applications.

To overcome the session state issues in ASP 3.0,
ASP.NET gives you three options for session state

management. The first option is in-process (runs in
the same memory space as ASP.NET). This gives the
best performance if you are only going to deploy to
one Web server. The second option is SQL Server.
This is a persistent storage mechanism that has the
slowest performance of all the options, but it is the
most resilient to Web site failures (for example, power
outage) and can be used in Web forms. The third
option is out-of-process. This falls between in-
process and SQL Server in terms of performance, and
it can also be configured for Web forms. This option
holds session data in volatile memory, so it is not as
resilient as the SQL Server option.

USING SESSION STATE 

228

ASP.NET

USING SESSION STATE (CONTINUED)

113617-6 Ch10.F  9/26/01  9:44 AM  Page 228



¡ Open DeleteSession 
Template.aspx from the 
Code Templates directory.

™ Click where you want 
to delete the Application 
variable and type 
Session.Contents.Remove("");.

£ Between the quotation 
marks (""), type the name 
of the variable you want to 
delete.

¢ Save the page as 
DeleteSession.aspx 
to the default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
the result of deleting the 
session information.

229

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10
You can treat the session variables as a collection. This enables you
to access all of the variables in your application in a looping structure.

TYPE THIS:

<%
Session["sessionUserFavoriteColor"] = "Blue”;
Session["sessionUserSecondFavoriteColor"] = 
"Green";

" Session["sessionUserThirdFavoriteColor"] = "Red";

%>

The User Favorite Color Session variables have been 

set.<BR/><BR/>

The User Favorite Color Session variables
are:<BR/><BR/>
<%

System.Collections.IEnumerator SessionEnumerator = 
Session.GetEnumerator();

while ( SessionEnumerator.MoveNext() ) {

Response.Write(SessionEnumerator.Current.ToString());
Response.Write(" = ");
Response.Write(Session[SessionEnumerator.Current.
ToString()].ToString());

Response.Write("<BR/>");

}
%>

RESULT:

The User Favorite
Color Session
variables have been
set.

The User Favorite
Color Session
variables are:

sessionUserFavorite
Color = Blue

sessionUserSecond
FavoriteColor = Green

sessionUserThird
FavoriteColor = Red

113617-6 Ch10.F  9/26/01  9:44 AM  Page 229



⁄ Open CreateCookie 
Template.aspx from the 
Code Templates directory, 
click where you want to 
create a cookie, and type 
HttpCookie cookieUserInfo = 
newHttpCookie("cookieUser 
HasVisited"); and press Enter.

¤ Set the cookie value by 
typing cookieUserInfo.Value = 
"Yes";.

‹ To write the cookie 
to the Web browser, type 
Response.AppendCookie 
(cookieUserInfo);.

› Save the page as 
CreateCookie.aspx to 
the Default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
a message about creating a 
cookie.

Note:  The cookie remains available 
until the Web browser is closed.

You can use ASP.NET to create cookies from an
ASP.NET page. When the user views the page,
the cookie is stored as a small text file on the

user’s computer. A cookie consists of a key, which
indicates the name of the cookie, and a value, which
is the information stored in the cookie.

When you create a cookie, you should specify when
the cookie will expire. By default, a cookie is usually
deleted as soon as the user closes his or her Web
browser. Setting an expiration date for a cookie
enables the cookie to store information for longer
periods of time. Most Web browsers store all the

cookies they receive in one folder. The storage
location depends on the Web browser installed on
the computer.

Typically, you will write the cookie to the user’s
browser before you begin sending any HTML in the
response to the client. If you write a cookie midway
through sending back a response, you may get an
error. This depends on whether you have buffering of
responses enabled on your page or for the
application. Buffering the response for the entire
application can be set in the IIS MMC. For IIS 5.0,
buffering is turned on by default.

WORK WITH COOKIES

230

ASP.NET

WORK WITH COOKIES

113617-6 Ch10.F  9/26/01  9:44 AM  Page 230



ˇ Open ReadCookie 
Template.aspx  from the 
Code Templates directory.

Á Read and display the 
cookie contents by typing 
Response.Write(Request. 
Cookies["cookieUserHas 
Visited"].Value);.

‡ Save the page as 
ReadCookie.aspx to the 
default Web site and display 
the ASP.NET page in a Web 
browser.

� The Web browser displays a 
message about the contents of 
the  cookie.

° Open CreatCookie 
CollectionTemplate.aspx 
from the Code Templates 
directory.

231

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10
If you do not set an expiration date for a cookie, the Web browser stores the
cookie only until the user closes the Web browser. In most cases, you should keep
this information for a longer period of time. To do this, you can use the Expires
property of your cookie. You can use the DateTime object’s Now property, along
with some convenient functions that add time to the current date and time.

TYPE THIS:
<%

HttpCookie cookieUserInfo = new
HttpCookie("cookieUserHasVisited");

cookieUserInfo.Value = "Yes";

cookieUserInfo.Expires =
DateTime.Now.AddDays(7).ToString();

Response.AppendCookie(cookieUserInfo);

%>

RESULT:

The cookie is set for a week.

TYPE THIS:
<%

HttpCookie cookieUserInfo = new
HttpCookie("cookieUserHasVisited");

cookieUserInfo.Value = "Yes";

cookieUserInfo.Expires =
DateTime.Now.AddMonths(1).ToString();

Response.AppendCookie(cookieUserInfo);

%>

RESULT:

The cookie is set for a month.

CONTINUED

113617-6 Ch10.F  9/26/01  9:44 AM  Page 231



· Click where you want 
to create a cookie and type 
HttpCookie cookieUserInfo = 
new HttpCookie("cookie 
UserFontPreferences");.

‚ Set the cookie subkey 
by typing cookieUserInfo. 
Values.Add("FontSize","8pt");.

— Set another the 
cookie subkey by typing 
cookieUserInfo.Values.
Add("FontName","Verdana");.

± To write the cookie 
to the Web browser, type 
Response.AppendCookie
(cookieUserInfo);.

¡ Save the page as 
CreateCookie.aspx to 
the Default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
a message about creating a 
cookie.

Note:  The cookie remains available 
until the Web browser is closed.

Cookies are an alternative to using Session
objects if you want to share data from page to
page. If this data is very sensitive and you do

not want your user to see this data, cookies are not a
good option. Cookies are stored in plain text on the
user’s local machine.

After you have created the cookie on the user’s
machine, you can then access the cookie from
another page. After the ASP.NET page finds the value
of the cookie, you can have the page perform an
action depending on the value. A Request.Cookies
statement enables you to read a cookie. You must

know the name of the cookie you want to read. If the
cookie you want to read does not exist on the user’s
computer, the value of the cookie will be null.

A cookie can use subkeys to store several related
values. For example, you could create a cookie that
stores the user’s font preferences. For this cookie, you
could store both the preference for the font size and
for the font name. With subkeys, you can do this
using one cookie. To add a subkey to the cookie, use
the Values.Add method for the HTTPCookie
object.

WORK WITH COOKIES

232

ASP.NET

WORK WITH COOKIES (CONTINUED)

113617-6 Ch10.F  9/26/01  9:44 AM  Page 232



™ Open ReadCookie 
CollectionTemplate.aspx 
from the Code Templates 
directory, click where you 
want to read a cookie, and 
type HttpCookie cookieUserInfo 
= Request.Cookies["cookieUser
FontPreferences"];.

£ Read the contents of the 
subkey in the cookie into a 
variable that will style the 
page by typing stringFont 
Size = cookieUserInfo. 
Values["cookieFontSize"];.

¢ To read the second 
subkey, type stringFont 
Name = cookieUserInfo. 
Values["FontName"];.

∞ Save the page as Read 
CookieCollection.aspx 
to the Default Web site and 
display the ASP.NET page 
in a Web browser.

� The Web browser displays 
a message about the contents 
of the cookie.

233

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10
You can loop through the subkeys of a cookie, which enables you
to work with the subkeys as a collection, perhaps displaying the
names and values of the subkeys in the cookie.

TYPE THIS:
<%

HttpCookieCollection cookie collectionAll

For (int loop=0: loop <cookie collectionAll.Count; loop ++)

{HttpCookie cookie = cokkie collectionAll(loop);

If (cookie.HasKeys)

{NameValueCollection namevaluecollection = new
NameValueCollection(cookie.Values);

String.[] StringValueNames = namevaluecollection.All Keys;

String {} StringValues = namevaluecollection.All;

}

}

%>

%>

RESULT:
FontSize = 8pt

FontName = Verdana

113617-6 Ch10.F  9/26/01  9:44 AM  Page 233



⁄ Open the Template.aspx  
template from the directory.

¤ Type a heading to the page.

‹ Type a form control to 
the page.

› Type a panel to the 
page with an ID of 
panelStep1.

ˇ Type a message about 
which step the user is on 
and output the value from 
the view state.

Á Type a button control 
to the page that calls the 
Button_OnClick when 
clicked.

‡ Add another panel to 
the page with an ID of 
panelStep2 and set the 
visible property to False.

° Add a message about 
which step the user is on 
and output the value from 
the view state.

You can use Page State to store information that
does not span multiple pages. This is appropriate
for persisting data on a single page that is used

across multiple requests of the same page.

To place  a variable into Page State, use the syntax
ViewState['Name'] = Value. To read the
variable out of Page State, use the syntax Variable
= ViewState['Name']. ViewState is inherited by
the Control class. Page class and all Web controls
are derived from the Control class and, therefore,
have the ability to retain state for multiple requests of
the same page.

The state bag is a data structure maintained by the
page for retaining values between round trips to the
server. By storing a value in the page’s state bag, you
automatically preserve it between round trips.

This section illustrates how to use page state to store
the current step. Note the use of the (IsPostBack!)
in the Page_Load event handler in the code. This
code will only execute the first time the page is
loaded because each subsequent request of the page
is doing a postback to the page. The panel’s visible
property hides and displays the two panels on the
page. For more information about panels, see
page 112.

WORK WITH PAGE STATE

234

ASP.NET

WORK WITH PAGE STATE

113617-6 Ch10.F  9/26/01  9:44 AM  Page 234



· Set the language for the 
page to C# using the Page 
directive.

‚ Add the <Script> tag 
to set up some server-side 
code.

— Add the Page_Load 
event handler and initialize 
the view state variable.

± Add the Button_OnClick 
event handler and set the first 
panel’s visible property to 
false and the second panel’s 
visible property to true.  
Also, increment the view 
state variable by 1.

¡ Save the file as 
PageState.aspx to the 
default Web site and request 
it from the Web server.

� The Web browser displays 
a message about being on 
step 1.

™ Click the Continue 
button.

� The Web browser displays 
a message about being on 
step 2.

� Note that you stay on the 
same page.

235

ASP.NET APPLICATIONS AND STATE MANAGEMENT 10
Page State information does not work across pages, this section features panels to display the
page state information. You can test what happens when you use page state on two pages.

TYPE THIS:
<%@Page Language="C#" %>
<HTML><HEAD>
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void Page_Load(Object Src, EventArgs E ) {
if (!IsPostBack) ViewState["viewstateStep"] = 1;

}
void Button_OnClick(object Source, EventArgs e) {

Response.Redirect("PageState_ai2.aspx"");
}

</SCRIPT></HEAD>
<BODY><FONT FACE="Verdana">
<H3>Welcome to mylifetimegoals.com</H3>
<FORM RUNAT="Server">
<ASP:PANEL ID="panelStep1" RUNAT="SERVER">
You are on Step <%
Response.Write(ViewState["viewstateStep"]);%>.  
Are you ready to set your goals?  
Click the Continue button to go to Step 2.
<P/>
<ASP:BUTTON ID="buttonContinue" RUNAT="Server" 
onClick="Button_OnClick" TEXT="Continue"/>
<P/>
</ASP:PANEL>
</FORM></FONT></BODY>
</HTML>

RESULT:
<%@Page Language="C#" %>
<HTML>
<HEAD>
<SCRIPT LANGUAGE="C#" RUNAT=

"Server">

</SCRIPT>
</HEAD>
<BODY>
<FONT FACE="Verdana">

<H3>Welcome to
mylifetimegoals.com</H3>

<FORM RUNAT='Server">
You are on Step <%
Response.Write(ViewState[

"viewstateStep"]);%>.
</FORM>

</FONT>
</BODY>
</HTML>

113617-6 Ch10.F  9/26/01  9:44 AM  Page 235



The web.config file gives you a maintainable,
convenient, and secure means to store
configuration information. The web.config

file is an XML file that stores information used to
customize application level settings across your
entire ASP.NET site. For example, you could store a
connection string to a database.

The web.config file needs to be located in the
parent directory of the ASP.NET Web site for
the pages that use the application configuration
information. You do not have to place the file in the
root directory of your ASP.NET application. You can
place a web.config file in any directory of the Web

site and when a Web page accesses configuration
information it will look in the parent directory. If the
web.config file is not found in the parent directory,
it will work its way up the directory structure until it
hits the root of the Web site.

To put your own custom application settings 
in the web.config file you need to add the
<appSettings> tag to the root <configuration>
tag. When you have done this, you can add settings
by using the <add> tags and specifying the name and
value of the setting (for example, <add key="pubs"
value="server=(local);uid=sa;pwd=;databa
se=pubs" />).

⁄ Open a new document 
in your text editor.

¤ Add a pair of 
<configuration> tags.

‹ Add a pair of 
<appSettings> tags.

› Add an <add> tag and 
set the key attribute pubs 
to the SQL connection string 
for connecting to the pubs 
database.

ˇ Save the file as web.config.

Á Open the 
DatagridTemplate.aspx 
template from the Code 
Templates directory.

‡ Import the 
System.Configuration 
namespace.

236

ASP.NET

ADD APPLICATION SETTINGS

ADD APPLICATION SETTINGS

123617-6 Ch11.F  9/26/01  9:45 AM  Page 236



Making changes to the web.config file causes
it to be reloaded the next time a resource is
requested. This will slow down your next
request, but subsequent requests are not
affected because the file is cached.

web.config files can contain very sensitive
information that you do not want a user of your
site to see. These settings could be connection
strings, authorization information, MSMQ
(Microsoft Messsage Queue) settings, and so on.
By default, ASP.NET does not allow this file to be
requested from the Web server. If users attempt
to request a web.config file, they receive an
HTTP access error, “This type of page is not
served.”

You can access configuration information by
importing the System.Configuration namespace
and running the following example code.

Example:
string stringPubsConnectionString =
ConfigurationSettings.AppSettings["pubs"];

237

° Create a string variable 
and initialize the variable using the 
Configuration.AppSettings
["pubs"] property.

· Modify the creation 
of the SQL Connection 
to use the connection 
string read from the 
configuration file.

‚ Save the file and request it 
from the Web server.

� The page appears using the 
SQL connection setting from 
the web.config file.

CONFIGURE YOUR ASP.NET APPLICATIONS 11

123617-6 Ch11.F  9/26/01  9:45 AM  Page 237



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading for 
the page.

‹ Add a message to 
the user. 

› Write the 
HTTP_USER_AGENT 
server variable to the 
Web browser. 

ˇ Save the file and request it 
from the Web server.

� The error page appears 
because the code on the 
page was written in C# 
and C# is not set as the 
default language.

238

You can use the standard configuration settings
to specify how to configure your ASP.NET Web
application. The web.config file is a central

storage location for information that can apply to the
entire site or just a section of the site. For example,
you can configure how the Session state can 
be persisted on your Web site using the
<sessionState> tag under the <system.
web> section.

The MODE attribute can be set to determine where a
user’s session is stored (mode="Inproc"). There
are three modes that you can choose from: Inproc,
StateServer, and SQLServer. Inproc is the
fastest and least durable mode that holds Session

state in the memory of the Web server process.
Conversely, SQLServer is the slowest and most
durable storage due to storage on a central SQL
database store.

In the web.config file, you can place as many
configuration settings as you desire. You are not
required to stub in all the configuration settings. You
are also not required to have a web.config file in
your ASP.NET site. If your site accesses application
settings and the web.config file does not exist, you
will get a Web server error.

ASP.NET

SET STANDARD CONFIGURATION 

SET STANDARD CONFIGURATION

123617-6 Ch11.F  9/26/01  9:45 AM  Page 238



Á Create a web.config file.

‡ Add the <system.web> 
tags.

Note: If you are creating a new 
web.config file, first add the 
<configuration> tags. 

° Add the 
<compilation> tag and 
set the defaultLanguage 
attribute to C#.

· Save the file.

‚  Request the file from the 
Web server.

� The page appears without 
problems because the default 
language is set to C#.

In the <configuration> tag, you can use
debug="true" to enable ASP.NET debugging.
You can specify the amount of time in seconds
that ASP.NET should execute running an ASP.NET
Web page before it times out and sends an error
message about the timeout with the
<executionTimeout> section.

239

Example:
<configuration> 

<system.web>

<compilation defaultLanguage="C#"
debug="true"/>

<httpRuntime executionTimeout="30"/>

</system.web> 

</configuration>

CONFIGURE YOUR ASP.NET APPLICATIONS 11

123617-6 Ch11.F  9/26/01  9:45 AM  Page 239



⁄ Create a web.config 
file.

¤ Add the 
<configSections> tags.

Note: If you are creating a new 
web.config file, first add the 
<configuration> tags.

‹ Add the <sectionGroup> 
tag and set the name attribute 
to system.web.

› Add the <section> tag 
and set the type attribute to 
System.Configuration. 
NameValueSectionHandler, 
System.

ˇ Add the <goalsetup> tag 
within the <system.web> tags.

Á Add the <add> tag 
and set the key attribute 
to maxnumber and the 
value attribute to 10.

You can customize the web.config file with
new sections. This makes the web.config file
flexible enough to contain all of your

configuration information in a structured way. The
custom configuration section information is placed
into two main areas in the configuration file.

The first area is for declaring names, groups, and
handles for the custom sections. Place configuration
section declarations in the <configSections>
container tags. You will have select groups,
<sectionGroup>, and section <section> tags for
defining the structure of your custom configuration
information. The <sectionGroup> is used to give
hierarchy to your <section> tags. The <section>

tags in your declaration have two properties, type
and name. The type attribute is the name of the
class that reads the information, for example,
System.Configuration.NameValue
SectionHandler class is a structure for name
value pairs. The name attribute is the name of the tag
that contains the information the section handler will
read.

Now that the sections and section groups are defined,
you can store the custom configuration information
by placing the <sectionGroup> and <section>
tags under the <configuration> root node. With
these tags, you will add the custom information in the
<section> tag attributes.

ADD CUSTOM SETTINGS

240

ASP.NET

ADD CUSTOM SETTINGS

123617-6 Ch11.F  9/26/01  9:45 AM  Page 240



‡ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

° Add a heading for 
the page.

· Add a message to 
the user.

‚ Write the value of the 
maxnumber configuration.

— Save the file and request it 
from the Web server.

� A message appears that 
displays the maxnumber 
custom setting from the 
web.config file.

You may have noticed a couple of peculiar things
about the source code for retrieving the value in
the web.config file. Notice the use of
(String) and (NameValueCollection).
These are classes defined for reading the
configuration information. For example, the
value retrieved from
Context.GetConfig("system.web/goalss
etup") is cast into a NameValueCollection
type variable and then the value for the
“maxnumber” is cast into a string.

You can access custom configuration information
you use the HTTPContext class in the
System.Web namespace
(Context.GetConfig("system.web/goals
setup"). The GetConfig gives you access to
the web.config file. You need to specify the
path to the node that you wish to work with, in
this case, "system.web/goalssetup".

You can put this configuration information into a
Session variable. This would make sense if you
were modifying the value of the configuration
information. For example, the maxnumber could be
read into a Session variable when the user logs
into the Web site. Based on the actions of the user,
you could update the value of the Session
variable.

241

11CONFIGURE YOUR ASP.NET APPLICATIONS

123617-6 Ch11.F  9/26/01  9:45 AM  Page 241



If you are having problems with a page during
development, you can turn page-level debugging
on for the page to get more detailed error

information, including the line number and the source
code associated with the error. ASP.NET can configure
debugging at the page level.

On the page you want to debug, add a <@ Page
debug="true" > directive to the top of the page.
The next time the page is requested and an error
occurs on the page, detailed error information is
displayed. Without this directive, you will get an error
page that does not have any relative error information
that can assist you in understanding why the error
occurred.

Only pages that have the debug attribute set on the
@Page directive are compiled into debug mode. If
you want all pages in the site to run in debug mode,
you need to update the web.config file. To enable
page debugging application-wide, you need to add
the compilation element under the <system.web>
tag and set the debug attribute equal to true.

Make sure that you only turn on page debugging
when necessary. Running applications in debug mode
does incur a memory/performance overhead. For
most cases you should not enable this in production.

ENABLE PAGE-LEVEL DEBUGGING

ASP.NET

⁄ Open the 
DatagridTemplate.aspx 
template from the Code 
Templates directory.

¤ Create an error on the 
page by changing the SQL 
statement to an invalid SQL 
statement. 

‹ Save the page and request 
it from the Web server.

� The page displays and an 
error message appears.

� A message appears from 
the server with a description 
of the error; however, no 
details are given as to on 
which line the error 
occurred.

242

ENABLE PAGE-LEVEL DEBUGGING

133617-6 Ch12.F  9/26/01  9:45 AM  Page 242



When page-level debugging is set, you may
receive several pieces of information to help
you play detective when an error occurs. Here
are the elements of the error message:

243

› Return to the page you 
were creating and add the 
@Page Debug trace directive.

ˇ Save the page and request 
it from the Web server.

� The page displays and an 
error message appears.

� A message appears from 
the server with a description 
of the error and the line 
number and the source code 
where the error occurred.

DEBUG YOUR ASP.NET APPLICATIONS 12

ELEMENT DESCRIPTION

Description A brief description of the error.

Exception Details Indicates which exception was raised and
describes exception.

Source Error Displays a couple of lines of the source code
before and after the line that generated the error.

Source File Specifies the path and filename of the source file
that generated the error.

Line Indicates the line number of the error.

Stack Trace Displays the call stack for the error.

Version Information Displays the Runtime Build and the ASP.NET Build.

133617-6 Ch12.F  9/26/01  9:45 AM  Page 243



⁄ Open a new document 
in your text editor.

¤ Start a web.config 
file by adding 
<configuration> tags.

‹ Add <system.web> tags.

› Add a <customErrors> tag 
and set the defaultRedirect 
attribute and the mode attribute.

ˇ Save the file as web.config 
to the Web site.

Á Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

‡ Add a heading to 
the page.

° Add an error message 
for the page.

· Save the page to the 
Web site.

You can use the web.config file to specify a
common error handling page(s) for your ASP.NET
Web application. The error handler in the

web.config file is declared in the <customErrors>
tag under the <system.web> node.

In the <customErrors> tag, you can specify the
Web page to direct users to when an error occurs
with the defaultRedirect attribute. If you want
to redirect users on a specified error code, you
can use the <error> child node to redirect users
to a page depending on the status code. For
example, <error statusCode="404"
redirect="PageMissing.aspx"/> nested under
the <customErrors> tag will redirect requests for

missing pages to an error-handling page that is only
for missing pages. If this is the only <error> child
node, then all errors except for 404 will be redirected
to the page defined in the <customErrors> tag.

Another useful attribute of the customErrors
element is the mode. There are three modes that can
be set (On, Off, and RemoteOnly). The first two
settings are self explanatory. The latter of these is for
turning on custom error pages for remote users only.
Locally logged-on users see the standard page
debugging details like Source Error, Line, and
Stack Trace. This enables an administrator to
troubleshoot a problem without turning off the
custom errors for outside users.

ENABLE CUSTOM ERROR HANDLING

244

ASP.NET

ENABLE CUSTOM ERROR HANDLING

133617-6 Ch12.F  9/26/01  9:45 AM  Page 244



‚ Create an error on the 
page by changing the SQL 
statement to an invalid SQL 
statement. 

— Save the page and request 
it from the Web server.

� The error-handling page 
appears because of the error 
on the page.

245

DEBUG YOUR ASP.NET APPLICATIONS 12

You can use the QueryString in the Response object
to create an error page that gives more detail to the user.

TYPE THIS:

<% @Page Language="C#" %>
<HTML>
<HEAD>

</HEAD>
<BODY>
<FONT FACE ="Verdana">

<H3>Custom Error Handling</H3>
You had an error on <% Response.Write(Request.QueryString
["aspxerrorpath"].ToString()); %>.<P/>

</FONT>
</BODY>
</HTML>

RESULT:

Custom Error Handling

You had an error on
/PageWithError.aspx.

133617-6 Ch12.F  9/26/01  9:45 AM  Page 245



⁄ Open 
DatagridTemplate.aspx 
from the Code Templates 
directory.

¤ Add the Page_Error 
event handler to the page.

‹ Add a string variable to 
create an HTML message for  
informing the user that an 
error has occurred on the 
page.

› Write the string to the 
Web browser using the 
Response object.

ˇ Clear the error using 
the Server.ClearError 
method.

You can use the Page_Error event along with
enabling custom handling to handle errors on
your individual ASP.NET pages. On each ASP.NET

page, you can use the Page_Error event handler to
trap errors on a page and run code to properly
respond to the error.

Handling errors programmatically on a page starts
with putting an event handler in the server-side code
for the page. You can use the Page_Error event to
send an error message to the user or to check for a
specific error to handle that error. The error details
are available through the Server.GetLastError
method. This method returns the Exception
object that was created for the error. The Exception

object is a rich structure that contains detailed
information about the trapped error. For example, the
Exception.Source property contains the name of
the application or the object that causes the error. The
Exception.StackTrace property helps you identify
the location in the code where the error occurs, and
the Exception.Message property gives you error
message text.

When you are done responding to the error,
you need to then clear the error by using the
Server.ClearError method. This is done to
ensure the error is not bubbled up to any other
error handling mechanisms on the site (like the
custom error handling in the web.config file).

HANDLE ERRORS PROGRAMMATICALLY

246

ASP.NET

HANDLE ERRORS PROGRAMMATICALLY

133617-6 Ch12.F  9/26/01  9:45 AM  Page 246



Á Create an error on the 
page by changing the SQL 
statement to an invalid SQL 
statement.

‡ Save the page and request 
it from the Web server.

� You remain on the same 
page and an error message 
appears.

Because you are on the same page in which the error occurred, you
can print out a number of details about the error.

Example:
<SCRIPT LANGUAGE="C#" RUNAT="Server">

void Page_Error(Object sender, EventArgs e) {

String stringMessage = "<HTML><FONT FACE =\"Verdana\">"

+ "<H3>Handle Errors Programmatically</H3>"

+ "There was an error processing this page."

+ "<P/>Here is the error information:<P/><PRE>" +
Server.GetLastError().ToString()

+ "</PRE></FONT></HTML>";

Response.Write(stringMessage);

Server.ClearError();

}

</SCRIPT>

247

DEBUG YOUR ASP.NET APPLICATIONS 12

133617-6 Ch12.F  9/26/01  9:45 AM  Page 247



⁄ Open 
DatagridTemplate.aspx 
from the Code Templates 
directory.

¤ Turn on tracing for 
the page by setting the 
Trace="true" attribute 
for the @Page directive.

‹ Save the page and request 
it from the Web server.

� The page contents appear. › Scroll down the page 
until you get to the Request 
Details.

You can use page tracing on your individual
ASP.NET pages to get information about the
page request when attempting to debug your

site. Tracing can be set on the page level with the
@Page directive. To trace an ASP.NET Web page, you
need to add <%@ Page Trace="true" %> to the
top of the page. When the page is requested, the
trace information appears.

With traces you can inspect the common collection of
the HttpRequest and execution flow (timing and
call stack). The Trace Information section displays the
different functions and their associated execution
times. The Control Tree section shows detailed
information about the use of controls and control

hierarchy for the page. The Cookies Collection
section displays all the cookies sent in the request.
The Headers Collection section shows the name value
pairs sent in the header section of the request. The
Server Variables section displays information about
the server, including security and configuration
information.

The trace information for a page appears at the
bottom of the page. You can add your own trace
information to page level traces. The trace
information is available to you through the
TraceContext object. This object can be
accessed by using the Trace property of a Page
or through the HttpContext.

USE A PAGE-LEVEL TRACE

248

ASP.NET

USE A PAGE-LEVEL TRACE

133617-6 Ch12.F  9/26/01  9:45 AM  Page 248



� The Request Details 
appear.

� The Trace Information 
appears.

� The Control Tree appears.

ˇ Scroll down the page 
until you get to the Cookies 
Collection.

� The Cookies Collection 
appears.

� The Headers Collection 
appears.

� The Server Variables 
appear.

249

DEBUG YOUR ASP.NET APPLICATIONS 12
You can write to the Trace Information from within your
ASP.NET Web page to track significant sections of code. This is
useful not only for outputting values at certain times, but also
for seeing how long it takes for something to execute. For the
full version of the code refer to PageLevelTrace_ai.aspx.

TYPE THIS:

protected void Page_Load(Object sender, EventArgs e) {
SqlConnection sqlconnectionPubs = new SqlConnection

("server=(local)\\NetSDK;uid=QSUser;pwd=QSPassword;database=pubs");
SqlDataAdapter sqldataadapterTitles = new SqlDataAdapter

("select title, notes, price from titles "
+ "where type='business'", sqlconnectionPubs);

DataSet datasetTitles = new DataSet();
sqldataadapterTitles.Fill(datasetTitles, "titles");

datagridTitles.DataSource=datasetTitles.Tables["titles"].DefaultView;
Trace.Write("DataBind","About to bind the datagrid.");
datagridTitles.DataBind();
Trace.Write("DataBind","Done binding the datagrid.");

}

RESULTS:

Trace information that includes details on the start and completion of the
datagrid binding.

133617-6 Ch12.F  9/26/01  9:45 AM  Page 249



⁄ Open a new document 
in your text editor.

¤ Start a web.config 
file by adding 
<configuration> tags.

‹ Add <system.web> 
tags.

› Add a <trace> tag and 
set the enabled attribute.

ˇ Save the file as web.config 
to the Web site.

Á Request the Trace.axd 
page in the root directory for 
the application.

� Recent requests are 
displayed. You may need to 
open another instance of your 
Web browser and request some 
of the other files in the directory 
to see requests in the trace.

‡ Click the View Details 
link to see the details for 
a specific request.

You can use application-level tracing to view
details on a series of requests made to your
ASP.NET Web application. Application-level

tracing is part of your Web configuration file
(web.config).

To enable application-level traces, you need to add
the trace element under the <system.web> tag.
For application traces to work properly, you need the
web.config file at the root directory of your
ASP.NET application. Therefore, the web.config file
must be either in its own Web site or virtual directory
that is configured as an application (see page 10 for
further information on setting up Web sites and
virtual directories).

After your site is configured for application tracing, all
subsequent requests will be collected in a trace log.
When you are ready to view these traces, you request
a special file called trace.axd from the root
directory. The trace.axd is not a physical file on
your hard drive. When the trace.axd is requested
in a URL, it will have the Web server generate a page
that displays a master list of all the captured traces.
From this master list, you can click the “View Details”
hyperlink on the last column to see the details of the
request. The details are very similar to what you
would find on a page-level trace.

USE AN APPLICATION-LEVEL TRACE

250

ASP.NET

USE AN APPLICATION-LEVEL TRACE

133617-6 Ch12.F  9/26/01  9:45 AM  Page 250



� Details appear for the 
request selected, including 
the Trace Information.

° Scroll down the page 
until you get to the Cookies 
Collection.

� The Cookies Collection 
appears.

� The Headers Collection 
appears.

� The Server Variables 
appear.

You can fine tune the storage of your trace information with the attributes
on the trace element. The requestLimit is the number of requests to
trace. The default for this is 10 requests. You can specify whether to have
individual pages output trace information by setting the pageOutput =
"true". You can also sort the trace information by category, instead of
time, by specifying traceMode="SortByCategory".

Example:
<configuration>

<system.web>

<customErrors defaultRedirect="error.aspx" mode="on" />

<trace enabled="true" requestLimit="50" pageOutput="true"

traceMode="SortByCategory" />

</system.web>

</configuration>

251

DEBUG YOUR ASP.NET APPLICATIONS 12

133617-6 Ch12.F  9/26/01  9:45 AM  Page 251



You can use Windows Authentication for securing
access to your ASP.NET application. To secure
your applications, you can use Windows

Authentication in conjunction with the IIS Integrated
Windows Authentication feature so that ASP.NET will
attempt to use the browser’s security context to
authenticate the user.

Alternatively, you can use Windows Authentication
with Basic Authentication if you want to support
a wider range of browser types. IIS’s Integrated
Windows Authentication works only with
Microsoft Internet Explorer. If you are using Basic
Authentication, you need to be aware that passwords
are sent over the wire in clear text. Consequently, you

should only use Basic Authentication over a Secured
Sockets Layer (SSL) via HTTPS.

To set up Windows Authentication, you need to add a
section to the web.config file. In the
<system.web> section of the web.config file, you
can add an <authentication> section and set the
mode attribute to Windows. Additional, the directory
where you have code that uses Windows
Authentication needs to be run as an application.
You can accomplish this by setting directory
properties in Internet Services Manager. Also, to
force Windows Authentication, be sure to turn off
anonymous access to the application.

USING WINDOWS AUTHENTICATION

ASP.NET

⁄ Open a new document in 
your text editor.

¤ Add the 
<configuration> start 
and end tags.

‹ Add the <system.web> 
start and end tags.

› Add an 
<authentication> tag 
and set an attribute named 
mode equal to Windows.

ˇ Save the file as web.config.

Á Open the Internet Services 
Manager and expand the tree 
until you get to the directory 
where you want to save your 
code for this task.

‡ Right-click the directory 
and choose Properties.

Properties

252

USING WINDOWS AUTHENTICATION

143617-6 Ch13.F  9/26/01  9:45 AM  Page 252



253

� The Properties dialog box 
opens.

° Click the Directory 
Security tab. 

· Click the Edit button to 
open the Authentication 
Methods dialog box.

‚ Click the Anonymous 
access check box to turn off 
access for the application.

— Click OK to accept the 
changes and close the 
Authentication Methods 
dialog box.

± Click OK to close the 
Properties dialog box.

SECURITY AND ASP.NET 13
You can check to see if users are authenticated and dynamically update controls to display a
message to the users based on whether they are authenticated or not. To get the full code
sample, see the WindowsAuthenication_ai.aspx file companion CD-ROM.

TYPE THIS:

<SCRIPT LANGUAGE="C#" RUNAT="Server">
void Page_Load(Object Src, EventArgs E ) {

Boolean booleanIsAuthenicated = User.Identity.IsAuthenticated;
if (booleanIsAuthenicated == true) {

labelUserName.Text = User.Identity.Name;
labelAuthenicationType.Text = User.Identity.AuthenticationType;
labelDisplayUserName.Visible = true;
labelDisplayAuthenicationType.Visible = true;     
labelDisplayAuthenication.Visible = false;

}
else {

labelDisplayUserName.Visible = false;
labelDisplayAuthenicationType.Visible = false;
labelDisplayAuthenication.Visible = true;

}
}
</SCRIPT>

RESULT:

Welcome to www.mylifetimegoals.com
You are authenticated as TAR-DEV-LAPTOP\Administrator.
You are authenticated using NTLM.

CONTINUED

143617-6 Ch13.F  9/26/01  9:45 AM  Page 253



¡ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

™ Add a heading for the 
page.

£ Add a message to the user 
about their authentication 
and use a label control to 
hold the value.

¢ Add a message to the user 
about how they are 
authenticated as and use a 
label control to hold the 
value.

∞ Add the Page_Load 
event handler to the page by 
using the <SCRIPT> tags.

You can use Windows Authentication to manage
authentication with user accounts that are
stored in your Windows 2000 domain. Using

Windows Authentication assumes that the user
accessing your site has a user account on the
Windows 2000 Server domain that is running
the Web server.

For users to request a resource on a Web site, they
must be mapped to a valid user account on that Web
server. Most publicly available sites on the World
Wide Web do not want to create a Windows 2000
account for every user of the site. This would be an
administrative nightmare, so sites are typically
configured to run all users under the same account.

Administrators do this by enabling anonymous access.
Anonymous access will map all users that access a
Web server to one account that you specify in the
Internet Services Manager.

Administrators must also manage another security
concept — impersonation. After a user has access to
the Web server, he or she has to make requests on
behalf of the user that requested a URL. You have the
ability to impersonate another user if your Web
application needs to run under one account for all
users. You can configure impersonation in the
web.config file with the identity element under
the <system.web> tag.

USING WINDOWS AUTHENTICATION 

254

ASP.NET

USING WINDOWS AUTHENTICATION (CONTINUED)

143617-6 Ch13.F  9/26/01  9:45 AM  Page 254



§ Set the values for the 
labels including the 
username and the 
authentication type.

¶ Save the file and request it 
from the Web server.

� A message appears 
showing the username and 
authentication type.

When securing Web applications, you deal with
authentication, authorization, and
impersonation.

Authentication is the process of identifying if you
are a configured user of the system.
Authentication occurs after the user provides a
name/password pair that they enter when
logging on to the site. This name/password pair is
also called the user credentials.

After you have authenticated a user, you need a
way to determine the appropriate access rights
of the user to read, modify, delete, and so on,
resources on your Web site. This is known as
user authorization.

Sometimes the user is mapped over to an account
that is shared by multiple users. This is called
impersonation and is used for setting up
anonymous access to a Web application in IIS 5.0.

Be cautious when configuring impersonation,
because configuration requires you to insert the
password in the text of the web.config file.
(Passwords in a text file are not very secure.)

255

SECURITY AND ASP.NET 13

143617-6 Ch13.F  9/26/01  9:45 AM  Page 255



⁄ Open a new document in 
your text editor.

¤ Add the 
<configuration> start 
and end tags.

‹ Add the <system.web> 
start and end tags. 

› Add an 
<authentication> tag 
and set the mode attribute 
equal to Forms.

ˇ Add a <forms> tag and 
set the name equal attribute 
to a unique name, a 
loginURL attribute equal to 
the name of your login page, 
a protection attribute 
equal to the value of all, and 
a timeout attribute equal 
to 60.

Á Add a set of 
<authorization> start 
and end tags.

‡ Add a <deny/> tag with 
the users attribute set to ?.

° Save the file as 
web.config.

You can build a custom login page with Forms
Authentication for securing your ASP.NET
applications. ASP.NET Forms Authentication is

not the most secure option, but if you cannot use
Integrated Windows Authentication or do not want to
use the Windows Logon dialog box, it is the best
alternative.

Forms Authentication uses cookies to indicate whether
the user is authenticated. When users access a resource
without the cookie present, they are redirected to a
predetermined custom login page that collects
authentication information. When users submit their
user credentials, the page authenticates the user. If
authenticated, the Web server sends back an

authentication cookie in the header. This cookie is
passed in the request header in future requests to
allow users to bypass the login page on subsequent
page request. The user will have this cookie until the
specified timeout occurs.

To set up Forms Authentication, you need to add an
<authentication> section to your web.config
file. After you have set up the authentication section,
you can use an <authorization> section to give
specific rights to users (note that ? represents all
anonymous identities, and * represents all identities).
You also need to set up the directory to run as an
application using the Internet Services Manager.

USING FORMS AUTHENTICATION 

256

ASP.NET

USING FORMS AUTHENTICATION

143617-6 Ch13.F  9/26/01  9:45 AM  Page 256



· Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

‚ Add a heading for the 
page that contains a label 
control for displaying the user 
name.

— Create the Page_Load 
event handler to set the user 
name for the label control.

± Save the file as 
FormsAuthentication
Default.aspx.

257

When working with Forms-based authentication, a login page must collect
user credentials and authenticate (maybe checking a database against the
supplied credentials). If the users pass authentication, you can redirect them
back to the originally requested page. To get the full code sample, see
FormsAuthenicationLogin_ai.aspx) file on the companion CD-ROM.

TYPE THIS:

<SCRIPT LANGUAGE="C#" RUNAT="Server">
void SubmitBtn_Click(object Source, EventArgs e) {

if (inputPassword.Text == "goals") {
FormsAuthentication.RedirectFromLoginPage(inputName.Text, false);

}
else {

labelMessage.Text="That password is not correct.";
}

}
</SCRIPT>

RESULT:

If you request another page in the site (test with FormsAuthenicationDefault.aspx
page), you will get this custom login page. After you supply credentials (where
password = "goals"), you will be sent to the original page that you requested.

SECURITY AND ASP.NET 13

CONTINUED

143617-6 Ch13.F  9/26/01  9:45 AM  Page 257



¡ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

™ Add a heading for the 
page and a message about 
login.

£ Add a form control to the 
page.

¢ Add a text box for the user 
name and password, along 
with a submit button and a 
label for displaying messages.

∞ Add an alias to the 
System.Web.Security 
namespace using @Import.

§ Create the 
SubmitBtn_Click event 
handler.

¶ Check the password field 
for the correct input and use 
the 
RedirectFromLoginPage 
to forward on the user.

• If the user did not enter 
correct input, set an 
appropriate message for the 
user.

If you use Forms Authentication, you can use user
data stores other than Windows 2000 domain
accounts for determining valid users. To set up

Forms Authentication, you need to create a login
page that authenticates the user. ASP.NET uses the
page specified in the loginUrl attribute of the
forms element found under the <authentication>
section. At a minimum, this page requires a place for
the user to enter a user name and password. You
could include some other special credentials that are
part of identifying a user, such as the company name.
After you retreive all necessary credentials, you can
check them against the store of your user data. This
could be a SQL database, Active Directory, or some

other user data store. After users log into this page
with your credentials, they are redirected to the
original page. This redirection is not automatic. It is
programmed into the function that handles the
submit of the login page with the use of the
FormsAuthentication.
RedirectFromLoginPage method.

The form used to collect the user credentials contains
sensitive information and should not be sent over an
unencrypted line. To protect you user credentials, you
want to put this form in a protected directory where
Secured Sockets Layer (SSL) is configured. This will
send this page over HTTPS instead of HTTP.

USING FORMS AUTHENTICATION 

258

ASP.NET

USING FORMS AUTHENTICATION (CONTINUED)

143617-6 Ch13.F  9/26/01  9:45 AM  Page 258



ª Save the file as 
FormsAuthenication 
Login.aspx and request the 
FormsAuthenication 
Default.aspx file from the 
Web server.

� The 
FormsAuthenication 
Login.aspx page appears.

º Type a name and goal for 
the password.

– Click the Submit button.

� The 
FormsAuthenication 
Default.aspx page appears, 
and the message is 
personalized by using your 
user name.

259

SECURITY AND ASP.NET 13
When collecting user credentials, you can validate server
controls to ensure that the user enters all required fields before
the validation check is performed.

TYPE THIS:

<BODY>
<FONT FACE ="Verdana"><H3>Welcome to mylifetimegoals.com</H3>
Please login to the secured area. You can use "goals" as a guest password.
<FORM RUNAT="Server">

Enter Name: <ASP:TEXTBOX ID="inputName" 
TEXTMODE="SingleLine" TEXT="" WIDTH="200px"
RUNAT="Server"/>

<ASP:REQUIREDFIELDVALIDATOR CONTROLTOVALIDATE="inputName"
DISPLAY="Static" ERRORMESSAGE="Please enter your name." 
RUNAT="Server"/>

<BR/>
Enter Password: <ASP:TEXTBOX ID="inputPassword" 

TEXTMODE="Password" TEXT="" WIDTH="200px"
RUNAT="Server"/>

<ASP:REQUIREDFIELDVALIDATOR CONTROLTOVALIDATE="inputPassword" 
DISPLAY="Static" ERRORMESSAGE="Please enter a password." RUNAT="Server"/>

<P/>
<ASP:BUTTON OnClick="SubmitBtn_Click" TEXT="Submit" RUNAT="Server"/>

<P/>
<ASP:LABEL ID="labelMessage" style="color:red" RUNAT="Server"/>

</FORM>
</FONT>
</BODY>

RESULT:

If you request
another page in
the site (test with
FormsAuthenication
Default.aspx page),
you will get this custom
login page. After you
supply credentials
(where password =
"goals"), you will be
sent to the original page
that you requested.

143617-6 Ch13.F  9/26/01  9:45 AM  Page 259



⁄ Open the web.config 
template file from the Code 
Templates directory.

¤ Add another <deny/> tag 
between the 
<authorization> tags; set 
users attribute to Danny.

‹ Add an <allow/> tag 
and set the users attribute to 
Tommy, Deanna, Bobby.

› Save the web.config 
file.

ˇ Copy the files 
UserAuthorization 
Default.aspx and 
UserAuthorization 
Login.aspx from the CD-
ROM to the Web site and 
request 
UserAuthorization 
Default.aspx from the 
Web server.

Á Type an unauthorized 
user’s name and goals for the 
password.

‡ Click the Submit button.

ASP.NET gives you a convenient means to
authorize and deny access to resources in your
ASP.NET application. You set up authorization in

the <authorization> section of the web.config
file. You can use the <deny/> tag to deny specific
users access and use the <allow/> tag to authorize
specific users. Note the use of ?, which is used to
represent anonymous identities, and the use of *,
which represents all entities. You can use commas to
delimit users when you wish to specify multiple users
in a single tag. You can also specify users in specific
domains if you are using IIS’s Integrated Windows
Authentication by prefixing the domain name (for
example, Domain\UserName).

If you want to be less granular with authorization, you
can allow or deny Windows 2000 domain groups. This
can be done with the roles attribute of the allow
element. You can also control the actions that a user
is allowed to perform. This is done with the verb
attribute on the allow element. The verbs that we
can control are GET, HEAD, and POST. If you do not
want a specific user to post data to the Web server
but only request Web pages for viewing, you can
specify the following:

<allow verb="GET" users="*" />

<deny verb="POST" users="Linda" />

AUTHORIZE USERS

260

ASP.NET

AUTHORIZE USERS

143617-6 Ch13.F  9/26/01  9:45 AM  Page 260



� You are redirected back to 
the login page because the 
user  is denied access.

° Enter an authorized name 
and goals for the password.

· Click the Submit button.

� Access is given to view the 
default page.

261

SECURITY AND ASP.NET 13
With Forms-based authentication, you can log users out by
removing their authentication cookie.

TYPE THIS:

<%@ Import Namespace="System.Web.Security " %>
<HTML>
<HEAD>
<SCRIPT LANGUAGE="C#" RUNAT="Server">
void Page_Load(object Source, EventArgs e) {

labelUserName.Text = User.Identity.Name;}
void Button_OnClick(Object sender, EventArgs E) {

FormsAuthentication.SignOut();
Response.Redirect("UserAuthorizationLogin.aspx");}

</SCRIPT>
</HEAD>
<BODY>
<FONT FACE ="Verdana">
<H3>Welcome to www.mylifetimegoals.com <ASP:LABEL ID=
"labelUserName" RUNAT="Server"/>!</H3>
<FORM RUNAT="Server">
<ASP:BUTTON ID="buttonSignout" TEXT="Signout" onClick=
"Button_OnClick" RUNAT="Server"/>
</FORM>
</FONT>
</BODY>
</HTML>

RESULT:

After logging in, you
can click the Signout
button to remove your
authentication cookie
and be redirected to
the login page.

143617-6 Ch13.F  9/26/01  9:45 AM  Page 261



You can use encoding to create a site that supports
multiple languages. Encoding refers to the way
that the data within your file is stored. Certain

languages, such as Japanese, have large character sets
and therefore require an encoding type that would
support all of the characters in the language.

Encoding is important because it determines how the
data from your Web server is sent to and from the
Web browser, along with how the files are stored on
your Web server. Response encoding refers to the way
the responses are sent to the Web browser, whereas
request encoding refers to the way the Web server
handles sent requests. File encoding pertains to how
files are stored on the Web server.

UCS Transformation Format (UTF-8) is an encoding
format that supports 8-bit form. This encoding
supports all Unicode character values, which allow for
support of most modern character sets.

Rather than specifying encoding for each page in your
application, you can specify this in your web.config
file for the entire application.

You can specify the response encoding type on a
page to be UTF-8 using the @Page directive. You can
then add multiple languages to the page to
accommodate users that speak different languages.

SET UP ENCODING

ASP.NET

⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add the @Page directive 
to the page and set the 
ResponseEncoding 
attribute to UTF-8, as well as 
the Language attribute 
to C#.

Note: You will need to install support 
for languages not currently installed 
on your computer. 

‹ Add an English heading 
for the page.

› Add a Spanish heading for 
the page.

262

SET UP ENCODING

153617-6 Ch14.F  9/26/01  9:45 AM  Page 262



You can set up encoding for the entire application in the web.config file with the
<globalization> tag.

The options for the attributes for encoding are as follows:

requestEncoding Specifies the assumed encoding of each incoming request. The default is us-ascii.

responseEncoding Sets the content encoding of responses. The default is iso-8859-1.

fileEncoding Designates the default encoding for .aspx, .asmx, and .asax files.

Example:
<configuration>

<system.web>

<globalization " requestEncoding="utf-8" responseEncoding="utf-8" fileEncoding="utf-8" />

</system.web>

</configuration>

263

ˇ Add a Japanese heading 
for the page.

Á Save the file and request it 
from the Web server.

� The messages in the 
various languages appear.

LOCALIZATION AND ASP.NET 14

153617-6 Ch14.F  9/26/01  9:45 AM  Page 263



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading to the 
page.

‹ Add a message to the user.

› Add a form control.

ˇ Create a drop-down list  
that has several languages 
from which to choose.

Á Add a submit button 
control.

‡ Add a span control on the 
form to display messages.

° Add the @Page directive 
to the page and set the 
ResponseEncoding attribute 
to UTF-8, as well as the 
Language attribute to C#.

· Add an alias to the 
System.Threading and 
System.Globalization 

You can use the CultureInfo class to display
localized settings. For example, you can display
the date in multiple formats based on the user’s

preferences. Begin by ensuring that the response’s
encoding type is appropriate. You can either do this
at the Page level or the Application level. See page
262 for more information on setting up encoding. You
need to have some way to determine which culture to
use. One way to do this is to simply have the user
select the culture. Another way is to read this
information from the user’s Web browser. After you

determine the culture, you can set the current
thread’s culture and then access the appropriate
property.

You can also use the CultureInfo class to display
the calendar preferences and the native name of the
culture.

You can create a drop-down list of cultures so the
user can specify a culture. After the user selects a
culture, you can use CultureInfo and a label
control to display the localized time.

USING CULTUREINFO

264

ASP.NET

USING CULTUREINFO

153617-6 Ch14.F  9/26/01  9:45 AM  Page 264



‚ Add the 
SubmitBtn_Click 
function.

— Create a new 
CultureInfo variable 
based on the item selected in 
the drop-down list box.

± Set the current culture.

¡ Set the InnerHtml 
property of the span control 
to the date based on the 
current culture.

™ Save the file and request it 
from the Web server.

£ Click       to select a 
culture.

¢ Click the Submit button.

� The message appears  
according to the culture 
selected.

265

LOCALIZATION AND ASP.NET 14

In addition to displaying the date and time in local format, you can also display a culture-
specific calendar that uses the native language for the culture.

TYPE THIS:

<SCRIPT LANGUAGE="C#" RUNAT="Server">
void SubmitBtn_Click(object Source, EventArgs e) {

CultureInfo cultureinfoLanguage = new 
CultureInfo(dropdownlistCultures.SelectedItem.Value);

Thread.CurrentThread.CurrentCulture = cultureinfoLanguage;
spanMessage.InnerHtml = "The localized date is " + 

DateTime.Now.ToString("D", CultureInfo.CurrentCulture) + 
"." + "<BR/> The calendar to use for this culture is " + 
CultureInfo.CurrentCulture.Calendar + "." + 
"<BR/> The native name for this culture is " + 
CultureInfo.CurrentCulture.NativeName + ".";
}
</SCRIPT>

RESULT:

The localized date is domingo, 05 de agosto de 2001.
The calendar to use for this culture is System.Globalization.GregorianCalendar.
The native name for this culture is español (España).

153617-6 Ch14.F  9/26/01  9:45 AM  Page 265



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading to the 
page.

‹ Add a message to 
the user.

› Add a form control.

ˇ Create a drop-down list 
that has several languages 
from which to choose.

Á Add a submit button 
control.

‡ Add a span control on the 
form to display messages.

° Add the @Page directive to 
the page and set the 
ResponseEncoding 
attribute to UTF-8, as well as 
the Language attribute to C#.

· Add an alias to the 
System.Threading and 
System.Globalization 
namespaces.

You can use the RegionInfo class to show
regionalized settings. For example, you can
display the local currency based on the user’s

preferences.

Working with the RegionInfo class is similar to
working with the CultureInfo class, you must
ensure that the response’s encoding type is set up
appropriately. You can either do this at the Page level
or the Application level. See page 262 for more
information on setting up encoding. You need to
determine which region to use for the user. You can
simply have the user select the culture, or you can try
to determine it from the information sent from the

user’s Web browser. After you determine the region,
you can then access the property with which you
want to work.

You can also use the RegionInfo class to determine
whether the region uses the metric system and what
the Windows Region Name is. See the Apply It!
section for the code necessary to do this.

You can create a drop-down list of regions for the
user to choose from on a Web page. After the user
selects a region, you can use the RegionInfo class
and a label control to display the regional currency
for the user.

USING REGIONINFO

266

ASP.NET

USING REGIONINFO

153617-6 Ch14.F  9/26/01  9:45 AM  Page 266



‚ Add the 
SubmitBtn_Click function.

— Create a new 
RegionInfo variable based 
on the item selected in the 
drop-down list.

± Set the InnerHtml 
property of the span control 
to the date based on the 
current culture.

¡ Save the file and request it 
from the Web server.

™ Click      to select 
a culture.

£ Click the Submit button.

� The message appears  
according to the 
region selected.

267

LOCALIZATION AND ASP.NET 14

In addition to determing the local date and time, you can also determine whether the
region uses the metric system and what the three-letter Windows Region Name is.

TYPE THIS:

<SCRIPT LANGUAGE="C#" RUNAT="Server">
void SubmitBtn_Click(object Source, EventArgs e) {

RegionInfo regioninfoLanguage = 
new RegionInfo(dropdownlistRegions.SelectedItem.Value);

String stringMetric = "";
if (regioninfoLanguage.IsMetric == true)

stringMetric = "uses";
else 

stringMetric = "does not use";
spanMessage.InnerHtml = "The local currency for " + 

regioninfoLanguage.EnglishName + " is " + 
regioninfoLanguage.CurrencySymbol + "." + 
"<BR/> This region " + stringMetric + 
" the metric system." + 
"<BR/> The Windows region name for this region is " + 
regioninfoLanguage.ThreeLetterWindowsRegionName + ".";
}
</SCRIPT>

RESULT:

The local currency for United States is $.
This region does not use the metric system.
The Windows region name for this region is USA.

153617-6 Ch14.F  9/26/01  9:45 AM  Page 267



⁄ Open 
GenericTemplate.aspx 
from the Code Templates 
directory.

¤ Add a heading to the 
page.

‹ Add a message to the 
user.

› Add a form control.

ˇ Create a drop-down list  
that has several languages 
from which to choose.

Á Add a submit
 button control.

‡ Add a span control on the 
form to display messages.

° Add the @Page directive 
to the page and set the 
ResponseEncoding 
attribute to UTF-8, as well as 
the Language attribute to C#.

· Add an alias to the 
System.Threading and 
System.Globalization 
namespaces.

You can use the Page control to specify a certain
culture for individual pages in your ASP.NET
application.

The Page control can be used for setting properties
for a Web page. Culture is one of the properties that
you can set for a page.

When using the Page control to localize, each culture
that you support must have a separate Web page for
that culture. This enables different team members to
work on various parts of your Web application
without affecting each other.

You can create a separate page for each culture. You
must have a method of determining which culture to

use. You can allow the user to select a culture from a
drop-down list. Based on this selection, you can use a
case statement to redirect the user to the
appropriate page. On these pages, you can use the
@Page directive’s Culture attribute to set the
culture. When displaying the date on the page, you
can use the CultureInfo.CurrentCulture to
ensure the date is formatted properly.

You can have the user select a culture from a drop-
down list of cultures and redirect them to an
appropriate page based on the culture. Each page will
be set up for different cultures and display the
localized date.

LOCALIZE WITH THE PAGE CONTROL 

268

ASP.NET

LOCALIZE WITH THE PAGE CONTROL

153617-6 Ch14.F  9/26/01  9:45 AM  Page 268



Spanish

‚ Add the 
SubmitBtn_Click 
function.

— Create a new string 
variable and read the value of 
the selected item in the drop-
down list.

± Add a switch statement 
to redirect the user to the 
appropriate page.

¡ Save the file and request it 
from the Web server.

™ Copy the 
Welcomeen_us.aspx, 
Welcome_es_es.aspx, 
and Welcome_ja_jp.aspx 
files from the CD-ROM to the 
current directory.

Note: These files are used for the 
different cultures you can select. 

£ Click       to select
 a culture.

¢ Click the Submit button.

� The appropriate page for 
the culture appears with a 
message. 269

LOCALIZATION AND ASP.NET 14

The @Page directive has a Culture attribute that you can set to the culture. Search
MSDN for the CultureInfo class for more information on possible values for the
Culture attribute.

TYPE THIS:

<%@Page CULTURE="es" LANGUAGE="C#" %>
<%@Import Namespace="System.Globalization"%>
<HTML>
<HEAD>
</HEAD>
<BODY>
<FONT FACE ="Verdana">
<H3></H3>
The local date is: <%=DateTime.Now.ToString("D", 
CultureInfo.CurrentCulture)  %>
</FONT>
</BODY>
</HTML>

RESULT:

The local date is: 
domingo, 05 de agosto 
de 2001

153617-6 Ch14.F  9/26/01  9:45 AM  Page 269



⁄ Open your text editor.

¤ Type [strings].

‹ Add the welcome 
statement=Welcome! 
name/value pair.

› Save the file with a 
.txt extension.

� Repeat steps 2 to 4 for each 
culture.

Note: The resource files are saved in 
a subdirectory called resources.

Note: This task works with three 
cultures (English, Spanish, and 
Japanese). You can expand to other 
cultures.

ˇ Open the command 
prompt and go to the 
directory where your resource 
files are located.

Á Type the resgen command 
to create the resource file 
from the text file.

� Repeat step 6 for each 
resource file.

You can use resource files to store localization
information for your ASP.NET Web application,
which enables you to separate all of the

information that is specific to a language or a locale
from the application functions. This capability makes
it easier to add more languages to the application.

Resource files are composed of name/value pairs.
Once you have created the resource file, you need to
convert the file to a binary output by using the
resgen command at the command line. To access the
information in the resource file, you can use a class
utility called a Resource Manager. You can load the

Resource Manager into an application variable by
using the Application_OnStart event handler in
the  Global.asax.

You can save the resource files in a subdirectory to
organize you files. If you want to do this, you can use
the Server.MapPath function in the Global.asax
to map to the subdirectory.

You can create a resource file and compile the
resource file using the resgen command utility. You
can then create a Global.asax file that that will
load the resources into a Resource Manager.

CREATE AND USE RESOURCES

270

ASP.NET

CREATE AND USE RESOURCES

153617-6 Ch14.F  9/26/01  9:45 AM  Page 270



‡ Open your text editor to 
create a Global.asax file.

° Add aliases to 
System.Globalization, 
System.Resources, 
System.Threading, and 
System.IO.

· Create the 
Application_OnStart 
event handler.

‚ Create a Resource 
Manager application variable 
and initialize it.

— Save the file as Global.asax 
to the Web site.

� You can now use the 
Application variable to 
access the information in the 
resource files.

271

LOCALIZATION AND ASP.NET 14

You can try and read the user language from the Web browser. You can put the following
function in your Global.asax file to set the culture for all requests. It attempts to read
the user language if possible and sets the language to en-us for a default value.

TYPE THIS:

void Application_BeginRequest(Object sender, EventArgs args) {
try {

Thread.CurrentThread.CurrentCulture = 
new CultureInfo(Request.UserLanguages[0]);

} 
catch(Exception) {
Thread.CurrentThread.CurrentCulture = 

new CultureInfo("en-us");
}
Thread.CurrentThread.CurrentUICulture = 

Thread.CurrentThread.CurrentCulture;
}

RESULT:

The culture is
set based on
information that
was sent from the
user’s Web
browser.

153617-6 Ch14.F  9/26/01  9:45 AM  Page 271



⁄ Open the 
GenericTemplate.aspx 
template from the Code 
Templates directory.

¤ Add a heading to the page.

‹ Add a message to the user.

› Add a form control.

ˇ Create a drop-down list 
that has several languages 
from which to choose.

Á Add a submit button 
control.

‡ Add a span control on the 
form to display messages.

° Add the @Page directive 
to the page and set the 
ResponseEncoding 
attribute to UTF-8, as well 
as the Language attribute 
to C#.

· Add an alias to the 
System.Globalization, 
System.Resources, and 
System.Threading 
namespaces.

‚ Add the <script> tags.

— Create a new 
ResourceManager variable.

You can create ASP.NET Web pages that use the
information stored in the Resource Manager.
The Resource Manager is a class utility that you

can use to access the information stored in your
resource files.

The culture for a user must be determined. One way
you can determine this is to have the user select their
culture from drop-down list. You need to make sure
the response encoding is appropriate for the
languages you are working with in your application.
You can use UTF-8 to support multiple languages. You
can add aliases to any namespaces for convenience.

You can use the Page_Init function for reading the
Resource Manager variable out of the application
variable. When you have access to the Resource
Manager object, you can pull the appropriate string
out of the Resource Manager according to the
culture. Once you have the string, you can then
update the <span> on the page to display the
localized statement.

You can build the ASP.NET Web page that will be used
to access the data in the resource file and display a
statement based on the culture selected.

USE RESOURCE MANAGER
INFORMATION

272

ASP.NET

USE RESOURCE MANAGER INFORMATION

153617-6 Ch14.F  9/26/01  9:45 AM  Page 272



± Add the Page_Init 
event handler that reads the 
Resource Manager from the 
application variable.

¡ Create the 
SubmitBtn_Click 
function.

™ Set the 
CurrentCulture and 
CurrentUICulture based 
on the selection in the drop-
down list.

£ Set the message using the 
Resource Manager.

¢ Save the file and request it 
from the Web server.

∞ Click       to select a 
culture.

§ Click the Submit button.

� The message is localized 
according to the culture 
selected.

You can convert your resource files from their
binary format into XML-formatted files. For
example, you can use the resgen at the
command line to convert the text.en-
us.resources file into an XML file named
text.en-us.resx.

Example:
resgen text.en-us.resources text.en-us.resx

You can convert from XML back to text as well. For
example, you can use resgen at the command line
to convert the text.en-us.resx file into an XML
file named newtext.en-us.txt.

Example:
resgen text.en-us.resources newtext.en-us.resx

273

LOCALIZATION AND ASP.NET 14

153617-6 Ch14.F  9/26/01  9:45 AM  Page 273



You can implement ASP.NET applications that use
multiple server-side languages. The .NET
platform supports several languages and is

architected to support any mainstream language that
can supply a compiler that will generate IL
(Intermediate Language) that is compatible with the
CLR (Common Language Runtime). Also, if the
language is to interoperate with other .NET languages,
it must be CLS (Common Language Specification)
compliant.

The .NET platform does support multiple languages,
and ASP.NET applications can use these CLR
complaint languages, but the Web pages only support

one server-side language per page. The one language
per Web page applies only to code processed on the
server. You can still have multiple client-side
languages. ASP.NET treats the client-side language just
like normal HTML markup and lets the user’s browser
interpret the script. Client-side language support is
handled by the browser, just as with ASP 3.0
applications.

To indicate what language you want to run on a page
for server-side code processing, you can set it with
the Language attribute on the @Page directive. If the
language is not specified, ASP.NET assumes that the
language is VB.

WORK WITH MULTIPLE SERVER-SIDE
LANGUAGES

ASP.NET

⁄ Open 
MultipleLanguages.aspx 
from the Code Templates 
directory.

� The page displays two 
server-side script blocks 
using two different 
languages.

¤ Save the file and request it 
from the Web server.

� The JScript code and the 
VBScript code execute.

274

WORK WITH MULTIPLE SERVER-SIDE LANGUAGES

163617-6 Ch15.F  9/26/01  9:46 AM  Page 274



ASP.NET Web pages are compiled on the Web
server. This is why there is support for only one
language per page. This is different than
traditional ASP pages, which are normally
interpreted each time they are requested.

If the language is not specified in the @Page
directive and you only have server-side code in a
<script> tag, then you could set the Language
attribute for the script element.

The .NET Framework provides the Common
Language Specification (CLS) to ensure that .NET
compliant language can interoperate. CLS
describes a fundamental set of language features
and defines rules for how those features are
used. CLS-compliant languages enable you to do
such things as inherit classes from other CLS-
compliant classes and pass data types without
having to do any special preparation (like
buffering a string).

When you know how to program in a language that
is CLS compliant, you can leverage this knowledge
by creating other applications that run on the CLR
(like a Windows Forms application, a Web Service, a
Mobile application, or a distributed application).

275

‹ Open 
MultipleLanguages.aspx 
from the Code Templates 
directory.

� The page displays two 
server-side script blocks 
using two different 
languages.

› Save the file and request it 
from the Web server.

� An error message appears 
because more than two 
languages cannot be used on 
the same page.

MIGRATE FROM ASP TO ASP.NET 15

163617-6 Ch15.F  9/26/01  9:46 AM  Page 275



⁄ Open 
ScriptBlocks.aspx from 
the Code Templates directory.

� The page displays the 
SayWelcomeStatement 
that outputs the header for 
the page.

¤ Save the file and request 
ScriptBlocks.asp from 
the Web server.

� The ASP code executes 
without issues.

You can embed server-side code in ASP.NET and
ASP applications with <script> blocks. This
feature has not changed from ASP applications

to ASP.NET applications. Server-side <script>
blocks were available and configured the same way.
What is new is the concept of using code-behind
pages in ASP.NET pages. See page 192 for a cleaner
way to implement server-side code.

What you need to be aware of with <script> blocks
is that they are necessary for procedures that are
placed inside of the ASP.NET page. Before, with ASP

pages, you could put procedures within code
delimiters (<% and %>) without issues. In ASP.NET,
however, this is not allowed.

To include a server-side <script> block, you need
to (at a minimum) put in the runat="Server"
attribute. You also should be explicit with the
language you are implementing inside of the
<script> block. The default is VB. So, if you desire
to use C#, you will need to put the Language="C#"
attribute inside the script element.

WORK WITH SCRIPT BLOCKS

276

ASP.NET

WORK WITH SCRIPT BLOCKS

163617-6 Ch15.F  9/26/01  9:46 AM  Page 276



‹ Open 
ScriptBlocks.aspx from 
the Code Templates directory.

� The page displays the 
SayWelcomeStatement 
that outputs the header for 
the page.

› Save the file and request it 
from the Web server.

� An error message appears 
because parentheses were 
not used when calling the 
subprocedure.

You can put scripts into files that are external to
your ASP.NET page. You can do this with the
<script> element by specifying an external
script file using the src attribute. When you
define the src attribute, all content between
the opening and closing tags of the <script>
element is ignored. Because this is the case,
it is best to define the <script> element
as an empty tag. For example,
<script runat="server"
src="scrStandard.cs" />.

With ASP.NET, you must declare global
variables within <script runat=server>
blocks and not between code delimiters 
(<% and %>).

277

MIGRATE FROM ASP TO ASP.NET 15

163617-6 Ch15.F  9/26/01  9:46 AM  Page 277



⁄ Open 
RenderFunctions.aspx 
from the Code Templates 
directory.

� The page displays the 
SayWelcomeStatement 
that outputs the header for 
the page.

¤ Save the file and request it 
from the Web server.

� The ASP code is able to 
use the render function.

Render functions that were in your ASP
applications can be replaced with global
functions in ASP.NET. Traditional render

functions that were available in ASP applications are
no longer available in ASP.NET applications. Render
functions were functions that embedded HTML inside
of the function. This HTML was not written with the
Response.Write; it was embedded inside of the
function. This was done by starting the subroutine
(<% Sub RenderHeader() %>) with an open code
deliminator and ending with a close code deliminator.
Then the HTML would be written as though it were
outside of the function (<H1>Welcome to
www.mylifetimegoals.com</H1>). Finally,
the subroutine would be closed with code

deliminators (<% End Sub %>). This render
function could be called conditionally after the
subroutine or function definition (<% Call
RenderHeader %>).

This ASP trick is no longer available in ASP.NET. There
are two issues with render functions that violate
ASP.NET syntax rules. First, HTML can not be
embedded in a function. To resolve this issue, use
Response.Write. Second, procedures cannot reside
inside of code delimiters (<% and %>). This is resolved
by putting the function or subroutine in the server-
side <script> blocks.

USING RENDER FUNCTIONS

278

ASP.NET

USING RENDER FUNCTIONS

163617-6 Ch15.F  9/26/01  9:46 AM  Page 278



‹ Open 
RenderFunctions1.aspx 
from the Code Templates 
directory.

� The page displays the 
SayWelcomeStatement 
that outputs the header for 
the page.

› Save the file and request it 
from the Web server.

� An error message appears 
because a render function 
was used.

Rendering functions were commonplace in ASP
applications. Using rendering functions to build
tables from recordsets was very convenient, but
it created very messy code that was hard to
troubleshoot. Because rendering functions are
not allowed in ASP.NET, you can either put the
functions in a script block using the
Response.Write ("html goes in
here") method, or you can use the data
binding capabilities that come with the ASP.NET
framework. Refer to Chapter 6 for data binding
to server-side controls. This gives you the ability
to populate a table with much less code that is
easier to follow.

279

MIGRATE FROM ASP TO ASP.NET 15

163617-6 Ch15.F  9/26/01  9:46 AM  Page 279



⁄ Open 
PageDirective.aspx 
from the Code Templates 
directory.

� The page does not use the 
@Page directive. It uses the 
@Language directive 
without the @Page.

¤ Save the file and request it 
from the Web server.

� The ASP code executes 
displaying the header that is 
contained in a subroutine.

The standard set of processing directives for an
ASP.NET page has changed dramatically from
what was available with ASP. When migrating

from ASP to ASP.NET, you need to update your pages
to use the @Page directive to let ASP.NET know
certain processing requirements for an ASP.NET Web
page. For example, in ASP pages, if you wanted to
specify the server-side language, you used the
@Language directive. Now, with ASP.NET Web pages,
you must use the Language attribute that is available
via the @Page directive.

The @Page directive contains many of the directives
that were available for ASP Applications. LCID and

CodePage attributes on the @Page directive for
ASP.NET Web pages are all directives that must be
placed on the first line of a page within the same
delimiting block, for example, ASP.NET <%@Page
Language="VB" CodePage="932"%>
versus ASP <%@ LANGUAGE="VBSCRIPT"
CODEPAGE="932"%>.

With ASP.NET Web pages, you can have as many lines
of directives as you need. Standard practice is to put
directives at the top of the page, but you are able to
put them anywhere in your ASP.NET Web page.

USING PAGE DIRECTIVES

280

ASP.NET

USING PAGE DIRECTIVES

163617-6 Ch15.F  9/26/01  9:46 AM  Page 280



‹ Open 
PageDirective.aspx 
from the Code Templates 
directory.

� The page uses the @Page 
directive to set the server-side 
language.

› Save the file and request it 
from the Web server.

� The ASP code executes 
using the @Page directive to 
determine the server-side 
language.

When migrating ASP applications to ASP.NET applications, you
have other directives besides the @Page directive. For example,
you can use the @OutputCache directive to control how a
page is cached on the server. With page caching on the server,
results of a processed .aspx page are held in memory at the
server. The next time the page is requested, the cached page
can be sent as the response instead of regenerating the page.
This can give you excellent performance gains, especially when
the page generation involves calls to other machines (like
database servers). You can control the location of where the
page is cached via the Location attribute. The Location
attribute has the following options:

281

MIGRATE FROM ASP TO ASP.NET 15

OPTION LOCATION

Any Client, Downstream, or Server

Client Browser client where the request originated

Downstream A server downstream from the Web server that processed the request

None N/A

Server Web server where the request was processed.

163617-6 Ch15.F  9/26/01  9:46 AM  Page 281



⁄ Open 
SimpleQuery_VBScript.aspx 
from the Code Templates directory.

¤ Scroll down the file to 
view the code.

‹ Save the file and request 
SimpleQuery_VBScript.aspx 
from the Web server.

› Copy the file from the CD-ROM 
to the working directory.

� The ASP code executes 
without issues and 
displays data from the 
database of the author.

For your server-side code, you can migrate
VBScript code to VB.NET in your ASP.NET
applications. VBScript is the most common

language used for ASP Applications. If you decide to
migrate an ASP application that used VBScript for
server-side code, you can make some minor
modifications to VBScript to turn it into VB code that
will run in the Common Language Runtime (CLR).

If you migrate an existing ASP application to an
ASP.NET application, you will have to make some
decisions on how far you want to take your
conversion process. At a high level, you can take one
of three paths depending on the number of changes

you want to make. The first path is to rewrite your
entire application, treating you ASP application as a
prototype. This has the most cost initially, but it may
be the cheapest option in the long run. The second
option is to just convert the ASP pages (*.asp) to
ASP.NET pages (*.aspx) — making the minimal
amount of changes required to give the file an aspx
extension. The third option, initially the cheapest cost
of migration, is to leave the file as an ASP page,
keeping the extension as asp. A migration project can
involve one or more of these paths. Most likely, you
will treat this on a page-by-page basis.

MIGRATE VBSCRIPT TO VB.NET SYNTAX

282

ASP.NET

MIGRATE VBSCRIPT TO VB.NET SYNTAX

163617-6 Ch15.F  9/26/01  9:46 AM  Page 282



ˇ Save the file with an .aspx 
extension and then request it 
from the Web server.

� An error message 
appears because the 
Option Explicit is 
not allowed.

Á Change the language 
in the source file from 
VBScript to VB, add 
the keyword Page to 
the directive at the top 
of the file, and remove 
the Option Explicit 
code.

‡ Request 
SimpleQuery_VBScript.aspx 
from the Web server.

� An error message appears 
because the Let and Set 
statements are no longer 
supported.

Microsoft has made VB a first class language,
keeping the following in mind:

• Making the language more consistent:
bringing together features of the language
with similar purpose.

• Simplifying the language: redesigning those
features which made Visual Basic anything
less than “basic.”

• Improving readability and maintainability:
redesigning features that hide too many
important details from the programmer.

• Improving robustness: enforcing better
practices, such as type-safe programming.

In VB.NET, the On Error Resume Next and On
Error Goto error handling is still available. Even
though this is still available, you should take
advantage of structured error handling that is
available for all CLS (Common Language
Specification) compatible languages. This uses the
Try, Catch, and Finally keywords.

283

MIGRATE FROM ASP TO ASP.NET 15

CONTINUED

163617-6 Ch15.F  9/26/01  9:46 AM  Page 283



° Remove the two Set statements 
from the source file.

· Save the file and request 
SimpleQuery_VBScript.aspx 
from the Web server.

� An error message 
appears because VB 
requires the argument 
list to be enclosed in 
parentheses.

‚ Place parentheses around the 
statement 
"Provider=Microsoft.Jet. 
OLEDB.4.0;Data Source=" & 
filePath.

— Save the file and request 
SimpleQuery_VBScript.aspx 
from the Web server.

� An error message 
appears because you 
cannot create 
apartment threaded 
COM components 
without the 
aspcompat=true 
statement in the @Page 
directive.

Not all ASP pages need to be changed when
converting to an ASP.NET application.
However, for the ASP pages that you will

convert to ASP.NET, you have to first change the
extension from asp to aspx. After the extension is
changed, you must change the processing directives
on the ASP page. Most of the directives on an ASP
page will migrate to the @Page directive, for example,
Language=VBScript will change to @Page
Language=VB. See page 280 for further details on
the @Page directive).

A big change from VBScript to VB.NET is the removal
of the variant type. In VBScript, you did not have the

ability to strongly type variables, but you would use
Option Explicit to avoid using variables that were
not declared. If you mistyped a variable name and did
not use Option Explicit, you could generate some
interesting bugs. Option Explicit is no longer
needed because it is the default for ASP.NET pages.

If you decide to interoperate with COM objects, you
need to be aware that ASP.NET’s threading model is
the Multiple Threaded Apartment (MTA). This means
that a standard ASP.NET page will not be able to use a
normal COM object created by VB6, which is Single
Threaded Apartment (STA). To correct this you can set
AspCompat="true" for the @Page directive.

MIGRATE VBSCRIPT TO VB.NET SYNTAX 

284

ASP.NET

MIGRATE VBSCRIPT TO VB.NET SYNTAX (CONTINUED)

163617-6 Ch15.F  9/26/01  9:46 AM  Page 284



± Add aspcompat=true to the 
@Page directive at the top of the 
page.

¡ Save the file and request 
SimpleQuery_VBScript.aspx 
from the Web server.

� The page renders 
without issues but does 
not display the data 
because the default 
properties are not 
supported in VB.

™ Add .Value to the end of the 
oRs(Index) statement.

£ Save the file and request 
SimpleQuery_VBScript.aspx 
from the Web server.

� The page displays 
properly as an ASP.NET 
page.

If you are not explicit in how parameters are
passed, you could have issues with your code. In
VB6, parameters were, by default, passed by
reference (ByRef). This has changed to by value
(ByVal) in VB.NET. If your code relied on ByRef
parameters, then you could introduced bugs with
this change.

VB.NET no longer provides support for default
properties. To account for this, you need to
explicitly call the property from the object.

Example:
Response.Write oRS("FirstName")

'Changes to:

Response.Write (oRS("FirstName").Value)

All of your server-side code method calls will
require parentheses.

Example:
Response.Write "An error has occurred."

'Changes to:

Response.Write("An error has occurred.")

285

MIGRATE FROM ASP TO ASP.NET 15

163617-6 Ch15.F  9/26/01  9:46 AM  Page 285



⁄ Open 
SimpleQuery_JScript.aspx 
from the Code Templates 
directory.

� The ASPCOMPAT=true 
attribute is set in the 
@Page directive.

¤ Scroll down the file.

� The filePath statement 
appears in parentheses, so 
you do not have to change it.

� The set statement is not 
required in JScript, so there 
are no changes with 
initializing the object 
variable.

‹ Scroll down the file.

JScript.NET code implementation is much closer to
the JScript implementation than VB.NET is to
VBScript. Because JScript was more of an Object-

Oriented language than VBScript. Jscript will resemble
to the C# syntax that is used in this book than the VB
syntax. The big difference that you will notice is in the
variable declaration.

When converting an ASP page (*.asp) to an ASP.NET
page (*.aspx) that has JScript in the server-side
code, the first thing you will do is change the file
extension to aspx. If you are going to access STA
(Single Threaded Apartment) COM components,

then you need to set ASPCOMPAT=true for the
@Page directive.

As with VB.NET, you can not access default properties
on COM objects. If default properties are used, you
have to find the explicit property that retrieves the
default property and program using that explicit
property. For example, if you have a label on a form,
you can not access the Text property by the default
property of the label. To access the Text property,
you have to give an explicit reference to that
property’s data type — JScript.NET - var s :
String = lblFirstName.Text; versus JScript -
var s = lblFirstName;. Note that the String is
explicitly declared when intitializing the variable.

MIGRATE JSCRIPT TO 
JSCRIPT.NET SYNTAX

286

ASP.NET

MIGRATE JSCRIPT TO JSCRIPT.NET SYNTAX

163617-6 Ch15.F  9/26/01  9:46 AM  Page 286



� The statement 
oRs(Index) was 
changed to 
oRs(Index).Value.

› Request the 
SimpleQuery_JScript.aspx 
from the Web server.

� The page appears properly 
as an ASP.NET page.

JScript.NET is Microsoft’s implementation of
the ECMA 262 language. Improvements in
JScript.NET — which is being developed in
conjunction with ECMAScript Edition 4 — include
true compiled code, typed and typeless variables,
classes (with inheritance, function overloading,
property accessors, and more), packages, cross-
language support, and access to the .NET
Framework. JScript.NET is a true object-oriented
scripting language. Even though JScript.NET can
now use classes, types, and other “industrial
strength” language features for writing robust
applications, it still keeps its “scripting” feel.

ECMAScript has strong roots with Netscape. Having
JScript is beneficial for those who are inline with
the standards body that defines ECMAScript. If you
are looking for features and support, you will find
more of this with the C# and VB languages. There
are more books and sample code for these
languages.

287

MIGRATE FROM ASP TO ASP.NET 15

163617-6 Ch15.F  9/26/01  9:46 AM  Page 287



APPENDIX

288

NAMESPACE: SYSTEM.WEB.UI.HTMLCONTROLS:

HtmlAnchor working with the HTML <a> tag on the server.

HtmlButton working with the HTML <button> tag on the server.

HtmlForm working with the HTML <form> tag on the server.

HtmlGenericControl working with tags not represented by .NET classes (eg. <span> and <div> tags).

HtmlImage working with the HTML <img> tag on the server.

HtmlInputButton working with the HTML <input type= button>, <input type= submit>, and <input type=
reset> tags on the server.

HtmlInputCheckBox working with the HTML <input type= checkbox> tag on the server.

HtmlInputFile working with the HTML <input type= file> tag on the server.

HtmlInputHidden working with the HTML <input type= hidden> tag on the server.

HtmlInputImage working with the HTML <input type= image> tag on the server.

HtmlInputRadioButton working with the HTML <input type= radio> tag on the server.

HtmlInputText working with the HTML <input type= text> and <input type= password> tags on the server.

HtmlSelect working with the HTML <select > tag on the server.

HtmlTable working with the HTML <table> tag on the server.

HtmlTableCell working with the HTML <td> and <th> tags on the server.

HtmlTableCellCollection working with a collection of HTML <td> and <th> tags on the server.

HtmlTableRow working with the HTML <tr> tag on the server.

HtmlTableRowCollection working with a collection of HTML <tr> tags on the server.

HtmlTextArea working with the HTML <textarea> tag on the server.

HTML SERVER CONTROLS

BASIC HTML CONTROLS

APPENDIX

173617-6 AppA.F  9/26/01  9:46 AM  Page 288



ASP.NET QUICK REFERENCE

289

NAMESPACE: SYSTEM.WEB.UI.WEBCONTROLS:

AdRotator displaying an advertisement banner.

Button posting data back to the server.

Calendar displaying a one-month calendar.

CheckBox creating a check box.

CheckBoxList creating a multi-selection check box group.

DataGrid creating a multi-column data bound grid.

DataList creating a data bound list.

DropDownList creating a drop-down list that contains a single selection.

HyperLink creating a link for navigating to pages.

Image creating a Web-compatible image.

ImageButton creating an image to handle user click events.

Label creating and manipulating static text.

LinkButton creating hyperlink-style buttons that post back to the same page on which they originated.

ListBox displaying a single-selection or multi-selection list box.

Panel providing a container for other controls.

RadioButton creating a radio button.

RadioButtonList creating a radio button group.

Repeater creating a data-bound list that renders a row for every row in the specified data source.

Table Web creating a table and manipulating it programmatically.

TableCell creating a table cell and manipulating it programmatically.

TableRow creating a table row and manipulating it programmatically.

TextBox creating single and multi-line text boxes.

WEB SERVER CONTROLS

A

173617-6 AppA.F  9/26/01  9:46 AM  Page 289



NAMESPACE: SYSTEM.WEB.UI.WEBCONTROLS:

CompareValidator comparing a user’s entry against a constant value, against a property value of
another control, or against a database value using a comparison operator (less than,
equal, greater than, and so on).

CustomValidator creating custom server and client validation code.

RangeValidator checking that a user’s entry is between specified lower and upper boundaries.

RegularExpressionValidator checking that the entry matches a pattern defined by a regular expression.

RequiredFieldValidator checking that the user does not skip an entry.

ValidationSummary displaying a summary of all validation errors for all of the validation controls on
a page.

290

VALIDATION SERVER CONTROLS

GLOBAL.ASAX SYNTAX

APPENDIX

<script language="VB" runat=server>
Sub Application_OnStart()
' Application startup code goes here...
End Sub
Sub Session_OnStart()
' Session startup code goes here...
End Sub
Sub Session_OnEnd()
' Session cleanup code goes here...
End Sub
Sub Application_OnEnd()
' Application cleanup code goes here...
End Sub

</script>

WEB.CONFIG SYNTAX

The following is an example of a template for the web.config file.
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>

<!— DYNAMIC DEBUG COMPILATION
Set debugmode enable="true" to enable ASPX debugging. Otherwise, setting this value to
false will improve runtime performance of this application. 

—>
<compilation 

defaultlanguage="c#"
debug="true"

173617-6 AppA.F  9/26/01  9:46 AM  Page 290



ASP.NET QUICK REFERENCE

291

A
WEB.CONFIG SYNTAX (CONTINUED)

/>
<!— CUSTOM ERROR MESSAGES

Set mode enable="on" or "remoteonly" to enable custom error messages, "off" to disable. Add
<error> tags for each of the errors you want to handle.

—>
<customErrors 
mode="Off" 
/> 

<!— AUTHENTICATION 
This section sets the authentication policies of the application. Possible modes are "Windows", "Cookie", 
"Passport" and "None"

—>
<authentication mode="Forms">

<forms name=".ASPXUSERDEMO" loginUrl="login.aspx" protection="all" timeout="60" />
</authentication>
<authorization>

<deny users="?" />
</authorization>

<!— APPLICATION-LEVEL TRACE LOGGING
Application-level tracing enables trace log output for every page within an application. 
Set trace enabled="true" to enable application trace logging. If pageOutput="true", the
trace information will be displayed at the bottom of each page. Otherwise, you can view the 
application trace log by browsing the "trace.axd" page from your web application
root. 

—>
<trace
enabled="false"
requestLimit="0"
pageOutput="false"
traceMode="SortByTime"

/>

<!— SESSION STATE SETTINGS
By default ASP+ uses cookies to identify which requests belong to a particular session. 
If cookies are not available, a session can be tracked by adding a session identifier to the URL. 
To disable cookies, set sessionState cookieless="true".

—>
<sessionState 

mode="inproc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user id=sa;password="
cookieless="false" 
timeout="20" 

/>

<!— GLOBALIZATION
This section sets the globalization settings of the application. 

—>
<globalization 

requestEncoding="utf-8" 
responseEncoding="utf-8" 

/>

</system.web>

</configuration>

173617-6 AppA.F  9/26/01  9:46 AM  Page 291



BASICS EXAMPLES 

292

DECLARING VARIABLES

Visual Basic
Dim x As Integer

Public x As Integer = 10

C#
int x;

int x = 10;

JScript
var x : int;

var x : int = 10;

COMMENTS

Visual Basic
' comment

x = 1   ' comment

Rem comment 

C#
// comment

/* multiline

comment */

JScript
// comment

/* multiline

comment */

ASSIGNMENT STATEMENTS

Visual Basic
nVal = 7

C#
nVal = 7;

JScript
nVal = 7;

IF...ELSE STATEMENTS

Visual Basic
If nCnt <= nMax Then

nTotal += nCnt  ' Same as

nTotal = nTotal + nCnt

nCnt += 1       ' Same as nCnt

= nCnt + 1

Else

nTotal += nCnt

nCnt -= 1       

End If

C#
if (nCnt <= nMax)

{

nTotal += nCnt;

nCnt++;

}

JScript
if(nCnt < nMax) {

nTotal += nCnt;

nCnt ++;

}

else {

nTotal += nCnt;

nCnt —;    

};

APPENDIX

183617-6 AppB.F  9/26/01  9:46 AM  Page 292



C#, VB, AND JSCRIPT LANGUAGE EQUIVALENTS
CASE STATEMENTS

Visual Basic
Select Case n

Case 0

MsgBox ("Zero")  

'     Visual Basic exits the Select at the end of a Case.

Case 1

MsgBox ("One")

Case 2 

MsgBox ("Two")

Case Else

MsgBox ("Default")

End Select

C#
switch(n) {

case 0:

Console.WriteLine("Zero");

break;

case 1:

Console.WriteLine("One");

break;

case 2:

Console.WriteLine("Two");

break;

default:

Console.WriteLine("?");

}

JScript
switch(n) {

case 0 :

Response.Write("Zero");

break;

case 1 :

Response.Write("One");

break;

case 2 :

Response.Write("Two");

default :

Response.Write("Default");

}

FOR LOOPS

Visual Basic
For n = 1 To 10 

MessageBox.Show("The number is " & n)

Next

For Each prop In obj

prop = 42

Next prop

C#
for (int i = 1; i <= 10; i++) 

Console.WriteLine("The number is {0}", i);

JScript
for (var n = 0; n < 10; n++) {

Response.Write("The number is " + n);

} 

for (prop in obj){

obj[prop] = 42;

}

WHILE LOOPS

Visual Basic
While n < 100 ' Test at start of loop 

n += 1     ' Same as n = n + 1

End While '

C#
while (n < 100)

n++;

JScript
while (n < 100) {

n++; }

293

B

183617-6 AppB.F  9/26/01  9:46 AM  Page 293



BASICS EXAMPLES

294

PARAMETER PASSING BY VALUE

Visual Basic
Public Sub ABC(ByVal y As Long) ' The argument Y is

passed by value.

' If ABC changes y, the changes do not affect x.

End Sub

ABC(x) ' Call the procedure

You can force parameters to be passed by value,

regardless of how they are declared, by enclosing

the parameters 

in extra parentheses.

ABC((x))

C#
// The method:

void ABC(int x)

{

...

}

// Calling the method:

ABC(i);

JScript
ABC(i,j);

PARAMETER PASSING BY REFERENCE

Visual Basic
Public Sub ABC(ByRef y As Long) ' The parameter of ABC

is declared by reference:

' If ABC changes y, the changes are made to the value of x.

End Sub

ABC(x) ' Call the procedure

C#
// The method:

void ABC(ref int x)

{

...

}

// Calling the method:

ABC(ref i);

JScript
N/A (objects (including arrays) are passed by 

reference, but the object to which the variable

refers to cannot be 

changed in the caller). Properties and methods

change 0d in the callee are visible to the

caller.

/* Reference parameters are supported for external

objects, but not internal JScript functions */

comPlusObject.SomeMethod(&foo);  

APPENDIX

183617-6 AppB.F  9/26/01  9:46 AM  Page 294



C#, VB, AND JSCRIPT LANGUAGE EQUIVALENTS

295

STRUCTURED EXCEPTION HANDLING

Visual Basic
Try

If x = 0 Then

Throw New Exception("x equals zero")

Else

Throw New Exception("x does not equal zero")

End If

Catch

MessageBox.Show("Error: " & Err.Description)

Finally

MessageBox.Show("Executing finally block.")

End Try

JScript
try {

if (x == 0) {

throw new Error(513, "x equals zero");

}

else {

throw new Error(514, "x does not equal zero");

}

}   

catch(e) {                          

Response.Write("Error number: " + e.number + "<BR>");

Response.Write("Error description: " + e.message + "<BR>");

}

finally {

Response.Write("Executing finally block.");

}

C#
// try-catch-finally

try

{

if (x == 0)

throw new System.Exception ("x equals zero");

else

throw new System.Exception ("x does not equal zero");

}

catch (System.Exception err)

{

System.Console.WriteLine(err.Message);

}

finally

{

System.Console.WriteLine("executing finally block");

}

SET AN OBJECT REFERENCE TO NOTHING

Visual Basic
o = Nothing

C#
o = null;

JScript
o = null;

B

183617-6 AppB.F  9/26/01  9:46 AM  Page 295



296

STORAGE SIZE VISUAL BASIC C# JSCRIPT

Decimal Decimal (.NET Framework class) decimal n/a

Date Date (.NET Framework class) Date (.NET Framework class) n/a. Dates are implemented
using JScript’s Date object.

(varies) String (.NET Framework class) string String

1 byte Byte byte n/a

2 bytes Boolean bool Boolean

2 bytes Short, char (Unicode character) short, char (Unicode character) n/a

4 bytes Integer int int

8 bytes Long long long

4 bytes Single float float

8 bytes Double double double

APPENDIX

TYPES COMPARISON – VISUAL 
BASIC, C#, AND JSCRIPT

183617-6 AppB.F  9/26/01  9:46 AM  Page 296



OPERATOR VISUAL BASIC C# JSCRIPT

ADDITIVE

Addition + + +

Subtraction - - -

MULTIPLICATIVE

Multiplication * * *

Division / / /

Integer division \ /

Modulus (division returning Mod % %
only the remainder)

Exponentiation ^ n/a n/a

ASSIGNMENT

Assignment = = =

Addition += += +=

Subtraction -= -= -=

Multiplication *= *= *=

Division /= /= /=

Integer division \= /= n/a

Concatenate &= += +=

Modulus n/a %= %=

Left shift n/a <<= <<=

Right shift n/a >= >=

Bitwise-AND n/a &= &=

Bitwise-exclusive-OR n/a ^= ^=

Bitwise-inclusive-OR n/a |= |=

297

OPERATOR COMPARISON – VISUAL
BASIC, C#, AND JSCRIPT

C#, VB, AND JSCRIPT LANGUAGE EQUIVALENTS B

183617-6 AppB.F  9/26/01  9:46 AM  Page 297



OPERATOR COMPARISON – VISUAL
BASIC, C#, AND JSCRIPT

298

OPERATOR VISUAL BASIC C# JSCRIPT

RELATIONAL AND EQUALITY

Less than < < <

Less than or equal to <= <= <=

Greater than > > >

Greater than or equal to >= >= >=

Equal = == ==

Not equal <> != !=

Compare two object Is == n/a
reference variables

Compare object reference type TypeOf x Is Class x is Class n/a

Compare strings = == or String.Equals() ==

Concatenate strings & + +

Shortcircuited Boolean AND AND && &&

Shortcircuited Boolean OR OR || ||

SHIFT

Left shift n/a << <<

Right shift n/a > >, >>

SCOPE RESOLUTION

Scope resolution . n/a n/a

APPENDIX

183617-6 AppB.F  9/26/01  9:46 AM  Page 298



C#, VB, AND JSCRIPT LANGUAGE EQUIVALENTS

OPERATOR VISUAL BASIC C# JSCRIPT

POSTFIX

Array element () [ ] [ ]

Function call () ( ) ( )

Type cast Cint, CDbl, ..., CType (type) n/a

Member selection . . .

Postfix increment n/a ++ ++

Postfix decrement n/a — —

UNARY

Indirection n/a * (unsafe mode only) n/a

Address of AddressOf & (unsafe mode only) n/a

Logical-NOT Not ! !

One’s complement BitNot ~ ~

Prefix increment n/a ++ ++

Prefix decrement n/a — —

Size of type n/a sizeof n/a

comma n/a n/a ,

BITWISE

Bitwise-AND BitAnd & &

Bitwise-exclusive-OR BitXor ^ ^

Bitwise-inclusive-OR BitOr | |

LOGICAL

Logical-AND And & &&

Logical-OR Or | ||

CONDITIONAL

Conditional IIf() ?: ?:

POINTER TO MEMBER

Pointer to member n/a -> (Unsafe mode only) n/a

B

299

183617-6 AppB.F  9/26/01  9:46 AM  Page 299



The CD-ROM disc included in this book contains
many useful files and programs. Before installing
any of the programs on the disc, make sure that

a newer version of the program is not already

installed on your computer. For information on
installing different versions of the same program,
contact the program’s manufacturer.

SYSTEM REQUIREMENTS
To use the contents of the CD-ROM, your computer
must be equipped with the following hardware and
software:

* A PC with a Pentium III or faster processor.

* Microsoft Windows 2000, Windows NT 4.0 Service
Pack 6, or Windows XP Beta 2.

* At least 128MB of total RAM installed on your
computer.

* A double-speed (8x) or faster CD-ROM drive.

* A monitor capable of displaying at least 256 colors
or grayscale.

* A network card.

AUTHOR’S SOURCE CODE
For Windows 2000. The CD provides files that contain
all the sample code used throughout this book. You
can browse these files directly from the CD-ROM, or
you can copy them to your hard drive and use them as
the basis for your own projects. To find the files on the
CD-ROM, open the D:\RESOURCES\CODE folder. To
copy the files to your hard drive, just run the
installation program D:\RESOURCES\CODE.EXE. The
files will be placed on your hard drive at
C:\ProgramFiles\ASPNET. After installing, you can
access the files from the START menu. You will need
the .NET framework installed on the machine in order
to run the samples. See Chapter 1, "Install the .NET
Framework," for more information.

ACROBAT VERSION 
The CD-ROM contains an e-version of this book
that you can view and search using Adobe Acrobat
Reader. You can also use the hyperlinks provided in
the text to access all Web pages and Internet
references in the book. You cannot print the pages
or copy text from the Acrobat files. An evaluation
version of Adobe Acrobat Reader is also included on
the disc. If you do not currently have Adobe Acrobat
Reader 5 installed, the computer will prompt you to
install the software.

INSTALLING AND USING THE SOFTWARE
For your convenience, the software titles appearing
on the CD-ROM are listed alphabetically. You can
download updates to the software and important
links related to the source code at
http://www.threewill.com/authoring/.

PROGRAM VERSIONS
Shareware programs are fully functional, free trial
versions of copyrighted programs. If you like a
particular program, you can register with its author
for a nominal fee and receive licenses, enhanced
versions, and technical support.

Freeware programs are free, copyrighted games,
applications, and utilities. You can copy them to as
many computers as you like, but they have no techical
support.

WHAT’S ON THE CD-ROM

300

APPENDIX

193617-6 AppC.F  9/26/01  9:46 AM  Page 300



301

GNU software is governed by its own license, which is
included inside the folder of the GNU software. There
are no restrictions on distribution of this software.
See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited
either by time or functionality. For example, you may
not be able to save projects using these versions.

For your convenience, the software titles on the CD
are listed in alphabetical order.

Acrobat Reader 
Freeware. Acrobat Reader lets you view the online
version of this book. For more information on using
Adobe Acrobat Reader, see pg. 302.

Antechinus C# Programming Editor 
Shareware. The Antechinus C# Programming Editor
from C Point Pty. Ltd. is an alternate graphic
programming environment for creating and testing C#
programs. You can find more information at www.
c-point.com.

TextPad 
Shareware. TextPad is a general-purpose text editor
for many different text files including C# code and
HTML code. From Helios Software Solutions,
www.textpad.com.

VMWare Workstation 
Trial version. VMWare Workstation lets you create
virtual desktop environments on one computer so
you can test how your C# programs run in different
operating systems. From VMWare, www.vmware.com.

XML Spy IDE 
Evaluation version. XML Spy IDE v3.5 is a
development environment that supports working with
XML. This includes editing and validating XML
documents, editing and validating using Schemas or
DTDs, and editing and transforming stylesheets. From
ALTOVA, www.xmlspy.com.

TROUBLESHOOTING
We tried our best to compile programs that work on
most computers with the minimum system
requirements. Your computer, however, may differ
and some programs may not work properly for some
reason.

The two most likely problems are that you don’t have
enough memory (RAM) for the programs you want to
use, or you have other programs running that are
affecting installation or running of a program. If you
get error messages like Not enough memory or
Setup cannot continue, try one or more of these
methods and then try using the software again:

* Turn off any anti-virus software.

* Close all running programs.

* In Windows, close the CD-ROM interface and run
demos or installations directly from Windows
Explorer.

* Have your local computer store add more RAM to
your computer.

If you still have trouble installing the items from the
CD-ROM, please call the Hungry Minds Customer
Service phone number: 800-762-2974 (outside the
U.S.: 317-572-3994).

C

193617-6 AppC.F  9/26/01  9:46 AM  Page 301



APPENDIX

302

+

USING THE E-VERSION OF THE BOOK

You can view ASP.NET: Your visual blueprint for
creating Web applications on the .NET
framework on your screen using the CD-

ROM disc included at the back of this book. The
CD-ROM disc allows you to search the contents
of each chapter of the book for a specific word
or phrase. The CD-ROM disc also provides a
convenient way of keeping the book handy
while traveling.

You must install Adobe Acrobat Reader on your
computer before you can view the book on the 

CD-ROM disc. This program is provided on 
the disc. Acrobat Reader allows you to view
Portable Document Format (PDF) files, which can
display books and magazines on your screen
exactly as they appear in printed form.

To view the contents of the book using Acrobat
Reader, display the contents of the disc. Double-
click the PDFs folder to display the contents of the
folder. In the window that appears, double-click the
icon for the chapter of the book you want to review.

USING THE E-VERSION
OF THE BOOK

FLIP THROUGH PAGES

⁄ Click one of these
options to flip through
the pages of a section.

First page

Previous page

Next page

Last page

ZOOM IN

⁄ Click to magnify
an area of the page.

¤ Click the area of the
page you want to magnify.

� Click one of these
options to display the page
at 100% magnification ( )
or to fit the entire page
inside the window ( ).

203617-6 Install.F  9/26/01  9:46 AM  Page 302



303

� Repeat Steps 1 
and 3 to find the next
instance of the text.

To install Acrobat Reader, insert the CD-
ROM disc into a drive. In the screen that
appears, click Software. Click Acrobat
Reader and then click Install at the bottom
of the screen. Then follow the instructions
on your screen to install the program.

You can make searching the book more
convenient by copying the .pdf files to your
own computer. Display the contents of the
CD-ROM disc and then copy the PDFs
folder from the CD to your hard drive. This
allows you to easily access the contents of
the book at any time.

Acrobat Reader is a popular and useful program.
There are many files available on the Web that 
are designed to be viewed using Acrobat Reader.
Look for files with the .pdf extension. For more
information about Acrobat Reader, visit the 
Web site at www.adobe.com/products/
acrobat/readermain.html.

FIND TEXT

⁄ Click to search
for text in the section.

� The Find dialog box
appears.

¤ Type the text you
want to find.

‹ Click Find to start
the search.

� The first instance of
the text is highlighted.

C

203617-6 Install.F  9/26/01  9:46 AM  Page 303



HUNGRY MINDS, INC.
END-USER LICENSE AGREEMENT
READ THIS. You should carefully read these terms and
conditions before opening the software packet(s)
included with this book ("Book"). This is a license
agreement ("Agreement") between you and Hungry
Minds, Inc. ("HMI"). By opening the accompanying
software packet(s), you acknowledge that you have
read and accept the following terms and conditions. If
you do not agree and do not want to be bound by
such terms and conditions, promptly return the Book
and the unopened software packet(s) to the place you
obtained them for a full refund.

1. License Grant. HMI grants to you (either an
individual or entity) a nonexclusive license to use one
copy of the enclosed software program(s) (collectively,
the "Software") solely for your own personal or
business purposes on a single computer (whether a
standard computer or a workstation component of a
multi-user network). The Software is in use on a
computer when it is loaded into temporary memory
(RAM) or installed into permanent memory (hard disk,
CD-ROM, or other storage device). HMI reserves all
rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and
interest, including copyright, in and to the compilation
of the Software recorded on the disk(s) or CD-ROM
("Software Media"). Copyright to the individual
programs recorded on the Software Media is owned
by the author or other authorized copyright owner of
each program. Ownership of the Software and all
proprietary rights relating thereto remain with HMI
and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software
for backup or archival purposes, or (ii) transfer the
Software to a single hard disk, provided that you keep

the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other
network system or through any computer subscriber
system or bulletin-board system, or (iii) modify, adapt,
or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the
Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the
terms and conditions of this Agreement and you retain
no copies. If the Software is an update or has been
updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You
must follow the individual requirements and
restrictions detailed for each individual program in the
What’s on the CD-ROM appendix of this Book. These
limitations are also contained in the individual license
agreements recorded on the Software Media. These
limitations may include a requirement that after using
the program for a specified period of time, the user
must pay a registration fee or discontinue use. By
opening the Software packet(s), you will be agreeing
to abide by the licenses and restrictions for these
individual programs that are detailed in the What’s on
the CD-ROM appendix and on the Software Media.
None of the material on this Software Media or listed
in this Book may ever be redistributed, in original or
modified form, for commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software
Media are free from defects in materials and
workmanship under normal use for a period of sixty
(60) days from the date of purchase of this Book. If
HMI receives notification within the warranty period
of defects in materials or workmanship, HMI will
replace the defective Software Media.

304

213617-6 EULA.F  9/26/01  2:27 PM  Page 304



305

(b) HMI AND THE AUTHOR OF THE BOOK
DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE
SOURCE CODE CONTAINED THEREIN, AND/OR
THE TECHNIQUES DESCRIBED IN THIS BOOK. HMI
DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal
rights, and you may have other rights that vary from
jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy
for defects in materials and workmanship shall be
limited to replacement of the Software Media, which
may be returned to HMI with a copy of your receipt at
the following address: Software Media Fulfillment
Department, Attn.: ASP.NET: Your visual blueprint for
creating Web applications on the .NET framework,
Hungry Minds, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please
allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any
replacement Software Media will be warranted for the
remainder of the original warranty period or thirty
(30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for
any damages whatsoever (including without limitation
damages for loss of business profits, business
interruption, loss of business information, or any other

pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if HMI has been
advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the
exclusion or limitation of liability for consequential or
incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use,
duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies
and/or instrumentalities (the "U.S. Government") is
subject to restrictions as stated in paragraph (c)(1)(ii)
of the Rights in Technical Data and Computer
Software clause of DFARS 252.227-7013, or
subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR
supplement, as applicable.

8. General. This Agreement constitutes the entire
understanding of the parties and revokes and
supersedes all prior agreements, oral or written,
between them and may not be modified or amended
except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement
shall take precedence over any other documents that
may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by
any court or tribunal to be invalid, illegal, or otherwise
unenforceable, each and every other provision shall
remain in full force and effect.

213617-6 EULA.F  9/26/01  2:27 PM  Page 305



INDEX

306

Symbols and Numbers
*.asax. See Global .asax
*.asmx, 152, 154, 172
*.aspx, 205
*.cs, 152
/bin directory, 152, 176, 184

business component, 188
DLL, 178
Web site, 179

A
Active Directory, 258
Active Server Page (ASPX), 150
ADO.NET, 147, 184
Adobe Acrobat, 300

Reader, 301
advertisement banners

displaying, 114–115
elements of, 115
generating income, 114

aliases, 177
anchor tags, 80–81, 106
anonymous access, 254
Antechinus C# Programming Editor, 301
array

creating, 108
goals, 159
index, 63
initializing, 108
list, 129, 219
single-dimension, 56
values, 79
Web Method, 158
Web services, 158–159
XML, 158

ASMX file, 152, 154
ASPX (Active Server Page), 150
Authentication

Basic, 252–253
cookies, 256
definition of, 255
Forms, 256–257, 259

Active Directory, 258
CD-ROM, 257
HTTP, 258
Internet Services Manager (ISM), 256

login, 257
password, 258
SQL, 258
Windows 2000, 258

user credentials, 255
Windows, 252–257, 260

author’s source code, 300–301
authorization, 260–261

B
banners, 114–115
batch files, 177
Beta 1, 7
Beta 2, 7
binding

data, 140, 279
datagrid, 249

blocks, 276–277
C#, 276
Visual Basic, 276

Boolean
expressions, 46, 50
input, 77
request, 98–99

boundaries, 120–121
box

check, 27, 91, 98–99
drop-down list, 82, 116–117
list, 79
password, 96
text, 27, 91, 110, 116, 119, 122

creating, 97
hiding, 97
type of, 96

business
layer, 189–191
logic, 176, 188

button
controls, 92–93
definition of, 91
form, 70–71
graphical, 73, 95
HTML 4.0, 93
hyperlink, 91, 94
image, 73, 91, 95
radio, 27, 78, 91, 100–101
representing columns, 145
submit, 27, 103, 135, 137, 139, 143

223617-6 Index.F  9/26/01  9:46 AM  Page 306



307

C
C#, 34–65, 213, 287

Antechinus C# Programming Editor, 301
assignment statements, 292
case sensitive, 35
case statements, 293
class file, 34
code, 38–39
comments, 292
compiler, 36–37
components, 177, 188
concatenate strings, 52–53
examples of, 292
exception handling, 295
file, 34, 37
FOR Loops, 293
handling, 62
if...else statements, 292
namespace aliases, 34
object reference, 295
operators, 297–299
parameters, 294
Request.Form, 194
runtime error, 41–42
script blocks, 276
source file, 176, 180, 184
statement, 63
text editor, 34
types, 296
variables, 40–43
WHILE Loops, 293
writing applications, 34–35

cache
data, 209
expiration, 209
pages, 206–207

calendar
control, 105, 121
CultureInfo, 265
dates, 104–105
Web server, 121

CD-ROM, 3, 24
batch files, 177
contents of, 300–301
Forms Authentication, 257
Globally Unique Identifier (GUID), 89

table cell example, 109
Web services parameters, 157
Windows Authentication, 253

check box, 27, 91
CLR (Common Language Runtime), 3, 274
CLS (Common Language Specification), 274–275, 283
code

application, 213
business services, 2
cache, 179
client-side, 92
Code-behind, 192
commenting, 38
components, 65
conditional statements, 46
creating, 176, 180, 186
data access, 136, 184, 190
delimiters, 277
embedded, 50
encapsulating, 65
errors, 62
event handler, 33, 99
formatting, 38–39
full source, 187
Global.asax, 221
HTML, 28
insert, 137
label control, 110
managed, 178
methods, 58, 60
migrating, 64
modifying, 110
optimizing, 48
presentation, 184, 186
server-side, 28, 33, 132, 141–142, 192, 196, 276
session, 213
structuring, 48
templates, 32, 73, 108, 130
tracking, 249
transactional, 190
Unicode, 262
validation, 183
Web application, 186
writing, 190

Code-behind, 25, 192, 193

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

223617-6 Index.F  9/26/01  9:46 AM  Page 307



INDEX

308

creating, 111
data, 127, 132, 190
DataGrid, 127, 140–141, 144
DataList, 127
declaring, 118
editing, 132
hiding specific group, 111
HTML, 66–67
naming, 110–111
page, 132, 268–269
providing a container, 111
Repeater, 127–129
Server, 2
server-side, 30, 77, 279
sorting data, 132
specifying, 118
stateful components, 183
TableCell, 108
TableRow, 108
tree, 248
two equal values, 119
using placeholder, 111
validation, 118, 120, 122, 124
Web page, 134

Control Panel, 4, 14, 18, 20–23
conversions, 55

console application, 64
explicit, 54, 63
implicit, 54

cookies, 207
authentication, 261
collection, 248
creating, 230–233
definition of, 211
expiration date, 231
Forms Authentication, 256
Internet Information Server (IIS) MMC, 230
subkeys, 232–233
Web browser, 231

credentials, 258–259
CTS (Common Type System), 42
culture, 264, 265, 266, 267, 268, 269, 272
CultureInfo, 264, 265
custom

configuration, 240–241
error handling, 244–246
modules, 211
settings, 240–241

customer order system, 144

collections, 225
cookies, 248
definition of, 56
enumerating, 56
headers, 248
loop, 108

Common Language Runtime (CLR), 3, 274
Common Language Specification (CLS), 274–275, 283
Common Type System (CTS), 42
compiler, 36–37
components

.COM, 179

.NET, 179
business, 188, 190
control, 183
creating simple, 179
data access, 186
definition of, 176, 178
multiple, 179
simple, 176–178
stateful, 180–183
stateless, 180
Web page, 182
Web service, 182

Computer Management Console, 23
conditional statements, 46
configuration, 3, 17–18, 25

application, 236
custom, 240–241
events, 32
HTML, 194
session state, 227
setting, 238–239
tracing, 250
URL, 213

connection
object, 134
string, 185

console
application conversions, 64–65
client, 174–175

container control, 111–113
control

ActiveX, 202
bound, 134
calendar, 121
container, 111–113

223617-6 Index.F  9/26/01  9:46 AM  Page 308



309

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

D
data. See also data access

alternating rows, 128
binding, 129, 132, 140, 279
cache, 208
checking, 120
control, 133
defining layout, 128
deleting, 138–139
display, 127–129, 144, 186, 190, 196
double-type, 120
editing control, 132
enhance viewing, 133
filtering, 142
footers, 128
formatting, 130
headers, 128
inserting, 134
integer-type, 120
layer, 188–189
list, 187
posting, 92
reading, 194
repeating, 128
separate rows, 128
shared, 166
sorting, 132, 140–141
SQL, 132–137
stores, 146, 190, 208
string, 120
transporting, 146
types, 42–43

data access, 2, 166
code, 136, 184, 190
command, 126–127
components, 186
connection, 126
controls, 126
DataAdapter, 127
DataGrid, 127
DataList, 127
definition of, 126
disconnected, 147
introduction to, 126
layer, 188–189
Repeater, 127

database
accessing, 3
establishing connection, 134
inserting data, 134

DCOM (Distributed Component Object Model), 150
debugging, 239, 248

page-level, 242–243
default document, 14
delete

data, 138
SQL database, 139
Web page, 200

delimiters, 277
desktop shortcuts, 21
DHTML, 72
directives

application, 216–217
assembly, 216–217
Global.asax, 216–217
import, 216
page, 216, 281, 284
processing, 218

directory. See also Active Directory
default

Internet Information Server (IIS), 14
home, 8, 9, 10, 13
Internet Information Server (IIS), 12
removing, 11
root, 250
virtual, 10–13, 22, 23
web, 20

Disco (Web Services Discovery), 150, 174
Distributed Component Object Model (DCOM), 150
DIV, 198
DLL

/bin directory, 178
source code, 176

drop-down list, 27, 79, 82, 116
input, 102–103
validating, 117

E
e-mail, 5

sending, 204–205
SMTP server, 204
text format, 205

ECMAScript, 287

223617-6 Index.F  9/26/01  9:46 AM  Page 309



INDEX

310

encoding
attributes, 263
file, 262
languages, 262
response, 262
UCS Transformation Format (UTF-8), 262

enumeration
constant value, 161
creating, 160

error, 62
custom handling, 244–246
details, 242–243, 247
handling programmatically, 246, 247
message, 116, 239
query, 245
stored procedure, 142
summarizing validation, 124
troubleshooting, 244
validation, 124
Web page, 200
Web server, 238, 239

event, 45
application, 220
handler, 32–33, 64, 93–94, 99, 104, 192–193, 212, 214,
224, 226

Global.asax, 220–221
procedure, 140
server-side, 106

exceptions, 63
expressions

regular, 122–123
validating, 122–123

F
File Transfer Protocol (FTP) Server, 5
files

batch, 177
converting, 273
copying into Web server, 178
describing data, 146
name, 14, 24, 25

C#, 37
nonbinary text, 146
saving, 25
sending, 88
uploading, 88–89
XML, 114

flag, 138
footer, 130
form

adding controls, 111
attributes, 69
button, 70–71
comparing two fields, 118
event handler, 193
hidden information, 86
hidden variable, 87
HTML, 29, 32
image, 95
processing, 122
registration, 77
resubmitting, 122, 124
server, 76, 100, 120, 131, 133, 141
validation, 122, 124
Web, 2, 30–31, 134

Framework SDK, 150
FTP (File Transfer Protocol) Server, 5

G
GAC (Global Assembly Caches), 178
garbage, 182
GET, 152
global

assemblies, 178
variables, 277

Global Assembly Caches (GAC), 178
Global.asax, 211

application, 218
code, 221
creating file, 212–215
event handlers, 220–221
parameters, 221
processing directives, 216–217
server-side objects, 218–219
session, 218
statistics, 215

Globally Unique Identifier (GUID), 89
goals, 225

array, 159
classifying, 160
identifier, 162
list, 165
returning, 165

223617-6 Index.F  9/26/01  9:46 AM  Page 310



311

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

graphics
creating button, 95
drop-down list box, 82
Web browser, 107

greeting
displaying, 173
personal, 181

GUID (Globally Unique Identifier), 89

H
help, 107
hidden information, 86
home directory, 8–10, 13
HTML, 150

4.0, 72–73
4.0 button, 93
anchor tags, 81
code, 28
configuration, 194
container controls, 67
controls, 66–67, 102
embedded, 278
footer, 15
form, 25–27, 29, 32
formatting files, 205
formatting XML, 148
input controls, 67
Image Control, 67
markup, 26, 274
page, 28
server controls, 66–67, 90, 98, 108, 288–291
simple page, 196
specifying horizontal line, 128
table, 132–133
tags, 2, 26, 198
transforming XML, 149
two-tier web form, 184
user interface, 64

HTTP, 150, 151, 152. See also GET; POST; SOAP
application, 211
Forms Authentication, 258
request, 69
response packets, 200
values, 194
Windows Authentication, 252

hyperlink, 91, 145
creating, 94, 106
trace, 250
Web browser, 106

I
IIS (Internet Information Server), 10–11, 13, 17, 210, 228

default directory, 14
installing, 4–5
log file, 16
Microsoft Management Console (MMC), 210, 230
virtual directory, 12
Windows Authentication, 252, 260

IL (Intermediate Language), 274
image, 91

aligning, 82
border, 83
button, 91, 95
rendering, 82–83, 107

impersonation, 254–255
input

Boolean, 77
checking boundaries, 120–121
drop-down list, 79, 102–103
login name, 116
multiple line, 76
parameters, 150
request text, 96
single line, 74–75
soliciting, 102
text, 97
validating, 122

insert
code, 137
parameters, 139

installing, 4–7
IIS (Internet Information Server), 4–5
.NET Framework, 6–7

Intermediate Language (IL), 274
Internet Explorer, 154, 252
Internet Information Server (IIS), 10–11, 13, 17, 210, 228

default directory, 14
installing, 4–5
log file, 16
Microsoft Management Console (MMC), 210, 230
virtual directory, 12
Windows Authentication, 252, 260

Internet Information Service (IIS), 20
Internet Services Manager (ISM), 5, 10, 16, 18, 20

browsing, 21
exploring, 22
Forms Authentication, 256
Windows Authentication, 252, 254

223617-6 Index.F  9/26/01  9:46 AM  Page 311



INDEX

312

ISM (Internet Services Manager), 5, 10, 16, 18, 20
iterative statements, 50

J
JScript, 287

assignment statements, 292
case statements, 293
comments, 292
examples of, 292
exception handling, 295
FOR Loops, 293
if...else statements, 292
migrating, 286–287
object reference, 295
operators, 297–299
parameters, 294
types, 296
WHILE Loops, 293

JScript.NET, 286–287

L
language, 30

C#, 2
client-side, 274
CLR (Common Language Runtime), 274
CLS (Common Language Specification), 274–275
compliant, 176
cross-language compatibility, 42
encoding, 262
first class, 283
IL (Intermediate Language), 274
industrial strength, 287
multiple, 272, 274–275
object-oriented, 45, 60
pattern-matching, 122
runtime, 179
server-side, 274
specifying, 213
support, 2
Visual Basic, 2, 54
Web page, 275
Web services, 152

layers
business, 188–191
data, 188–189
presentation, 188
user interface, 189

link
button, 91

links. See also hyperlink
creating, 80–81, 106
navigating, 80

lists
array, 219
box, 79
comma-separated, 129
custom, 128
data-bound, 187
displaying complex, 130–131
drop-down, 79
master, 144–145
specifying direction, 130

literals, 109
localize, 268, 269
log, 16, 17

enable, 16
file, 17
Internet Information Server (IIS), 16

login
Forms Authentication, 257
input name, 116
page, 96

Loops
collections, 108
FOR, 293
WHILE, 293

M
machine-wide code, 179
master list, 144–145
master-detail relationships, 144–145
MDAC (Microsoft Data Access Components), 6
memory, 63, 301
message

displaying, 122, 124
header, 124
string, 176
summary, 124
validation, 118, 120, 123

methods, 45
code, 58, 60
creation, 221
declaring, 58, 60
definition of, 58, 60
destruction, 221
input parameters, 150

223617-6 Index.F  9/26/01  9:46 AM  Page 312



313

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

objects, 59
public, 152
request, 196
signature, 60–61
using, 58, 60
Web service, 156

Microsoft Data Access Components (MDAC), 6
Microsoft Management Console (MMC), 210
Microsoft Message Queue (MSMQ), 237
migrating, 280–281

code, 64
JScript, 286–287
VB.NET Syntax, 284–285
Visual Basic, 282–285

MMC (Microsoft Management Console), 210
Mobile application, 275
mode, 244
modules, 211
MSDN

culture, 269
MSMQ (Microsoft Message Queue), 237
Multiple Threaded Apartment (MTA), 284

N
namespace

aliases, 177
importing, 204
objects, 166
properties, 44
system, 176

native serialization, 147
Netscape, 287
notation, 42
Notepad, 2, 34

O
object, 58

application, 170, 210
collection, 108
command, 134
connection, 134
constructors, 183
creating new object, 162
DataSet, 147
methods, 59
multiple, 218
namespace, 166

properties, 162
reference setting, 295
server-side, 211, 218–219
session, 168, 182, 210–211, 227
single, 218
SQLConnection, 136, 138
Web Method, 168
Web service, 162, 168

operators
arithmetic, 52, 63
assignment, 52
comparison of, 297–299

output
formatting, 128
formatting with templates, 130
specifying, 130

P
page

directives, 280, 284
localize, 268–269
state, 234–235
trace, 248–249

panels, 91
hiding, 112

parameters
client console, 175
command-line, 64
Global.asax, 220
input, 150
insert form, 139
passing by reference, 294
passing by value, 294
passing data, 142
reading, 137
title page, 185
value, 154
Visual Basic, 285
Web service, 163
Web services, 156–157

password
box, 27, 96
Forms Authentication, 258
impersonation, 255
specifying, 134
static, 96

performance, 3
permissions, 12

223617-6 Index.F  9/26/01  9:46 AM  Page 313



INDEX

314

placeholder
tag, 198
using for controls, 111

pop-up
help text, 107
menu, 21

port access, 150
POST, 151–152

testing, 155
postback, 30
power, 3
procedures

error, 142
stored, 142–143

program
object-oriented, 35
versions, 300

properties, 60
access, 44
definition of, 44–45
image, 82
namespace, 44

proxy class, 172, 174–175

Q
queries

ad hoc, 142
control, 142
error, 245
string, 195, 199, 201, 206, 245
XML engine, 164

R
radio buttons, 27, 100–107
ranges

currency, 120
dates, 120
double-type data, 120
integer-type data, 120
string data, 120

RDBMS (Relational Database Management System), 126
redirecting, 200–201
RegionInfo, 266–267
regular expressions, 122–123
Relational Database Management System (RDBMS), 126
Remote Procedure Calls (RPC), 150

render functions, 278–279
images, 107
troubleshooting, 279

Request.Form, 194–195
Request.Params, 196–197
Resource Manager, 270–273
Response.Redirect, 200–201
Response.Write, 198–199
return value, 150
rollover effect, 95
root directory, 250
runtime, 7, 179

error, 41–42

S
scalability, 224
script

blocks, 187, 276–277
delimiters, 216
external file, 277
server-side, 187, 191

Secured Sockets Layer (SSL), 252, 258
security, 3, 23, 210

applications, 255
authorization, 260
impersonation, 254–255

server,2
controls, 2
web, 2

session
code, 213
color, 229
disable, 170
end, 214
Global.asax, 218
in-process, 228
object, 168–169, 182, 211, 227
out-of-process, 228
SQL server, 228
start, 214
state, 226–229
types of, 168
variables, 226, 229

settings
application, 236–237
custom, 240–241

signature, 60–61

223617-6 Index.F  9/26/01  9:46 AM  Page 314



315

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

simple components
creating, 176–179

Single Threaded Apartment (STA), 284
SMTP server e-mail, 204
snap-in, 3
snap-ins, 5
SOAP, 150–152
software

installing, 300
using, 300

sort
ascending (ASC), 140
data, 140–141
descending (DESC), 140

SPAN, 198
SQL

data, 132, 144
data stores, 166
Delete SQL string, 139
deleting, 138–139
displaying data, 133
Forms Authentication, 258
inserting, 134–135
select statements, 184
sending custom statement, 136
server, 147, 228
sorting, 140–141
statement, 134, 166
statements, 142
string, 136
updating, 137
updating data, 136
XML query engine, 164

statistics, 215
stored procedures

execute, 142–143
stores

data, 190
trace, 251

string
appending, 52
building, 180
concatenate, 52–53
connection, 185
Delete SQL, 139
insert SQL, 135
keys, 194
message, 176

query, 195, 199, 201, 206, 245
SQL, 137–138
values, 194

submit button, 27, 135, 137, 139, 143
synchronization, 224
syntax

Global.asax, 290
web.config, 290–291

T
table

building, 84–85, 87, 108–109
cell, 91, 109
colors, 85, 130
definition of, 91
HTML, 132–133
literals, 109
properties of, 84
row, 91

tags
anchor, 80–81, 106
attributes, 96
DIV, 198
HTML, 2, 198
HTML Input Submit Button, 92
placeholder, 198
range validator, 120
single, 260
SPAN, 198

templates
code, 24, 27–28, 32, 108, 130
definition of, 24
file, 24
generic, 24
Repeater control, 128

text
area, 27
box, 27, 74–76, 91, 96–97, 110, 116, 119, 122
command, 147
format, 205
input, 96
manipulating, 110
request input, 97
validating, 122
viewer, 146

TextPad, 301
three-tier Web form, 188–191

223617-6 Index.F  9/26/01  9:46 AM  Page 315



INDEX

title page, 185
tools

administrative, 8, 10, 14, 20, 22
debugging, 65

trace
application-level, 250–251
configuration, 250
hyperlink, 250
information, 248–249
page-level, 248–250
storage, 251
virtual directory, 250
Web site, 250

troubleshooting, 17
CD-ROM, 301
custom errors, 244
render functions, 279

two-tier web form, 184–187

U
UCS Transformation Format (UTF-8), 262, 272
Unicode, 262
URL

configuration, 213
impersonation, 254
passing data, 195
Web service, 172

user
authorization, 260–261
credentials, 255
ID, 134

V
validation

based on range of values, 120
compare fields for, 118
enable basic process of, 116
summarize errors from, 124
use regular expressions for, 122

variables
application, 170–171, 224–225
converting, 54
declaring, 40–41, 48, 292
defining, 40–41
displaying, 197
fixed values, 160
form, 197

global, 277
hidden, 87
hidden information, 86
initialization, 40–43, 48, 180
initializing, 108, 286
iteration, 56
long, 55
private, 180
public, 180
server, 248
session, 226, 229
setting, 214
updating, 223

VB.NET Syntax, 282–283, 285
migrating, 284

VBScript. See Visual Basic
virtual directory

application, 210
trace, 250

Visual Basic, 54, 213, 287
assignment statements, 292
case statements, 293
comments, 292
examples of, 292
exception handling, 295
FOR Loops, 293
if...else statements, 292
migrating, 282–285
object reference, 295
operators, 297–299
parameters, 285

passing by reference, 294
passing by value, 294

Request.Form, 194
script blocks, 276
types, 296
WHILE Loops, 293

Visual Studio.NET (VS.NET), 6, 21
VMware Workstation, 301
VS.NET (Visual Studio.NET), 6, 21

W
W3C, 146
Web browser, 72, 88

cookie, 231
graphics, 107

316

223617-6 Index.F  9/26/01  9:46 AM  Page 316



317

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

hyperlink, 106
image, 73, 82
testing, 155
types, 202, 203

Web class, 172, 174
Web controls, 95–96, 109, 234

basic, 91
classification, 90
data list, 91
introduction, 90–93
list, 91
rich, 91

Web forms, 2, 25–26, 30, 33, 186
control, 92
controls, 90
creating, 31
server-side form, 192

Web Method, 154, 160
array, 158–159
creating, 166
default definition, 170
return, 162
session object, 168

Web page
adding advertisement banners, 114
breaking into sections, 111
Code-behind, 193
components, 182
creating, 187
custom testing, 155
deleting, 138, 200
error, 200
form control, 134
inserting SQL data, 134
viewing multiple pages, 112

Web server, 2, 8–10, 14, 24–25, 66, 80, 88, 108
calendar, 104–105, 121
controls, 90, 99–107, 288–290
copying files, 178
error, 238
processing events, 32
request, 28
response, 28
restarting, 19
starting, 19

stopping, 19
XML files, 146

Web service, 2, 25, 275
application object, 170–171
benefits, 150
clients, 150, 152, 156, 162, 164
components, 182
creating, 152, 153
creating client console, 174, 175
creating client page, 172–173
DataSet, 167
enumerated type, 160–161
figure of, 151
introduction, 150
language, 152
method, 156
parameters, 156–157, 163
protocols, 151
return SQL data, 166–167
return XML, 164–165
returning an array, 158–159
returning an object, 162–163
session object, 168–169
simple, 152
standards, 151
testing, 154–155
URL, 172
writing, 152
XML, 151, 165

Web Services Description Language (WSDL), 150
Web Services Discovery (Disco), 150, 174
Web site

/bin directory, 179
browsing, 20–21
creating, 26
default, 21, 23, 25, 27, 29, 31, 33
displaying text, 110
exploring, 22
interactive, 28
moving, 178
pausing, 18–19
properties page, 15
starting, 18–19
stopping, 18–19
trace, 250

223617-6 Index.F  9/26/01  9:46 AM  Page 317



INDEX

318

Windows
2000, 204, 254, 258, 260
Authentication, 252–256

CD-ROM, 253
Internet Explorer, 252
Internet Information System (IIS), 252, 260
Internet Services Manager (ISM), 252, 254

Explorer, 11, 22–23
Form

application, 275
Wireless Markup Language (WML), 148
Wizard, 5, 21

Virtual Directory Creation, 11, 13
Windows Component, 4

WML (Wireless Markup Language), 148
WSDL (Web Services Description Language), 150

X
XML

array strings, 158
code, 149
data sources, 146–147
definition of, 236
display, 148–149
file, 114
format, 273
loading documents, 165
request display, 154
Spy IDE, 301
transform, 148–149
Web service, 151, 164

XSL, 148
XSLT, 164

223617-6 Index.F  9/26/01  9:46 AM  Page 318



319

ASP.NET:
Your visual blueprint for creating

Web applications on the .NET framework

223617-6 Index.F  9/26/01  9:46 AM  Page 319



The visual alternative to learning
complex computer topics

Over 10 million Visual books in print!

For experienced

computer users,

developers, 

network professionals

who learn best visually.

Read Less – Learn More™

Title ISBN Price

Active Server™ Pages 3.0: Your visual blueprint for developing interactive Web sites 0-7645-3472-6 $26.99

HTML: Your visual blueprint for designing effective Web pages 0-7645-3471-8 $26.99

Java™: Your visual blueprint for building portable Java programs 0-7645-3543-9 $26.99  

JavaScript™: Your visual blueprint for building dynamic Web pages 0-7645-4730-5 $26.99  

JavaServer™ Pages: Your visual blueprint for designing dynamic content with JSP 0-7645-3542-0 $26.99  

Linux®: Your visual blueprint to the Linux platform 0-7645-3481-5 $26.99

Perl: Your visual blueprint for building Perl scripts 0-7645-3478-5 $26.99

PHP: Your visual blueprint for creating open source, server-side content 0-7645-3561-7 $26.99

Unix®: Your visual blueprint to the universe of Unix 0-7645-3480-7 $26.99

XML: Your visual blueprint for building expert Web pages 0-7645-3477-7 $26.99

“Apply It” and “Extra” provide ready-to-run code and useful tips.

New Series!

233617-6 BoBAd.F  9/26/01  9:46 AM  Page 320



The Complete Visual Reference

The Visual™

series is available

wherever books are

sold, or call 

1-800-762-2974.
Outside the US, call

317-572-3993

Title ISBN Price
Master Active Directory™ VISUALLY™ 0-7645-3425-4 $39.99
Master Microsoft® Access 2000 VISUALLY™ 0-7645-6048-4 $39.99
Master Microsoft® Office 2000 VISUALLY™ 0-7645-6050-6 $39.99
Master Microsoft® Word 2000 VISUALLY™ 0-7645-6046-8 $39.99
Master Office 97 VISUALLY™ 0-7645-6036-0 $39.99
Master Photoshop® 5.5 VISUALLY™ 0-7645-6045-X $39.99
Master Red Hat® Linux® VISUALLY™ 0-7645-3436-X $39.99
Master VISUALLY™ Dreamweaver® 4 and Flash™ 5 0-7645-0855-5 $39.99
Master VISUALLY™ FrontPage® 2002 0-7645-3580-3 $39.99
Master VISUALLY™ HTML 4 & XHTML™ 1 0-7645-3454-8 $39.99
Master VISUALLY™ Microsoft® Windows® Me Millennium Edition 0-7645-3496-3 $39.99
Master VISUALLY™ Office XP 0-7645-3599-4 $39.99
Master VISUALLY™ Photoshop® 6 0-7645-3541-2 $39.99
Master VISUALLY™ Windows® 2000 Server 0-7645-3426-2 $39.99
Master Windows® 95 VISUALLY™ 0-7645-6024-7 $39.99
Master Windows® 98 VISUALLY™ 0-7645-6034-4 $39.99
Master Windows® 2000 Professional VISUALLY™ 0-7645-3421-1 $39.99

For visual learners who

want an all-in-one 

reference/tutorial that

delivers more in-depth

information about a 

technology topic.

“Master It” tips provide additional topic coverage

with these two-color Visual™ guides

233617-6 BoBAd.F  9/26/01  9:46 AM  Page 321



®

D U M M I E S  P R E S S

Qty ISBN Title Price Total

Subtotal ______________________

CA residents add
applicable sales tax ___________________

IN, MA and MD
residents add
5% sales tax ______________________

IL residents add
6.25% sales tax __________________________

RI residents add
7% sales tax __________________________

TX residents add
8.25% sales tax __________________________

Shipping__________________________

Total ______________________

O R D E R  F O R M

Payment: �� Check to Hungry Minds (US Funds Only)
�� Visa �� MasterCard �� American Express

Card # ____________________________ Exp. ____________ Signature_____________________________________

TRADE & INDIVIDUAL ORDERS

Phone: (800) 762-2974 
or (317) 572-3993
(8 a.m.–6 p.m., CST, weekdays)
FAX : (800) 550-2747
or (317) 572-4002

EDUCATIONAL ORDERS & DISCOUNTS

Phone: (800) 434-2086 
(8:30 a.m.–5:00 p.m., CST, weekdays)
FAX : (317) 572-4005

Shipping & Handling Charges

Each 
Description First book add’l. book Total

Domestic Normal $4.50 $1.50 $
Two Day Air $8.50 $2.50 $
Overnight $18.00 $3.00 $

International Surface $8.00 $8.00 $
Airmail $16.00 $16.00 $
DHL Air $17.00 $17.00 $

Ship to:

Name____________________________________________________________________________________________

Address __________________________________________________________________________________________

Company ________________________________________________________________________________________

City/State/Zip _____________________________________________________________________________________

Daytime Phone____________________________________________________________________________________

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

CORPORATE ORDERS FOR VISUALTM SERIES

Phone: (800) 469-6616 
(8 a.m.–5 p.m., EST, weekdays)
FAX : (905) 890-9434

233617-6 BoBAd.F  9/26/01  9:46 AM  Page 322


	ASP.NET Your visual blueprint for creating Web application on the .NET framework
	TABLE OF CONTENTS
	HOW TO USE THIS BOOK
	CH01: GETTING STARTED WITH ASP.NET
	INTRODUCTION TO ASP. NET
	INSTALL INTERNET INFORMATION SERVER 5.0
	INSTALL THE . NET FRAMEWORK
	CHANGE THE HOME DIRECTORY IN IIS
	ADD A VIRTUAL DIRECTORY IN IIS
	SET A DEFAULT DOCUMENT FOR IIS
	CHANGE LOG FILE PROPERTIES FOR IIS
	STOP, START, OR PAUSE A WEB SITE

	CH02: WEB DEVELOPMENT BASICS
	BROWSE YOUR DEFAULT WEB SITE
	EXPLORE A WEB SITE
	OPEN A TEMPLATE FILE
	SAVE A FILE TO THE DEFAULT WEB SITE
	CREATE AN HTML PAGE
	CREATE AN ASP PAGE
	CREATE AN ASP. NET WEB PAGE
	ADD AN EVENT HANDLER TO AN ASP. NET PAGE

	CH03: C# BASICS
	WRITE YOUR FIRST C# APPLICATION
	COMPILE A C# APPLICATION
	FORMAT YOUR CODE
	DECLARE A VARIABLE
	INITIALIZE A VARIABLE
	ACCESS PROPERTIES
	MAKE DECISIONS USING CONDITIONAL STATEMENTS
	WORK WITH ARRAYS
	CONTROL LOGIC USING ITERATIVE STATEMENTS
	CONCATENATE A STRING
	CONVERT A VARIABLE
	ENUMERATE A COLLECTION
	DECLARE AND USE METHODS
	IMPLEMENT EXCEPTION HANDLING
	CONVERT A CONSOLE APPLICATION TO AN ASP. NET WEB PAGE

	Ch04: WORK WITH HTML CONTROLS
	INTRODUCTION TO HTML CONTROLS
	PROCESS REQUESTS TO THE SERVER
	CREATE A FORM BUTTON
	CREATE AN HTML 4.0 BUTTON
	CREATE A GRAPHICAL BUTTON
	REQUEST SINGLE LINE INPUT
	REQUEST MULTIPLE LINE INPUT
	REQUEST BOOLEAN INPUT
	REQUEST A SELECTION FROM A GROUP
	REQUEST INPUT FROM A DROP- DOWN LIST
	CREATE A LINK
	RENDER AN IMAGE
	BUILD A TABLE
	STORE HIDDEN INFORMATION ON A FORM
	UPLOAD FILES

	CH05: WORK WITH WEB CONTROLS
	INTRODUCTION TO WEB CONTROLS
	CREATE A BUTTON FOR POSTING DATA
	CREATE A HYPERLINKED BUTTON
	CREATE A GRAPHICAL BUTTON
	REQUEST TEXT INPUT
	REQUEST BOOLEAN INPUT
	REQUEST A SELECTION FROM A GROUP
	REQUEST INPUT FROM A DROP- DOWN LIST
	REQUEST DATES FROM A CALENDAR
	CREATE A LINK
	RENDER AN IMAGE
	BUILD A TABLE
	MANIPULATE TEXT
	ADD A PLACEHOLDER FOR CONTROLS
	PROVIDE A CONTAINER FOR CONTROLS
	DISPLAY ADVERTISEMENT BANNERS
	VALIDATE REQUIRED FIELDS
	COMPARE TWO FIELDS FOR VALIDATION
	CHECK THE BOUNDARIES OF INPUT
	VALIDATE WITH REGULAR EXPRESSIONS
	SUMMARIZE VALIDATION ERRORS

	CH06: ACCESS DATA WITH ASP.NET
	INTRODUCTION TO DATA ACCESS WITH ASP. NET
	DISPLAY REPEATING DATA
	DISPLAY COMPLEX LISTS
	DISPLAY SQL DATA
	INSERT DATA INTO A SQL DATABASE
	UPDATE DATA FROM A SQL DATABASE
	DELETE DATA FROM A SQL DATABASE
	SORT DATA FROM A SQL DATABASE
	EXECUTE STORED PROCEDURES
	WORK WITH MASTER-DETAIL RELATIONSHIPS
	WORK WITH XML DATA SOURCES
	TRANSFORM AND DISPLAY XML

	CH07: WORK WITH WEB SERVICES
	INTRODUCTION TO WEB SERVICES
	CREATE A SIMPLE WEB SERVICE
	TEST A WEB SERVICE
	USING A PARAMETER WITH A WEB SERVICE
	RETURN AN ARRAY FROM A WEB SERVICE
	RETURN AN ENUMERATED TYPE FROM A WEB SERVICE
	RETURN AN OBJECT FROM A WEB SERVICE
	RETURN XML FROM A WEB SERVICE
	RETURN SQL DATA FROM A WEB SERVICE
	WORK WITH THE SESSION OBJECT IN A WEB SERVICE
	WORK WITH THE APPLICATION OBJECT IN A WEB SERVICE
	CREATE A CLIENT WEB PAGE FOR A WEB SERVICE
	CREATE A CLIENT CONSOLE APPLICATION FOR A WEB SERVICE

	CH08: CREATE CUSTOM COMPONENTS
	CREATE A SIMPLE COMPONENT
	CREATE A STATEFUL COMPONENT
	CREATE A TWO- TIER WEB FORM
	CREATE A THREE- TIER WEB FORM
	USE A CODE- BEHIND FOR YOUR ASP. NET PAGE

	CH09: USING ASP.NET COMPONENTS
	READ FORM DATA WITH REQUEST. FORM
	DISPLAY DATA WITH REQUEST. PARAMS
	WRITE OUTPUT USING RESPONSE. WRITE
	REDIRECT USING RESPONSE. REDIRECT
	CHECK FOR WEB BROWSER TYPES
	SEND AN E- MAIL USING ASP. NET
	USE THE ASP. NET PAGE CACHE
	USE THE ASP. NET DATA CACHE

	CH10: ASP.NET APPLICATIONS AND STATE MANAGEMENT
	INTRODUCTION TO ASP. NET APPLICATIONS AND STATE MANAGEMENT
	CREATE A GLOBAL. ASAX FILE
	USING PROCESSING DIRECTIVES IN THE GLOBAL. ASAX FILE
	USING SERVER- SIDE OBJECTS IN THE GLOBAL. ASAX FILE
	USING APPLICATION EVENT HANDLERS IN THE GLOBAL. ASAX FILE
	USING APPLICATION STATE
	USING SESSION STATE
	WORK WITH COOKIES
	WORK WITH PAGE STATE

	CH11: CONFIGURE YOUR ASP.NET APPLICATIONS
	ADD APPLICATION SETTINGS
	SET STANDARD CONFIGURATION
	ADD CUSTOM SETTINGS

	CH12: DEBUG YOUR ASP.NET APPLICATIONS
	ENABLE PAGE- LEVEL DEBUGGING
	ENABLE CUSTOM ERROR HANDLING
	HANDLE ERRORS PROGRAMMATICALLY
	USE A PAGE- LEVEL TRACE
	USE AN APPLICATION- LEVEL TRACE

	CH13: SECURITY AND ASP.NET
	USING WINDOWS AUTHENTICATION
	USING FORMS AUTHENTICATION
	AUTHORIZE USERS

	CH14: LOCALIZATION AND ASP.NET
	SET UP ENCODING
	USING CULTUREINFO
	USING REGIONINFO
	LOCALIZE WITH THE PAGE CONTROL
	CREATE AND USE RESOURCES
	USE RESOURCE MANAGER INFORMATION

	CH15: MIGRATE FROM ASP TO ASP.NET
	WORK WITH MULTIPLE SERVER- SIDE LANGUAGES
	WORK WITH SCRIPT BLOCKS
	USING RENDER FUNCTIONS
	USING PAGE DIRECTIVES
	MIGRATE VBSCRIPT TO VB. NET SYNTAX
	MIGRATE JSCRIPT TO JSCRIPT. NET SYNTAX

	APP A: ASP.NET QUICK REFERENCE
	HTML SERVER CONTROLS

	APP B: C#, VB, AND JSCRIPT LANGUAGE EQUIVALENTS
	BASICS EXAMPLES
	TYPES COMPARISON Ò VISUAL BASIC, C#, AND JSCRIPT
	OPERATOR COMPARISON Ò VISUAL BASIC, C#, AND JSCRIPT

	APP C: WHAT’S ON THE CD- ROM
	USING THE E- VERSION OF THE BOOK

	HUNGRY MINDS, INC. END-USER LICENSE AGREEMENT
	INDEX
	Symbols and Numbers
	A - B
	C
	D - E
	F - G
	H - I
	J - M
	N - P
	Q - S
	T
	U - W
	X

	Read Less – Learn More ™ with these two-color Visual™guides
	ORDER FORM


