
C# and the .NET Platform Table Of Content

-1 I ♡ Flyheart-

C# and the .NET Platform

by Andrew Troelsen ISBN:1893115593

Apress © 2001 (970 pages)

A three-fold introduction to the Microsoft’s new C#

programming language, .NET Framework, and the Common

Language Runtime environment.

Companion Web Site

Table of Contents
 C# and the .NET Platform
 Introduction
 Chapter 1 - The Philosophy of .NET
 Chapter 2 - C# Language Fundamentals
 Chapter 3 - Object-Oriented Programming with C#
 Chapter 4 - Interfaces and Collections
 Chapter 5 - Advanced C# Class Construction Techniques
 Chapter 6 - Assemblies, Threads, and AppDomains

 Chapter 7 -
Type Reflection and Attribute-Based

Programming

 Chapter 8 -
Building a Better Window (Introducing Windows

Forms)
 Chapter 9 - A Better Painting Framework (GDI+)
 Chapter 10 - Programming with Windows Form Controls
 Chapter 11 - Input, Output, and Object Serialization
 Chapter 12 - Interacting with Unmanaged Code
 Chapter 13 - Data Access with ADO.NET
 Chapter 14 - Web Development and ASP.NET
 Chapter 15 - Building (and Understanding) Web Services
 Index
 List of Figures
 List of Tables

C# and the .NET Platform About the Book

-2 I ♡ Flyheart-

C# and the .NET Platform
ANDREW TROELSEN

Copyright © 2001 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system,
without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-893115-59-3

Trademarked names may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, we use
the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.
Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen
Watterson
Technical Editor: Eric Gunnerson
Managing Editor: Grace Wong
Copy Editors: Anne Friedman, Beverly McGuire, Nancy Rapoport
Production Editor: Anne Friedman
Compositor and Artist: Impressions Book and Journal Services, Inc.
Indexer: Nancy Guenther
Cover Designer: Karl Miyajima

Distributed to the book trade in the United States by Springer-Verlag New
York, Inc., 175 Fifth Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany
In the United States, phone 1-800-SPRINGER;
orders@springer-ny.com; http://www.springer-ny.com
Outside the United States, contact orders@springer.de;
http://www.springer.de; fax +49 6221 345229
For information on translations, please contact Apress directly at 901
Grayson Street, Suite 204, Berkeley, CA, 94710
Phone: 510-549-5937; Fax: 510-549-5939; info@apress.com;
http://www.apress.com

The information in this book is distributed on an "as is" basis, without
warranty. Although every precaution has been taken in the preparation of

C# and the .NET Platform About the Book

-3 I ♡ Flyheart-

this work, neither the author nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.
The source code for this book is available to readers at
http://www.apress.com. You will need to answer questions pertaining
to this book in order to successfully download the code.

To my wife Amanda for her tremendous support during the (sometimes
painful) writing process. Thanks for encouraging me to write; even when I

am sure I have nothing at all to say.

An Important Note About This Book

THE EDITION OF THE BOOK you are holding is a Beta 2-compliant book.
As many of you may be aware, there have been dramatic changes in
Visual Studio.NET between the Beta 1 and Beta 2 releases (most notably
in the areas of ADO.NET, assembly configuration files and general class
library organization). Therefore, understand that select topics (and the
code related to said topics) will most certainly require modifications in
subsequent Beta/Gold releases of .NET.

The good news is, updates and corrections to both the source code and
contents of this book will be available on the Web for both future beta
releases and for the final release of Visual Studio.NET! In this way, you
can be confident that this book will not become obsolete as the release
date nears. On a related note, be aware that future releases of this text will
include additional content that I was unable to include due to the tight
deadlines required for this project (you'll have to obtain your updates to
see exactly what these mystery topics will be ;-)
All code listings in this book have been verified against the latest software
build available to authors, and have only been verified only under Windows
2000. At the time of publication, Microsoft recommends doing all .NET
development on Windows 2000. Be sure to check the Web site at
http://www.apress.com or http://www.intertech-inc.com for
the latest updates and corrections. Enjoy!

Acknowledgments

This book was a huge undertaking. I am absolutely certain that this text
would not be ready for prime time if it were not for the following fine people
at Apress. First, thanks to Gary Cornell who was a consistent source of
support during the writing of this book (I look forward to finally meeting you
at Tech Ed and working together again soon). A big thanks to Grace Wong,
who kept the entire project well focused, positive, and no track. Thanks to
Stephanie Rodriguez, who has done a fantastic job marketing this material,
posting sample chapters, and remaining patient and kind as I "kept

C# and the .NET Platform About the Book

-4 I ♡ Flyheart-

forgetting" to deliver the cover copy. Last but certainly not least, thanks to
Nancy Guenther for working with an incredibly tight deadline in order to
index this material.

A mammoth amount of gratitude to the editorial staff: Doris Wong, Anne
Friedman, Nancy Rapoport, and Beverly McGuire, all of whom did an
outstanding job formatting and massaging the knots out of any original
manuscript. Special thanks to Anne for working around the clock with me
to ensure a timely deliver of this material!

I also must offer heartfelt thanks to my primary technical editor, Eric
Gunnerson (Microsoft employee and general C# guru) who took time out of
his extremely busy life to perform technical reviews and clarification
(especially when upgrading the manuscript from alpha to Beta 1.)
Additional thanks are extended to Microsoft's Joe Nalewabau, Nick
Hodapp, and Dennis Angeling for helping to clarify numerous bits of
content. Any remaining faux pas are my sole responsibility.

Thanks to my fellow cohorts at Intertech, Inc.: Steve Close, Gina McGhee,
Andrew "Gunner" Sondgeroth, and Tom Barnaby who, while working on
their own books, provided an encouraging, intense and positive
environment. Finally, thanks to Tom Salonek for buying met that first cup of
coffee over five years ago.

C# and the .NET Platform Introduction

-5 I ♡ Flyheart-

Introduction

Overview

At the time of this writing (shortly before the release of .NET Beta 2), the .NET platform
and C# programming language are already making a distinct mark on the programming
landscape. Without succumbing to marketing hype, I whole-heartedly believe that
the .NET platform is poised to become the New World Order of Windows development
(and possible for non-Windows development in the future).

.NET represents an entirely new way to build distributed desktop and mobile applications.
One thing to be painfully aware of from the onset is that the .NET platform has nothing at
all to do with classic COM. For example, as you read over this text, you will find that .NET
types require no class factory, do not support IUnknown, and are not registered in the
system registry. These COM atoms are not simply hidden away from view—they don't
exist.

Given that .NET is such a radical departure from the current modus operandi of Win32
development, Microsoft has developed a new language named C# (pronounced
see-sharp) specifically for this new platform. C#, like Java, has its syntactic roots in C++.
However, C# has also been influenced by Visual Basic 6.0. In this light, you are quite
likely to find a number of similarities between C# and other modern programming
languages. This is of course a good thing, as you can leverage your existing skills to
come up to speed on the structure C#.

The truth of the matter is that .NET is an extremely language-agnostic platform. You can
make use of any .NET-aware language (and possibly numerous .NET aware languages)
during the development of your next coding effort. In this vein, your greatest challenge is
not necessarily learning the C# language, but rather coming to terms with the numerous
types defined in the .NET base class libraries. Once you understand how to leverage the
existing code base, you will find that the concept of "syntax" becomes a non issue given
that all. NET-aware languages make use of the same base class types. This is also a
good thing, given that you should be able to move swiftly between various .NET
languages with minimal fuss and bother.

The purpose of this text is to provide a solid foundation of the syntax and semantics of C#,
as well as the architecture of the .NET platform. As you read through the (numerous)
pages that follow, you will be exposed to each major facet of the .NET base class libraries.
A high-level overview of each chapter follows.

Chapter 1: The Philosophy of .NET
Chapter 1 functions as the backbone for this text. The first task of the chapter is to
examine the world of Windows development as we know it today, and review the

C# and the .NET Platform Introduction

-6 I ♡ Flyheart-

shortcomings of the current state of affairs. However, the primary goal is to acquaint you
with the meaning behind a number of .NET-centric building blocks such as the Common
Language Runtime (CLR), Common Type System (CTS), the Common Language
Specification (CLS), and the base class libraries. Once you have a solid understanding of
the .NET runtime, you take an initial look at the C# programming language, and learn how
to compile applications using the standalone compiler (csc.exe) as well as Visual
Studio.NET.

Chapter 2: C# Language Fundamentals
The goal of Chapter 2 is to showcase the core syntax of the C# programming language.
As you would hope, you are introduced to the intrinsic data types of C# as well as the set
of iteration and decision constructs. More important, you learn about the composition of a
C# class, and make friends with a number of new .NET techniques such as boxing,
unboxing, value and reference types, namespace development, as well as the mighty
System.Object's role.

Chapter 3: Object-Oriented Programming with C#
Now that you can build complex standalone types, Chapter 3 focuses on the pillars of
object technology: encapsulation, inheritance ("is-a" and "has-a") and polymorphism
(classical and ad hoc). The chapter begins with a review of these key terms, and then
quickly turns attention to understanding how C# supports each pillar. Along the way, you
are exposed to class properties, the "readonly" keyword and the development of class
hierarchies. Finally, this chapter examines the official and correct way to handle runtime
anomalies: Structured Exception Handling. The chapter ends with a discussion of
the .NET garbage collection scheme, and you see how to programmatically interact with
this service using the System.GC class type.

Chapter 4: Interface and Collections

Like Java and the Component Object Model (COM), C# supports the technique of
interface-based programming. Here, you learn the role of interfaces, and understand how
to define and implement such a creature in C#. Once you can build types that support
multiple interfaces, you learn a number of techniques you can use to obtain an interface
reference from a valid type instance. The second half of this chapter examines a number
of predefined interfaces defined within the .NET class libraries, and illustrates how to
make use of the System.Collections namespace to build custom container types. You will
also learn how to build clonable and enumerable types.

Chapter 5: Advanced Class Construction Techniques

This chapter rounds out your understanding of core OOP with C#. You begin by
examining the use of indexer methods, and see how this syntactic maneuver allows you
to build a container that exposes its contents using standard array like indexing. The
chapter also illustrates how to overload operators, in order to allow the object user to
interact with your custom types more intuitively. Next, you examine the .NET-event

C# and the .NET Platform Introduction

-7 I ♡ Flyheart-

protocol and come to understand the use of the "delegate" and "event" keywords. The
chapter wraps up with an examination of XML-based code documentation.

Chapter 6: Assemblies, Threads, and AppDomains

At this point you should be very comfortable building standalone C# applications. This
chapter illustrates how to break apart a monolithic EXE into discrete code libraries. Here,
you learn about the internal composition of a .NET assembly and understand the
distinction between "shared" and "private" assemblies. This entails a discussion of the
Global Assembly Cache (GAC), XML configuration files and side-by-side execution. To
further illustrate the virtues of the CLR, this chapter also examines cross-language
inheritance and examines how to build multithreaded binaries.

Chapter 7: Reflection and Attributes
Reflection is the process of runtime type discovery. This chapter examines the details
behind the System.Reflection namespace, and illustrates how to investigate the contents
of an assembly on the fly. On a related note, you learn how to build an assembly (and its
contained types) at runtime using the System.Reflection.Emit namespace. Chapter 7 also
illustrates how to exercise late binding to a .NET type and dynamically invoke its
members. Finally, the chapter wraps up with a discussion of attribute-based programming.
As you will see, this technique allows you to augment compiler-generated metadata with
application specific information.

Chapter 8: Building a Better Window (Introducing Windows

Forms)

Despite its name, the .NET platform has considerable support for building traditional
desktop applications. In this chapter, you come to understand how to build a stand-alone
main window using the types contained in the System.Windows.Forms namespace. Once
you understand the derivation of a Form, you then learn to add support for top-most and
pop-up menu systems, toolbars, and status bars. As an added bonus, this chapter also
examines how to programmatically manipulate the system registry and Windows 2000
event log.

Chapter 9: A Better Painting Framework (GDI+)
Chapter 8 examines the guts of a Form-derived type. This chapter teaches you how to
render geometric images, bitmap images, and complex textual images onto the Form's
client area. On a related note, you learn how to drag images within a Form (in response to
mouse movement) as well as how to perform hit tests against geometric regions (in
response to mouse clicks). This chapter ends with an examination of the .NET-resource
format, which as you might assume, is based on XML syntax.

Chapter 10: Programming with Windows Form Controls

This final chapter on Windows Forms examines how to program with the suite of GUI
widgets provided by the .NET framework. Here, you discover details behind the Calendar,

C# and the .NET Platform Introduction

-8 I ♡ Flyheart-

DataGrid, and input validation controls, in addition to the vanilla flavored TextBox, Button,
and ListBox types (among others). You wrap up by examining how to build custom dialog
boxes and come to understand a new technique termed "Form Inheritance."

Chapter 11: Input, Output, and Object Serialization

The .NET framework provides a number of types devoted to IO activities. Here you learn
how to save and retrieve simple data types to (and from) files, memory locations, and
string buffers. Of greater interest is the use of object serialization services. Using a small
set of predefined attributes and a corresponding object graph, the framework is able to
persist related objects using an XML or binary formatter. To illustrate object serialization
at work, this chapter wraps up with a Windows Forms application that allows the end user
to create and serialize custom class types for use at a later time.

Chapter 12: Interacting with Unmanaged Code

As bizarre as it may seem, Microsoft's Component Object Model (COM) can now be
regarded as a legacy technology. As you will most certainly know by this point in the book,
the architecture of COM has little resemblance to that of .NET. This chapter examines the
details of how COM types and .NET types can live together in harmony through the use of
COM Callable Wrappers (CCW) and Runtime Callable Wrappers (RCW). Here you see
how various IDL constructs such as SAFEARRAYs, connection points, and COM
enumerations map into C# code.

The chapter concludes by examining how to build .NET types that can take advantage of
the COM+ runtime.

Chapter 13: Data Access with ADO.NET

To be perfectly blunt, ADO.NET has little resemblance to classic ADO proper. As you
discover, ADO.NET is a data access model specifically built for the disconnected world.
To begin, you learn how to create and populate an in memory DataSet, and establish
relationships between the internal Data Tables. The second half of this chapter examines
how to make use of the OleDb and Sql managed providers to obtain access to relational
database management systems such as Microsoft Access and SQL Server. Once you
understand how to connect to a give data store, you learn how to insert, update, and
remove data records as well as trigger logic contained within stored procedures.

Chapter 14: Web Development and ASP.NET

For the sake of completion, this chapter begins with an overview of the Web programming
model, and examines how to build Web front ends (using HTML), client-side validation
(using JavaScript), and requesting a response from a classic ASP Web application. The
bulk of the chapter however provides a solid introduction to the ASP.NET architecture.
Here you learn about Web Controls, server side event handling, and the core properties
of the Page type (including the Request and Response properties).

C# and the .NET Platform Introduction

-9 I ♡ Flyheart-

Chapter 15: Building (and Understanding) Web Services

In this final chapter of this book (some 900 pages later), you examine the role of .NET
Web services. Simply put, a "Web service" is an assembly that is activated using
standard HTTP. Here you examine the surrounding technologies (WSDL, SOAP, and
discovery services) which enable a Web service to take incoming client requests. Once
you understand how to construct a C# Web service, you then learn how to build a client
side proxy class, which hides the low level SOAP logic from view.

What You Need to Use This Book
The very first thing you must do is download the accompanying source code for this book
from the Apress Web site (http://www.apress.com). As you read over each chapter,
you will find the following icon has been liberally scattered throughout the text:

This is your visual cue that the example under discussion may be loaded into Visual
Studio.NET for examination.

In addition to the source code, you need to have a copy of .NET Beta 2. Let me assure
you that there have been some significant changes under the hood in the move between
Beta 1 and Beta 2, especially in the area of ADO.NET. If you are currently running Beta 1,
you are bound to find numerous explanations out of whack.

I have chosen to focus on using the Visual Studio.NET development environment in this
text. Although you are free to build and compile your code using nothing more than the C#
compiler (which is included with the .NET SDK) and Notepad.exe, you will find that
VS.NET takes care of a number of low level details on your behalf.

Finally, although I assume no foreknowledge of C# or the .NET platform, I wrote this book
with the following assumptions:

 You are an experienced software professional who has background in some

modern day programming language (C++, Visual Basic, Java, etc.).
 You are unafraid to consult online Help (and do so often without shame).

Even a book of this size cannot possibly cover each and every aspect of the .NET
platform. The online Help that ships with the .NET SDK is incredibly readable, and
provides numerous code examples, white papers, and online tutorials. Once you have
read (and understood) these 15 chapters, you will be in a perfect position to build

C# and the .NET Platform Introduction

-10 I ♡ Flyheart-

complete .NET solutions with the C# language. At this point, online Help will become your
faithful companion, which extends and complements the material presented here.

So, let's get on with the show! It is my sincere hope that this book will guide you safely
through this .NET universe, and serve as a solid reference during your life as an author of
managed code.

Andrew Troelsen
Minneapolis, Minnesota

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-11 I ♡ Flyheart-

Chapter 1: The Philosophy of .NET

Overview

EVERY FEW YEARS OR SO, THE modern day programmer must be willing to perform a
self-inflicted knowledge transplant, in order to stay current with the new technologies of
the day. The languages (C++, Visual Basic, Java), frameworks (MFC, ATL, STL) and
architectures (COM, CORBA) that were touted as the silver bullets of software
development, eventually become overshadowed by something better or at very least
something new. Regardless of the frustration you can feel when upgrading your internal
knowledge base, it is unavoidable. Microsoft's .NET platform represents the next major
wave of (positive) changes coming from those kind folks in Redmond.

The point of this chapter is to lay the conceptual groundwork for the remainder of the book.
It begins with a high-level discussion of a number of .NET-related atoms such as
assemblies, intermediate language (IL), and just in time (JIT) compilation. During the
process, you will come to understand the relationship between various aspects of
the .NET framework, such as the Common Language Runtime (CLR), the Common Type
System (CTS), and the Common Language Specification (CLS).

This chapter also provides you with an overview of the functionality supplied by the .NET
base class libraries and examines a number of helpful utilities (such as ILDasm.exe) that
may be used to investigate these libraries at your leisure. The chapter wraps up with an
examination of how to compile C# applications using the command line compiler
(csc.exe), as well as the Visual Studio.NET Integrated Development Environment (IDE).

Understanding the Current State of Affairs

Before examining the specifics of the .NET universe, it's helpful to consider some of the
issues that motivated the genesis of this new platform. To get in the proper mindset, let's
begin this chapter with a brief and painless history lesson to remember your roots and
understand the limitations of the current state of affairs (after all, admitting you have a
problem is the first step toward finding a solution). After this quick tour of life as we know it,
we turn our attention to the numerous benefits provided by C# and the .NET platform.

Life as a Win32/C Programmer

Traditionally speaking, developing software for the Windows operating system involved
using the C programming language in conjunction with the Windows API (Application
Programming Interface). While it is true that numerous applications have been
successfully created using this time-honored approach, few of us would disagree that
building applications using the raw API is a complex undertaking.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-12 I ♡ Flyheart-

The first obvious problem is that C is a very terse language. C developers are forced to
contend with manual memory management, ugly pointer arithmetic, and ugly syntactical
constructs. Furthermore, given that C is a structured language, it lacks the benefits
provided by the object-oriented approach (can anyone say spaghetti code?) When you
combine the thousands of global functions defined by the raw Win32 API to an already
formidable language, it is little wonder that there are so many buggy applications floating
around today.

Life as a C++/MFC Programmer

One vast improvement over raw C development is the use of the C++ programming
language. In many ways, C++ can be thought of as an object-oriented layer on top of C.
Thus, even though C++ programmers benefit from the famed "pillars of OOP"
(encapsulation, polymorphism, and inheritance), they are still at the mercy of the painful
aspects of the C language (e.g., memory management, ugly pointer arithmetic, and ugly
syntactical constructs).

Despite its complexity, many C++ frameworks exist today. For example, the Microsoft
Foundation Classes (MFC) provide the developer with a set of existing C++ classes that
facilitate the construction of Windows applications. The main role of MFC is to wrap a
"sane subset" of the raw Win32 API behind a number of classes, magic macros, and
numerous CASE tools (e.g., AppWizard, ClassWizard, and so forth). Regardless of the
helpful assistance offered by the MFC framework (as well as many other windowing
toolkits), the fact of the matter is C++ programming remains a difficult and error-prone
experience, given its historical roots in C.

Life as a Visual Basic Programmer

Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers have shifted
away from the world of C(++)-based frameworks to kinder, gentler languages such as
Visual Basic 6.0 (VB). VB is popular due to its ability to build complex user interfaces,
code libraries (e.g., COM servers) and data access logic with minimal fuss and bother.
Even more than MFC, VB hides the complexities of the Win32 API from view using a
number of integrated CASE tools, intrinsic data types, classes, and VB-centric functions.

The major downfall of VB (at least until the advent of VB.NET) is that it is not a fully
object-oriented language, but rather "object aware." For example, VB 6.0 does not allow
the programmer to establish "is-a" relationships between types (i.e., no classical
inheritance), has no support for parameterized class construction, and no intrinsic support
for building multithreaded applications (and so on).

Life as a Java Programmer

Enter Java. The Java programming language is a completely object-oriented entity that
has its syntactic roots in C++. As many of you are aware, Java's strengths are far greater

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-13 I ♡ Flyheart-

than its support for platform independence. Java (as a language) cleans up the unsavory
syntactical aspects of C++. Java (as a platform) provides programmers with a large
number of predefined "packages" that contain various class and interface definitions.
Using these types, Java programmers are able to build "100% Pure Java" applications
complete with database connectivity, messaging support, Web-enabled front ends and
rich-user interfaces (in addition to a number of other services).

Although Java is a very elegant language, one potential problem is that using Java
typically means that you must use Java front-to-back during the development cycle. In
effect, Java offers little hope of language independence, as this goes against the grain of
Java's primary goal (a single programming language for every need). In reality however,
there are millions of lines of existing code out there in the world that would ideally like to
comingle with newer Java code. Sadly, Java makes this task problematic.

On a related note, Java alone is quite simply not appropriate for every situation. If you are
building a graphics intensive product (such as a 3D-rendered video game), you will find
Java's execution speed can leave something to be desired. A better approach is to use a
lower-level language (such as C++) where appropriate, and have Java code interoperate
with the external C++ binaries. While Java does provide a limited ability to access
non-Java APIs, there is little support for true cross-language integration.

Life as a COM Programmer

The truth of the matter is if you are not currently building Java-based solutions, the
chances are very good that you are investing your time and energy understanding
Microsoft's Component Object Model (COM). COM is an architecture that says in effect "If
you build your classes in accordance with the rules of COM, you end up with a block of
reusable binary code."

The beauty of a binary COM server is that it can be accessed in a language-independent
manner. Thus, C++ programmers can build classes that can be used by VB. Delphi
programmers can use classes built using C, and so forth. However, as you may be aware,
COM's language independence is somewhat limited. For example, there is no way to
derive a new COM type using an existing COM type (no support for classical inheritance).
Rather, you must make use of the less robust "has-a" relationship to reuse existing COM
types.

Another benefit of COM is its location-transparent nature. Using constructs such as
Application Identifiers (AppIDs), stubs, proxies, and the COM runtime environment,
programmers can avoid the need to work with raw Sockets, RPC calls, and other low
level details. For example, ponder the following Visual Basic 6.0 COM client code:

' This block of VB 6.0 code can activate a COM class written in

' any COM aware language, which may be located anywhere

' on the network (including your local machine).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-14 I ♡ Flyheart-

'

Dim c as New MyCOMClass ' Location resolved using AppID.

c.DoSomeWork

Although COM is a very dominant object model, it is extremely complex under the hood
(at least until you have spent many months exploring its plumbing ... especially if you
happen to be a C++ programmer). To help simplify the development of COM binaries,
numerous COM-aware frameworks have come into existence. For example, the Active
Template Library (ATL) provides another set of C++ predefined classes, templates, and
macros to ease the creation of classic COM types.

Many other languages (such as Visual Basic) also hide a good part of the COM
infrastructure from view. However, framework support alone is not enough to hide the
complexity of classic COM. Even when you choose a relatively simply COM-aware
language such as Visual Basic, you are still forced to contend with fragile registration
entries and numerous deployment related issues.

Life as a Windows DNA Programmer

Finally there is a little thing called the Internet. Over the last several years, Microsoft has
been adding more Internet-aware features into its family of operating systems. It seems
that the popularity of Web applications is ever expanding. Sadly, building a complete Web
application using Windows DNA (Distributed iNternet Architecture) is also a very complex
undertaking.

Some of this complexity is due to the simple fact that Windows DNA requires the use of
numerous technologies and languages (ASP, HTML, XML, JavaScript, VBScript, COM(+),
as well as a data access technology such as ADO). One problem is that many of these
items are completely unrelated from a syntactic point of view. For example, JavaScript
has a syntax much like C, while VBScript is a sub-set of Visual Basic proper. The COM
servers that are created to run under the COM+ runtime have an entirely different look
and feel from the ASP pages that invoke them. The end result is a highly confused
mishmash of technologies. Furthermore, each language and/or technology has its own
type system (that typically looks nothing like the other type systems). An "int" in
JavaScript is not the same as an "int" in C which is different from an "Integer" in VB
proper.

The .NET Solution

So much for the brief history lesson. The bottom line is life as a Windows programmer is
tough. The .NET framework is a rather radical and brute-force approach to making our
lives easier. The solution proposed by .NET is "Change everything from here on out"
(sorry, you can't blame the messenger for the message). As you will see during the
remainder of this book, the .NET framework is a completely new model for building
systems on the Windows family of operating systems, and possibly non-Microsoft

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-15 I ♡ Flyheart-

operating systems in the future. To set the stage, here is a quick rundown of some core
features provided courtesy of .NET:

 Full interoperability with existing code. This is (of course) a good thing. As you
will see in Chapter 12, existing COM binaries can comingle (i.e., interop) with
newer .NET binaries and vice versa.

 Complete and total language integration. Unlike classic COM, .NET supports
cross-language inheritance, cross-language exception handling, and
cross-language debugging.

 A common runtime engine shared by all .NET aware languages. One aspect of
this engine is a well-defined set of types that each .NET-aware language
"understands."

 A base class library that provides shelter from the complexities of raw API calls,
and offers a consistent object model used by all .NET-aware languages.

 No more COM plumbing! IClassFactory, IUnknown, IDL code, and the evil
VARIANT-compliant types (BSTR, SAFEARRAY, and so forth) have no place
in a .NET binary.

 A truly simplified deployment model. Under .NET, there is no need to register a
binary unit into the system registry. Furthermore, the .NET runtime allows
multiple versions of the same DLL to exist in harmony on a single machine.

Building Blocks of .NET (CLR, CTS, and CLS)

Although the roles of the CLR, CTS, and CLS are examined in greater detail later in this
chapter, you do need to have a working knowledge of these topics to further understand
the .NET universe. From a programmer's point of view, .NET can be understood as a new
runtime environment and a common base class library. The runtime layer is properly
referred to as the Common Language Runtime, or CLR. The primary role of the CLR is to
locate, load, and manage .NET types on your behalf. The CLR takes care of a number of
low-level details such as automatic memory management, language integration, and
simplified deployment (and versioning) of binary code libraries.

Another building block of the .NET platform is the Common Type System, or CTS. The
CTS fully describes all possible data types supported by the runtime, specifies how those
types can interact with each other and details how they are represented in the .NET
metadata format (more information on "metadata" later in this chapter).

Understand that a given .NET-aware language might not support each and every data
type defined by the CTS. The Common Language Specification (CLS) is a set of rules
that define a subset of common types that ensure .NET binaries can be used seamlessly
across all languages targeting the .NET platform. Thus, if you build .NET types that only

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-16 I ♡ Flyheart-

use CLS-compliant features, you can rest assured that all .NET-aware languages could
make use of your types.

The .NET Base Class Libraries

In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base
class library that is available to all .NET programming languages. Not only does this base
class library encapsulate various primitives such as file IO, graphical rendering and
interaction with external hardware devices, but it also provides support for a number of
services required by most real world applications

.
For example, the base class libraries define types that support database manipulation,
XML integration, programmatic security, and the construction of Web-enabled (as well as
traditional desktop and console-based) front ends. From a conceptual point of view, you
can visualize the relationship between the .NET runtime layer and the corresponding
base class library as shown in Figure 1-1.

Figure 1-1: A sampling of the functionality provided by the base class libraries

What C# Brings to the Table
Given that .NET is such a radical departure from the current thoughts of the day,
Microsoft has developed a new programming language (C#) specifically for this new
platform. C# is a programming language that looks very similar (but not identical) to the
syntax of Java. For example, like Java, a C# class definition is contained within a
single-source code file (*.cs) rather than the C++-centric view of splitting a class definition
into discrete header (*.h) and implementation (*.cpp) files. However, to call C# a Java
rip-off is inaccurate. Both C# and Java are based on the syntactical constructs of C++.
Just as Java is in many ways a cleaned-up version of C++, C# can be viewed as a
cleaned-up version of Java.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-17 I ♡ Flyheart-

The truth of the matter is that many of C#'s syntactic constructs are modeled after various
aspects of Visual Basic and C++. For example, like Visual Basic, C# supports the notion
of class properties. Like C++, C# allows you to overload operators on your custom class
types (as you may know, Java lacks both of these features). Given that C# is a hybrid of
numerous languages, the end result is a product that is as syntactically clean (if not
cleaner) than Java, just about as simple as Visual Basic, and provides just about as much
power and flexibility as C++ (without the associated ugly bits). In a nutshell, the C#
languages offers the following features:

 No pointers required! C# programs typically have no need for direct pointer
manipulation (although you are free to drop down to that level if you desire).

 Automatic memory management.

 Formal syntactic constructs for enumerations, structures, and class properties.

 The C++ like ability to overload operators for a custom type, without the
complexity (i.e., making sure to "return *this to allow chaining" is not your
problem).

 Full support for interface-based programming techniques. However, unlike
classic COM, the interface is not the only way to manipulate types between
binaries. .NET, supports true object references that can be passed between
boundaries (by reference or by value).

 Full support for aspect-based programming techniques (aka attributes). This
brand of development allows you to assign characteristics to types (much like
COM IDL) to further describe the behavior of a given entity.

Perhaps the most important point to understand about the C# language is that it is only
capable of producing code that can execute within the .NET runtime (you could never use
C# to build a classic COM server). Officially speaking, the term used to describe the code
targeting the .NET runtime is managed code. The binary unit that contains the managed
code is termed an assembly (more details in just a bit).

.NET-Aware Programming Languages
When the .NET platform was announced to the general public during the 2000
Professional Developers Conference (PDC), several speakers listed vendors who are
busy building .NET-aware versions of their respective compilers. At the time of this writing,
more than 30 different languages are slated to undergo .NET enlightenment. In addition
to the four languages that ship with Visual Studio.NET (C#, Visual Basic.NET, "Managed
C++," and JScript.NET), be on the lookout for .NET versions of Smalltalk, COBOL, Pascal,
Python, and Perl as well as many others. Conceptually, Figure 1-2 shows the big picture.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-18 I ♡ Flyheart-

Figure 1-2: All .NET-aware compilers emit IL instructions and metadata.

The funny thing about .NET binaries is despite the fact that they take the same file
extension (DLL or EXE) as classic COM binaries, they have absolutely no internal
similarities. For example, DLL .NET binaries do not export methods to facilitate
communications with the classic COM runtime (given that .NET is not COM).
Furthermore, .NET binaries are not described using IDL code and are not registered into
the system registry. Perhaps most important, unlike classic COM servers, .NET binaries
do not contain platform-specific instructions, but rather platform-agnostic "intermediate
language" officially termed Microsoft Intermediate Language (MSIL) or simply, IL.

An Overview of .NET Binaries (aka Assemblies)
When a DLL or EXE has been created using a .NET-aware compiler, the resulting module
is bundled into an assembly. You examine the complete details of .NET assemblies in
Chapter 6. However to facilitate the discussion of the .NET runtime environment, you do
need to examine some basic properties of this new file format.

As mentioned, an assembly contains IL code, which is conceptually similar to Java byte
code in that it is not compiled to platform-specific instructions until absolutely necessary.
Typically "absolutely necessary" is the point at which a block of IL instructions (such as a
method implementation) are referenced for use by the .NET runtime engine.

In addition to IL instructions, assemblies also contain metadata that describes in vivid
detail the characteristics of every "type" living within the binary. For example, if you have
a class named Foo contained within a given assembly, the type metadata describes
details such as Foo's base class, which interfaces are implemented by Foo (if any), as
well as a full description of each method, property, and event supported by the Foo type.

In many respects, .NET metadata is a dramatic improvement to classic COM type
information. As you may already know, classic COM binaries are typically described using
an associated type library (which is little more than a binary version of IDL code). The
problems with COM type information is that it is not guaranteed to be present, and the fact

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-19 I ♡ Flyheart-

that IDL code has no way to catalog externally referenced servers that are required for
the correct operation of the contained coclasses. In contrast, .NET metadata is always
present and is automatically generated by a given .NET-aware compiler.

In addition to type metadata, assemblies themselves are also described using metadata,
which is officially termed a manifest. The manifest contains information about the current
version of the assembly, any optional security constraints, locale information, and a list of
all externally referenced assemblies that are required for proper execution. You examine
various tools that can be used to examine an assembly's underlying IL, type metadata
and information listed in the manifest later in this chapter.

Single File and Multifile Assemblies

In a great number of cases, there is a simple a one-to-one correspondence between
a .NET assembly and the underlying DLL or EXE binary. Thus, if you are building a .NET
DLL, it is safe to consider that the binary and the assembly are one and the same. As
seen in Chapter 6 however, this is not completely accurate. Technically speaking, if an
assembly is composed of a single DLL or EXE module, you have a "single file assembly."
Single file assemblies contain all the necessary IL, metadata and associated manifest in a
single well-defined package.

Multifile assemblies, on the other hand, may be composed of numerous .NET binaries,
each of which is termed a module. When building a multifile assembly, one of these
modules must contain the assembly manifest (and possibly IL instructions). The other
related modules contain nothing but raw IL and type metadata.

So why would you choose to create a multifile assembly? When you partition an
assembly into discrete modules, you end up with a more flexible deployment option. For
example, if an end user is referencing a remote assembly that needs to be downloaded
onto his or her machine, the runtime will only download the required modules. In contrast,
if all your types were placed in a single file assembly, the end user may end up
downloading a large chunk of data that is not really needed (which is obviously a waste of
time). Thus, as you can see, an assembly is really a logical grouping of one or more
related modules.

The Role of Microsoft Intermediate Language

Now that you have a better feel for .NET assemblies, let's examine Microsoft Intermediate
Language (MSIL) in a bit more detail. MSIL is a language that sits above any particular
platform-specific instruction set. Regardless of which .NET aware language you choose
(C#, Visual Basic.NET, Eiffel, and so forth) the associated compiler emits IL instructions.
For example, the following C# class definition models a trivial calculator (which is only
capable of returning the sum of 10 and 84 ...). Don't concern yourself with the exact
syntax for the time being, but do notice the signature of the Add() method:

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-20 I ♡ Flyheart-

// We will examine namespaces later in the chapter...

namespace Calculator

{

 using System;

 // The calculator class contains an Add() method,

 // as well as the application's entry point, Main().

 public class Calc

 {

 // Default ctor.

 public Calc(){}

 public int Add(int x, int y)

 {

 return x + y;

 }

 public static int Main(string[] args)

 {

 // Make a Calc and add some numbers.

 Calc c = new Calc();

 int ans = c.Add(10, 84);

 Console.WriteLine("10 + 84 is {0}.", ans);

 return 0;

 }

 }

}

Once the C# compiler (csc.exe) compiles this source code file, you end up with a single
file assembly that contains a manifest, IL instructions, and metadata-data describing each
aspect of the Calc class. For example, if you peek inside this binary and investigate the IL
instructions for the Add() method, you find the following:

.method public hidebysig instance int32 Add(int32 x, int32 y) il managed

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-21 I ♡ Flyheart-

{

 // Code size 8 (0×8)

 .maxstack 2

 .locals ([0] int32 V_0)

 IL_0000: ldarg.1

 IL_0001: ldarg.2

 IL_0002: add

 IL_0003: stloc.0

 IL_0004: br.s IL_0006

 IL_0006: ldloc.0

 IL_0007: ret

} // end of method Calc::Add

Don't worry if you are unable to make heads or tails of the resulting IL for this method.
Chapter 7 examines some IL basics in greater detail. The point to concentrate on is that
the C# compiler emits IL, not platform specific instructions. Now, recall that this is true of
all .NET aware compilers. To illustrate, assume you created the Calc class using Visual
Basic.NET, rather than C#:

' The VB.NET calculator...

Module Module1

 ' Again, Calc defines an Add() method and the application entry point.

 Class Calc

 Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

 ' Yes! VB.NET supports a 'return' keyword.

 Return x + y

 End Function

 End Class

 Sub Main()

 Dim ans As Integer

 Dim c As New Calc()

 ans = c.Add(10, 84)

 Console.WriteLine("10 + 84 is {0}.", ans)

 End Sub

End Module

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-22 I ♡ Flyheart-

If you examine the IL for the Add() method, you would find the same set of instructions
(slightly tweaked by the VB.NET compiler):

.method public instance int32 Add(int32 x, int32 y) il managed

{

 // Code size 11 (0xb)

 .maxstack 2

 .locals init ([0] int32 Add)

 IL_0000: nop

 IL_0001: ldarg.1

 IL_0002: ldarg.2

 IL_0003: add.ovf

 IL_0004: stloc.0

 IL_0005: nop

 IL_0006: br.s IL_0008

 IL_0008: nop

 IL_0009: ldloc.0

 IL_000a: ret

} // end of method Module1$Calc::Add

SOURCE
CODE

The CSharpCalculator and VBCalculator applications are both
included under the Chapter 1 subdirectory.

Benefits of IL

At this point, you might be wondering exactly what benefits are gained by compiling
source code into IL (with the associated metadata) rather than directly to a specific
instruction set. One benefit of compiling to IL (with the associated metadata-data) is
language integration. As you have already seen, each .NET aware language produces
the same underlying IL. Therefore, all languages are able to interact within a well-defined
binary arena.

Given that IL is platform agnostic, it is very possible that the .NET runtime will be ported to
other (non-Windows) operating systems. In this light, the .NET runtime is poised to
become a platform-independent architecture, providing the same benefits Java
developers have grown accustomed to (i.e., the potential of a single code base running
on numerous operating systems). Unlike Java however, .NET allows you to build

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-23 I ♡ Flyheart-

applications in a language-independent fashion. Thus, .NET has the potential to allow you
to develop an application in any language and have it run on any platform.

Again, the crux of the last paragraph is "potential platform independence." At the time of
this writing, there is no official word from Microsoft regarding the platform-agnostic nature
of .NET. For the time being, you should assume that .NET is only equipped to run on the
Windows family of operating systems.

The Role of Metadata

COM programmers are without a doubt familiar with the Interface Definition Language
(IDL). IDL is a "metalanguage" that is used to describe in completely unambiguous terms
the types contained within a given COM server. IDL is compiled into a binary format
(termed a type library) using the midl.exe compiler, that can then be used by a
COM-aware language, in order to manipulate the contained types.

In addition to describing the types within a COM binary, IDL has minimal support to
describe characteristics about the server itself, such as its current version (e.g., 1.0, 2.0,
or 2.4) and intended locale (e.g., English, German, Urdu, Russian). The problem with
COM metadata is that it may or may not be present and it is often the role of the

programmer to ensure the underlying IDL accuracy reflects the internal types. The .NET
framework makes no use of IDL whatsoever. However, the spirit of describing the types
residing within a particular binary lives on.

In addition to the underlying IL instructions, a .NET assembly contains full, complete and
accurate metadata. Like IDL, .NET metadata describes each and every type (class,
structure, enumeration, and so forth) defined in the binary, as well as the members of
each type (properties, methods, and events).

Furthermore, the .NET manifest is far more complete than IDL, in that it also describes
each externally referenced assembly that is required by this assembly to operate.
Because .NET metadata is so wickedly meticulous assemblies are completely
self-describing entities. In fact, .NET binaries have no need to be registered into the
system registry (more on that little tidbit later).

A Quick Metadata Example

As an example, let's take a look at the metadata that has been generated for the Add()
method of the C# Calculator class you examined previously (the metadata generated for
the VB.NET Calculator class is identical):

Method #2

MethodName: Add (06000002)

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-24 I ♡ Flyheart-

Flags : [Public] [HideBySig] [ReuseSlot] (00000086)

RVA : 0×00002058

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: I4

2 Arguments

 Argument #1: I4

 Argument #2: I4

2 Parameters

 (1) ParamToken : (08000001) Name : x flags: [none] (00000000) default:

 (2) ParamToken : (08000002) Name : y flags: [none] (00000000) default:

Here you can see that the Add() method, return type, and method arguments have been
fully described by the C# compiler (and yes, you'll see how to view type metadata and IL
later in this chapter).

Metadata is used by numerous aspects of the .NET runtime environment, as well as by
various development tools. For example, the IntelliSense feature provided by Visual
Studio.NET is made possible by reading an assembly's metadata at design time.
Metadata is also used by various object browsing utilities, debugging tools, and the C#
compiler itself.

Compiling IL to Platform-Specific Instructions

Due to the fact that assemblies contain IL instructions and metadata, rather than platform
specific instructions, the underlying IL must be compiled on the fly before use. The entity
that compiles the IL into meaningful CPU instructions is termed a just-in-time (JIT)
compiler that sometimes goes by the friendly name of "Jitter." The .NET runtime
environment supplies a JIT compiler for each CPU targeting the CLR. In this way,
developers can write a single body of code that can be JIT-compiled and executed on
machines with different architectures.

As the Jitter compiles IL instructions into corresponding machine code it will cache the
results in memory. In this way, if a call is made to a method named Bar() defined within a
class named Foo, the Bar() IL instructions are compiled into platform specific instructions
on the first invocation and retained in memory for later use. Therefore, the next time Bar()
is called, there is no need to recompile the IL.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-25 I ♡ Flyheart-

.NET Types and .NET Namespaces
A given assembly (single file or multifile) may contain any number of distinct types. In the
world of .NET, a type is simply a generic term used to collectively refer to classes,
structures, interfaces, enumerations, and delegates. When you build solutions using
a .NET aware language (such as C#), you will most likely interact with each of these types.
For example, your assembly may define a single class that implements some number of
interfaces. Perhaps one of the interface methods takes a custom enum type as an input
parameter.

As you build your custom types, you have the option of organizing your items into a
namespace. In a nutshell, a namespace is a logical naming scheme used by .NET
languages to group related types under a unique umbrella. When you group your types
into a namespace, you provide a simple way to circumvent possible name clashes
between assemblies.

For example, if you were building a new Windows Forms application that references two
external assemblies, and each assembly contained a type named GoCart, you would be
able to specify which GoCart class you are interested in by appending the type name to
its containing namespace (i.e., "CustomVehicals.GoCart" not "SlowVehicals.GoCart").
You look at namespaces from a programmatic point of view later in this chapter.

Understanding the Common Language Runtime
Now that you have an understanding of types, assemblies, metadata, and IL, you can
begin to examine the .NET runtime engine in a bit greater detail. Programmatically
speaking, the term runtime can be understood as a collection of services that are required
to execute a given block of code. For example, when developers make use of the
Microsoft Foundation Classes (MFC) to create a new application, they are (painfully)
aware that their binary is required to link with the rather hefty MFC runtime library
(mfc42.dll). Other popular languages also have a corresponding runtime. Visual Basic 6.0
programmers are also tied to a runtime module or two (i.e., msvbvm60.dll). Java
developers are tied to the Java Virtual Machine (JVM) and so forth.

The .NET platform offers yet another runtime system. The key difference between
the .NET runtime and the various other runtimes I have just mentioned is the fact that
the .NET runtime provides a single well-defined runtime layer that is shared by all
languages that are .NET aware. As mentioned earlier in this chapter, the .NET runtime is
officially termed the Common Language Runtime, or simply CLR.

The CLR consists of two core entities. First we have the runtime execution engine,
mscoree.dll. When an assembly is referenced for use, mscoree.dll is loaded automatically,
which then in turn loads the required assembly into memory. The runtime engine is
responsible for a number of tasks. First and foremost, it is the entity in charge of resolving
the location of an assembly and finding the requested type (e.g., class, interface,

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-26 I ♡ Flyheart-

structure, etc.) within the binary by reading the supplied metadata. The execution engine
compiles the associated IL into platform-specific instructions, performs any (optional)
security checks as well as a number of related tasks.

The second major entity of the CLR is the base class library. Although the entire base
class library has been broken into a number of discrete assemblies, the primary binary is
mscorlib.dll. This .NET assembly contains a large number of core types that encapsulate
a wide variety of common programming tasks. When you build .NET solutions, you
always make use of this particular assembly, and perhaps numerous other .NET binaries
(both system supplied and custom).

Figure 1-3 illustrates the workflow that takes place between your source code (which is
making use of base class library types), a given .NET compiler, and the .NET execution
engine.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-27 I ♡ Flyheart-

Figure 1-3: mscoree.dll in action

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-28 I ♡ Flyheart-

Understanding the Common Type System

Recall that the Common Type System (CTS) is a formal specification that describes how
a given type (class, structure, interface, intrinsic data types, etc.) must be defined in order
to be hosted by the CLR. Also recall that the CTS defines a number of syntactic
constructs (such as overloading operators) that may or may not be supported by a
given .NET-aware language. When you wish to build assemblies that can be used by all
possible .NET-aware languages, you need to conform your exposed types to the rules of
the CLS (mentioned in just a moment). For the time being, let's preview the formal
definitions of various members of the CTS.

CTS Class Types

Every .NET-aware language supports the notion of a "class type," which is the
cornerstone of object-oriented programming. A class is composed of any number of
properties, methods, and events. As you would expect, the CTS allows a given class to
support abstract members that provide a polymorphic interface for any derived classes.
CTS-compliant classes may only derive from a single base class (multiple inheritance is
not allowed for class types). To help you keep your wits about you, Table 1-1 documents
a number of characteristics of interest to class types.

Table 1-1: .NET Class Characteristics

CLASS CHARACTERISTIC MEANING IN LIFE

Is the class "sealed" or not? Sealed classes are types that cannot
function as a base class to other classes.

Does the class implement
any interfaces?

An interface is a collection of abstract
members that provide a contract between
the object and object user. The CTS allows
a class to implement any number of
interfaces.

Is the class abstract or
concrete?

Abstract classes cannot be directly
created, but are intended to define
common behaviors for derived types.
Concrete classes can be created directly.

What is the "visibility" of this
class?

Each class must be configured with a
visibility attribute. Basically this trait defines
if the class may be used by external
assemblies, or only from within the
containing assembly (e.g., a private helper
class).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-29 I ♡ Flyheart-

CTS Structure Types

The concept of a structure is also formalized by the CTS. If you have a C background,
you should be pleased to know that these user-defined types (UDTs) have survived in the
world of .NET (although they behave a bit differently under the hood). In general, a
structure is a lightweight class type, with a number of notable exceptions (fully explained
in Chapter 2). CTS-compliant structures may define any number of parameterized
constructors (the no-argument constructor is reserved). In this way, you are able to
establish the value of each field during the time of construction. For example:

// Create a C# structure.

struct Baby

{

 // Structures can contain fields.

 public string name;

 // Structures can contain constructors (with arguments).

 public Baby(string name)

 { this.name = name; }

 // Structures may take methods.

 public void Cry()

 { Console.WriteLine("Waaaaaaaaaaaah!!!"); }

 public bool IsSleeping() { return false; }

 public bool IsChanged() { return false; }

}

Here is our structure in action:

// Welcome to the world Max Barnaby!!

//

Baby barnaBaby = new Baby("Max");

Console.WriteLine("Changed?: {0}", barnaBaby.IsChanged().ToString());

Console.WriteLine("Sleeping?: {0}", barnaBaby.IsSleeping().ToString());

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-30 I ♡ Flyheart-

// Show your true colors Max. . .

for(int i = 0; i < 10000; i ++)

 barnaBaby.Cry();

All CTS-compliant structures are derived from a common base class: System.ValueType.
This base class configures a structure to function as a value-based (stack) data type
rather than a reference-based (heap) entity. Be aware that the CTS permits structures to
implement any number of interfaces; however structures may not derive from other types
and are therefore always "sealed."

CTS Interface Types

Interfaces are nothing more than a collection of abstract methods, properties, and event
definitions. Unlike classic COM, .NET interfaces do not derive a common base interface
such as IUnknown. On their own, interfaces are of little use. However when a class or
structure implements a given interface in its own unique way, you are able to request
access to the supplied functionality using an interface reference. When you build custom
interfaces using a .NET-aware programming language, the CTS permits a given interface
to derive from multiple base interfaces. Again, you examine interface based programming
in Chapter 4.

CTS Type Members

As you have just seen, classes and structures can take any number of members.
Formally speaking, a member is from the set {method, property, field, event}. These are
examined in detail over the course of the next few chapters. However, do be aware that
the CTS defines the various "adornments" that may be associated with a given member.

For example, each member has a given "visibility" trait (e.g., public, private, protected,
and so forth). A member may be declared as "abstract" in order to enforce a polymorphic
behavior on derived types. Members may be "static" (bound at the class level) or
"instance" level (bound at the object level).

CTS Enumeration Types

Enumerations are a handy programming construct that allows you to group name/value
pairs under a specific name. For example, assume you are creating a video game
application that allows the end user to select one of three player types (Wizard, Fighter, or
Thief). Rather than keeping track of raw numerical values to represent each possibility,
you could build a custom enumeration:

// A C# enumeration.

enum PlayerType

{ Wizard = 100, Fighter = 200, Thief = 300 };

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-31 I ♡ Flyheart-

The CTS demands that enumerated types derive from a common base class,
System.Enum. As you will see, this base class defines a number of interesting members
that allow you to extract (and manipulate) the underlying name/value pairs.

CTS Delegate Types

Delegates are the .NET equivalent of a type safe C style function pointer. The key
difference is that a .NET delegate is a class that derives from MulticastDelegate, rather
than a raw memory address. These types are useful when you wish to provide a way for
one entity to forward a call to another entity. As you will see in Chapter 5, delegates
provide the foundation for the .NET event protocol.

Intrinsic CTS Data Types

The final aspect of the CTS to be aware of is that it establishes a well-defined set of
intrinsic data types (i.e., boolean, int, float, char, and so forth). Although a given language
may use a unique keyword used to declare an intrinsic data type, all languages ultimately
alias the same type defined in the .NET class libraries. Consider Table 1-2.

Table 1-2: The Intrinsic CTS Data Types

.NET BASE
CLASS

VISUAL BASIC.NET
REPRESENTATION

C#
REPRESENTATION

C++ WITH MANAGED
EXTENSIONS
REPRESENTATION

System.Byte Byte byte char

System.SByte Not supported sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 Not supported ushort unsigned short

System.UInt32 Not supported uint unsigned int or unsigned
long

System.UInt64 Not supported ulong unsigned __int64

System.Single Single float float

System.Double Double double double

System.Object Object object Object*

System.Char Char char __wchar_t

System.String String string String*

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-32 I ♡ Flyheart-

Table 1-2: The Intrinsic CTS Data Types

.NET BASE
CLASS

VISUAL BASIC.NET
REPRESENTATION

C#
REPRESENTATION

C++ WITH MANAGED
EXTENSIONS
REPRESENTATION

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool bool

As you can see, not all languages are able to represent the same intrinsic data members
of the CTS. As you might imagine, it would be very helpful to create a well-known subset
of the CTS that defines a common, shared set of programming constructs (and types) for
all .NET-aware languages. Enter the CLS.

Understanding the Common Language Specification

As you are aware, different languages express the same programming constructs in
unique, language-specific terms. For example, in C#, string concatenation is denoted
using the plus operator (+) while in Visual Basic you make use of the ampersand (&).
Even when two distinct languages express the same programmatic construct (for
example, a function with no return value) the chances are very good that the syntax will
appear quite different on the surface:

' VB function returning void (aka VB subroutines).

Public Sub Foo()

 ' stuff...

End Sub

// C# function returning void.

public void Foo()

{

 // stuff...

}

As you have already seen, these minor syntactic variations are inconsequential in the
eyes of the .NET runtime, given that the respective compilers (csc.exe or vbc.exe in this
case) are configured to emit the same IL instruction set. However languages can also
differ with regard to their overall level of functionality. For example some languages allow
you to overload operators for a given type while others do not. Some languages may
support the use of unsigned data types, which will not map correctly in other languages.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-33 I ♡ Flyheart-

What we need is to have a baseline to which all .NET aware languages are expected to
conform.

The Common Language Specification (CLS) is a set of guidelines that describe in vivid
detail, the minimal and complete set of features a given .NET-aware compiler must
support to produce code that can be hosted by the CLR and at the same time be used in
a uniform manner between all languages that target the .NET platform. In many ways the
CLS can be viewed as a subset of the full functionality defined by the CTS.

The CLS is ultimately a set of rules that tool builders must conform to, if they intend their
products to function seamlessly within the .NET universe. Each rule is assigned a simple
name (e.g., "CLS Rule 6"), and describes how this rule affects those who build the tools
as well as those who (in some way) interact with those tools. For example, the crème de
la crème of the CLS is the mighty Rule 1:

 Rule 1: CLS rules apply only to those parts of a type that are exposed out-side
the defining assembly.

Given this statement you can (correctly) infer that the remaining rules of the CLS do not
apply to the internal logic used to build the inner workings of a .NET type. For example,
assume you are building a .NET tool that exposes its services to the outside world using
three classes, each of which defines a single function. Given Rule 1 the only aspect of the
classes that must conform to the CLS are the member functions themselves (i.e., the
member's visibility, naming conventions, parameters, and return types). The internal
implementations of each method may use any number of non-CLS techniques, as the
outside world won't know the difference.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the
CLS describes how a given language must represent text strings, how enumerations
should be represented internally (the base type used for storage), how to use static types,
and so forth. Again, remember that in most cases these rules do not have to be
committed to memory (unless you build the next generation of LISP.NET!). If you require
more information, look up "Collected CLS Rules" using online Help.

Working with Namespaces

Now that you have examined the role of the .NET run time, you can turn your attention to
the base class libraries. Each of us understands the importance of code libraries. The
point of libraries such as MFC or ATL is to give developers a well-defined set of existing
code to leverage in their applications. For example, MFC defines a number of C++
classes that provide canned implementations of dialog boxes, menus, and toolbars. This
is a good thing for the MFC programmers of the world, as they can spend less time
reinventing the wheel, and more time building a custom solution. Visual Basic and Java
offer similar notions: intrinsic classes and packages, respectively.

Unlike MFC, Java, or Visual Basic, the C# language does not come with a predefined set
of language-specific classes. Ergo, there is no C# class library. Rather, C# developers

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-34 I ♡ Flyheart-

leverage existing types supplied by the .NET framework. To keep all the types within this
binary well organized, the .NET platform makes extensive use of the namespace concept.
The key difference of this approach and a language specific library such as MFC, is that
any language targeting the .NET runtime makes use of the same namespaces and same
types as a C# developer. For example, the following three programs all illustrate the
ubiquitous "Hello World" application, written in C#, VB.NET, and C++ with managed
extensions (MC++):

// Hello world in C#

using System;

public class MyApp

{

 public static void Main()

 {

 Console.WriteLine("Hi from C#");

 }

}

' Hello world in VB.NET

Imports System

Public Module MyApp

 Sub Main()

 Console.WriteLine("Hi from VB")

 End Sub

End Module

// Hello world in Managed C++ (MC++)

using namespace System;

// Note! The .NET runtime secretly wraps the global

// C(++) main function inside a class definition.

void main()

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-35 I ♡ Flyheart-

{

 Console::WriteLine("Hi from MC++");

}

Notice that each language is making use of the Console class defined in the System
namespace. Beyond minor syntactic variations, these three applications look and feel
very much alike, both physically and logically. As you can see, the .NET platform has
brought a streamlined elegance to the world of software engineering.

A Tour of the .NET Namespaces

Your primary goal as a .NET developer is to get to know the wealth of types defined in the
numerous base class namespaces. The most critical namespace to get your hands
around is named "System." This namespace provides a core body of types that you will
need to leverage time and again as a .NET developer. In fact, you cannot build any sort of
working C# application without at least making a reference to the System namespace.

As you recall, namespaces are little more than a way to group semantically related types
(classes, enumerations, interfaces, delegates, and structures) under a single umbrella.
For example, the System.Drawing namespace contains a number of types to assist you in
rendering images onto a graphics device. Other namespaces exist for data access, Web
development, threading, and programmatic security. From a very high level, Table 1-3
offers a rundown of some (but certainly not all) of the .NET namespaces.

Table 1-3: A Sampling of .NET Namespaces

.NET NAMESPACE MEANING IN LIFE

System Within System you find numerous low-level
classes dealing with primitive types,
mathematical manipulations, garbage
collection, and so forth.

System.Collections This namespace defines a number of stock
container objects (ArrayList, Queue,
SortedList).

System.Data

System.Data.Common

System.Data.OleDb

System.Data.SqlClient

These namespaces are (of course) used for
database manipulations. You examine each of
these later in this book.

System.Diagnostics Here, you find numerous types that can be used
by any .NET-aware language to debug and
trace the execution of your source code.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-36 I ♡ Flyheart-

Table 1-3: A Sampling of .NET Namespaces

.NET NAMESPACE MEANING IN LIFE

System.Drawing

System.Drawing.Drawing2D

System.Drawing.Printing

Here, you find numerous types wrapping GDI+
primitives such as bitmaps, fonts, icons, printing
support, and advanced rendering classes.

System.IO This namespace is full of IO manipulation types,
including file IO, buffering, and so forth.

System.Net This namespace (as well as other related
namespaces) contains types related to network
programming (request/response, sockets, etc.).

System.Reflection

System.Reflection.Emit

Defines items that support runtime type
discovery and dynamic creation and invocation
of custom types.

System.Runtime.InteropServices

System.Runtime.Remoting

Provides facilities to interact with "unmanaged
code" (e.g., Win32 DLLs, COM servers) and
types used for remote access.

System.Security Security is an integrated aspect of the .NET
universe. Here you find numerous classes
dealing with permissions, cryptography, and so
on.

System.Threading You guessed it, this namespace deals with
threading issues. Here you will find types such
as Mutex, Thread, and Timeout.

System.Web A number of namespaces are specifically
geared toward the development of Web
applications, including ASP.NET.

System.Windows.Forms Despite the name, the .NET platform does
contain namespaces that facilitate the
construction of more traditional Win32 main
windows, dialog boxes, and custom widgets.

System.Xml Contains numerous classes that represent core
XML primitives and types to interact with XML
data.

Accessing a Namespace Programmatically

It is worth pointing out that a namespace is nothing more than a convenient way for us
mere humans to logically understand and organize related types. For example, consider
again the System namespace. From your perspective, you can assume that

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-37 I ♡ Flyheart-

System.Console represents a class named Console that is contained within a namespace
called System. However, in the eyes of the .NET runtime, this is not so. The runtime
engine only sees a single entity named System.Console.

In C#, the "using" keyword simplifies the process of accessing types defined in a
particular namespace. Here is how it works. Let's say you are interested in building a
traditional main window. This window renders a pie chart based on some information
obtained from a back end database and displays your company logo using a Bitmap type.
While learning the types each namespace contains takes time and experimentation, here
are some obvious candidates to reference in your program:

// Here are all the namespaces used to build this application.

using System; // General base class library types.

using System.Drawing; // Rendering types.

using System.Windows.Forms; // GUI widget types.

using System.Data; // General data centric types.

using System.Data.OleDb; // OLE DB access types.

Once you have referenced some number of namespaces, you are free to create
instances of the types they contain. For example, if you are interested in creating an
instance of the Bitmap class (defined in the System.Drawing namespace), you can write:

// Explicitly list the namespace...

using System.Drawing;

class MyClass

{

 public void DoIt()

 {

 // Create a 20 * 20 pixel bitmap.

 Bitmap bm = new Bitmap(20, 20);

 ...

 }

}

Because your application is referencing System.Drawing, the compiler is able to resolve
the Bitmap class as a member of this namespace. If you did not directly reference

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-38 I ♡ Flyheart-

System.Drawing in your application, you would be issued a compiler error. However, you
are free to declare variables using a fully quailed name as well:

// Not listing namespace!

class MyClass

{

 public void DoIt()

 {

 // Using fully qualified name.

 System.Drawing.Bitmap bm = new System.Drawing.Bitmap(20, 20);

 ...

 }

}

I think you get the general idea: Explicitly specifying namespaces reduces keystrokes.

Referencing External Assemblies
In addition to referencing a namespace via the using keyword, you also need to tell the
compiler the name of the assembly containing the actual IL. As mentioned, many
core .NET namespaces live within mscorlib.dll. System.Drawing is contained in a
separate binary named System.Drawing.dll. By default, the system-supplied assemblies
are located under <drive>: \WINNT\Microsoft.NET\Framework\<version>, as seen in
Figure 1-4.

Figure 1-4: The Base Class Libraries

Depending on the development tool you are using to build your .NET types, you will have
various ways to tell the compiler which assemblies you wish to include during the
compilation cycle. You examine how to do so in just a bit.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-39 I ♡ Flyheart-

If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over
every nuance of the .NET world, just remember that what makes a namespace unique is
that the items it defines are all somehow semantically related. Therefore, if you have no
need for a user interface beyond a simple console application, you can forget all about
the System.Windows.Forms and System.Drawing namespaces (among others). If you
are building a painting application, the database programming namespaces are most
likely of little concern. Like any new set of prefabricated code, you learn as you go.

Increasing Your Namespace Nomenclature

Throughout the course of this book, you are exposed to numerous aspects of the .NET
platform and related namespaces. As it would be impractical to detail every type
contained in every namespace in a single book, you should be aware of the following
techniques that can be used to learn more about the .NET libraries:

 .NET SDK online documentation (MSDN).
 The ILDasm.exe utility.
 The ClassView Web application.
 The WinCV desktop application.
 The Visual Studio.NET Object Browser

I think it's safe to assume you know what to do with the supplied online Help (remember,
F1 is your friend). However it is important that you understand how to work with the
ILDasm.exe, ClassView and WinCV utilities, each of which is shipped with the .NET SDK.
You examine the VS.NET Object Browser a bit later in this chapter.

Using ILDasm.exe

The Intermediate Language Dissasembler utility (ILDasm.exe) allows you to load up
any .NET assembly (EXE or DLL) and investigate its contents (including the associated
manifest, IL instruction set and type metadata) using a friendly GUI. Once you launch this
tool, proceed to the "File | Open" menu command and navigate to the assembly you wish
to explore. For the time being, open up mscorlib.dll (Figure 1-5). Note the path of the
opened assembly is documented in the caption of the ILDasm.exe utility.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-40 I ♡ Flyheart-

Figure 1-5: Your new best friend, ILDasm.exe

As you can see, the structure of an assembly is presented in a familiar tree view format.
While exploring a given type, notice that the methods, properties, nested classes (and so
forth) for a given type are identified by a specific icon. Table 1-4 lists some of the more
common iconic symbols and text dump abbreviations.

Table 1-4: ILDasm.exe Tree View Icons

ILDASM.EXE
SYMBOL

TEXT DUMP
ABBREVIATION

MEANING IN LIFE

.(dot) This icon signifies that additional

information is available for a given type.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-41 I ♡ Flyheart-

Table 1-4: ILDasm.exe Tree View Icons

ILDASM.EXE
SYMBOL

TEXT DUMP
ABBREVIATION

MEANING IN LIFE

 In some cases, double-clicking the item
will jump to a related node in the tree.

[NSP] Represents a namespace

[CLS] Signifies a class type.

Be aware that nested classes are marked
with the <outer class>$<inner class>
notation.

[VCL] Represents a structure type.

[INT] Represents an interface type.

[FLD] Represents a field (e.g., public data)

defined by a given type.

[STF] Represents a static (e.g., class level) field

defined by a given type.

[MET] Represents a method of a given type.

[STM] Represents a static method of a given

type.

[PTY] Signifies a property supported by the

type.

Beyond allowing you to explore the types (and members of a specific type) contained in a
given assembly, ILDasm.exe also allows you to view the underlying IL instructions for a
given item. To illustrate, locate and double-click the default constructor icon for the
System.IO.BinaryWriter class. This launches a separate window, displaying the IL shown
in Figure 1-6.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-42 I ♡ Flyheart-

Figure 1-6: Viewing the underlying IL

Dumping Namespace Information to File

The next point of interest with regard to ILDasm.exe is the very useful ability to dump the
relational hierarchy of an assembly into a text file. In this way, you can make hard copies
of your favorite assemblies to read at your neighborhood coffeehouse (or brew pub). To
do so, select "File | Dump TreeView" and provide a name for the resulting*.txt file. As you
look over the dump, notice that the identifying icons have been replaced with their
corresponding textual abbreviations (see the previous table). For example, ponder Figure
1-7.

Figure 1-7: Dumping namespace information to file

Dumping IL Instructions to File

On a related note, you are also able to dump the IL instructions for a given assembly to
file, using the "File | Dump" menu option. Once you configure your dump options, you are
asked to specify a location for the *.il file. Assuming you have dumped the contents of

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-43 I ♡ Flyheart-

mscorlib.dll to file you can view its contents. For example, Figure 1-8 shows the IL for a
method you will come to know (and love) in Chapter 7, GetType().

Figure 1-8: Dumping IL to file

Viewing Type Metadata

ILDasm.exe has additional options that can be discovered from the supplied online Help.
Although I assume you will investigate these options on your own, one item of interest is
the "CTRL + M" keystroke. As you recall, .NET-aware compilers emit IL and metadata
that is used by the CLR to interact with a given type. Once you load an assembly into
ILDasm.exe, press CTRL + M to view the generated type metadata. Now, be aware that
the larger the assembly, the longer it will take to disassemble the binary! To offer a
preview of things to come, Figure 1-9 shows the metadata for the TestApp.exe assembly
you create in just a bit.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-44 I ♡ Flyheart-

Figure 1-9: Viewing type metadata with ILDasm.exe

If you have not realized it by now, ILDasm.exe is in many ways the .NET equivalent of the
OLE/COM Object Viewer utility. Oleview.exe is the tool of choice to learn about classic
COM servers and examine the underlying IDL behind a given binary. ILDasm.exe is the
tool of choice to examine .NET assemblies, the underlying IL and related metadata.

The ClassViewer Web Application

In addition to ILDasm.exe, the ClassViewer sample application (shipped with the .NET
SDK) is yet another way to explore the .NET namespaces. Once you have installed the
samples shipped with the SDK, launch Internet Explorer and navigate to
http://localhost/ClassViewer/Default.aspx. This enables you to examine the relationship of
various types in a more Web-savvy manner (Figure 1-10).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-45 I ♡ Flyheart-

Figure 1-10: Viewing types using the ClassViewer Web Application

The WinCV Desktop Application

The final tool to be aware of is WinCV.exe (Windows Class Viewer). This application
allows you to browse the underlying C# type definition in the base class libraries. The GUI
of this tool is quite simple: Type in the name of the item you wish to explore, and the
underlying source code definitions are displayed on the right-hand side. Figure 1-11
shows the member set for the System.Windows.Forms.ToolTip class.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-46 I ♡ Flyheart-

Figure 1-11: Working with WinCV.exe

Now that you have a number of strategies that you can use to explore the entirety of
the .NET universe, the time has come to examine how to build some C# applications.

Building C# Applications Using the Command Line Compiler
The first option you have as a C# developer is to compile your assemblies using the
standalone compiler, csc.exe (C Sharp Compiler), which is include in the .NET SDK, and
is freely downloadable from Microsoft. The goal in this section is to build a simple
standalone assembly named TestApp.exe. First, you need some C# source code. Open a
text editor (notepad.exe is fine), enter the code seen in Figure 1-12 and save the file (in a
convenient location) as TestApp.cs.

Figure 1-12: The TestApp class

Now, let's get to know the core options of the C# compiler. The first point of interest is to
understand how to specify the sort of output file you are interested in building (e.g.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-47 I ♡ Flyheart-

Console application, DLL, a Windows EXE application, etc.). Each option is assigned a
specific flag that is sent into csc.exe as a command line parameter (Table 1-5).

Table 1-5: Output Options of the C# Compiler

FILE
OUTPUT
OPTION

MEANING IN LIFE

/doc Tells the csc.exe compiler to process your source code
comments into an XML file. You examine this behavior in
Chapter 5.

/out Used to specify the name of the output file (e.g., My
Assembly.dll, WordProcessingApp.exe, etc.)

 By default, the name of the output file is the same as the
name as the input *.cs file, and thus the /out flag can be
omitted.

/target:exe This option will build an EXE console application (e.g., a
DOS application). This is the default file output type, and
thus may be omitted.

/target:library This option will build a DLL assembly, with a related
manifest.

/target:module This option will build a "module" that, as you recall, is a
DLL that does not contain a related manifest (used in
multifile assemblies).

/target:winexe Although you are free to build Windows based
applications using the /target:exe flag, this option hides
the console window that appears as the application is
running.

Thus, to compile our TestApp.cs file into as a console application, you would use the
following command set (note that the output flags must come before the name of the C#
file not after):

csc /target:exe TestApp.cs

Be aware that the C# command line flags have an abbreviated version. Such as "/t" rather
than "/target":

csc /t:exe TestApp.cs

Furthermore, given that the /t:exe flag is the default used by the C# compiler, you could
also compile the TestApp.cs file simply by saying:

csc TestApp.cs

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-48 I ♡ Flyheart-

To try this out for yourself, open a command window and change to the directory
containing your TestApp.cs file. Then, enter the previous command and hit return. This
will build TestApp.exe, which can now be run from the command line (see Figure 1-13).

Figure 1-13: The TestApp in action

Referencing External Assemblies

Next, we need to examine how we can build an application that makes use of types
defined in a separate .NET assembly. In case you are wondering how the C# compiler
understood your reference to the Console class, realize that mscorlib.dll is automatically
referenced during the compilation process. To illustrate referencing additional .NET
assemblies, let's update your TestApp application to launch a message box. Thus, open
up your TestApp.cs file and update it as shown in Figure 1-14.

Figure 1-14: The updated TestApp.cs file

Notice we have made a reference to the System.Windows.Forms namespace ala the C#
"using" directive. In order for the compiler to resolve the MessageBox class, you must
specify the System.Windows.Forms.dll assembly as a compiler option using the
/reference flag (which may be abbreviated to simply /r). Be aware that the /reference flag
must not have a space between the colon and assembly name:

csc /r:System.Windows.Forms.dll testapp.cs
If you were to now rerun your application, you should see what appears in Figure 1-15.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-49 I ♡ Flyheart-

Figure 1-15: Your first Windows Forms application

Compiling Multiple Source Files

The current incarnation of the TestApp.exe application was created using a single *.cs
source code file (as well as a single external assembly). Of course, most projects will be
composed from multiple files. To illustrate, assume you have created the additional class
shown in Figure 1-16.

Figure 1-16: The HelloMessage class type

And update your previous class to make use of this new type as shown in Figure 1-17.

Figure 1-17: The updated TestApp.cs file

We can compile this multifile application by explicitly listing each *.cs file:

csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-50 I ♡ Flyheart-

When you run the program again, the output will be identical. The only difference between
the two applications is the fact that its logic was split among multiple files. On a related
note, the C# compiler does allow you to make use of the wildcard character (*) to inform
csc.exe to add all *.cs files contained in the current directory as part of the current build.
When you use this option, you must specify the name of the output file (/out):

csc /r:System.Windows.Forms.dll /out:TestApp.exe *.cs

Now, what if you need to reference numerous external assemblies? Simply list each
assembly using a semicolon delimited list. You have no need to do so for your current
example, but here is some sample usage:

csc /r:System.Windows.Forms.dll;System.Drawing.dll testapp.cs hellomsg.cs

As you would guess, the C# compiler has many other flags that may be used to control
how the resulting binaries are generated. You can explore these options on your own
using online Help.

SOURCE
CODE

The TestApp application is included under the Chapter 1
subdirectory.

Building C# Applications Using the Visual Studio.NET IDE
To close this chapter, let's take some time to examine the core features of the Visual
Studio.NET IDE (the operative word being core). You see other aspects of the
development environment as necessary throughout this text. The first thing to be aware of
is that Visual Studio.NET now provides a common IDE for all Microsoft languages.
Therefore, regardless of the type of project you are creating (ATL, MFC, C#, Visual
Basic.NET, FoxPro, raw C++, etc.) you use the exact same environment.

Creating a VS.NET Project Solution

To begin, fire up Visual Studio.NET and activate the "File | New | Project" menu selection.
As you can see from Figure 1-18, project types are grouped (more or less) by language.
To illustrate, let's build a Visual Studio.NET version of the TestApp program (entitled
VSNETTestApp):

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-51 I ♡ Flyheart-

Figure 1-18: Creating a new VS.NET C# Console Application

The Solution Explorer Window

VS.NET logically arranges a given project using a solution metaphor. Simply put, a
"solution" is a collection of one or more "projects". Each project contains any number of
source code files, external references, and resources that constitute the application as a
whole. Using the Solution Explorer window, you are able to view and open any such item
(Figure 1-19). Notice the default name of your initial class is "Class1.cs."

Figure 1-19: The Solution Explorer

Notice as well that the Solution Explorer window provides a Class View tab, which shows
the "object-oriented view" of your project (Figure 1-20).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-52 I ♡ Flyheart-

Figure 1-20: Class View

As you would expect, when you right click on a given item, you will activate a context
sensitive pop-up menu that allows you to access a number of CASE tools allowing you to
add members to your type (methods, properties, indexers, and whatnot). For an example,
check out Figure 1-21.

Figure 1-21: A small sampling of integrated wizards

I assume you will explore each possible option. The general approach in this book is to
assume you will be writing C# code by hand in order to truly understand the language.
However, once you have pounded out the first couple of applications, feel free to make
use of these integrated tools to lessen your typing burden.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-53 I ♡ Flyheart-

The Properties Window

Another important aspect of the IDE is the Properties Window. This window details a
number of characteristics for the currently focused item. Be aware that this item may be
an open source code file, GUI widget (as you see later when you examine Windows
Forms) or the project itself. For example, to change the name of your initial file, select it
from the Solution Explorer and configure the FileName property (Figure 1-22).

Figure 1-22: File names may be changed using the Properties Window

To change the name of the class itself, select the Class1 node from Class View and
update the (Name) property (Figure 1-23). Once you do, you see that the code itself as
been updated accordingly.

Figure 1-23: Class names may also be changed using the Properties Window.

Outlining Your Code

One extremely helpful aspect of the code view window is the ability to show or hide a
class member using the "+" and "-" icons. When you place your mouse cursor over the
ellipses icon (which represents a collapsed block of code) a pop-up window gives you a
snapshot of the member implementation (Figure 1-24).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-54 I ♡ Flyheart-

Figure 1-24: Code blocks may be collapsed to conserve screen real estate.

The code in Main() is as you would expect (print out a string and show a message box).
As you type, note the improved IntelliSense support (Figure 1-25).

Figure 1-25: The expected IntelliSense

Referencing External Assemblies

When you need to add external references (such as System.Windows.Forms.dll) into
your current project, access the "Project | Add Reference..." menu selection (or right-click
the Assembly node from the Solution Explorer window). Either way you go, you end up
with the dialog box shown in Figure 1-26.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-55 I ♡ Flyheart-

Figure 1-26: Referencing external assemblies using VS.NET
As you can see, this dialog box also allows you to reference classic COM servers (you
examine the gory details of .NET/COM interoperability in Chapter 12). Once you have
added the System.Windows.Forms.dll assembly you can compile and run your
application.

Debugging with the Visual Studio.NET IDE

Like the previous versions of Developers Studio, Visual Studio.NET contains an
integrated debugger. To illustrate the basics, begin by clicking in the far left gray column
in the code window to insert a breakpoint (Figure 1-27).

Figure 1-27: Setting breakpoints

When you initiate the debug session, the flow of execution will halt at each breakpoint.
Using the Debug toolbar, you are able to step over, step into and step out of a given line
of code. As you would expect, the integrated debugger hosts a number of debug-centric
windows (e.g. Call Stack, Autos, Locals, Breakpoints, Modules, Exceptions and so forth).

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-56 I ♡ Flyheart-

To show or hide a particular window, simply access the "Debug | Windows" menu
selection.

SOURCE
CODE

The VSNETTestApp project is included under the Chapter 1
sub-directory.

Examining the Server Explorer Window

Another extremely useful aspect of Visual Studio.NET is the Server Explorer window
(Figure 1-28), which is accessed using the View menu.

Figure 1-28: The Server Explorer Window

This window can be thought of as the command center of a distributed application you
may happen to be building. Using the Server Explorer, you are able to attach to and
manipulate local and remote database (and view any of the given database objects), plug
into a message queue as well as obtain general machine-wide information (running
services, and view the event log).

XML-Related Editing Tools

Visual Studio.NET has integrated tools to edit XML-related data (as well as HTML files).
Much of this functionality was taken from the legacy Visual InterDev IDE. Once your insert
a new XML file into your application, you are then able to edit XML related files using a
number of GUI design-time tools (and related toolbars). For example, Figure 1-29 shows
an XML file you will generate during our discussion of ADO.NET.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-57 I ♡ Flyheart-

Figure 1-29: The integrated XML editor

Support for UML Diagrams

Next, Visual Studio.NET has integrated (and improved) the Visual Modeler utility that
shipped previously with Visual Studio 6.0. Using this tool, you are able to diagram UML
(Unified Modeling Language) relationships between the types in your application. Once
you insert a new *.mdx file into your application using the "File | Miscellaneous Files |
File..." menu selection, you will see that your Toolbox window now provides a number of
UML related icons (Figure 1-30).

Figure 1-30: Integrated UML tools

The Object Browser Utility

In addition to the standalone tools you examined earlier in this chapter, the Visual
Studio.NET IDE also supplies an object-browsing utility. If you access the "View | Other
Windows | Object Browser" menu option, Figure 1-31 shows what you will find.

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-58 I ♡ Flyheart-

Figure 1-31: The integrated Object Browser

Database Manipulation Tools

Integrated Database support is also part of the VS.NET IDE. As mentioned earlier in this
section, once you add a data connection to your application using the Server Explorer
window, you are able to open and examine any database object in place. For example,
Figure 1-32 shows a view of the Cars database you will build during our discussion of
ADO.NET.

Figure 1-32: Integrated database editors

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-59 I ♡ Flyheart-

Integrated Help

The final aspect of the IDE you should be familiar with is the fully integrated Help system.
Rather than having to "ATL + TAB" between MSDN and the development environment,
this version provides the Dynamic Help window, which changes its contents (dynamically!)
based on what item (window, menu, source code keyword, etc.) as focus. For example, if
you place the cursor on top of the Main() method, the Dynamic Help window displays
what's shown in Figure 1-33.

Figure 1-33: Integrated Help

As you would expect, if you select on one of the suggested links, you will be shown
relevant information Figure 1-34.

Figure 1-34: Remember, F1 is your friend.

As you can see, you have many new toys at your disposal. Now that you have a solid
background on the philosophy of .NET and have seen two approaches to compile your
projects, you can begin your formal investigation of the C# language and the .NET
platform.

Summary

The point of this chapter was to lay out the conceptual framework necessary for the
remainder of this book. It began by examining a number of limitations and complexities

C# and the .NET Platform Chapter 1: The Philosophy of .Net

-60 I ♡ Flyheart-

found within the technologies of today, and followed up with an overview of how .NET and
C# attempt to simplify the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class
library (mscorlib.dll and friends). The Common Language Runtime (CLR) is able to host
any .NET binary (aka "assembly") that abides by the rules of managed code. As you have
seen, assemblies contain IL instructions (and accompanying metadata) that are compiled
to platform-specific instructions using a Just In Time (JIT) compiler. In addition, you
explored the role of the Common Language Specification (CLS) and Common Type
System (CTS). Finally, you learned how to build a simple application using the standalone
C# compiler (csc.exe), as well as the Visual Studio.NET IDE.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-61 I ♡ Flyheart-

Chapter 2: C# Language Fundamentals

Overview

THE THRUST OF THIS CHAPTER IS to introduce you to the core aspects of the C#
language, including intrinsic data types (both value-based and reference-based); decision
and iteration constructs; boxing and unboxing mechanisms; and basic class construction
techniques. Along the way, you also learn how to manipulate strings, arrays,
enumerations, and structures.

To illustrate these language fundamentals, you will take a programmatic look at the .NET
base class libraries, and build a number of sample applications making use of various
namespaces. Once you understand how to leverage prefabricated namespaces, the
chapter closes by showing you how to organize your custom types into discrete
user-defined namespaces (and explains why you might want to do so).

The Anatomy of a Basic C# Class

Like the Java language, C# demands that all program logic is contained within a type
definition (recall that a "type" is a generic name referring to a class, interface, structure,
and so forth). Unlike C(++), it is not possible to create global functions or global points of
data using the C# language. In its simplest form, a C# class can be defined as follows
(also recall that the using keyword simplifies type declarations):

// C# class files end with a *.cs file extension.

using System;

class HelloClass

{

 // Oddly enough, Main() can be declared as 'private'

 // if need be...

 public static int Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 return 0;

 }

}

Here, you have created a definition for an appropriately named type (HelloClass) that
supports a single method named Main(). Every C# application must contain a class

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-62 I ♡ Flyheart-

defining a Main() method, which is used to signify the entry point of the application.
Although it is technically possible for a single C# project to contain multiple classes
defining a Main() method, you must specify (to the C# compiler) which Main() method
should be used as the application's entry point, or you encounter a compile-time error.

As you can see, the signature of Main() is adorned with the public and static keywords
(also note the capital "M" in Main(), which is obligatory). Later in this chapter you are
supplied with a formal definition of the "public" and '"static" keywords. Until then,
understand that public methods are accessible by the outside world, while static methods
are scoped at the class level (not at an object level) and can thus be invoked without the
need to first create a new object instance.

In addition to the public and static keywords, our Main() method has a single parameter,
which happens to be an array of strings (string[] args). Although you are not currently
bothering to manipulate this array, it is possible that this parameter can contain any
number of command line arguments (you see how to access them momentarily).

The program logic of the HelloClass is within Main() itself. Here, you make use of the
Console class, which is defined within the System namespace. Among its set of members
is the static WriteLine(), which as you might assume, pumps a text string to the standard
console:

// Pump some text to the console.

Console.WriteLine("Hello World!");

Because our Main() method has been defined as returning an integer datatype, you
return zero (success) before exiting. Finally, as you can see from the HelloClass definition,
C and C++ styles comments have carried over into the C# language.

Variations on the Main() Method

The previous iteration of Main() was defined to take a single parameter (an array of
strings) and return an integer data type. This is not the only possible form of Main()
however. It is permissible to construct your program's Main() method using any of the
following signatures (assuming each is contained within a class definition):

// No return type, array of strings as argument.

public static void Main(string[] args)

{

 // Process command line arguments.

 // Make some objects.

}

// No return type, no arguments.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-63 I ♡ Flyheart-

public static void Main()

{

 // Make some objects.

}

// Integer return type, no arguments.

public static int Main()

{

 // Make some objects.

 // Return a value to the system.

}

Obviously, your choice of how to construct Main() will be based on two questions: First,
do you need to process any command line parameters? If so, they will be stored in the
array of strings. Next, do you want to return a value to the system when Main() has
completed? If so, you need to return an integer data type rather than void.

Processing Command Line Parameters

Assume that you now wish to update the HelloClass to process any possible command
line parameters (I examine the details behind the {0}syntax in just a bit):

// This time, check if we have been sent any command line arguments.

using System;

class HelloClass

{

 public static int Main(string[] args)

 {

 // Print the args!

 for(int x = 0; x < args.Length; x++)

 {

 Console.WriteLine("Arg: {0}", args[x]);

 }

 Console.WriteLine("Hello World!");

 return 0;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-64 I ♡ Flyheart-

 }

}

Here you are checking to see if the array of strings contains some number of items using
the Length property of System.Array (as you see later in this chapter, all C# arrays
actually alias the System.Array type). If you have at least one member in the array, you
loop over each item and print the contents to the output window.
Supplying the arguments themselves is equally as simple, as illustrated in Figure 2-1.

Figure 2-1: Supplying and processing command line arguments

As an alternative, you may iterate over incoming string arrays using the C# for each
construct. This bit of syntax is fully explained later in this chapter. Here is some example
usage:

// Notice we have no need to check the size of the array when using 'foreach'.

public static int Main(string[] args)

{

 foreach(string s in args)

 Console.WriteLine("Arg: {0}", s);

 ...

}
Needless to say, you are the one in charge of determining which command line
parameters your application will respond to, and what to do with them once the end user
has supplied them.

Creating Objects: Constructor Basics
All object-oriented languages make a clear distinction between classes and objects. A
class is a definition of a user-defined type (UDT) that is often regarded as a blueprint for
variables of this type. An object is simply a term describing a given instance of a particular
class. In C#, the new keyword is the only way to create an object instance. To illustrate,
observe the following updated Main() method:

// Make some HelloClass objects when the static Main() method is called.

Using System;

class HelloClass

{

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-65 I ♡ Flyheart-

 public static int Main(string[] args)

 {

 // You can declare and create a new object in a single line

 HelloClass c1 = new HelloClass();

 // ...or break declaration and creation into two lines.

 HelloClass c2;

 c2 = new HelloClass();

 return 0;

 }

}
The new keyword is in charge of allocating the correct number of bytes for the specified
object and acquiring sufficient memory from the managed heap. Here, you have allocated
two objects (c1 and c2) each of which points to an instance of the HelloClass type.
Understand that C# class variables are actually a reference to the object in memory, not
the actual object itself. Thus, in this light, c1 and c2 each reference a distinct HelloClass
object allocated on the managed heap (Chapter 3 offers additional details).

As you may be aware, the previous code is making calls to the default constructor of the
class. Every C# class is automatically endowed with a default constructor, which you are
free to redefine if need be. Like C++, default constructors never take arguments. Beyond
creating a new object instance, the default constructor ensures that all state data (for
example, member variables of the class) is set to an appropriate default value (this is true
for all constructors). Contrast this to C++, where uninitialized state data points to garbage
(sometimes the little things mean a lot).

Typically, your custom classes provide additional constructors beyond the default. In
doing so, you provide the object user with a simple way to initialize the state of an object
at the time of creation. Here is the HelloClass type once again, with a custom constructor,
a redefined default constructor, and some simple state data:

// HelloClass, with constructors.

using System;

class HelloClass

{

 // The default constructor always assigns state data to default values.

 public HelloClass()

 {

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-66 I ♡ Flyheart-

 Console.WriteLine("Default ctor called!");

 }

 // This custom constructor assigns state data to a known value.

 public HelloClass (int x, int y)

 {

 Console.WriteLine("Custom ctor called!");

 intX = x;

 intY = y;

 }

 // Some public state data.

 public int intX, intY;

 // Program entry point.

 public static int Main(string[] args)

 {

 // Trigger default constructor.

 HelloClass c1 = new HelloClass();

 Console.WriteLine("c1.intX = {0}\nc1.intY = {1}\n", c1.intX, c1.intY);

 // Trigger parameterized constructor.

 HelloClass c2;

 c2 = new HelloClass(100, 200);

 Console.WriteLine("c2.intX = {0}\nc2.intY = {1}\n", c2.intX, c2.intY);

 return 0;

 }

}
On examining the program's output you can see that the default constructor has indeed
assigned the internal state data to the default values (zero), while the custom constructor
has assigned the member data to values specified by the object user (see Figure 2-2).

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-67 I ♡ Flyheart-

Figure 2-2: Simple constructor logic

Is That a Memory Leak?

Notice that the Main() method has no logic that explicitly destroys the c1 and c2 object
instances:

// Leaky method?

public static int Main(string[] args)

{

 HelloClass c1 = new HelloClass();

 Console.WriteLine("c1.intX = {0}\nc1.intY = {1}\n", c1.intX, c1.intY);

 HelloClass c2;

 c2 = new HelloClass(100, 200);

 Console.WriteLine("c2.intX = {0}\nc2.intY = {1}\n", c2.intX, c2.intY);

 // Hey! Did someone forget to delete these objects?

 return 0;

}
This is not a horrible omission, but the way of .NET. Like Visual Basic and Java
developers, C# programmers never explicitly destroy an object instance. The .NET
garbage collector frees the allocated memory automatically, and therefore C# does not
support a "delete" keyword. Chapter 3 examines the garbage collection process in detail.
Until then, just remember that the .NET runtime environment destroys the objects you
allocate automatically.

The Composition of a C# Application

Currently, our HelloClass type has been constructed to perform two duties. First, the
class defines the entry point of the application. Second, HelloClass maintains two custom
data members and a few overloaded constructors. While this is all well and good, it may

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-68 I ♡ Flyheart-

seem a bit strange (although perfectly legal) that the static Main() method creates an
instance of the very class in which it was defined:

class HelloClass

{

 public HelloClass(){ Console.WriteLine("Default ctor called!"); }

 public HelloClass (int x, int y)

 {

 Console.WriteLine("Custom ctor called!");

 intX = x; intY = y;

 }

 public int intX, intY;

 public static int Main(string[] args)

 {

 // Make some HelloClass objects...

 HelloClass c1 = new HelloClass();

 ...

 }

}

Many of my initial examples take this approach, just to keep focused on the task at hand.
However, a more natural design would be to factor the HelloClass type into two distinct
classes: HelloClass and HelloApp. In OO parlance, this is termed the "separation of
concerns." Thus, you could reengineer the application as the following (notice you have
added a new member to the HelloClass type):

class HelloClass

{

 public HelloClass(){ Console.WriteLine("Default ctor called!"); }

 public HelloClass (int x, int y)

 {

 Console.WriteLine("Custom ctor called!");

 intX = x; intY = y;

 }

 public int intX, intY;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-69 I ♡ Flyheart-

 // Member function.

 public void SayHi() {Console.WriteLine("Hi there!");}

}

class HelloApp

{

 public static int Main(string[] args)

 {

 // Make some HelloClass objects and say howdy.

 HelloClass c1 = new HelloClass();

 c1.SayHi();

 ...

 }

}

When you build your C# applications, it becomes quite common to have one type
functioning as the application object (the type that defines the Main() entry point) and
numerous other types that constitute the application at large. Furthermore, each type you
create is typically placed into a separate *.cs file (to keep your code as portable as
possible). Again, you make use of each approach during the remainder of this text.

SOURCE
CODE

The HelloThere project is located under the Chapter 2
subdirectory.

Member Initialization

Because a given class may have numerous custom constructors, you may find yourself in
the annoying position of having to write the same initialization code in each and every
constructor implementation. This is particularly necessary if you do not wish to accept the
default values assigned to your state data. To avoid this redundancy, C# allows you to
assign a type's member data to an initial value at the time of declaration:

// This technique is useful when you don't want to accept default values

// and would rather not write the same initialization code in each constructor.

class Test

{

 private int myInt = 90;

 private string myStr = "My initial value.";

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-70 I ♡ Flyheart-

 private HotRod viper = new HotRod(200, "Chucky", Color.Red);

 ...

}
As you may be aware, other object-oriented languages (such as C++) do not allow you to
initialize a member in this way. In this case, OO programmers may choose to create a
private helper function that can be called by each class constructor. Yet another option is
to forward calls from one constructor to another "master" constructor (you see this
technique later in Chapter 3 during our discussion of the "this" keyword). While each of
these constructs are still valid in a C# application, explicit member initialization provides
another handy alternative.

Basic Input and Output with the Console Class

The previous HelloClass type made use of the System.Console class. Console is one of
many types defined in the System namespace. As its name implies, this class
encapsulates input, output, and error stream manipulations. Thus, you are correct to
assume that this type is mostly useful when creating console-based applications rather
than GUI-based applications (as we begin doing in Chapter 8).

Principal among the methods of System.Console are ReadLine() and WriteLine(), both of
which are defined as static. As you have seen, WriteLine() pumps a text string (including
a carriage return) to the output stream. The Write() method pumps text to the output
stream, without a carriage return. ReadLine() allows you to receive information from the
input stream up until the carriage return, while Read() is used to capture a single
character from the input stream.

To illustrate basic IO using the Console class, consider the following program, which
prompts the user for some bits of information and echoes each item to the standard
output stream. The output can be seen in Figure 2-3.

Figure 2-3: Basic IO using System.Console

// Make use of the Console class to perform basic IO.

using System;

class BasicIO

{

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-71 I ♡ Flyheart-

 public static void Main(string[] args)

 {

 // Echo some stats.

 Console.Write("Enter your name: ");

 string s;

 s = Console.ReadLine();

 Console.WriteLine("Hello, {0}", s);

 Console.Write("Enter your age: ");

 s = Console.ReadLine();

 Console.WriteLine("You are {0} years old\n", s);

 }

}

Introducing C# String Formatting
During these first few examples, you have seen numerous occurrences of the tokens {0},
{1}, and the like. .NET introduces a new style of string formatting, slightly reminiscent of
the C printf() function, without the cryptic "%d" "%s'," "%c" flags. A simple example follows
(see the output in Figure 2-4).

Figure 2-4: Simple format strings

using System;

class BasicIO

{

 public static void Main(string[] args)

 {

 ...

 int theInt = 90;

 float theFloat = 9.99;

 BasicIO myIO = new BasicIO();

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-72 I ♡ Flyheart-

 // Format a string...

 Console.WriteLine("Int is: {0}\nFloat is: {1}\nYou Are: {2}",

 theInt, theFloat, myIO.ToString());

 }

}

The first parameter to WriteLine() represents a format string that contains optional
placeholders designated by {0}, {1}, {2}, and so forth. The remaining parameters to
WriteLine() are simply the values to be inserted into the respective placeholder (in this
case, an integer, a float, and a string). Also be aware that WriteLine() has been
overloaded to allow you to specify placeholder values as an array of objects. Thus, you
can represent in any number of items to be plugged into the format string as follows:

// Fill placeholders using an array of objects.

object[] stuff = { "Hello", 20.9, 1, "There", "83", 99.99933 };

Console.WriteLine("The Stuff: {0}, {1}, {2}, {3}, {4}, {5}", stuff);

Each placeholder can optionally contain various format characters (in either uppercase or
lowercase), as seen in Table 2-1.

Table 2-1: C# Format Characters

C# FORMAT
CHARACTER

MEANING IN LIFE

C or c Used to format currency. By default, the flag will prefix a
dollar sign ($) to the value, however this can be changed
using a NumberFormatInfo object.

D or d Formats decimal numbers. This flag may also specify the
minimum number of digits used to pad the value.

E or e Exponential notation.

F or f Fixed point formatting.

G or g General. Used to format a number to fixed or exponential
format.

N or n Basic numerical formatting (with commas).

X or x Hexadecimal formatting. If you use an uppercase X, your
hex format will also contain uppercase characters.

These format characters are placed within a given placeholder using a single colon (for
example, {0:C}, {1:d}, {2:X}, and so on). To illustrate, assume you have updated Main()
with the following logic:

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-73 I ♡ Flyheart-

// Now make use of some format tags.

public static void Main(string[] args)

{

...

 Console.WriteLine("C format: {0:C}", 99989.987);

 Console.WriteLine("D9 format: {0:D9}", 99999);

 Console.WriteLine("E format: {0:E}", 99999.76543);

 Console.WriteLine("F format: {0:F3}", 99999.9999);

 Console.WriteLine("N format: {0:N}", 99999);

 Console.WriteLine("X format: {0:X}", 99999);

 Console.WriteLine("x format: {0:x}", 99999);

}
Figure 2-5 shows a test run.

Figure 2-5: More complex format strings

Be aware that the use of the C# formatting characters are not limited to the
System.Console.WriteLine() method. For example, these same flags can be used within
the context of the static String.Format() method. This can be helpful when you need to
build a string containing numerical values in memory and display it at a later time:

// Use the static String.Format() method to build a new string.

string formStr;

formStr = String.Format("Don't you wish you had {0:C} in your account?",

 99989.987);

Console.WriteLine(formStr);

SOURCE
CODE

The BasicIO project is located under the Chapter 2
subdirectory.

Understanding Value Types and Reference Types

Like any programming language, C# defines a number of intrinsic data types. As you
would expect, there are types to represent whole numbers, strings, floating-point

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-74 I ♡ Flyheart-

numbers, and Boolean values. If you are coming from a C++ background, you will be
happy to know that these intrinsic types are fixed constants in the universe. Meaning,
when you create a data point of type integer (int), all .NET-aware languages understand
the fixed nature of this type, and all agree on the range it is capable of handling.
Specifically speaking, a C# data type may be value based or reference based.
Value-based types, which include all numerical data types (int, float, etc.) as well as
enumerations and structures, are allocated on the stack. When you assign one value type
to another, a bitwise copy is achieved. To illustrate, assume you have the following C#
structure (you examine structures in greater detail later in this chapter):

// Structures are value types.

struct FOO

{

 public int x, y;

}
Now, observe the following Main() logic (the output can be seen in Figure 2-6).

Figure 2-6: Assigning one value type to another results in a bitwise copy.

class ValRefClass

{

 // Exercise some value types.

 public static int Main(string[] args)

 {

 // The 'new' keyword is optional when creating structures

 // using the default constructor.

 FOO f1 = new FOO();

 f1.x = 100;

 f1.y = 100;

 // Assign a new FOO type (f2) to an existing FOO type (f1).

 FOO f2 = f1;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-75 I ♡ Flyheart-

 // Here is f1...

 Console.WriteLine("F1.x = {0}", f1.x);

 Console.WriteLine("F1.y = {0}", f1.y);

 // Here is f2...

 Console.WriteLine("F2.x = {0}", f2.x);

 Console.WriteLine("F2.y = {0}", f2.y);

 // Change f2.x. This will NOT change f1.x.

 Console.WriteLine("Changing f2.x");

 f2.x = 900;

 // Print again.

 Console.WriteLine("F2.x = {0}", f2.x);

 Console.WriteLine("F1.x = {0}", f1.x);

 return 0;

 }

}

Here you have created a variable of type FOO (named f1) that is then assigned to another
FOO type (f2). Because FOO is a value type, you have two copies of the FOO type on the
stack that can be independently manipulated. Therefore, when you change the value of
f2.x, the value of f1.x is unaffected.

In stark contrast, reference types (that includes classes and interfaces) are allocated on
the garbage-collected heap. Copies of a reference type result in a shallow copy, meaning
multiple references are pointing to the same location in memory. To illustrate, let's change
the definition of the FOO type from a C# structure to a C# class:

// Classes are always reference types.

class FOO

{

 public int x, y;

}
If you were to run our test program once again, notice the change in behavior (Figure 2-7).
Here, you have two objects referencing the same memory location of the managed heap.
Therefore, when you change the value of x using the f2 reference, f1.x reflects the same
value.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-76 I ♡ Flyheart-

Figure 2-7: Assigning reference types to another results in a shallow copy.

Value and Reference Types: Further Details

To further understand the distinction between value types and reference types, ponder
Table 2-2 that illustrates how each stands up against a number of "intriguing questions"
(many of which are examined in greater detail throughout this text):

Table 2-2: Value Types and Reference Types Side by Side

INTRIGUING
QUESTION

VALUE TYPE REFERENCE TYPE

Where is this
type allocated?

Allocated on the stack Allocated on the
managed heap

How is a
variable
represented?

Value types variables
are local copies

Reference type
variables are pointing to
the memory occupied by
the allocated instance

What is the
base type?

Must directly derive
from
System.ValueType

Can derive from any
other type (except
System.ValueType) as
long as that type is not
"sealed". . . more later

Can this type
function as a
base to other
types?

No. Value types are
always sealed and
cannot be extended

Yes. If the type is not
sealed, it may function
as a base to other types

What is the
parameter
passing
behaviour?

Variables are passed
by value (i.e., a copy of
the variable is passed
into the called function)

Variables are passed by
reference (e.g., the
address of the variable
is passed the called
function)

Able to
override

No. Value types are
never placed onto the

Yes . . . indirectly (more
details in Chapter 3)

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-77 I ♡ Flyheart-

Table 2-2: Value Types and Reference Types Side by Side

INTRIGUING
QUESTION

VALUE TYPE REFERENCE TYPE

Object.Finalize
()?

heap and therefore do
not need to be finalized

Can I define
constructors
for this types?

Yes, but the default
constructor is reserved
(i.e., your custom
constructors must all
have arguments).

But of course!

When do
variables of
this die?

When it falls out of the
defining scope

When the managed
heap is garbage
collected

Despite their differences, value types and reference types both have the ability to
implement standard (i.e., preexisting) and custom (i.e., you made them) interfaces, and
may support any number of fields, methods, properties, and events. Just to solidify some
of the key differences between value and reference types one more time, consider the
following code:

// A value type.

struct PERSON

{

 public string Name;

 public int Age;

};

// A reference type.

class Person

{

 public string Name;

 public int Age;

};

class ValRefClass

{

 public static void Main()

 {

 // Create an object reference on the managed heap.

 Person fred = new Person();

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-78 I ♡ Flyheart-

 // Create a value on the stack.

 PERSON mary = new PERSON();

 // This performs a bit copy, resulting in two structures on the stack.

 PERSON jane = mary;

 // This performs a shallow copy, resulting in two references to the

 // same object in memory.

 Person fredRef = fred;

 }

}

SOURCE
CODE

The ValAndRef project is located under the Chapter 2
subdirectory.

The Master Node: System.Object

In C#, every data type (value or reference based) is ultimately derived from a common
base class: System.Object. The Object class defines a common polymorphic behavior for
every type in the .NET universe (if you like, consider Object to be the VARIANT of .NET).
In the previous HelloClass type definition, you did not explicitly indicate that Object was
the base class, but this is assumed. If you wish to explicitly state System.Object as your
base class, you are free to define your class definitions as such:

// Here we are explicitly deriving from System.Object.

// We could also write 'class HelloClass : object'

class HelloClass : System.Object

{...}

Like any C# class, System.Object defines a set of instance members. Note that some of
these items are declared "virtual," and can therefore be overridden by a subclass:

// The top-most class in the .NET world: System.Object

namespace System

{

 public class Object

 {

 public Object();

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-79 I ♡ Flyheart-

 public virtual Boolean Equals(Object obj);

 public virtual Int32 GetHashCode();

 public Type GetType();

 public virtual String ToString();

 protected virtual void Finalize();

 protected Object MemberwiseClone();

 }

...

}

Table 2-3 offers a rundown of the functionality provided by each method.

Table 2-3: Core Members of System.Object

INSTANCE
METHOD OF
OBJECT CLASS MEANING IN LIFE

Equals() By default this method returns true only if the items
being compared refer to the exact same item in
memory. Thus, Equals() is used to compare object
references, not the state of the object.

 Typically, this method is overridden to return "true"
only if the objects being compared have the same
internal state values (that is, value-based
semantics).

 Be aware that if you override Equals(), you should
also override GetHashCode().

GetHashCode() Returns an integer that identifies a specific object
instance.

GetType() This method returns a Type object that fully
describes the object you are currently referencing. In
short, this is a Runtime Type Identification (RTTI)
method available to all objects (discussed in greater
detail in Chapter 7).

ToString() Returns a string representation of this object, using
the "<namespace>.<class name>" format (termed
the "fully qualified name"). If the type has not been
defined within a namespace, <class name> alone is
returned.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-80 I ♡ Flyheart-

Table 2-3: Core Members of System.Object

INSTANCE
METHOD OF
OBJECT CLASS MEANING IN LIFE

 This method can be overridden by a subclass to
return a tokenized string of name/value pairs that
represent the object's internal state, rather than its
fully qualified name.

Finalize() For the time being, you can understand this method
(when overridden) is called to free any allocated
resources before the object is destroyed. We talk
more about the CLR garbage collection services in
Chapter 3.

MemberwiseClone() This method exists to perform a shallow copy of the
current object (for example, to create another
reference that points to the same object in memory).

 This method cannot be overridden. If you need to
add support for deep copy semantics (for example,
to create a brand new identical object) your class
needs to implement the ICloneable interface, which
we do in Chapter 4.

To illustrate some of the default behavior provided by the Object base class, consider the
following class definition:

// Create some objects and exercise the inherited System.Object methods.

using System;

class ObjTest

{

 public static int Main(string[] args)

 {

 // Make an instance of ObjTest.

 ObjTest c1 = new ObjTest();

 // Pump info to console.

 Console.WriteLine("ToString: {0}", c1.ToString());

 Console.WriteLine("Hash code: {0}", c1.GetHashCode());

 Console.WriteLine("Type: {0}", c1.GetType().ToString());

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-81 I ♡ Flyheart-

 // Make some other references to c1.

 ObjTest c2 = c1;

 object o = c2;

 // Are all 3 instances pointing to the same object in memory?

 if(o.Equals(c1) && c2.Equals(o))

 Console.WriteLine("Same instance!");

 return 0;

 }

}
Figure 2-8 shows a test run.

Figure 2-8: Working with select Object methods

First, notice how the default implementation of ToString() simply returns the name of the
current type (ObjTest). In many situations, derived classes override this method to return
a string representing the values of its internal state data (as you do in a moment). Now,
examine the following block of code:

// Compare objects references...

public static int Main(string[] args)

{

 // Make an instance of ObjTest.

 ObjTest c1 = new ObjTest();

 ...

 // Make some other references to c1.

 ObjTest c2 = c1;

 object o = c2;

 // Are all 3 instances pointing to the same object in memory?

 if(o.Equals(c1) && c2.Equals(o))

 Console.WriteLine("Same instance!");

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-82 I ♡ Flyheart-

 return 0;

}
The default behavior of Equals() is to compare two objects using reference semantics not
value semantics. Here, you create a new ObjTest variable named c1. At this point, a new
ObjTest is placed on the managed heap. C2 is also of type ObjTest. However, you are not
creating a new instance, but rather assigning this variable to reference c1. Therefore, c1
and c2 are both pointing to the same object in memory, as is the variable o (of type object,
which was thrown in for good measure). Given that c1, c2 and o all point to the same
memory location, the equality test succeeds.

Overriding Some Default Behaviors of System.Object

Although the canned behavior of Object can fit the bill in a number of cases, it is quite
common for your custom types to override some of these inherited methods. For example,
assume you have retrofitted the previous Person class to define some state data
representing an individual's name, social security number, and age:

// Remember! All classes implicitly derive from Object.

class Person

{

 public Person(string fname, string lname, string ssn, byte a)

 {

 firstName = fname;

 lastName = lname;

 SSN = ssn;

 age = a;

 }

 public Person(){} // All member variables assigned to default values.

 // The state of a person.

 public string firstName;

 public string lastName;

 public string SSN;

 public byte age;

}

Administrator
Equals() is to compare two objects using reference semantics

Administrator
All classes implicitly derive from Object.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-83 I ♡ Flyheart-

To begin, let's override Object.ToString() to return a textual representation of an object's
state. You examine the details of method overriding in the next chapter. For the time
being, just absorb the fact that you are changing the behavior of the ToString() method to
work specifically with our Person class:

// Need to reference this namespace to access StringBuilder type.

using System.Text;

// A Person class implements ToString() as so:

class Person

{

...

 // Overriding a method inherited from System.Object.

 public override string ToString()

 {

 StringBuilder sb = new StringBuilder();

 sb.Append("[FirstName= " + this.firstName);

 sb.Append(" LastName= " + this.lastName);

 sb.Append(" SSN= " + this.SSN);

 sb.Append(" Age= " + this.age + "]");

 return sb.ToString();

 }

...

}

How you choose to format the string returned from System.Object.ToString() is largely a
matter of personal choice. In this example, the name/value pairs have been contained
within square brackets ([. . .]). Also notice that this example is making use of a new type,
System.Text.StringBuilder (which is also a matter of personal choice). This type is
described in greater detail later in the chapter.

Let's also override the behavior of Object.Equals() to work with value-based semantics.
Recall that by default, Equals() returns true only if the two objects being compared are
referencing the same object instance in memory. For our Person class, it would be helpful
to implement Equals() to return true if the two variables being compared contain the same
state values (e.g., name, SSN, and age):

// A Person class implements Equals() as so:

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-84 I ♡ Flyheart-

class Person

{

...

 public override bool Equals(object o)

 {

 // Does the incoming object instance have the same values as me?

 Person temp = (Person)o;

 if(temp.firstName = = this.firstName &&

 temp.lastName = = this.lastName &&

 temp.SSN = = this.SSN &&

 temp.age = = this.age)

 return true;

 else

 return false;

 }

...

}

Here, you are examining the values of the incoming object against the values of our
internal values (note the use of the "this" keyword). If the name, SSN, and age of each
are identical, you have two objects with the exact same state data and therefore return
true.

Before you see the output of this new type, you have one final detail to attend to. When a
class overrides the Equals() method, you should also override the default implementation
of GetHashCode() (if you do not, you are issued a compiler warning). This method returns
a numerical value used to identify an object in memory, and is commonly used with
hash-based collections.

There are many algorithms that can be used to create a hash code, some fancy, others
not so fancy. For our current purposes, let's assume that the hash code of the string
representing an individual's SSN is unique enough:

// Return a hash code based on the person's SSN.

public override int GetHashCode()

{

 return SSN.GetHashCode();

}
With this, here is our new Person class in action (check out Figure 2-9 for output):

Administrator
When aclass overrides the Equals() method, you should also override the default implementationof GetHashCode()

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-85 I ♡ Flyheart-

Figure 2-9: The result of value based equality testing

// Make a few people and play with the overridden Object methods.

public static int Main(string[] args)

{

 // Now make some people and test for equality.

 // NOTE: We want these to be identical to test the Equals() method.

 Person p1 = new Person("Fred", "Jones", "222-22-2222", 98);

 Person p2 = new Person("Fred", "Jones", "222-22-2222", 98);

 // Equals() now uses value semantics (same hash codes).

 if(p1.Equals(p2) && p1.GetHashCode() = = p2.GetHashCode())

 Console.WriteLine("P1 and P2 have same state\n");

 else

 Console.WriteLine("P1 and P2 are DIFFERENT\n");

 // Change state of p2.

 p2.age = 2;

 // Test again (same hash codes).

 if(p1.Equals(p2) && p1.GetHashCode() = = p2.GetHashCode())

 Console.WriteLine("P1 and P2 have same state\n");

 else

 Console.WriteLine("P1 and P2 are DIFFERENT\n");

 // Get 'stringified' version of objects.

 Console.WriteLine(p1.ToString());

 Console.WriteLine(p2); // ToString() called automatically

 return 0;

}

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-86 I ♡ Flyheart-

SOURCE
CODE

The ObjectMethods project is located under the Chapter 2
subdirectory.

Static Members of System.Object

In addition to the instance level members you have just examined, System.Object does
define two (very helpful) static members that also test for value-based or reference-based
equality. Consider the following code:

// Static members of System.Object.

Person p3 = new Person("Sally", "Jones","333", 4);

Person p4 = new Person("Sally", "Jones","333", 4);

// Do P3 and P4 have the same state? TRUE!

Console.WriteLine("P3 and P4 have same state: {0}", object.Equals(p3, p4));

// Are they the same object in memory? FALSE!

Console.WriteLine("P3 and P4 are pointing to same object: {0}",

 object.ReferenceEquals(p3, p4));

Here, you are able to simply send in two objects (of any type) and allow the
System.Object class to determine the details automatically.

The System Data Types (and C# Aliases)
As you may have begun to notice, every intrinsic C# data type is actually an alias to an
existing type defined in the System namespace. Table 2-4 lists each system data type, its
range, the corresponding C# alias, and the type's compliance with the Common
Language Specification (CLS).

Table 2-4: System Types and C# Aliases

C#
ALIAS

CLS
COMPLIANT?

SYSTEM
TYPE RANGE MEANING IN LIFE

sbyte No SByte -128 to 127 Signed 8-bit number.

byte Yes Byte 0 to 255 Unsigned 8-bit number.

short Yes Int16 -32,768 to 32,767 Signed 16-bit number.

ushort No UInt16 0 to 65,535 Unsigned 16-bit number.

int Yes Int32 -2,147,483,648 to
2,147,483,647

Signed 32-bit number.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-87 I ♡ Flyheart-

Table 2-4: System Types and C# Aliases

C#
ALIAS

CLS
COMPLIANT?

SYSTEM
TYPE RANGE MEANING IN LIFE

uint No UInt32 0 to 4,294,967,295 Unsigned 32-bit number.

long Yes Int64 -9,223,372,036,854,7
75,808 to
9,223,372,036,854,7
75,807

Signed 64-bit number.

ulong No UInt64 0 to
18,446,744,073,709,
551,615

Unsigned 64-bit number.

char Yes Char U + 0000 to U + ffff A single 16-bit Unicode
character.

float Yes Single 1.5×10-45 to 3.4×1038 32-bit floating point
number.

double Yes Double 5.0×10-324 to
1.7×10308

64-bit floating point
number.

bool Yes Boolean true or false Represents truth or
falsity.

decima
l

Yes Decimal 100 to 1028 A 96-bit signed number.

string Yes String Limited by system
memory.

Represents a set of
Unicode characters.

object Yes Object Anything at all. All
classes derive from
object. Therefore,
everything is an
object.

The base class of all
types in the .NET
universe.

The relationship between these core system types (as well as some other
soon-to-be-discovered types) can be understood as shown in Figure 2-10.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-88 I ♡ Flyheart-

Figure 2-10: The hierarchy of System types

As you can see, each of these types ultimately derives from System.Object. Thus,
because data types such as "int" are simply shorthand notations for the corresponding
system type Int32, the following is perfectly legal syntax:

// Remember! A C# int is really an alias for System.Int32.

Console.WriteLine(12.ToString());

Also notice that although C# defines a number of data types, only a subset of the whole
are compliant with the rules of the CLS. When you build custom types that must work
seamlessly across all languages, you must stick to this well-defined subset. The basic
rule of thumb is to avoid use of unsigned types when defining any public member of a
type definition. By doing so, you ensure that your custom classes, interfaces, and
structures can be understood by any language targeting the .NET runtime. In Chapter 7,
you learn about a specific assembly level attribute that you can leverage to ensure that all
types are up to snuff with the CLS.

Experimenting with the System Type Classes

Most intrinsic C# data types alias a related structure derived from ValueType.
Functionally, the only purpose of System.ValueType is to override the virtual methods
defined by System.Object to work with value-based verse reference-based semantics. In
fact, the signatures of the methods defined by ValueType are identical to those of Object.
However, keep in mind that when you compare two instances, you are using value-based
semantics:

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-89 I ♡ Flyheart-

// Test value semantics.

System.Int32 intA = 1000; // Same as: int intA = 1000;

System.Int32 intB = 1000; // Same as: int intB = 1000;

// The test succeeds! The two instances contain the same value.

if(intA == intB)

 Console.WriteLine("Same value!");

Every system value type (e.g., Int32, Char, Boolean, and so on) has a similar set of
helpful members. While I assume you will consult online Help for full details, some points
of interest are the MaxValue and MinValue properties that provide information regarding
the minimum and maximum value a given type can hold. Assume you have created a
variable of type System.UInt16, and exercised it as follows:

// Note that an implicit data type (ushort) has the same methods available as

// the corresponding wrapper (System.UInt16).

//

class MyDataTypes

{

 public static int Main(string[] args)

 {

 // Working with UInt16 as a structure.

 System.UInt16 myUInt16 = 30000;

 Console.WriteLine("Max for an UInt16 is: {0}", UInt16.MaxValue);

 Console.WriteLine("Min for an UInt16 is: {0}", UInt16.MinValue);

 Console.WriteLine("Your value is: {0}", myUInt16.ToString());

 Console.WriteLine("I am a: {0}", myUInt16.GetType().ToString());

 // Now in UInt16 shorthand (e.g. a ushort).

 ushort myOtherUInt16 = 12000;

 Console.WriteLine("\nYour value is: {0}", myOtherUInt16.ToString());

 Console.WriteLine("I am a: {0}", myOtherUInt16.GetType().ToString());

 return 0;

 }

}
The output can be seen in Figure 2-11.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-90 I ♡ Flyheart-

Figure 2-11: Exercising some system data types

Minor Commentary on Select Data Types

A few system types deserve special comment. First is the System.Boolean data type.
Unlike C(++), the only valid assignment a C# bool can take is from the set {true | false}.
You cannot assign makeshift values (e.g., -1, 0, 1) to a C# bool, which (to most
programmers) is a welcome change:

// No more ad hoc Boolean types in C#.

bool b = 0; // Illegal!

bool b2 = -1 // Also illegal!

bool b3 = true; // No problem.

bool b4 = false; // No problem.

Next, it is important to note that C# textual data is represented by the string and char data
types. Thus, no more nasty char*, wchar_t*, LPSTR, LPCSTR, BSTR or OLECHAR types!
I am sure you agree with me that string manipulation in the COM and Win32 universe was
horrifying. C# offers a very simplified view of string management, as all .NET-aware
languages map textual data to the same underlying types (System.String and
System.Char) both of which are Unicode under the hood.

Beyond bool, char, and string, the other intrinsic data types behave as you would expect.

SOURCE
CODE

The DataTypes project is located under the Chapter 2
subdirectory.

Moving Between Value Types and Reference Types: Boxing

and Unboxing

C# provides a very simple mechanism to convert between value types and reference
types, termed boxing. First, assume that you have created a simple value data type of
type short:

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-91 I ♡ Flyheart-

// Make a simple value data point.

short s = 25;

If, during the course of your application, you wish to convert this value type into a
corresponding object reference, you would "box" the value as follows:

// Box the value into an object reference.

object objShort = s;

Boxing can be defined as the process of explicitly converting a value type into a
corresponding reference type. When you box a value, essentially all you are doing is
allocating a new object on the heap and copying the internal value (in this case 25) into
that instance.

The opposite operation is also permitted through unboxing. Unboxing is the term given to
the process of converting an object reference back into a corresponding value type. The
unboxing operation begins by verifying that the receiving data type is equivalent to the
boxed type, and if so, copying the value out of the box. For example, the following
unboxing operation works successfully, given that the underlying type of the objShort is
indeed a short:

// Now, unbox the reference back into a corresponding short.

short anotherShort = (short)objShort;

However, the following unboxing operation generates an InvalidCastException exception
(you examine casting and exception handling in detail in the next chapter, so hold tight for
now):

// Bad unboxing!

public static int Main(string[] args)

{

...

 try

 {

 // The type contained in the box is NOT a string, but a short!

 string str = (string)objShort;

 }

 catch(InvalidCastException e)

 {

 Console.WriteLine("OOPS!\n{0}", e.ToString());

 }

...

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-92 I ♡ Flyheart-

}
Figure 2-12 illustrates the output of the boxing example.

Figure 2-12: Bad boxing

So, you may be thinking, when would you really need to box (or unbox) a data type? In
reality, you don't need to box data types all that often, if ever. In fact, most of the time, the
C# compiler automatically boxes and unboxes variables when appropriate. For example,
if you pass a value type into a method requiring an object parameter, boxing occurs
behind the curtains:

// Assume the following method: public static void Foo(object o)

int × = 99;

Foo(x); // Automatic boxing.

At times, boxing and unboxing can be used explicitly to help improve the performance of
your application. You revisit boxing later in this chapter when you formally examine the
C# structure.

SOURCE
CODE

The DataTypes project is included under the Chapter 2
subdirectory.

Default Assignments and Variable Scope

As illustrated in this chapter, all intrinsic .NET data types have a default value. When you
create custom types, all member variables are automatically assigned to an appropriate
initial value. To illustrate, consider the following class definition:

// C# automatically sets all member variables to a safe default value.

class DefValObject

{

 // Here are a number of fields...

 public sbyte theSignedByte;

 public byte theByte;

 public short theShort;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-93 I ♡ Flyheart-

 public ushort theUShort;

 public int theInt;

 public uint theUInt;

 public long theLong;

 public ulong theULong;

 public char theChar;

 public float theFloat;

 public double theDouble;

 public bool theBool;

 public decimal theDecimal;

 public string theStr;

 public object theObj;

 public static int Main(string[] args)

 {

 DefValObject v = new DefValObject();

 return 0; // Set breakpoint here and check out the Autos window.

 }

}

If you were to now create an instance of the DefValObject class and begin a debugging
session, you would see that each member variable has been automatically assigned to a
corresponding default value, as seen in Figure 2-13.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-94 I ♡ Flyheart-

Figure 2-13: All types have a safe default value.
The story is very different however when you create variables within a method scope.
When you define variables within a method scope, you must assign an initial value before
you use them, as they do not receive a default assignment. For example, the following
code results in a compiler error:

// Compiler error! Must assign localInt to an initial value before use.

public static void Main()

{

 int localInt;

 Console.WriteLine(localInt.ToString());

}

Fixing the problem is trivial. Simply make an initial assignment:

// Better. Everyone is happy.

public static void Main()

{

 int localInt = 0;

 Console.WriteLine(localInt.ToString());

}

There is one exception to the mandatory assignment of local variables. If the variable is
functioning as an "out" parameter (examined later in this chapter) the variable does not
need to be assigned an initial value. Methods that define "out" parameters assume
incoming variables are assigned within the scope of the called function.

SOURCE
CODE

The DefaultValues project is located under the Chapter 2
subdirectory.

Defining Program Constants

Now that you can create variables, you need to examine the logical opposite: Constants.
C# offers the "const" keyword, like C(++), in order to define constant data types. Although
it is possible to define constants within a method scope, a more beneficial use of const is
to create class level constant definitions. For example:

// Some const data.

using System;

class MyConstants

{

 // These must be accessed at the class level.

 public const int myIntConst = 5;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-95 I ♡ Flyheart-

 public const string myStringConst = "I'm a const";

 public static void Main()

 {

 // Scoped constant.

 const string localConst = "I am a rock, I am an island";

 // Use const data (note the class level scope).

 Console.WriteLine("myIntConst = {0}\nmyStringConst = {1}",

 MyConstants.myIntConst,

 MyConstants.myStringConst);

 Console.WriteLine("Local constant: {0}", localConst);

 }

}

If you create a utility class that contains nothing but constant data, you may wish to define
a private constructor. In this way, you ensure the object user cannot make an instance of
your class:

// Private constructors prevent the creation of a given type.

class MyConstants

{

 // Some const data.

 public const int myIntConst = 5;

 public const string myStringConst = "I'm a const";

 // Don't let the user make this class,

 // as its only purpose is to define constant values.

 private MyConstants(){}

}

The same end result can be achieved by marking your "constant only class" as an
abstract type. You examine the use of this keyword in the next chapter. An example of its
use follows:

// Abstract definition also prevents the creation of a given type.

abstract class MyConstants

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-96 I ♡ Flyheart-

{

 // Some const data.

 public const int myIntConst = 5;

 public const string myStringConst = "I'm a const";

}

In either case, if another object attempts to create an instance of MyConstants, a compiler
error is generated. These techniques can be quite helpful given that C# does not allow
you to define global level constants. On a final note, realize that unlike C++, you cannot
use the const keyword as part of a method definition.

SOURCE
CODE

The Constants project is located under the Chapter 2
subdirectory.

C# Iteration Constructs

All programming languages provide ways to repeat blocks of code until a terminating
condition has been met. Regardless of which language you are coming from, the C#
iteration statements should pose no raised eyebrows and require little explanation. In a
nutshell, C# provides the following four iteration constructs:

 for loop
 foreach/in loop
 while loop
 do/while loop

C, C++, and Java programmers will no doubt be familiar with the "for," "while," and
"do/while" loops, but may be unfamiliar with the "foreach" statement. Visual Basic
programmers on the other hand, are in the fortunate position to be well aware of all four
C# iteration statements, as VB already supports "For Each" syntax. Let's quickly examine
each looping construct in turn.

The for Loop

When you need to iterate over a block of code a fixed number of times, the "for" statement
is the construct of champions. In essence, you are able to specify how many times a
block of code repeats itself, as well as the terminating condition. Without belaboring the
point, here is a sample of the syntax:

// A basic for loop.

public static int Main(string[] args)

{

 // Note! 'i' is only visible within the scope of the for loop.

 for(int i = 0; i < 10; i++)

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-97 I ♡ Flyheart-

 {

 Console.WriteLine("Number is: {0}", i);

 }

 // 'i' is not visible here.

 return 0;

}

All of your old C, C++, and Java tricks still hold when building a C# for statement. You can
create complex terminating conditions, build endless loops, and make use of the "goto,"
"continue" and "break" keywords. I'll assume that you will bend this iteration construct as
you see fit.

The foreach/in Loop

Visual Basic programmers have long seen the benefits of the For Each construct. The C#
equivalent allows you to iterate over all items within an array. Here is a simple example
using foreach to traverse an array of strings that represent possible titles for forthcoming
publications. Once this array has been filled, you iterate over the contents looking for a
pattern match (COM or .NET) using String.IndexOf():

// Digging into an array using foreach.

public static int Main(string[] args)

{

 string[] arrBookTitles = new string[] {"Complex Algorithms",

 "COM for the Fearful Programmer",

 "Do you Remember Classic COM?",

 "C# and the .NET Platform",

 "COM for the Angry Engineer"};

 int COM = 0, NET = 0;

 // Assume there are no books on COM and .NET (yet).

 foreach (string s in arrBookTitles)

 {

 if (-1 != s.IndexOf("COM"))

 COM++;

 else if(-1 != s.IndexOf(".NET"))

 NET++;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-98 I ♡ Flyheart-

 }

 Console.WriteLine("Found {0} COM references and {1} .NET references.",

 COM, NET);

 return 0;

}
In addition to iterating over simple arrays, foreach is also able to iterate over
system-supplied or user-defined collections. I'll hold off on the details until Chapter 4, as
this aspect of the foreach keyword entails an understanding of interface-based
programming and the system-supplied IEnumerator and IEnumerable interfaces.

The while and do/while Looping Constructs

You have already seen that the for statement is typically used when you have some
foreknowledge of the number of iterations you wish to perform (e.g., loop until j > 20). The
"while" statement on the other hand is useful for those times when you are uncertain how
long it might take for a terminating condition to be met.

To illustrate the while loop, here is a brief look at C# file manipulation (which is fully
detailed in Chapter 11). The StreamReader class, defined within the System.IO
namespace, encapsulates the details of reading from a given file. Notice that you are
obtaining an instance of the StreamReader type as a return value from the static
File.OpenText() method. Once you have opened the config.win file, you are able to iterate
over each line in the file using StreamReader.ReadLine():

try // Just in case we can't find the correct file...

{

 // Open the file named 'config.win'.

 StreamReader strReader = File.OpenText("C:\\config.win");

 // Read the next line and dump to the console.

 string strLine;

 while(null != (strLine = strReader.ReadLine()))

 {

 Console.WriteLine(strLine);

 }

 // Close the file.

 strReader.Close();

}

catch(FileNotFoundException e) // Again, we examine exceptions in Chapter 3.

{

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-99 I ♡ Flyheart-

 Console.WriteLine(e.Message);

}

Closely related to the while loop is the do/while statement. Like a simple while loop,
do/while is used when you need to perform some action for an undetermined number of
times. The difference is that do/while loops are guaranteed to execute the corresponding
block of code at least once (in contrast, it is possible that a simple while loop many never
execute if the terminating condition is false from the onset). The output of the Iteration
logic can be seen in Figure 2-14.

Figure 2-14: Iteration logic

// The do/while statement

string ans;

do

{

 Console.Write("Are you done? [yes] [no] : ");

 ans = Console.ReadLine();

}while(ans != "yes");

SOURCE
CODE

The Iterations project is located under the Chapter 2
subdirectory.

C# Control Flow Constructs
Now that you can iterate over a block of code, the next related concept is how to control
the flow of program execution. C# defines two simple constructs to alter the flow of your
program, based on various contingencies. First you have our good friend, the "if/else"
statement. Unlike C and C++ however, the if/else statement only operates on Boolean
expressions (not ad hoc values such as -1, 0 and so on). Given this, if/else statements
typically involve the use of the following C# operators (Table 2-5).

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-100 I ♡ Flyheart-

Table 2-5: C# Relational and Equality Operators

C#
EQUALITY/RELATION
AL OPERATOR EXAMPLE USAGE MEANING IN LIFE

= = if(age = = 30) Returns true only if each
expression is the same.

!= if("Foo" != myStr) Returns true only if each
expression is different.

< if(bonus < 2000) Returns true if expression A is
less

> if(bonus > 2000) than, greater than, less than or

<= if(bonus <= 2000) equal to, or greater than or
equal

>= if(bonus >= 2000) to expression B.

C and C++ programmers need to be aware that the old tricks of testing a condition for a
value "not equal to zero" will not work in C#. Let's say you want to see if the string you are
working with is greater than zero. You may be tempted to write:

// This is illegal, given that Length returns an int, not a bool.

string thoughtOfTheDay = "You CAN teach an old dog new tricks";

if(thoughtOfTheDay.Length) // Error!

{

 // stuff...

}

If you wish to make use of the String.Length property to determine if you have an empty
string, you would need to modify your conditional expression as follows:

// No problem.

if(0 != thoughtOfTheDay.Length) // Better! This resolves to {true | false}.

{

 // Stuff...

}

An "if" statement may be composed of complex expressions as well. As you would expect,
if conditionals can contain else statements to perform more complex testing. The syntax
is identical to C(++) and Java (and not too far removed from Visual Basic). To build such
a beast, C# offers an expected set of conditional operators (Table 2-6).

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-101 I ♡ Flyheart-

Table 2-6: C# Conditional Operators

C#
CONDITIONAL
OPERATOR EXAMPLE MEANING IN LIFE

&& if((age = = 30) &&
(name = = "Fred"))

Conditional AND
operator.

|| if((age = = 30) ||
(name = = "Fred"))

Conditional OR
operator.

! if(!myBool) Conditional NOT
operator.

The other simple selection construct offered by C# is the switch statement. As I am sure
you are aware, switch statements allow you to handle program flow based on a
predefined set of choices. For example, the following application prompts the user for one
of three possible values. Based on the user input, act accordingly:

// The good ol' switch statement.

class Selections

{

 public static int Main(string[] args)

 {

 Console.WriteLine("Welcome to the world of .NET");

 Console.WriteLine("1 = C#\n2 = Managed C++ (MC++)\n3 = VB.NET\n");

 Console.Write("Please select your implementation language:");

 string s = Console.ReadLine();

 // All intrinsic data types support a static Parse() method.

 int n = int.Parse(s);

 switch(n)

 {

 // C# demands that each case (including 'default') which

 // contains executable statements, must have

 // a terminating 'break' or 'goto' to avoid fall through.

 case 1:

 Console.WriteLine("Good choice! C# is all about managed code.");

 break;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-102 I ♡ Flyheart-

 case 2:

 Console.WriteLine("Let me guess, maintaining a legacy system?");

 break;

 case 3:

 Console.WriteLine("VB.NET: It is not just for kids anymore...");

 break;

 default:

 Console.WriteLine("Well...good luck with that!");

 break;

 }

 return 0;

 }

}
Figure 2-15 shows a possible test run.

Figure 2-15: They grow up so quickly...

It is worth pointing out that the C# also supports switching on character data as well (it
even supports a "null" case for empty strings).

SOURCE
CODE

The Selections project is located under the Chapter 2
subdirectory.

Additional C# Operators

C# defines a number of operators in addition to those you have previously examined. By
and large, these operators behave like their C(++) and Java counter-parts. Table 2-7 lists
the set of C# operators in order of precedence.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-103 I ♡ Flyheart-

Table 2-7: The Full Set of C# Operators

OPERATOR
CATEGORY

OPERATORS

Unary + - ! ~ ++x x++ --x x--

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is as

Equality = = !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

The only operators that you may not be familiar with are the is and as operators. The is
operator is used to verify at runtime if an object is compatible with a given type. One
common use for this operator is to determine if a given object supports a particular
interface, as you discover in Chapter 4. The as operator allows you to downcast between
types (also seen in chapter 4). As for the remaining operators, I will make the assumption
that many (if not all) of them are old hat to you. If you need additional information
regarding the C# looping and decision constructs, consult the C# Language Reference
using online Help.

Defining Custom Class Methods

Before going much further, let's examine how to define custom methods for a C# class.
Every method you implement must be a member of a class or struct. Global methods are
not allowed in C#. As you know, a method exists to allow the type to perform a unit of
work. Like Main(), your custom methods may or may not take parameters, may or may
not return values (of any intrinsic or user defined types) and may or may not be declared
as static.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-104 I ♡ Flyheart-

Method Access Modifiers

To begin, a method must specify its level of accessibility (see Table 2-8). C# offers the
following method access modifiers (you examine the use of protected and internal
methods in the next chapter during the discussion of class hierarchies):

Table 2-8: C# Accessibility Keywords

C# ACCESS
MODIFIER

MEANING IN LIFE

public Marks a method as accessible from an object
instance, or any subclass.

private Marks a method as accessible only by the class that
has defined the method. If you don't say otherwise,
private is assumed (it is the default visibility level).

protected Marks a method as usable by the defining class, as
well as any child class, but is private as far as the
outside world is concerned.

internal Defines a method that is publicly accessible by all
types in an assembly (but not from outside the
assembly).

protected internal Protected access or internal access.

Here are the implications of each accessibility keyword:

// Visibility options.

class SomeClass

{

 // Accessible anywhere.

 public void MethodA(){}

 // Accessible only from SomeClass types.

 private void MethodB(){}

 // Accessible from SomeClass and any descendent.

 protected void MethodC(){}

 // Accessible from within the same assembly.

 internal void MethodD(){}

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-105 I ♡ Flyheart-

 // Internal or protected access.

 protected internal void MethodE(){}

 // Private by default.

 void MethodF(){}

}

Methods that are declared public are directly accessible from an object instance. Private
methods cannot be accessed by an object instance, but instead are called internally by
the object to help the instance get its work done (that is, private helper functions). To
illustrate, the Teenager class shown next defines two public methods, Complain() and
BeAgreeable(), each of which returns a string to the object user. Internally, both methods
make use of a private helper method named GetRandomNumber(), which manipulates a
private member variable of type System.Random:

// Two public methods, each using an internal helper function.

using System;

class Teenager

{

 // The System.Random type generates random numbers.

 private Random r = new Random();

 public string Complain()

 {

 string[] messages = new string[5]{"Do I have to?",

 "He started it!", "I'm too tired...",

 "I hate school!", "You are sooo wrong."};

 return messages[GetRandomNumber(5)];

 }

 public string BeAgreeable()

 {

 string[] messages = new string[3]{"Sure! No problem!",

 "Uh uh.", "I guess so."};

 return messages[GetRandomNumber(3)];

 }

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-106 I ♡ Flyheart-

 // Private function used to grab a random number.

 private int GetRandomNumber(short upperLimit)

 {

 // Random.Next() returns a random integer between 0 and upperLimit.

 return r.Next(upperLimit);

 }

 public static void Main(string[] args)

 {

 // Let mike complain.

 Teenager mike = new Teenager();

 for(int i = 0; i < 10; i++)

 {

 Console.WriteLine(mike.Complain());

 }

 }

}

Obviously the benefit of defining GetRandomNumber() as a private helper method is that
various parts of the Teenager class can make use of its functionality. The only alternative
would be to duplicate the random number logic within the Complain() and BeAgreeable()
methods (which in this case would not be too traumatic, but assume GetRandomNumber()
contains 20 or 30 lines of code). Figure 2-16 shows a possible test run.

Figure 2-16: Random complaints

Note the use of the System.Random type. This class (obviously) is used to generate and
manipulate random numbers. Random.Next() method returns a number between 0 and

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-107 I ♡ Flyheart-

the specified upper limit. As you would guess, the Random class provides additional
members, all of which are documented within online Help.

Static Methods and Instance Methods

As you have seen, methods can be declared "static." So, what does it mean to be a static
method? When a method is marked with the static keyword, it may be called directly from
the class level, and does not require an object instance. For this very reason, Main() is
declared static to allow the runtime to invoke this function without needing to allocate a
new instance of the defining class. This is a good thing of course, or else you would need
to create an object to create an object to create an object to (...).

To illustrate custom static methods, assume I have reconfigured the Complain() method
as follows:

// Teenagers complain so often, there is no need to create an initial object...

public static string Complain()

{

 string[] messages = new string[5]{"Do I have to?",

 "He started it!", "I'm too tired...",

 "I hate school!", "You are sooo wrong."};

 return messages[GetRandomNumber(5)];

}

Calling a static method is simple. Just append the member to the name to the defining
class:

// Call the static Complain method of the Teenager class.

public static void Main(string[] args)

{

 for(int i = 0; i < 40; i++)

 Console.WriteLine(Teenager.Complain());

}
Nonstatic (instance) methods are methods that are scoped at the object level. Thus, if
Complain() was not marked static, you would need to create an instance of the Teenager
class before you could hear about the gripe of the day:

// Must make an instance of Teenager class to call instance methods.

Teenager joe = new Teenager();

joe.Complain();

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-108 I ♡ Flyheart-

SOURCE
CODE

The Teenager application is located under the Chapter 2
subdirectory.

Defining Static Data

In addition to static methods, a C# class may also define static data members. Recall that
a class typically defines a set of state data. This simply means that each object instance
maintains an internal copy of the underlying values. Thus, if you have a class defined as
follows:

// We all love Foo.

class Foo

{

 public int intFoo;

}

you can create any number of objects of type Foo and set the intFoo field to a unique
value:

// Each Foo reference maintains a copy of the intFoo field.

Foo f1 = new Foo();

f1.intFoo = 100;

Foo f2 = new Foo();

f2.intFoo = 993;

Foo f3 = new Foo();

f3.intFoo = 6;

Static data, on the other hand, is shared among all object instances. Rather than each
object holding a copy of a given field, a point of static data is allocated exactly once.
Assume you have a class named Airplane that contains a single point of static data. In the
constructor of the Airplane class you increment this data point. Here is the initial
definition:

// Note the use of static keyword.

class Airplane

{

 // This static data member is shared by all Airplane objects.

 private static int NumberInTheAir = 0;

 public Airplane()

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-109 I ♡ Flyheart-

 {

 NumberInTheAir++;

 }

 // Get value from an object instance.

 public int GetNumberFromObject() { return NumberInTheAir;}

 // Get value from class.

 public static int GetNumber() { return NumberInTheAir;}

}

Notice that the Airplane class defines two methods. The static GetNumber() returns the
current number of airplane objects that have been allocated by the application.
GetNumberFromObject() also returns the static NumberInTheAir integer, however given
that this method has not been defined as static, the object user must call this method from
an instance of Airplane. To illustrate, observe the following usage:

// Make some airplanes are examine the static members.

class StaticApp

{

 public static int Main(string[] args)

 {

 // Make some planes.

 Airplane a1 = new Airplane();

 Airplane a2 = new Airplane();

 // How many are in flight?

 Console.WriteLine("Number of planes: {0}",

 a1.GetNumberFromObject());

 Console.WriteLine("Number of planes: {0}", Airplane.GetNumber());

 // More planes!

 Airplane a3 = new Airplane();

 Airplane a4 = new Airplane();

 // Now how many?

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-110 I ♡ Flyheart-

 Console.WriteLine("Number of planes: {0}",

 a3.GetNumberFromObject());

 Console.WriteLine("Number of planes: {0}", Airplane.GetNumber());

 return 0;

 }

}
Figure 2-17 shows the output.

Figure 2-17: Static data is shared among all like objects

As you can see, all instances of the Airplane class are sharing (i.e., viewing) the same
point of data. That's the point of static data: To allow all objects to share a given value at
the class (rather than at the object) level.

SOURCE
CODE

The StaticTypes project is located under the Chapter 2
subdirectory.

An Interesting Aside: Some Static Members of the Environment Class

Environment is yet another class defined within the System namespace. This class
represents a type exposing a number of details regarding the operating system currently
hosting your .NET application. Each detail is obtained using various static members. To
illustrate:

// Here are some (but not all) of the interesting

// static members of the Environment class.

using System;

class PlatformSpy

{

 public static int Main(string[] args)

 {

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-111 I ♡ Flyheart-

 // OS?

 Console.WriteLine("Current OS: {0}", Environment.OSVersion);

 // Directory?

 Console.WriteLine("Current Directory: {0}",

 Environment.CurrentDirectory);

 // Here are the drives on this box.

 string[] drives = Environment.GetLogicalDrives();

 for(int i = 0; i < drives.Length; i++)

 Console.WriteLine("Drive {0} : {1}", i, drives[i]);

 // Which version of the .NET platform?

 Console.WriteLine("Current version of .NET: {0}",

 Environment.Version);

 return 0;

 }

}
The output can be seen in Figure 2-18.

Figure 2-18: Basic environment variables

SOURCE
CODE

The PlatformSpy example is located under the Chapter 2
subdirectory.

Method Parameter Modifiers
Methods tend to take parameters. If you have a COM background, you are certainly
familiar with the use of the [in], [out] and [in, out] IDL attributes. Classic COM objects use

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-112 I ♡ Flyheart-

these attributes to clearly identify the direction of travel (and memory allocation rules) for
a given interface method parameter. While IDL is not used in the .NET universe, there is
analogous behavior with the set of C# parameter modifiers shown in Table 2-9.

Table 2-9: C# Parameter Modifiers

PARAMETER
MODIFIER MEANING IN LIFE

(none) If a parameter is not marked with a parameter
modifier, it is assumed to be an input parameter
passed by value. This is analogous to the IDL [in]
attribute.

out This is analogous to an IDL [out] parameter. Output
parameters are assigned by the called member.

ref Analogous to the IDL [in, out] attribute. The value is
assigned by the caller, but may be reassigned during
the scope of the method call.

params This parameter modifier allows you to send in a
variable number of parameters as a single
parameter. A given method can only have a single
params modifier, and must be the final parameter of
the method. This is (roughly) analogous to a COM
SAFEARRAY.

First you have the use of implicit input and explicit output parameters. Here is a version of
an Add() method that returns the summation of two integers using the C# out keyword:

// Output parameters are allocated by the callee.

public void Add(int x, int y, out int ans)

{

 ans = x + y;

}

Calling a method with output parameters also requires the use of the out keyword. For
example:

// Assume the Add() method is defined in a class named Methods.

public static void Main()

{

...

 Methods m = new Methods();

 int ans; // No need to assign before use when a variable is used ala

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-113 I ♡ Flyheart-

out.

 // Note use of out keyword in calling syntax.

 m.Add(90, 90, out ans);

 Console.WriteLine("90 + 90 = {0}", ans);

}

As you are aware, this incarnation of Add() is logically equivalent to the following:

// A slightly more natural Add() method.

public int Add(int x, int y)

{

 return x + y;

}

Reference parameters are necessary when you wish to allow a method to operate (and
usually change the values of) various parameters (such as a sort routine). Note the
distinction between output and reference parameters:

 Output parameters do not need to be initialized before they are sent to the

callee. Reason? It is assumed the method fills the value on your behalf.
 Reference parameters must be initialized before being sent to the callee.

Reason? You are passing a reference to an existing type. If you don't assign
it to an initial value, that would be the equivalent to operating on a NULL
pointer!

Let's illustrate the use of the ref keyword:

// Reference parameter.

public void UpperCaseThisString(ref string s)

{

 // Return the uppercase version of the string.

 s = s.ToUpper();

}

// ...meanwhile back in Main()...

public static void Main()

{

 ...

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-114 I ♡ Flyheart-

 // Use 'ref'.

 string s = "Can you really have sonic hearing for $19.00?";

 Console.WriteLine("Before: {0}", s);

 m.UpperCaseThisString(ref s);

 Console.WriteLine("After: {0}", s);

}
The final parameter modifier is the params keyword, which is somewhat odd (but
convenient) given that it allows you to send a varied number of parameters as a single
parameter. Yes, this can be confusing. To clear the air, assume I have written a simple
method defined as follows:

// This method has two physical parameters.

public void DisplayArrayOfInts(string msg, params int[] list)

{

 Console.WriteLine(msg);

 for (int i = 0 ; i < list.Length ; i++)

 Console.WriteLine(list[i]);

}
This method has been defined to take two physical parameters: one of type string, and
one as a parameterized array of integers. What this method is in fact saying is "Send me
a string as the first parameter and any number of integers as the second." You can call
ArrayOfInts() in any of the following ways:

// Use 'params' keyword.

int[] intArray = new int[3] {10,11,12};

m.DisplayArrayOfInts ("Here is an array of ints", intArray);

m.DisplayArrayOfInts ("Enjoy these 3 ints", 1, 2, 3);

m.DisplayArrayOfInts ("Take some more!", 55, 4, 983, 10432, 98, 33);

Looking at the previous code, you can see that the bolded items in a given invocation
correspond to the second parameter (the array of integers). Of course, you do not have to
make use of simple numeric value types when using the params keyword. Assume
Person is now defined as so:

// Yet another person class.

class Person

{

 private string fullName;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-115 I ♡ Flyheart-

 private byte age;

 public Person(string n, byte a)

 {

 fullName = n;

 age = a;

 }

 public void PrintInfo()

 {

 Console.WriteLine("{0} is {1} years old", fullName, age);

 }

}
Now assume that your Methods class defines another method to make use of the params
keyword. This time however, you specify an array of objects, which boils down to anything.
With this logic, you can test for an incoming Person type. If you find one, you call the
PrintInfo() method. If you do not have a Person type, just dump the info to the console:

// What did they send me this time?

public void DisplayArrayOfObjects(params object[] list)

{

 for (int i = 0 ; i < list.Length ; i++)

 {

 if(list[i] is Person) // Is the current item a Person type?

 {

 ((Person)list[i]).PrintInfo(); // If so, call some methods.

 }

 else

 Console.WriteLine(list[i]);

 }

 Console.WriteLine();

}
The calling logic can be seen here (the output appears in Figure 2-19):

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-116 I ♡ Flyheart-

Figure 2-19: Params keyword in action

// Make some objects.

Person p = new Person("Fred", 93);

m.DisplayArrayOfObjects(777, p, "I really am an instance of System.String");

So there! As you can see, C# allows you to work with parameters on many different levels.
For the C++ programmers in the world, you should be able to map the C# output and
reference parameters to pointer (or C++ reference) primitives without the ugly * and &
operators.

SOURCE
CODE

The MethodsAndParams project is located under the Chapter
2 subdirectory.

Array Manipulation in C#

Mechanically, C# arrays look and feel much like their C, C++, or Java counterparts. As
you'll see in just a moment, all C# arrays actually derive from the System.Array base
class, and therefore share a common set of members.

Formally speaking, an array is a collection of data points (of the same underlying type),
that are accessed using a numerical index. As you might assume, arrays can contain any
intrinsic type defined by C#, including arrays of objects, interfaces, or structures. In C#,
arrays can be single or multidimensional, and must be declared with the square brackets
([]) placed after the data type of the array. For example:

// A string array containing 10 elements {0, 1, ..., 9}

string[] booksOnCOM;

booksOnCOM = new string[10];

// A 2 item string array, numbered {0, 1}

string[] booksOnPL1 = new string[2];

// 100 item string array, numbered {0, 1, ..., 99}

string[] booksOnDotNet = new string[100];

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-117 I ♡ Flyheart-

As you can see, the first example declares the type and size of the array on two separate
lines. The final two examples illustrate that you are also able to declare and construct
your array on a single line (just like any object). In either case, notice that you are
required to make use of the "new" keyword when you are constructing an array of an
initial fixed size. Thus, the following array declaration is illegal:

// Need 'new' keyword when you define a fixed size array.

int[4] ages = {30, 54, 4, 10}; // Error!

Remember that the size of an array is established when it is created, not when it is
declared. Therefore, if you choose to declare an array with a fixed initial size, you must
use the new operator. However, if you would rather let the compiler determine the size of
the array, you are free to use the following shorthand notation:

// The size of this array will automatically be set to 4.

// Note the lack of the 'new' keyword and empty [].

int[] ages = {20, 22, 23, 0};

Like many languages, member initialization can be achieved using curly bracket notation
({}) rather than assigning values member by member. Therefore, the following two arrays
are identical:

// Initialize each member at declaration OR...

string[] firstNames = new string[5]{"Steve", "Gina", "Swallow", "Baldy",

 "Gunner"};

// ...assign values member by member.

string[] firstNames = new string[5];

firstNames[0] = "Steve";

firstNames[1] = "Gina";

firstNames[2] = "Swallow";

firstNames[3] = "Baldy";

firstNames[4] = "Gunner";

One final difference between C(++)and C# arrays is that every member in an array is
automatically set to a default value. For example, if you have an array of numerical types,
each member is set to 0, arrays of objects begin life set to null, and so forth.

Working with Multidimensional Arrays

In addition to the single dimension arrays you have seen thus far, C# also supports two
varieties of multidimensional arrays. The first of these is termed a "rectangular array."

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-118 I ♡ Flyheart-

This type is simply an array of multiple dimensions, where each row is of the same length.
To declare and fill a multidimensional rectangular array, proceed as follows:

// A rectangular MD array.

int[,] myMatrix;

myMatrix = new int[6,6];

// Populate (6 * 6) array.

for(int i = 0; i < 6; i++)

 for(int j = 0; j < 6; j++)

 myMatrix[i, j] = i * j;

// Show (6 * 6) array.

for(int i = 0; i < 6; i++)

{

 for(int j = 0; j < 6; j++)

 {

 Console.Write(myMatrix[i, j] + "\t");

 }

 Console.WriteLine();

}
The output is seen in Figure 2-20 (note the rectangular nature of the array).

Figure 2-20: A rectangular array

The second type of multidimensional array is termed a "jagged" array. As the name
implies, jagged arrays contain some number of inner arrays, each of which may have a
unique upper limit. For example:

// A jagged MD array (i.e. an array of arrays).

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-119 I ♡ Flyheart-

// Here we have an array of 5 different arrays.

 int[][] myJagArray = new int[5][];

// Create the jagged array.

for (int i = 0; i < myJagArray.Length; i++)

{

 myJagArray[i] = new int[i + 7];

}

// Print each row (remember, each element is defaulted to zero!)

for(int i = 0; i < 5; i++)

{

 Console.Write("Length of row {0} is {1}:\t", i, myJagArray[i].Length);

 for(int j = 0; j < myJagArray[i].Length; j++)

 {

 Console.Write(myJagArray[i][j] + " ");

 }

 Console.WriteLine();

}
The output is seen in Figure 2-21 (note the jaggedness of the array).

Figure 2-21: A jagged array

Now that you understand how to build and populate C# arrays, you can turn your
attention to the ultimate base class of any array, System.Array.

The System.Array Base Class

The most striking difference between C and C++ arrays is the fact that every array you
create is automatically derived from System.Array. This class defines a number of helpful
methods that make working with arrays much more palatable. Table 2-10 gives a
rundown of some (but not all) of the more interesting members.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-120 I ♡ Flyheart-

Table 2-10: Select Members of System.Array

MEMBER OF
ARRAY CLASS MEANING IN LIFE

BinarySearch() This static method is applicable only if the items in the
array implement the IComparer interface (see Chapter
4). If so, BinarySearch() finds a given item.

Clear() This static method sets a range of elements in the
array to empty values (0 for value items, null for object
references).

CopyTo() Used to copy elements from the source array into the
destination array.

GetEnumerator() Returns the IEnumerator interface for a given array. I
address interfaces in Chapter 4, but for the time being,
keep in mind that this interface is required by the
foreach construct.

GetLength()

Length

The GetLength() method is used to determine the
number of elements in a given dimension of the array.
Length is a read-only property.

GetLowerBound();

GetUpperBound()

As you can guess, these two methods can be used to
determine the bounds of a given dimension.

GetValue()

SetValue()

Retrieves or sets the value for a given index in the
array. These methods have been overloaded to work
with single and multidimensional arrays.

Reverse() This static method reverses the contents of a
one-dimensional array.

Sort() Sorts a one-dimensional array of intrinsic types. If the
elements in the array implement the IComparer
interface, you can also sort your custom types (again,
see Chapter 4).

Let's see some of these members in action. The following code makes use of the static
Reverse() and Clear() methods (and the Length property) to pump out some information
about the firstName array to the console:

// Create some string arrays and exercise some System.Array members.

class Arrays

{

 public static int Main(string[] args)

 {

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-121 I ♡ Flyheart-

 // Array of strings.

 string[] firstNames = new string[5]{"Steve", "Gina", "Swallow",

 "Baldy", "Gunner"};

 // Print out names in declared order.

 Console.WriteLine("Here is the array:");

 for(int i = 0; i < firstNames.Length; i++)

 Console.Write(firstNames[i] + "\t");

 // Flip things around using the static Reverse() method...

 Array.Reverse(firstNames);

 // ... and print them.

 Console.WriteLine("Here is the array once reversed:");

 for(int i = 0; i < firstNames.Length; i++)

 Console.Write(firstNames[i] + "\t");

 // Clear out all but young gunner.

 Console.WriteLine("Cleared out all but one...");

 Array.Clear(firstNames, 1, 4);

 for(int i = 0; i < firstNames.Length; i++)

 {

 Console.Write(firstNames[i] + "\t\n");

 }

 return 0;

 }

}
The output can be seen in Figure 2-22.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-122 I ♡ Flyheart-

Figure 2-22: Fun with System.Array

The ability to treat arrays as objects has been a luxury long known by the Java
programmers of the world (among others). With C# and the .NET platform, traditional
Windows developers now have the same benefits (as a happy side note, you can forget
about the horrors of manipulating the COM SAFEARRAY structure ... at least after you
have read Chapter 12).

SOURCE
CODE

The Arrays application is located under the Chapter 2
subdirectory.

String Manipulation in C#
As you have already seen, string is a native data type in C#. However, like all intrinsic
types, string actually aliases a type in the .NET library, which in this case is System.String.
System.String provides a number of methods you would expect from such a utility class,
including methods that return the length, find sub-strings, convert to and from
uppercase/lowercase, and so forth. Table 2-11 lists some (but by no means all) of the
interesting members.

Table 2-11: Select Members of System.String

MEMBER
OF STRING
CLASS MEANING IN LIFE

Length This property returns the length of the current string.

Concat() This static method of the String class returns a new string
that is composed of two discrete strings.

CompareTo() Compares two strings.

Copy() This static method returns a fresh new copy of an existing
string.

Format() Used to format a string using other primitives (i.e.,
numerical data, other strings) and the {0} notation

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-123 I ♡ Flyheart-

Table 2-11: Select Members of System.String

MEMBER
OF STRING
CLASS MEANING IN LIFE

examined earlier in this chapter.

Insert() Used to insert a string within a given string.

PadLeft()

PadRight()

These methods are used to pad a string with some
character.

Remove()

Replace()

Use these methods to receive a copy of a string, with
modifications (characters removed or replaced).

ToUpper()

ToLower()

Creates a copy of a given sting in uppercase or lowercase.

You should be aware of a few aspects of C# string manipulation. First, although the string
data type is a reference type, the equality operators (= = and !) are defined to compare
the values of string objects, not the memory to which they refer. The addition operator (+)
has been overloaded as a shorthand alternative to calling Concat():

// == and != are used to compare the values within strings.

// + is used for concatenation.

public static int Main(string[] args)

{

 System.String strObj = "This is a TEST";

 string s = "This is another TEST";

 // Test for equality between the stings.

 if(s = = strObj)

 Console.WriteLine("Same info...");

 else

 Console.WriteLine("Not the same info...");

 // Concatenation.

 string newString = s + strObj;

 Console.WriteLine("s + strObj = {0}", newString);

 // System.String also defines a custom indexer to access each

 // character in the string.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-124 I ♡ Flyheart-

 for(int k = 0; k < s.Length; k++)

 Console.WriteLine("Char {0} is {1}", k, s[k]);

 return 0;

}

When you run this program, you are able to verify that the two string objects (s and strObj)
do not contain the same values, and therefore, the test for equality fails. When you
examine the contents of newString, you will see it is indeed "This is another TESTThis is
a TEST." Finally, notice that you can access the individual characters of a string using the
index operator ([]).

Escape Characters and Verbatim Strings

Like C(++) and Java, C# strings can contain any number of escape characters:

// Escape characters (\t, \\, \n, et. al.)

string anotherString;

anotherString = "Every programming book needs \"Hello World\"";

Console.WriteLine("\t" + anotherString);

anotherString = "c:\\CSharpProjects\\Strings\\string.cs";

Console.WriteLine("\t" + anotherString);
In case you are a bit rusty with the meaning behind these escape characters, Table 2-12
should refresh your memory.

Table 2-12: String Escape Characters

ESCAPE
CHARACTER

MEANING IN LIFE

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be
quite helpful when defining file paths.

\a Triggers a system alert.

\b Triggers a backspace.

\f Triggers a form feed.

\n Inserts a new line.

\r Inserts a carriage return.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-125 I ♡ Flyheart-

Table 2-12: String Escape Characters

ESCAPE
CHARACTER

MEANING IN LIFE

\t Inserts a horizontal tab into the string literal.

\u Inserts a Unicode character into the string literal.

\v Inserts a vertical tab into the string literal.

\0 Represents a NULL character.

In addition to traditional escape characters, C# introduces the @-quoted string literal
notation. Strings that support the @ prefix are termed "verbatim strings." Using verbatim
strings, you are able to bypass the use of cryptic escape characters and define your
literals as follows:

// The @ string turns off the processing of escape characters.

string finalString = @"\n\tString file: 'C:\CSharpProjects\Strings\string.cs'";

Console.WriteLine(finalString);
The output of the string program can be seen next (Figure 2-23). Notice how the output is
prefixed with "\n\t", as these escape characters are not processed in @-quoted strings.

Figure 2-23: Fun with System.String

Using System.Text.StringBuilder

One thing to be very aware of with regard to C# strings: The value of a string cannot be
modified once established. Like Java, C# strings are immutable. In fact, if you examine
the methods of System.String, you notice that the methods that seem to internally modify
a string, in fact return a modified copy of the string. For example, when you send the
ToUpper() message to a string object, you are not modifying the underlying buffer, but are
returned a fresh copy of the buffer in uppercase form:

// Make changes to this string? Not really...

System.String strFixed = "This is how I began life";

Console.WriteLine(strFixed);

string upperVersion = strFixed.ToUpper(); // Returns an uppercase copy of

strFixed.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-126 I ♡ Flyheart-

Console.WriteLine(strFixed);

Console.WriteLine(upperVersion);

It can become slightly annoying to have to work with copies of copies of strings. To help
ease the pain, the System.Text namespace defines a class named StringBuilder. This
class operates much more like an MFC CString or ATL CComBSTR, in that any
modifications you make to the StringBuilder instance affect the underlying buffer (and is
thus more efficient):

// Play with the StringBuilder class.

using System;

using System.Text; // StringBuilder lives here!

class StringApp

{

 public static int Main(string[] args)

 {

 // Create a StringBuilder and change the underlying buffer.

 StringBuilder myBuffer = new StringBuilder("I am a buffer");

 myBuffer.Append(" that just got longer...");

 Console.WriteLine(myBuffer);

 return 0;

 }

}

Beyond appending to your internal buffer, the StringBuilder class allows you to replace
and remove characters at will. Once you have established the state of your buffer, call
ToString() to store the final result into a System.String data type:

// Play with the StringBuilder class.

using System;

using System.Text; // StringBuilder lives here!

class StringApp

{

 public static int Main(string[] args)

 {

 // Play with the StringBuilder class some more...

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-127 I ♡ Flyheart-

 StringBuilder myBuffer = new StringBuilder("I am a buffer");

 myBuffer.Append(" that just got longer...");

 Console.WriteLine(myBuffer);

 myBuffer.Append("and even longer.");

 Console.WriteLine(myBuffer);

 // Transfer the buffer to an uppercase fixed string.

 string theReallyFinalString = myBuffer.ToString().ToUpper();

 Console.WriteLine(theReallyFinalString);

 return 0;

 }

}

As you might assume, StringBuilder contains additional methods and properties beyond
those examined here. I leave it to you to drill into more specifics at your leisure.

SOURCE
CODE

The Strings project is located under the Chapter 2
subdirectory.

C# Enumerations

Often it is convenient to create a set of symbolic names for underlying numerical values.
For example, if you are creating an employee payroll system, you may wish to use the
constants VP, Manager, Grunt and Contractor rather than raw numerical values such as
{0, 1, 2, 3}. Like C(++), C# supports the notion of custom enumerations for this very
reason. For example, here is the EmpType enumeration:

// A custom enumeration.

enum EmpType

{

 Manager, // = 0

 Grunt, // = 1

 Contractor, // = 2

 VP // = 3

}

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-128 I ♡ Flyheart-

The EmpType enumeration defines four named constants, corresponding to discrete
numerical values. In C#, the numbering scheme sets the first element to zero (0) by
default, followed by an n+1 progression. You are free to change this behavior as you see
fit, thus:

// Begin with 102.

enum EmpType

{

 Manager = 102,

 Grunt, // = 103

 Contractor, // = 104

 VP // = 105

}

Enumerations do not necessarily need to follow a sequential ordering. If (for some reason)
it made good sense to establish your EmpType as seen here, the compiler continues to
be happy:

// Elements of an enumeration need not be sequential!

enum EmpType

{

 Manager = 10,

 Grunt = 1,

 Contractor = 100,

 VP = 9

}

Under the hood, the storage type used for each item in an enumeration automatically
maps to an integer by default, however you are also free to change this to your liking. For
example, if you want to set the underlying storage value of EmpType to be a byte rather
than an int, you would write the following:

// This time, EmpType maps to an underlying byte.

enum EmpType : byte

{

 Manager = 10,

 Grunt = 1,

 Contractor = 100,

 VP = 9

}

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-129 I ♡ Flyheart-

C# enumerations can be defined in a similar manner for any of the core system types
(byte, sbyte, short, ushort, int, uint, long, or ulong).

Once you have established the range and storage type of your enumeration, you can use
them in place of so-called "magic numbers.'" Assume you have a class defining a static
public function, taking EmpType as the sole parameter:

using System;

class EnumClass

{

 public static void AskForBonus(EmpType e)

 {

 switch(e)

 {

 case EmpType.Contractor:

 Console.WriteLine("You already get enough cash...");

 break;

 case EmpType.Grunt:

 Console.WriteLine("You have got to be kidding...");

 break;

 case EmpType.Manager:

 Console.WriteLine("How about stock options instead?");

 break;

 case EmpType.VP:

 Console.WriteLine("VERY GOOD, Sir!");

 break;

 default: break;

 }

 }

 public static int Main(string[] args)

 {

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-130 I ♡ Flyheart-

 // Make a contractor type.

 EmpType fred;

 fred = EmpType.Contractor;

 AskForBonus(fred);

 return 0;

 }

}

System.Enum Base Class

The interesting thing about C# enumerations is that they implicitly derive from
System.Enum. This base class defines a number of methods that allow you interrogate
and transform a given enumeration. First, System.Enum defines a static method named
GetUnderlyingType(), which resolves (pardon the redundancy) the underlying data type
used to represent this enumeration:

// Get underlying type (System.Byte for our current example).

Console.WriteLine(Enum.GetUnderlyingType(typeof(EmpType)));

Of greater interest is the ability to extract the named constant behind the numerical values.
How many times have you had to perform transformational logic between a C++
enumeration and the underlying strings? Using the static Enum.Format() method, the
dirty work has been done on your behalf. In the previous example, an EmpType variable
named "fred" was established as a Contractor (which is mapped to the value 100) was
established. To extract the corresponding string, just call Enum.Format(), specifying the
type of enumeration you wish to investigate and the desired format flag. In this context
"G" marks a string value (you may also specify the hexadecimal value (x) or decimal
value (d)):

// The following pumps the string "You are a Contractor" to the console:

EmpType fred;

fred = EmpType.Contractor;

Console.WriteLine("You are a {0}", Enum.Format(typeof(EmpType), fred, "G"));

System.Enum also defines another static method named GetValues(). This method
returns an instance of System.Array. Each item in the array corresponds to a member of
the specified enumeration. Thus:

// Get all statistics for the EmpType enumeration.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-131 I ♡ Flyheart-

Array obj = Enum.GetValues(typeof(EmpType));

Console.WriteLine("This enum has {0} members.", obj.Length);

// Now show the string name and associated value.

foreach(EmpType e in obj)

{

 Console.Write("String name: {0}", Enum.Format(typeof(EmpType), e, "G"));

 Console.Write(" ({0})", Enum.Format(typeof(EmpType), e, "D"));

 Console.Write(" hex: {0}\n", Enum.Format(typeof(EmpType), e, "X"));

}
The output is seen in Figure 2-24.

Figure 2-24: Fun with System.Enum

Next, let's explore the IsDefined property. This allows you to determine if a given string
name is a member of the current enumeration. For example, assume you wish to know if
the value "SalesPerson" is part of the EmpType enumeration:

// Does EmpType have a SalePerson value?

if(Enum.IsDefined(typeof(EmpType), "SalesPerson"))

 Console.WriteLine("Yep, we have sales people.");

else

 Console.WriteLine("No, we have no profits...");

Last but not least, it is worth pointing out that C# enumerations support the use of various
overloaded operators, which test against the assigned values. For example:

// Which of these two EmpType variables has the greatest numerical value?

EmpType Joe = EmpType.VP;

EmpType Fran = EmpType.Grunt;

if(Joe < Fran)

 Console.WriteLine("Joe's value is less than Fran's");

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-132 I ♡ Flyheart-

else

 Console.WriteLine("Fran's value is less than Joe's");

SOURCE
CODE

The Enum project is located under the Chapter 2 subdirectory.

Defining Structures in C#

While you have already encountered structures earlier in this chapter, structures deserve
a second look. C# structures behave very much like a custom class. Structures can take
constructors (provided they have arguments), can implement interfaces, and can contain
numerous members. C# structures do not have an identically named alias in the .NET
library (that is, there is no System.Structure class), but are implicitly derived from
ValueType. Recall that the role of ValueType is to configure the members of
System.Object to work with value based semantics. Here is a simple example:

// Our existing enumeration.

enum EmpType : byte

{

 Manager = 10, Grunt = 1,

 Contractor = 100, VP = 9

}

struct EMPLOYEE

{

 public EmpType title; // One of the fields is our custom enum.

 public string name;

 public short deptID;

}

class StructTester

{

 public static int Main(string[] args)

 {

 // Create and format Fred.

 EMPLOYEE fred;

 fred.deptID = 40;

 fred.name = "Fred";

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-133 I ♡ Flyheart-

 fred.title = EmpType.Grunt;

 return 0;

 }

}
You created an EMPLOYEE structure on the stack and manipulated each field using the
dot operator. To provide a more optimized construction of this type, you are free to define
additional custom constructors. Recall that you cannot redefine the default constructor for
a C# structure, as this is a reserved member. Given this fact, any custom constructors
must take some number of parameters:

// Structs may define custom constructors (if they have args).

//

struct EMPLOYEE

{

 // Fields.

 public EmpType title;

 public string name;

 public short deptID;

 // Constructor.

 public EMPLOYEE(EmpType et, string n, short d)

 {

 title = et;

 name = n;

 deptID = d;

 }

}

With this, you can create a new employee as follows:

class StructTester

{

 // Create and format Mary using a ctor.

 public static int Main(string[] args)

 {

 // Must use 'new' to call a custom constructor.

 EMPLOYEE mary = new EMPLOYEE(EmpType.VP, "Mary", 10);

 ...

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-134 I ♡ Flyheart-

 return 0;

 }

}

Structures can, of course, be used as parameters to any member function. For example,
assume the StructTester class defines a method named DisplayEmpStats():

// Extract interesting information from an EMPLOYEE structure.

public void DisplayEmpStats(EMPLOYEE e)

{

 Console.WriteLine("Here is {0}\'s info:", e.name);

 Console.WriteLine("Department ID: {0}", e.deptID);

 Console.WriteLine("Title: {0}", Enum.Format(typeof(EmpType), e.title, "G"));

}
Here is a test run of using DisplayEmpStats() (see Figure 2-25):

// Let Mary & Fred strut their stuff.

public static int Main(string[] args)

{

 ...

 StructTester t = new StructTester();

 t.DisplayEmpStats(mary);

 t.DisplayEmpStats(fred);

 return 0;

}

Figure 2-25: Fun with structures

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-135 I ♡ Flyheart-

(Un)Boxing Revisited

As mentioned earlier in this chapter, boxing and unboxing provide a convenient way to flip
between value types and reference types. Structures in general are a way to achieve the
bare bones benefits of object orientation (i.e., encapsulation) while having the efficiency
of stack allocated data. To convert a structure to an object reference, simply box the
value:

// Create and box a new employee.

EMPLOYEE stan = new EMPLOYEE(EmpType.Grunt, "Stan", 10);

object stanInBox = stan;

Because stanInBox is a reference-based data type, but still holds the internal values of
the original EMPLOYEE data type, you can use stan whenever an object is required, and
unbox as needed:

// Because we have boxed our value data type into a structure,

// we can unbox and manipulate the contents.

public void UnboxThisEmployee(object o)

{

 // Unbox into EMPLOYEE structure to get at the fields.

 EMPLOYEE temp = (EMPLOYEE)o;

 Console.WriteLine(temp.name + " is alive!");

}

Here is the calling logic and output:

// Send boxed employee in for processing.

t.UnboxThisEmployee(stanInBox);

Recall that the C# compiler automatically box values where appropriate. Therefore, it
would be permissible to directly pass stan (the EMPLOYEE type) into
UnboxThisEmployee() directly:

// Stan is boxed automatically.

t.UnboxThisEmployee(stan);

However, because you have defined UnboxThisEmployee() to take an object parameter,
you have no choice but to unbox this reference to access the fields of the EMPLOYEE
structure.

SOURCE
CODE

The Structures project is located under the Chapter 2
subdirectory.

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-136 I ♡ Flyheart-

Defining Custom Namespaces

To this point, you have been building small test programs leveraging existing
namespaces in the .NET universe. When you build real-life applications, it can be very
helpful to group your related types into custom namespaces. In C#, this is accomplished
using the "namespace" keyword.

Assume you are developing a collection of geometric classes named Square, Circle, and
Hexagon. Given their similarities you would like to group them all together into a shared
custom namespace. You have two basic approaches. First, you may choose to define
each class within a single file (shapeslib.cs) as follows:

// shapeslib.cs

namespace MyShapes

{

 using System;

 // Circle class.

 public class Circle{ // Interesting methods... }

 // Hexagon class.

 public class Hexagon{ // More interesting methods... }

 // Square class.

 public class Square{ // Even more interesting methods... }

}

Notice how the MyShapes namespace acts as the conceptual "container" of each type.
Alternatively, you can split a single namespace into multiple C# files. To do so, simply
wrap the given class definitions in the same namespace:

// circle.cs

namespace MyShapes

{

 using System;

 // Circle class.

 class Circle{ // Interesting methods... }

}

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-137 I ♡ Flyheart-

// hexagon.cs

namespace MyShapes

{

 using System;

 // Hexagon class.

 class Hexagon{ // More interesting methods... }

}

// square.cs

namespace MyShapes

{

 using System;

 // Square class.

 class Square{ // Even more interesting methods... }

}

Now, when another application you are building wishes to use these fine objects from
within its namespace, simply use the "using" keyword:

// Make use of objects defined in another namespace

namespace MyApp

{

using System;

using MyShapes;

class ShapeTester

{

 public static void Main()

 {

 // All defined in the MyShapes namespace.

 Hexagon h = new Hexagon();

 Circle c = new Circle();

 Square s = new Square();

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-138 I ♡ Flyheart-

 }

}

}

Resolving Name Clashes Across Namespaces

A namespace can also be used to avoid nasty name clashes across multiple
namespaces. Assume the ShapeTester class wishes to make use of a new namespace
termed My3DShapes, which defines three additional classes capable of rendering a
shape in stunning 3D:

// Another shapes namespace...

namespace My3DShapes

{

 using System;

 // 3D Circle class.

 class Circle{ }

 // 3D Hexagon class

 class Hexagon{ }

 // 3D Square class

 class Square{ }

}

If you update ShapesTester as was done here, you are issued a number of compile-time
errors, because both namespaces define identically named types:

// Ambiguities abound!

namespace MyApp

{

using System;

using MyShapes;

using My3DShapes;

class ShapeTester

 {

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-139 I ♡ Flyheart-

 public static void Main()

 {

 // Which namespace do I reference?

 Hexagon h = new Hexagon();

 Circle c = new Circle();

 Square s = new Square();

 }

 }

}
As one would hope, these errors are caught at compile time (Figure 2-26).

Figure 2-26: Ambiguous reference

Resolving the ambiguity is simply a matter of using "fully qualified names":

// We have now resolved the ambiguity.

public static void Main()

{

 My3DShapes.Hexagon h = new My3DShapes.Hexagon();

 My3DShapes.Circle c = new My3DShapes.Circle();

 MyShapes.Square s = new MyShapes.Square();

}

Defining Namespace Aliases

An alternative approach to resolving namespace ambiguity is accomplished through the
use of aliases. For example:

namespace MyApp

{

using System;

using MyShapes;

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-140 I ♡ Flyheart-

using My3DShapes;

// Make an alias to a class defined in another namespace.

using The3DHexagon = My3DShapes.Hexagon;

class ShapeTester

{

 public static void Main()

 {

 My3DShapes.Hexagon h = new My3DShapes.Hexagon();

 My3DShapes.Circle c = new My3DShapes.Circle();

 MyShapes.Square s = new MyShapes.Square();

 // Create a 3D hex using a defined alias:

 The3DHexagon h2 = new The3DHexagon();

 }

}

}

Nested Namespaces

The final point of interest with regard to namespaces, is the fact that you are free to nest
namespaces within other namespaces. The .NET base class libraries do so in numerous
places to provide an even deeper level of type organization. For example, if you wish to
create a higher level namespace that contained the existing My3DShapes namespace,
you could update our code as follows:

// The Chapter2Types.My3DShapes namespace contains 3 classes.

namespace Chapter2Types

{

 namespace My3DShapes

 {

 using System;

 // 3D Circle class.

 class Circle{ }

C# and the .NET Platform Chapter 2: C# Language Fundamentals

-141 I ♡ Flyheart-

 // 3D Hexagon class

 class Hexagon{ }

 // 3D Square class

 class Square{ }

 }

}
SOURCE
CODE

The Namespaces project is located under the Chapter 2
subdirectory.

Summary

This chapter has exposed you to the core atoms of the C# programming language. The
focus was to examine the constructs that will be commonplace in any application you may
be interested in building. First, every C# program must have a class defining a static
Main() method, which serves as the program's entry point. Within the scope of Main(),
you typically create any number of objects, which work together to breathe life into your
application.

As you have seen, all intrinsic C# data types alias a corresponding type in the System
namespace. Each system type has a number of methods that provide a programmatic
manner to obtain the range of the type.

You also peeked inside a number of classes that place an OO spin on common
programming constructs, such as arrays, strings, and enumerations, and took a tour of
their functionality. This chapter also illustrated the concept of boxing and unboxing. This
simple mechanism allows you to easily move between value-based and reference-based
data types. Finally, the chapter ends by explaining how to build your own custom
namespaces, and why you might want to do so.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-142 I ♡ Flyheart-

Chapter 3: Object-Oriented Programming with

C#

Overview
IN THE PREVIOUS CHAPTER YOU were introduced to a number of core constructs of
the C# language. Here, you will spend your time digging deeper into the details of
object-based development. I begin by reviewing the famed "pillars of OOP," and then
examine exactly how C# contends with the notions of encapsulation, inheritance, and
polymorphism. This will equip you with the knowledge you need in order to build custom
class hierarchies using C#.

During this process, you examine some new constructs such as establishing type (rather
than member) level visibility, building custom properties, and designing "sealed" classes.
You also gain an understanding of the use of structured exception handling to contend
with runtime errors. This chapter wraps up with an examination of the "managed heap,"
including how to programmatically interact with the .NET garbage collector using the
static methods defined by System.GC.

Formal Definition of the C# Class

If you have been "doing objects" in another programming language, you are no doubt
aware of the roll of class definitions. Formally, a class is nothing more than a custom UDT
(user defined type) that is composed of data (often called attributes or properties) and
functions that act on this data (often called methods in OO speak). The power of
object-based languages is that by grouping data and functionality in a single UDT, you
are able to model your software types after real-world entities.

For example, assume we are interested in modeling a generic employee. At minimum,
you may wish to build a class that maintains the name, current pay, and employee ID for
each worker. In addition, the Employee class defines one method named GiveBonus(),
which increases an individual's current pay by some amount, and another named
DisplayStats(), which prints out the relevant statistics for this individual (Figure 3-1).

Figure 3-1: A simple class definition

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-143 I ♡ Flyheart-

As you recall from Chapter 2, C# classes can define any number of constructors. These
special class methods provide a simple way for an object user to create an instance of a
given class with an initial look and feel. As you know, every C# class is endowed with a
freebee default constructor. The role of the default constructor is to ensure that all state
data is set to an initial safe value. In addition to the default constructor, you are also free
to supply as many custom constructors as you feel are necessary. To get the ball rolling,
here is our first crack at the Employee class:

// The initial class definition.

class Employee

{

 // Private state data.

 private string fullName;

 private int empID;

 private float currPay;

 // Constructors.

 public Employee(){}

 public Employee(string fullName, int empID, float currPay)

 {

 this.fullName = fullName;

 this.empID = empID;

 this.currPay = currPay;

 }

 // Bump the pay for this employee.

 public void GiveBonus(float amount)

 { currPay += amount; }

 // Show current state of this object.

 public virtual void DisplayStats()

 {

 Console.WriteLine("Name: {0}", fullName);

 Console.WriteLine("Pay: {0}", currPay);

 Console.WriteLine("ID: {0}", empID);

 Console.WriteLine("SSN: {0}", ssn);

 }

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-144 I ♡ Flyheart-

}

Notice the empty implementation of the default constructor:

class Employee

{

 // All member variables assigned to default values automatically.

 public Employee(){}

...

}
Like C++, if you choose to include custom constructors in a class definition, the default
constructor is silently removed. Therefore, if you wish to allow the object user to create an
instance of your class such as:

// Calls the default constructor.

Employee e = new Employee();

you need to explicitly redefine the default constructor for your class. If you forget to do so,
you generate compile time errors. Triggering the logic behind a constructor is
self-explanatory:

// Call some custom ctors (two approaches)

public static void Main()

{

 Employee e = new Employee("Joe", 80, 30000);

 e.GiveBonus(200);

 Employee e2;

 e2 = new Employee("Beth", 81, 50000);

 e2.GiveBonus(1000);

 e2.DisplayStats();

}
SOURCE
CODE

The Employees project that we examine during the course of
this chapter is included under the Chapter 3 subdirectory.

Self-Reference in C#

In the implementation of our custom constructor, you made use of the C# "this" keyword:

// Like C++ and Java, C# also supplies a 'this' keyword.

public Employee(string fullName, int empID, float currPay)

{

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-145 I ♡ Flyheart-

 this.fullName = fullName;

 this.empID = empID;

 this.currPay = currPay;

}

This particular C# keyword is used whenever you wish to make reference to the current
object instance. Visual Basic programmers can equate the C# "this" keyword with the VB
"Me" keyword. C++ and Java programmers should feel right at home, given that these
languages have an identically named "this" keyword used for the same purpose.

The reason you made use of "this" in your custom constructor was to avoid clashes
between the parameter names and names of our internal state variables. Of course,
another approach would be to change the names for each parameter and avoid the name
clash altogether (but I am sure you get the point). Also, be aware that static member
functions cannot access the "this" pointer. It should make perfect sense, as static member
functions operate on the class (not object) level.

Forwarding Constructor Calls Using "this"

Another use of the C# "this" keyword may also be used to force one constructor to call
another. Consider the following example:

class Employee

{

 public Employee(string fullName, int empID, float currPay)

 {

 this.fullName = fullName;

 this.empID = empID;

 this.currPay = currPay;

 }

// If the user calls this ctor, forward to the 3-arg version.

public Employee(string fullName)

 : this(fullName, IDGenerator.GetNewEmpID(), 0.0F) {}

...

}

First, notice that this iteration of the Employee class defines two custom constructors, the
second of which requires a single parameter (the individual's name). However, to fully
construct a new Employee, you want to ensure you have a proper Employee ID and rate
of pay. Assume you have a custom class (IDGenerator) that defines a static method
named GetNewEmpID() for this very purpose. Once you gather the correct set of start-up

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-146 I ♡ Flyheart-

parameters, you forward the creation request to the alternate three-argument constructor.
If you did not forward the call, you would need to add redundant code to each constructor:

// currPay automatically set to 0.0F...

public Employee(string fullName)

{

 this.fullName = fullName;

 this.empID = IDGenerator.GetNewEmpID();

}

Defining the Default Public Interface
Once you have established a class' internal state data and constructor set, your next step
is to flesh out the details of the default public interface to the class. The term refers to the
set of public members that is accessible from an object instance. From an object user's
point of view, the default public interface is the set of items that are accessible using the
C# dot operator. From the class builder's point of view, the default public interface is any
item declared in a class using the public keyword. In C#, the default interface of a class
may be populated by any of the following members:

 Methods: Named units of work that model some behavior of a class.
 Properties: Accessor and mutator functions in disguise.
 Fields: Public data (although this is typically a bad idea, C# supports them).

As you will see in Chapter 5, the default public interface of a class may also be configured
to support custom events. For the time being, let's concentrate on the use of properties,
methods, and field data.

Specifying Type Level Visibility: Public and Internal Types

Before we get too far along in our employee example, you must understand how to
establish visibility levels for your custom types. In the previous chapter, you were
introduced to the following class definition:

class HelloClass

{

 // Any number of methods with any number of parameters...

 // Default and/or custom constructors...

 // If this is the program's entry point, a static Main() method.

}
Recall that each member defined by a class must establish its level of visibility using the
public, private, protected, or internal keywords. In the same vein, C# classes also need to
specify their level of visibility. The distinction is that method visibility is used to constrain

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-147 I ♡ Flyheart-

which members can be accessed from a given object instance, and class visibility is used
to establish which parts of the system can create the types themselves.

A C# class can be marked by one of two visibility keywords: Public or internal. Public
classes may be created by any other objects within the same binary as well as by other
binaries (e.g., another assembly). Therefore, HelloClass could be redefined as follows:

// We are now creatable by members outside this assembly.

public class HelloClass

{

 // Any number of methods with any number of parameters...

 // Default or custom constructors...

 // If this is the program's entry point, a static Main() method.

}

By default, if you do not explicitly mark the visibility level of a class, it is implicitly set to
"internal." Internal classes can only be created by objects living within the same assembly,
and are not accessible from outside the assembly's bounds. As you might suspect,
internal items can be viewed as "helper types" used by an assembly's types to help the
internal classes get their work done:

// Internal classes can only be used by other types within the same assembly.

internal class HelloClassHelper

{

 ...

}

Classes are not the only UDT that can accept a visibility attribute. As you recall, a type is
simply a generic term used to refer to classes, structures, enumerations, interfaces, and
delegates. Any .NET type can be assigned public or internal visibility. For example:

// Any type may be assigned public or internal visibility.

namespace HelloClass

{

using System;

internal struct X // Cannot be used outside this assembly.

{

 private int myX;

 public int GetMyX() { return myX; } public X(int x){ myX = x; }

}

internal enum Letters // Cannot be used outside this assembly.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-148 I ♡ Flyheart-

{

 a = 0, b = 1, c = 2

}

public class HelloClass // May be used outside this assembly.

{

 public static int Main(string[] args)

 {

 X theX = new X(26);

 Console.WriteLine(theX.GetMyX() + "\n" + Letters.b.ToString());

 return 0;

 }

}

}
Logically, the previously defined types can be envisioned as shown in Figure 3-2.

Figure 3-2: Internal and public types

Chapter 6 drills into the specifics of composing .NET binaries. Until then, just understand
that all of your types may be defined as public (accessible by the outside world) or internal
(not accessible by the outside world).

Pillars of OOP

C# is a newcomer to the world of object-oriented languages (OOLs). Java, C++, Object
Pascal, and (to some extent) Visual Basic 6.0 are but a small sample of the popularity of
the object paradigm. Regardless of exactly when a given OOL came onto existence, all
object-based languages contend with three core principals of object-oriented
programming, often called the famed "pillars of OOP."

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-149 I ♡ Flyheart-

 Encapsulation: How well does this language hide an object's internal
implementation?

 Inheritance: How does this language promote code reuse?
 Polymorphism: How does this language let me treat related objects in a similar

way?

Before digging into the syntactic details of each pillar, it is important you understand the
basic role of each. Therefore, here is a brisk high-level rundown, just to clear off any
cobwebs you may have acquired between project deadlines.

Encapsulation Services

The first pillar of OOP is called encapsulation. This trait boils down to the language's
ability to hide unnecessary implementation details from the object user. For example,
assume you have created a class named DBReader (database reader), which has two
primary methods: Open() and Close():

// The database reader encapsulates the details of opening and closing a

database...

DBReader f = new DBReader();

f.Open(@"C:\foo.mdf");

 // Do something with database...

f.Close();

The fictitious DBReader class has encapsulated the inner details of locating, loading,
manipulating, and closing the data file. Object users love encapsulation, as this pillar of
OOP keeps programming tasks simpler. There is no need to worry about the numerous
lines of code that are working behind the scenes to carry out the work of the DBReader
class. All you do is create an instance and send the appropriate messages (e.g., "open
the file named foo.mdf").

Closely related to the notion of encapsulating programming logic is the idea of data hiding.
As you know, an object's state data should ideally be specified as private. In this way, the
outside world must ask politely in order to change or obtain the underlying value. This is a
good thing, as publicly declared data points can easily become corrupted (hopefully by
accident rather than intent!)

Inheritance: The "is-a" and "has-a" Relationships

The next pillar of OOP, inheritance, boils down to the languages' ability to allow you to
build new class definitions based on existing class definitions. In essence, inheritance
allows you to extend the behavior of a base (parent) class by inheriting core functionality
into a subclass (also called a 'child class'). Figure 3-3 shows a simple example.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-150 I ♡ Flyheart-

Figure 3-3: The "is-a" relationship

As you are aware, Object is always the top-most node in any .NET hierarchy. The Shape
class extends Object. You can assume that Shape defines some number of properties,
fields, methods, and events that are common to all shapes. The Hexagon class extends
Shape, and inherits the core functionality defined by Shape and Object, as well as defines
additional hexagon related details of its own (whatever those may be).

You can read this diagram as "A hexagon is-a shape that is-a object." When you have
classes related by this form of inheritance, you establish "is-a" relationships between
types. The is-a relationship is often termed classical inheritance.

There is another form of code reuse in the world of OOP: The containment/delegation
model (also known as the "has-a" relationship). This form of reuse is not used to establish
base/subclass relationships. Rather a given class can contain another class and expose
part or all of its functionality to the outside world.

For example, if you are modeling an automobile, you might wish to express the idea that a
car "has-a" radio. It would be illogical to attempt to derive the Car class from a Radio, or
visa versa (a Car "is-a" Radio? I think not!). Rather, you have two independent classes
working together, where the outer (or containing) class creates and exposes the inner (or
contained) class' functionality (Figure 3-4).

Figure 3-4: The "has-a" relationship

Here, the outer object (Car) is responsible for creating the inner (Radio) object. If the Car
wishes to make the Radio's behavior accessible from a Car instance, it must extend its
own public interface. Notice that the object user has no clue that the Car class is making
use of an inner object.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-151 I ♡ Flyheart-

// The inner Radio is encapsulated by the outer Car class.

Car viper = new Car();

viper.TurnOnRadio(false); // Delegates request to inner Radio object.

Polymorphism: Classical and Ad Hoc

The final pillar of OOP is polymorphism. This trait captures a language's ability to treat
related objects the same way. Like inheritance, polymorphism falls under two camps:
Classical and ad hoc. Classical polymorphism can only take place in languages that also
support classical inheritance. If this is the case (as it is in C#), it becomes possible for a
base class to define a set of members that can be overridden by a subclass. When
subclasses override the behavior defined by a baseclass, they are essentially redefining
how they respond to the same message.

To illustrate classical polymorphism, let's revisit the shapes hierarchy. Assume that the
Shape class has defined a function named Draw(), taking no parameters and returning
nothing. Given the fact that every shape needs to render itself in a unique manner,
subclasses (such as Hexagon and Circle) are free to reinterpret this method to their own
liking (Figure 3-5).

Figure 3-5: Classical polymorphism

Classical polymorphism allows a base class to enforce a given behavior on all
descendents. From Figure 3-5, you can assume that any object derived from the Shape
class has the ability to be rendered. This is a great boon to any language because you
are able to avoid creating redundant methods to perform a similar operation (e.g.,
DrawCircle(), DrawRectangle(), DrawHexagon(), and so forth).
Next, you have ad hoc polymorphism. This flavor of polymorphism allows objects that are
not related by classical inheritance to be treated in a similar manner, provided that every
object has a method of the exact same signature (that is, method name, parameter list,
and return type). Languages that support ad hoc polymorphism employ a technique
called late binding to discover at runtime the underlying type of a given object. Based on
this discovery, the correct method is invoked. As an illustration, first ponder Figure 3-6.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-152 I ♡ Flyheart-

Figure 3-6: Ad hoc polymorphism

Notice how there is no common base class between the CCircle, Chexagon, and
CRectangle classes. However, each class supports an identical Draw() method. To
illustrate what this boils down to syntactically, consider the following Visual Basic 6.0
code. Until the advent of VB.NET, Visual Basic did not support classical polymorphism (or
classical inheritance for that matter), forcing developers to make due with the following ad
hoc functionality:

' Visual Basic 6.0 code below!

' First create an array of Object data types, setting each to an object

reference.

Dim objArr(3) as Object

Set objArr(0) = New CCircle

Set objArr(1) = New CHexagon

Set objArr(2) = New CCircle

Set objArr(3) = New CRectangle

' Now loop over the array, asking each object to render itself.

Dim i as Integer

For i = 0 to 3

 objArr(i).Draw ' Late binding...

Next i

In this code block, you begin by creating an array of generic Object data types (which is
an intrinsic Visual Basic 6.0 type capable of holding any object reference, and has nothing
to do with System.Object). As you iterate over the array at runtime, each shape is asked
to render itself. Again, the key difference is that you have no common base class that
contains a default implementation of the Draw() method.

To wrap up this review of the pillars of OOP, recall that every object-oriented language
needs to address how it contends with encapsulation, polymorphism, and inheritance. As
you may already suspect, C# completely supports each pillar of object technology,
including both flavors of inheritance (is-a and has-a) as well as classical and ad hoc
polymorphism. Now that you have the theory in your minds, the bulk of this chapter
explores the exact C# syntax that represents each trait.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-153 I ♡ Flyheart-

The First Pillar: C#'s Encapsulation Services

The concept of encapsulation revolves around the notion that an object's internal data
should not be directly accessible from an object instance. Rather, if an object user wishes
to alter the state of an object, it does so indirectly using accessor and mutator methods. In
C#, encapsulation is enforced at the syntactic level using the public, private, and
protected keywords. To illustrate, assume you have created the following class definition:

// A class with a single field.

public class Book

{

 public int numberOfPages;

...

}

When a class defines points of public data, we term these items fields. The problem with
field data is that the items have no ability to "understand" if the current value to which they
are assigned is valid with regard to the current business rules of the system. As you know,
the upper range of a C# integer is quite large (2,147,483,647). Therefore, the compiler
allows the following assignment:

// Humm...

public static void Main()

{

 Book miniNovel = new Book();

 miniNovel.numberOfPages = 30000000;

}

Although we have not overflowed the boundaries of an integer data type, it should be
clear that a mini-novel with a page count of 30,000,000 pages is a bit unreasonable. As
you can see, fields do not provide a way to trap logical upper (or lower) limits. If your
current system has a business rule that states a book must be between 1 and 2000 pages,
you are at a loss to enforce this programmatically. Because of this, public fields typically
have no place in a production level class definition.

Encapsulation provides a way to preserve the integrity of state data. Rather than defining
public fields (which can easily foster data corruption), you should get in the habit of
defining private data, which are indirectly manipulated using one of two main techniques:

 Define a pair of traditional accessor and mutator methods.
 Define a named property.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-154 I ♡ Flyheart-

Additionally, C# supports a special keyword, "readonly," which also delivers a form of
data protection. Whichever technique you choose, the point is that a well-encapsulated
class should hide the details of how it operates from the prying eyes of the outside world.
This is often termed "black box" programming. The beauty of this approach is that an
object is free to change how a given method is implemented under the hood, without
breaking any existing code making use of it, provided that the signature of the method
remains constant.

Enforcing Encapsulation Using Traditional Accessors and Mutators

Let's return to your existing Employee class. If you want the outside world to interact with
your private string representing a worker's full name, tradition dictates defining an
accessor (get method) and mutator (set method). For example:

// Traditional accessor and mutator for a point of private data.

public class Employee

{

 private string fullName;

...

 // Accessor.

 public string GetFullName() { return fullName; }

 // Mutator.

 public void SetFullName(string n)

 {

 // Remove any illegal characters (!, @, #, $, %),

 // check maximum length or case before making assignment.

 fullName = n;

 }

}

This technique requires two uniquely named methods to operate on a single data point.
The calling logic is as follows:

// Accessor/mutator usage.

public static int Main(string[] args)

{

 Employee p = new Employee();

 p.SetFullName("Fred");

 Console.WriteLine("Employee is named: " + p.GetFullName());

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-155 I ♡ Flyheart-

 // Error! Can't access private data from an object instance.

 // p.fullName;

 return 0;

}

Another Form of Encapsulation: Class Properties

In addition to traditional accessor and mutator methods, classes (as well as structures
and interfaces) can also support properties. Visual Basic and COM programmers have
long used properties to simulate publicly accessible points of data (that is, fields). Under
the hood however, properties resolve to a pair of hidden internal methods. Rather than
requiring the user to call two discrete methods to get and set the state data, the user is
able to call what appears to be a single named field:

// Representing a person's first name as a property.

public static int Main(string[] args)

{

 Employee p = new Employee();

 // Set the value.

 p.EmpID = 81;

 // Get the value.

 Console.WriteLine("Person ID is: {0}", p.EmpID);

 return 0;

}

Properties always map to "real" accessor and mutator methods. Therefore, as a Class
designer you are able to perform any internal logic necessary before making the value
assignment (e.g., uppercase the value, scrub the value for illegal characters, check the
bounds of a numerical value, and so on). Here is the C# syntax behind the EmpID
property:

// Custom property for the EmpID data point.

public class Employee

{

...

 private int empID;

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-156 I ♡ Flyheart-

 // Property for the empID.

 public int EmpID

 {

 get {return empID;}

 set

 {

 // You are still free to investigate (and possibly transform)

 // the incoming value before making an assignment.

 empID = value;

 }

 }

}

A C# property is composed using a get block (accessor) and set block (mutator). The
"value" keyword represents the right-hand side of the assignment. As all things in C#,
"value" is also an object. However, the underlying type of the object depends on which
sort of data it represents. In our example, the EmpID property is operating on a private
integer, which, as you recall, maps to an Int32:

// Calls set, value = 81.

// 81 is an instance of Int32, so 'value' is an Int32.

e3.EmpID = 81;

To illustrate, assume we have updated our set logic as follows:

// Property for the empID.

public int EmpID

{

 get {return empID;}

 set

 {

 // Just to prove the point.

 Console.WriteLine("value is an instance of: {0}", value.GetType());

 Console.WriteLine("value as string: {0}", value.ToString());

 empID = value;

 }

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-157 I ♡ Flyheart-

}
You would see the output shown in Figure 3-7.

Figure 3-7: The value of "value" when EmpID = 81

Do be aware that you may only access the "value" object within the scope of a property's
set block. Any attempt to do otherwise results in a compiler error.

Finally, understand that properties (as opposed to traditional accessors and mutators)
make your types easier to manipulate. For example, assume that the Employee type had
an internal private member variable representing the age of the employee. On his or her
birthday, you wish to increment the age by one. Using traditional accessor and mutator
methods, you would need to write:

Employee joe = new Employee();

joe.SetAge(joe.GetAge() + 1);

However using type properties, you are able to write

Employee joe = new Employee();

joe.Age++;

Internal Representation of C# Properties

Many programmers tend to design accessor and mutator methods using "get_" and "set_"
prefixes (e.g., get_Name() and set_Name()). This naming convention itself is not
problematic. However, it is important to understand that under the hood, a C# property is
internally represented using these same prefixes. For example, if you open up the
Employees.exe assembly using ILDasm.exe you see that each property actually resolves
to two discrete (and hidden) methods (Figure 3-8).

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-158 I ♡ Flyheart-

Figure 3-8: Properties map to hidden get_ and set_ methods

Given this, realize that if you were to define a class as such, you generate compiler
errors:

// Remember, a C# property really maps to a get_/set_ pair.

public class Employee

{

...

 // Another property.

 public string SSN

 {

 get { return ssn; } // Maps to get_SSN().

 set { ssn = value;} // Maps to set_SSN().

 }

 // ERROR! Already defined by SSN property!

 public string get_SSN() { return ssn;}

 public void set_SSN(string val) { ssn = val;}

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-159 I ♡ Flyheart-

Finally, understand that the reverse of this situation is not true. Meaning, if you define two
methods named get_X() and set_X() in a given class, you cannot write syntax that
references a property named X:

// Assume Foo has two methods named get_X() and set_X() but not a

// literal C# property definition.

Foo f = new Foo();

f.X = 100; // Error! ! Must be defined as C# property,

not set_X().

Console.WriteLine(f.X); // Error! ! Must also be a C# property, not get_X().

Read Only, Write Only, and Static Properties

To wrap up our investigation of C# properties, there are a few loose ends to contend with.
First, recall that EmpID was established as a read/write property. When building custom
properties, you may wish to configure a read-only property. To do so, simply build a
property without a corresponding set block. Likewise, if you wish to have a write-only
property, omit the get block. To illustrate, here is a read-only property for our Employee
class:

public class Employee

{

...

 // Assume this is assigned in the class constructor...

 private string ssn;

 // A read only property.

 public string SSN { get { return ssn; } }

 ...

}
C# also supports static properties. Recall that static types are bound to a given class, not
an instance (object) of that class. For example, assume that the Employee type defines a
point of static data to represent the name of the organization employing these workers.
We may define a static (e.g., class level) property as follows:

// Static properties must operate on static data!

public class Employee

{

 private static string CompName;

 public static string Company

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-160 I ♡ Flyheart-

 {

 get { return CompName; }

 set { CompName = value;}

 }

 ...

}

Static properties are manipulated in the same manner as static methods, as seen next:

// Set and get the name of the company employee these people...

public static int Main(string[] args)

{

 Employee.Company = "Intertech, Inc";

 Console.WriteLine("These folks work at {0}", Employee.Company);

 ...

}

Static Constructors
As an interesting sidebar, consider the use of static constructors. This may seem strange
given that the "constructor" is understood as a method called on a new object
instantiation. Nevertheless, C# supports the use of static constructors that serve no other
purpose than to assign initial values to static data. Syntactically, static constructors are
odd in that they cannot take a visibility modifier (but must take the static keyword). To
illustrate, if you wished to ensure that the name of the static CompName field was always
assigned to "Intertech, Inc" on creation, you would write:

// Static constructors are used to initialize static data.

public class Employee

{

...

 private static string CompName;

 static Employee()

 {

 CompName = "Intertech, Inc";

 }

...

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-161 I ♡ Flyheart-

If you were to invoke the Employee.Company property, there is no need to assign an
initial value within the Main() method, as the static constructor does so automatically:

// Automatically set to "Intertech, Inc" via the static constructor.

public static int Main(string[] args)

{

...

 Console.WriteLine("These folks work at {0}", Employee.Company);

}

To wrap up our examination of C# properties, understand that these syntactic entities are
used for the same purpose as a classical accessor/mutator pair. The benefit of properties
is that the users of your objects are able to manipulate the internal data point using a
single named item.

Pseudo-Encapsulation: Creating Read-Only Fields
Closely related to read-only properties is the notion of read-only fields. As you know, a
field is a point of public data. Typically speaking, public data is a bad thing because the
object user has a fairly good chance of making an illogical assignment. Read-only fields
offer data preservation that is established using the "readonly" keyword:

public class Employee

{

...

 // Read only field (set in the ctors).

 public readonly string SSNField;

}

As you can guess, any attempt to make assignments to a field marked "readonly" results
in a compiler error.

Static Read-Only Fields

Static read only fields are also permissible. This can be helpful if you wish to create a
number of constant values bound to a given class. In this light, readonly seems to be a
close cousin to the const keyword. The difference is that the value assigned to const must
be resolved at compile time. The value of readonly static fields, however, may be
computed at runtime.

For example, assume a type named Car that needs to establish a set of tires at runtime.
You can create a new class (Tire) consisting of a number of static readonly fields:

// The Tire class has a number of readonly fields.

public class Tire

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-162 I ♡ Flyheart-

{

 public static readonly Tire GoodStone = new Tire(90);

 public static readonly Tire FireYear = new Tire(100);

 public static readonly Tire ReadyLyne= new Tire(43);

 public static readonly Tire Blimpy = new Tire(83);

 private int manufactureID;

 public int MakeID

 {

 get { return manufactureID; }

 }

 public Tire (int ID)

 {

 manufactureID = ID;

 }

}

Here is an example of working with these new types:

// Make use of a dynamically created readonly field.

public class Car

{

 // What sort of tires do I have?

 public Tire tireType = Tire.Blimpy; // Returns a new Tire.

...

}

public class CarApp

{

 public static int Main(string[] args)

 {

 Car c = new Car();

 // Prints out "Manufacture ID of tires: 83"

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-163 I ♡ Flyheart-

 Console.WriteLine("Manufacture ID of tires: {0}", c.tireType.MakeID);

 return 0;

 }

}

The Second Pillar: C#'s Inheritance Support

Now that you understand how to create a single well-encapsulated class, it is time to turn
your attention to building a family of related classes. As mentioned, inheritance is the
aspect of OOP that facilitates code reuse. Inheritance comes in two flavors: Classical
inheritance (the is-a relationship) and the containment/delegation model (the has-a
relationship). Let's begin by examining the classical is-a model.
When you establish is-a relationships between classes, you are building a dependency
between types. The basic idea behind classical inheritance is that new classes may
leverage (and extend) the functionality of other classes. To illustrate, assume that you
wish to define two additional classes to model sales people and managers. The hierarchy
looks something like what you see in Figure 3-9.

Figure 3-9: The employee hierarchy

As illustrated in Figure 3-9, you can see that a SalesPerson is-a Employee (as is a
Manager—at least in a perfect world). In the classical inheritance model, base classes
(such as Employee) are used to define general characteristics that are common to all
descendents. Subclasses (such as SalesPerson and Manager) extend this general
functionality while adding more specific behaviors to the class.

In C#, extending a class is accomplished using the colon operator (:). Therefore, you can
syntactically model these relationships as follows:

// Add two new subclasses to the Employees namespace.

namespace Employees

{

public class Manager : Employee

{

 // Managers need to know their number of stock options.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-164 I ♡ Flyheart-

 private ulong numberOfOptions;

 public ulong NumbOpts

 {

 get {return numberOfOptions;}

 set {numberOfOptions = value; }

 }

}

public class SalesPerson : Employee

{

 // Sales people need to know their number of sales.

 private int numberOfSales;

 public int NumbSales

 {

 get {return numberOfSales;}

 set { numberOfSales = value; }

 }

}

}

Notice how each subclass has extended the base class behavior by adding a custom
property that operates on an underlying private point of data. Because you have
established an is-a relationship, SalesPerson and Manager have automatically inherited
all public members of the Employee base class. To illustrate:

// Create a subclass and access base class functionality.

public static int Main(string[] args)

{

 // Make a sales person.

 SalesPerson stan = new SalesPerson();

 // These members are inherited from the Employee base class.

 stan.EmpID = 100;

 stan.SetFullName("Stan the Man");

 // This is defined by the SalesPerson subclass.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-165 I ♡ Flyheart-

 stan.NumbSales = 42;

 return 0;

}

Needless to say, a child class cannot directly access private members defined by its
parent class. Also, when the object user creates an instance of a subclass, encapsulation
of private data is ensured:

// Error! ! Instance of child class cannot allow access to a base class' private

// data!

SalesPerson stan = new SalesPerson();

stan.currPay;

Controlling Base Class Creation

Currently, SalesPerson and Manager can only be created using the default class
constructor. With this in mind, consider the following line of code:

// Create a subclass using a custom constructor.

Manager chucky = new Manager("Chucky", 92, 100000, "333-23-2322", 9000);

Here, you are creating an instance of the Manager class using a custom constructor. If
you look at the argument list, you can clearly see that most of these parameters should be
stored in the member variables defined by the Employee base class. To do so, you could
write the following logic:

// If you do not say otherwise, a subclass constructor automatically calls the

// default constructor of its base class.

public Manager(string fullName, int empID,

 float currPay, string ssn, ulong numbOfOpts)

{

 // This point of data belongs with us!

 numberOfOptions = numbOfOpts;

 // Assigning values to base class data using inherited base class members.

 EmpID = empID;

 SetFullName(fullName);

 SSN = ssn;

 Pay = currPay;

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-166 I ♡ Flyheart-

Although this is technically permissible, it is not optimal. First, like C++, the base class
constructor (in this case the default constructor) is called automatically before the logic of
the custom Manager constructor is executed. After this point, the current implementation
accesses four public members of the employee base class to establish its state. Thus,
you have really made six hits during the creation of this derived object!

To help optimize the creation of a derived class, implement your subclass constructors to
explicitly call an appropriate custom base class constructor, rather than the default. In this
way, you are able to call an appropriate constructor to initialize state data, and increase
the efficiency of an object's creation in the process. Let's retrofit the custom constructor to
do this very thing:

// This time, use the C# 'base' keyword to call a custom constructor on the base

// class.

public Manager(string fullName, int empID, float currPay,

 string ssn, ulong numbOfOpts)

 : base(fullName, empID, currPay, ssn)

{

 numberOfOptions = numbOfOpts;

}

Here, our constructor has been adorned with an odd bit of syntax. Directly after the
closing parenthesis of the constructor's argument list there is a single colon followed by
the C# "base" keyword. In this situation, you are explicitly calling the four-argument
constructor defined by Employee and saving yourself unnecessary calls during the
creation of the child class. The SalesPerson constructor looks almost identical:

// As a general rule, all subclasses should explicitly call an appropriate

// base class constructor.

public SalesPerson(string fullName, int empID,

 float currPay, string ssn, int numbOfSales)

 : base(fullName, empID, currPay, ssn)

{

 this.numberOfSales = numbOfSales;

}

Also be aware that you may use the base keyword any time a subclass wishes to access
a public or protected member defined by a parent class. Use of this keyword is not limited
to constructor logic.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-167 I ♡ Flyheart-

Regarding Multiple Base Classes

It is important to keep in mind that C# demands that a given class have exactly one direct
base class. Therefore, it is not possible to have a single type with two or more base
classes (this technique is known as multiple inheritance or simply, MI). As you will see in
Chapter 4, C# does allow a given type to implement any number of discrete interfaces. In
this way, a C# class can exhibit a number of behaviors while avoiding the problems
associated with classic MI. On a related note, it is permissible to configure a single
interface to derive from multiple interfaces (again, more details to come in Chapter 4).

Keeping Family Secrets: The "protected" Keyword

As you already know, public items are directly accessible from any subclass. Private
items cannot be accessed from any object beyond the object that has indeed defined the
private data point. C# takes the lead of many other modern day object languages and
provides an additional level of accessibility: Protected.

When a base class defines protected data or protected methods, it is able to create a set
of members that can be accessed directly by any descendent. If you wish to allow the
SalesPerson and Manager child classes to directly access the data sector defined by
Employee, you can update the original Employee class definition as follows:

// Protected state data.

public class Employee

{

 // Child classes can directly access this information. Object users cannot.

 protected string fullName;

 protected int empID;

 protected float currPay;

 protected string ssn;

...

}

However, as far as the object user is concerned, protected data is private. Therefore, the
following is illegal:

// Error! Can't access protected data from object instance

Employee emp = new Employee();

emp.ssn = "111-11-1111";

Preventing Inheritance: Sealed Classes

Classical inheritance is a wonderful thing. When you establish base class/subclass
relationships, you are able to leverage the behavior of existing types. However, what if

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-168 I ♡ Flyheart-

you wish to define a class that cannot (for whatever reason) be subclassed? For example,
assume you have added yet another class to your employee namespaces, which extends
the existing SalesPerson type. Figure 3-10 shows what this looks like.

Figure 3-10: The extended employee hierarchy

PTSalesPerson is a class representing a (of course) part-time sales person. For the sake
of argument, let's say that we wish to ensure that no other developer is able to subclass
from PTSalesPerson (after all, how much more part-time can you get than "part-time"?).
To prevent others from extending a class, make use of the C# "sealed" keyword:

// Ensure that PTSalesPerson cannot act as a base class to others.

public sealed class PTSalesPerson : SalesPerson

{

 public PTSalesPerson(string fullName, int empID,

 float currPay, string ssn, int numbOfSales)

 : base(fullName, empID, currPay, ssn, numbOfSales)

 {

 // Interesting constructor logic...

 }

 // Other interesting members...

}

Because PTSalesPerson is sealed, it cannot serve as a base class to any other type. For
example, if you attempted to extend PTSalesPerson, you receive a compiler error.

// Compiler error! PTSalesPerson is sealed and cannot be extended!

public class ReallyPTSalesPerson : PTSalesPerson

{

 ...

}

By and large, the sealed keyword is most useful when creating standalone utility classes.
As an example, the String class defined in the System namespace has been explicitly

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-169 I ♡ Flyheart-

sealed. Therefore, you cannot create some new class deriving from System.String. If you
wish to build a class that leverages the functionality of a sealed class your only option is
to make use of the containment/delegation model (speaking of which...).

Programming for Containment/Delegation

As noted a bit earlier in this chapter, inheritance comes in two flavors. We have just
explored the classical is-a relationship. To conclude the exploration of the second pillar of
OOP, let's examine the has-a relationship (also known as the containment/delegation
model). Assume you have created a simple C# class modeling a radio:

// This type will function as a contained class.

public class Radio

{

 public Radio(){}

 public void TurnOn(bool on)

 {

 if(on)

 Console.WriteLine("Jamming...");

 else

 Console.WriteLine("Quiet time...");

 }

}

Now assume you are interested in modeling an automobile. The Car class maintains a set
of state data (the car's pet name, current speed and maximum speed) all of which may be
set using a custom constructor. Here is the initial definition:

// This class will function as the 'outer' class.

public class Car

{

 private int currSpeed;

 private int maxSpeed;

 private string petName;

 bool dead; // Is the car alive or dead?

 public Car()

 {

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-170 I ♡ Flyheart-

 maxSpeed = 100;

 dead = false;

 }

 public Car(string name, int max, int curr)

 {

 currSpeed = curr;

 maxSpeed = max;

 petName = name;

 dead = false;

 }

 public void SpeedUp(int delta)

 {

 // If the car is dead (e.g., beyond the maximum speed) just say so...

 if(dead)

 {

 Console.WriteLine(petName + " is out of order....");

 }

 else // Not currently maxed out, so speed up.

 {

 currSpeed += delta;

 if(currSpeed >= maxSpeed)

 {

 Console.WriteLine(petName + " has overheated...");

 dead = true;

 }

 else

 Console.WriteLine("\tCurrSpeed = " + currSpeed);

 }

 }

}

At this point we have two independent classes. Obviously, it would be rather odd to
establish an is-a relationship between the two entities. However, it should be clear that

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-171 I ♡ Flyheart-

some sort of relation between the two could be established. In short, we would like to
express the idea that the Car has-a Radio. In OO parlance, a class that wishes to contain
another class is termed the "parent" class. The contained class is termed a "child" class.
To begin, you can update the Car class definition as follows:

// A Car has-a Radio.

public class Car

{

...

 // The contained Radio.

 private Radio theMusicBox;

...

}

Notice how the outer Car class has declared the Radio object as private. This of course is
a good thing, as we have preserved encapsulation. However, the next obvious question is:
How can the outside world interact with child objects? It should be clear that it is the
responsibility of the outer Car class to create the child Radio class. Although the outer
class may create any child objects whenever it sees fit, the most common place to do so
is in the constructor set:

// Outer classes are responsible for creating any child objects.

public class Car

{

...

 // The contained Radio.

 private Radio theMusicBox;

 public Car()

 {

 maxSpeed = 100;

 dead = false;

 // Outer class creates the contained class(es) upon start-up.

 // NOTE: If we did not, theMusicBox would

 // begin life as a null reference.

 theMusicBox = new Radio();

 }

 public Car(string name, int max, int curr)

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-172 I ♡ Flyheart-

 {

 currSpeed = curr;

 maxSpeed = max;

 petName = name;

 dead = false;

 theMusicBox = new Radio();

 }

...

}

Alternatively, we could make use of the C# initializer syntax as follows:

// A Car has-a Radio.

public class Car

{

...

 // The contained Radio.

 private Radio theMusicBox = new Radio();

...

}
At this point, you have successfully contained another object. However, to expose the
functionality of the inner class to the outside world requires delegation. Delegation is
simply the act of adding members to the parent class that make use of the child classes'
functionality. For example:

// Outer classes extend their public interface to provide access to inner

// classes.

public class Car

{

...

 public void CrankTunes(bool state)

 {

 // Delegate request to inner object.

 theMusicBox.TurnOn(state);

 }

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-173 I ♡ Flyheart-

In the following code, notice how the object user is able to interact with the hidden inner
object indirectly, and is totally unaware of the fact that the Car class is making use of a
private Radio instance:

// Take this car for a test drive.

public class CarApp

{

 public static int Main(string[] args)

 {

 // Make a car (which makes the radio).

 Car c1;

 c1 = new Car("SlugBug", 100, 10);

 // Jam some tunes (which makes use of the radio).

 c1.CrankTunes(true);

 // Speed up.

 for(int i = 0; i < 10; i++)

 c1.SpeedUp(20);

 // Shut down (which again makes use of the radio).

 c1.CrankTunes(false);

 return 0;

 }

}
Figure 3-11 shows the output.

Figure 3-11: Our contained Radio in action

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-174 I ♡ Flyheart-

SOURCE
CODE

The Containment project is included under the Chapter 3
subdirectory.

Nested Type Definitions
Before examining the final pillar of OOP, let's explore a programming technique termed
nested classes. In C#, it is possible to define a type directly within the scope of another
type. The syntax is quite straightforward:

// C# allows classes, interfaces and structures to nest others.

public class MyClass

{

 // Members of outer class.

 ...

 public class MyNestedClass

 {

 // Members of inner class.

 ...

 }

}
Although the syntax is clean, understanding why you might do this is not readily apparent.
Typically, a nested type is regarded only as a helper type of the outer class, and is not
intended for use by the outside world. This is slightly along the lines of the "has-a"
relationship, however in the case of nested types, you are in greater control of the inner
type's visibility. In this light, nested types also help enforce encapsulation services.

To illustrate, you can redesign your current Car application by representing the Radio as
a nested type. By doing so, you are assuming the outside world does not need to directly
create a Radio. Here is the update:

// The Car is nesting the Radio. Everything else is as before.

public class Car : Object

{

...

 // A nested, private radio. Cannot be created by the outside world.

 private class Radio

 {

 public Radio(){}

 public void TurnOn(bool on)

 {

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-175 I ♡ Flyheart-

 if(on)

 Console.WriteLine("Jamming...");

 else

 Console.WriteLine("Quiet time...");

 }

 }

 // The outer class can make instances of nested types.

 private Radio theMusicBox;

...

}

Notice that the Car type is able to create object instances of any nested item. Also notice
that this class has been declared a private type. In C#, nested types may be declared
private as well as public. Recall, however, that classes that are directly within a
namespace (e.g., nonnested types) cannot be defined as private. As far as the object
user is concerned, the Car type works as before. Because of the private, nested nature of
the Radio, the following is now illegal:

// Can't do it outside the scope of the Car class!

Radio r = new Radio();

SOURCE
CODE

The Nested project is included under the Chapter 3
subdirectory.

The Third Pillar: C#'s Polymorphic Support

Assume the Employee base class has implemented the GiveBonus() method as follows:

// Employee defines a new method that gives a bonus to a given employee.

public class Employee

{

...

 public void GiveBonus(float amount)

 {

 currPay += amount;

 }

...

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-176 I ♡ Flyheart-

Because this method has been defined as public, you can now give bonuses to sales
persons and managers (Figure 3-12):

// Give each child class a bonus.

Manager chucky = new Manager("Chucky", 92, 100000, "333-23-2322", 9000);

chucky.GiveBonus(300);

chucky.DisplayStats();

SalesPerson fran = new SalesPerson("Fran", 93, 3000, "932-32-3232", 31);

fran.GiveBonus(200);

fran.DisplayStats();

Figure 3-12: The current employee hierarchy does not implement polymorphism

The problem with the current design is that the inherited GiveBonus() method operates
identically for each subclass. Ideally, the bonus of a sales person should take into
account the number of sales. Perhaps managers should gain additional stock options in
conjunction with a monetary bump in salary. Given this, you are suddenly faced with an
interesting question: "How can related objects respond differently to the same request?"

Polymorphism is the final pillar of OOP, which provides a way for a subclass to redefine
how it responds to a method defined by its base class. To retrofit your current design, you
need to understand the use of the C# "virtual" and "override" keywords. When a base
class wishes to define a method that may be overridden by a subclass, it must specify the
method as virtual:

public class Employee

{

 // GiveBonus() has a default implementation, however

 // child classes are free to override this behavior.

 public virtual void GiveBonus(float amount)

 {

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-177 I ♡ Flyheart-

 currPay += amount;

 }

...

}

If a subclass wishes to redefine a virtual method, it is required to reimplement the method
in question using the override keyword. For example:

public class SalesPerson : Employee

{

 // A sales person's bonus is influenced by the number of sales.

 public override void GiveBonus(float amount)

 {

 int salesBonus = 0;

 if(numberOfSales >= 0 && numberOfSales <= 100)

 salesBonus = 10;

 else if(numberOfSales >= 101 && numberOfSales <= 200)

 salesBonus = 15;

 else

 salesBonus = 20; // Anything greater than 200.

 base.GiveBonus (amount * salesBonus);

 }

...

}

public class Manager : Employee

{

 private Random r = new Random();

 // Managers get some number of new stock options, in addition to raw cash.

 public override void GiveBonus(float amount)

 {

 // Increase salary.

 base.GiveBonus(amount);

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-178 I ♡ Flyheart-

 // And give some new stock options...

 numberOfOptions += (ulong)r.Next(500);

 }

...

}

Notice how each overridden method is free to leverage the default behavior using the
base keyword. In this way, you have no need to completely reimplement the logic behind
GiveBonus(), but can reuse (and extend) the default behavior of the parent class.
Also assume that Employee.DisplayStats() has been declared virtual, and has been
overridden by each subclass to account for displaying the number of sales (for sales folks)
and current stock options (for managers). Now that each subclass can interpret what
these virtual methods means to itself, each object instance behaves as a more
independent entity (see Figure 3-13 for output):

// A better bonus system!

Manager chucky = new Manager("Chucky", 92, 100000, "333-23-2322", 9000);

chucky.GiveBonus(300);

chucky.DisplayStats();

SalesPerson fran = new SalesPerson("Fran", 93, 3000, "932-32-3232", 31);

fran.GiveBonus(200);

fran.DisplayStats();

Figure 3-13: A better bonus system (thanks to polymorphism)

Excellent! At this point you are not only able to establish is-a and has-a relationships
among related classes, but also have injected polymorphic activity into your employee

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-179 I ♡ Flyheart-

hierarchy. As you may suspect, the story of polymorphism goes beyond simply overriding
base class behavior.

Defining (and Understanding) Abstract Classes

Currently, the Employee base class has been designed to supply protected member
variables for its descendents, as well as supply two virtual methods (GiveBonus() and
DisplayStats()) that may be overridden by a given descendent. While this is all well and
good, there is a rather odd byproduct of the current design: You can directly create
instances of the Employee base class:

// What exactly does this mean?

Employee X = new Employee();

Now think this one through. The only real purpose of the Employee base class is to define
default state data and behaviors for any given subclass. In all likelihood, you did not
intend anyone to create a direct instance of this class. The Employee type itself is too
general of a concept. A far better design is to prevent the ability to directly create a new
Employee instance. In C#, this is facilitated by using the "abstract" keyword:

// Update the Employee class as abstract to prevent direct instantiation.

abstract public class Employee

{

 // Same public interface and state data as before...

}

If you do not attempt to create an instance of the Employee class, you are issued a
compile time error.

// Error! Can't create an instance of an abstract class.

Employee X = new Employee();

Enforcing Polymorphic Activity: Abstract Methods

Once a class has been defined as an abstract base class, it may define any number of
abstract members (which is analogous to a C++ pure virtual function). Abstract methods
can be used whenever you wish to define a method that does not supply a default
implementation. By doing so, you enforce a polymorphic trait on each descendent,
leaving them to contend with the task of providing the details behind your abstract
methods.

The first logical question you might have is: "Why would I ever want to do this?" To
understand the role of abstract methods, let's return to the shapes hierarchy seen earlier
in this chapter (Figure 3-14).

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-180 I ♡ Flyheart-

Figure 3-14: Our current shapes hierarchy

Much like the Employee hierarchy, you should be able to tell that you don't want to allow
the object user to create an instance of Shape directly. To illustrate, update your initial
classes as follows:

namespace Shapes

{

public abstract class Shape

{

 // Shapes can be assigned a friendly pet name.

 protected string petName;

 // Constructors.

 public Shape(){petName = "NoName"; }

 public Shape(string s) { petName = s;}

 // Draw() is virtual and may be overridden.

 public virtual void Draw()

 {

 Console.WriteLine("Shape.Draw()");

 }

 public string PetName

 {

 get {return petName;}

 set { petName = value;}

 }

}

// Circle does NOT override Draw().

public class Circle : Shape

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-181 I ♡ Flyheart-

{

 public Circle() {}

 public Circle(string name): base(name) {}

}

// Hexagon DOES override Draw().

public class Hexagon : Shape

{

 public Hexagon(){}

 public Hexagon(string name): base(name) {}

 public override void Draw()

 {

 Console.WriteLine("Drawing {0} the Hexagon", PetName);

 }

}

}

Notice that the Shape class has defined a virtual method named Draw(). As you have just
seen, subclasses are free to redefine the behavior of a virtual method using the override
keyword (as in the case of the Hexagon class). The point of abstract methods becomes
crystal clear when you understand that subclasses are not required to override virtual
methods (as in the case of Circle). Therefore, if you create an instance of the Hexagon
and Circle types, you'd find that the Hexagon understands how to draw itself correctly.
The Circle, however, is more than a bit confused (see Figure 3-15 for output):

// The Circle object did not override the base class implementation of Draw().

public static int Main(string[] args)

{

 // Make and draw a hex.

 Hexagon hex = new Hexagon("Beth");

 hex.Draw();

 Circle cir = new Circle("Cindy");

 // Humm. Using base class implementation.

 cir.Draw();

...

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-182 I ♡ Flyheart-

Figure 3-15: Virtual methods do not have to be overridden

Clearly this is not a very intelligent design. To enforce that each child object defines what
Draw() means to itself, you can simply establish Draw() as an abstract method of the
Shape class, which by definition means you provide no default implementation
whatsoever (again, like a C++ pure virtual function):

// Force all kids to figure out how to be rendered.

public abstract class Shape

{

...

 // Draw() is now completely abstract (note semicolon).

 public abstract void Draw();

 public string PetName

 {

 get {return petName;}

 set { petName = value;}

 }

}

Given this, we are now obligated to implement Draw() in our Circle class:

// If we did not implement the abstract Draw() method, Circle would also be

// considered abstract, and could not be directly created!

public class Circle : Shape

{

 public Circle(){}

 public Circle(string name): base(name) {}

 // Now Each child must decide what Draw() means to itself.

 public override void Draw()

 {

 Console.WriteLine("Drawing {0} the Circle", PetName);

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-183 I ♡ Flyheart-

 }

}

With this update, you are now able to find order in your Shapes hierarchy. To illustrate the
full story of polymorphism, consider the following code:

// Create an array of various Shapes.

public static int Main(string[] args)

{

 // Array of shapes.

 Shape[] s = {new Hexagon(), new Hexagon("Freda"),

 new Circle(), new Circle("JoJo")};

 // Loop over the array and ask each object to draw itself.

 for(int i = 0; i < s.Length; i++)

 s[i].Draw();

...

}
Figure 3-16 shows the output.

Figure 3-16: Better! Abstract methods must be overridden

This illustrates polymorphism at its finest. Recall that when you mark a class as abstract,
you are unable to create a direct instance of that type. However, you can freely store
references to any subclass within an abstract base variable. As you iterate over the array
of Shape references, it is at runtime that the correct type is determined. At this point, the
correct method is invoked.

Versioning Class Members

C# provides a facility that is the logical opposite of method overriding: method hiding.
Assume you are in the process of building a brand new class named Oval. Given that an
Oval is-a type of Circle, you may wish to extend the Shapes hierarchy as shown in Figure
3-17.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-184 I ♡ Flyheart-

Figure 3-17: Versioning the Draw() method

Now, for the sake of argument, assume that the Oval also defines a method named
Draw(). This is good, as we can assure that this class behaves like any other class in the
hierarchy. However, what if you wish to prevent the Oval class from inheriting any
previous drawing logic? Formally, this technique is termed "versioning" a class.
Syntactically, this can be accomplished using the new keyword on a method-by-method
basis. For example:

// This class extends Circle, but hides the inherited Draw() method.

public class Oval : Circle

{

 public Oval(){base.PetName = "Joe";}

 // Hide any Draw() implementation above me.

 public new void Draw()

 {

 // Oval specific drawing algorithm.

 }

}

Because you used the new keyword in the definition of Draw(), you are guaranteed that if
an object user makes an instance of the Oval class and calls Draw(), the most derived
implementation is called. In effect, the "new"' method breaks the relationship between the
abstract Draw() method defined by the base class and the derived version. Thus:

// The Draw() defined by Oval will be called.

Oval o = new Oval();

o.Draw();

As an odd caveat, it is possible to trigger the base class implementation of a hidden
method using an explicit cast:

// The Draw() defined by Circle will be called!

 Oval o = new Oval();

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-185 I ♡ Flyheart-

 ((Circle)o).Draw(); // Cast o to base class.

At this point, method hiding may seem to be little more than an interesting exercise in
class design. However, this technique can be very useful when you are extending types
defined within another .NET binary. Imagine that you wish to derive a new class from
another class defined in a distinct .NET binary. Now, what if the binary base type defines
a Draw() method that is somehow incompatible with your own Draw() method? To
prevent object users from triggering a base class implementation, just use "new."

SOURCE
CODE

The Shapes hierarchy can be found under the Chapter 3
subdirectory.

Casting Between Class Types

At this point we have created a number of class hierarchies in C#. Next, we need to
examine the laws of casting between class types. First, recall the Employee hierarchy.
The top-most member in our hierarchy is System.Object. Given the terminology of
classical inheritance, everything "is-a" object. Furthermore, a part-time sales person "is-a"
sales person, and so forth. Therefore, the following cast operations are legal.

// A Manager 'is-a' object.

object o = new Manager("Frank Zappa", 9, 40000, "111-11-1111", 5);

// A Manager 'is-a' Employee too.

Employee e = new Manager("MoonUnit Zappa", 2, 20000, "101-11-1321", 1);

// A PT sales person is a sales person.

SalesPerson sp = new PTSalesPerson("Jill", 834, 100000, "111-12-1119", 90);

The first law of casting between class types is that when two classes are related by an
is-a relationship, it is always safe to reference a derived class using a base class
reference. This leads to some powerful programming constructs. For example, if we have
a function such as:

public class TheMachine

{

 public static void FireThisPerson(Employee e)

 {

 // Remove from database...

 // Get key and pencil sharpener from fired employee...

 }

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-186 I ♡ Flyheart-

We can effectively pass any descendent from the Employee class into this method. Thus:

// Streamline the staff.

TheMachine.FireThisPerson(e);

TheMachine.FireThisPerson(sp);

The following logic works as there is an implicit case from the base class type (Employee)
to the derived types. Now, what if you also wanted to fire your Manager (currently held in
a base class reference)? If you pass the object reference into the FireThisPerson()
method as follows:

// A Manager 'is-a' object.

object o = new Manager("Frank Zappa", 9, 40000, "111-11-1111", 5);

...

TheMachine.FireThisPerson(o); // Error!

you are issued a compiler error! The reason for the error is because of the fact that you
cannot automatically receive access from a base type (in this case System.Object) to a
derived type (in this case Employee) without first performing an explicit cast. Thus, the
previous problem can be avoided as follows:

// Error! Must cast when moving from base to derived class!

// FireThisPerson(o);

// Better!

FireThisPerson((Employee)o);

Numerical Casts

In addition to making an explicit cast between types, be aware that numerical conversions
follow more or less the same rules. If you are attempting to cast a "larger" numerical type
to a "smaller" type (such as an integer to a byte) you must also make an explicit cast:

int x = 30000;

byte b = (byte)x; // Loss of information here...

Excellent! At this point you are able to build custom class hierarchies using C#. Chapters
4 and 5 introduce a number of advanced class construction techniques that extend and
complement the information presented thus far. Before moving on however, let's examine
two additional aspects of class design: Error handling and memory management.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-187 I ♡ Flyheart-

Exception Handling

Error handling among Windows developers has grown into a confused mishmash of
techniques over the years. Many programmers roll their own error handling logic within
the context of a given application. For example, a development team may define a set of
constants that represent known error conditions, and make use of them as method return
values. In addition to these ad hoc techniques, the Window's API defines a number of
error codes that come by way of #defines, HRESULTs and far too many variations on the
simple Boolean. Many COM developers have made use of a small set of standard COM
interfaces (e.g., ISupportErrorInfo, IErrorInfo, ICreateErrorInfo) to return meaningful error
information to a COM client.

The obvious problem with these previous techniques is the tremendous lack of symmetry.
Each approach is more or less tailored to a given technology, a given language, and
perhaps even a given project. In order to put an end to this madness, the .NET platform
provides exactly one technique to send and trap runtime errors: Structured Exception
Handling (SEH).

The beauty of this approach is that developers now have a well-defined approach to error
handling, which is common to all languages targeting the .NET universe. Therefore, the
way in which a C# programmer handles errors is conceptually identical to that of a
VB.NET programmer, a C++ programmer using managed extensions (MC++), and so
forth. As an added bonus it is also possible to throw and catch exceptions across binaries,
AppDomains (defined in Chapter 6), and machines in a language independent manner.
To begin to understand how to program using exceptions, you must first realize that
exceptions are indeed objects. All system- and user-defined exceptions derive from
System.Exception (which in turn derives from System.Object). Here is a breakdown of
some of the interesting properties defined by the Exception class (Table 3-1).

Table 3-1: Core Members of the System.Exception Type

SYSTEM.EXCEPTION
PROPERTY

MEANING IN LIFE

HelpLink This property returns a URL to a help file
describing the error in gory detail.

Message This read-only property returns the textual
description of a given error. The error message
itself is set as a constructor parameter.

Source This property returns the name of the object (or
possibly the application) that sent the error.

StackTrace This read-only property contains a string that

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-188 I ♡ Flyheart-

Table 3-1: Core Members of the System.Exception Type

SYSTEM.EXCEPTION
PROPERTY

MEANING IN LIFE

identifies the sequence of calls that triggered the
error.

InnerException The InnerException property can be used to
preserve the error details between a series of
exceptions.

Throwing an Exception

To illustrate the use of System.Exception, let's revisit the Car class defined earlier in this
chapter, in particular, the SpeedUp() method. Here is current implementation:

// Currently, SpeedUp() reports errors using console I0.

public void SpeedUp(int delta)

{

 // If the car is dead, just say so...

 if(dead)

 {

 Console.WriteLine(petName + " is out of order....");

 }

 else // Not dead, speed up.

 {

 currSpeed += delta;

 if(currSpeed >= maxSpeed)

 {

 Console.WriteLine(petName + " has overheated...");

 dead = true;

 }

 else

 Console.WriteLine("\tCurrSpeed = " + currSpeed);

 }

}

For the sake of illustration, let's retrofit SpeedUp() to throw an exception if the user
attempts to speed up the automobile after it has met its maker (dead = = true). First, you

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-189 I ♡ Flyheart-

want to create and configure a new instance of the Exception class. When you wish to
pass the error object back to the calling logic, make use of the C# throw keyword. Here is
an example:

// This time, throw an exception if the user speeds up a trashed automobile.

public void SpeedUp(int delta)

{

 if(dead)

 throw new Exception("This car is already dead");

 else

 {

 ...

 }

}

Before examining how to catch this exception, a few points. First of all, when you are
building your custom classes, it is always up to you to decide exactly what constitutes an
exception. Here, you are making the assumption that if the program attempts to increase
the speed of a car that has expired, an Exception should be thrown to indicate the
SpeedUp() method cannot continue.

Alternatively, you could implement SpeedUp() to recover automatically without needing to
throw an exception. By and large, exceptions should be thrown only when a more
terminal condition has been met. Deciding exactly what constitutes throwing an exception
is a design issue you must always contend with. For your current purposes, assume that
asking a doomed automobile to increase its speed justified a cause for an exception.

Next, understand that the .NET runtime libraries already define a number of predefined
exceptions. For example, the System namespace defines numerous custom exceptions
such as ArgumentOutOfRangeException, IndexOutOfRangeException,

StackOverflowException, and so forth. Other namespaces define additional exceptions
that reflect the behavior of that namespace (e.g., System.Drawing.Printing defines
printing exceptions System.IO defines IO based exceptions).

Catching Exceptions

Because the SpeedUp() method is able to throw an exception object, you need to be
ready to handle the error should it occur. When you are calling a method that may throw
an exception, you need to establish a try/catch block. Here is the simplest form:

// Speed up the car safely...

public static int Main(string[] args)

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-190 I ♡ Flyheart-

{

 // Make a car.

 Car buddha = new Car("Buddha", 100, 20);

 // Try to rev the engine hard!

 try

 {

 for(int i = 0; i < 10; i++)

 {

 buddha.SpeedUp(10);

 }

 }

 catch(Exception e) // Print message and stack trace.

 {

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

 }

 return 0;

}

In essence, a try block is a section of code that is on the lookout for any exception that
may be encountered during the flow of execution. If an exception is detected, the flow of
program execution is sent to the next available catch block. On the other hand, if the code
within a try block does not trigger an exception, the catch block is skipped entirely, and all
is right with the world. Figure 3-18 shows a test run of the handled error.

Figure 3-18: Dealing with the error using structured exception handling

Notice how this catch block explicitly specifies the exception it is willing to catch. In C# (as
well as numerous other languages targeting the .NET platform) it is also permissible to

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-191 I ♡ Flyheart-

configure a catch block that does not explicitly define the type of exception. Thus, we
could implement the try/catch block as follows:

// A generic catch.

catch

{

 Console.WriteLine("Something bad happened...");

}

Obviously, this is not the most descriptive manner in which to handle runtime exceptions,
given that we have no way to obtain meaningful information about the error that occurred.
Nevertheless, C# does allow for such a construct.

Building Custom Exceptions, Take One

Although you could simply throw instances of System.Exception to signal a runtime error,
it is sometimes advantageous to build a custom class that encapsulates the details of
your problem. For example, assume you wish to build a custom exception to represent
the error of speeding up a doomed automobile. To begin, create a new class derived from
System.Exception (by convention, custom exceptions should end with an "-Exception"
suffix). After this point, you are free to include any custom properties, methods or fields
that can be used from within the catch block of the calling logic. You are also free to
override any virtual member defined by your parent classes:

// This custom exception describes the details of the car-is-dead condition.

public class CarIsDeadException : System.Exception

{

 // This custom exception maintains the name of the doomed car.

 private string carName;

 public CarIsDeadException(){}

 public CarIsDeadException(string carName)

 {

 this.carName = carName;

 }

 // Override the Exception.Message property.

 public override string Message

 {

 get

 {

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-192 I ♡ Flyheart-

 string msg = base.Message;

 if(carName != null)

 msg += carName + " has bought the farm...";

 return msg;

 }

 }

}

Here, the CarIsDeadException type maintains a private data member that holds the name
of the car that threw the exception. You have also added two constructors to the class,
and overrode the Message property in order to include the pet name of the car in the
description. Throwing this error from within SpeedUp() should be self-explanatory:

// Throw the custom exception.

public void SpeedUp(int delta)

{

 // If the car is dead, just say so...

 if(dead)

 {

 // Throw 'Car is dead' exception.

 throw new CarIsDeadException(this.petName);

 }

 else // Not dead, speed up.

 {

 currSpeed += delta;

 if(currSpeed >= maxSpeed)

 {

 dead = true;

 }

 else

 Console.WriteLine("\tCurrSpeed = {0}", currSpeed);

 }

}

Catching the error is just as easy:

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-193 I ♡ Flyheart-

try

{

 ...

}

catch(CarIsDeadException e)

{

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

}
Figure 3-19 shows another test run.

Figure 3-19: Catching the custom exception

In this scenario, you may not necessarily need to build a custom exception class, given
that you are free to simply set the Message property at the time of construction. Typically,
you only need to create custom exceptions when the error is tightly bound to the class
issuing the error (for example, a File class that throws a number of file-related errors).
Nevertheless, at this point you should understand the basic process of constructing a
custom exception type.

Building Custom Exceptions, Take Two

Our current CarIsDeadException type has overridden the Message property, in order to
configure a custom error message. This class also has an overloaded constructor that
accepts the pet name of the automobile that has currently met its maker. As you build
custom exceptions, you are able to build the type as you see fit. However, the
recommended approach is to build a relatively simple type that supplies three named
constructors matching the following signature:

public class CarIsDeadException : System.Exception

{

 // Constructors for this custom exception.

 public CarIsDeadException(){}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-194 I ♡ Flyheart-

 public CarIsDeadException(string message)

 : base(message){}

 public CarIsDeadException(string message, Exception innerEx)

 : base(message, innerEx){}

}

Notice that this time you have not provided a private string to hold the pet name, and have
not overridden the Message property. Rather, you are simply passing all the relevant
information to your base class. When you wish to throw an exception of this type, you
would send in all necessary information as a constructor argument (the output would be
identical):

public void SpeedUp(int delta)

{

 ...

 // If the car is dead, just say so...

 if(dead)

 {

 // Pass pet name and message as ctor argument.

 throw new CarIsDeadException(this.petName + " has bought the farm!");

 }

 else // Not dead, speed up.

 {

 ...

 }

}

Using this design, our custom exception is little more than a semantically defined name,
devoid of any unnecessary member variables (or overrides).

Handling Multiple Exceptions

In its simplest form, a try block has a single corresponding catch block. In reality, you
often run into a situation where the code within a try block could trigger numerous
exceptions. For example, assume the car's SpeedUp() method not only throws an
exception when you attempt to speed up a doomed automobile, but throws another if you
send in an invalid parameter (that is, any number less than zero):

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-195 I ♡ Flyheart-

// Test for bad parameter.

public void SpeedUp(int delta)

{

 // Bad param? Throw system supplied exception.

 if(delta < 0)

 throw new ArgumentOutOfRangeException("Must be greater than zero");

 // If the car is dead, just say so...

 if(dead)

 {

 // Throw 'Car is dead' exception.

 throw new CarIsDeadException(this.petName + " has bought the farm!");

 }

 ...

}

The calling logic would look like this:

// Here, we are on the lookout for multiple exceptions.

try

{

 for(int i = 0; i < 10; i++)

 buddha.SpeedUp(10);

}

catch(CarIsDeadException e)

{

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

}

catch(ArgumentOutOfRangeException e)

{

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-196 I ♡ Flyheart-

The "finally" Block

A try/catch block may also be augmented with an optional "finally" block. The idea behind
a finally block is to ensure that any acquired resources can be cleaned up, even if an
exception interferes with the normal flow of execution. For example, assume you wish to
always power down the car's radio before exiting Main(), regardless of any errors:

// Provide a manner to clean up.

public static int Main(string[] args)

{

 Car buddha = new Car("Buddha", 100, 20);

 buddha.CrankTunes(true);

 // Try to rev the engine hard!

 try

 {

 // Speed up car...

 }

 catch(CarIsDeadException e)

 {

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

 }

 catch(ArgumentOutOfRangeException e)

 {

 Console.WriteLine(e.Message);

 Console.WriteLine(e.StackTrace);

 }

 finally

 {

 // This will always occur. Error or not.

 buddha.CrankTunes(false);

 }

 return 0;

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-197 I ♡ Flyheart-

If you did include a finally block, the radio would not be turned off if an exception is caught
(which may or may not be problematic). If you need to clean up any allocated memory,
close down a file, detach from a data source (or whatever), you must add that code within
a finally block to ensure proper clean up. It is important to realize, that the code contained
within a finally block executes all the time even if the logic within your try clause does not
generate an exception.

SOURCE
CODE

The Exceptions project is included under the Chapter 3
subdirectory.

Final Thoughts Regarding Exceptions

Unlike ad hoc error-handling techniques, .NET exceptions cannot be ignored. One
obvious question that may be on your mind is what would happen if you do not handle an
exception thrown your direction? Assume that the logic in Main() that increases the speed
of the Car object has no error handling logic. The result of ignoring the generated error
would be highly obstructive to the end user of your application, as the following "last
chance exception" dialog is displayed (Figure 3-20).

Figure 3-20: Unhandled exceptions can be a real drag...

Now that you see the inherent goodness of catching an exception programmatically, you
may wonder what to do with the exception once you have trapped it. Again, this is a
design issue based on your current project. In your trivial Car example, you simply
dumped your custom message and call stack to the console. A more realistic scenario
may include freeing up acquired resources or writing to a log file. The exception-handling

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-198 I ♡ Flyheart-

schema is simply a pattern to follow when sending and receiving errors. What you do with
them is largely up to you.

Also, beware that it is permissible to "re-throw" an error. To do so, simply make use of the
throw keyword within a catch block. This passes the exception up the chain of calling
logic:

try

{ // Speed up car logic...}

catch(CarIsDeadException e)

{

 // Do any partial processing of this error and pass the buck.

 // Here, we are re-throwing the CarIsDeadException type.

 // HOWEVER, you are also free to throw a different exception if need be.

 throw e;

}

Finally, it is important to keep in mind that exceptions should only be thrown if the
underlying problem is truly fatal. In other words, if you are able to recover from a user,
logical, or general design error without throwing a system defined or custom
exception—do so. In this light, the CarIsDeadException may be of arguable necessity.
Chapter 5 revisits the SpeedUp() method, and substitutes the custom exception with a
more appropriate custom event.

Understanding Object Lifetime

As a C# programmer, the rules of memory management are simple: Use the new
keyword to allocate an object onto the managed heap. The .NET runtime destroys the
object when it is no longer needed. Next question: How does the runtime determine when
an object is no longer needed? The short (i.e., incomplete) answer is that the runtime
deallocates memory when there are no longer any outstanding references to an object
within the current scope. To illustrate:

// Create a local Car variable.

public static int Main(string[] args)

{

 // Place a car onto the managed heap.

 Car c3 = new Car("Viper", 200, 100);

 ...

 return 0;

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-199 I ♡ Flyheart-

} // If c3 is the only reference to the Car object,

 // it can be reclaimed when it drops out of scope.
Now, assume that your application has allocated three Car types. As long as there is
enough room on the heap, you are returned an active reference to each object in memory.
Technically speaking, an active reference to an object on the managed heap is called a
root. The process can be visualized as illustrated in Figure 3-21.

Figure 3-21: Valid (i.e., rooted) references point to a location on the managed heap

As you are busy creating more and more objects, the managed heap may eventually
become full. If you attempt to create a new object on a heap plump and full of active
object references, an OutOfMemoryException exception is thrown. Therefore, if you want
to be extremely defensive in your coding practices (which will seldom need to be the
case), you could allocate a new object as follows:

// Try to add these cars to the managed heap and check for errors...

public static int Main(string[] args)

{

...

 Car yetAnotherCar;

 try

 {

 yetAnotherCar = new Car();

 }

 catch(OutOfMemoryException e)

 {

 Console.WriteLine(e.Message);

 Console.WriteLine("Managed heap is FULL! Running GC...");

 }

...

 return 0;

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-200 I ♡ Flyheart-

Regardless of how defensive your object allocation logic may be, understand that when
the memory allocated to the managed heap runs dry, the garbage collection algorithm
kicks in automatically. At this time, all objects on the managed heap are tested for
outstanding object references in your application (i.e., active roots). If the garbage
collector determines that a given root is no longer used by a given application (i.e., the
object has fallen out of scope or was set to null), the object is marked for termination.
Once the entire heap has been searched for "severed roots," the heap is swept clean,
and the underlying memory is reclaimed.

Finalizing an Object Reference

As you might have gathered from the previous section, the .NET garbage collection
scheme is rather nondeterministic. In other words, you are typically unable to determine
exactly when an object will be deallocated from memory. Although this approach to
memory management can simplify coding efforts, you are left with the unappealing
byproduct of your objects possibly holding onto unmanaged resources (Hwnds, database
connections, etc.) longer than necessary. For example, if the Car type was to obtain a
connection to a remote machine during its lifetime, you would like to ensure that this
resource is guaranteed to be released in a timely manner.

One choice you face as a C# class designer is to determine whether or not your classes
should support the System.Object.Finalize() method (the default implementation does
nothing). The odd thing is, the C# language does not allow you to directly override the
Object.Finalize() method. In fact, it is illegal to call Finalize() directly within a C#
application! Rather, when you wish to configure your custom class types to support the
Finalize() method, make use of the following (C++ like) destructor syntax to achieve the
same effect:

// This looks familiar...

public class Car : Object

{

 // A C# destructor?

 ~Car()

 {

 // Clean up your resources here!

 // Base.Finalize() called automatically In C#!

 }

...

}

If you have a background in C++, this syntax should look quite familiar. In C++, class
destructors are class methods marked with a tilde prefixed to the name of the class.
These methods are guaranteed to be called whenever the object reference falls out of

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-201 I ♡ Flyheart-

scope (for stack allocated types) or when the C++ "delete" keyword is used (for free store
allocated types).

When you place a C# object onto the managed heap using the new operator, the runtime
automatically determines if your object supports the Finalize() method (represented in C#
using the destructor syntax). If so, the object reference is marked as "finalizable" and a
pointer to this object is stored on an internal queue named (of course) the finalization
queue. When the garbage collector determines it is time to free the heap from orphaned
references, it explicitly triggers the destructor logic for each object on the finalization
queue before deallocating the memory for the object.

Finalization Details

Assume that you have now defined some additional automobile classes (minivans, sports
cars, and jeeps). Also assume that minivans and sports cars do not support a C#
destructor. Because the Car and Jeep classes have (indirectly) overridden
Object.Finalize(), the finalization queue would contain listings for any active Car or Jeep
reference. Internally, the process would look something like what you see in Figure 3-22.

Figure 3-22: Objects that support a C# destructor are placed onto the finalization queue

As you may be able to infer, classes that support destructors take longer to remove from
memory. c1 and c4 do not support a destructor, and can therefore be deallocated from
memory immediately (if a garbage collection were to occur). c2 and c3 on the other hand,
have additional overhead imposed by the call to Finalize(). Nevertheless, when you wish
to ensure that your objects are given a chance to release any acquired resources, you
should support a C# destructor.

Building an Ad Hoc Destruction Method

Again assume the Car class obtains recourses during its lifetime. If this type supports a
C# destructor it will take longer to remove from memory than objects which do not (which
may or may not be a problem). Given the fact that resources such as database
connections are a precious commodity, you may not want to wait for the .NET garbage
collector to trigger your destructor logic at "some time in the future." A logical question at
this point is how can we provide a way for the object user to deallocate the resources held
by an object as soon as possible?

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-202 I ♡ Flyheart-

One alternative is to define a custom ad hoc method that you can assume all objects in
your system implement. Let's call this method Dispose(). The assumption is that when
object users are finished using your object, they manually call Dispose() before allowing
the object reference to drop out of scope. In this way, your objects can perform any
amount of cleanup necessary (i.e., release a database connection) without incurring the
hit of being placed on the finalization queue and without waiting for the garbage collector
to trigger the class' destructor logic:

// Equipping our class with an ad hoc destructor.

public Car

{

...

 // This is a custom method we expect the object user to call manually.

 public void Dispose()

 {

 // ... Clean up your Internal resources.

 }

}

The IDisposable Interface

In order to provide symmetry among all objects that support an explicit destruction routine,
the .NET class libraries define an interface named IDisposable which (surprise, surprise)
supports a single member named Dispose():

public interface IDisposable

{

 public void Dispose();

}

Now, rest assured that the concepts behind interface based programming are fully
detailed in Chapter 4. Until then, understand that the recommended design pattern to
follow is to implement the IDisposable interface for all types that wish to support an
explicit form of resource deallocation. Thus, we may update the Car type as follows:

// Implementing IDisposable.

public Car : IDisposable

{

...

 // This is still a custom method we expect the object user to call

 // manually.

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-203 I ♡ Flyheart-

 public void Dispose()

 {

 // ... Clean up your Internal resources.

 }

}

Again, using this approach, you provide the object user with a way to manually dispose of
acquired resources as soon as possible, and avoid the overhead of being placed on the
finalization queue. As you may be guessing, it is possible for a single C# class to support
a destructor as well as implement the IDisposable interface. You see this technique in just
a moment.

Interacting with the Garbage Collector
Like everything in the .NET universe, you are able to interact with the garbage collector
using an object reference. System.GC is the class that enables you to do so. GC is a
sealed class, which, as you recall, means it cannot function as a base class to other types.
You access the GC's functionality using a small set of static members. Table 3-2 gives a
rundown of some of the more interesting items.

Table 3-2: Select Members of the System.GC Type

SYSTEM.GC
MEMBER

MEANING IN LIFE

Collect() Forces the GC to call the Finalize() method for
every object on the managed heap. You can
also (if you choose) specify the generation to
sweep (more on generations soon).

GetGeneration() Returns the generation to which an object
currently belongs.

MaxGeneration This property returns the maximum of
generations supported on the target system.

ReRegisterForFinalize() Sets a flag indicating that a suppressed object
should be reregistered as finalizable. This (of
course) assumes the object was marked as
nonfinalizable using SuppressFinalize().

SuppressFinalize() Sets a flag indicating that a given object should
not have its Finalize() method called.

GetTotalMemory() Returns the amount of memory (in bytes)
currently being used by all objects in the heap,

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-204 I ♡ Flyheart-

Table 3-2: Select Members of the System.GC Type

SYSTEM.GC
MEMBER

MEANING IN LIFE

including objects that are soon to be destroyed.

 This method takes a Boolean parameter, which
is used to specify if a garbage collection should
occur during the method invocation.

To illustrate programmatic interaction with the .NET garbage collector, let's retrofit our
automobile's destruction logic as follows:

// Memory clean up.

public class Car : IDisposable

{

...

 ~Car()

 {

 // If a garbage collection occurs, call our class' Dispose()

 // Implementation.

 Dispose();

 }

 // Our custom Dispose() method.

 public void Dispose()

 {

 // ... Clean up any Internal resources.

 // No need to finalize if user called Dispose(),

 // so supress finalization.

 GC.SuppressFinalize(this);

 }

}

Notice that this iteration of the Car class supports both a C# style destructor as well as the
IDisposable interface. Here, your Dispose() method has been altered to call
GC.SuppressFinalize(), which informs the system that it should no longer call the
destructor for the specified object, as the end user has called Dispose() manually (and
has therefore cleaned up any internal resources of the Car type).

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-205 I ♡ Flyheart-

To illustrate the interplay between explicit and implicit object deallocation, assume the
following updated Main() method. GC.Collect() is called to force all objects on the
finalization queue to have their destructor triggered before this application shuts down.
However, given that two of the Car types have been manually disposed by the object user,
these types do not have their destructor logic triggered due to the call to
GC.SuppressFinalize():

// Interacting with the GC.

public class GCApp

{

 public static int Main(string[] args)

 {

 Console.WriteLine("Heap memory in use: {0}",

 GC.GetTotalMemory(false).ToString());

 // Add these cars to the managed heap.

 Car c1, c2, c3, c4;

 c1 = new Car("Car one", 40, 10);

 c2 = new Car("Car two", 70, 5);

 c3 = new Car("Car three", 200, 100);

 c4 = new Car("Car four", 140, 80);

 // Manually dispose some objects.

 // This will tell the GC to suppress finalization.

 c1.Dispose();

 c3.Dispose();

 // Call Finalize() for objects remaining on the finalization queue.

 GC.Collect();

 return 0;

 }

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-206 I ♡ Flyheart-

Garbage Collection Optimizations

The next topic of interest has to do with the notion of "generations." When the .NET
garbage collector is about to mark objects for deletion, is does not literally walk over each
and every object placed on the managed heap looking for orphaned roots. Doing so
would involve considerable time, especially in larger (i.e., real-world) applications.

Recall that the GC forces a collection as soon as it determines there is not enough
memory to hold a new object instance. If the GC were to search every single object in
memory for severed roots, this could easily entail checking hundreds, if not thousands, of
objects. In this case, you could easily envision sluggish performance.

To help optimize the collection process, every object on the heap is assigned to a given
"generation." The idea behind generations is simple: The longer an object has existed on
the heap, the more likely it is to stay there (such as the application level object).
Conversely, objects that have been recently placed on the heap are more likely to be
unreferenced by the application rather quickly (e.g., a temporary object created in some
method scope). Given these assumptions, each object belongs to one of the following
generations:

 Generation 0: Identifies a newly allocated object that has never been
marked for collection.

 Generation 1: Identifies an object that has survived a garbage collection
sweep (i.e., it was marked for collection, but was not removed due to the
fact that the heap had enough free space).

 Generation 2: Identifies an object that has survived more than one sweep
of the garbage collector.

Now, when a collection occurs, the GC marks and sweeps all generation 0 objects first. If
this results in the required amount of memory, the remaining objects are promoted to the
next available generation. If all generation 0 objects have been removed from the heap,
but more memory is still necessary, generation 1 objects are marked and swept, followed
(if necessary) by generation 2 objects. In this way, the newer objects (i.e., local variables)
are removed quickly while an older object (i.e., the object defining the Main() method) is
assumed to be in use. In a nutshell, the GC is able to quickly free heap space using the
generation as a baseline.

Programmatically speaking, you are able to investigate the generation an object currently
belongs to using GC.GetGeneration(). Furthermore, GC.Collect() does allow you to
specify which generation should be checked for orphaned roots. Consider the following:

// Just how old are you?

public static int Main(string[] args)

{

 Console.WriteLine("Heap memory in use: "

 + GC.GetTotalMemory(false).ToString());

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-207 I ♡ Flyheart-

 // Add these cars to the managed heap.

 Car c1, c2, c3, c4;

 c1 = new Car("Car one", 40, 10);

 c2 = new Car("Car two", 70, 5);

 c3 = new Car("Car three", 200, 100);

 c4 = new Car("Car four", 140, 80);

 // Display generations.

 Console.WriteLine("C1 is gen {0}", GC.GetGeneration(c1));

 Console.WriteLine("C2 is gen {0}", GC.GetGeneration(c2));

 Console.WriteLine("C3 is gen {0}", GC.GetGeneration(c3));

 Console.WriteLine("C4 is gen {0}", GC.GetGeneration(c4));

 // Dispose some cars manually.

 c1.Dispose();

 c3.Dispose();

 // Collect all gen 0 objects?

 GC.Collect(0);

 // Display generations again (each will be promoted).

 Console.WriteLine("C1 is gen {0}", GC.GetGeneration(c1));

 Console.WriteLine("C2 is gen {0}", GC.GetGeneration(c2));

 Console.WriteLine("C3 is gen {0}", GC.GetGeneration(c3));

 Console.WriteLine("C4 is gen {0}", GC.GetGeneration(c4));

 // Force memory to be freed for all generations.

 GC.Collect(); // Calls destructors for each remaining object on heap.

 Console.WriteLine("Heap memory in use: "

 + GC.GetTotalMemory(false).ToString());

 return 0;

}

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-208 I ♡ Flyheart-

The output is shown in Figure 3-23. Notice that when you request a collection of
generation 0, each object is promoted to generation 1, given that these objects did not
need to be removed from memory (as the heap was not exhausted).

Figure 3-23: Interacting with the garbage collector

To close, keep in mind that your interactions with the GC should be slim-to-none. The
whole point of having a managed heap is to move the responsibility of memory
management from your hands into the hands of the runtime. Do remember however, that
when you build classes that support a C# style destructor, your objects will require more
time to remove from the managed heap (due to the extra logic of the finalization queue). If
you wish to support an implicit means of freeing the resources used by an object, you
may implement the IDisposable interface.

SOURCE
CODE

The GC project is located under the Chapter 3 subdirectory.

Summary

If you already come to the universe of .NET from another object-oriented language, this
chapter may have been more of a quick compare and contrast between your current
language of choice and C#. On the other hand, those of you who are exploring OOP for
the first time may have found many of the concepts presented here a bit confounding.
Regardless of your background, rest assured that the information presented here is the
foundation for any .NET application.
This chapter began with a review of the pillars of OOP: Encapsulation, inheritance, and
polymorphism. As you have seen, C# provides full support for each aspect of object
orientation. In addition, the use of structured exception handling was introduced, which is
the way to report and respond to error information in the .NET platform.

Finally, the chapter wrapped up by examining exactly how the .NET runtime frees you
from the need of manually cleaning up the memory you allocate by the virtue of a
managed heap. You have also explored the interplay between Object.Finalize(), the

C# and the .NET Platform Chapter 3: Object-Oriented Programming with C#

-209 I ♡ Flyheart-

IDisposable interface and the C# destructor and examined how to programmatically
interact with the garbage collector using the System.GC type.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-210 I ♡ Flyheart-

Chapter 4: Interfaces and Collections

Overview

THIS CHAPTER BUILDS ON YOUR current understanding of object-oriented
development by introducing the topic of interface-based programming. You learn how to
use C# to create and implement custom interfaces, and come to understand the benefits
of building types that support multiple behaviors. Along the way, a number of related
topics are also discussed, such as obtaining interface references, explicit interface
implementation, and the construction of interface hierarchies.

The remainder of this chapter is spent examining some of the standard interfaces defined
within the .NET base class libraries. As you will see, your custom types are free to
implement these predefined interfaces to support a number of advanced behaviors such
as object cloning, object enumeration, and object sorting.

To wrap things up, you get a high-level view of the various predefined interfaces that are
implemented by various collection classes (ArrayList, Stack, etc.) defined by the
System.Collections namespace.

Understanding Interface-Based Programming

COM programmers have lived and died by the notion of interface-based programming for
years. In fact, one of the central tenants of COM is that the only way a client can
communicate with a COM class is via an interface pointer (not a direct object reference).
Although the .NET universe still honors the use of interfaces, they are not the only means
by which two binaries can communicate (as the CLR supports true object references). Be
aware however, that this does not in any way imply that interfaces are obsolete! These
syntactic entities are still the most elegant manner by which you can safely extend the
functionality of a custom type without breaking existing code.

First, a formal definition: An interface is nothing more than a collection of semantically
related abstract members. The exact number of members defined by a given interface
always depends on the exact behavior you are attempting to model. Yes it's true. An
interface expresses a behavior that a given class may wish to support. At a syntactic level,
an interface is defined using the following C# syntax:

// This interface defines the behavior of 'having points'.

public interface IPointy

{

 byte GetNumberOfPoints(); // Implicitly abstract.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-211 I ♡ Flyheart-

}

.NET interfaces are also able to support any number of properties (and events). For
example, you could design the IPointy interface with the following read/write property:

// The pointy behavior as a read / write property.

public interface IPointy

{

 // Remove 'get' or 'set' to build read/write only property.

 byte Points{get; set;}

}

In any case, because an interface is nothing more than a named set of abstract members,
any class (or structure) that chooses to implement an interface, is obligated to flesh out
the details behind each member. Thus, interface-based programming provides yet
another way to inject polymorphic behavior into a system: If multiple classes (or
structures) implement the same interface in their unique ways, you have the power to
treat each type in the same manner.

Here, IPointy is a simple interface that expresses the behavior of "having points." As you
can tell, this behavior might be useful in the Shapes hierarchy developed in Chapter 3.
The idea is simple: Some objects in the Shapes application have points (such as the
Hexagon and Triangle) while others (such as the Circle) do not. If you configure the
Hexagon and Triangle to support the IPointy interface, you can safely assume that each
class supports a common behavior.

At this point, you may be wondering why you need the interface keyword in the first place.
After all, C# allows you to build base classes containing abstract methods. When a child
class derives from an abstract base class, it is also under obligation to flesh out the
details of the abstract methods. However, abstract base classes typically do far more
than define a group of abstract methods. They are free to define public, private, and
protected state data, as well as any number of concrete methods that can be accessed by
the subclasses.

Interfaces on the other hand, are pure protocol. Interfaces never define data types, and
never provide a default implementation of the methods. Every member of an interface
(whether it is a property or method) is automatically abstract. Furthermore, given that C#
(and .NET-aware languages in general) only support single inheritance, the
interface-based protocol allows a given type to support numerous behaviors, while
avoiding the issues that arise when deriving from multiple base classes.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-212 I ♡ Flyheart-

Implementing an Interface

When a C# class (or structure) chooses to extend its functionality by supporting a given
interface, it does so using a comma-delimited list in the class definition. Be aware that the
direct base class must be listed first:

// A given class may implement as many interfaces as necessary, but may have

// exactly 1 base class.

public class Hexagon : Shape, IPointy

{

 public Hexagon(){}

 public Hexagon(string name): base(name){}

 public override void Draw()

 {

 // Recall the Shape class defined the PetName property.

 Console.WriteLine("Drawing {0} the Hexagon", PetName);

 }

 // IPointy Implementation.

 public byte GetNumberOfPoints()

 {

 return 6;

 }

}

public class Triangle : Shape, IPointy

{

 public Triangle() {}

 public Triangle(string name): base(name) {}

 public override void Draw()

 {

 Console.WriteLine("Drawing {0} the Triangle", PetName);

 }

C# and the .NET Platform Chapter 4: Interfaces and Collections

-213 I ♡ Flyheart-

 // IPointy Implementation.

 public byte GetNumberOfPoints()

 {

 return 3;

 }

}

Each class now returns the number of points to the outside world when asked to do so.
Notice that implementing an interface is an all-or-nothing proposition. The supporting
class is not able to selectively choose which methods it will implement. Given that our
IPointy interface defines a single method, this is not too much of a burden.
To sum up the story so far, the following diagram illustrates IPointy compatible objects
using the popular "COM lollipop" notation. For those coming from a non-Microsoft view of
the world, COM objects are graphically represented using a lollipop (aka jack) for each
interface supported by a given class. For those who are familiar with the COM lifestyle,
notice that the Hexagon and Triangle classes (see Figure 4-1) do not implement
IUnknown and derive from a common base class (again illustrating the stark differences
between COM and .NET):

Figure 4-1: The updated Shapes hierarchy

Obtaining Interface References

As far as obtaining an interface reference from a type, C# provides a number of options.
First, assume you have created an instance of the Hexagon class, and wish to discover if
it supports the pointy behavior. One approach is to make use of an explicit cast:

// Grab a reference to the IPointy interface using a dynamic cast.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-214 I ♡ Flyheart-

Hexagon hex = new Hexagon("Bill");

IPointy itfPt = (IPointy)hex;

Console.WriteLine(itfPt.GetNumberOfPoints());

Here, you are asking the Hexagon instance for access to the IPointy interface. If the
object does support this interface, you are then able to exercise the behavior accordingly.
However, what if you were to create an instance of Circle? Given that the Circle class
does not support the IPointy interface, you are issued a runtime error! When you attempt
to access an interface not supported by a given class using a direct cast, the system
throws an InvalidCastException, as seen in Figure 4-2.

Figure 4-2: Bad cast

To safely recover from this exception you need to catch this exception:

// Catch the exception programmatically to recover gracefully...

Circle c = new Circle("Lisa");

IPointy itfPt;

try

{

 itfPt = (IPointy)c;

 Console.WriteLine(itfPt.GetNumberOfPoints());

}

catch(InvalidCastException e)

{ Console.WriteLine("OOPS! Not pointy..."); }

The second way you can obtain an interface from an object reference using the "as"
keyword. For example:

// Second way to obtain an interface:

Hexagon hex2 = new Hexagon("Peter");

IPointy itfPt2;

itfPt2 = hex2 as IPointy;

if(itfPt2 != null)

C# and the .NET Platform Chapter 4: Interfaces and Collections

-215 I ♡ Flyheart-

 Console.WriteLine(itfPt2.GetNumberOfPoints());

else

 Console.WriteLine("OOPS! Not pointy...");

The "as" syntax sets the interface variable to null if a given interface is not supported by
the object (notice that you check your IPointy reference for null before continuing) rather
than throwing an exception. Finally, you may also obtain an interface from an object using
the "is" operator. If the object in question is not IPointy-compatible, the condition fails:

// Are you pointy?

Triangle t = new Triangle();

if(t is IPointy)

 Console.WriteLine(t.GetNumberOfPoints());

else

 Console.WriteLine("OOPS! Not pointy...");

In these examples, you could have avoided checking the outcome of asking for the
IPointy reference, given that you knew ahead of time which shapes were
IPointy-compatible. However, what if you were to create an array of generic Shape
references, each of which has been assigned to a given subclass? You may make use of
any of the previous techniques to discover at runtime which items in the array support this
behavior:

// Let's discover which shapes are pointy at runtime...

Shape[] s = {new Hexagon(), new Circle(), new Triangle("Joe"),

new Circle("JoJo")};

for(int i = 0; i < s.Length; i++)

{

 // Recall the Shape base class defines an abstract Draw() member.

 s[i].Draw();

 // Who's pointy?

 if(s[i] is IPointy)

 Console.WriteLine("Points: {0}", ((IPointy)s[i]).GetNumberOfPoints());

 else

 Console.WriteLine(s[i].PetName + "\'s not pointy!");

}
The output follows in Figure 4-3.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-216 I ♡ Flyheart-

Figure 4-3: Discovering behaviors at runtime

Interfaces as Parameters

Interfaces are strongly typed variables and therefore you may construct methods that
take interfaces as parameters as well as return values. To begin, assume you have
defined another interface named IDraw3D as follows:

// The 3D drawing behavior.

public interface IDraw3D

{

 void Draw3D();

}

Next, assume that two of your three shapes (Circle and Hexagon) have been configured
to support this new behavior:

// Circle supports IDraw3D.

public class Circle : Shape, IDraw3D

{

...

 public void Draw3D()

 {

 Console.WriteLine("Drawing Circle in 3D!");

 }

}

// If your types support multiple interfaces, simply tack them to the end of the

// class definition.

public class Hexagon : Shape, IPointy, IDraw3D

{

C# and the .NET Platform Chapter 4: Interfaces and Collections

-217 I ♡ Flyheart-

...

 public void Draw3D()

 {

 Console.WriteLine("Drawing Hexagon in 3D!");

 }

}
If you now define a method taking an IDraw3D interface as a parameter, you are able to
effectively send in any object supporting IDraw3D. Consider the following:

// Make some shapes. If they can be rendered in 3D, do it!

public class ShapesApp

{

 // I'll draw anyone supporting IDraw3D!

 public static void DrawThisShapeIn3D(IDraw3D itf3d)

 {

 itf3d.Draw3D();

 }

 public static int Main(string[] args)

 {

 Shape[] s = {new Hexagon(), new Circle(),

 new Triangle(), new Circle("JoJo")};

 for(int i = 0; i < s.Length; i++)

 {

 // Can I draw you in 3D?

 if(s[i] is IDraw3D)

 DrawThisShapeIn3D((IDraw3D)s[i]);

 }

 return 0;

 }

}
Notice that the triangle is never drawn, as it is not IDraw3D compatible (Figure 4-4).

C# and the .NET Platform Chapter 4: Interfaces and Collections

-218 I ♡ Flyheart-

Figure 4-4: Discovering all IDraw3D compatible types

Understanding Explicit Interface Implementation

In our previous definition of IDraw3D, you were forced to name your method Draw3D() in
order to avoid clashing with the abstract Draw() method defined in the Shapes base class:

// The 3D drawing behavior.

public interface IDraw3D

{

 void Draw3D();

}

While there is nothing horribly wrong with this interface definition, a more natural method
name would simply be Draw():

// The 3D drawing behavior.

public interface IDraw3D

{

 void Draw();

}
If you were to create a new class that derives from Shape and implements IDraw3D, you
are in for some problematic behavior. Before seeing the problem firsthand, assume you
have defined the following new class named Line:

// Problems...

public class Line : Shape, IDraw3D // Both define a Draw() method!

{

 public override void Draw()

 {

 Console.WriteLine("Drawing a line...");

 }

}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-219 I ♡ Flyheart-

The Line class compiles without a hitch. But, consider the following object user code:

// Calls Line.Draw()

Line myLine = new Line();

myLine.Draw();

// Also calls Line.Draw().

IDraw3D itfDraw3d= (IDraw3D) myLine;

itfDraw3d.Draw();

Given what you already know about the Shapes base class and IDraw3D interface, it
looks as if you have inherited two abstract methods named Draw(). However, given that
the Line class offers a concrete implementation, the compiler is happy to call the same
implementation from an interface or object reference. This is problematic in that you
would like to have the IDraw3D.Draw() method to render a type in stunning 3D, while the
overridden Shape.Draw() method draws in boring 2D.

Now consider a related problem. How can you ensure that the methods defined by a
given interface are only accessible from an interface reference? For example, an object
user is able to access the members defined by the IPointy interface using either an object
reference or an IPointy reference.

The answer to each question comes by way of explicit interface implementation. Using
this technique, you are able to ensure that the object user can only access methods
defined by a given interface using the correct interface reference, as well as circumvent
possible name clashes. To illustrate, here is the updated Line class:

// Using explicit method implementation we are able to provide distinct

// Draw() implementations.

public class Line : Shape, IDraw3D

{

 // You can only call this method using an IDraw3D interface reference.

 void IDraw3D.Draw()

 {

 Console.WriteLine("Drawing a 3D line...");

 }

 // You can only call this using a Line (or base class) reference.

 public override void Draw()

 {

 Console.WriteLine("Drawing a line...");

C# and the .NET Platform Chapter 4: Interfaces and Collections

-220 I ♡ Flyheart-

 }

}

There are a few odds and ends to be aware of when using explicit interface
implementation. First and foremost, you cannot make use of an access modifier when
using this technique. For example, the following is illegal syntax:

// Nope! Illegal.

public class Line : Shape, IDraw3D

{

 public void IDraw3D.Draw()

 {

 Console.WriteLine("Drawing a 3D line...");

 }

...

}

This should make sense. The whole reason to use explicit interface method
implementation is to ensure that a given interface method is bound at the interface level.
If we were to add the "public" keyword, this would suggest that the method is a member of
the public sector of the class, which defeats the point!

Now let's revisit the name clash issue. This technique can be very helpful whenever you
are implementing a number of interfaces that happen to contain identical methods. For
example, assume you wish to create a class that implements all the following interfaces:

// Three interfaces each defining identical methods.

public interface IDraw

{

 void Draw();

}

public interface IDraw3D

{

 void Draw();

}

public interface IDrawToPrinter

{

 void Draw();

C# and the .NET Platform Chapter 4: Interfaces and Collections

-221 I ♡ Flyheart-

}

If you wish to build a shape (using interface-based techniques) that supports basic
rendering (IDraw), 3D rendering (IDraw3D), as well as printing services (IDrawToPrinter),
the only way to provide unique behaviors for each method is to use explicit interface
implementation:

// Fine grained control.

public class SuperImage : IDraw, IDrawToPrinter, IDraw3D

{

 void IDraw.Draw()

 {

 // Basic drawing logic.

 }

 void IDrawToPrinter.Draw()

 {

 // Printer logic.

 }

 void IDraw3D.Draw()

 {

 // 3D support.

 }

}

SOURCE
CODE

The Shapes project is located under the Chapter 4
subdirectory.

Building Interface Hierarchies

To wrap up our investigation of building custom interfaces, you must examine the issue of
interface hierarchies. Just as a class can serve as a base class to other classes (which
can in turn function as base classes to yet another class), it is possible to build derived
relationships among interfaces. As you might expect, the top-most interface defines a
general behavior, while the most derived interface defines more specific behaviors. Here
is a simple interface hierarchy:

// The base interface.

interface IDraw

{

 void Draw();

C# and the .NET Platform Chapter 4: Interfaces and Collections

-222 I ♡ Flyheart-

}

interface IDraw2 : IDraw

{

 void DrawToPrinter();

}

interface IDraw3 : IDraw2

{

 void DrawToMetaFile();

}
The relationships between these custom interfaces can be seen in Figure 4-5.

Figure 4-5: Simple interface hierarchy

Now, if a class wished to support each behavior expressed in this interface hierarchy, it
would derive from the nth-most interface (IDraw3 in this case). Any methods defined by
the base interface(s) are automatically carried into the definition. For example:

// This class supports IDraw, IDraw2 and IDraw3.

public class SuperImage : IDraw3

{

 // Use explicit interface methods implementation to bind

 // methods to the correct interface.

 void IDraw.Draw()

 {

 // Basic drawing logic

 }

 void IDraw2.DrawToPrinter()

C# and the .NET Platform Chapter 4: Interfaces and Collections

-223 I ♡ Flyheart-

 {

 // Draw to printer.

 }

 void IDraw3.DrawToMetaFile()

 {

 // Draw to metafile.

 }

}
Here is some sample usage (see Figure 4-6 for output):

// Exercise the interfaces.

public class TheApp

{

 public static int Main(string[] args)

 {

 SuperImage si = new SuperImage();

 // Get IDraw.

 IDraw itfDraw = (IDraw)si;

 itfDraw.Draw();

 // Now get IDraw3.

 if(itfDraw is IDraw3)

 {

 IDraw3 itfDraw3 = (IDraw3)itfDraw;

 itfDraw3.DrawToMetaFile();

 itfDraw3.DrawToPrinter();

 }

 return 0;

 }

}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-224 I ♡ Flyheart-

Figure 4-6: Using the SuperImage

Specifying Multiple Base Interfaces

As you build interface hierarchies, be aware that it is completely permissible to create an
interface that derives from multiple base interfaces (unlike classic COM). Recall of course,
that it is not permissible to build a class that derives from multiple base classes. For
example assume you are building a new set of interfaces that model automobile
behaviors:

interface IBasicCar

{

 void Drive();

}

interface IUnderwaterCar

{

 void Dive();

}

// Here we have an interface with TWO base interfaces.

interface IJamesBondCar : IBasicCar, IUnderwaterCar

{

 void TurboBoost();

}

If you were to build a class that implements IJamesBondCar, you would now be
responsible for implementing TurboBoost(), Dive(), and Drive():

public class JBCar : IJamesBondCar

{

 public JBCar(){}

 // Inherited members.

 void IBasicCar.Drive(){Console.WriteLine("Speeding up...");}

 void IUnderwaterCar.Dive(){Console.WriteLine("Submerging...");}

 void IJamesBondCar.TurboBoost(){Console.WriteLine("Blast off!");}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-225 I ♡ Flyheart-

}

This specialized automobile can now be used as you would expect:

JBCar j = new JBCar();

if(j is IJamesBondCar)

{

 ((IJamesBondCar)j).Drive();

 ((IJamesBondCar)j).TurboBoost();

 ((IJamesBondCar)j).Dive();

}

SOURCE
CODE

The IFaceHierarchy project is located under the Chapter 4
subdirectory.

Building a Custom Enumerator (IEnumerable and

IEnumerator)
Now that you understand how to work with custom interfaces, you can begin to examine
some of the standard (i.e., predefined) interfaces defined in the .NET class libraries. As
you dig deeper into the .NET universe, you will find that many canned types implement
numerous standard interfaces. You are also free to build custom types that support these
same interfaces. To illustrate, assume you have developed a class named Cars, which
represents a collection of individual Car objects (which we created in Chapter 3). Here is
the initial definition:

// Cars is a container of Car objects.

public class Cars

{

 private Car[] carArray;

 // Create some Car objects upon start up.

 public Cars()

 {

 carArray = new Car[4];

 carArray[0] = new Car("FeeFee", 200, 0);

 carArray[1] = new Car("Clunker", 90, 0);

 carArray[2] = new Car("Zippy", 30, 0);

 carArray[3] = new Car("Fred", 30, 0);

C# and the .NET Platform Chapter 4: Interfaces and Collections

-226 I ♡ Flyheart-

 }

}

Ideally, it would be convenient from the object user's point of view to iterate over the Cars
type using the foreach construct, in order to obtain each internal Car:

// This seems reasonable...

public class CarDriver

{

 public static void Main()

 {

 Cars carLot = new Cars();

 // Hand over each car in the collection?

 foreach (Car c in carLot)

 {

 Console.WriteLine("Name: {0}", c.PetName);

 Console.WriteLine("Max speed: {0}", c.MaxSpeed);

 }

 }

}

Sadly, if you attempt to execute this code, the compiler would complain that the Cars
class does not implement the GetEnumerator() method. This method is defined by the
IEnumerable interface, which is found in the System.Collections namespace. To rectify
the problem, you may update the Cars definition as follows:

// The foreach syntax demands that your class support the IEnumerable interface.

public class Cars : IEnumerable

{

...

 // IEnumerable defines this method (and only this method).

 public IEnumerator GetEnumerator()

 {

 // OK, now what?

 }

...

}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-227 I ♡ Flyheart-

So far so good, however as you can see, GetEnumerator() returns yet another interface
named IEnumerator. IEnumerator can be obtained from an object to traverse over an
internal collection of types. IEnumerator is also defined in the System.Collections
namespace and defines the following three methods:

// GetEnumerator() returns one of these guys.

public interface IEnumerator

{

 bool MoveNext (); // Advance the internal position of the cursor.

 object Current {get;} // Get the current item (read only property).

 void Reset (); // Reset the cursor to the beginning of the list.

}

Now, given that IEnumerable.GetEnumerator() returns an IEnumerator interface, you
may update the Cars type as follows:

// Getting closer...

public class Cars : IEnumerable, IEnumerator

{

...

 // Implementation of IEnumerable.

 public IEnumerator GetEnumerator()

 {

 return (IEnumerator)this;

 }

...

}

The final detail is to flesh out the implementation of MoveNext(), Current, and Reset().
Here then, is the final update of the Cars class:

// An enumerable car collection!

public class Cars : IEnumerator, IEnumerable

{

 private Car[] carArray;

 // Current position in array.

 int pos = -1;

 public Cars()

C# and the .NET Platform Chapter 4: Interfaces and Collections

-228 I ♡ Flyheart-

 { // Make some cars and add them to the array... }

 // IEnumerator implementation.

 public bool MoveNext()

 {

 if(pos < carArray.Length)

 {

 pos++;

 return true;

 }

 else

 return false;

 }

 public void Reset() { pos = 0; }

 public object Current

 {

 get { return carArray[pos]; }

 }

 // IEnumerable implementation.

 public IEnumerator GetEnumerator()

 {

 return (IEnumerator)this;

 }

}

So then, what have you gained by equipping your class to support the IEnumerator and
IEnumerable interfaces? First, your custom type can now be traversed using the foreach
syntax.

// No problem!

foreach (Car c in carLot)

{

C# and the .NET Platform Chapter 4: Interfaces and Collections

-229 I ♡ Flyheart-

 Console.WriteLine("Name: {0}", c.PetName);

 Console.WriteLine("Max speed: {0}", c.MaxSpeed);

}

In addition, this provides an alternative means for an object user to access the underlying
automobiles maintained by the Cars type (which as you may be able to tell, looks a lot like
manipulating the raw COM IEnumXXXX interface):

// Access Car types using IEnumerator.

IEnumerator itfEnum;

itfEnum = (IEnumerator)carLot;

// Reset the cursor to the beginning.

itfEnum.Reset();

// Advance internal cursor by 1.

itfEnum.MoveNext();

// Grab current Car and crank some tunes.

object curCar = itfEnum.Current;

((Car)curCar).CrankTunes(true);

SOURCE
CODE

The ObjEnum project is located under the Chapter 4
subdirectory.

Building Cloneable Objects (ICloneable)
As you recall from Chapter 2, System.Object defines a member named
MemberwiseClone(). This method is used to make a shallow copy of an object instance.
Object users do not call this method directly, however whenever the assignment operator
is used to set one object reference equal to another, MemberwiseClone() is called
automatically. First, assume you have a class named Point:

// The classic Point example...

public class Point

{

 // Field data.

 public int x, y;

 // Ctors.

 public Point(){}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-230 I ♡ Flyheart-

 public Point(int x, int y){this.x = x; this.y = y;}

 // Override Object.ToString().

 public override string ToString()

 { return "X: " + x + " Y: " + y; }

}

Given what you already know about reference types and value types, you are aware that
if you set one object reference to another reference, you have two pointers to the same
memory location (i.e., a shallow copy).

If you wish to equip your objects to support deep-copy semantics, you may implement the
standard ICloneable interface. This interface defines a single method named Clone(). The
implementation of the Clone() method varies between objects. However the basic
functionality tends to be the same: Copy the values of your member variables into a new
object instance, and return it to the user. Let's retrofit Point to support a true deep copy:

// The Point class supports deep copy semantics ala ICloneable.

public class Point : ICloneable

{

 // State data.

 public int x, y;

 // Ctors.

 public Point(){}

 public Point(int x, int y) {this.x = x; this.y = y;}

 // The sole method of ICloneable.

 public object Clone()

 {

 return new Point(this.x, this.y);

 }

 public override string ToString()

 { return "X: " + x + " Y: " + y; }

}

In this way, you can create exact standalone copies of the Point type, as illustrated by the
following code:

// Notice Clone() returns a generic object type.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-231 I ♡ Flyheart-

// You must perform an explicit cast to obtain the derived type.

Point p3 = new Point(100, 100);

Point p4 = (Point)p3.Clone();

// Change p4.x (which will not change p3.x).

p4.x = 0;

// Print each object.

Console.WriteLine("Deep copying using Clone()");

Console.WriteLine(p3);

Console.WriteLine(p4);

If this code looks vaguely familiar to you, it should. In Chapter 2 you spent some time
coming to understand the distinction between value and reference types. As you recall,
value types (such as a C# structure) always make use of bit-copy semantics. When you
wish to configure a reference type (i.e., a C# class) to produce deep copies, you must
implement ICloneable. If you do not, your custom classes will make use of the default
shallow copy provided by Object.MemberwiseClone(). Be aware that numerous .NET
types support this behavior. Look up ICloneable from online Help for the complete list of
cloneable classes supported by the runtime.

SOURCE
CODE

The ObjClone project is located under the Chapter 4
subdirectory.

Building Comparable Objects (IComparable)

The IComparable interface (defined in the System namespace) specifies a behavior that
allows an object to be sorted based on some internal key. Here is the formal definition:

// This interface allows an object to specify its

// relationship between other like objects.

interface IComparable

{

 int CompareTo(object o);

}

Let's assume you have updated the Car class to maintain an internal ID, as well as an
owner supplied pet name. Object users might create an array of Car types as follows:

// Make an array of Car types.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-232 I ♡ Flyheart-

Car[] myAutos = new Car[5];

myAutos[0] = new Car(123, "Rusty");

myAutos[1] = new Car(6, "Mary");

myAutos[2] = new Car(83, "Viper");

myAutos[3] = new Car(13, "NoName");

myAutos[4] = new Car(9873, "Chucky");

As you recall, the System.Array class defines a static method named Sort(). When you
invoke this method on an array of intrinsic types (e.g., int, short) you are able to sort the
items in the array from lowest to highest. However, what if you were to send an array of
Car types into the Sort() method:

// Sort my cars?

Array.Sort(myAutos); // Nope, not yet...sorry!

If you run this test, you would find that an ArgumentException exception is thrown by the
runtime, with the following message: "At least one object must implement IComparable."
Therefore, when you build custom types, you can implement IComparable to allow arrays
of your types to be sorted. When you flesh out the details of CompareTo(), it will be up to
you to decide what the base-line of the ordering operation will be. For the Car type, the
internal ID seems to be the most logical candidate:

// The iteration of the Car can be ordered

// based on the CarID.

public class Car : IComparable

{

...

 // IComparable implementation.

 int IComparable.CompareTo(object o)

 {

 Car temp = (Car)o;

 if(this.CarID > temp.CarID)

 return 1;

 if(this.CarID < temp.CarID)

 return -1;

 else

 return 0;

 }

}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-233 I ♡ Flyheart-

As you can see, the logic behind CompareTo() is to test the incoming type against the
current instance. The return value of CompareTo() is used to discover if this type is less
than, greater than, or equal to the object it is being compared with (Table 4-1).

Table 4-1: CompareTo() Return Values

COMPARETO()
RETURN VALUE

MEANING IN LIFE

Any number less
than zero

This instance is less than object.

Zero This instance is equal to object.

Any number greater
than zero

This instance is greater than object.

Now that your Car type understands how to compare itself to like objects, you can write
the following user code:

// Exercise the IComparable interface.

public class CarApp

{

 public static int Main(string[] args)

 {

 // Make an array of Car types.

 Car[] myAutos = new Car[5];

 myAutos[0] = new Car(123, "Rusty");

 myAutos[1] = new Car(6, "Mary");

 myAutos[2] = new Car(83, "Viper");

 myAutos[3] = new Car(13, "NoName");

 myAutos[4] = new Car(9873, "Chucky");

 // Dump current array.

 Console.WriteLine("Here is the unordered set of cars:");

 foreach(Car c in myAutos)

 Console.WriteLine(c.ID + " " + c.PetName);

 // Now, sort them using IComparable!

 Array.Sort(myAutos);

C# and the .NET Platform Chapter 4: Interfaces and Collections

-234 I ♡ Flyheart-

 // Dump sorted array.

 Console.WriteLine("Here is the ordered set of cars:");

 foreach(Car c in myAutos)

 Console.WriteLine(c.ID + " " + c.PetName);

 return 0;

 }

}

Figure 4-7 illustrates a test run.

Figure 4-7: Sorting Car types by numerical ID

As a side note, if multiple items in the Car array have the same value assigned to the ID
member variable, the sort simply lists them according to their occurrence in the sort
(notice in Figure 4-8 we have three cars with the ID of 6).

Figure 4-8: Duplicate numerical IDs are listed by order of occurrence

Specifying Multiple Sort Orders (IComparer)

In this version of the Car type, you made use of the underlying ID to function as the
baseline of the sort order. Another design might have used the pet name of the car as the

C# and the .NET Platform Chapter 4: Interfaces and Collections

-235 I ♡ Flyheart-

basis of the sorting algorithm (to list cars alphabetically). Now, what if you wanted to build
a Car that could be sorted by ID as well as by pet name? If this is the behavior you are
interested in, you need to make friends with another standard interface named IComparer,
defined within the System.Collections namespace as follows:

// A generic way to compare two objects.

interface IComparer

{

 int Compare(object o1, object o2);

}

Unlike the IComparable interface, IComparer is typically not implemented on the type you
are trying to sort (i.e., the Car). Rather, you implement this interface on any number of
helper objects, one for each sort order (pet name, ID, etc). Currently, our Car type already
knows how to compare itself against other cars based on the internal car ID. Therefore, to
allow the object user to sort an array of Car types by pet name will require an additional
helper class that implements IComparer. Here's the code:

// This helper class is used to sort an array of Cars by pet name.

using System.Collections;

public class SortByPetName : IComparer

{

 public SortByPetName(){}

 // Test the pet name of each object.

 int IComparer.Compare(object o1, object o2)

 {

 Car t1 = (Car)o1;

 Car t2 = (Car)o2;

 return String.Compare(t1.PetName, t2.PetName);

 }

}

The object user code is able to make use of this helper class. System.Array has a number
of overloaded Sort() methods, one that just happens to take an object implementing
IComparer (Figure 4-9):

// Now sort by pet name.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-236 I ♡ Flyheart-

Array.Sort(myAutos, new SortByPetName());

// Dump sorted array.

Console.WriteLine("Ordering by pet name:");

foreach(Car c in myAutos)

 Console.WriteLine(c.ID + " " + c.PetName);

Figure 4-9: Sorting alphabetically by pet name

Custom Properties, Custom Sort Types

It is worth pointing out that you can make use of a custom static property in order to help
the object user along when sorting your Car types by pet name. Assume the Car class
has added a static read-only property named SortByPetName() that returns the correct
IComparer interface:

// We now support a custom property to return the correct IComparer interface.

public class Car : IComparable

{

 ...

 // Property to return the SortByPetName comparer.

 public static IComparer SortByPetName

 { get { return (IComparer)new SortByPetName(); } }

 ...

}

The object user code can now be modified as follows:

// This was a bit cumbersome.

// Array.Sort(myAutos, new SortByPetName());

// Cleaner! Just ask the car for the correct sort object.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-237 I ♡ Flyheart-

Array.Sort(myAutos, Car.SortByPetName);

SOURCE
CODE

The ObjComp project is located under the Chapter 4
subdirectory.

Exploring the System.Collections Namespace

The most primitive C# collection construct is System.Array. As you have already seen in
Chapter 2, this class does provide quite a number of member functions that encapsulate
a number of interesting services (e.g., reversing, sorting, cloning, and enumerating). In a
similar vein, this chapter has also shown you how to build custom types with many of the
same services using standard interfaces. To round out your appreciation of the
various .NET collection constructs, the final order of business is to review the numerous
types defined within the System.Collections namespace.

First, System.Collections defines a number of standard interfaces (many of which you
have already implemented during the course of this chapter). Most of the classes defined
within the System.Collections namespace implement these interfaces to provide access
to their contents. Table 4-2 gives a breakdown of the core collection-centric interfaces:

Table 4-2: Interfaces of System.Collections

SYSTEM.COLLECTIONS
INTERFACE

MEANING IN LIFE

ICollection Defines generic characteristics (e.g.,
read-only, thread safe, etc.) for a collection
class.

IComparer Allows two objects to be compared.

IDictionary Allows an object to represent its contents
using name/value pairs.

IDictionaryEnumerator Used to enumerate the contents of an object
supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given
object.

IEnumerator Generally used to support foreach style
iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing
type using a customized hash algorithm.

IList Provides behavior to add, remove, and index
items in a list of objects.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-238 I ♡ Flyheart-

As you may suspect, many of these interfaces are related by an interface hierarchy, while
others are standalone entities. Figure 4-10 illustrates the relationship between each type
(recall that it is permissible for a single interface derive from multiple interfaces).

Figure 4-10: The System.Collections interface hierarchy

Now that you understand the basic functionality provided by each interface, Table 4-3
provides a rundown of the core collection classes.

Table 4-3: Classes of System.Collections

SYSTEM.COLLECTIONS
CLASS

MEANING IN LIFE KEY IMPLEMENTED
INTERFACES

ArrayList A dynamically sized
array of objects.

IList, ICollection, IEnumerable
and ICloneable.

Hashtable Represents a
collection of
associated keys and
values that are
organized based on
the hash code of the
key.

Types stored in a Hashtable
should always override
system.Object.GetHashCode
(). IDictionary, ICollection,
IEnumerable and ICloneable.

Queue Represents a
standard
first-in-first-out (FIFO)
queue.

ICollection, ICloneable and
IEnumerable.

SortedList Like a dictionary,
however the elements
can also be accessed
by ordinal position
(e.g., index).

IDictionary, ICollection,
IEnumerable and ICloneable.

Stack A last-in-first-out
(LIFO) queue

ICollection and IEnumerable.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-239 I ♡ Flyheart-

Table 4-3: Classes of System.Collections

SYSTEM.COLLECTIONS
CLASS

MEANING IN LIFE KEY IMPLEMENTED
INTERFACES

providing push, pop
(and peek)
functionality.

System.Collections.Specialized Namespace

In addition to the types defined within the System.Collections namespace, you should
also be aware that the System.Collections.Specialized namespace provides another set
of types that are more (pardon the redundancy) specialized. For example, the
StringDictionary and ListDictionary types each provide a stylized implementation of the
IDictionary interface. Now the focus is on the generic types defined within
System.Collections; see online Help for additional details.

Retrofitting the Cars Type

As you begin to experiment with the System.Collections types, you will find they all tend
to share common functionality (that's the point of interface-based programming). Thus,
rather than listing out the members of each and every collection class, the final task of this
chapter is to illustrate how to build a custom collection that makes use of a specific .NET
collection class: ArrayList. Once you understand this type's functionality, gaining an
understanding of the remaining collection classes should naturally follow.

Previously in this chapter, you created the Cars type that was responsible for holding a
number of Car objects. Internally, the set of Car objects was represented with an instance
of System.Array, and because of this fact, you needed to write a good deal of extra code
to allow the outside world to interact with our subobjects. Furthermore, the Car array is
defined with a fixed upper limit.

A more intelligent design would be to represent the internal set of Car objects as an
instance of System.Collections.ArrayList. Given that this class already has a number of
methods to insert, remove, and enumerate its contents, the only duty of the Cars type is
to supply a set of public functions that delegate to the inner ArrayList (in other words, the
Cars type "has-a" ArrayList). As with any containment/delegation scenario, it is up to you
to decide how much functionality of the inner object to expose to the object user. Here
then, is one possible implementation of the updated Cars type:

// Notice we no longer need to implement IEnumerator, given that

// ArrayList already does so.

public class Cars : IEnumerable // ,IEnumerator ... Don't need this anymore!

{

C# and the .NET Platform Chapter 4: Interfaces and Collections

-240 I ♡ Flyheart-

 // This class maintains an array of cars.

 private ArrayList carList;

 // Make the ArrayList.

 public Cars() {carList = new ArrayList ();}

 /* Expose select methods of the ArrayList to the outside world. */

 // Insert a car.

 public void AddCar(Car c)

 { carList.Add(c);}

 // Remove a car.

 public void RemoveCar(int carToRemove)

 { carList.RemoveAt(carToRemove);}

 // Return number of cars.

 public int CarCount

 { get{ return carList.Count;} }

 // Kill all cars.

 public void ClearAllCars()

 { carList.Clear(); }

 // Determine if the incoming car is already in the list.

 public bool CarIsPresent(Car c)

 { return carList.Contains(c); }

 // Note we simply return the IEnumerator of the ArrayList.

 public IEnumerator GetEnumerator()

 { return carList.GetEnumerator();}

}

This new implementation also makes using the Cars type a bit less of a burden for the
object user:

C# and the .NET Platform Chapter 4: Interfaces and Collections

-241 I ♡ Flyheart-

// Use the new Cars container class.

public static void Main()

{

 Cars carLot = new Cars();

 // Add some cars.

 carLot.AddCar(new Car("Jasper", 200, 80));

 carLot.AddCar(new Car("Mandy", 140, 0));

 carLot.AddCar(new Car("Porker", 90, 90));

 carLot.AddCar(new Car("Jimbo", 40, 4));

 // Get each one and print out some stats.

 Console.WriteLine("You have {0} in the lot:\n", carLot.CarCount);

 foreach (Car c in carLot)

 {

 Console.WriteLine("Name: {0}", c.PetName);

 Console.WriteLine("Max speed: {0}\n", c.MaxSpeed);

 }

 // Kill the third car.

 carLot.RemoveCar(3);

 Console.WriteLine("You have {0} in the lot.\n", carLot.CarCount);

 // Add another car and verify it is in the collection.

 Car temp = new Car("Zippy", 90, 90);

 carLot.AddCar(temp);

 if(carLot.CarIsPresent(temp))

 Console.WriteLine(temp.PetName + " is already in the lot.");

 // Kill 'em all.

 carLot.ClearAllCars();

 Console.WriteLine("You have {0} in the lot.\n", carLot.CarCount);

}

C# and the .NET Platform Chapter 4: Interfaces and Collections

-242 I ♡ Flyheart-

The output is shown in Figure 4-11.

Figure 4-11: The updated Cars container

You may be wondering why you bothered to make the custom Cars type at all, given that
the object user could create an ArrayList type directly. The reason is that ArrayList can
contain any object reference. If you did not create a custom wrapper class such as Cars,
the ArrayList instance could contain Cars, Boats, Airplanes, strings, or any other type!

ArrayList ar = new ArrayList();

ar.Add(carLot);

ar.Add("Hello");

ar.Add(new JamesBondCar());

ar.Add(23);

Using the containment/delegation model, you are able to leverage the functionality of the
ArrayList type, while maintaining control over what can be inserted into the container.

SOURCE
CODE

This updated Cars collection (ObjectEnumWithCollection) can
be found under the Chapter 4 subdirectory.

Summary

If you are a COM programmer by trade, this chapter must have given you warm fuzzies.
The interface is a collection of abstract members that may be implemented by a given
class. Because an interface does not supply any implementation details, it is common to
regard an interface as a behavior that may be supported by a given type. When two or
more classes implement the same interface, you are able to treat each type the same
way (aka interface-based polymorphism). C# provides the interface keyword to allow you
to define a new interface. As you have seen, a type can support as many interfaces as
necessary using a commadelimited list. Furthermore, it is permissible to build interfaces
that derive from multiple base interfaces.

C# and the .NET Platform Chapter 4: Interfaces and Collections

-243 I ♡ Flyheart-

In addition to building your custom interfaces, the .NET libraries define a number of
standard (i.e., framework-supplied) interfaces. This chapter focused on the interfaces
defined within the System.Collections namespace. As you have seen, you are free to
build custom types that implement these predefined interfaces to gain a number of
desirable traits such as cloning, sorting, and enumerating.

Finally, you spent some time investigating the stock collection classes defined within the
System.Collections namespace and examined the flexibility that can be obtained when
combining the has-a relationship with an existing container class.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-244 I ♡ Flyheart-

Chapter 5: Advanced C# Class Construction

Techniques

Overview
This chapter rounds out your introduction to the core aspects of the C# language by
examining a number of advanced (but extremely useful) syntactic constructs. To begin,
you learn how to construct and use an indexer method. This C# mechanism enables you
to build custom types, which exposes internal subtypes using the familiar bracket
operator (i.e., []). If you have a C++ background, you will find that creating a C# indexer
method is analogous to overloading the [] operator on a C++ class. Once you learn how to
build an indexer, you then examine how to overload various operators (+, −, <, > and so
forth) for a custom C# type.

This chapter then examines three techniques that enable the objects in your system to
engage in bidirectional communications. First, you learn about the C# "delegate" keyword,
which is little more than a type-safe function pointer. Once you learn how to create and
manipulate delegates, you are in a perfect position to investigate the .NET event protocol,
which is based on the delegation model. Finally, you discover how the use of custom
interfaces can also enable bidirectional communications (which should ring a bell for
those coming from a COM background).

I wrap up by examining how you can document your types using XML attributes, and how
the Visual Studio.NET IDE automatically generates Web-based documentation for your
projects. Although this might not qualify as a truly "advanced" technique, it is a high note
on which to end the chapter.

Building a Custom Indexer
At this point, you should feel confident building C# types using traditional OOP (refer to
Chapter 3) as well as interface-based programming techniques (refer to Chapter 4). In
this chapter, I take some time to examine some additional aspects of C# that you may not
be readily familiar with, beginning with the concept of an indexer.

Most programmers (such as yourself) are very familiar with the process of accessing
discrete items held within a standard array using the index (aka bracket) operator:

// Declare an array of integers.

int[] myInts = {10, 9, 100, 432, 9874};

// Use the [] operator to access each element.

for(int j = 0; j < myInts.Length; j++)

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-245 I ♡ Flyheart-

 Console.WriteLine("Index {0} = {1}", j, myInts[j]);

The C# language supports the capability to build custom classes that may be indexed just
like an array of intrinsic types. It should be no big surprise that the method that provides
the capability to access items in this manner is termed an "indexer."

Before exploring how to create such a construct, let's begin by seeing one in action.
Assume you have added support for an indexer method to the Cars container developed
in the previous chapter. Observe the following usage:

// Indexers allow you to access items in an array-like fashion.

public class CarApp

{

 public static void Main()

 {

 // Assume the Cars type has an indexer method.

 Cars carLot = new Cars();

 // Make some cars and add them to the car lot.

 carLot[0] = new Car("FeeFee", 200, 0);

 carLot[1] = new Car("Clunker", 90, 0);

 carLot[2] = new Car("Zippy", 30, 0);

 // Now obtain and display each item.

 for(int i = 0; i < 3; i++)

 {

 Console.WriteLine("Car number {0}:", i);

 Console.WriteLine("Name: {0}", carLot[i].PetName);

 Console.WriteLine("Max speed: {0}", carLot[i].MaxSpeed);

 }

 }

}

A test run would look something like Figure 5-1.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-246 I ♡ Flyheart-

Figure 5-1: Accessing cars using an indexer

As you can see, indexers behave much like a custom collection supporting the
IEnumerator and IEnumerable interfaces. The only major difference is that rather than
accessing the contents using interface references, you are able to manipulate the internal
collection of automobiles just like a standard array.

Now for the big question: How do you configure the Cars class (or any class) to do so?
The indexer itself is represented as a slightly mangled C# property. In its simplest form,
an indexer is created using the this[] syntax:

// Add the indexer to the existing class definition.

public class Cars : IEnumerator, IEnumerable

{

...

 // Let's rollback to the basics and simply make use of a standard array

 // to contain the cars. You are free to use an ArrayList if you desire...

 private Car[] carArray;

 public Cars()

 {

 carArray = new Car[10];

 }

 // The indexer returns a Car based on a numerical index.

 public Car this[int pos]

 {

 // Accessor returns an item in the array.

 get

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-247 I ♡ Flyheart-

 {

 if(pos < 0 || pos > 10)

 throw new IndexOutOfRangeException("Out of range!");

 else

 return (carArray[pos]);

 }

 // Mutator populates the array.

 set { carArray[pos] = value;}

 }

}

Beyond the use of the "this" keyword, the indexer looks just like any other C# property
declaration. Do be aware that indexers do not provide any array-like functionality beyond
the use of the subscript operator. In other words, the object user cannot write code such
as:

// Use System.Array.Length? Nope!

Console.WriteLine("Cars in stock: {0}", carLot.Length);

To support this functionality, you would need to add your own Length property to the Cars
type, and delegate accordingly:

public class Cars

{

 ...

 // Containment / delegation in action once again.

 public int Length() { /* figure out number of non-null entries in array. */}

}

However, if you are in need of this functionality, you will find your task will be much easier
if you make direct use of one of the System.Collections types to hold your internal items,
rather than a simple array.

SOURCE
CODE

The Indexer project is located under the Chapter 5
subdirectory.

Overloading Operators

C#, like any programming language, has a canned set of tokens that are used to perform
basic operations on intrinsic types. For example, everyone knows that the + operator can
be applied to two integers in order to yield a new integer:

// The + operator in action.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-248 I ♡ Flyheart-

int a = 100;

int b = 240;

int c = a + b; // c = = 340

This is no major news flash, but have you ever stopped and noticed how the same +
operator can be applied to any intrinsic C# data type? For example:

// + operator with strings.

string s1 = "Hello";

string s2 = " world!";

string s3 = s1 + s2; // s3 = = Hello world!

In essence, the + operator has been overloaded to function correctly on various individual
data types. When the + operator is applied to numerical types, the result is the summation
of the operands. However, when applied to string types, the result is string concatenation.
The C# language (like C++ and unlike Java) provides the capability for you to build
custom classes and structures that also respond uniquely to the same set of basic tokens
(such as the + operator). Thus, if you equip a type to do so, it is possible to apply various
operators to a custom class.

To keep your wits about you, assume the following simple Point class:

// You can't get much lamer than this!

public class Point

{

 private int x, y;

 public Point(){}

 public Point(int xPos, int yPos)

 {

 x = xPos;

 y = yPos;

 }

 public override string ToString()

 {

 return "X pos: " + this.x + " Y pos: " + this.y;

 }

}

Now, logically speaking it makes sense to add Points together. On a related note, it would
be helpful to subtract one Point from another. For example, if you created two Point
objects with some initial startup values, you would like to do something like this:

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-249 I ♡ Flyheart-

// Adding and subtracting two Points.

public static int Main(string[] args)

{

 // Make two points

 Point ptOne = new Point(100, 100);

 Point ptTwo = new Point(40, 40);

 // Add the points to make a new point.

 Point bigPoint = ptOne + ptTwo;

 Console.WriteLine("Here is the big point: {0}", bigPoint.ToString());

 // Subtract the points to make a new point.

 Point minorPoint = bigPoint - ptOne;

 Console.WriteLine("Just a minor point: {0}", minorPoint.ToString());

 return 0;

}

Clearly, your goal is to somehow make your Point class react uniquely to the + and −
operators. To allow a custom type to respond to these intrinsic tokens, C# provides the
"operator" keyword, which can only be used in conjunction with static methods. To
illustrate:

// A more intelligent Point class.

public class Point

{

 private int x, y;

 public Point(){}

 public Point(int xPos, int yPos){ x = xPos; y = yPos; }

 // The Point class can be added...

 public static Point operator + (Point p1, Point p2)

 {

 Point newPoint = new Point(p1.x + p2.x, p1.y + p2.y);

 return newPoint;

 }

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-250 I ♡ Flyheart-

 // ...and subtracted.

 public static Point operator - (Point p1, Point p2)

 {

 // Figure new X (assume [0,0] base).

 int newX = p1.x - p2.x;

 if(newX < 0)

 throw new ArgumentOutOfRangeException();

 // Figure new Y (also assume [0,0] base).

 int newY = p1.y - p2.y;

 if(newY < 0)

 throw new ArgumentOutOfRangeException();

 return new Point(newX, newY);

 }

 public override string ToString()

 {

 return "X pos: " + this.x + " Y pos: " + this.y;

 }

}

Notice that the class now contains two strange looking methods called operator + and
operator −. The logic behind operator + is simply to return a brand new Point based on
the summation of the incoming Point objects. Thus, when you write pt1 + pt2, under the
hood you can envision the following hidden call to the static operator + method:

// p3 = Point.operator + (p1, p2)

p3 = p1 + p2;
Likewise, p1 − p2 maps to:

// p3 = Point.operator - (p1, p2)

p3 = p1 - p2;

If you were to take your class out for a test run, you would see something like Figure 5-2.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-251 I ♡ Flyheart-

Figure 5-2: Overloaded operators at work

The capability to overload operators is useful in that it enables the object user to work with
your types (more or less) like any intrinsic data item. Other languages (such as Java) do
not support this capability. Also understand that the capability to overload operators is not
a requirement of the Common Language Specification; thus, not all .NET-aware
languages support types containing overloaded operators. However, you can achieve the
same functionality using public methods. For example, you could write the Point class as
so:

// Making use of methods rather than overloaded ops.

public class Point

{

...

 // Operator + as AddPoints()

 public static Point AddPoints (Point p1, Point p2)

 {

 return new Point(p1.x + p2.x, p1.y + p2.y);

 }

 // Operator - as SubtractPoints()

 public static Point SubtractPoints (Point p1, Point p2)

 {

 // Figure new X.

 int newX = p1.x - p2.x;

 if(newX < 0)

 throw new ArgumentOutOfRangeException();

 // Figure new Y.

 int newY = p1.y - p2.y;

 if(newY < 0)

 throw new ArgumentOutOfRangeException();

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-252 I ♡ Flyheart-

 return new Point(newX, newY);

 }

}

You could then add Points as follows:

// As member f(x)'s

Point finalPt = Point.AddPoints(ptOne, ptTwo);

Console.WriteLine("My final point: {0}", finalPt.ToString());

Seen in this light, overloaded operators are always an optional construct you may choose
to support for a given class. Remember however, that they are little more than a friendly
variation on a traditional public method, and are not CLS-compliant. When you are
building production level classes that support overloaded operators, you should always
support member function equivalents. To maximize your coding efforts, simply have the
overloaded operator call the member function alternative (or vice versa). For example:

public class Point

{

...

 // For overload operator aware languages.

 public static Point operator + (Point p1, Point p2)

 {

 return AddPoints(p1, p2);

 }

 // For overloaded challenged languages.

 public static Point AddPoints (Point p1, Point p2)

 {

 return new Point(p1.x + p2.x, p1.y + p2.y);

 }

}

Overloading the Equality Operators

As you recall, System.Object.Equals() can be overridden in order to perform value-based
(rather than referenced-based) comparisons between objects. In addition to overriding
Equals() and GetHashCode(), an object may choose to override the equality operators (=
= and !=).To illustrate, here is the updated Point class:

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-253 I ♡ Flyheart-

// This incarnation of Point also overloads the = = and != operators.

public class Point

{

 public int x, y;

 public Point(){}

 public Point(int xPos, int yPos){x = xPos; y = yPos;}

...

 public override bool Equals(object o)

 {

 if(((Point)o).x = = this.x &&

 ((Point)o).y = = this.y)

 return true;

 else

 return false;

 }

 public override int GetHashCode()

 { return this.ToString().GetHashCode(); }

 // Now let's overload the = = and != operators.

 public static bool operator = =(Point p1, Point p2)

 {

 return p1.Equals(p2);

 }

 public static bool operator !=(Point p1, Point p2)

 {

 return !p1.Equals(p2);

 }

}

Notice how the implementation of operator = = and operator != simply makes a call to the
overridden Equals() method to get the bulk of the work done. Given this, you can now
exercise your Point class as so:

// Make use of the overloaded equality operators.

public static int Main(string[] args)

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-254 I ♡ Flyheart-

{

...

 if(ptOne = = ptTwo) // Are they the same?

 Console.WriteLine("Same values!");

 else

 Console.WriteLine("Nope, different values.");

 if(ptOne != ptTwo) // Are they different?

 Console.WriteLine("These are not equal.");

 else

 Console.WriteLine("Same values!");

}

As you can see, it is quite intuitive to compare two objects using the well-known = =
and != operators rather than making a call to Object.Equals(). As a rule of thumb, classes
that override Object.Equals() should always overload the = = and !+ operators.
If you do overload the equality operators for a given class, keep in mind that C# demands
that if you override operator = =, you must also override operator !=, just as when you
override Equals() you will need to override GetHashCode(). This ensures that an object
behaves in a uniform manner during comparisons and functions correctly if placed into a
hash table (if you forget, the compiler will let you know).

SOURCE
CODE

The OverLoadOps project is located under the Chapter 5
subdirectory.

Overriding the Comparison Operators

In the previous chapter, you learned how to implement the IComparable interface, in
order to compare the relative relationship between two like objects. Additionally, you may
also overload the comparison operators (<, >, <= and >=) for the same class. Like the
equality operators, C# demands that < and > are overloaded as a set. The same holds
true for the <= and >= operators. If the Car type you developed in Chapter 4 overloaded
these comparison operators, the object user could now compare types as so:

// Exercise the overloaded < operator for the Car class.

public class CarApp

{

 public static int Main(string[] args)

 {

 // Make an array of Car types.

 Car[] myAutos = new Car[5];

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-255 I ♡ Flyheart-

 myAutos[0] = new Car(123, "Rusty");

 myAutos[1] = new Car(6, "Mary");

 myAutos[2] = new Car(6, "Viper");

 myAutos[3] = new Car(13, "NoName");

 myAutos[4] = new Car(6, "Chucky");

 // Is Rusty less than Chucky?

 if(myAutos[0] < myAutos[4])

 Console.WriteLine("Rusty is less than Chucky!");

 else

 Console.WriteLine("Chucky is less than Rusty!");

 return 0;

 }

}
Because the Car type already implements IComparable (see Chapter 4), overloading the
comparison operators is trivial. Here is the updated class definition:

// This class is also comparable using the comparison operators.

public class Car : IComparable

{

...

 public int CompareTo(object o)

 {

 Car temp = (Car)o;

 if(this.CarID > temp.CarID)

 return 1;

 if(this.CarID < temp.CarID)

 return -1;

 else

 return 0;

 }

 public static bool operator < (Car c1, Car c2)

 {

 IComparable itfComp = (IComparable)c1;

 return (itfComp.CompareTo(c2) < 0);

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-256 I ♡ Flyheart-

 }

 public static bool operator > (Car c1, Car c2)

 {

 IComparable itfComp = (IComparable)c1;

 return (itfComp.CompareTo(c2) > 0);

 }

 public static bool operator <= (Car c1, Car c2)

 {

 IComparable itfComp = (IComparable)c1;

 return (itfComp.CompareTo(c2) <= 0);

 }

 public static bool operator >= (Car c1, Car c2)

 {

 IComparable itfComp = (IComparable)c1;

 return (itfComp.CompareTo(c2) >= 0);

 }

}

SOURCE
CODE

The ObjCompWithOps project is located under the Chapter 5
subdirectory.

Final Thoughts Regarding Operator Overloading

As you have just seen, C# provides the capability to build types that can respond uniquely
to various intrinsic, well-known operators. Now, before you go and retrofit all your classes
to support such behavior, you must be sure that the operator(s) you are about to overload
make some sort of logical sense in the world at large.

For example, let's say you overloaded the multiplication operator for the Engine class.
What exactly would it mean to multiply two Engine objects? Not much. Overloading
operators is generally only useful when building utility types. Strings, points, rectangles,
fractions, and hexagons make good candidates for operator overloading. People,
managers, cars, headphones, and baseball hats do not. Use this feature wisely.

Also, always remember that not all languages targeting the .NET platform will support
overloaded operators for custom types! Therefore, always test your types against any
language that may make use of a class defining overloaded operators. If you want to be
completely sure that your types will work in any .NET-aware language, supply the same

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-257 I ♡ Flyheart-

functionality using custom methods in addition to your operator set (as illustrated earlier in
this chapter).

Finally, be aware that you cannot overload each and every intrinsic C# operator. Table
5-1 outlines the "overloadability" of each item:

Table 5-1: Valid Overloadable Operators

C# OPERATOR MEANING IN LIFE (CAN THIS OPERATOR
BE OVERLOADED?)

+, −, !, ~, ++, −−, true, false This set of unary operators can be
overloaded.

+, −, *, /, %, &, |, ^, <<, >> These binary operators can be overloaded.

= =, !=, <, >, <=, >= The comparison operators can be
overloaded. Recall, however, the C# will
demand that "like" operators (i.e., < and >,
<= and >=, = =, and !=) are overloaded
together.

[] The [] operator cannot technically be
overloaded. As you have seen earlier in this
chapter, however, the indexer construct
provides the same functionality.

Understanding (and Using) Delegates
Up until this point, every sample application you have developed added various bits of
code to Main(), which (in some way or another) sent messages to a given object.
However, you have not yet examined how these objects can talk back to the object that
created them in the first place. In the "real world" it is quite common for the objects in a
system to engage in a two-way conversation. Thus, let's examine a number of ways in
which objects can be programmed to do this very thing.

As you may know, the Windows API makes frequent use of function pointers to create
entities termed "callback functions" or simply "callbacks." Using callbacks, programmers
are able to configure one function to report back to (call back) another function in the
application. The problem with standard C(++)callback functions is that they represent
nothing more than a simple memory address. Ideally, C(++) callbacks could be
configured to include additional type-safe information such as the number of (and types of)
parameters, return value, and calling convention. Sadly, this is not the case in traditional
C(++)/Win32 callback functions.

In C#, the callback technique is accomplished in a much safer and more object-oriented
manner using the "delegate" keyword. When you wish to create a delegate in C#, you not

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-258 I ♡ Flyheart-

only specify the name of the method, but the set of parameters (if any) and return type as
well. Under the hood, the "delegate" keyword represents an instance of a class deriving
from System.MulticastDelegate. Thus, when you write:

public delegate void PlayAcidHouse(object PaulOakenfold, int volume);

the C# compiler produces a new class, which looks something like the following:

public class PlayAcidHouse : System.MulticastDelegate

{

 PlayAcidHouse(object target, int ptr);

 // The synchronous Invoke() method.

 public void virtual Invoke(object PaulOakenfold, int volume);

 // You also receive an asynchronous version of the same callback.

 public virtual IAsyncResult BeginInvoke(object PaulOakenfold, int volume,

 AsyncCallback cb, object o);

 public virtual void EndInvoke(IAsyncResult result);

}

Notice that the class that is created on your behalf contains two public methods that
enable you to synchronously or asynchronously work with the delegate (Invoke() and
BeginInvoke() respectively). To keep things simple, I will focus only on the synchronous
behavior of the MulticastDelegate type.

Building an Example Delegate

To illustrate the use of delegates, let's begin by updating the Car class to include two new
Boolean member variables. The first is used to determine if your automobile is due for a
wash (isDirty); the other represents if the car in question is in need of a tire rotation
(shouldRotate). To enable the object user to interact with this new state data, Car also
defines some additional properties and an updated constructor. Here is the story so far:

// Another updated Car class.

public class Car

{

...

 // NEW! Are we in need of a wash? Need to rotate tires?

 private bool isDirty;

 private bool shouldRotate;

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-259 I ♡ Flyheart-

 // Extra params to set bools.

 public Car(string name, int max, int curr, bool dirty, bool rotate)

 {

 ...

 isDirty = dirty;

 shouldRotate = rotate;

 }

 public bool Dirty // Get and set isDirty.

 {

 get{ return isDirty; }

 set{ isDirty = value; }

 }

 public bool Rotate // Get and set shouldRotate.

 {

 get{ return shouldRotate; }

 set{ shouldRotate = value; }

 }

}

Now, assume you have declared the following delegate (which again, is nothing more
than an object-oriented wrapper around a function pointer) within your current
namespace:

// This delegate is actually a class encapsulating a function pointer

// to 'some method' taking a Car as a parameter and returning void.

public delegate void CarDelegate(Car c);
Here, you have created a delegate named CarDelegate. The CarDelegate type
represents "some" function taking a Car as a parameter and returning void. If you were to
examine the internal representation of this type using ILDasm.exe, you would see
something like Figure 5-3 (notice the "extends" informational node).

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-260 I ♡ Flyheart-

Figure 5-3: C# delegates represent a class deriving from MulticastDelegate.

Delegates as Nested Types

Currently, your delegate is decoupled from its logically related Car type (given that you
have simply declared the CarDelegate type within the defining namespace). While there
is nothing horribly wrong with the approach, a more enlightened alternative would be to
define the CarDelegate directly within the Car class:

// This time, define the delegate as part of the class definition.

public class Car : Object

{

 // This is represented as Car$CarDelegate (i.e., a nested type).

 public delegate void CarDelegate(Car c);

...

}
Given that the "delegate" keyword produces a new class deriving from
System.MulticastDelegate, the CarDelegate is in fact a nested type definition! If you
check ILDasm.exe (see Figure 5-4), you will see the truth of the matter.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-261 I ♡ Flyheart-

Figure 5-4: Nesting the delegate

Members of System.MulticastDelegate

So to review thus far, when you create delegates, you indirectly build a type that derives
from System.MulticastDelegate (which by the way, derives from the System.Delegate
base class). Table 5-2 illustrates some interesting inherited members to be aware of.

Table 5-2: Select Inherited Members

INHERITED
MEMBER

MEANING IN LIFE

Method This property returns the name of the method pointed
to.

Target If the method pointed to is a member of a class, this
member returns the name of the class. If the value
returned from Target equals null, the method pointed
to is static.

Combine() This static method is used to build a delegate that
points to a number of different functions.

GetInvocationList() Returns an array of Delegate types, each
representing an entry in the list of function pointers.

Remove() This static method removes a delegate from the list of

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-262 I ♡ Flyheart-

Table 5-2: Select Inherited Members

INHERITED
MEMBER

MEANING IN LIFE

function pointers.

Multicast delegates are capable of pointing to any number of functions, because this
class has the capability to hold multiple function pointers using an internal linked list. The
function pointers themselves can be added to the linked list using the Combine() method
or the overloaded + operator. To remove a function from the internal list, call Remove().

Using the CarDelegate

Now that you have a pointer to "some" function, you can create other functions that take
this delegate as a parameter. To illustrate, assume you have a new class named Garage.
This type maintains a collection of Car types contained in an ArrayList. Upon creation, the
ArrayList is filled with some initial Car types.

More importantly, the Garage class defines a public ProcessCars() method, which takes a
single argument of type Car.CarDelegate. In the implementation of ProcessCars(), you
pass each Car in your collection as a parameter to the "function pointed to" by the
delegate.

To help understand the inner workings of the delegation model, let's also make use of two
members defined by the System.MulticastDelegate class (Target and Method) to
determine exactly which function the delegate is currently pointing to. Here, then, is the
complete definition of the Garage class:

// The Garage class has a method that makes use of the CarDelegate.

public class Garage

{

 // A list of all cars in the garage.

 ArrayList theCars = new ArrayList();

 // Create the cars in the garage.

 public Garage()

 {

 // Recall, we updated the ctor to set isDirty and shouldRotate.

 theCars.Add(new Car("Viper", 100, 0, true, false));

 theCars.Add(new Car("Fred", 100, 0, false, false));

 theCars.Add(new Car("BillyBob", 100, 0, false, true));

 theCars.Add(new Car("Bart", 100, 0, true, true));

 theCars.Add(new Car("Stan", 100, 0, false, true));

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-263 I ♡ Flyheart-

 }

 // This method takes a Car.CarDelegate as a parameter.

 // Therefore! 'proc' is nothing more than a function pointer!

 public void ProcessCars(Car.CarDelegate proc)

 {

 // Diagnostics: Where are we forwarding the call?

 Console.WriteLine("***** Calling: {0} *****",

 d.Method.ToString());

 // Diagnostics: Are we calling an instance method or a static method?

 if(proc.Target != null)

 Console.WriteLine("->Target: {0}", proc.Target.ToString());

 else

 Console.WriteLine("->Target is a static method");

 // Real Work: Now call the method, passing in each car.

 foreach(Car c in theCars)

 proc(c);

 }

}

When the object user calls ProcessCars(), it will send in the name of the method that
should handle this request. For the sake of argument, assume these are static members
named WashCar() and RotateTires(). Consider the following usage:

// The garage delegates all work orders to these static functions

// (finding a good mechanic is always a problem...)

public class CarApp

{

 // A target for the delegate.

 public static void WashCar(Car c)

 {

 if(c.Dirty)

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-264 I ♡ Flyheart-

 Console.WriteLine("Cleaning a car");

 else

 Console.WriteLine("This car is already clean...");

 }

 // Another target for the delegate.

 public static void RotateTires(Car c)

 {

 if(c.Rotate)

 Console.WriteLine("Tires have been rotated");

 else

 Console.WriteLine("Don't need to be rotated...");

 }

 public static int Main(string[] args)

 {

 // Make the garage.

 Garage g = new Garage();

 // Wash all dirty cars.

 g.ProcessCars(new Car.CarDelegate(WashCar));

 // Rotate the tires.

 g.ProcessCars(new Car.CarDelegate(RotateTires));

 return 0;

 }

}
Notice (of course) that the two static methods are an exact match to the delegate type
(void return value and a single Car argument). Also, recall that when you pass in the
name of your function as a constructor parameter, you are adding this item to the internal
linked list maintained by System.MulticastDelegate. Figure 5-5 shows the output of this
test run. (Notice the output messages supplied by Target and Method properties.)

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-265 I ♡ Flyheart-

Figure 5-5: Delegate output, take one

Analyzing the Delegation Code

As you can see, the Main() method begins by creating an instance of the Garage type.
This class has been configured to delegate all work to other named static functions. Now,
when you write the following:

// Wash all dirty cars.

g.ProcessCars(new Car.CarDelegate(WashCar));

what you are effectively saying is "Add a pointer to the WashCar() function to the
CarDelegate type, and pass this delegate to Garage.ProcessCars()." Like most real-world
garages, the real work is delegated to another part of the system (which explains why a
30-minute oil change takes 2 hours). Given this, you can assume that ProcessCars()
actually looks like the following under the hood:

// CarDelegate points to the WashCar function:

public void ProcessCars(Car.CarDelegate proc)

{

...

 foreach(Car c in theCars)

 proc(c); // proc(c) => CarApp.WashCar(c)

...

}

Likewise, if you say:

// Rotate the tires.

g.ProcessCars(new Car.CarDelegate(RotateTires));

ProcessCars() can be understood as:

// CarDelegate points to the RotateTires function:

public void ProcessCars(Car.CarDelegate proc)

{

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-266 I ♡ Flyheart-

 foreach(Car c in theCars)

 proc(c); // proc(c) => CarApp.RotateTires(c)

...

}

Also notice that when you are calling ProcessCars(), you must create a new instance of
the custom delegate:

// Wash all dirty cars.

g.ProcessCars(new Car.CarDelegate(WashCar));

// Rotate the tires.

g.ProcessCars(new Car.CarDelegate(RotateTires));

This might seem odd at first, given that a delegate represents a function pointer. However,
remember that this function pointer is represented by an instance of type
System.MulticastDelegate, and therefore must be "new-ed."

Multicasting

Recall that a multicast delegate is an object that is capable of calling any number of
functions. In the current example, you did not make use of this feature. Rather, you made
two calls to Garage.ProcessCars(), sending in a new instance of the CarDelegate each
time. To illustrate multicasting, assume you have updated Main() to look like the following:

// Add two function pointers to the internal linked list.

public static int Main(string[] args)

{

 // Make the garage.

 Garage g = new Garage();

 // Create two new delegates.

 Car.CarDelegate wash = new Car.CarDelegate(WashCar);

 Car.CarDelegate rotate = new Car.CarDelegate(RotateTires);

 // The overloaded + operator can be applied to multicast delegates.

 // The result is a new delegate that maintains pointers to

 // both functions.

 g.ProcessCars(wash + rotate);

 return 0;

}

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-267 I ♡ Flyheart-

Here, you begin by creating two new CarDelegate objects, each of which points to a given
function. When you call ProcessCars(), you are actually passing in a new delegate, which
holds each function pointer within the internal linked list (crazy huh?). Do note that the +
operator is simply a shorthand for calling the static Delegate.Combine() method. Thus,
you could write the following equivalent (but uglier) code:

// The + operator has the same effect as calling the Combine() method.

g.ProcessCars((Car.CarDelegate)Delegate.Combine(wash, rotate));

Furthermore, if you wish to hang on to the new delegate for later use, you could write the
following instead:

// Create two new delegates.

Car.CarDelegate wash = new Car.CarDelegate(WashCar);

Car.CarDelegate rotate = new Car.CarDelegate(RotateTires);

// Store the new delegate for later use.

MulticastDelegate d = wash + rotate;

// Send the new delegate into the ProcessCars() method.

g.ProcessCars((Car.CarDelegate)d);

Regardless of how you configure a multicast delegate, understand that when you call
Combine() (or use the overloaded + operator) you are adding a new function pointer to
the internal list. If you wish to remove an item from this internal linked list, you can call the
static Remove() method. The first parameter marks the delegate you wish to manipulate,
while the second parameter marks the item to remove:

// The static Remove() method returns a Delegate type.

Delegate washOnly = MulticastDelegate.Remove(d, rotate);

g.ProcessCars((Car.CarDelegate)washOnly);

Before you view the output of this program, let's also update ProcessCars() to print out
each function pointer stored in the linked list using Delegate.GetInvocationList(). This
method returns an array of Delegate objects, which you iterate over using foreach:

// Now print out each member in the linked list.

public void ProcessCarsCar.(CarDelegate proc)

{

 // Where are we passing the call?

 foreach(Delegate d in proc.GetInvocationList())

 {

 Console.WriteLine("***** Calling: " +

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-268 I ♡ Flyheart-

 d.Method.ToString() + " *****");

 }

...

}
The output is shown in Figure 5-6.

Figure 5-6: Delegate output, take two

Instance Methods as Callbacks

Currently, the CarDelegate type is storing pointers to static functions. This is not a
requirement of the delegate protocol. It is also possible to delegate a call to a method
defined on any object instance. To illustrate, assume that the WashCar() and
RotateTires() methods have now been moved into a new class named ServiceDept:

// We have now moved the static functions into a helper class.

public class ServiceDept

{

 // Not static!

 public void WashCar(Car c)

 {

 if(c.Dirty)

 Console.WriteLine("Cleaning a car");

 else

 Console.WriteLine("This car is already clean...");

 }

 // Still not static!

 public void RotateTires(Car c)

 {

 if(c.Rotate)

 Console.WriteLine("Tires have been rotated");

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-269 I ♡ Flyheart-

 else

 Console.WriteLine("Don't need to be rotated...");

 }

}

You could now update Main() as so:

// Delegate to instance methods of the ServiceDept type.

public static int Main(string[] args)

{

 // Make the garage.

 Garage g = new Garage();

 // Make the service department.

 ServiceDept sd = new ServiceDept();

 // The garage delegates the work to the service department.

 Car.CarDelegate wash = new Car.CarDelegate(sd.WashCar);

 Car.CarDelegate rotate = new Car.CarDelegate(sd.RotateTires);

 MulticastDelegate d = wash + rotate;

 // Tell the garage to do some work.

 g.ProcessCars((Car.CarDelegate)d);

 return 0;

}

Now notice the output in Figure 5-7 (check out the name of the target).

Figure 5-7: Delegating to instance methods

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-270 I ♡ Flyheart-

SOURCE
CODE

The CarDelegate project is located under the Chapter 5
subdirectory.

Understanding (and Using) Events

Delegates are fairly interesting constructs because you can resolve the name of a
function to call at runtime, rather than compile time. Admittedly, this syntactic
orchestration can take a bit of getting used to. However, because the ability for one object
to call back to another object is such a helpful construct, C# provides the "event" keyword
to lessen the burden of using delegates in the raw.

The most prevalent use of the event keyword would be found in GUI-based applications,
in which Button, TextBox, and Calendar widgets all report back to the containing Form
when a given action (such as clicking a Button) has occurred. However, events are not
limited to GUI-based applications. Indeed, they can be quite helpful when creating
"non-GUI" based projects (as you will now see).

Recall that the current implementation of Car.SpeedUp() (see Chapter 3) throws an
exception if the user attempts to increase the speed of an automobile that has already
been destroyed. This is a rather brute force way to deal with the problem, given that the
exception has the potential to halt the program's execution if the error is not handled in an
elegant manner. A better design would be to simply inform the object user when the car
has died using a custom event, and allow the caller to act accordingly.

Let's reconfigure the Car to send two events to those who happen to be listening. The first
event (AboutToBlow) will be sent when the current speed is 10 miles below the maximum
speed. The second event (Exploded) will be sent when the user attempts to speed up a
car that is already dead. Establishing an event is a two-step process. First, you need to
define a delegate, which as you recall represents a pointer to the method(s) to call when
the event is sent. Next, you define the events themselves using the "event" keyword.
Here is the updated Car class:

// This car can 'talk back' to the user.

public class Car

{

...

 // Is the car alive or dead?

 private bool dead;

 // Holds the function(s) to call when the event occurs.

 public delegate void EngineHandler(string msg);

Administrator
resolve the name of afunction to call at runtime, rather than compile time.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-271 I ♡ Flyheart-

 // This car can send these events.

 public static event EngineHandler Exploded;

 public static event EngineHandler AboutToBlow;

...

}

Firing an event (i.e., sending the event to those who happen to be listening) is as simple
as specifying the event by name and sending out any specified parameters as defined by
the related delegate. To illustrate, update the previous implementation of SpeedUp() to
send each event accordingly (and remove the previous exception logic):

// Fire the correct event based on our current state of affairs.

public void SpeedUp(int delta)

{

 // If the car is dead, send exploded event.

 if(dead)

 {

 if(Exploded != null)

 Exploded("Sorry, this car is dead...");

 }

 else

 {

 currSpeed += delta;

 // Almost dead? Send about to blow event.

 if(10 = = maxSpeed - currSpeed)

 if(AboutToBlow != null)

 AboutToBlow("Careful, approaching terminal speed!");

 // Still OK! Proceed as usual.

 if(currSpeed >= maxSpeed)

 dead = true;

 else

 Console.WriteLine("\tCurrSpeed = {0}", currSpeed);

 }

}

Administrator
sending the event to those who happen to be listening)

Administrator
specifying the event by name and sending out any specified parameters as defined bythe related delegate.

Administrator
这里就和delegate的参数是一致的，所以可以触发该事件，即将事件传输给侦听器

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-272 I ♡ Flyheart-

With this, you have configured the car to send two custom events (under the correct
conditions). You will see the usage of this new automobile in just a moment, but first, let's
check the event architecture in a bit more detail.

Events Under the Hood

A given event actually expands into two hidden public functions, one having an "add_"
prefix, the other having a "remove_" prefix. For example, the Exploded event expands to
the following methods:

// The following event expands to:

// add_Exploded()

// remove_Exploded()

//

public static event EngineHandler Exploded;

In addition to defining hidden add_XXX() and remove_XXX() methods, each event also
actually maps to a private static class, which associates the corresponding delegate to a
given event. In this way, when an event is raised, each method maintained by the
delegate will be called. This is a convenient way to allow an object to broadcast the event
to multiple "event sinks."
To illustrate, check out Figure 5-8, a screenshot of the Car type as seen through the eyes
of ILDasm.exe.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-273 I ♡ Flyheart-

Figure 5-8: Events under the hood

As you can see, each event (Exploded and AboutToBlow) is internally represented as the
following members:

 A private static class
 An add_XXX() method
 A remove_XXX() method

If you were to check out the IL instructions behind add_AboutToBlow(), you would find the
following (note the call to Delegate.Combine() is handled on your behalf):

.method public hidebysig specialname static

void add_AboutToBlow(class CarEvents.Car/EngineHandler 'value') cil managed

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-274 I ♡ Flyheart-

synchronized

{

 // Code size 22 (0×16)

 .maxstack 8

 IL_0000: ldsfld class CarEvents.Car/EngineHandler

CarEvents.Car::AboutToBlow

 IL_0005: ldarg.0

 IL_0006: call class [mscorlib]System.Delegate

 [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate,

 class [mscorlib]System.Delegate)

 IL_000b: castclass CarEvents.Car/EngineHandler

 IL_0010: stsfld class CarEvents.Car/EngineHandler

CarEvents.Car::AboutToBlow

 IL_0015: ret

} // end of method Car::add_AboutToBlow

As you would expect, remove_AboutToBlow() will make the call to Delegate.Remove()
automatically:

.method public hidebysig specialname static

 void remove_AboutToBlow(class CarEvents.Car/EngineHandler 'value')

 cil managed synchronized

{

 // Code size 22 (0×16)

 .maxstack 8

 IL_0000: ldsfld class CarEvents.Car/EngineHandler

CarEvents.Car::AboutToBlow

 IL_0005: ldarg.0

 IL_0006: call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate,

 class [mscorlib]System.Delegate)

 IL_000b: castclass CarEvents.Car/EngineHandler

 IL_0010: stsfld class CarEvents.Car/EngineHandler

CarEvents.Car::AboutToBlow

 IL_0015: ret

} // end of method Car::remove_AboutToBlow

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-275 I ♡ Flyheart-

The IL instructions for the event itself make use of the [.addon] and [.removeon] tags to
establish the correct add_XXX and remove_XXX methods (also note the static private
class is mentioned by name):

.event CarEvents.Car/EngineHandler AboutToBlow

{

 .addon void CarEvents.Car::add_AboutToBlow(class CarEvents.Car/EngineHandler)

 .removeon

 void CarEvents.Car::remove_AboutToBlow(class

CarEvents.Car/EngineHandler)

} // end of event Car::AboutToBlow

So, now that you understand how to build a class that can send events, the next big
question is how you can configure an object to receive these events.

Listening to Incoming Events

Assume you have now created an instance of the Car class and wish to listen to the
events it is capable of sending. The goal is to create a method that represents the "event
sink" (i.e., the method called by the delegate). To do so, you need to call the correct
add_XXX() method to ensure that your method is added to the list of function pointers
maintained by your delegate. However, you do not call add_XXX() and remove_XXX()
directly, but rather use the overloaded += and −= operators. Basically, when you wish to
listen to an event, follow the pattern shown here:

// I'm listening...

// ObjectVariable.EventName += new ObjectVariable.DelegateName(functionToCall);

//

Car.Exploded += new Car.EngineHandler(OnBlowUp);

When you wish to detach from a source of events, use the -= operator:

// Shut up already!

// ObjectVariable.EventName -= new ObjectVariable.DelegateName(functionToCall);

//

Car.Exploded -= new Car.EngineHandler(OnBlowUp);
Here is a complete example (output is shown in Figure 5-9):

// Make a car and listen to the events.

public class CarApp

{

 public static int Main(string[] args)

 {

Administrator
I'm listening...

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-276 I ♡ Flyheart-

 Car c1 = new Car("SlugBug", 100, 10);

 // Hook into events.

 Car.Exploded += new Car.EngineHandler(OnBlowUp);

 Car.AboutToBlow += new Car.EngineHandler(OnAboutToBlow);

 // Speed up (this will generate the events.)

 for(int i = 0; i < 10; i++) c1.SpeedUp(20);

 // Detach from events.

 Car.Exploded -= new Car.EngineHandler(OnBlowUp);

 Car.Exploded -= new Car.EngineHandler(OnAboutToBlow);

 // No response!

 for(int i = 0; i < 10; i++) c1.SpeedUp(20);

 return 0;

 }

 // OnBlowUp event sink.

 public static void OnBlowUp(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

 // OnAboutToBlow event sink.

 public static void OnAboutToBlow(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

}

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-277 I ♡ Flyheart-

Figure 5-9: Handling your Car's event set

If you wish to have multiple event sinks called by a given event, simply repeat the
process:

// Multiple event sinks.

public class CarApp

{

 public static int Main(string[] args)

 {

 // Make a car as usual.

 Car c1 = new Car("SlugBug", 100, 10);

 // Hook into events.

 Car.Exploded += new Car.EngineHandler(OnBlowUp);

 Car.Exploded += new Car.EngineHandler(OnBlowUp2);

 Car.AboutToBlow += new Car.EngineHandler(OnAboutToBlow);

 // Speed up (this will generate the events.)

 for(int i = 0; i < 10; i++)

 c1.SpeedUp(20);

 // Detach from events.

 Car.Exploded -= new Car.EngineHandler(OnBlowUp);

 Car.Exploded -= new Car.EngineHandler(OnBlowUp2);

 Car.Exploded -= new Car.EngineHandler(OnAboutToBlow);

 ...

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-278 I ♡ Flyheart-

 }

 // OnBlowUp event sink A.

 public static void OnBlowUp(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

 // OnBlowUp event sink B.

 public static void OnBlowUp2(string s)

 {

 Console.WriteLine("->AGAIN I say: {0}", s);

 }

 // OnAboutToBlow event sink.

 public static void OnAboutToBlow(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

}
Now, when the Exploded event is sent, the associated delegate calls OnBlowUp() as well
as OnBlowUp2(), as shown in Figure 5-10.

Figure 5-10: Working with multiple event handlers

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-279 I ♡ Flyheart-

Objects as Event Sinks

At this point, you have the background to build objects that can participate in a two-way
conversation. However, understand that you are free to build a helper object to respond to
an object's event set, much in the same way that you created a helper class to be called
by all delegates. For example, let's move your event sink methods out of the CarApp
class and into a new class named CarEventSink:

// Car event sink

public class CarEventSink

{

 // OnBlowUp event handler.

 public void OnBlowUp(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

 // OnBlowUp event handler version 2.

 public void OnBlowUp2(string s)

 {

 Console.WriteLine("->AGAIN I say: {0}", s);

 }

 // OnAboutToBlow handler.

 public void OnAboutToBlow(string s)

 {

 Console.WriteLine("Message from car: {0}", s);

 }

}

The CarApp class is then a bit more self-contained, as the event sink methods have been
pulled out of the CarApp definition and into their own custom type. Here is the update:

// Note the creation and use of the CarEventSink.

public class CarApp

{

 public static int Main(string[] args)

 {

 Car c1 = new Car("SlugBug", 100, 10);

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-280 I ♡ Flyheart-

 // Make the sink object.

 CarEventSink sink = new CarEventSink();

 // Hook into events using sink object.

 Car.Exploded += new Car.EngineHandler(sink.OnBlowUp);

 Car.Exploded += new Car.EngineHandler(sink.OnBlowUp2);

 Car.AboutToBlow += new Car.EngineHandler(sink.OnAboutToBlow);

 for(int i = 0; i < 10; i++)

 c1.SpeedUp(20);

 // Detach from events using sink object.

 Car.Exploded -= new Car.EngineHandler(sink.OnBlowUp);

 Car.Exploded -= new Car.EngineHandler(sink.OnBlowUp2);

 Car.Exploded -= new Car.EngineHandler(sink.OnAboutToBlow);

 return 0;

 }

}

The output is (of course) identical.

SOURCE
CODE

The CarEvents project is located under the Chapter 5
subdirectory.

Designing an Event Interface

COM programmers may be familiar with the notion of defining and implementing "callback
interfaces." This technique allows a COM client to receive events from a coclass using a
custom COM interface, and is often used to bypass the overhead imposed by the official
COM connection point architecture. For an illustration of using the interface as a callback,
let's examine how callback interfaces can be created using C# (and .NET in general).
Consider this last topic a bonus section, which proves the point that there is always more
than one way to solve a problem.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-281 I ♡ Flyheart-

First, let's keep the same assumption that the Car type wishes to inform the outside world
when it is about to blow (current speed is 10 miles below the maximum speed) and has
exploded. However, this time you will not be using the "delegate" or "event" keywords, but
rather the following custom interface:

// The engine event interface.

public interface IEngineEvents

{

 void AboutToBlow(string msg);

 void Exploded(string msg);

}

This interface will be implemented by a sink object, on which the Car will make calls. Here
is a sample implementation:

// Car event sink.

public class CarEventSink : IEngineEvents

{

 public void AboutToBlow(string msg)

 {

 Console.WriteLine(msg);

 }

 public void Exploded(string msg)

 {

 Console.WriteLine(msg);

 }

}

Now that you have an object that implements the event interface, your next task is to pass
a reference to this sink into the Car. The Car holds onto the reference, and makes alls
back on the sink when appropriate. In order to allow the Car to obtain a reference to the
sink, you can assume some method has been added to the default public interface.

In keeping with the COM paradigm, let's call this method Advise(). When the object user
wishes to detach from the event source, he may call another method (Unadvise() in
COM-speak). In order to allow the object user to register multiple event sinks, let's
assume that the Car maintains a ArrayList to represent each outstanding connection
(analogous to the array of IUnknown* types used with classic COM connection points).
Here is the story so far:

// This Car does not make any use of C# delegates or events.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-282 I ♡ Flyheart-

public class Car

{

 // The set of connected sinks.

 ArrayList itfConnections = new ArrayList();

 // Attach or disconnect from the source of events.

 public void Advise(IEngineEvents itfClientImpl)

 {

 itfConnections.Add(itfClientImpl);

 }

 public void Unadvise(IEngineEvents itfClientImpl)

 {

 itfConnections.Remove(itfClientImpl);

 }

...

}

Now, Car.SpeedUp() can be retrofitted to iterate over the list of connections and fire the
correct notification when appropriate (i.e., call the correct method on the sink):

// Interface based event protocol!

//

class Car

{

...

 public void SpeedUp(int delta)

 {

 // If the car is dead, send exploded event to each sink.

 if(dead)

 {

 foreach(IEngineEvents e in itfConnections)

 e.Exploded("Sorry, this car is dead...");

 }

 else

 {

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-283 I ♡ Flyheart-

 currSpeed += delta;

 // Dude, you're almost dead! Proceed with caution!

 if(10 = = maxSpeed - currSpeed)

 {

 foreach(IEngineEvents e in itfConnections)

 e.AboutToBlow("Careful buddy! Gonna blow!");

 }

 // Still OK!

 if(currSpeed >= maxSpeed)

 dead = true;

 else

 Console.WriteLine("\tCurrSpeed = {0}", currSpeed);

 }

}

The following is some client-side code, now making use of a callback interface to listen to
the Car events:

// Make a car and listen to the events.

public class CarApp

{

 public static int Main(string[] args)

 {

 Car c1 = new Car("SlugBug", 100, 10);

 // Make sink object.

 CarEventSink sink = new CarEventSink();

 // Pass the Car a reference to the sink.

 // (The lab solution registers multiple sinks...).

 c1.Advise(sink);

 // Speed up (this will generate the events.)

 for(int i = 0; i < 10; i++)

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-284 I ♡ Flyheart-

 c1.SpeedUp(20);

 // Detach from events.

 c1.Unadvise(sink);

 return 0;

 }

}
The output should look very familiar (see Figure 5-11).

Figure 5-11: Interfaces as an event protocol

SOURCE
CODE

The EventInterface project is located under the Chapter 5
subdirectory.

XML-Based Documentation

This final topic of this chapter is by no means as mentally challenging as the .NET
delegation protocol, and is not necessarily an "advanced" technique. Nevertheless, your
next goal is to examine a technique provided by C#, which enables you to turn your
source code documentation into a corresponding XML file. If you have a background in
Java, you are most likely familiar with the javadoc utility. Using javadoc, you are able to
turn Java source code into an HTML representation. The C# documentation model is
slightly different, in that the "source code to XML formatting" process is the job of the C#
compiler (csc.exe) rather than a standalone utility.

So, why use XML to represent your type definitions rather than HTML? The primary
reason is that XML is a very enabling technology. Given that XML separates raw data
from the presentation of that data, you (as a programmer) can apply any number of XML
transformations to the raw XML. As well, you could programmatically read the XML file
using types defined in the .NET base class library.

When you wish to document your types in XML, your first step is to make use of a special
comment syntax, the triple forward slash (///) rather than the C++ style double slash (//) or
C-based (/*... */) syntax. After the triple slash, you are free to use any well-formed XML
tags, including the following predefined set (see Table 5-3).

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-285 I ♡ Flyheart-

Table 5-3: Stock XML Tags

PREDEFINED
XML
DOCUMENTATI
ON TAG MEANING IN LIFE

<c> Indicates that text within a description should be
marked as code

<code> Indicates multiple lines should be marked as code

<example> Used to mock up a code example for the item you are
describing

<exception> Used to document which exceptions a given class may
throw

<list> Used to insert a list into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific parameter

<permission> Used to document access permissions for a member

<remarks> Used to build a description for a given member

<returns> Documents the return value of the member

<see> Used to cross-reference related items

<seealso> Used to build an "also see" section within a description

<summary> Documents the "executive summary" for a given item

<value> Documents a given property

The following is a very streamlined Car type with some XML-based comments. In
particular, note the use of the <summary> and <param> tags:

/// <summary>

/// This is a simple Car that illustrates

/// working with XML style documentation.

/// </summary>

public class Car

{

 /// <summary>

 /// Do you have a sunroof?

 /// </summary>

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-286 I ♡ Flyheart-

 private bool hasSunroof = false;

 /// <summary>

 /// The ctor lets you set the sunroofedness.

 /// </summary>

 /// <param name="hasSunroof"> </param>

 public Car(bool hasSunroof)

 {

 this.hasSunroof = hasSunroof;

 }

 /// <summary>

 /// This method allows you to open your sunroof.

 /// </summary>

 /// <param name="state"> </param>

 public void OpenSunroof(bool state)

 {

 if(state = = true && hasSunroof = = true)

 {

 Console.WriteLine("Put sunscreen on that bald head!");

 }

 else

 {

 Console.WriteLine("Sorry...you don't have a sunroof.");

 }

 }

 /// <summary>

 /// Entry point to application.

 /// </summary>

 public static void Main()

 {

 SimpleCar c = new SimpleCar(true);

 c.OpenSunroof(true);

 }

}

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-287 I ♡ Flyheart-

Once you have your XML documentation in place, you can specify the/doc flag as input to
the C# compiler. Note that you must specify the name of the XML output file as well as the
C# input file:

csc /doc:simplecar.xml simplecar.cs
As you would hope, the Visual Studio.NET IDE enables you to specify the name of an
XML file to describe your types. To do so, click the Properties button from the Solution
Explorer window (see Figure 5-12).

Figure 5-12: Activating the Project Properties dialog

Once you've activated the Project Properties dialog, select the Build option from the
Configuration Properties folder. Here you will find an edit box (XML Documentation File)
that enables you to specify the name of the file that will contain XML definitions for the
types in your project (which is automatically regenerated as you rebuild your project).

Viewing the Generated XML File
If you were now to open the simplecar.xml file from within the Visual Studio.NET IDE, you
would find the display shown in Figure 5-13.

Figure 5-13: The Visual Studio.NET XML viewer
If you were to select the XML button from the XML editor window, you would find the raw
XML format. Be aware that assembly members are denoted with the <member> tag,
fields are marked with an F prefix, types with T, and members with M. Table 5-4 provides
some additional XML format characters.

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-288 I ♡ Flyheart-

Table 5-4: XML Format Characters

FORMAT
CHARACTER

MEANING IN LIFE

N Denotes a namespace

T Represents a type (i.e., class, interface, struct, enum,
delegate)

F Represents a field

P Represents type properties (including indexers)

M Represents method (including such constructors and
overloaded operators)

E Denotes an event!

! Represents an error string that provides information
about the error. The C# compiler generates error
information for links that cannot be resolved.

At this point, you have a raw XML file that can be rendered into HTML using an XSL style
sheet or programmatically manipulated using .NET types. Although this approach gives
you the biggest bang for the buck when it comes to customizing the

Visual Studio.NET Documentation Support
If the thought of ending up with a raw XML file is a bit anticlimactic, be aware that VS.NET
does offer another comment-formatting option. Using the same XML tags you have just
examined, you may make use of the "Tools | Build Comment Web Pages..." menu option.
When you select this item, you will be asked if you wish to build the entire solution or a
specific project within the solution set, as shown in Figure 5-14.

Figure 5-14: Configuration of your HTML-based documentation

C# and the .NET Platform Chapter 5; Advanced C# Class Construction Techniques

-289 I ♡ Flyheart-

The Build Comment Web Pages option will respond by creating a new folder in your
project directory that holds a number of images and HTML files built based on your XML
documentation. You can now open the main HTML file and view your commented project.
For example, check out Figure 5-15.

Figure 5-15: The generated XmlCarDoc online documentation

SOURCE
CODE

The XmlDocCar project is located under the Chapter 5
subdirectory.

Summary

The purpose of this chapter was to round out your understanding of the key features of
the C# language. You are now well-equipped to build sophisticated object models that
function well within the .NET universe. The chapter began by examining how to build a
custom indexer method, which allows the object user to access discrete sub-items using
array-like notation. Next, the chapter examined how the C# language enables you to
overload various operators in order to let your custom types behave a bit more intuitively
to the object users of the world.

You have also seen three ways in which multiple objects can partake in a bidirectional
conversation. The first two approaches (delegates and events) are official, well-supported
constructs in the .NET universe. The third approach (event interfaces) is more of a design
pattern than a language protocol; however, it does allow two entities to communicate in a
type-safe manner.

I wrapped up this chapter by examining how to comment your types using XML comment
tags, and you learned how the Visual Studio.NET IDE can make use of these tags to
generate online documentation for your current project. Using these techniques, you
enable your peers to fully understand the fruit of your .NET labors.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-290 I ♡ Flyheart-

Chapter 6: Assemblies, Threads, and

AppDomains

Overview
EACH OF THE APPLICATIONS DEVELOPED during the first five chapters are along the
lines of traditional "stand alone" applications, given that all programming logic was
contained within a single (EXE) binary. One aspect of the .NET lifestyle is the notion of
binary reuse. Like COM, .NET provides the ability to access types between binaries in a
language-independent manner. However, the .NET platform provides far greater
language integration than classic COM. For example, the .NET platform supports
cross-language inheritance (imagine a Visual Basic.NET class deriving from a C# class).
To understand how this is achieved requires a deeper understanding of assemblies.

Once you understand the logical and physical layout of an assembly (and the related
manifest), you then learn to distinguish between "private" and "shared" assemblies. You
also examine exactly how the .NET runtime resolves the location of an assembly and
come to understand the role of the Global Assembly Cache (GAC). Closely related to
location resolution is the notion of application configuration files. As you will see, the .NET
runtime can read the XML-based data contained within this file to bind to a specific
version of a shared assembly (among other things).

This chapter wraps up with an examination of building multithreaded assemblies, using
the types defined within the System.Threading namespace. If you are coming from a
Win32 background, you will be pleased to see how nicely thread manipulation has
cleaned up under the .NET framework.

Problems with Classic COM Binaries

Binary reuse (i.e., portable code libraries) is not a new idea. To date, the most popular
way in which a programmer can share types between binaries (and in some respects,
across languages) is to build what can now be regarded as "classic COM servers."
Although the construction and use of COM binaries is a well-established industry
standard, these little blobs have caused each of us a fair share of headaches. Beyond the
fact that COM demands a good deal of complex infrastructure (IDL, class factories,
scripting support, and so forth), I am sure you have also pondered the following related
questions:

 Why is it so difficult to version my COM binary?
 Why is it so complex to distribute my COM binary?

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-291 I ♡ Flyheart-

The .NET framework greatly improves on the current state of affairs and addresses the
versioning and deployment problems head-on using a new binary format termed an
assembly. However, before you come to understand how the assembly offers a clean
solution to these issues, let's spend some time recapping the problems in a bit more
detail.

Problem: COM Versioning

In COM, you build entities named coclasses that are little more than a custom UDT (user
defined type) implementing any number of COM interfaces (including the mandatory
IUnknown). The coclasses are then packaged into a binary home, which is physically
represented as a DLL or EXE file. Once all the (known) bugs have been squashed out of
the code, the COM binary eventually ends up on some user's computer, ready to be
accessed by other programs.

The versioning problem in COM revolves around the fact that the COM runtime offers no
intrinsic support to enforce that the correct version of a binary server is loaded for the
calling client. It is true that a COM programmer can modify the version of the type library,
update the registry to reflect these changes, and even reengineer the client's code base
to reference a particular library. But, the fact remains that these are tasks delegated to the
programmer and typically require rebuilding the code base. As many of you have learned
the hard way, this is far from ideal.

Assume that you have jumped through the necessary hoops to try to ensure the COM
client activates the correct version of a COM binary. Your worries are far from over given
that some other application may be installed on the target machine that overrides your
carefully configured registry entries (and maybe even replaces a COM server or two with
an earlier version during the process). Mysteriously, your client application may now fail
to operate.

For example, if you have 10 applications that all require the use of MyCOMServer.dll
version 1.4, and another application installs MyCOMServer.dll version 2.0, all 10
applications are at risk of breaking. This is because we cannot be assured of complete
backward compatibility. In a perfect world, all versions of a given COM binary are fully
compatible with previous versions. In practice how-ever, keeping COM servers (and
software in general) completely backward compatible is extremely difficult.

The lump sum of each of these versioning issues is lovingly referred to as "DLL Hell"
(which, by the way, is not limited to COM DLLs; traditional C DLLs suffer the same hellish
existence). As you'll see during the course of this chapter, the .NET framework solves this
nightmare by using a number of techniques including side-by-side execution and a very
robust (yet very simple) versioning scheme.

In a nutshell, .NET allows multiple versions of the same binary to be installed on the same
target machine. Therefore, under .NET, if client A requires MyDotNETServer.dll version
1.4 and client B demands MyDotNETServer.dll version 2.0, the correct version is loaded

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-292 I ♡ Flyheart-

for the respective client automatically. You are also able to bind to a specific version using
an application configuration file.

Problem: COM Deployment

The COM runtime is a rather temperamental service. When a COM client wishes to make
use of a coclass, the first step is to load the COM libraries for use by a given thread by
calling CoInitialize(). At this point, the client makes additional calls to the COM runtime
(e.g., CoCreateInstance(), CoGetClassObject() and so forth) to load a given binary into
memory. The end result is that the COM client receives an interface reference that is then
used to manipulate the contained coclass.

In order for the COM runtime to locate and load a binary, the COM server must be
configured correctly on the target machine. From a high level, registering a COM server
sounds so simple: Build an installation program (or make use of a system supplied
registration tool) to trigger the correct logic in the COM binary (DllRegisterServer() for
DLLs or WinMain() for EXEs) and call it a day. However, as you may know, a COM server
requires a vast number of registration entries to be made. Typically, every COM class
(CLSID), interface (IID), library (LIBID), and application (AppID) must be inserted into the
system registry.

The key point to keep in mind is that the relationship between the binary image and the
correct registry entries is extremely loose, and therefore extremely fragile. In COM, the
location of the binary image (e.g., MyServer.dll) is entirely separate from the massive
number of registry entries that completely describe the component. Therefore, if the end
user were to relocate (or rename) a COM server, the entire system breaks, as the
registration entries are now out of sync.

The fact that classic COM servers require a number of external registration details also
introduces another deployment difficulty: The same entries must be made on every
machine referencing the server. Thus, if you have installed your COM binary on a remote
machine, and if you have 100 client machines accessing this COM server, this means
101 machines must be configured correctly. To say the least, this is a massive pain in the
neck.

The .NET platform makes the process of deploying an application extremely simple given
the fact that .NET binaries (i.e., assemblies) are not registered in the system registry at all.
Plain and simple. Instead, assemblies are completely self-describing entities. Deploying
a .NET application can be (and most often is) as simple as copying the files that compose
the application to some location on the machine, and running your program.. In short, be
prepared to bid a fond farewell to HKEY_CLASSES_ROOT.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-293 I ♡ Flyheart-

An Overview of .NET Assemblies

Now that you understand the problem, let's check out the solution. .NET applications are
constructed by piecing together any number of assemblies. Simply put, an assembly is
nothing more than a versioned, self-describing binary (DLL or EXE) containing some
collection of types (classes, interfaces, structures, etc.) and optional recourses (images,
string tables and whatnot). One thing to be painfully aware of right now, is that the internal
organization of a .NET assembly is nothing like the internal organization of a classic COM
server (regardless of the shared file extensions).

For example, an in-process COM server exports four functions (DllCanUnloadNow(),
DllGetClassObject(), DllRegisterServer() and DllUnregisterServer()), in order to allow the
COM runtime to access its contents. .NET DLLs on the other hand require only one
function export, DllMain().

Local COM servers define WinMain() as the sole entry point into the EXE, which is
implemented to test for various command line parameters to perform the same duties as
a COM DLL. Not so under the .NET protocol. Although .NET EXE binaries do provide a
WinMain() entry point (or main() for console applications), the behind-the-scenes logic is
entirely different.

The physical format of a .NET binary is actually more similar to a traditional portable
executable (PE) and COFF (Common Object File Format) file formats. The true difference
is that a traditional PE / COFF files contains instructions that target a specific platform and
specific CPU. In contrast, .NET binaries contain code constructed using Microsoft
Intermediate Language (MSIL or simply IL), which is platform-and CPU-agnostic. At
runtime, the internal IL is compiled on the fly (using a just-in-time compiler) to platform
and CPU specific instructions. This is a powerful extension of classic COM in that .NET
assemblies are poised to be platform neutral entities that are not necessarily tied to the
Windows operating system.

In addition to raw IL, recall that an assembly also contains metadata that completely
describes each type living in the assembly, as well as the full set of members supported
by each type. For example, if you created a class named Joy-Stick using some .NET
aware language, the corresponding compiler emits metadata describing all the fields,
methods, properties, and events defined by this custom type. The .NET runtime uses this
metadata to resolve the location of types (and their members) within the binary, create
object instances, as well as to facilitate remote method invocations.

Unlike traditional file formats or classic COM server, an assembly must contain an
associated manifest (also referred to as "assembly metadata"). The manifest documents
each module within the assembly, establishes the version of the assembly, and also
documents any external assemblies referenced by the current assembly (unlike a classic

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-294 I ♡ Flyheart-

COM type library that does not document required external dependencies). Given this,
a .NET assembly is completely self-describing.

Single File and Multifile Assemblies

Under the hood, a given assembly can be composed of multiple modules. A module is
really nothing more than a generic name for a valid file. In this light, an assembly can be
viewed as a unit of deployment (often termed a "logical DLL"). In many situations, an
assembly is in fact composed of a single module. In this case, there is a one-to-one
correspondence between the (logical) assembly and the underlying (physical) binary, as
shown in Figure 6-1.

Figure 6-1: A single file assembly

When you create an assembly that is composed of multiple files, you gain efficient code
download. For example, assume you have a remote client that is referencing a multifile
assembly composed of three modules. If the remote application references only one of
these modules, the .NET runtime only downloads the currently referenced file. If each
module is 1 MB in size, I'm sure you can see the benefits.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-295 I ♡ Flyheart-

Understand that multifile assemblies are not literally linked together into a new (larger) file.
Rather, multifile assemblies are logically related by information contained in the
corresponding manifest. On a related note, multifile assemblies contain a single manifest
that may be placed in a standalone file, but is more typically bundled into one of the
related modules. The big picture is seen in Figure 6-2.

Figure 6-2: A multifile assembly

This text is not concerned with the construction of multifile assemblies. However, be
aware that online Help does document the process (which boils down to little more than
passing the /addmodule flag to the C# compiler).

Two Views of an Assembly: Physical and Logical

As you begin to work with .NET binaries, it can be helpful to regard an assembly (both
single file and multifile) as having two conceptual views. When you build an assembly,
you are interested in the physical view. In this case, the assembly can be realized as
some number of files that contain your custom types and resources (Figure 6-3).

Figure 6-3: Physically, an assembly is a collection of modules

As an assembly consumer, you are interested in a logical view of the assembly (Figure
6-4). In this case, you can understand an assembly as a versioned collection of public
types that you can use in your current application (recall that "internal" types can only be
referenced by the assembly in which they are defined):

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-296 I ♡ Flyheart-

Figure 6-4: Logically, an assembly is a collection of types

For example, the kind folks in Redmond who developed System.Drawing.dll created a
physical assembly for you to consume in your applications. However, although
System.Drawing.dll can be physically viewed as a binary DLL, you logically regard this
assembly as a collection of related types. Of course, ILDasm.exe is the tool of choice
when you are interested in discovering the logical layout of a given assembly (Figure 6-5).

Figure 6-5: Logical view of the physical System.Drawing.dll assembly

The chances are good that you will play the role of both an assembly builder and
assembly consumer, as is the case throughout this book. However, before digging into
the code, let's briefly examine some of the core benefits of this new file format.

Assemblies Promote Code Reuse

Assemblies contain code that is executed by the .NET runtime. As you might imagine, the
types and resources contained within an assembly can be shared and reused by multiple
applications, much like a traditional COM binary. Unlike COM, it is possible to configure
"private" assemblies as well (in fact, this is the default behavior). Private assemblies are
intended to be used only by a single application on a given machine. As you will see,
private assemblies greatly simplify the deployment and versioning of your applications.

Like COM, binary reuse under the .NET platform honors the ideal of language
independence. C# is one of numerous languages capable of building managed code, with
even more languages to come. When a .NET-aware language adheres to the rules of the

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-297 I ♡ Flyheart-

Common Language Specification (CLS), your choice of language becomes little more
than a personal preference.

Therefore, it is not only possible to reuse types between languages, but to extend types
across languages as well. In classic COM, developers were unable to derive COM object
A from COM object B (even if both types were developed in the same language). In short,
classic COM did not support classical inheritance (the "is-a" relationship). Later in this
chapter you see an example of cross-language inheritance.

Assemblies Establish a Type Boundary

Assemblies are used to define a boundary for the types (and resources) they contain.
In .NET, the identity of a given type is defined (in part) by the assembly in which it resides.
Therefore, if two assemblies each define an identically named type (class, structure, or
whatnot) they are considered independent entities in the .NET universe.

Assemblies Are Versionable and Self-Describing Entities

As mentioned, in the world of COM, the developer is in charge of correctly versioning a
binary. For example, to ensure binary compatibility between MyComServer.dll version 1.0
and MyComServer.dll version 2.4, the programmer must use basic common sense to
ensure interface definitions remained unaltered or run the risk of breaking client code.
While a healthy dose of versioning common sense also comes in handy under the .NET
universe, the problem with the COM versioning scheme is that these programmer-defined
techniques are not enforced by the runtime.

Another major headache with current versioning practices is that COM does not provide a
way for a binary server to explicitly list the set of other binaries that must be present for it
to function correctly. If an end user mistakenly moves, renames, or deletes a dependency,
the solution fails. Under .NET, an assembly's manifest is the entity in charge of explicitly
listing all internal and external contingencies.

Each assembly has a version identifier that applies to all types and all resources
contained within each module of the assembly. Using a version identifier the runtime is
able to ensure that the correct assembly is loaded on behalf of the calling client, using a
well defined versioning policy (detailed later). An assembly's version identifier is
composed of two basic pieces: A friendly text string (termed the informational version)
and a numerical identifier (termed the compatibility version).

For example, assume you have created a new assembly with an informational string of
"MyInterestingTypes." This same assembly would also define a compatibility number,
such as 1.0.70.3. The compatibility version number always takes the same general format
(four numbers separated by periods). The first and second numbers identify the major
and minor version of the assembly (1.0 in this case). The third value (70) marks the build
number, followed by the current revision number (3).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-298 I ♡ Flyheart-

As you discover later in this chapter, the .NET runtime makes use of an assembly's
version to ensure the correct binary is loaded on behalf of the client (provided that the
assembly is shared). Because the manifest explicitly lists all external dependencies, the
runtime is able to determine the "last known good" configuration (i.e., the set of versioned
assemblies that are known to function correctly).

Assemblies Define a Security Context

An assembly may also contain security information. Under the architecture of the .NET
runtime, security measures are scoped at the assembly level. For example, if AssemblyA
wishes to use a class contained within AssemblyB, AssemblyB is the entity that chooses
to provide access (or not). The security constraints defined by an assembly are explicitly
listed within its manifest. While a treatment of .NET security measures is outside the
mission of this text, simply be aware that access to an assembly's contents is verified
using assembly metadata.

Assemblies Enable Side-by-Side Execution

Perhaps the biggest advantage of the .NET assembly is the ability of multiple versions of
the same assembly to be loaded (and understood) by the runtime. Thus, it is possible to
install and load multiple versions of the same assembly on a single machine. In this way,
clients are isolated from other incompatible versions of the same assembly.

Furthermore, it is possible to control which version of a (shared) assembly should be
loaded using application configuration files. These files are little more than a simple text
file describing (via XML syntax) the version, and specific location, of the assembly to be
loaded on behalf of the calling application. You learn how to author application
configuration files later in this chapter.

Building a Single File Test Assembly
Now that you have a better understanding of .NET assemblies, let's build a minimal and
complete code library using C#. Physically, this will be a single file assembly named
CarLibrary. To build a code library using the Visual Studio.NET IDE, you would select a
new Class Library project workspace (Figure 6-6).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-299 I ♡ Flyheart-

Figure 6-6: Selecting a Class Library project workspace

The design of our automobile library begins with an abstract base class named Car that
defines a number of protected data members exposed through custom properties. This
class has a single abstract method named TurboBoost() and makes use of a single
enumeration (EngineState). Here is the initial definition of the CarLibrary namespace:

// Our first code library (CarLibrary.dll)

namespace CarLibrary

{

using System;

public enum EngineState // Holds the state of the engine.

{

 engineAlive,

 engineDead

}

public abstract class Car // The abstract base class in the hierarchy.

{

 // Protected state data.

 protected string petName;

 protected short currSpeed;

 protected short maxSpeed;

 protected EngineState egnState;

 public Car(){egnState = EngineState.engineAlive;}

 public Car(string name, short max, short curr)

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-300 I ♡ Flyheart-

 {

 egnState = EngineState.engineAlive;

 petName = name; maxSpeed = max; currSpeed = curr;

 }

 public string PetName

 {

 get { return petName; }

 set { petName = value; }

 }

 public short CurrSpeed

 {

 get { return currSpeed; }

 set { currSpeed = value; }

 }

 public short MaxSpeed

 { get { return maxSpeed; } }

 public EngineState EngineState

 { get { return egnState; } }

 public abstract void TurboBoost();

}

}

Now assume that you have two direct descendents of the Car type named MiniVan and
SportsCar. Each implements the abstract TurboBoost() method in an appropriate
manner:

namespace CarLibrary

{

using System;

using System.Windows.Forms; // Needed for MessageBox definition.

// The SportsCar

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-301 I ♡ Flyheart-

public class SportsCar : Car

{

 // Ctors.

 public SportsCar(){}

 public SportsCar(string name, short max, short curr)

 : base (name, max, curr){}

 // TurboBoost impl.

 public override void TurboBoost()

 {

 MessageBox.Show("Ramming speed!", "Faster is better...");

 }

}

// The MiniVan

public class MiniVan : Car

{

 // Ctors.

 public MiniVan(){}

 public MiniVan(string name, short max, short curr)

 : base (name, max, curr){}

 // TurboBoost impl.

 public override void TurboBoost()

 {

 // Minivans have poor turbo capabilities!

 egnState = EngineState.engineDead;

 MessageBox.Show("Time to call AAA", "Your car is dead");

 }

}

}
Notice how each subclass implements TurboBoost() using the MessageBox class, which
is defined in the System.Windows.Forms.dll assembly. In order for your assembly to

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-302 I ♡ Flyheart-

make use of the types defined within this assembly, the Car-Library project must include a
reference to this binary using the "Project | Add Reference" menu selection (Figure 6-7).

Figure 6-7: Referencing external assemblies
In Chapter 8, the System.Windows.Forms namespace is described in detail. As you can
tell by the name of the namespace, this assembly contains numerous types to help you
build GUI applications. For now, the MessageBox class is all you need to concern
yourself with. If you are following along, go ahead and compile your new code library.

A C# Client Application

Because each of our automobiles has been declared "public," other binaries are able to
use our custom classes. In a moment, you learn how to make use of these types from
other .NET aware languages such as Visual Basic. Until then, let's create a C# client.
Begin by creating a new C# Console Application project (CSharp-CarClient). Next, set a
reference to your CarLibrary.dll, using the Browse button to navigate to the location of
your custom assembly (again using the Add Reference dialog).

Once you add a reference to your CarLibrary assembly, the Visual Studio.NET IDE
responds by making a full copy of the referenced assembly and placing it into your Debug
folder (assuming, of course, you have configured a debug build) (Figure 6-8).

Figure 6-8: Local copies of referenced assemblies are placed in your Debug folder

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-303 I ♡ Flyheart-

Obviously this is a huge change from classic COM, where the resolution of the binary is
achieved using the system registry.

Now that our client application has been configured to reference the CarLibrary assembly,
you are free to create a class that makes use of these types. Here is a test drive (pun
intended):

// Our first taste of binary reuse.

namespace CSharpCarClient

{

using System;

// Make use of the CarLib types!

using CarLibrary;

public class CarClient

{

 public static int Main(string[] args)

 {

 // Make a sports car.

 SportsCar viper = new SportsCar("Viper", 240, 40);

 viper.TurboBoost();

 // Make a minivan.

 MiniVan mv = new MiniVan();

 mv.TurboBoost();

 return 0;

 }

}

}

This code looks just like the other applications developed thus far. The only point of
interest is that the C# client application is now making use of types defined within a
unique assembly. Go ahead and run your program. As you would expect, the execution of
this program results in the display of two message boxes.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-304 I ♡ Flyheart-

A Visual Basic.NET Client Application
When you install Visual Studio.NET, you receive four languages that are capable of
building managed code: JScript.NET, C++ with managed extensions (MC++), C# and
Visual Basic.NET. A nice feature of Visual Studio.NET is that all languages share the
same IDE. Therefore, Visual Basic.NET, ATL, C#, and MFC programmers all make use of
a common development environment. Given this fact, the process of building a Visual
Basic.NET application making use of the CarLibrary is simple. Assume a new VB.NET
Windows Application project workspace named VBCarClient (Figure 6-9) has been
created.

Figure 6-9: Selecting a VB.NET Windows Application project

Similar to Visual Basic 6.0, this project workspace provides a design time template used
to build the GUI of the main window. However, VB.NET is a completely different animal.
The template you are looking at is actually a subclass of the Form type, which is quite
different from a VB 6.0 Form object (more details in Chaper 8).

Now, set a reference to the C# CarLibrary, again using the Add Reference dialog. Like C#,
VB.NET requires you to list each namespace used within your project. However, VB.NET
makes use of the "imports" keyword rather than the C# "using" directive. Thus, open the
code window for your Form and add the following:

' Like C#, VB.NET needs to 'see' the namespaces used by a given class.

Imports System

Imports System.Collections

...

Imports CarLibrary
Using the design time template, construct a minimal and complete user interface to
exercise your automobile types (Figure 6-10). Two buttons should fit the bill (simply select
the Button widget from the Toolbox and draw it on the Form object).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-305 I ♡ Flyheart-

Figure 6-10: A painfully simply UI

The next step is to add event handlers to capture the Click event of each Button object.
To do so, simply double-click each button on the Form. The IDE responds by writing stub
code that will be called when a button is clicked. Here is some sample code:

' A little bit of VB.NET!

Protected Sub btnMiniVan_Click(ByVal sender As Object,

 ByVal e As System.EventArgs) Handles btnMiniVan.Click

 Dim sc As New MiniVan()

 sc.TurboBoost()

End Sub

Protected Sub btnCar_Click(ByVal sender As Object,

 ByVal e As System.EventArgs) Handles btnCar.Click

 Dim sc As New SportsCar()

 sc.TurboBoost()

End Sub

Although the goal of this book is not to turn you into a powerhouse VB.NET developer,
here is one point of interest. Notice how each Car subclass is created using the New
keyword. Unlike VB 6.0 however, classes now have true constructors! Therefore, the
empty parentheses suffixed on the class name do indeed invoke a given constructor on
the class. As you would expect, when you run the program, each automobile responds
appropriately.

Cross-Language Inheritance

A very sexy aspect of .NET development is the notion of cross-language inheritance. To
illustrate, let's create a new VB.NET class that derives from CarLibrary.SportsCar.
Impossible you say? Well, if you were using Visual Basic 6.0 this would be the case.
However with the advent of VB.NET, programmers are able to use the same
object-oriented features found in C#, Java and C++, including classical inheritance (i.e.,
the "is-a" relationship).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-306 I ♡ Flyheart-

To illustrate, add a new class named PerformanceCar to your current VB.NET client
application (using the "Project | Add Class" menu selection). In the code that follows,
notice you are deriving from the C# Car type using the VB.NET "Inherits" keyword. As you
recall, the Car class defined an abstract TurboBoost() method, which we implement using
the VB.NET "Overrides" keyword:

' Yes, VB.NET supports each pillar of OOP!

Imports CarLibrary

Imports System.Windows.Forms

' This VB type is deriving from the C# SportsCar!

Public Class PerformanceCar

 Inherits CarLibrary.SportsCar

 ' Implementation of abstract Car method.

 Overrides Sub TurboBoost()

 MessageBox.Show("Blistering speed", "VB PerformanceCar says")

 End Sub

End Class

If we update our existing Form to include an additional Button to exercise the
performance car, we could write the following test code:

Protected Sub btnPreCar_Click(ByVal sender As Object,

 ByVal e As System.EventArgs) Handles btnPerfCar.Click

 Dim pc As New PerformanceCar()

 pc.PetName = "Hank" ' Inherited property.

 ' Display base class.

MessageBox.Show(pc.GetType().BaseType.ToString(),

 "Base class of Perf car")

 ' Custom Implementation of Car.TurboBoost()

 pc.TurboBoost()

End Sub
Notice that we are able to identify our base class programmatically (Figure 6-11).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-307 I ♡ Flyheart-

Figure 6-11: Cross language inheritance

Excellent! At this point you have begun the process of breaking your applications into
discrete binary building blocks. Given the language-independent nature of .NET, any
language targeting the runtime is able to create (and extend) the types described within a
given assembly.

SOURCE
CODE

The CarLibrary, CSharpCarClient and VBCarClient projects
are each included under the Chapter 6 subdirectory.

Exploring the CarLibrary's Manifest

At this point, you have successfully created a single file assembly and two client
applications. Your next order of business is to gain a deeper understanding of how .NET
assemblies are constructed under the hood. To begin, recall that every assembly
contains an associated manifest, which can be regarded as the Rosetta stone of .NET. A
manifest contains metadata that specifies the name and version of the assembly, as well
as a listing of all internal and external modules that compose the assembly as a whole.
Additionally, a manifest may contain culture information (used for internalization), a
corresponding "strong name" (required by shared assemblies) and optional security and
resource information (we will examine the .NET resource format in Chapter 10).

.NET aware compilers (such as csc.exe) automatically create a manifest at compile time.
As you see in Chapter 7, it is possible to augment the compiler-generated manifest using
attribute-based programming techniques. For now, go ahead and load the CarLibrary
assembly into ILDasm.exe. As you can see, this tool has read the metadata to display
relevant information for each type (Figure 6-12).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-308 I ♡ Flyheart-

Figure 6-12: Your car library

Now, open the manifest by double clicking on the MANIFEST icon (Figure 6-13).

Figure 6-13: The CarLibrary manifest

The first code block contained in a manifest is used to specify all external assemblies that
are required by the current assembly to function correctly. As you recall, CarLibrary.dll
made use of mscorlib.dll and System.Windows.Forms.dll, each of which are marked in
the manifest using the [.assembly extern] tag:

.assembly extern mscorlib

{

 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4

 .ver 1:0:2411:0

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-309 I ♡ Flyheart-

}

.assembly extern System.Windows.Forms

{

 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

 .ver 1:0:2411:0

}

Here, each [.assembly extern] block is colored by the [.publickeytoken] and [.ver]
directives. The [.publickeytoken] instruction is only present if the assembly has been
configured as a shared assembly and is used to reference the "strong name" of the
shared assembly (more details later). [.ver] is (of course) the numerical version identifier.
After enumerating each of the external references, the manifest then enumerates each
module contained in the assembly. Given that the CarLibrary is a single file assembly,
you will find exactly one [.module] tag. This manifest also lists a number of attributes
(marked with the [.custom] tag) such as company name, trademark and so forth, all of
which are currently empty (more information on these attributes in Chapter 7):

.assembly CarLibrary

{

 .custom instance void [mscorlib]

System.Reflection.AssemblyKeyNameAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyKeyFileAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyDelaySignAttribute::.ctor(bool) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyTrademarkAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyCopyrightAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyProductAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyCompanyAttribute::.ctor(string) = (01 00 00 00 00)

 .custom instance void [mscorlib]

System.Reflection.AssemblyConfigurationAttribute::.ctor(string)=(01 00 00 00 00

)

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-310 I ♡ Flyheart-

 .custom instance void [mscorlib]

System.Reflection.AssemblyDescriptionAttribute::.ctor(string) = (01 00 00 00 00

)

 .custom instance void [mscorlib]

System.Reflection.AssemblyTitleAttribute::.ctor(string) = (01 00 00 00 00)

 .hash algorithm 0×00008004

 .ver 1:0:454:30104

}

.module CarLibrary.dll

Here, you can see that the [.assembly] tag is used to mark the friendly name of your
custom assembly (CarLibrary). Like external declarations, the [.ver] tag defines the
compatibility version number for this assembly, where [.hash] marks the file's generated
hash code. Do note that the CarLibrary assembly does not define an [.publickeytoken] tag,
given that CarLibrary has not been configured as a shared assembly.

To summarize the tags that dwell in the assembly manifest, ponder Table 6-1.

Table 6-1: Manifest IL Tags

MANIFEST
DECLARATIO
N TAG

MEANING IN LIFE

.assembly Marks the assembly declaration, indicating that the file is
an assembly.

.file Marks extra files in the same assembly.

.class extern Classes exported by the assembly but declared in
another module.

.exeloc Indicates the location of the executable for the assembly.

.manifestres Indicates the manifest resources (if any). You see this tag
in action in Chapter 9 (GDI+).

.module Module declaration, indicating that the file is a module
(i.e., a .NET binary with no manifest) and not an
assembly.

.module extern Modules of this assembly contain items referenced in this
module.

Assembly The assembly reference indicates another assembly

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-311 I ♡ Flyheart-

Table 6-1: Manifest IL Tags

MANIFEST
DECLARATIO
N TAG

MEANING IN LIFE

extern containing items referenced by this module.

.publickey Contains the actual bytes of the public key.

.publickeytoken Contains a token of the actual public key.

Exploring the CarLibrary's Types

Recall that an assembly does not contain platform specific instructions, but rather
platform agnostic intermediate language (IL). When the .NET runtime loads an assembly
into memory, the underlying IL is compiled (using the JIT compiler) into instructions that
can be understood by the target platform. Also recall that in addition to raw IL and the
assembly manifest, an assembly contains metadata that describes and members of each
type contained within a given module.

For example, if you were to double click the TurboBoost() method of the SportsCar class,
ILDasm.exe would open a new window showing the raw IL instructions. Notice in the
following screen shot, that the [.method] tag is used to identify (of course) a method
defined by the SportsCar type (Figure 6-14).

Figure 6-14: IL for the TurboBoost() method

As you might expect, public data defined by a type is marked with the [.field] tag (Figure
6-15). Recall that the Car class defined a set of protected data, such as currSpeed (note
that the "family" tag signifies protected data).

Figure 6-15: IL for the currSpeed field

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-312 I ♡ Flyheart-

Properties are also marked with the [.property] tag (Figure 6-16). The figure shows the IL
describing the public property that provides access to the underlying currSpeed data point
(note the read/write nature of the CurrSpeed property is marked by .get and .set tags):

Figure 6-16: IL for the CurrSpeed property

If you now select the "Ctrl + M" keystroke, ILDasm.exe would display the metadata for
each type (Figure 6-17).

Figure 6-17: Type metadata

Using this metadata, the .NET runtime is able to locate and construct object instances,
and invoke methods. Various tools (such as Visual Studio.NET) make use of metadata at
design time in order to validate the number of (and type of) parameters during compilation.
To summarize the story so far, make sure the following points are clear in your mind:

 An assembly is a versioned, self-describing set of modules. Each module

contains some number of types and optional resources.
 Every assembly contains metadata that describes all types within a given

module. The .NET runtime (as well as numerous design time tools) read the
metadata to locate and create objects, validate method calls, activate
IntelliSense, and so on.

 Every assembly contains a manifest that enumerates the set of all internal and
external files required by the binary, version information as well as other
assembly-centric details.

Next you need to distinguish between private and shared assemblies. If you are coming
into the .NET paradigm from a classic COM perspective, be prepared for some significant
changes.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-313 I ♡ Flyheart-

Understanding Private Assemblies

Formally speaking, an assembly is either "private" or "shared." The good news is each
variation has the same underlying structure (i.e., some number of modules and an
associated manifest). Furthermore, each flavor of assembly provides the same kind of
services (for example, access to some number of public types). The real differences
between a private and shared assembly boils down to naming conventions, versioning
policies, and deployment issues. Let's begin by examining the traits of a private assembly,
which is far and away the most common of the two options.

Private assemblies are a collection of types that are only used by the application with
which it has been deployed. For example, CarLibrary.dll is a private assembly used by the
CSharpCarClient and VBCarClient applications. When you create a private assembly, the
assumption is that the collection of types are only used by the "owning" application, and
not shared with other applications on the system.

Private assemblies are usually required to be located within the main directory of the
owning application (termed the application directory) or a subdirectory thereof. For
example, recall that when you set a reference to the CarLibrary assembly (as we did in
the CSharpCarClient and VBCarClient applications), the Visual Studio.NET IDE
responded by making a full copy of the assembly that was placed it in your project's
application directory. This is the default behavior, as private assemblies are assumed to
be deployment option of choice.

Note the painfully stark contrast to classic COM. There is no need to register any items
under HKEY_CLASSES_ROOT and no need to enter a hard-coded path to the binary
using an InprocServer32 or LocalServer32 listing. The resolution and loading of the
private CarLibrary happens by virtue of the fact that the assembly is placed in the
application directory. In fact, if you moved CSharpCarClient.exe and CarLibrary.dll to a
new directory, the application would still run. To illustrate this point, copy these two files to
your desktop and run the client (Figure 6-18).

Figure 6-18: Can you say "XCopy installation?"

Uninstalling (or replicating) an application that makes exclusive use of private assemblies
is a no-brainer. Delete (or copy) the application folder. Unlike classic COM, you do not

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-314 I ♡ Flyheart-

need to worry about dozens of orphaned registry settings. More important, you do not
need to worry that the removal of private assemblies will break any other applications on
the machine!

Probing Basics
Later in this chapter, you are exposed to a number of gory details regarding location
resolution of an assembly. Until then, the following overview should help prime the pump.
Formally speaking, the .NET runtime resolves the location of a private assembly using a
technique termed probing, which is much less invasive than it sounds. Probing is the
process of mapping an external assembly reference (i.e., [.assembly extern]) to the
correct corresponding binary file. For example, when the runtime reads the following line
from the VBCarClient's manifest:

.assembly extern CarLibrary

{

...

}

a search is made in the application directory for a file named CarLibrary.DLL. If a DLL
binary cannot be located, an attempt is made to locate an EXE version (CarLibrary.EXE).
If neither of these files can be found, a further examination ensues for a shared assembly
(examined in just a bit).

The Identity of a Private Assembly

The identity of a private assembly consists of a friendly string name and numerical
version, both of which are recorded in the assembly manifest. The friendly name is
created based on the name of the binary module that contains the assembly's manifest.
For example, if you examine the manifest of the CarLibrary.dll assembly, you find the
following (the exact version may vary):

.assembly CarLibrary as "CarLibrary"

{

...

 .ver 1:0:454:30104

}

However, given the nature of a private assembly, it should make sense that the .NET
runtime does not bother to apply any version policies when loading the assembly. The
assumption is that private assemblies do not need to have any elaborate version
checking, given that the client application is the only entity that "knows" of its existence.
As an interesting corollary you should understand that it is (very) possible for a single

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-315 I ♡ Flyheart-

machine to have multiple copies of the same private assembly in various application
directories.

Private Assemblies and XML Configuration Files

When the .NET runtime is instructed to bind to an assembly, the first step is to determine
the presence of an application configuration file. These optional files contain XML tags
that control the binding behavior of the launching application. By law, configuration files
must have the same name as the launching application and take a *.config file extension.

As mentioned, configuration files can be used to specify any optional subdirectories to be
searched during the process of binding to private assemblies. As you have seen earlier in
this chapter, a componentized .NET application can be deployed simply by placing all
assemblies into the same directory as the launching application. Often, however, you may
wish to deploy an application such that the application directory contains a number of
related subdirectories, in order to give some meaningful structure to the application as a
whole.

You see this all the time in commercial software. For example, assume our main directory
is called MyRadApplication, which contains a number of subdirectories (\Images, \Bin,
\SavedGames, \OtherCoolStuff). Using application configuration files, you can instruct the
runtime where it should probe while attempting to locate the set of private assemblies
used by the launching application.

To illustrate, let's create a simple configuration file for the previous CSharpCarClient
application. Our goal is to move the referenced assembly (CarLibrary) from the Debug
folder into a new subdirectory named Foo \ Bar. Go ahead and move this file now (Figure
6-19).

Figure 6-19: Relocating your assembly
Now, create a new configuration file named CSharpCarClient.exe.config (notepad will do
just fine) and save it into the same folder containing the CSharpCarClient.exe application.
The beginning of an application configuration file is marked with the <Configuration> tag.
Before the closing </Configuration> tag, specify an assemblyBinding row, which is used

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-316 I ♡ Flyheart-

to specify alternative locations to search for a given assembly, using the privatePath
attribute (FYI, multiple subdirectories can be specified using a semicolon delimited list):

<configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <probing privatePath="foo\bar"/>

 </assemblyBinding>

 </runtime>

</configuration>

Once you are done, save the file and launch the client. You will find that the
CSharpCarClient application runs without a hitch. As a final test, change the name of your
configuration file and attempt to run the program once again (Figure 6-20).

Figure 6-20: *.config files must have the same name as the launching application

The client application silently fails. Recall that configuration files must have the same
name as the launching application. Because you have renamed this file, the .NET runtime
assumes you do not have a configuration file, and thus attempts to probe for the
referenced assembly in the application directory (which it cannot locate).

Specifics of Binding to a Private Assembly

To wrap up the current discussion, let's formalize the specific steps involved in binding to
a private assembly at runtime. First, a request to load an assembly may be either explicit
or implicit. An implicit load request occurs whenever the manifest makes a direct
reference to some external assembly. As you recall, external references are marked with
the [.assembly extern] instruction:

// An implicit load request...

.assembly extern CarLibrary

{

 ...

}

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-317 I ♡ Flyheart-

An explicit load request occurs programmatically using
System.Reflection.Assembly.Load().The Assembly class is examined in Chapter 7, but
be aware that the Load() method allows you to specify the name, version, strong name,
and culture information syntactically (note you are not required to specify each
characteristic):

// An explicit load request...

Assembly asm = Assembly.Load("CarLibrary");
Collectively, the name, version, strong name, and culture information is termed an
assembly reference (or simply AsmRef). The entity in charge of locating the correct
assembly based on an AsmRef is termed the assembly resolver, which is a facility of the
CLR.

As mentioned earlier, an application directory is nothing more than a folder on your hard
drive (for example, C:\MyApp) that contains all the files for a given application. If
necessary, an application directory may specify additional subdirectories (e.g.,
C:\MyApp\Bin, C:\MyApp\Tools, and so on) to establish a more stringent file hierarchy.

When a binding request is made, the runtime passes an AsmRef to the assembly resolver.
If the resolver determines the AsmRef refers to a private assembly (meaning there is no
strong name recorded in the manifest), the following steps are followed:

1. First, the assembly resolver attempts to locate a configuration file in the

application directory. As you will see, this file can specify additional
subdirectories to include in the search, as well as establish a version
policy to use for the current bind.

2. If there is no configuration file, the runtime attempts to discover the
correct assembly by examining the current application directory. If a
configuration file does exist, any specified subdirectories are searched.

3. If the assembly cannot be found within the application directory (or a
specified subdirectory) the search stops here and a
TypeLoadException exception is raised, as private assemblies are
always located within the application directory (or a specified
subdirectory).

To solidify this sequence of events, Figure 6-21 illustrates the process outlined above.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-318 I ♡ Flyheart-

Figure 6-21: Searching for a private assembly

Again, as you can see, the location of a private assembly is fairly simply to resolve. If the
application directory does not contain a configuration file, the assembly resolver simply
looks for a binary that matches the correct string name. If the application directory does
contain a configuration file, any specified subdirectories are also searched.

Understanding Shared Assemblies

Like a private assembly, a "shared" assembly is a collection of types and (optional)
resources contained within some number of modules. The most obvious difference
between shared and private assemblies is the fact that shared assemblies can be used
by several clients on a single machine. Clearly, if you wish to create a machine-wide class
library, a shared assembly is the way to go.

A shared assembly is typically not deployed within the same directory as the application
making use of it. Rather, shared assemblies are installed into a machine-wide Global
Assembly Cache, which lends itself to yet another colorful acronym in the programming
universe: the GAC. The GAC itself is located under the <drive>: \ WinNT \ Assembly
subdirectory (Figure 6-22).

Figure 6-22: The Global Assembly Cache (GAC)

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-319 I ♡ Flyheart-

This is yet another major difference between the COM and .NET architectures. In COM,
shared applications can reside anywhere on a given machine, provided they are properly
registered. Under .NET, shared assemblies are typically placed into a centralized
well-known location (the GAC).

Unlike private assemblies, a shared assembly requires additional version information
beyond the friendly text string. As you may have guessed, the .NET runtime does enforce
version checking for a shared assembly before it is loaded on behalf of the calling
application. In addition, a shared assembly must be assigned a "shared name" (also
known as a "strong name").

Problems with Your GAC?

By way of a quick side note, as of Beta2 (on which this text is based) I have noticed that
some of my development machines are unable to display the GAC correctly. The problem
is that the GAC is a shell extension that requires the registration of a COM server named
shfusion.dll. During installation, this server may fail to register correctly. If you are having
problems opening the GAC on your machine, simply register this COM server using
regsvr32.exe and you should be just fine.

Understanding Shared (Strong) Names

When you wish to create an assembly that can be used by numerous applications on a
given machine, your first step is to create a unique shared name for the assembly. A
shared name contains the following information:

 A friendly string name and optional culture information (just like a private

assembly).
 A version identifier.
 A public/private key pair.
 A digital signature.

The composition of a shared name is based on standard public key cryptography. When
you create a shared assembly, you must generate a public/private key pair (that you do
momentarily). The key pair is included in the build cycle using a .NET aware compiler,
which in turn lists a token of the public key in the assembly's manifest (via the
[.publickeytoken] tag). The private key is not listed in the manifest, but rather, is signed
with the public key. The resulting signature is stored in the assembly itself (in the case of
a multifile assembly, the private key is stored with the file defining the manifest).
Now, assume some client has referenced this shared assembly (which is no different than
referencing a private assembly). When the compiler generates the client binary, the public
key is recorded in its manifest. At runtime, the .NET runtime ensures that both the client

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-320 I ♡ Flyheart-

and the shared assembly are making using of the same key pair. If these keys are
identical, the client application can rest assured that the correct assembly as been loaded.
Figure 6-23 presents the basic picture.

Figure 6-23: Key matching

As you might guess, there are additional details regarding key pairs. We really don't need
more details for now, so check out online Help if you so choose.

Building a Shared Assembly

To generate a strong name for your assembly, you need to make use of the sn.exe
(strong name) utility. Although this tool has numerous command line options, all we need
to concern ourselves with is the "-k" argument, which instructs the tool to generate a new
strong name key that will be saved to a specified file (Figure 6-24).

Figure 6-24: Creating a *.snk file

If you examine the contents of this new file (theKey.snk) you see the binary markings of
the key pair (Figure 6-25).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-321 I ♡ Flyheart-

Figure 6-25: The *.snk file, up close and personal

To continue with the example, assume you have created a new C# Class Library called
(of course) SharedAssembly, which contains the following class definition:

using System;

using System.Windows.Forms;

namespace SharedAssembly

{

public class VWMiniVan

{

 public VWMiniVan(){}

 public void Play60sTunes()

 {

 MessageBox.Show("What a loooong, strange trip it's been...");

 }

 private bool isBustedByTheFuzz = false;

 public bool Busted

 {

 get { return isBustedByTheFuzz; }

 set { isBustedByTheFuzz = value; }

 }

}

}

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-322 I ♡ Flyheart-

The next step is to record the public key in the assembly manifest. The easiest way to do
so is to leverage the use of an attribute named AssemblyKeyFile. When you create a new
C# project workspace, you will notice that one of your initial project files is named
"AssemblyInfo.cs" (Figure 6-26).

Figure 6-26: The AssemblyInfo.cs file

This file contains a number of (initially empty) attributes that are consumed by a .NET
aware compiler. If you examine this file, you find one such attribute named
AssemblyKeyFile. To specify the strong name for a shared assembly, simply update the
initial empty value with a string specifying the location of your *.snk file:

[assembly: AssemblyKeyFile(@"D:\SharedAssembly\theKey.snk")]

Using this assembly level attribute, the C# compiler now merges the necessary
information into the corresponding manifest, as can be seen using ILDasm.exe (note the
[.publickey] tag in Figure 6-27).

Figure 6-27: The markings of a shared assembly

SOURCE
CODE

The SharedAssembly project is located under the Chapter 6
subdirectory.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-323 I ♡ Flyheart-

Installing Assemblies into the GAC

Once you have established a strong name for your shared assembly, the final step is to
install it into the GAC. The simplest approach to install a private assembly into the GAC is
to drag and drop the file(s) onto the active window (you are also free to make use of the
gacutil.exe command line utility). SeeFigure 6-28.

Figure 6-28: Installing your assembly into the GAC

Do be aware that you must have Administrative rights on the computer to install
assemblies into the GAC. This is a good thing, in that it prevents the casual user from
accidentally breaking existing applications.

The end result is that your assembly has now been placed into the GAC, and may be
shared by multiple applications on the target machine. On a related note, when you wish
to remove an assembly from the GAC, you may do so with a simple right-click (just select
Delete from the Context menu).

Using a Shared Assembly

Now to prove the point, assume you have created a new C# Console application (called
SharedAssemblyUser), set a reference to the SharedAssembly binary, and created the
following class definition:

namespace SharedLibUser

{

using System;

using SharedAssembly;

public class SharedAsmUser

{

 public static int Main(string[] args)

 {

 try

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-324 I ♡ Flyheart-

 {

 VWMiniVan v = new VWMiniVan();

 v.Play60sTunes();

 }

 catch(TypeLoadException e)

 {

 // Can't find assembly!

 Console.WriteLine(e.Message);

 }

 return 0;

 }

}

}

Recall, that when you reference a shared assembly, IDE automatically creates a local
copy of the assembly for use by the client application. However, when you reference an
assembly that contains a public key (as is the case with the SharedAssembly.dll), you do
not receive a local copy. The assumption is that assemblies containing a public key are
designed to be shared (and are therefore placed in the GAC).

Do be aware that the VS.NET IDE allows you to explicitly control the copying of a given
assembly using the Properties window. For example, if you have set a reference to the
external binary, select this assembly using the Solution Explorer and set Copy Local to
false. This will delete the local copy (Figure 6-29).

Figure 6-29: Manipulating the local copy

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-325 I ♡ Flyheart-

Now run the client application once again. If all is well, everything should still function
correctly, as the .NET runtime consulted the GAC during its quest to resolve the location
of the requested assembly (Figure 6-30).

Figure 6-30: Strange indeed

SOURCE
CODE

The SharedLibUser application can be found under the
Chapter 6 subdirectory. Before you run this application, be
sure to install SharedAssembly.dll into the GAC!

Understanding .NET Version Policies
As you have already learned, the .NET runtime does not bother to perform version checks
for private assemblies. The versioning story changes significantly when a request is made
to load a shared assembly. Given that the version of a shared assembly is of prime
importance, let's review the composition of version numbers. As you recall, a version
number is marked by four discrete parts (for example 2.0.2.11). Logically however,
the .NET runtime is able to extract three meaningful bits of information regarding version
compatibility, as illustrated in Figure 6-31.

Figure 6-31: Anatomy of an assembly version number

Whenever two assemblies differ by either the major or minor version number (e.g., 2.0 vs.
2.5) they are considered to be completely incompatible with each other as far as the .NET
runtime is concerned. When assemblies differ by major or minor numerical markings, you
can assume significant changes have occurred (e.g., method name changes, types have
been added or removed, parameters have changed, and so forth). Therefore, if a client is
requesting a bind to version 2.0 but the GAC only contains version 2.5, the bind request
fails (unless overridden by an application configuration file).

If two assemblies have identical major and minor version numbers, but have different
revision numbers (e.g., 2.5.0.0 vs. 2.5.1.0) the .NET runtime assumes they might be
compatible with each other (in other words, backward compatibility is assumed, but not
guaranteed). By way of a concrete example, a Service Pack release typically involves
modifying the revision number of an assembly.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-326 I ♡ Flyheart-

Finally, you have the Quick Fix Engineering (QFE) number. When two assemblies differ
only by their QFE value, the .NET runtime assumes they are fully compatible. QFEs are
typically modified with the release of a software patch. The idea here is that all calling
conventions (e.g., method names, parameters, supported interfaces, and so forth) are
identical to previous versions.

Recording Version Information
One question you might be asking yourself at this point is where was this version number
specified? Recall that every C# project defines a file named AssemblyInfo.cs. If you
examine this file, you will see an attribute named AssemblyVersion, which is initially set to
a string reading "1.0.*":

[assembly: AssemblyVersion("1.0.*")]

Every new C# projects begins life versioned at 1.0. As you build new versions of a shared
assembly, part of your task is to update the four-part version number for your shared
assembly. Do be aware that the IDE automatically increments the build and revision
numbers (as marked by the '*' tag). If you wish to enforce an application-specific value for
the assembly's build and/or revision, simply update accordingly:

[assembly: AssemblyVersion("1.0.0.0")]

Freezing the Current SharedAssembly

To really understand .NET versioning policies, we need to have a concrete example. The
current goal is to update your previous SharedAssembly.dll to support additional
functionality, update the version number, and then place the new version into the GAC. At
this point, you are able to experiment with the use of application configuration files to
specify various version policies, as well as side-by-side execution.
To begin, let's update the constructor of the VWMiniVan class to display a message
verifying the current version:

public VWMiniVan()

{

 MessageBox.Show("Using version 1.0.0.0!", "Shared Car");

}

Next, update the AssemblyVersion attribute to be fully qualified to version 1.0.0.0 (as
seen in the previous section). Go ahead and recompile the project.
The next thing you need to do is ensure that our original SharedAssembly.dll is removed
from the GAC (go ahead and delete this assembly now). Next, move your existing 1.0.0.0
assembly into a new folder (I called mine Version1) to ensure you freeze this version
(Figure 6-32).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-327 I ♡ Flyheart-

Figure 6-32: Preserving version 1.0.0.0

Now (once again!) place this assembly back into the GAC. Notice that the version of this
assembly is <1.0.0.0> (Figure 6-33).

Figure 6-33: Back in the GAC

Once version 1.0.0.0 of the SharedAssembly has been inserted into the GAC, right-click
this assembly and select Properties from the context-sensitive pop-up menu. Verify that
the path to this binary maps to the Version1 subdirectory. Finally, rebuild and run the
current SharedAssemblyUser application. Things should continue to work just fine.

Building SharedAssembly Version 2.0

To illustrate the .NET version policy, let's modify the current SharedAssembly project.
Update your VWMiniVan class with a new member (which makes use of a custom
enumeration) to allow the user to play some more modern musical selections. Also be
sure to update the message displayed from within the constructor logic.

// Which band do you want?

public enum BandName

{

 TonesOnTail, SkinnyPuppy, deftones, PTP

}

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-328 I ♡ Flyheart-

public class VWMiniVan

{

 public VWMiniVan()

 { MessageBox.Show("Using version 2.0.0.0!", "Shared Car"); }

...

 public void CrankGoodTunes(BandName band)

 {

 switch(band)

 {

 case BandName.deftones:

 MessageBox.Show("So forget about me...");

 break;

 case BandName.PTP:

 MessageBox.Show("Tick tick tock...");

 break;

 case BandName.SkinnyPuppy:

 MessageBox.Show("Water vapor, to air...");

 break;

 case BandName.TonesOnTail:

 MessageBox.Show("Oooooh the rain. Oh the rain.");

 break;

 default:

 break;

 }

 }

}

Before you compile, let's upgrade this version of this assembly to 2.0.0.0:

// Update your assemblyinfo.cs file as so...

[assembly: AssemblyVersion("2.0.0.0")]

If you look in your project's debug folder, you see that you have a new version of this
assembly (2.0) while the previous version is safe in storage under the Version1 directory.
Finally, let's install this new assembly into the GAC. Notice that you now have two
versions of the same assembly (Figure 6-34).

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-329 I ♡ Flyheart-

Figure 6-34: Side-by-side execution

Now that you have a distinctly versioned assembly recorded in the GAC, you can begin to
work with application configuration files to control how a client binds to a given version.
But first, a few words about the default binding policy.

Understanding the Default Version Policy

As mentioned earlier in the chapter, if a client is referencing a shared assembly, the major
and minor versions must be identical if the bind is to succeed. However, the .NET runtime
binds to a given assembly if the assembly reference differs by the revision or build
numbers. This behavior is termed the default version policy and is used to ensure that a
client always gets the latest and greatest service release (i.e., bug fix) of a given
assembly. Thus, if the client's manifest explicitly requests version 1.0.0.0, but the GAC
has a newer version by specifying a QFE (such as 1.0.2.2), the client automatically
receives the most recent fix. In this way, a client application is guaranteed that the
assembly that it is referencing is backward compatible, in addition to being as bug-free as
possible.

Specifying Custom Version Policies

When you wish to dynamically control how an application binds to an assembly (such as
disabling QFEs), you need to author an application configuration file. As you have already
seen during the discussion of private assemblies, configuration files are blocks of XML
that are used to customize the binding process. Recall that these files must have the
same name as the owning application (with a *.config extension) and be placed directly in
the application directory. In addition to the privatePath tag (used to specify where to probe
for private assemblies), a configuration file may specify information for shared
assemblies.

The first point of interest is using an application configuration file to specify a specific
assembly version that is to be loaded, regardless of what may be listed in the
corresponding manifest. When you wish to redirect a client to bind to an alternate shared

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-330 I ♡ Flyheart-

assembly, you make use of the <dependentAssembly> and <bindingRedirect> attributes.
For example, the following configuration file forces version 2.0.0.0:

<configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="sharedassembly"

 publicKeyToken="6c0646f072c6fe39"

 culture=""/>

 <bindingRedirect oldVersion= "1.0.0.0"

 newVersion= "2.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

</configuration>

Here, the oldVersion tag is used to specify the version that you wish to override. The
newVersion tag marks a specific version to load.
To test this out yourself, create the previous configuration file and save it into the directory
of the SharedAssemblyUser application (be sure you name this configuration file
correctly). Now, run the program. You should see the message that appears in Figure
6-35.

Figure 6-35: Activating version 2.0.0.0

If you update the newVersion attribute to 1.0.0.0, you now see the message that appears
in Figure 6-36.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-331 I ♡ Flyheart-

Figure 6-36: Activating version 1.0.0.0

Way cool. What you have just observed is the notion of side-by-side execution mentioned
earlier in the chapter. Because the .NET framework allows you to place multiple versions
of the same assembly into the GAC, you can easily configure custom version policies as
you (or a system administrator) see fit.

As you have seen, the .NET framework does indeed take the version of a shared
assembly seriously. Through the use of application configuration files, you are able to
control a number of details regarding which version of a given assembly should be loaded
by an owning application. As you may expect, there are additional attributes that may be
listed in an application's configuration file. Investigate these details as you wish. However,
there is one final aspect to consider...

The Administrator Configuration File
The configuration files you have been examining in this chapter each have a common
theme. They only apply to a specific application (that is why they had the same name as
the owning application). The .NET framework does allow an additional type of
configuration file called the administrator configuration file. Each .NET-aware machine
has a file named "machine.config" that contains listings used to override any
application-specific configuration files. As you might guess, reading this file is a great way
to learn more *.config centric tags.

Now that you have an intimate understanding of .NET assemblies, let's switch gears
completely and examine the related topics of application domains and multithreaded
assemblies. Although this may seem like a drastic change of content, you will see that
assemblies, application domains, and threads are interrelated.

Review of Traditional Win32 Thread Programming

Depending on your programming background, you may be extremely interested in
building multithreaded binaries, could care less about building multithreaded binaries, or
are a little unsure what multithreading means in the first place. In order to level the playing
field, let's take the time to quickly review the basics of multithreading. Once you have
reviewed multithreading from a traditional Win32 perspective, you will then come to
understand how things have changed under the .NET platform.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-332 I ♡ Flyheart-

To begin, recall that under traditional Win32, each application is hosted by a process.
Understand that process is a generic term used to describe the set of external resources
(such as a COM server) as well as the necessary memory allocations used by a given
application. For each EXE loaded into memory, the operating system creates a separate
and isolated memory partition (i.e., process) for use during its lifetime.

Every running process has at least one main "thread" that serves as the entry point for the
application. Formally speaking, the first thread created in a given process is termed the
primary thread. Simply put, a thread is a specific path of execution within the Win32
process. A traditional Windows applications defines the WinMain() method to function as
the application's entry point. On the other hand, Console application provides the main()
method for the same purpose.

Applications that contain only a single thread of execution are automatically "thread-safe"
given the fact that there is only one thread that can access the data in the application at a
given time. On the downside, a single-threaded application can appear a bit unresponsive
to the end user if this single thread is performing a complex operation (such as printing
out a lengthy text file, performing an exotic calculation, or connecting to a remote server).

Under Win32, it is possible for the primary thread to spawn additional secondary threads
in the background, using a handful of Win32 API functions such as CreateThread(). Each
thread (primary or secondary) becomes a unique path of execution in the process and
has concurrent access to all data in that process. As you may have guessed, developers
typically create additional threads to help improve the program's overall responsiveness.

Multithreaded applications provide the illusion that numerous activities are happening at
more or less the same time. For example, you could spawn a background worker thread
to perform a labor-intensive unit of work (again, such as printing a large text file). As this
secondary thread is churning away, the main thread is still responsive to user input, which
gives the entire process the potential of delivering greater performance. However, this is
only a possibility. Too many threads in a single process can actually degrade
performance, as the CPU must switch between the active threads in the process (which
takes time).

In reality, multithreading is often a simple illusion provided by the operating system.
Machines that host a single CPU do not have the ability to literally handle multiple threads
at the same exact time. Rather, a single CPU will execute one thread for a unit of time
(called a time-slice) based on the thread's priority level. When a thread's time-slice is up,
the existing thread is suspended to allow the other thread to perform its business. In order
for a thread to remember what was happening before it was kicked out of the way, each
thread is given the ability to write to Thread Local Storage (TLS) and is provided a
separate call stack, as illustrated in Figure 6-37.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-333 I ♡ Flyheart-

Figure 6-37: A traditional Win32 process

Problem of Concurrency and Thread Synchronization

Beyond taking time, the process of switching between threads can cause additional
problems. For example, assume a given thread is accessing a shared point of data, and
in the process begins to modify it. Now assume that the first thread is told to wait, to allow
another thread to access the same point of data. If the first thread was not finished with its
task, the second thread may be modifying data that is in an unstable state.

To protect the application's data from possible corruption, the Win32 developer must
make use of any number of Win32 threading primitives such as critical sections, mutexes
or semaphores to synchronize access to shared data. Given this, multithreaded
applications are much more volatile, as numerous threads can operate on the
application's data at the same time. Unless the developer has accounted for this
possibility using threading primitives (such as a critical section) the program may end up
with a good amount of data corruption.

Although the .NET platform cannot make the difficulties of building robust multithreaded
applications completely disappear, the process has been simplified considerably. Using
types defined within the System.Threading namespace, you are able to spawn additional
threads with minimal fuss and bother. Likewise, when it comes time to lock down shared
points of data, you will find additional types that provide the same functionality as the
Win32 threading primitives.

Understanding System.AppDomain
Before we examine the full details of the System.Threading namespace, we need to
examine the concept of application domains. As you know, .NET applications are created
by piecing together any number of related assemblies. However, unlike a traditional
(non-.NET) Win32 EXE application, .NET applications are hosted by an entity termed an
"application domain" (aka AppDomain). Be very aware that the term AppDomain is not a
synonym for a Win32 process.

In reality, a single process can host any number of AppDomains, each of which is fully
and completely isolated from other AppDomains within this process (or any other

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-334 I ♡ Flyheart-

process). Applications that run in different AppDomains are unable to share any
information of any kind (global variables or static fields) unless they make use of the .NET
remoting protocol. The big picture is shown in Figure 6-38.

Figure 6-38: A process can contain one or more AppDomains. Each AppDomain can contain
one or more threads

Notice the stark difference from a traditional Win32 process. Under .NET, a single
process may contain multiple AppDomains. Each AppDomain may contain multiple
threads. In some respects, this layout is reminiscent of the "apartment" architecture of
classic COM. Of course, .NET AppDomains are managed types whereas the COM
apartment architecture is built on an unmanaged (and much more complex) architecture.
AppDomains are programmatically represented by the System.AppDomain type. Some
core members to be aware of are shown in Table 6-2.

Table 6-2: Select Members of AppDomain

APPDOMAIN
MEMBER

MEANING IN LIFE

CreateDomain() This static method creates a new AppDomain in
the current process.

GetCurrentThreadId() This static method returns the ID of the current
thread.

Unload() Another static method that unloads the specified
AppDomain.

BaseDirectory This property returns the base directory that the
assembly resolver used to probe for assemblies.

CreateInstance() Creates an instance of a specified type defined in
a specified assembly file.

ExecuteAssembly() Executes the assembly given its file name.

GetAssemblies() Gets the assemblies that have been loaded into
this application domain.

Load() Loads an assembly into this application domain.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-335 I ♡ Flyheart-

Fun with AppDomains

As you can see, the members of AppDomain provide numerous process-like behaviors,
with a .NET flair. To illustrate some of this flair, consider the following namespace
definition:

namespace MyAppDomain

{

 using System;

 using System.Windows.Forms;

 // Need this namespace to work with the Assembly type.

 using System.Reflection;

 public class MyAppDomain

 {

 public static void PrintAllAssemblies()

 {

 // Ask the current AppDomain for a list of all

 // loaded assemblies.

 AppDomain ad = AppDomain.CurrentDomain;

 Assembly[] loadedAssemblies = ad.GetAssemblies();

 Console.WriteLine("Here are the assemblies loaded in " +

 "this appdomain\n");

 // Now print the fully qualified name of each one.

 foreach(Assembly a in loadedAssemblies)

 {

 Console.WriteLine(a.FullName);

 }

 }

 public static int Main(string[] args)

 {

 // Force the loading of the Windows Forms assembly.

 MessageBox.Show("Loaded System.Windows.Forms.dll");

 PrintAllAssemblies();

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-336 I ♡ Flyheart-

 return 0;

 }

 }

}
First of all, notice that you are making use of a new namespace, System.Reflection. Full
details of this namespace are seen in Chapter 7. For the time being, just understand that
this namespace defines the Assembly type, which we need access to given the role of the
PrintAllAssemblies() method.

This static member obtains a reference to the hosting AppDomain, and enumerates over
the list of loaded assemblies. To make it more interesting, notice that the Main() method
launches a message box in order to force the assembly resolver to load the
System.Windows.Forms.dll assembly (which in turn loads other referenced assemblies).

Figure 6-39 shows the output.

Figure 6-39: Investigating loaded assemblies

SOURCE
CODE

The MyAppDomain application is included under the Chapter 6
subdirectory.

System.Threading Namespace
The System.Threading namespace provides a number of types that enable multithreaded
programming. In addition to providing types that represent a specific thread, this
namespace also defines types that can manage a collection of threads (ThreadPool), a
simple (non-GUI based) Timer class and numerous types to provide synchronized access
to shared data. Table 6-3 lists some (but not all) of the core items.

Table 6-3: Select Types of the System.Treading Namespace

SYSTEM.THREADING
TYPE

MEANING IN LIFE

Interlocked The Interlocked class is used to provide
synchronized access to shared data.

Monitor Provides the synchronization of threading
objects using locks and wait/signals.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-337 I ♡ Flyheart-

Table 6-3: Select Types of the System.Treading Namespace

SYSTEM.THREADING
TYPE

MEANING IN LIFE

Mutex Synchronization primitive that can be used for
inter process synchronization.

Thread Represents a thread that executes within the
CLR. Using this type, you are able to spawn
additional threads in the owning AppDomain.

ThreadPool This type manages related threads in a given
process.

Timer Specifies a delegate to be called at a specified
time.

The wait operation is performed by a thread in
the thread pool.

WaitHandle Represents all synchronization objects (that
allow multiple wait) in the runtime.

ThreadStart The ThreadStart class is a delegate that points to
the method that should be executed first when a
thread is started.

TimerCallback Delegate for the Timers.

WaitCallback This class is a Delegate that defines the callback
method for ThreadPool user work items.

Examining the Thread Class

The most primitive of all types in the System.Threading namespace is Thread. This class
represents an object-oriented wrapper around a given path of execution within a
particular AppDomain. This type defines a number of methods (both static and shared)
that allow you to create new threads from a current thread, as well as suspend, stop, and
destroy a given thread. First, consider the list of core static members given in Table 6-4.

Table 6-4: Static Members of the Thread Type

THREAD STATIC
MEMBER

MEANING IN LIFE

CurrentThread This (read-only) property returns a reference to
the currently running thread.

GetData()

SetData()

Retrieves the value from the specified slot on
the current thread, for that thread's current

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-338 I ♡ Flyheart-

Table 6-4: Static Members of the Thread Type

THREAD STATIC
MEMBER

MEANING IN LIFE

domain.

GetDomain()

GetDomainID()

Returns a reference to the current AppDomain
(or the ID of this domain) in which the current
thread is running.

Sleep() Suspends the current thread for a specified
time.

Thread also supports the object level members shown in Table 6-5.

Table 6-5: Object Methods of the Thread Type

THREAD INSTANCE
LEVEL MEMBER MEANING IN LIFE

IsAlive This property returns a boolean that indicates if
this thread has been started.

IsBackground Gets or sets a value indicating whether or not this
thread is a background thread.

Name This property allows you to establish a friendly
textual name of the thread.

Priority Gets or Sets the priority of a thread, which may be
assigned a value from the ThreadPriority
enumeration.

ThreadState Gets the state of this thread, which may be
assigned a value from the ThreadState
enumeration.

Interrupt() Interrupts the current thread.

Join() Instructs the thread to wait for a given thread.

Resume() Resumes a thread that has been suspended.

Start() Begins execution of the thread that is specified by
the ThreadStart delegate.

Suspend() Suspends the thread. If the thread is already
suspended, a call to Suspend() has no effect.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-339 I ♡ Flyheart-

Spawning Secondary Threads

When you wish to create additional threads to carry on some unit of work, you need to
interact with the Thread class as well as a special threading-related delegate named
ThreadStart. The general process is quite simple. To begin, you need to create a function
to perform the background work. To keep things well focused, let's build a simple helper
class that simply prints out a series of numbers by way of the DoSomeWork() member
function:

internal class WorkerClass

{

 public void DoSomeWork()

 {

 // Get some information about this worker thread.

 Console.WriteLine("ID of worker thread is: {0}",

 Thread.CurrentThread.GetHashCode());

 // Do the work.

 Console.Write("Worker says: ");

 for(int i = 0; i < 10; i++)

 {

 Console.Write(i + ", ");

 }

 Console.WriteLine();

 }

}

Now assume you have another class (MainClass) that creates a new instance of
WorkerClass. In order for the MainClass to continue processing its workflow, it creates
and starts a new Thread that is used by the worker. In the code below, notice the Thread
type requests a new ThreadStart delegate type:

public class MainClass

{

 public static int Main(string[] args)

 {

 // Get some information about the current thread.

 Console.WriteLine("ID of primary thread is: {0}",

 Thread.CurrentThread.GetHashCode());

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-340 I ♡ Flyheart-

 // Make worker class.

 WorkerClass w = new WorkerClass();

 // Now make (and start) the background thread.

 Thread backgroundThread =

 new Thread(new ThreadStart(w.DoSomeWork));

 backgroundThread.Start();

 return 0;

 }

}
If you run the application (Figure 6-40) you would find each thread has a unique ID (which
is a good thing, as you should have two separate threads at this point).

Figure 6-40: Thread hash codes

Naming Threads

One interesting aspect of the Thread class is that it provides the ability to assign a friendly
string name to the underlying path of execution. To do so, make use of the Name property.
For example, you could update the MainClass as follows:

public class MainClass

{

 public static int Main(string[] args)

 {

 // Name the current thread.

 Thread primaryThread = Thread.CurrentThread;

 primaryThread.Name = "Boss man";

 Console.WriteLine("ID of {0} is {1}", primaryThread.Name,

 primaryThread.GetHashCode());

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-341 I ♡ Flyheart-

 // same code as before...

 }

}
The output is now as shown in Figure 6-41.

Figure 6-41: Named threads

As you may be thinking, this property provides a more user-friendly way to identify the
threads in your system.

Clogging Up the Primary Thread

The current application creates a secondary thread to perform a unit of work. The
problem is the fact that printing 10 numbers takes no time at all, and therefore we are not
really able to appreciate the fact that the primary thread is free to continue processing.
Let's update the application in order to illustrate this very fact. First, let's update the
WorkerClass to print out 30,000 numbers (using WriteLine() rather than Write() so you
can see the print out) rather than a mere 10:

internal class WorkerClass

{

 public void DoSomeWork()

 {

 ...

 // Do a lot of work.

 Console.Write("Worker says: ");

 for(int i = 0; i < 30000; i++)

 {

 Console.WriteLine(i + ", ");

 }

 Console.WriteLine();

 }

}

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-342 I ♡ Flyheart-

Next, let's update the MainClass such that it launches a message box directly after it
creates the background worker thread:

public class MainClass

{

 public static int Main(string[] args)

 {

 // Name the current thread.

 ...

 // Make worker class.

 ...

 // Now make the thread.

 ...

 // Now while background thread is working,

 // do some additional work.

 MessageBox.Show("I'm busy");

 return 0;

 }

}
If you were to now run the application, you would see that the message box is displayed
and can be moved around the desktop, while the background worker thread is busy
pumping numbers to the console (Figure 6-42).

Figure 6-42: Two active threads

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-343 I ♡ Flyheart-

Now, contrast this behavior with what you might find if you had a single-threaded
application. Assume the Main() method has been updated with logic that allows the user
to enter the number of threads used within the AppDomain:

public static int Main(string[] args)

{

 Console.Write("Do you want [1] or [2] threads? ");

 string threadCount = Console.ReadLine();

 // Name the current thread.

 ...

 // Make worker class.

 WorkerClass w = new WorkerClass();

 // Only make a new thread if the user said so.

 if(threadCount = = "2")

 {

 // Now make the thread.

 Thread backgroundThread =

 new Thread(new ThreadStart(w.DoSomeWork));

 backgroundThread.Start();

 }

 else

 w.DoSomeWork();

 // Do some additional work.

 MessageBox.Show("I'm busy");

 return 0;

}

As you can guess, if the user enters the value "1" he or she must wait for all 30,000
numbers to be printed before seeing the message box appear, given that there is only a
single thread in the AppDomain. However, if the user enters "2" he or she is able to
interact with the message box while the secondary thread spins right along.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-344 I ♡ Flyheart-

Putting a Thread to Sleep

The static Thread.Sleep() method can be used to currently suspend the current thread for
a specified amount of time (specified in milliseconds). To illustrate, let's update the
WorkerClass once again. This time around, the DoSomeWork() method does not print out
30,000 lines to the console, but 5 lines. The trick is, between each call to
Console.WriteLine(), this background is put to sleep for approximately 5 seconds.

internal class WorkerClass

{

 public void DoSomeWork()

 {

 // Get some information about the worker thread.

 Console.WriteLine("ID of worker thread is: {0}",

 Thread.CurrentThread.GetHashCode());

 // Do the work (and take a nap).

 Console.Write("Worker says: ");

 for(int i = 0; i < 5; i++)

 {

 Console.WriteLine(i + ", ");

 Thread.Sleep(5000);

 }

 Console.WriteLine();

 }

}
The output is shown in Figure 6-43.

Figure 6-43: Two active threads (one sleeping on the job)

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-345 I ♡ Flyheart-

SOURCE
CODE

The SimpleMultiThreadApp project is included under the
Chapter 6 subdirectory.

Concurrency Revisited

Given this previous example, you might be thinking that threads are the magic bullet you
have been looking for. Simply create threads for each part of your application and the end
result will be increased application performance. You already know this is a loaded
question, as the previous statement is false. If not used carefully and thoughtfully, too
many threads can actually degrade an application's performance.

Even more important is the fact that each and every thread in a given AppDomain has
direct access to the shared data of the application. In the current example, this is not a
problem. However, imagine what might happen if the primary and secondary threads
were both modifying a shared point of data. As you know, the thread scheduler will force
threads to suspend their work at random. Since this is the case, what if thread A is kicked
out of the way before it has fully completed its work? The answer is thread B is now
reading unstable data.

To illustrate, let's build a new multithreaded C# Console Application named
MultiThreadSharedData. This application also has a class named WorkerClass, which is
functionally similar to the previous type of the same name:

internal class WorkerClass

{

 public void DoSomeWork()

 {

 // Do the work.

 for(int i = 0; i < 5; i++)

 {

 Console.WriteLine("Worker says: {0},", i);

 }

 }

}

You also have a type named MainClass. In this application, MainClass is responsible for
creating three distinct secondary threads. The problem is that each of these threads is
making calls to the shared instance of the WorkerClass type:

public class MainClass

{

 public static int Main(string[] args)

 {

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-346 I ♡ Flyheart-

 // Make the single worker object.

 WorkerClass w = new WorkerClass();

 // Create three secondary threads,

 // each of which makes calls to the same shared object.

 Thread workerThreadA =

 new Thread(new ThreadStart(w.DoSomeWork));

 Thread workerThreadB =

 new Thread(new ThreadStart(w.DoSomeWork));

 Thread workerThreadC =

 new Thread(new ThreadStart(w.DoSomeWork));

 // Now start each one.

 workerThreadA.Start();

 workerThreadB.Start();

 workerThreadC.Start();

 return 0;

 }

}

Now before you see some test runs, let's recap the problem. The primary thread of this
AppDomain begins life by spawning three secondary worker threads. Each worker thread
is told to make calls on the shared WorkerClass object instance. Given that we have
taken no precautions to lock down this shared resource, the chances are very good that a
given thread will be kicked out of the way before the WorkerClass is able to print out the
results for the current thread. Because you don't know when this might happen, you are
bound to get a number of strange results. For example, check out Figure 6-44.

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-347 I ♡ Flyheart-

Figure 6-44: Bad output...dueling threads
Figure 6-45 shows another run.

Figure 6-45: More bad output...dueling threads
And one more, just for good measure, appears in Figure 6-46.

Figure 6-46: Even more bad output...dueling threads

Humm. There are clearly some problems. Given that each thread is telling the
WorkerClass to "do some work" in a random way, the output is mangled (to say the least).
What we need is a way to programmatically enforce synchronized access to the shared
type. Like the Win32 API, the .NET base class libraries provide a number of
synchronization techniques. Let's examine one possible approach.

C# "lock" Keyword

The first approach to providing synchronized access to our DoSomeWork() method is to
make use of the C# lock statement. This intrinsic keyword allows you to lock down a block
of code so that incoming threads must wait in line for the current thread to finish up its
work. Using the lock statement is trivial:

internal class WorkerClass

{

 public void DoSomeWork()

 {

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-348 I ♡ Flyheart-

 // Only 1 thread at a time can tell the worker to get busy!

 lock(this)

 {

 // Do the work.

 for(int i = 0; i < 5; i++)

 {

 Console.WriteLine("Worker says: {0},", i);

 }

 }

 }

}
If you rerun the application, you can see that the threads are instructed to politely wait in
line for the current thread to finish its business Figure 6-47.

Figure 6-47: Harmonious threads

As you might guess, working with the C# lock statement is semantically equivalent to
working with a raw Win32 CRITICAL_SECTION and related API function calls.

SOURCE
CODE

The MultiThreadSharedData application is included under the
Chapter 6 subdirectory.

Using System.Threading.Monitor

The C# lock statement is really just a shorthand notation for working with the
System.Threading.Monitor class type. Thus, if you were able to see what lock() actually
resolves to under the hood, you would find the following:

internal class WorkerClass

{

 public void DoSomeWork()

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-349 I ♡ Flyheart-

 {

 // Define the item to monitor for synchronization.

 Monitor.Enter(this);

 try

 {

 // Do the work.

 for(int i = 0; i < 5; i++)

 {

 Console.WriteLine("Worker says: {0},", i);

 }

 }

 finally

 {

 // Error or not, you must exit the monitor.

 Monitor.Exit(this);

 }

 }

}

If you run the modified application, you would see no changes in the output (which is
good). Here, we are making use of the static Enter() and Exit() members of the Monitor
type, to enter (and leave) a locked block of code.

Using System.Threading.Interlocked

On a related note, the System.Threading namespace also provides a type that allows you
to increment or decrement a variable by 1 in a thread-safe manner. To illustrate, assume
that you have a class type (named IHaveNoIdea) which maintains an internal reference
counter. One method of the class is responsible for incrementing this number by 1, while
the other is responsible for decrementing this number by 1 (look familiar?):

public class IHaveNoIdea

{

 private long refCount = 0;

 public void AddRef()

 { ++refCount; }

 public void Release()

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-350 I ♡ Flyheart-

 {

 if(-refCount = = 0)

 {

 GC.Collect();

 }

 }

}

If we have numerous threads of execution in the current AppDomain that are all making
calls to AddRef() and Release(), the possibility exists that the internal refCount member
variable could in fact have a value less that zero before the collection request can be
posted to the garbage collector. Imagine threadA calls Release(), and is bumped out of
the way by the thread scheduler just after the point at which it decremented the refCount.
The next thread calling Release() would decrement the count again, at which point
refCount is at currently at −1!

To prevent this behavior, you can make use of System.Threading.Interlocked, which
atomically increments or decrements a given variable. Notice that a reference to the
variable that is being modified is sent in, and thus you need to make use of the C# "ref"
keyword:

public class IHaveNoIdea

{

 private long refCount = 0;

 public void AddRef()

 {

 Interlocked.Increment(ref refCount);

 }

 public void Release()

 {

 if(Interlocked.Decrement(ref refCount) = = 0)

 {

 GC.Collect();

 }

 }

}

C# and the .NET Platform Chapter 6: Assembiles, Threads, and AppDomains

-351 I ♡ Flyheart-

At this point you have just enough information to become dangerous in the world of
multithreaded assemblies. While this chapter does not dig into each and every aspect of
the System.Threading namespace, you should be equipped to investigate additional
details as you see fit.

Summary

This chapter drilled into the details behind the innocent looking .NET DLLs and EXEs
located on your development machine. You began the journey by examining the core
concepts of the assembly: metadata, manifests, and MSIL. Next, you contrasted shared
and private assemblies, and investigated the steps taken by the assembly resolver to
locate a given binary using application configuration files.

Assemblies are the building blocks of a .NET application. In essence, assemblies can be
understood as binary units that contain some number of types that can be used by
another application. As you have seen, assemblies may be private or shared. In stark
contrast to classic COM, private assemblies are the default. When you wish to configure a
shared assembly, you are making an explicit choice, and need to generate a
corresponding strong name.

As you have also learned, the .NET framework defines the concept of an AppDomain. In
many ways, AppDomains can be viewed as a lightweight process. Within a single
AppDomain can exist any number of threads. Using the types defined within the
System.Threading namespace, you are able to build thread-safe types that (as you have
seen) can provide the end user with a more responsive application.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-352 I ♡ Flyheart-

Chapter 7: Type Reflection and

Attribute-Based Programming

Overview
As detailed in the previous chapter, assemblies are the basic unit of deployment in
the .NET universe. Tools such as Visual Studio.NET have integrated Object Browsers
that allow you to examine the internal types of referenced assemblies. Furthermore,
external tools such as ILDasm.exe allow us to peek into the underlying IL code, type
metadata, and assembly manifest. In addition to the designtime investigation of .NET
assemblies, you are also able to programmatically obtain this same information using the
types defined within the System.Reflection namespace.

Once you understand how to manipulate this namespace to examine an assembly at
runtime, the remainder of the chapter examines a number of closely related topics. For
example, you will explore the types defined within the System.Reflection.Emit namespace,
and learn the basics of building a dynamic assembly on the fly. Furthermore, this chapter
illustrates how a .NET client may employ "late binding" to a given type. As you will see
later in this book, late binding is an important aspect of .NET/COM interoperability.

The chapter wraps up with an investigation of how to insert custom metadata into
your .NET assemblies through the use of system supplied and custom attributes. If you
have a background in classic COM, you will be happy to discover that the spirit of IDL
attributes has been included (and extended) in the .NET architecture.

Understanding Reflection
In the .NET universe, reflection is the process of runtime type discovery. Using reflection
services, you are able to load an assembly at runtime and discover the same sort of
information as ILDasm.exe. For example, you can obtain a list of all types contained
within a given module, including the methods, fields, properties, and events defined by a
given type. You can also dynamically discover the set of interfaces supported by a given
class (or structure), the parameters of a method as well as other related details (base
class, namespace information, and so forth).

In order to understand reflection services, you need to come to terms with the Type class
(defined in the System namespace) as well as a new namespace, System.Reflection. As
you will see, the System.Type class contains a number of methods that allow you to
extract valuable information about the current type you happen to be observing. The
System.Reflection namespace contains numerous related types to facilitate late binding
and dynamic loading of assemblies. To begin, let's investigate System.Type in some
detail.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-353 I ♡ Flyheart-

The Type Class
Many of the items defined within the System.Reflection namespace make use of the
abstract System.Type class. This class provides a number of methods that can be used
to discover the details behind a given item. The complete set of members is quite
expansive, however Table 7-1 offers a partial snapshot of the members supported by
Type.

Table 7-1: Members of the Type Class

TYPE MEMBER MEANING IN LIFE

IsAbstract

IsArray

IsClass

IsCOMObject

IsEnum

IsInterface

IsPrimitive

IsNestedPublic

IsNestedPrivate

IsSealed

IsValueType

These properties (among others) allow you to
discover a number of basic traits about the Type
you are referring to (e.g., if it is an abstract
method, an array, a nested class, and so forth).

GetConstructors()

GetEvents()

GetFields()

GetInterfaces()

GetMethods()

GetMembers()

GetNestedTypes()

GetProperties()

These methods (among others) allow you to obtain
an array representing the items (interface, method,
property, etc.) you are interested in. Each method
returns a related array (e.g., GetFields() returns a
FieldInfo array, GetMethods() returns a
MethodInfo array, etc.). Be aware that each of
these methods has a singular form (e.g.,
GetMethod(), GetProperty()) that allows you to
retrieve a specific item by name, rather than an
array of all related items.

FindMembers() Returns an array of MemberInfo types, based on
search criteria.

GetType() This method returns a Type instance given a string
name.

InvokeMember() This method allows late binding to a given item.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-354 I ♡ Flyheart-

Obtaining a Type Object

There are numerous ways in which you can obtain an instance of the Type class.
However, the one thing you cannot do is directly create a Type object using the "new"
keyword, as Type is an abstract class. First, as you recall, System.Object defines a
method named GetType() that returns an instance of the Type class:

// Extract Type using a valid Foo instance.

Foo theFoo = new Foo();

Type t = theFoo.GetType();

In addition to the previous technique, you may also obtain a Type using (of all things) the
Type class itself. To do so, call the static GetType() member and specify the textual name
of the item you are interested in examining:

// Get a Type using the static Type.GetType() method.

Type t = null;

t = Type.GetType("Foo");

Finally, you can also obtain an instance of Type using the typeof() keyword:

// Get the Type using typeof.

Type t = typeof(Foo);

Notice that Type.GetType() and typeof() are helpful in that you do not need to first create
an object instance in order to extract type information. Now that you have a Type
reference, let's examine how we can exercise it.

Fun with the Type Class

To illustrate the usefulness of System.Type, assume you have a class named Foo that
has been defined as follows (the implementation of the various methods are irrelevant for
this example):

// These are the items we will discover at runtime.

namespace TheType

{

// Two interfaces.

public interface IFaceOne

{ void MethodA(); }

public interface IFaceTwo

{ void MethodB(); }

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-355 I ♡ Flyheart-

// Foo supports these 2 interfaces.

public class Foo: IFaceOne, IFaceTwo

{

 // Fields.

 public int myIntField;

 public string myStringField;

 // A method.

 public void myMethod(int p1, string p2){...}

 // A property.

 public int MyProp

 {

 get { return myIntField; }

 set { myIntField = value; }

 }

 // IFaceOne and IFaceTwo methods.

 public void MethodA() {...}

 public void MethodB() {...}

}

}

Now, let's create a program that is able to discover the methods, properties, supported
interfaces, and fields for a given Foo object (in addition to some other points of interest).
The FooReader class defines a number of static methods that look more or less identical.
First you have ListMethods(), which extracts each method from Foo using a Type object.
Notice how Type.GetMethods() returns an array of MethodInfo types:

// Suck out all method names from Foo.

public static void ListMethods(Foo f)

{

 Console.WriteLine("***** Methods of Foo *****");

 Type t = f.GetType();

 MethodInfo[] mi = t.GetMethods();

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-356 I ♡ Flyheart-

 foreach(MethodInfo m in mi)

 Console.WriteLine("Method: {0}", m.Name);

 Console.WriteLine("*************************\n");

}

The implementation of ListFields() is similar. The only notable difference is the call to
Type.GetFields() and the resulting FieldInfo array:

// Suck out all fields from Foo.

public static void ListFields(Foo f)

{

 Console.WriteLine("***** Fields of Foo *****");

 Type t = f.GetType();

 FieldInfo[] fi = t.GetFields();

 foreach(FieldInfo field in fi)

 Console.WriteLine("Field: {0}", field.Name);

 Console.WriteLine("*************************\n");

}

The ListVariousStats(), ListProps(), and ListInterfaces() methods should be
self-explanatory at this point:

// Suck out some interesting statistics about Foo.

public static void ListVariousStats(Foo f)

{

 Console.WriteLine("***** Various stats about Foo *****");

 Type t = f.GetType();

 Console.WriteLine("Full name is: {0}", t.FullName);

 Console.WriteLine("Base is: {0}", t.BaseType);

 Console.WriteLine("Is it abstract? {0}", t.IsAbstract);

 Console.WriteLine("Is it a COM object? {0}", t.IsCOMObject);

 Console.WriteLine("Is it sealed? {0}", t.IsSealed);

 Console.WriteLine("Is it a class? {0}", t.IsClass);

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-357 I ♡ Flyheart-

 Console.WriteLine("***********************************\n");

}

// Gather all properties.

public static void ListProps(Foo f)

{

 Console.WriteLine("***** Properties of Foo *****");

 Type t = f.GetType();

 PropertyInfo[] pi = t.GetProperties();

 foreach(PropertyInfo prop in pi)

 Console.WriteLine("Prop: {0}", prop.Name);

 Console.WriteLine("*****************************\n");

}

// Dump all interfaces supported by Foo.

public static void ListInterfaces(Foo f)

{

 Console.WriteLine("***** Interfaces of Foo *****");

 Type t = f.GetType();

 Type[] ifaces = t.GetInterfaces();

 foreach(Type i in ifaces)

 Console.WriteLine("Interface: {0}", i.Name);

 Console.WriteLine("*****************************\n");

}

The Main() method of FooReader() simply calls each static method:

// Put Foo under the magnifying glass.

namespace TheType

{

using System;

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-358 I ♡ Flyheart-

// Needed to gain definitions of MethodInfo, FieldInfo, etc.

using System.Reflection;

public class FooReader

{

 // ...Static methods seen previously...

 public static int Main(string[] args)

 {

 // Make a new Foo object.

 Foo theFoo = new Foo();

 // Now examine everything.

 ListVariousStats(theFoo);

 ListMethods(theFoo);

 ListFields(theFoo);

 ListProps(theFoo);

 ListInterfaces(theFoo);

 return 0;

 }

}

}
Figure 7-1 shows a test run.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-359 I ♡ Flyheart-

Figure 7-1: Reflecting on Foo

Interesting stuff, huh? Here, I made use of Object.GetType() to gather information about a
class (Foo) defined in our current namespace. While the Type class can be very helpful
on its own, reflection becomes even more powerful when you make use of the Assembly
class defined within the System.Reflection namespace.

SOURCE
CODE

The TheType project can be found under the Chapter 7
subdirectory.

Investigating the System.Reflection Namespace
Like any namespace, System.Reflection contains a number of related types. Like any
namespace, some types are of more immediate interest than others. Table 7-2 lists some
of the core items you should be familiar with, many of which you have already seen in the
previous Foo example.

Table 7-2: Select Members of System.Reflection

SYSTEM.REFLECTION
TYPE

MEANING IN LIFE

Assembly This class (in addition to numerous related types)
contains a number of methods that allow you to
load, investigate, and manipulate an assembly.

AssemblyName This class allows you to discover numerous
details behind an assembly's identity (version
information, culture information, and so forth).

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-360 I ♡ Flyheart-

Table 7-2: Select Members of System.Reflection

SYSTEM.REFLECTION
TYPE

MEANING IN LIFE

EventInfo Holds information for a given event.

FieldInfo Holds information for a given field.

MemberInfo This is the abstract base class that defines
common behaviors for the EventInfo, FieldInfo,
MethodInfo, and PropertyInfo types.

MethodInfo Contains information for a given method.

Module Allows you to access a given module within a
multifile assembly.

ParameterInfo Holds information for a given parameter.

PropertyInfo Holds information for a given property.

Loading an Assembly

The real workhorse of System.Reflection is the Assembly class. Using this type, you are
able to dynamically load an assembly, invoke class members at runtime (late binding), as
well as discover numerous properties about the assembly itself.
The first step to investigate the contents of a .NET binary is to load the assembly in
memory. Assume you have a new console project named CarReflector, which has set a
reference to the CarLibrary assembly created in Chapter 6. The static Assembly.Load()
method can now be called by passing in the friendly string name:

// Investigate the CarLibrary assembly.

namespace CarReflector

{

using System;

using System.Reflection;

using System.IO // Needed for FileNotFoundException definition.

public class CarReflector

{

 public static int Main(string[] args)

 {

 // Use Assembly class to load the CarLibrary.

 Assembly a = null;

 try

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-361 I ♡ Flyheart-

 {

 a = Assembly.Load("CarLibrary");

 }

 catch(FileNotFoundException e)

 {Console.WriteLine(e.Message);}

 return 0;

 }

}

}

Notice that the static Assembly.Load() method has been passed in the friendly name of
the assembly we are interested in loading into memory. As you may suspect, this method
has been overloaded a number of times, in order to provide a number of ways in which
you can bind to an assembly. One variation to be aware of is that the textual information
sent into Assembly.Load() may contain additional string segments beyond the friendly
name. Specifically, you may choose to specify a version number, public key value, locale,
and strong name.

Collectively speaking, the set of items identifying an assembly is termed the "display
name." The format of a display name is a comma-delimited string that begins with the
friendly name, followed by optional qualifiers (that may appear in any order). Here is the
template to follow (optional items have been placed in parentheses):

Name (,Loc = CultureInfo) (,Ver = Major.Minor.Revision.Build) (,SN = StrongName)

When supplying a display name, the convention SN=null, indicates that binding and
matching against a simply named assembly is required. Additionally, the convention Loc=
"" (double quote representing empty string) indicates matching against the default culture.
To illustrate:

// A fully specified AssemblyName for simply named assembly with default locale:

a = Assembly.Load(@"CarLibrary, Ver=1.0.454.30104, SN=null, Loc=""");

Also be aware that the System.Reflection namespace supplies the AssemblyName type,
which allows you to represent the above string information in a handy object instance.
Typically, this class is used in conjunction with System.Version, which is an OO wrapper
round the assembly's version. Once you have established the display name, it can then
be passed into the overloaded Assembly.Load() method:

// Our OO-Aware display name.

AssemblyName asmName;

asmName = new AssemblyName();

asmName.Name = "CarLibrary";

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-362 I ♡ Flyheart-

Version v = new Version("1.0.454.30104");

asmName.Version = v;

a = Assembly.Load(asmName);

Enumerating Types in a Referenced Assembly

Now that you have a reference to the CarLibrary assembly, you can discover the name of
each type it contains using Assembly.GetTypes(). Here is a helper method named
ListAllTypes() that does this very thing:

public class CarReflector

{

 public static int Main(string[] args)

 {

 Assembly a = null;

 try

 {

 a = Assembly.Load("CarLibrary");

 }

 catch(FileNotFoundException e)

 {Console.WriteLine(e.Message);}

 ListAllTypes(a);

 return 0;

 }

 // List all members of the within the assembly.

 private static void ListAllTypes(Assembly a)

 {

 Console.WriteLine("Listing all types in {0}", a.FullName);

 Type[] types = a.GetTypes();

 foreach(Type t in types)

 Console.WriteLine("Type: {0}", t);

 }

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-363 I ♡ Flyheart-

}

Enumerating Class Members

Let's now assume you are interested in discovering the full set of members supported by
one of our automobiles. To do so, you can make use of the GetMembers() method
defined by the Type class. As you recall, the Type class also defined a number of related
methods (GetInterfaces(), GetProperties(), GetMethods(), and so forth) that allow you to
specify a specific kind of member. GetMembers() returns an array of MemberInfo types.
Here is an example that lists the type and signature of each method defined by the
MiniVan (output in Figure 7-2):

Figure 7-2: The MiniVan type under the microscope

// Another static method of the CarReflector class.

private static void ListAllMembers(Assembly a)

{

 Type miniVan = a.GetType("CarLibrary.MiniVan");

 MemberInfo[] mi = miniVan.GetMembers();

 foreach(MemberInfo m in mi)

 Console.WriteLine("Type {0}: {1} ", m.MemberType.ToString(), m);

}

Enumerating Method Parameters

Not only can you use reflection to gather information for the members of a type, you can
also obtain information about the parameters of a given member. To illustrate, let's
assume that the Car class has defined the following additional method:

// A new member of the Car class.

public void TurnOnRadio(bool state, MusicMedia mm)

{

 if(state)

 MessageBox.Show("Jamming with {0}", mm.ToString());

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-364 I ♡ Flyheart-

 else

 MessageBox.Show("Quiet time...");

}

TurnOnRadio() takes two parameters, the second of which is a custom enumeration:

// Holds source of music.

public enum MusicMedia

{

 musicCD,

 musicTape,

 musicRadio

}

Extracting information for the parameters of TurnOnRadio() requires the use of
MethodInfo.GetParameters(). This method returns a ParameterInfo array. Each item in
this array contains numerous properties for a given parameter. Here is another static
method of the CarReflector class, GetParams(), which displays various details for each
parameter of the TurnOnRadio() method. Check it out:

// Get parameter information for the TurnOnRadio() method.

private static void GetParams(Assembly a)

{

 // Get a MethodInfo type.

 Type miniVan = a.GetType("CarLibrary.MiniVan");

 MethodInfo mi = miniVan.GetMethod("TurnOnRadio");

 // Show number of params.

 Console.WriteLine("Here are the params for {0}", mi.Name);

 ParameterInfo[] myParams = mi.GetParameters();

 Console.WriteLine("Method has " + myParams.Length + " params");

 // Show some info for param.

 foreach(ParameterInfo pi in myParams)

 {

 Console.WriteLine("Param name: {0}", pi.Name);

 Console.WriteLine("Position in method: {0}", pi.Position);

 Console.WriteLine("Param type: {0}", pi.ParameterType);

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-365 I ♡ Flyheart-

 }

}
Figure 7-3 displays the output.

Figure 7-3: Parameter information

SOURCE
CODE

The CarReflector project is included in the Chapter 7
subdirectory.

At this point you understand how to use some of the core items defined within the
System.Reflection namespace to discover a wealth of information at runtime. And, maybe
you are already envisioning the code behind ILDasm.exe. Our examples have dumped
information to a console window. ILDasm.exe

obtains the same information, and places it within the various nodes of a tree view
control.

Understanding Dynamic Invocation (Late Binding)

The System.Reflection namespace provides additional functionality beyond runtime type
discovery. Reflection also provides the ability to exercise late binding to a type. Late
binding is a technique, in which you are able to resolve the existence of (and name of) a
given type and its members at runtime (rather than compile time). Once the presence of a
type has been determined, you are then able to dynamically invoke methods, access
properties, and manipulate the fields of a given entity.

The value of late binding may not be immediately understood. It is true that if you can bind
early to a type (e.g., use the new keyword) you should opt to do so. Early binding allows
you to determine errors at compile time, rather than runtime. Late binding does have a
place among tool builders, as well as COM/.NET interoperability. For example, using late
binding, a .NET programmer is able to obtain a COM object's IDispatch reference. You
examine interoperability issues later in the book. For the time being, let's examine how to
dynamically invoke a method on the MiniVan class.

The Activator Class

The System.Activator class is the key to late binding. Beyond the methods inherited from
Object, Activator only defines a small set of members. Activator.CreateInstance() is one

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-366 I ♡ Flyheart-

core method that creates an instance of a type at runtime. This method has been
overloaded numerous times in order to provide a good deal of flexibility. One variation of
the CreateInstance() member takes a valid Type object:

// Create a type dynamically.

public class LateBind

{

 public static int Main(string[] args)

 {

 // Use Assembly class to load the CarLibrary.

 Assembly a = null;

 try

 {

 a = Assembly.Load("CarLibrary");

 }

 catch(FileNotFoundException e)

 {Console.WriteLine(e.Message);}

 // Get the Minivan type.

 Type miniVan = a.GetType("CarLibrary.MiniVan");

 // Create the Minivan on the fly.

 object obj = Activator.CreateInstance(miniVan);

 }

}

At this point, the "obj" variable is pointing to a MiniVan instance in memory that has been
created indirectly using the Activator class. Now assume you wish to invoke the
TurboBoost() method of the MiniVan. As you recall, this will set the state of the engine to
"dead" and display an informational message box.

The first step is to obtain a MethodInfo type for the TurboBoost() method using
Type.GetMethod(). From a MethodInfo type, you are then able to call the method using
Invoke(). MethodInfo.Invoke() requires you to send in all parameters that are to be given
to the method represented by MethodInfo. These parameters are represented by an array
of Objects. Given that TurboBoost() does not require any parameters, you can simply
pass "null" (meaning "this method has no parameters"):

public static int Main(string[] args)

{

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-367 I ♡ Flyheart-

 // Use Assembly class to load the CarLibrary

 ...

 // Get the Minivan type.

 Type miniVan = a.GetType("CarLibrary.MiniVan");

 // Create the Minivan on the fly.

 object obj = Activator.CreateInstance(miniVan);

 // Get info for TurboBoost.

 MethodInfo mi = miniVan.GetMethod("TurboBoost");

 // Invoke method ('null' for no parameters).

 mi.Invoke(obj, null);

 return 0;

}
At this point you are happy to see Figure 7-4.

Figure 7-4: Late binding

Now assume you wish to call the following new method defined by MiniVan using late
binding:

// Quiet down the troops...

public void TellChildToBeQuiet(string kidName, int shameIntensity)

{

 for(int i = 0 ; i < numb; i++)

 MessageBox.Show("Be quiet {0}!!", kidName);

}

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-368 I ♡ Flyheart-

TellChildToBeQuiet() takes two parameters. In this case, the array of parameters must be
fleshed out as follows:

// Now a method with params.

object[] paramArray = new object[2];

paramArray[0] = "Fred"; // Child name.

paramArray[1] = 4; // Shame Intensity.

mi = miniVan.GetMethod("TellChildToBeQuiet");

mi.Invoke(obj, paramArray);
If you run this program, you will see four message boxes popping up, shaming young
Fredrick (Figure 7-5).

Figure 7-5: Late binding with parameters

SOURCE
CODE

The LateBinding project is included in the Chapter 7
subdirectory.

Understanding (and Building) Dynamic Assemblies

The next point of interest is the distinction between static and dynamic assemblies. Static
assemblies are what I have been (and for the most part, will be) referring to in this book.
Simply put, static assemblies are loaded from disk storage, meaning they are located
somewhere on your hard drive in a physical file (or possibly numerous files for a multifile
assembly).
A dynamic assembly is created in memory on the fly using the functionality provided by
the System.Reflection.Emit namespace. This namespace makes is possible to create an
assembly, its modules, and any associated types at runtime. Once you have done so, you
are then free to dynamically save your new types (again at runtime) to disk. This of course,
results in a new static assembly! Furthermore, using the System.Reflection.Emit
namespace, it is possible to dynamically add new types and members to the runtime
representation of an existing assembly.

Understanding the System.Reflection.Emit Namespace

The types defined within the System.Reflection.Emit namespace is of greatest use to
individuals who are in the tool building or language development business. For example,

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-369 I ♡ Flyheart-

imagine that you have been assigned the rather exotic task of creating a version of
QuickBasic that targets the .NET runtime (does anyone use QuickBasic anymore?)
Using System.Reflection.Emit, you could take the raw BASIC code and emit
corresponding .NET intermediate language (IL) that is then stored in a dynamically
created assembly. While this task might seem unlikely, .NET aware Web languages (such
as JScript.NET) employ this very same technique. First, Table 7-3 gives a rundown of
some (but not all) of the types defined within the System.Reflection.Emit namespace.

Table 7-3: Select Members of System.Reflection.Emit

SYSTEM.REFLECTION.
EMIT TYPE

MEANING IN LIFE

AssemblyBuilder Used to create an assembly at runtime. This type may
be used to create both a DLL or EXE binary assembly.
EXEs must call the Module Builder.SetEntryPoint()
method must set the method that is the entry point to
the module. If no entry point is specified, a DLL will be
generated.

ModuleBuilder Used to create a module within an assembly at runtime.

EnumBuilder

TypeBuilder

Creates a type (e.g., class, interface, etc) within a
module at runtime.

MethodBuilder

EventBuilder

LocalBuilder

PropertyBuilder

FieldBuilder

ConstructorBuilder

CustomAttributeBuilder

These (and other) items are used to create a given
member of a type (methods, local variables, properties,
construction attributes)at runtime.

ILGenerator Used to create the underlying intermediate language
(IL) of a member at runtime.

Emitting a Dynamic Assembly

As you might guess, if you were to build anything other than a trivial dynamic assembly,
you would suddenly need to be very comfortable with the intricacies of raw IL code.
Although full coverage of raw IL is beyond the scope of this book, you can most certainly
take the System.Reflection.Emit namespace out for a test drive (if you desire additional
information, check out the official IL documentation in the Tool Developers Guide section
of the .NET SDK).

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-370 I ♡ Flyheart-

The goal in this section is to create a single file assembly (thus the name of the module is
the same as the assembly itself). Within this module, is a class named (of course)
HelloWorld. The HelloWorld type supports a custom constructor (taking a string
parameter) that is used to assign the value of a private member variable (Msg) of type
string. In addition, let's support a public method named SayHello(), which prints a greeting
to the standard IO stream, and another method named GetMsg() which returns the
internal private string. In effect, you are going to programmatically build the following
class:

// This class will be build at runtime using System.Reflection.Emit.

public class HelloWorld

{

 private string Msg;

 // Public interface to class.

 HelloWorld(string s) { Msg = s;}

 public string GetMsg() { return Msg;}

 public void SayHello() { System.Console.WriteLine("Hello there!");

}

Assume you have created a new Console Application project workspace named
DynAsmBuilder. The first class within the project (MyAsmBuilder) has a single method
(CreateMyAsm) that is in charge of building the dynamic assembly, establishing the
HelloClass, and saving the binary to disk. Here is the complete code, with analysis to
follow:

// The caller sends in an AppDomain type.

public int CreateMyAsm(AppDomain curAppDomain)

{

 // Create a name for the assembly.

 AssemblyName assemblyName = new AssemblyName();

 assemblyName.Name = "MyAssembly";

 assemblyName.Version = new Version("1.0.0.0");

 // Create the assembly in memory.

 AssemblyBuilder assembly =

 curAppDomain.DefineDynamicAssembly(assemblyName,

 AssemblyBuilderAccess.Save);

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-371 I ♡ Flyheart-

 // Here, we are building a single file

 // assembly, so the name of the module is the same as the assembly.

 ModuleBuilder module =

 assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

 // Define a public class named "HelloWorld".

 TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",

 TypeAttributes.Public);

 // Define a private String member variable named "Msg":

 // private string msg;

 FieldBuilder msgField =

 helloWorldClass.DefineField("Msg", Type.GetType("System.String"),

 FieldAttributes.Private);

 // Create the constructor:

 // HelloWorld(String s).

 Type[] constructorArgs = new Type[1];

 constructorArgs[0] = Type.GetType("System.String");

 ConstructorBuilder constructor =

 helloWorldClass.DefineConstructor(MethodAttributes.Public,

 CallingConventions.Standard,

 constructorArgs);

 ILGenerator constructorIL = constructor.GetILGenerator();

 constructorIL.Emit(OpCodes.Ldarg_0);

 Type objectClass = Type.GetType("System.Object");

 ConstructorInfo superConstructor = objectClass.GetConstructor(new Type[0]);

 constructorIL.Emit(OpCodes.Call, superConstructor);

 constructorIL.Emit(OpCodes.Ldarg_0);

 constructorIL.Emit(OpCodes.Ldarg_1);

 constructorIL.Emit(OpCodes.Stfld, msgField);

 constructorIL.Emit(OpCodes.Ret);

 // Now created the GetMsg method:

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-372 I ♡ Flyheart-

 // public string GetMsg().

 MethodBuilder getMsgMethod =

 helloWorldClass.DefineMethod("GetMsg", MethodAttributes.Public,

 Type.GetType("System.String"), null);

 ILGenerator methodIL = getMsgMethod.GetILGenerator();

 methodIL.Emit(OpCodes.Ldarg_0);

 methodIL.Emit(OpCodes.Ldfld, msgField);

 methodIL.Emit(OpCodes.Ret);

 // Create the SayHello method:

 // public void SayHello().

 MethodBuilder sayHiMethod =

 helloWorldClass.DefineMethod("SayHello",

 MethodAttributes.Public, null, null);

 methodIL = sayHiMethod.GetILGenerator();

 methodIL.EmitWriteLine("Hello there!");

 methodIL.Emit(OpCodes.Ret);

 // 'Bake' the class HelloWorld. (Baking is a cute way to say, "make it

 //so!").

 helloWorldClass.CreateType();

 // Save the assembly to file.

 assembly.Save("MyAssembly.dll");

 return 0;

}
The method body begins by establishing a minimal set of characteristics about your
assembly, using the AssemblyName class. Next, create the assembly in memory using
the AppDomain type, which was described in Chapter 6 (do note that the CreateMyAsm()
helper function takes an incoming AppDomain variable).

// Create the assembly in memory.

AssemblyBuilder assembly

 = curAppDomain.DefineDynamicAssembly(assemblyName,

 AssemblyBuilderAccess.Save);

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-373 I ♡ Flyheart-

When calling AppDomain.DefineDynamicAssembly(), you must specify the access mode,
which can be any of the following values shown in Table 7-4.

Table 7-4: Values of the AssemblyBuilderAccess Enumeration

ASSEMBLYBUILDERACCESS
VALUE

MEANING IN LIFE

Run Represents that a dynamic assembly can
be executed but not saved.

RunAndSave Represents that a dynamic assembly can
be executed and saved.

Save Represents that a dynamic assembly can
be saved but not executed (which may
not be the most helpful of all values...)

The next task is to insert the module into the assembly. Recall that your assembly is a
single file unit. If you were to build a multifile assembly using the DefineDynamicModule()
method, you can specify an optional second parameter, which represents the name of a
given module (e.g., myMod.dll). When you wish to make a single file assembly, the name
of the module (and the binary file) will be identical to the name of the assembly itself:

// Our single file assembly.

ModuleBuilder module =

 assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

Now for the real fun. Making use of the ModuleBuilder.DefineType() method, you are able
to insert a class, structure, or interface into the module, and receive back a TypeBuilder
reference that represents the new item (in this case, a class named HelloWorld). At this
point, you can insert the private string data member, as shown in the following:

// Define a public class named "HelloWorld".

TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",

 TypeAttributes.Public);

// Define a private String member variable named "Msg".

FieldBuilder msgField =

 helloWorldClass.DefineField("Msg",

 Type.GetType("System.String"),

 FieldAttributes.Private);

When it comes to creating the constructor of this class, you need to inject raw IL code into
the constructor body, which is responsible for assigning the incoming parameter to the

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-374 I ♡ Flyheart-

internal private string (among other things). The Emit() method of the ILGenerator class is
the entity in charge of placing IL into a member implementation. Emit() itself makes
frequent use of the OpCodes enumeration, which is used to specify a ton of features
regarding the IL to be inserted. For example, OpCodes.Ret signals the return of a method
call. OpCodes.Stfld makes an assignment to a member variable. This said, ponder the
following constructor logic:

// Create the constructor.

Type[] constructorArgs = new Type[1];

constructorArgs[0] = Type.GetType("System.String");

ConstructorBuilder constructor =

 helloWorldClass.DefineConstructor(MethodAttributes.Public,

 CallingConventions.Standard,

 constructorArgs);

ILGenerator constructorIL = constructor.GetILGenerator();

constructorIL.Emit(OpCodes.Ldarg_0);

Type objectClass = Type.GetType("System.Object");

ConstructorInfo superConstructor = objectClass.GetConstructor(new Type[0]);

constructorIL.Emit(OpCodes.Call, superConstructor); // Call base class ctor.

// Load the object's 'this' pointer on the stack.

constructorIL.Emit(OpCodes.Ldarg_0);

// load a constant 4-byte value of 0 onto the virtual stack.

constructorIL.Emit(OpCodes.Ldarg_1);

constructorIL.Emit(OpCodes.Stfld, msgField); // Assign msgField.

constructorIL.Emit(OpCodes.Ret); // Return.

Now let's examine the SayHello() method:

// Create the SayHello method.

MethodBuilder sayHiMethod =

 helloWorldClass.DefineMethod("SayHello",

 MethodAttributes.Public, null, null);

methodIL = sayHiMethod.GetILGenerator();

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-375 I ♡ Flyheart-

// Write a line to the Console.

methodIL.EmitWriteLine("Hello there!");

methodIL.Emit(OpCodes.Ret);

Here, you have established a public method (MethodAttributes.Public) that takes no
parameters and returns nothing (note the null entries contained in the DefineMethod() call.
Also note the EmitWriteLine() call. This member of the ILGenerator class automatically
writes a line to the standard output with minimal fuss and bother. I will leave it as an
exercise to you to examine the remaining underlying IL in whatever detail you desire.

Using the Dynamically Generated Assembly

Now that we have the logic in place to create and save our assembly, all that's needed is
a class to trigger the logic. To come full circle, assume your project defines a second
class named AsmReader. The logic in Main() creates an AppDomain to send into the
CreateMyAsm() method. Once this call returns, you will exercise some late binding to
load this assembly into memory, and call each method of the HelloWorld class. In the
code that follows, notice how you are able to programmatically call your overloaded
constructor with a specified argument, as well as capture the return value of GetMsg():

namespace DynAsmBuilder

{

using System;

using System.Reflection.Emit;

using System.Reflection;

using System.Threading;

public class AsmReader

{

 public static int Main(string[] args)

 {

 // Get the current application domain.

 AppDomain curAppDomain = Thread.GetDomain();

 // Create the dynamic assembly!

 MyAsmBuilder asmBuilder = new MyAsmBuilder();

 asmBuilder.CreateMyAsm(curAppDomain);

 // Now load it.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-376 I ♡ Flyheart-

 a = Assembly.Load("MyAssembly");

 // Get the HelloWorld type.

 Type hello = a.GetType("MyAssembly.HelloWorld");

 // Create HelloWorld object and call the correct ctor.

 object[] ctorArgs = new object[1];

 ctorArgs[0] = "My amazing message...";

 object obj = Activator.CreateInstance(hello, ctorArgs);

 // Call SayHello and show returned string.

 MethodInfo mi = hello.GetMethod("SayHello");

 mi.Invoke(obj, null);

 // Trigger GetMsg(). Note! Invoke() returns a Type that

 // holds the method's return value.

 mi = hello.GetMethod("GetMsg");

 Console.WriteLine(mi.Invoke(obj, null));

 return 0;

 }

}

}
Figure 7-6 shows the output.

Figure 7-6: Calling members of the dynamically created assembly

But wait! It gets even better, given the fact that you can locate the new assembly in your
project's directory. If you open your assembly using ILDasm.exe you will be extremely
pleased to see what appears in Figure 7-7.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-377 I ♡ Flyheart-

Figure 7-7: Hello dynamic assembly
SOURCE
CODE

The DynAsmBuilder application is included under the Chapter
7 subdirectory.

Understanding Attributed Programming

The official meta language of the Component Object Model (COM) is IDL (Interface
Definition Language). As you may know, IDL is used to describe the set of types defined
within a given classic COM server. In order to describe these types in completely
unambiguous terms, IDL makes use of "attributes," which are simply IDL keywords
placed within square brackets. A given attribute block always applies to the very next
thing. For example, when a COM programmer describes an interface, he or she is
required to make use of the [uuid] and [object] attributes (at minimum). Parameters can
be specified using the [in], [out], [in, out] and [out,retval] attributes. Here is an example of
a classic COM interface, making use of various IDL attributes:

[object, uuid(4CB8B79A-E991-4AA4-8DB8-DD5D8751407D), oleautomation]

interface IRememberCOM : IUnknown

{

 [helpstring("If you send me a string, I will change it...")]

 HRESULT TextManipulation([in] BSTR myStr, [out, retval] BSTR* newStr);

};
Notice how the TextManipulation() method has been assigned a [helpstring] attribute,
which is used to document how a given item is to be used. Once a COM type has been
assigned various attributes, it can be discovered at runtime programmatically, or at
design time using various tools. For example, if you examine this COM method using the
Visual Basic 6.0 Object Browser utility, you will see the custom [helpstring] is
automatically extracted and displayed (Figure 7-8).

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-378 I ♡ Flyheart-

Figure 7-8: COM IDL as seen in Visual Basic 6.0

IDL attributes have proven to be so helpful, that C# (as well as other .NET aware
languages) has integrated them as official aspects of the language. Using attributes, you
are able to extend the metadata generated by a given compiler with your custom
information.
As you explore the .NET namespaces, you will find that there are many predefined
attributes that you are able to make use of in your applications. Furthermore, you are free
to build custom attributes to further qualify the behavior of your types. Keep in mind
that .NET attributes (predefined or custom) are actually objects all of that extend
System.Attribute (contrast this to IDL, in which attributes are nothing more than simple
keywords).

Working with Existing Attributes

Like IDL, C# attributes are nothing more that annotations that can be applied to a given
type (class, interface, structure, etc.), member (property, method, etc.) assembly, or
module. As mentioned, the .NET library defines a number of predefined attributes in
various namespaces. Many of the predefined attributes are most useful in the context of
COM and .NET interoperability, debugging and other "exotic" aspects of building
managed code. Table 7-5 gives a snapshot of some (but by absolutely no means all)
predefined attributes.

Table 7-5: A Tiny Sampling of Predefined Attributes

PREDEFINED .NET
ATTRIBE

MEANING IN LIFE

CLSCompliant Enforces that all types in the assembly to
conform to the Common Language Specification
(CLS). This is the .NET equivalent of the IDL
[oleautomation] attribute.

DllImport Used to make calls to the native OS.

StructLayout Used to configure the underlying representation

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-379 I ♡ Flyheart-

Table 7-5: A Tiny Sampling of Predefined Attributes

PREDEFINED .NET
ATTRIBE

MEANING IN LIFE

of a structure.

Dispid Specifies the DISPID for a member in a COM
dispinterface.

Serializable Marks a class or structure as being serializable.

NonSerialized Specifies that a given field in a class or structure
is not serializable.

As an example, assume that you wish to assign the [Serializable] attribute to a given item.
The Motorcycle class that follows has assigned an attribute to the class itself, as well as a
field named temp. As you can see, C# attributes look very much like IDL attributes, in that
they are enclosed within square brackets:

// This class can be saved to disk.

[Serializable]

public class Motorcycle

{

 bool hasRadioSystem;

 bool hasHeadSet;

 bool hasSissyBar;

 // But when you do, don't bother with this field.

 [NonSerialized]

 float weightOfCurrentPassengers;

}
Using ILDasm.exe (Figure 7-9), you can see that these attributes are now specified within
the type definition.

Figure 7-9: Attributes are represented by metadata

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-380 I ♡ Flyheart-

Be aware that if you wish to apply more than one attribute to a single type, simply
separate each using a comma-delimited list or make use of multiple bracketed attributes
stacked on top of one another. Now at this point, don't concern yourself with who or what
is on the lookout for the presence of these attributes. Just understand that attributed
programming allows you to extend an assembly's metadata with various annotations.

Building Custom Attributes
C# (as well as other .NET aware languages) allows you to build custom attributes. Recall
that attributes are in fact instances of a class derived from System.Attribute. Thus, when
we applied the [Serializable] attribute to the Motorcycle class, we in fact applied an
instance of the System.Serializable type. From a design point of view, an attribute is a
class instance that can be applied to some other type. In the world of OOP, this approach
is termed aspect-oriented programming.

The first step to building your own custom attribute is to create a new class deriving from
System.Attribute. The naming convention you should follow is to suffix "-Attribute" to the
new type. Here is a basic custom attribute named VehicleDescriptionAttribute that allows
a programmer to inject a string into the type metadata describing a particular automobile:

// A custom attribute.

public class VehicleDescriptionAttribute : System.Attribute

{

 private string description;

 public string Desc

 {

 get { return description; }

 set { description = value; }

 }

 public VehicleDescriptionAttribute(string desc)

 { description = desc;}

 public VehicleDescriptionAttribute(){}

}

As you can see, VehicleDescriptionAttribute maintains a private internal string
(description) that can be manipulated using a custom constructor and a named property.
Now assume you wish to apply this attribute to a new class named Winnebago. Notice
how the constructor signature determine the exact syntax of the attribute:

// This class using a custom attributes.

[VehicleDescriptionAttribute("A very long, slow but feature rich auto")]

public class Winnebago

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-381 I ♡ Flyheart-

{

 public Winnebago(){}

 // Various methods...

}
Now, let's see your new type in action. The VehicleDescriptionAttribute attribute (or any
attribute) makes use of parentheses to pass arguments to the constructor of the
associated System.Attribute-derived class. As you have already seen, one of the
constructors does indeed take a string parameter. Now, using ILDasm.exe, you find your
string message has been injected into the assembly's metadata (Figure 7-10).

Figure 7-10: Your custom message

If you look at the IL itself (Figure 7-11), you notice that custom attributes are marked using
the IL instruction ".custom."

Figure 7-11: The internal representation of our custom attribute

The C# language does offer a shorthand notation for assigning an attribute to a given
item. If the name of your custom attribute class does indeed have a "-Attribute" suffix, you
are allowed to omit this same suffix in the code base:

// This short cut only works if the class is named VehicleDescriptionAttribute.

[VehicleDescription("A very long, slow but feature rich auto")]

public class Winnebago

{

 public Winnebago(){}

 // Various methods...

}

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-382 I ♡ Flyheart-

Be aware that this is a courtesy provided by C#. Not all .NET-enabled languages support
this feature.

Restricting Attribute Usage

Currently, our custom attribute has no mechanism to prevent a developer from making
illogical aspect specifications. For example, the following is syntactically correct, but
semantically out of whack:

// OK, but an odd use of this custom attribute...

public class Winnebago

{

 [VehicleDescriptionAttribute] // Calls default ctor of attribute class.

 public void TurnOnRadio()

 {

 }

}

Ideally, it would be nice to enforce the fact that this particular custom attribute should only
be allowed to modify a class (and perhaps a structure) but nothing else. If you wish to
constrain your attributes in this way, you need to make use of the AttributeTargets
enumeration:

// This enumeration is used to control how a custom attribute can be applied.

public enum AttributeTargets

{

 All,

 Assembly,

 Class,

 Constructor,

 Delegate,

 Enum,

 Event,

 Field,

 Interface,

 Method,

 Module,

 Parameter,

 Property,

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-383 I ♡ Flyheart-

 ReturnValue,

 Struct,

}

These values are passed as a parameter to the AttributeUsage attribute. This predefined
attribute is used by the C# compiler to enforce the correct application of a custom
attribute. The first parameter is an OR-ing together of members from the AttributeTarget
enumeration. The second (optional) parameter is typically a named argument
(AllowMultiple), which specifies if the custom attribute can be used more than once on the
same type. The final (optional) boolean parameter determines if the attribute should be
inherited by derived classes.

Thus, we can now configure the VehicleDescriptionAttribute to only apply to classes or
structures as follows:

// This time, we are use the predefined AttributeUsage attribute

// to modify our custom attribute!

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]

public class VehicleDescriptionAttribute : System.Attribute

{

 private string description;

 public string Desc

 {

 get { return description; }

 set { description = value; }

 }

 public VehicleDescriptionAttribute() {}

 public VehicleDescriptionAttribute(string desc)

 { description = desc;}

}
If we were to recompile our project, the error shown in Figure 7-12 now occurs
(thankfully).

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-384 I ♡ Flyheart-

Figure 7-12: Restricted attribute usage

Assembly (and Module) Level Attributes

It is also possible to apply attributes on all types within given module, or all modules within
a given assembly. Doing so requires the use of any number of predefined attribute
specifiers, the most useful being [assembly:] and [module:].

For example, assume you wish to ensure that ever type defined within your assembly is
compliant with the Common Language Specification.

// Enforce CLS compliance!

using System;

[assembly:System.CLSCompliantAttribute(true)]

namespace MyAttributes

{

[VehicleDescriptionAttribute("A very long, slow but feature rich auto")]

public class Winnebago

{

 public Winnebago(){}

}

}

If we were to now add a bit of code that falls outside the CLS specification:

// Ulong types don't jive with the CLS.

public class Winnebago

{

 public Winnebago(){}

 public ulong notCompliant;

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-385 I ♡ Flyheart-

}
the compiler issues the error shown in Figure 7-13.

Figure 7-13: Non-CLS compliant types result in compiler errors when you set the
CLSCompilant attribute

The .NET [CLSCompliant] attribute is the rough equivalent of the IDL [oleautomation]
attribute. Recall, this IDL attribute ensures all interface members are VARIANT compliant,
and can thus be recognized by a COM aware language.
Notice that the [assembly:] syntax is used to inform the compiler that the CLSCompliant
attribute must be applied to the assembly level, and not (for example) a single type within
the assembly. One fact to be aware of is that the [assembly:] and [module:] modifiers
must be placed outside of a namespace definition.

Visual Studio.NET AssemblyInfo.cs File
Visual Studio.NET projects define a file called AssemblyInfo.cs. This file is a handy place
to place attributes that are to be applied at the assembly level. Table 7-6 lists some
assembly level attributes to be aware of.

Table 7-6: Select Assembly -Level Attributes

ASSEMBLY-LEV
EL ATTRIBUTE

MEANING IN LIFE

AssemblyCompan
yAttribute

Holds basic company information.

AssemblyConfigur
ationAttribute

Build information, such as "retail" or "debug."

AssemblyCopyrigh
tAttribute

Holds any copyright information for the product or
assembly.

AssemblyDescripti
onAttribute

A friendly description of the product or modules that
make up the assembly

AssemblyInformati
onalVersionAttribu
te

Additional or supporting version information, such as
a commercial product version number

AssemblyProduct
Attribute

Product information.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-386 I ♡ Flyheart-

Table 7-6: Select Assembly -Level Attributes

ASSEMBLY-LEV
EL ATTRIBUTE

MEANING IN LIFE

AssemblyTradema
rkAttribute

Trademark information.

AssemblyCultureA
ttribute

Information on what cultures or languages the
assembly supports.

AssemblyKeyFileA
ttribute

Specifies the name of the file containing the key pair
used to sign the assembly (i.e., establish a shared
name)

AssemblyKeyNam
eAttribute

Specifies the name of the key container. Instead of
placing a key pair in a file, you can store it in a key
container in the CSP. If you choose this option, this
attribute will contain the name of the key container

AssemblyOperatin
gSystemAttribute

Information on which operating system the assembly
was built to support.

AssemblyProcess
orAttribute

Information on which processors the assembly was
built to support.

AssemblyVersionA
ttribute

Specifies the assembly's version information, in the
format major.minor.build.rev

Discovering Attributes at Runtime

And now the final topic! As you have seen, it is possible to obtain attributes at runtime
using the Type class. The logic behind doing so should be no surprise at this point:

// Reflecting on the custom attributes...

public class AttReader

{

 public static int Main(string[] args)

 {

 // Get the Type of Winnebago.

 Type t = typeof(Winnebago);

 // Get all attributes in the assembly.

 object[] customAtts = t.GetCustomAttributes(false);

 // List all info.

C# and the .NET Platform Chapter 7: Type Reflection & Attribute-Based Programming

-387 I ♡ Flyheart-

 foreach(VehicleDescriptionAttribute v in customAtts)

 Console.WriteLine(v.Desc);

 return 0;

 }

}
Figure 7-14 shows the output.

Figure 7-14: Reflecting on your custom attribute

As the name implies, Type.GetCustomAttributes() returns an array (of object types) that
represent all the attributes applied to the member represented by the Type. From this
array you are able to determine a specific attribute on the fly. What you do with this
information is (of course) up to you.

SOURCE
CODE

The CustomAtt and AttReader applications are included under
the Chapter 7 subdirectory.

Summary

Reflection is a very interesting aspect of a robust OO environment. In the world of .NET,
the keys to reflection services revolve around the System.Type class and the
System.Reflection namespace. As you have seen, reflection is the process of placing a
type under the magnifying glass at runtime, in order to understand the "who, what, where,
why, and how" of a given item.

On a related note, you explored the System.Reflection.Emit namespace, and gained a
taste of creating an assembly (and the raw IL) on the fly. Assemblies that are constructed
dynamically in memory (and possibly saved to file) are termed "dynamic assemblies."
I closed this chapter with an examination of attribute based programming. When you
adorn your type with attributes, the end result is the augmentation of the underlying
metadata. While you may never find yourself in the position of absolutely having to build
custom attributes, you are bound to find the predefined attributes invaluable, especially
when building a bridge between your classic COM servers and .NET assemblies.

C# and the .NET Platform Chapter 8: Building a Better Window

-388 I ♡ Flyheart-

Chapter 8: Building a Better Window

(Introducing Windows Forms)

Overview

If you have read through the previous seven chapters, you should have a solid handle on
the C# programming language as well as the core aspects of the .NET architecture. While
you could take your newfound knowledge and begin building the next generation of
Console applications (boring!) you are more likely to be interested in building an attractive
graphical user interface (GUI) to allow the outside world to interact with your system.

This chapter introduces you to the System.Windows.Forms namespace. Here, you learn
how to build a highly stylized main window (e.g., a custom Form-derived object). In the
process, you learn about a number of window-related classes, including MenuItem,
ToolBar, StatusBar, and Application. This chapter also introduces how to capture and
respond to user input (i.e., handling mouse and keyboard events) within the context of a
GUI environment.
The chapter wraps up with a final Windows Forms example, which stores user
preferences in the system registry, as well as sends application-specific information to the
Windows 2000 Event Log. The information presented in this chapter prepares you for the
materials presented in Chapters 9 and 10 (GDI+ and control programming). Once you
have completed the next three chapters, you will be in a perfect position to build
sophisticated user interfaces using the .NET framework.

A Tale of Two GUI Namespaces

The .NET universe supplies two GUI toolkits, known as "Windows Forms" and
"WebForms." The System.Windows.Forms namespace contains a number of types that
allow you to build traditional desktop applications, as well as a feature rich presentation
layers (for example, "fat clients") in a distributed enterprise application. As you would
expect, Windows Forms hides raw Win32 primitives from view, allowing you to focus on
the functionality of your application using the familiar .NET type system.
WebForms on the other hand, is a GUI toolkit used during ASP.NET development. The
bulk of the WebForm types are contained in the System.Web.UI and
System.Web.UI.WebControls namespaces. Using these types, you are able to build
browser-independent front ends based on various industry standards (HTML, HTTP, and
so forth). You examine ASP.NET (as well as the related topic of Web services) in
Chapters 14 and 15.

This chapter focuses on building traditional Win32 applications using the Windows Forms
namespace. It is worth pointing out that while Windows Forms and WebForms contain a
number of similarly named types (e.g., Button, Check-Box, etc.) with similar members,
they do not share a common implementation and cannot be treated identically.

C# and the .NET Platform Chapter 8: Building a Better Window

-389 I ♡ Flyheart-

Nevertheless, as you become comfortable with the Windows Forms namespace, you
should find the process of learning Web-Forms far more palatable.

Overview of the Windows Forms Namespace
The System.Windows.Forms namespace contains a large number of types to aid in the
process of building rich user interfaces. Like any namespace, System.Windows.Forms is
composed of a number of classes, structures, delegates, interfaces, and enumerations.
Over the next couple of chapters, you drill into the specifics of a good number of these
types. While it is redundant to list every member of the Windows Forms family (as they
are all documented in online Help) the Table 8-1 lists some (but by no means all) of the
core classes found within System.Windows.Forms.

Table 8-1: Core Windows Form Types

WINDOWS FORMS
CLASS

MEANING IN LIFE

Application This class represents the guts of a Windows Forms application.
Using the methods of Application, you are able to process
Windows messages, start and terminate a Windows Forms
application, and so forth.

ButtonBase, Button,
CheckBox, ComboBox,
DataGrid, GroupBox,
ListBox, LinkLabel,
PictureBox

These classes (in addition to many others) represent types that
correspond to various GUI widgets. You examine many of these
items in detail in Chapter 10.

Form This type represents a main window (or dialog box) of a
Windows Forms application.

ColorDialog, FileDialog,
FontDialog,
PrintPreviewDialog

As you might expect, Windows Forms defines a number of
canned dialog boxes. If these don't fit the bill, you are free to
build custom dialogs.

Menu, MainMenu,
MenuItem,
ContextMenu

These types are used to build top-most and context-sensitive
(pop-up) menu systems.

Clipboard, Help, Timer,
Screen, ToolTip,
Cursors

Various utility types to facilitate interactive GUIs.

StatusBar, Splitter,
ToolBar, ScrollBar

Various types used to adorn a Form with common child controls.

Interacting with the Windows Forms Types

When you are building a Windows Forms application, you may choose to write all the
relevant code by hand (using Notepad perhaps) and send the resulting *.cs file into the

C# and the .NET Platform Chapter 8: Building a Better Window

-390 I ♡ Flyheart-

C# compiler using the /target:winexe flag. Taking time to build some Windows Forms
applications by hand is not only a great learning experience, but also helps you
understand the code generated by various GUI wizards.

Another option is to build Windows Forms projects using the Visual Studio.NET IDE. To
be sure, the IDE does supply a number of great wizards, starter templates, and
configuration tools that make working with Windows Forms extremely simple.
The other (middle-of-the-road) approach to building a Windows Forms application is to
make use of a tool shipped with the .NET SDK, named WinDes.exe (Windows Forms
Designer). This tool is a lightweight version of the full-blown Visual Studio IDE, that allows
you to build applications using C# as well as Visual Basic.NET (there is even an option to
save your source code as XML). By default, this tool will be installed in \Bin subdirectory
of your .NET SDK folder and looks something like what appears in Figure 8-1.

Figure 8-1: The WinDes.exe utility

The problem with CASE tools of course, is that if you do not understand what the
generated code is doing on your behalf, you cannot gain a true mastery of the underlying
technology. Given this fact, we will begin by creating our initial Windows Forms examples
in the raw (complete with menus, status bars, and tool-bars) and illustrate the use of the
wizards supplied by the Visual Studio.NET where appropriate (I'll let you check out
WinDes.exe on your own).

C# and the .NET Platform Chapter 8: Building a Better Window

-391 I ♡ Flyheart-

Prepping the Project Workspace

To begin understanding Windows Forms programming, let's build a simple main window
by hand. Our first order of business is to create a new empty C# project workspace
named "MyRawWindow" using the VS.NET IDE. Next, insert a new C# class definition
(resist the temptation to insert a new Windows Form class!) from the "Project | Add
Class..." menu option (see Figure 8-2). Let's name this class MainWindow.

Figure 8-2: Inserting a new C# class

When you build a main window by hand, you need to use the Form and Application types
(at minimum), both of which are contained in the System.Windows.Forms.dll assembly. A
Windows Forms application is also needed to reference System.dll given that some types
in the Windows Forms assembly make use of types in the System.dll assembly. Add
references to these assemblies now (Figure 8-3).

C# and the .NET Platform Chapter 8: Building a Better Window

-392 I ♡ Flyheart-

Figure 8-3: You must reference the System.Windows.Forms.dll assembly

Building a Main Window (By Hand)

In the world of Windows Forms, the Form object is used to represent any window in your
application. This includes a top-most main window in an SDI (Single Document Interface)
application, modeless and modal dialogs as well as the parent and child windows of an
MDI (Multiple Document Interface) application. When you are interested in creating a new
main window, you have two mandatory steps:

 Derive a new custom class from System.Windows.Forms.Form.
 Configure the application's Main() method to call Application.Run(),

passing an instance of your new Form derived class as an argument.

With these steps in mind, you are able to update your initial class definition as follows:

namespace MyRawWindow

{

using System;

using System.Windows.Forms;

public class MainWindow : Form

{

 public MainWindow(){}

C# and the .NET Platform Chapter 8: Building a Better Window

-393 I ♡ Flyheart-

 // Run this application.

 public static int Main(string[] args)

 {

 Application.Run(new MainWindow());

 return 0;

 }

}

}
Figure 8-4 shows a test run.

Figure 8-4: A basic Form

If you notice how your MyRawWindow application has been launched, you should notice
an annoying command window looming in the background. This is because we have not
yet configured the build settings to generate a Windows EXE application. To supply the
/t:winexe flag from within the IDE, open the Project properties window (just right-click the
project icon from the Solution Explorer) and expand the "Common Properties | General"
node. Finally, configure the "Output Type" property as "Windows Application". When you
recompile, the annoying command window will be gone.

So, at this point there is a minimizable, maximizable, resizable, and closable main
window (with a default system-supplied icon to boot!) To be sure, it is a great boon to the
Win32 programmers of the world to forgo the need to manually configure a WndProc
function, establish a WinMain() entry point, and twiddle the bits of a WNDCLASSEX
structure. Granted, our MainWindow does not do too much at this point. You enhance its
functionality as you move through the chapter.

C# and the .NET Platform Chapter 8: Building a Better Window

-394 I ♡ Flyheart-

SOURCE CODE

The MyRawWindow application can be found under the Chapter 8 subdirectory.

Building a Visual Studio.NET Windows Forms Project Workspace

The benefit of building Windows Forms applications using Visual Studio.NET is that the
integrated CASE tools can take care of a number of mundane coding details by
delegating them to a number of wizards, configuration windows, and so forth. To illustrate
how to make use of such assistance, close your current workspace. Now, select a new
C# Windows Application project type (see Figure 8-5).

Figure 8-5: Selecting a Windows Application workspace

When you click OK, you will find that you are automatically given a new class derived
from System.Windows.Forms.Form (with a properly configured Main() method) and have
references set to each required assembly (as well as some additional assemblies).
You will also see that you are given a design time template that can be used to assemble
the user interface of your Form (Figure 8-6). Understand that as you update this
design-time template, you are indirectly adding code to the associated Form-derived
class (named Form1.cs by default).

C# and the .NET Platform Chapter 8: Building a Better Window

-395 I ♡ Flyheart-

Figure 8-6: The design-time template

Using the Solution Explorer window, you are able to alternate between this design-time
template and the underlying C# code. To view the code that represents your current
design, simply right-click the *.cs file and select "View Code" (Figure 8-7).

Figure 8-7: Activating the code behind the form

You can also open the code window by double-clicking anywhere on the design-time
Form, however this has the (possibly undesirable) effect of writing an event handler for
the Form's Load event (more on event processing later in this chapter). Nevertheless,
once you open the code window, you will see a class looking very much like the following
(XML style comments removed for clarity):

namespace VSWinApp

C# and the .NET Platform Chapter 8: Building a Better Window

-396 I ♡ Flyheart-

{

...

 public class Form1 : System.Windows.Forms.Form

 {

 private System.ComponentModel.Container components;

 public Form1()

 {

 InitializeComponent();

 }

 public override void Dispose()

 {

 base.Dispose();

 if(components != null)

 components.Dispose();

 }

 #region Windows Form Designer generated code

 private void InitializeComponent()

 {

 this.components = new System.ComponentModel.Container();

 this.Size = new System.Drawing.Size(300,300);

 this.Text = "Form1";

 }

 #endregion

 [STAThread]

 static void Main()

 {

 Application.Run(new Form1());

 }

 }

}

C# and the .NET Platform Chapter 8: Building a Better Window

-397 I ♡ Flyheart-

As you can see, this class listing is essentially the same code as the previous raw
Windows Forms example. Your type still derives from System.Windows.Forms.Form, and
the Main() method still calls Application.Run().

The major change is a new method named InitializeComponent(), which is wrapped by a
pair of preprocessor directives (#region and #endregion). When a code block is wrapped
using the #region directives, it may be collapsed and replaced by a comment block (in this
case "Windows Form Designer generated code"):

#region Windows Form Designer generated code

private void InitializeComponent()

{

 this.components = new System.ComponentModel.Container();

 this.Size = new System.Drawing.Size(300,300);

 this.Text = "Form1";

}

#endregion
The InitializeComponent() method is updated automatically by the form designer to reflect
the modifications you make to the Form and its controls using the Visual Studio.NET IDE.
For example, if you were to use the Properties window (Figure 8-8) to modify the Form's
Text and BackColor properties as follows,

Figure 8-8: The VS.NET IDE Property window

you would find that InitializeComponent() has been modified accordingly:

#region Windows Form Designer generated code

private void InitializeComponent()

C# and the .NET Platform Chapter 8: Building a Better Window

-398 I ♡ Flyheart-

{

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.BackColor = System.Drawing.Color.FromArgb(255, 128, 0);

 this.ClientSize = new System.Drawing.Size(292, 273);

 this.Text = "My Rad Form";

}

#endregion

The Form derived class calls InitializeComponent() within the scope of the default
constructor:

public Form1()

{

 // Required for Windows Form Designer support

 InitializeComponent();

}

The final point of interest is the overridden Dispose() method. This method is called
automatically when your Form is about to be destroyed, and is a safe place to destroy any
allocated resources. You revisit this method in just a bit, but here is the relevant code
blurb:

public override void Dispose()

{

 base.Dispose();

 if(components != null)

 components.Dispose();

}

Now that you have seen how to build an initial Form using two approaches, you need to
spend a bit of time looking deeper into the functionality of the Application class.

The System.Windows.Forms.Application Class

The Application class is a low-level class that defines members that allow you to control
behaviors of a Windows Forms application. Additionally, the Application class defines a
set of events that allow you to respond to application-level events such as application
shutdown and idle processing. For the most part, you do not need to directly interact with
this type; however let's check out some of its behavior.

To begin, ponder the following core methods (all of which are static) listed in Table 8-2.

C# and the .NET Platform Chapter 8: Building a Better Window

-399 I ♡ Flyheart-

Table 8-2: Core Methods of the Application Type

METHOD OF THE
APPLICATION CLASS MEANING IN LIFE

AddMessageFilter()

RemoveMessageFilter()

These methods allow your application to
intercept messages for any necessary
preprocessing. When you add a message filter,
you must specify a class that implements the
IMessageFilter interface (as you will do shortly).

DoEvents() Provides the ability for an application to process
messages currently in the message queue,
during a lengthy operation (such as a looping
construct).

Think of DoEvents() as a quick and dirty way to
simulate multithreaded behaviors.

Exit() Terminates the application.

ExitThread() Exits the message loop on the current thread
and closes all windows owned by current thread.

OLERequired() Initializes the OLE libraries. Consider this
the .NET equivalent of manually calling
OleInitialize().

Run() Begins running a standard application message
loop on the current thread.

The Application class also defines a number of static properties, many of which are
read-only. As you examine the following table, realize that each property represents some
"application level" trait such as company name, version number, and so forth. In fact,
given what you already know about .NET attributes (see Chapter 7), many of these
properties should look vaguely familiar (Table 8-3).

Table 8-3: Core Properties of the Application Type

PROPERTIES OF
APPLICATION CLASS MEANING IN LIFE

CommonAppDataRegistry Retrieves the registry key for the application
data that is shared among all users.

CompanyName Retrieves the company name associated with
the current application.

CurrentCulture Gets or sets the locale information for the
current thread.

C# and the .NET Platform Chapter 8: Building a Better Window

-400 I ♡ Flyheart-

Table 8-3: Core Properties of the Application Type

PROPERTIES OF
APPLICATION CLASS MEANING IN LIFE

CurrentInputLanguage Gets or sets the current input language for the
current thread.

ProductName Retrieves the product name associated with
this application.

ProductVersion Retrieves the product version associated with
this application.

StartupPath Retrieves the path for the executable file that
started the application.

Notice that some properties such as CompanyName and ProductName, provide a handy
way to retrieve assembly level metadata. As you recall from Chapter 7, an assembly may
be extended using a number of attributes. Thus, if you specify the
[assembly:AssemblyCompany("")] attribute, you may obtain this information using
Application.CompanyName, without the need to make direct use of the types defined
within System.Reflection.

Finally, the Application class defines the following events shown in Table 8-4.

Table 8-4: Events of the Application Type

APPLICATION
EVENT

MEANING IN LIFE

ApplicationExit Occurs when the application is just about to shut down.

Idle Occurs when the application's message loop has finished
processing and is about to enter an idle state (meaning
there are no messages to process at the current time).

ThreadExit Occurs when a thread in the application is about to
terminate. If the main thread for an application is about to
be shut down, this event will be raised before the
ApplicationExit event.

Fun with the Application Class

To illustrate some of the functionality of the Application class (as well as preview
Windows Forms event handling), let's enhance our current raw MainWindow to perform
the following tasks:

 Display some basic information about this application on startup.

C# and the .NET Platform Chapter 8: Building a Better Window

-401 I ♡ Flyheart-

 Respond to the ApplicationExit event.
 Perform some preprocessing of the WM_LBUTTONDOWN message.

To begin, assume that you have extended your manifest using a number of attributes that
mark the name of this fine application and the company that created it (this process was
defined in Chapter 7, so take a peek if you need a refresher):

// Some attributes regarding this assembly.

[assembly:AssemblyCompany("Intertech, Inc.")]

[assembly:AssemblyProduct("A Better Window")]

The constructor of our Form-derived class can obtain this information using properties of
the Application, which are displayed using the Show() method of the MessageBox type:

namespace AppClassExample

{

using System;

using System.Windows.Forms;

using System.Reflection;

public class MainForm : Form

{

 ...

 public MainForm()

 {

 GetStats();

 }

 private void GetStats()

 {

 MessageBox.Show(Application.CompanyName, "Company:");

 MessageBox.Show(Application.ProductName, "App Name:");

 MessageBox.Show(Application.StartupPath, "I live here:");

 }

}

}

As you can assume, when you run this application, you see various message boxes that
display the relevant information (as shown in Figure 8-9).

C# and the .NET Platform Chapter 8: Building a Better Window

-402 I ♡ Flyheart-

Figure 8-9: Extracting information using the Application type

Responding to the ApplicationExit Event

Next, let's configure this Form to respond to the ApplicationExit event. When you wish to
respond to events from within a Windows Forms application, you will be happy to find that
the same event logic detailed in Chapter 5 is used to handle GUI-based events. Therefore,
if you wish to intercept the ApplicationExit event, you simply register a custom method
with the delegate using the += operator:

public class MainForm : Form

{

 ...

 public MainForm()

 {

 ...

 // Intercept the ApplicationExit event.

 Application.ApplicationExit += new EventHandler(Form_OnExit);

 }

 // Event handler.

 private void Form_OnExit(object sender, EventArgs evArgs)

 {

 MessageBox.Show("See ya!", "This app is dead...");

 }

}

Notice that the signature of the ApplicationExit event handler must conform to a delegate
of type System.EventHandler:

// Many GUI based events make use of this delegate (EventHandler)

// which requires two parameters:

public delegate void EventHandler(object sender, EventArgs e);
The first parameter of the delegate is of type System.Object, which represents the object
sending the event. The EventArgs parameter (or a descendent thereof) contains relevant

C# and the .NET Platform Chapter 8: Building a Better Window

-403 I ♡ Flyheart-

information for the current event. For example, if you have an event handler that responds
to a mouse event, the MouseEventArgs parameter will contain mouse related details such
as the (x, y) position of the cursor. If you run the application, you will be able to respond to
the termination of this application.

Preprocessing Messages with the Application Class

The final step of our example is to perform some preprocessing logic of the
WM_LBUTTONDOWN message. As you know, this standard Windows message is sent
when the left mouse button has been clicked within the client area of a given Form (or any
GUI widget that is equipped to respond to this event). Now, be very aware that you will
find a much simpler way to intercept standard mouse events a bit later in this chapter.
This step of the current project is simply to illustrate how to perform any preprocessing
logic before the event is fully dispatched.

When you wish to filter messages in the .NET framework, your first task is to create a new
class that implements the IMessageFilter interface. This is extremely simple, given that
IMessageFilter defines only one method, PreFilterMessage(). Return "true" to filter the
message and prevent it from being dispatched or "false" to allow the message to continue
on its way.

Within the scope of your implementation, you may examine the incoming Message.Msg
field to extract the numerical value of the Windows message (in our case,
WM_LBUTTONDOWN which is the value 513). For example:

using Microsoft.Win32; // Must reference this namespace!

// Create a message filter.

public class MyMessageFilter : IMessageFilter

{

 public bool PreFilterMessage(ref Message m)

 {

 // Intercept the left mouse button down message.

 if (m.Msg == 513) // WM_LBUTTONDOWN = 513.

 {

 MessageBox.Show("WM_LBUTTONDOWN is: " + m.Msg);

 return true;

 }

 return false; // All other messages are ignored...

 }

C# and the .NET Platform Chapter 8: Building a Better Window

-404 I ♡ Flyheart-

}

Once you have created the class that will be filtering the incoming messages, you must
register a new instance of this type using the static AddMessageFilter() method. Here is
the update to our existing MainForm class:

public class MainForm : Form

{

 private MyMessageFilter msgFilter = new MyMessageFilter();

 ...

 public MainForm()

 {

 ...

 // Add message filter.

 Application.AddMessageFilter(msgFilter);

 }

 // Event handler

 private void Form_OnExit(object sender, EventArgs evArgs)

 {

 MessageBox.Show("See ya!", "This app is dead...");

 // Remove message filter.

 Application.RemoveMessageFilter(msgFilter);

 }

}

Of course, when you run this application, you see the message that appears in Figure
8-10 when you click the left mouse button anywhere within the application. As you can tell,
filtering messages is not a task you need to perform all that often. Nevertheless, it is nice
to know that you are able to drop down to this level of detail if you so choose.

Figure 8-10: Filtering messages

C# and the .NET Platform Chapter 8: Building a Better Window

-405 I ♡ Flyheart-

SOURCE
CODE

The AppClassExample project can be found under the Chapter
8 subdirectory.

The Anatomy of a Form
Now that you understand the role of the Application object, our next task is to examine the
functionality of the Form class itself. As you have seen, when you create a new window
(or dialog) you need to define a new class deriving from System.Windows.Forms.Form.
This class gains a great deal of functionality from the types in its inheritance chain. Figure
8-11 illustrates the big picture.

Figure 8-11: The derivation of the Form type

Detailing each and every member of each class in the Form's inheritance chain would
require a small book in itself. However, it is important to understand the core behavior
supplied by each base class. I assume that you will spend time examining the full details
behind each class at your leisure.

Basic Form Functionality

Before we get to the real meat of the Form's inheritance chain, understand that like any
type in the .NET universe, Form ultimately derives from System.Object (which should be
no surprise to you at this point). MarshalByRefObject defines the behavior to remote this
type by reference, rather than by value. Thus, if you remotely instantiate a Form across
the wire, you are manipulating a reference to the Form on the remote machine (not
manipulating a local copy of the Form).

The Component Class

The first base class of immediate interest is Component. The Component type provides a
canned implementation of the IComponent interface. This predefined interface defines a
property named Site, which returns (surprise, surprise) an ISite interface. Furthermore,
IComponent inherits a single event from the IDisposable interface named Disposed:

public interface IComponent : IDisposable

{

C# and the .NET Platform Chapter 8: Building a Better Window

-406 I ♡ Flyheart-

 // The Site property.

 Public ISite Site { virtual get; virtual set; }

 // The Disposed event.

 public event EventHandler Disposed;

}

The ISite interface defines a number of methods that allow a Control to interact with the
hosting container (for example, a Form hosting a Button widget):

Public interface ISite: IServiceProvider

{

 // Properties of the ISite interface.

 public IComponent Component { virtual get; }

 public IContainer Container { virtual get; }

 public bool DesignMode { virtual get; }

 public string Name { virtual get; virtual set; }

}

By and large, the properties defined by the ISite interface are only of interest to you if you
are attempting to build a widget that can be mainpulated at design time (such as a custom
control).

In addition to the Site property, Component also provides an implementation of the
Dispose() method (as seen earlier in this chapter). Recall that the Dispose() method is
called when a component is no longer required. For example, when a Form has closed,
the Dispose() method is called automatically for the Form and for all widgets contained
within that form.

Remember, you are free to override Dispose() in your Form-derived class to free large
resources in a timely manner and to remove references to other objects so that they can
be garbage collected:

public override void Dispose()

{

 base.Dispose();

 // Do your work...

}

The Control Class
The next base class of interest is System.Windows.Forms.Control.which establishes the
common behaviors required by any GUI-centric type. The core members of

C# and the .NET Platform Chapter 8: Building a Better Window

-407 I ♡ Flyheart-

System.Windows.Forms.Control allow you to configure the size and position of a control,
extract the underlying HWND, as well as capture keyboard and mouse input. Table 8-5
defines some of the properties to be aware of.

Table 8-5: Core Properties of the Control Type

CONTROL
PROPERTY

MEANING IN LIFE

Top, Left, Bottom,
Right, Bounds,
ClientRectangle,
Height, Width

Each of these properties specifies various
attributes about the current dimensions of the
Control-derived object.

Bounds returns a Rectangle that specifies the size
of the control. ClientRectangle returns a Rectangle
that corresponds to the size of the client area of the
control.

Created, Disposed,
Enabled, Focused,
Visible

These properties each return a Boolean that
specifies the state of the current Control.

Handle Returns a numerical value (integer) which
represents the HWND of this Control.

ModifierKeys This static property checks the current state of the
modifier keys (shift, control, and alt) and returns the
state in a Keys type.

MouseButtons This static property checks the current state of the
mouse buttons (left, right, and middle mouse
buttons) and returns this state in a MouseButtons
type.

Parent Returns a Control object that represents the parent
of the current Control.

TabIndex, TabStop These properties are used to configure the tab
order of the Control.

Text The current text associated with this Control.

The Control base class also defines a number of methods that allow you to interact with
any Control-derived type. A partial list of some of the more common members appears in
Table 8-6.

C# and the .NET Platform Chapter 8: Building a Better Window

-408 I ♡ Flyheart-

Table 8-6: Core Methods of the Control Type

CONTROL
METHOD

MEANING IN LIFE

GetStyle()

SetStyle()

These methods are used to manipulate the style flags of the
current Control using the ControlStyles enumeration.

Hide(),
Show()

Invalidate()

These methods indirectly set the state of the Visible
property. Forces the Control to redraw itself by forcing a
paint message into the message queue.

This method is overloaded to allow you to specify a specific
Rectangle to refresh, rather than the entire client area.

OnXXXX() The Control class defines numerous methods that can be
overridden by a subclass to respond to various events (e.g.,
OnMouseMove(), OnKeyDown(), OnResize(), and so forth).
As you will see later in this chapter, when you wish to
intercept a GUI-based event, you have two approaches.
One approach is to simply override one of the existing
event handlers. Another is to add a custom event handler to
a given delegate.

Refresh() Forces the Control to invalidate and immediately repaint
itself and any children.

SetBounds(),
SetLocation(
),
SetClientAre
a()

Each of these methods is used to establish the dimensions
of the Control derived object.

Setting a Form's Styles

Let's examine two interesting methods of the Control type: GetStyle() and Set-Style().
Win32 programmers are no doubt familiar with the WNDCLASSEX structure, and the
dozens of oddball styles that can be used to fill the various fields. While Windows Forms
hides this Windows 'goo' from view, you are able to modify the default styles of your Form
if need be. First, check out the related Control-Styles enumeration:

public enum ControlStyles

{

 AllPaintingInWmPaint,

 CacheText,

 ContainerControl,

C# and the .NET Platform Chapter 8: Building a Better Window

-409 I ♡ Flyheart-

 EnableNotifyMessage,

 FixedHeight,

 FixedWidth,

 Opaque,

 ResizeRedraw,

 Selectable,

 StandardClick,

 StandardDoubleClick,

 SupportsTransparentBackColor,

 UserMouse,

 UserPaint,

}

The values of the ControlStyle enumeration may OR-ed together if you wish to specify
multiple styles and as you would expect, a Form has a default style set (I'll assume you
will check out online Help for full details of each value).

Assume you have a Form containing a single Button type. In the Click event handler of
this Button, you can check if the Form supports a given style using GetStyle():

// Shows false!

private void btnGetStyles_Click(object sender, System.EventArgs e)

{

 MessageBox.Show(GetStyle(ControlStyles.ResizeRedraw).ToSring(),

 "Do you have ResizeRedraw?");

}

To set the bit of a given style (by specifying true or false) you could write:

public StyleForm()

{

 ...

 SetStyle(ControlStyles.ResizeRedraw, true);

}

The ResizeRedraw is one value you typically want to add to a given Form. By default this
style is not active and thus, a Form will not automatically redraw itself when resized. This
means, if you have intercepted a Paint event (which you will do a bit later) and resize the
Form, your drawing logic is not refreshed! If you wish to ensure that the Paint event fires
whenever the user resizes the Form, be sure to specify the ResizeRedraw style using

C# and the .NET Platform Chapter 8: Building a Better Window

-410 I ♡ Flyheart-

SetStyle(). Another (equally valid) alternative is to intercept the Form's Resize event and
call Invalidate() directly:

private void StyleForm_Resize(object sender, System.EventArgs e)

{

 Invalidate(); // This forces a repaint (more details later...)

}
Typically, you would want to intercept the Resize() event when you have additional work
to do beyond triggering a paint session.

You tackle the topics of GDI+, paint sessions and GUI widgets in the chapters to come.
However to illustrate the effect of setting Form styles, assume you have some GDI+
rendering logic that draws a dashed black line around the client area rectangle. If the
ResizeRedraw bit is set to false, you find the ugliness shown in Figure 8-12 as you resize
the Form.

Figure 8-12: ResizeRedraw is a bit off

If you set it to "true" you have correct rendering (Figure 8-13).

Figure 8-13: ResizeRedraw is correct

SOURCE
CODE

The FormStyles project is under the Chapter 8 subdirectory.

Control Events

The Control class also defines a number of events that can logically be grouped into two
major categories: Mouse events and keyboard events (Table 8-7).

C# and the .NET Platform Chapter 8: Building a Better Window

-411 I ♡ Flyheart-

Table 8-7: Core Events of the Control Type

CONTROL
EVENT

MEANING IN LIFE

Click,
DoubleClick,
MouseEnter,
MouseLeave,
MouseDown,
MouseUp,
MouseMove,
MouseHover,
MouseWheel

The Control class defines numerous events triggered in
response to mouse input.

KeyPress,
KeyUp,
KeyDown,

The Control class also defines numerous events
triggered in response to keyboard input.

Fun with the Control Class

To be sure, the Control class does define additional properties, methods, and events
beyond the subset you have just examined. However, to illustrate some of these core
members, let's build a new Form type (also called MainForm) that provides the following
functionality:

 Set the initial size of the Form to some arbitrary dimensions.
 Override the Dispose() method.
 Respond to the MouseMove and MouseUp events (using two

approaches).
 Capture and process keyboard input.

To begin, assume you have a new C# class derived from Form. First, update the default
constructor to set the top, left, bottom, and right coordinates of the Form using various
properties of the Control class. To confirm these changes, make use of Bounds property,
and display the string version of the current dimensions. Do be aware that Bounds returns
a Rectangle type that is defined in the System.Drawing namespace. Therefore be sure to
set an assembly reference (to System.Drawing.dll) if you are building this Form by hand
(Visual Studio.NET Windows Forms projects do so automatically):

// Need this for Rectangle definition.

using System.Drawing;

...

public class MainForm : Form

{

C# and the .NET Platform Chapter 8: Building a Better Window

-412 I ♡ Flyheart-

 public static int Main(string[] args)

 {

 Application.Run(new MainForm());

 return 0;

 }

 public MainForm()

 {

 Top = 100;

 Left = 75;

 Height = 100;

 Width = 500;

 MessageBox.Show(Bounds.ToString(), "Current rect");

 }

}

When you run this application, you are able to confirm the coordinates of your Form
(Figure 8-14).

Figure 8-14: The Bounds property

Once you dismiss the message box, you are presented with a rather elongated main
window (Figure 8-15).

Figure 8-15: The Top, Left, Height, and Width properties

C# and the .NET Platform Chapter 8: Building a Better Window

-413 I ♡ Flyheart-

Now, let's retrofit your class to override the inherited Component.Dispose() method. As
you recall from earlier in this chapter, the Application object defines an event named
ApplicationExit. If you configure your Form to intercept this event, you are effectively
informed of the destruction of the application. As a (much) simpler alternative, you can
achieve the same effect by simply overriding the abstract Dispose() method. Do note that
you should call your base class' Dispose() method beforehand:

public class MainForm : Form

{

...

// Visual Studio.NET Windows Forms projects automatically support this method.

 public override void Dispose()

 {

 base.Dispose();

 MessageBox.Show("Disposing this form...");

 }

}

Responding to Mouse Events: Take One

Next, you need to intercept the MouseUp event. The goal is to display the (x, y) position
at which the MouseUp event occurred. When you wish to respond to events from within a
Windows Forms application, you have two general approaches. The first approach should
be familiar to you at this point in the game: Use delegates. The second approach is to
override the appropriate base class method. Let's examine each technique, beginning
with standard delegation. Here is the updated MainForm:

public class MainForm : Form

{

 public static int Main(string[] args)

 {

 Application.Run(new MainForm());

 return 0;

 }

 public MainForm()

 {

 Top = 100;

 Left = 75;

 Height = 100;

C# and the .NET Platform Chapter 8: Building a Better Window

-414 I ♡ Flyheart-

 Width = 500;

 MessageBox.Show(Bounds.ToString(), "Current rect");

 // Listen for the MouseUp event...

 this.MouseUp += new MouseEventHandler(OnMouseUp);

 }

 // Method called in response to the MouseUp event.

 public void OnMouseUp(object sender, MouseEventArgs e)

 {

 this.Text = "Clicked at: (" + e.X + ", " + e.Y + ")";

 }

...

}

Now, recall that GUI-based delegates take an EventArgs (or derivative thereof) as the
second parameter. When you process mouse events, the second parameter is of type
MouseEventArgs. This type (defined in the System.Windows.Forms namespace) defines
a number of interesting properties that may be used to gather various statistics regarding
the state of the mouse, as seen in Table 8-8.

Table 8-8: Properties of the MouseEventArgs type

MOUSEEVENTARGS
PROPERTY

MEANING IN LIFE

Button Gets which mouse button was pressed, as
defined by the MouseButtons enumeration.

Clicks Gets the number of times the mouse button was
pressed and released.

Delta Gets a signed count of the number of detents the
mouse wheel has rotated.

X Gets the x-coordinate of a mouse click.

Y Gets the y-coordinate of a mouse click.

The implementation of the OnMouseUp() method simply extracts the (x, y) position of the
cursor and displays this information in the Form's caption via the inherited Text property.
Figure 8-16 shows a possible test run.

C# and the .NET Platform Chapter 8: Building a Better Window

-415 I ♡ Flyheart-

Figure 8-16: Capturing MouseUp events

To make things even more interesting, we could also capture a MouseMove event, and
display the same (x, y) position data in the caption of the Form. In this way, the current
location of the cursor is tracked whenever the mouse cursor is moved within the client
area:

public class MainForm : Form

{

...

 public MainForm()

 {

 ...

 // Track mouse movement and MouseUp event.

 this.MouseUp += new MouseEventHandler(OnMouseUp);

 this.MouseMove += new MouseEventHandler(OnMouseMove);

 }

 public void OnMouseUp(object sender, MouseEventArgs e)

 {

 MessageBox.Show("Stop clicking me!");

 }

 public void OnMouseMove(object sender, MouseEventArgs e)

 {

 this.Text = "Current Pos: (" + e.X + ", " + e.Y + ")";

 }

...

}

Determining Which Mouse Button Was Clicked
One thing to be aware of is that the MouseUp (or MouseDown) event is sent whenever
any mouse button is clicked. If you wish to determine exactly which button was clicked
(left, right, or middle) you need to examine the Button property of the MouseEventArgs

C# and the .NET Platform Chapter 8: Building a Better Window

-416 I ♡ Flyheart-

class. The value of Button is constrained by the MouseButtons enumeration. For
example:

public void OnMouseUp(object sender, MouseEventArgs e)

{

 // Which mouse button was clicked?

 if(e.Button = = MouseButtons.Left)

 MessageBox.Show("Left click!");

 else if(e.Button = = MouseButtons.Right)

 MessageBox.Show("Right click!");

 else // MouseButtons.Middle

 MessageBox.Show("Middle click!");

}

Thus, if you click the middle button you would see what's shown in Figure 8-17.

Figure 8-17: Which mouse button was clicked

Responding to Mouse Events: Take Two

The other approach to capture events in a Control-derived type is to override the correct
base class method, which in your case would be OnMouseUp() and OnMouseMove().
The Control type defines a number of protected virtual methods that will be called
automatically when the corresponding event is triggered. If you were to update your Form
using this technique, you have no need to manually specify a custom event handler:

public class MainForm : Form

{

 ...

 public MainForm()

 {

 ...

C# and the .NET Platform Chapter 8: Building a Better Window

-417 I ♡ Flyheart-

 // No need to do this when overriding!

 // this.MouseUp += new MouseEventHandler(OnMouseUp);

 // this.MouseMove+= new MouseEventHandler(OnMouseMove);

 }

 protected override void OnMouseUp(/*object sender,*/ MouseEventArgs e)

 {

 // Which mouse button was clicked?

 if(e.Button == MouseButtons.Left)

 MessageBox.Show("Left click!");

 else if(e.Button == MouseButtons.Right)

 MessageBox.Show("Right click!");

 else if(e.Button == MouseButtons.Middle)

 MessageBox.Show("Middle click!");

 }

 protected override void OnMouseMove(/*object sender,*/ MouseEventArgs e)

 {

 this.Text = "Current Pos: (" + e.X + ", " + e.Y + ")";

 }

...

}

Notice how the signatures of each method takes a single parameter of type
MouseEventArg, rather than two parameters that conform to the MouseEventHandler
delegate. If you run the program again, you see no change whatsoever (which is good).
Typically you only need to override an "OnXXXX()" method if you have additional work to
perform before the event is fired. The preferred approach (and the one used by Visual
Studio.NET) is to handle the event directly as you did in the first mouse example.

Responding to Keyboard Events

Processing keyboard input is almost identical to responding to mouse activity. The
following code captures the KeyUp event and displays the textual name of the character
that was pressed in a message box. Here, you capture this event using the delegation

C# and the .NET Platform Chapter 8: Building a Better Window

-418 I ♡ Flyheart-

technique (there is a method named OnKeyUp() that can be overridden as an
alternative):

public class MainForm : Form

{

...

 public MainForm()

 {

 Top = 100;

 Left = 75;

 Height = 100;

 Width = 500;

 MessageBox.Show(Bounds.ToString(), "Current rect");

 ...

 // Listen to KeyUp Event.

 this.KeyUp += new KeyEventHandler(OnKeyUp);

 }

 public void OnKeyUp(object sender, KeyEventArgs e)

 {

 MessageBox.Show(e.KeyCode.ToString(), "Key Pressed!");

 }

...

}

As you can see, the KeyEventArgs type maintains an enumeration named KeyCode that
holds the ID of the key press. In addition, the KeyEventArgs type, defines the useful
properties listed in Table 8-9.

Table 8-9: Properties of the KeyEventArgs Type

KEYEVENTARGS
PROPERTY

MEANING IN LIFE

Alt Gets a value indicating whether the ALT key was
pressed.

Control Gets a value indicating whether the CTRL key was
pressed.

C# and the .NET Platform Chapter 8: Building a Better Window

-419 I ♡ Flyheart-

Table 8-9: Properties of the KeyEventArgs Type

KEYEVENTARGS
PROPERTY

MEANING IN LIFE

Handled Gets or sets a value indicating whether the event was
handled.

KeyCode Gets the keyboard code for a
System.Windows.Forms.Control.KeyDown or
System.Windows.Forms.Control.KeyUp event.

KeyData Gets the key data for a
System.Windows.Forms.Control.KeyDown or
System.Windows.Forms.Control.KeyUp event.

Modifiers Indicates which modifier keys (CTRL, SHIFT, and/or
ALT) were pressed.

Shift Gets a value indicating whether the SHIFT key was
pressed.

Figure 8-18 shows a possible key press.

Figure 8-18: Which key was pressed?

SOURCE
CODE

The ControlBehaviors project is included under the Chapter 8
subdirectory.

The Control Class Revisited
The Control class defines further behaviors to configure background and foreground
colors, background images, font characteristics, drag-and-drop functionality and support
for context menus. This class provides docking and anchoring behaviors for the derived
types (which you examine in Chapter 10). Perhaps the most important duty of the Control
class is to establish a mechanism to render images, text, and various geometric patterns
onto the client area via the OnPaint() method. To begin, observe these additional
properties of the Control class, as seen in Table 8-10:

C# and the .NET Platform Chapter 8: Building a Better Window

-420 I ♡ Flyheart-

Table 8-10: Additional Control Properties

CONTROL
PROPERTY

MEANING IN LIFE

AllowDrop If AllowDrop is set to true then this control allows
drag-and-drop operations and events to be used.

Anchor The anchor property determines which edges of the
control are anchored to the container's edges.

BackColor,
BackgroundImage,
Font, ForeColor,
Cursor

These properties configure how the client area
should be displayed.

ContextMenu Specifies which context menu (e.g., pop-up menu)
will be shown when the user right clicks the control.

Dock The dock property controls to which edge of the
container this control is docked to. For example,
when docked to the top of the container, the control
is displayed flush at the top of the container,
extending the length of the container.

Opacity Determines the opacity of the control, in
percentages (0.0 is completely transparent, 1.0 is
completely opaque).

Region This property configures a Region object that
specifies the outline/silhouette/boundary of the
control.

RightToLeft This is used for international applications where the
language is written from right to left.

The Control class also defines a number of additional methods and events used to
configure how the Control should respond to drag-and-drop operations and respond to
painting operations (Table 8-11):

Table 8-11: Additional Control Methods

CONTROL
METHOD/EVENT

MEANING IN LIFE

DoDragDrop()

OnDragDrop()

OnDragEnter()

OnDragLeave()

These methods are used to monitor drag-and-drop
operations for a given Control descendent.

C# and the .NET Platform Chapter 8: Building a Better Window

-421 I ♡ Flyheart-

Table 8-11: Additional Control Methods

CONTROL
METHOD/EVENT

MEANING IN LIFE

OnDragOver()

ResetFont()

ResetCursor()

ResetForeColor()

ResetBackColor()

These methods reset various UI attributes of a child
to the corresponding value of the parent.

OnPaint() Inheriting classes should override this method to
handle the Paint event.

DragEnter

DragLeave

DragDrop

DragOver

These events are sent in response to
drag-and-drop operations.

Paint This event is sent whenever the Control has
become "dirty" and needs to be repainted.

More Fun with the Control Class

To illustrate some of these additional Control members, the following class sets the
background color of the Form object to "Tomato" (you just have to love the names of
these colors), the opacity to 50 percent, and configures the mouse cursor to display an
hourglass icon. More important, let's handle the Paint event in order to render a text string
into the Form's client area. Here is the update:

using System;

using System.Windows.Forms;

using System.Drawing; // Needed for Color, Brush, and Font types.

public class MainForm : Form

{

 ...

 public MainForm()

 {

 // Set some properties that we have inherited from Control.

 BackColor = Color.Tomato;

C# and the .NET Platform Chapter 8: Building a Better Window

-422 I ♡ Flyheart-

 Opacity = 0.5d;

 this.Cursor = Cursors.WaitCursor;

 // Handle the Paint event.

 this.Paint += new PaintEventHandler(Form1_Paint);

 }

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 g.DrawString("What a head trip...",

 new Font("Times New Roman", 20),

 new SolidBrush(Color.Black), 40, 10);

 }

}

If you run this application (Figure 8-19) you will see that the Form is indeed transparent! In
fact, my screen shot illustrates this point quite clearly (note the code in the background).

Figure 8-19: Painting with the Opacity property

Painting Basics

The most important aspect of this application is the handling of the Paint event. Notice
that the delegate defines a method that takes a parameter of type PaintEventArgs. This
type defines two properties to help you configure the current paint session for the Control
as seen in Table 8-12.

C# and the .NET Platform Chapter 8: Building a Better Window

-423 I ♡ Flyheart-

Table 8-12: Additional Control Properties

PAINTEVENTARGS
PROPERTY

MEANING IN LIFE

ClipRectangle Gets the rectangle in which to paint.

Graphics Gets the Graphics object used during a paint
session.

The critical property of PaintEventArgs is Graphics, which is called to retrieve a Graphics
object to use during the painting session. You examine this class (and GDI+ in general) in
greater detail in Chapter 9. For now, do understand that the Graphics class defines a
number of members that allow you to render text, geometric shapes and images onto a
Control-derived type.

Finally, in this example you also configured the Cursor property to display an hourglass
symbol whenever the mouse cursor is within the bounding rectangle of this Control. The
Cursors type can be assigned to any member of the Cursors enumeration (e.g., Arrow,
Cross, UpArrow, Help, and so forth):

public MainForm()

{

 ...

 this.Cursor = Cursors.WaitCursor;

}
SOURCE
CODE

The MoreControlBehaviors project is included under the
Chapter 8 subdirectory.

The ScrollableControl Class

ScrollableControl is used to define a small number of members that allow your widget to
support vertical and horizontal scrollbars. The most intriguing members of the
ScrollableControl type would have to be the AutoScroll property and the related
AutoScrollMinSize property. For example, assume you wish to ensure that if the end user
resizes your Form, horizontal and vertical scrollbars are automatically inserted if the size
of the client area is less than or equal to 300 * 300 pixels. Programmatically, your task is
simple:

// This could be set in the class constructor or InitializeComponent().

// Note that you need to reference the System.Drawing namespace

// to gain access to the Size type.

this.AutoScroll = true;

this.AutoScrollMinSize = new System.Drawing.Size (300, 300);

C# and the .NET Platform Chapter 8: Building a Better Window

-424 I ♡ Flyheart-

The ScrollableControl class takes care of the rest. For example, if you had a Form that
contained a number of child objects (buttons, labels, or whatnot), you would find that the
scrolling logic ensures the entire Form real estate is viewable. For the current example,
simply render a large block of text onto the form's client area (see Figure 8-20).

Figure 8-20: Auto scrolling

The ScrollableControl class does define a number of additional members beyond
AutoScroll and AutoScrollMinSize, but not many. Also be aware that when you wish to
take greater control over the scrolling process, you are able to create and manipulate
individual ScrollBar types (such as HScrollBar and VScrollBar). I'll leave it to you to check
out the remaining members using online Help.

SOURCE
CODE

The ScrollForm project is included under the Chapter 8
sub-directory.

ContainerControl Class
ContainerControl defines support to manage the focus of a given GUI item. In practice,
the behavior defined by System.Windows.Forms.ContainerControl is much more useful
when you are building a Form that contains a number of child controls, and wish to allow
the user to use the Tab key to alternate focus. Using a small set of members, you can
programmatically obtain the currently selected control, force another to receive focus and
so forth. Table 8-13 gives a rundown of some of the more interesting members.

Table 8-13: Members of the ContainerControl Type

CONTAINERCONTROL
MEMBER

MEANING IN LIFE

ActiveControl

ParentForm

These properties allow you to obtain and set
the active control, as well as retrieve a
reference to the Form that is hosting the item.

ProcessTabKey() This method allows you to programmatically
activate the Tab key to set focus to the next

C# and the .NET Platform Chapter 8: Building a Better Window

-425 I ♡ Flyheart-

Table 8-13: Members of the ContainerControl Type

CONTAINERCONTROL
MEMBER

MEANING IN LIFE

available control.

On a related note, recall that all descendents of System.Windows.Forms.Control inherit
the TabStop and TabIndex properties. As you might be able to guess, these items are
used to set the tab order of controls maintained by a parent container, and are used in
conjunction with the members supplied by the ContainerControl class. You revisit the
issue of tab order during the discussion of programming controls (Chapter 10).

The Form Class
This brings us to the Form class itself, which is typically the direct base class for your
custom Form types. In addition to the large set of members inherited from the Control,
ScrollableControl and ContainerControl classes the Form type adds even greater
functionality. Let's start with the core properties (Table 8-14).
The truth of the matter is that the Form class does not define a great deal of additional
methods. The bulk of a Form's functionality comes from the base classes you have
already examined. However, Table 8-15 gives a partial list of some additional methods to
be aware of.
Finally, the Form class does define a number of Events that you should be aware of.
Table 8-16 gives a sampling.

Table 8-14: Properties of the Form Type

FORM
PROPERTY

MEANING IN LIFE

AcceptButton Gets or sets the button on the form that is clicked when
the user presses the ENTER key.

ActiveMDIChild

IsMDIChild

IsMDIContainer

Each of these properties is used within the context of an
MDI application.

AutoScale Gets or sets a value indicating whether the form will
adjust its size to fit the height of the font used on the form
and scale its controls.

BorderStyle Gets or sets the border style of the form. Used in
conjunction with the FormBorderStyle enumeration.

CancelButton Gets or sets the button control that is to be clicked when
the user presses the ESC key.

ControlBox Gets or sets a value indicating whether the form has a
control box.

C# and the .NET Platform Chapter 8: Building a Better Window

-426 I ♡ Flyheart-

Table 8-14: Properties of the Form Type

FORM
PROPERTY

MEANING IN LIFE

Menu

MergedMenu

Gets or sets the (merged) menu for the Form.

MaximizeBox

MinimizedBox

Used to determine if this Form enables the maximize and
minimize boxes.

ShowInTaskbar Should this Form be seen on the Windows taskbar?

StartPosition Gets or sets the starting position of the form at run time,
as specified by the FormStartPosition enumeration.

WindowState Configures how the Form is to be displayed on startup.
Used in conjunction with the FormWindowState
enumeration.

Table 8-15: Methods of the Form Type

FORM METHOD MEANING IN LIFE

Activate() Activate a given Form and give it focus.

Close() Closes a Form.

CenterToScreen() Places the Form dead center on the screen.

LayoutMDI() Arranges each child Form (as specified by the
LayoutMDI enumeration) within the parent Form.

OnResize() May be overridden to respond to Resize events.

ShowDialog() Displays a Form as a Modal dialog. More on dialog
box programming at a later time.

Table 8-16: Select Events of the Form Type

FORM EVENT MEANING IN LIFE

Activate Sent when a form is brought to the front of the active
application.

Closed, Closing These events are used to determine when the Form is
about to close, or has closed.

MDIChildActive Sent when a child window is activated.

C# and the .NET Platform Chapter 8: Building a Better Window

-427 I ♡ Flyheart-

Fun with the Form Class

At this point, you should feel quite comfortable with the functionality provided by the Form
class and each of its parent classes. Here is a main window (MainForm) that makes use
of various members in the inheritance chain:

public class MainForm: Form

{

 ...

 public MainForm ()

 {

 // Configure the initial look and feel of this form.

 BackColor = Color.LemonChiffon; // Background color.

 Text = "My Fantastic Form"; // Form's caption.

 Size = new Size(200, 200); // 200 * 200.

 Center ToScreen(); // Center Form to the screen.

 // Handle events.

 this. Resize += new EventHandler(this.Form1_Resize);

 this.Paint += new PaintEventHandler(this.Form1_Paint);

 }

 private void MainForm_Resize(object sender, System.EventArgs e)

 {

 // Must invalidate when resizing, as Paint renders a string

 // into the current display rectangle!

 // (could also set the correct ControlStyle bit)

 Invalidate();

 }

 // Reference System.Drawing to render this string.

 private void MainForm_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 g.DrawString("Windows Forms is for building GUIs!",

C# and the .NET Platform Chapter 8: Building a Better Window

-428 I ♡ Flyheart-

 new Font("Times New Roman", 20),

 new SolidBrush(Color.Black),

 this.DisplayRectangle); // Display in client rect.

 }

}

Here, a Form object that begins life centered on the screen has been created. In addition,
the Resize event has been handled. Simply call Invalidate() to force the client area to be
refreshed. In this way, the text string rendered on the client area always fits within the
bounding rectangle Form's client area (note the use of the DisplayRectangle property).

SOURCE
CODE

The SimpleFormApp can be found under the Chapter 8
sub-directory.

Building Menus with Windows Forms
Now that you understand the composition of the Form class, the next task is to learn how
to establish a menu system to provide some degree of user interaction. The
System.Windows.Forms namespace provides a number of types that facilitate the
building of main menus (i.e., menus mounted at the top of a Form), as well as
context-sensitive pop-up menus (e.g., "right-click" menus). To begin, let's examine what it
would take to build a top-most menu that allows the end user to exit the application using
a standard "File | Exit" menu command (Figure 8-21).

Figure 8-21: A simple menu system
The first class to be aware of is System.Windows.Forms.Menu, which functions as the
base class for all other menu-related classes (MainMenu, MenuItem, and ContextMenu).
Be aware that System.Windows.Forms.Menu is an abstract class, and therefore you
cannot create a direct instance of this type. Rather, you create instances of one (or more)
of the derived types. The Menu class defines basic menu-centric behaviors such as
providing access to an individual menu item, cloning menus, merging menus (for MDI
applications), and so forth. Figure 8-22 shows the relationship between these core types.

C# and the .NET Platform Chapter 8: Building a Better Window

-429 I ♡ Flyheart-

Figure 8-22: The Windows.Form's menu hierarchy

Note that the Menu class defines a nested class named MenuItemCollection, which is
inherited by the MainMenu, MenuItem, and ContextMenu subclasses. As you would
expect, this collection holds onto a set of related menu items, which is accessed using the
Menu.MenuItems property (more details in a moment). The Menu base class defines the
core members shown in Table 8-17.

Table 8-17: Members of the Menu Type

MENU
MEMBER

MEANING IN LIFE

Handle This property provides access to the HMENU handle that
represents this Menu.

IsParent This property specifies whether this menu contains any
items, or is the top-most item.

MdiListItem This property returns the MenuItem that contains the list
of MDI child windows.

MenuItems Another property. Returns an instance of the nested
Menu.MenuItemCollection type, which represents the
submenus owned by the Menu derived class.

GetMainMenu() Returns the MainMenu item that contains this menu.

MergeMenu() Merges another menu's items with this one's as specified
by their mergeType and mergeOrder properties. Used to
merge an MDI container's menu with that of its active
MDI child.

CloneMenu() Sets this menu to be an identical (deep) copy of another
menu.

Menu$MenuItemCollection Type

Perhaps the most immediately important member of the Menu class is the MenuItems
property, which returns an instance of the nested Menu$MenuItemCollection type. Recall
that nested classes can be helpful when you wish to establish a logical relationship
between related types. Here, the Menu$MenuItemCollection type represents the set of all
submenus owned by a Menu derived object.

C# and the .NET Platform Chapter 8: Building a Better Window

-430 I ♡ Flyheart-

For example, if you created a MainMenu to represent the top-most "File" menu, you
would add MenuItems (for example, Open, Save, Close, Save As) into the collection. As
you would expect, Menu$MenuItemCollection defines members to add and remove
MenuItem types, obtain the current count of MenuItems, as well access a particular
member in the collection. Table 8-18 lists some (but not all) of the core members.

Table 8-18: The Nested MenuItemCollection Type

MENU$MENUITEMCOLLECTION
MEMBER MEANING IN LIFE

Count Returns the number of MenuItems in
the collection.

Add()

AddRange()

Remove()

Inserts (or removes) a new MenuItem
into the collection. Be aware that the
Add() method has been overloaded
numerous times to allow you to
specify shortcut keys, delegates, and
whatnot.

AddRange() is helpful in that it allows
you to add an array of MenuItems in a
single call.

Clear() Removes all items from the
collection.

Contains() Used to determine if a given
MenuItem is inside the collection.

Building Your Menu System

Now that you understand the functionality of the abstract Menu class (and the nested
MenuItemCollection type), you can build your simple File menu. The process begins by
creating a MainMenu object. The MainMenu class represents the collection of top-most
menu items (e.g., File, Edit, View, Tools, Help, and so forth). Thus:

public class MainForm : Form

{

 // The Form's main menu.

 private MainMenu mainMenu;

 public MainForm()

 {

 // Create the main menu.

C# and the .NET Platform Chapter 8: Building a Better Window

-431 I ♡ Flyheart-

 mainMenu = new MainMenu();

 }

...

}

Once you have created a MainMenu object, you are able to make use of
Menu$MenuItemCollection.Add() to insert the top-most item (the "File" menu).
Menu$MenuItemCollection.Add() returns a new MenuItem class that represents the
newly inserted File menu.

To insert the subitems (e.g., Exit), you insert additional MenuItems into the
Menu$MenuItemCollection maintained by the File MenuItem. Finally, when you are
finished constructing your menu system, attach it to the owning Form using (of course)
the Menu property:

public class MainForm : Form

{

 // The Form's main menu.

 private MainMenu mainMenu;

 public MainForm()

 {

 // Create the main menu.

 mainMenu = new MainMenu();

 // Create the 'File' Menu and add it to the MenuItemCollection.

 MenuItem miFile = mainMenu.MenuItems.Add("&File");

 // Now make the Exit submenu and add it to the File Menu.

 // This version of Add() takes:

 // 1) A new MenuItem.

 // 2) A new delegate (EventHandler).

 // 3) An optional shortcut key.

 miFile.MenuItems.Add(new MenuItem("E&xit",

 new EventHandler(this.FileExit_Clicked),

 Shortcut.CtrlX));

 // Attach main menu to the Form object.

C# and the .NET Platform Chapter 8: Building a Better Window

-432 I ♡ Flyheart-

 this.Menu = mainMenu;

 }

 ...

}

Notice that if you embed an ampersand within the string name of a menu item, this marks
which letter should be underlined to designate the ALT key access combination. Thus,
when you specify "&File", you allow the end user to activate the File menu by selecting
"ALT+F."

When you added the Exit submenu item, you specified an optional shortcut flag. The
System.Windows.Forms.Shortcut enumeration is fully detailed in online Help. As you
might guess, this enumeration provides fields that specify traditional shortcut keys
(CTRL+C, CTRL+V, F1, F2, INS) as well as more exotic combinations.

Here then, is the current code behind the simple menu application. Just for kicks, notice
how you are able to set the BackColor property of the Form using the
MainMenu.GetForm() member:

// The Simple Menu Application.

public class MainForm : Form

{

 // The Form's main menu.

 private MainMenu mainMenu;

 // Run the application.

 [STAThread]

 public static void Main(string[] args)

 {

 Application.Run(new MainForm());

 }

 // Construct the form.

 public MainForm()

 {

 // Configure the initial look and feel of this form.

 Text = "Simple Menu";

 CenterToScreen();

C# and the .NET Platform Chapter 8: Building a Better Window

-433 I ♡ Flyheart-

 // First make the main menu object.

 mainMenu = new MainMenu();

 // Create the 'File | Exit' Menu.

 MenuItem miFile = mainMenu.MenuItems.Add("&File");

 miFile.MenuItems.Add(new MenuItem("&Exit",

 new EventHandler(this.FileExit_Clicked),

 Shortcut.CtrlX));

 // Attach main menu to the Form object.

 this.Menu = mainMenu;

 // MainMenu.GetForm() returns a reference to the owning Form.

 // To illustrate...

 mainMenu.GetForm().BackColor = Color.Black;

 }

 // File | Exit Menu item handler

 private void FileExit_Clicked(object sender, EventArgs e)

 {

 this.Close(); // Just close the application...

 }

}

Adding Another Top-Most Menu Item

Now, what if you wish to add another top-most menu named "Help" which contains a
single subitem named "About" (Figure 8-23)?

C# and the .NET Platform Chapter 8: Building a Better Window

-434 I ♡ Flyheart-

Figure 8-23: Extending our menu system

The code models the "File | Exit" menu logic almost exactly: Begin by adding a new
MenuItem to the MainMenu object ("Help"). From here, add a new subitem ("About"):

public class MainForm : Form

{

 private MainMenu mainMenu;

...

 public MainForm()

 {

 // Create the 'File | Exit' Menu.

 MenuItem miFile = mainMenu.MenuItems.Add("&File");

 miFile.MenuItems.Add(new MenuItem("E&xit",

 new EventHandler(this.FileExit_Clicked),

 Shortcut.CtrlX));

 // Now create a 'Help | About' menu.

 MenuItem miHelp = mainMenu.MenuItems.Add("Help");

 miHelp.MenuItems.Add(new MenuItem("&About",

 new EventHandler(this.HelpAbout_Clicked),

 Shortcut.CtrlA));

 ...

 }

 // Help | About Menu handler

 private void HelpAbout_Clicked(object sender, EventArgs e)

 {

 MessageBox.Show("The amazing menu app...");

 }

}
SOURCE
CODE

The SimpleMenu application is located under the Chapter 8
subdirectory.

Creating a Pop-Up Menu

Let's now examine the process of building a context-sensitive pop-up (i.e., right-click)
menu. The ContextMenu class represents the pop-up menu itself. Like the process of
building a MainMenu, your goal is to add individual MenuItems to the MenuItemCollection

C# and the .NET Platform Chapter 8: Building a Better Window

-435 I ♡ Flyheart-

to represent the possible selectable subitems. The following class makes use of a pop-up
menu to allow the user to configure the font size of a string rendered to the client area:

namespace MainForm

{

 // Helper struct for font size.

 internal struct TheFontSize

 {

 public static int Huge = 30;

 public static int Normal = 20;

 public static int Tiny = 8;

 }

 public class MainForm : Form

 {

 // Current size of font.

 private int currFontSize = TheFontSize.Normal;

 // The Form's popup menu.

 private ContextMenu popUpMenu;

 public static void Main(string[] args)

 {

 Application.Run(new MainForm());

 }

 private void MainForm_Resize(object sender, System.EventArgs e)

 {

 Invalidate();

 }

 public MainForm()

 {

 // First make the context menu.

 popUpMenu = new ContextMenu();

C# and the .NET Platform Chapter 8: Building a Better Window

-436 I ♡ Flyheart-

 // Now add the subitems & attach context menu.

 popUpMenu.MenuItems.Add("Huge",

 new EventHandler(PopUp_Clicked));

 popUpMenu.MenuItems.Add("Normal",

 new EventHandler(PopUp_Clicked));

 popUpMenu.MenuItems.Add("Tiny",

 new EventHandler(PopUp_Clicked));

 this.ContextMenu = popUpMenu;

 // Handle events.

 this.Resize += new System.EventHandler(this.MainForm_Resize);

 this.Paint += new PaintEventHandler(this.MainForm_Paint);

 }

 // PopUp_Clicked | X Menu item handler

 private void PopUp_Clicked(object sender, EventArgs e)

 {

 // Figure out the string name of the selected item.

 MenuItem miClicked = (MenuItem)sender;

 string item = miClicked.Text;

 if(item = = "Huge")

 currFontSize = TheFontSize.Huge;

 if(item = = "Normal")

 currFontSize = TheFontSize.Normal;

 if(item = = "Tiny")

 currFontSize = TheFontSize.Tiny;

 Invalidate();

 }

 private void MainForm_Paint(object sender, PaintEventArgs e)

 {

C# and the .NET Platform Chapter 8: Building a Better Window

-437 I ♡ Flyheart-

 Graphics g = e.Graphics;

 g.DrawString("Please click on me...",

 new Font("Times New Roman", (float)currFontSize),

 new SolidBrush(Color.Black),

 this.DisplayRectangle);

 }

 }

}
Notice that as you add the subitems to the ContextMenu, you have assigned the same
event handler to each. When a given item is clicked, the flow of logic brings us to the
PopUp_Clicked() method. Using the "sender" argument, you are able to determine the
name of the MenuItem (i.e., the text string it has been assigned) and take an appropriate
course of action (which works just fine, assuming you are not interested in localizing the
application):

// PopUp_Clicked | X Menu item handler

private void PopUp_Clicked(object sender, EventArgs e)

{

 // Figure out the string name of the selected item.

 MenuItem miClicked = (MenuItem)sender;

 string item = miClicked.Text;

 if(item = = "Huge")

 currFontSize = TheFontSize.Huge;

 if(item = = "Normal")

 currFontSize = TheFontSize.Normal;

 if(item = = "Tiny")

 currFontSize = TheFontSize.Tiny;

 // Now redraw the client area with the new font size...

 Invalidate();

}
Also notice that once you have created a ContextMenu, you associate it to the Form
using the Control.ContextMenu property. Be aware that any control can be assigned a
context menu. For example, you could create a Button object on a dialog box that
responds to a particular context menu. In this way, the menu would only be displayed if
the mouse button were clicked while within the bounding rectangle of the button.

C# and the .NET Platform Chapter 8: Building a Better Window

-438 I ♡ Flyheart-

Adorning Your Menu System

The MenuItem class also defines a number of members that allow you to check, enable,
and hide a given menu item. Table 8-19 gives a rundown of some of the interesting
properties of MenuItem.

Table 8-19: More Details of the MenuItem Type

MENUITEM
MEMBER

MEANING IN LIFE

Checked Gets or sets a value indicating whether a check mark
appears beside the text of the menu item.

DefaultItem Gets or sets a value indicating whether the menu item is
the default.

Enabled Gets or sets a value indicating whether the menu item is
enabled.

Index Gets or sets the menu item's position in its parent menu.

MergeOrder Gets or sets the relative position of the menu item when its
menu is merged with another.

MergeType Gets or sets a value that indicates the behavior of this
menu item when its menu is merged with another.

OwnerDraw Gets or sets a value indicating whether code that you
provide draws the menu item or Windows draws the menu
item.

RadioCheck Gets or sets a value that indicates whether the menu item,
if checked, displays a radio-button mark instead of a check
mark.

Shortcut Gets or sets the shortcut key associated with the menu
item.

ShowShortcut Gets or sets a value that indicates whether the shortcut
key that is associated with the menu item is displayed next
to the menu item caption.

Text Gets or sets the text of the menu item.

To illustrate, let's extend the previous pop-up menu to display a check mark next to the
currently selected menu item. Setting a check mark on a given menu item is not at all
difficult (just set the Checked property to true). However, tracking which menu item
should be checked does require some additional logic. One possible approach is to
define distinct MenuItem objects to track each submenu item and an additional MenuItem
that represents the currently selected item:

C# and the .NET Platform Chapter 8: Building a Better Window

-439 I ♡ Flyheart-

public class MainForm : Form

{

 // Current size of font.

 private int currFontSize = TheFontSize.Normal;

 // The Form's popup menu.

 private ContextMenu popUpMenu;

 // Used to keep track of the current checked item.

 private MenuItem currentCheckedItem; // Marks the item checked.

 private MenuItem checkedHuge;

 private MenuItem checkedNormal;

 private MenuItem checkedTiny;

...

}

The next step is to associate each of these MenuItems to the correct submenu. Thus, you
would update the constructor as follows:

// Construct the form.

public MainForm()

{

 // Configure the initial look and feel of this form.

 Text = "PopUp Menu";

 CenterToScreen();

 // First make the context menu.

 popUpMenu = new ContextMenu();

 // Now add the subitems.

 popUpMenu.MenuItems.Add("Huge", new EventHandler(PopUp_Clicked));

 popUpMenu.MenuItems.Add("Normal", new EventHandler(PopUp_Clicked));

 popUpMenu.MenuItems.Add("Tiny", new EventHandler(PopUp_Clicked));

 this.ContextMenu = popUpMenu;

 // Set each MenuItem to the correct submenu.

C# and the .NET Platform Chapter 8: Building a Better Window

-440 I ♡ Flyheart-

 checkedHuge = this.ContextMenu.MenuItems[0];

 checkedNormal = this.ContextMenu.MenuItems[1];

 checkedTiny = this.ContextMenu.MenuItems[2];

 // Now check the 'Normal' menu item.

 currentCheckedItem = checkedNormal;

 currentCheckedItem.Checked = true;

}
At this point, you have a way to programmatically identify each subitem, as well as the
currently checked item (which has been initially set to checkedNormal). The last step is to
update the PopUp_Clicked() event handler, in order to check the correct MenuItem in
response to the user selection (see Figure 8-24 for a test run):

Figure 8-24: Checking menu items

private void PopUp_Clicked(object sender, EventArgs e)

{

 // Uncheck the currently checked item.

 currentCheckedItem.Checked = false;

 // Figure out the string name of the selected item.

 MenuItem miClicked = (MenuItem)sender;

 string item = miClicked.Text;

 // Based on selection, establish the current checked menu item.

 if(item = = "Huge")

 {

 currFontSize = TheFontSize.Huge;

 currentCheckedItem = checkedHuge;

 }

 if(item = = "Normal")

 {

C# and the .NET Platform Chapter 8: Building a Better Window

-441 I ♡ Flyheart-

 currFontSize = TheFontSize.Normal;

 currentCheckedItem = checkedNormal;

 }

 if(item = = "Tiny")

 {

 currFontSize = TheFontSize.Tiny;

 currentCheckedItem = checkedTiny;

 }

 // Now check it.

 currentCheckedItem.Checked = true;

 Invalidate();

}
SOURCE
CODE

The PopUpMenu project is contained under the Chapter 8
subdirectory.

Building a Menu Using Visual Studio.NET
Indeed, knowledge is power. On the other hand, now that you understand how you can
write raw C# code to create and configure a menu system, let's examine how Visual
Studio.NET can offer some design-time assistance. To begin, assume that you have
created a new C# Windows Application project workspace. Using the Toolbox window,
double-click the MainMenu icon (Figure 8-25).

C# and the .NET Platform Chapter 8: Building a Better Window

-442 I ♡ Flyheart-

Figure 8-25: Adding menus at design time
Once you do, you see a new icon appear at the icon tray of the design-time template.
Furthermore, you see a design-time representation of your menu attached to the top of
your Form. To add new menu items, simply double-click a slot and type away! Consider
Figure 8-26.

Figure 8-26: Building menus at design time

As far as handling events for a given item (as well as configuring a number of other
properties), make use of the Visual Studio.NET Properties window (Figure 8-27).

C# and the .NET Platform Chapter 8: Building a Better Window

-443 I ♡ Flyheart-

Figure 8-27: Responding to menu events at design time

Once you enter the name of our event handler, the Visual Studio.NET IDE automatically
generates stub code for the event handler:

protected void OnMenuSave (object sender, System.EventArgs e)

{

 // Respond to Save selection...

}

Be aware, that as you modify your menus at design time, the IDE is updating the
InitializeComponent() helper function, as well as adding member variables to represent
the types you are manipulating at design time. If you examine the code, things (I hope)
look very familiar.

Understanding Status Bars
In addition to a menu system, many Forms also maintain a status bar. Status bars may be
divided into any number of "panes". Panes hold some textual (or graphical) information
such as menu help strings, or other application specific information. The StatusBar type
derives directly from System.Windows.Forms.Control. In addition to the inherited
members, StatusBar defines the core properties shown in Table 8-20.

Table 8-20: Select StatusBar Properties

STATUSBAR
PROPERTY

MEANING IN LIFE

BackgroundImage Gets or sets the image rendered on the background of
the StatusBar control.

C# and the .NET Platform Chapter 8: Building a Better Window

-444 I ♡ Flyheart-

Table 8-20: Select StatusBar Properties

STATUSBAR
PROPERTY

MEANING IN LIFE

Font Gets or sets the font the StatusBar control will use to
display information.

ForeColor Gets or sets the foreground color of the control.

Panels Returns a nested StatusBarPanelCollection type that
contains each Panel maintained by the StatusBar
(much like the menu pattern).

ShowPanels Gets or sets a value indicating whether panels should
be shown.

SizingGrip Gets or sets a value indicating whether a sizing grip
will be rendered on the corner of the StatusBar control.

Once you create a StatusBar, your next task is to add any number of panels (represented
by the StatusBarPanel class) into the nested StatusBar$StatusBarPanelCollection. Be
aware that the constructor of StatusBarPanel automatically configures the new panel with
a default look and feel (therefore, if you are happy with this initial configuration, your
programming task is made even simpler). Table 8-21 lists of the core members of the
StatusBarPanel type (and default values).

Table 8-21: Properties of the StatusBarPanel Type

STATUSBARPANEL
PROPERTY MEANING IN LIFE

Alignment Determines the alignment of text in the pane. The
default value is HorizontalAlignment.Left

AutoSize Determines if this pane should automatically resize
(and how). Default value is
StatusBarPanelAutoSize.None

BorderStyle Configures border style. Default value is
StatusBarPanelBorderStyle.Sunken

Icon Is there an icon in the pane? A null reference is the
default (e.g., no icon).

MinWidth Default is 10.

Style What does this pane contain? Default is
StatusBarPanelStyle.Text, but there may be other
types as specified by the StatusBarPanelStyle

C# and the .NET Platform Chapter 8: Building a Better Window

-445 I ♡ Flyheart-

Table 8-21: Properties of the StatusBarPanel Type

STATUSBARPANEL
PROPERTY MEANING IN LIFE

enumeration.

Text Caption of pane. The default is an empty string.

ToolTipText Any tool-tip? An empty string is the default.

Width Default is 100.

Building a Status Bar

To illustrate, let's construct a StatusBar object that will be divided into two panes. The first
pane will be used to show helpful prompts describing the functionality of each menu
selection. The second pane will display the current system time. And let's place a small
icon on the extreme left-hand side of the first pane (just to keep things interesting). Check
out Figure 8-28.

Figure 8-28: Your simple status bar

Assume you have updated the SimpleMenu application created earlier in this chapter, to
support this status bar. Like any Control derived type, the StatusBar needs to be added to
the Form's Controls collection (more on this collection in Chapter 10). As you might guess,
this collection contains an entry for any GUI widget mounted on the client area, including
StatusBars types. Here is the status bar logic:

public class MainForm : Form

{

 // Member data for the status bar, and each pane.

 private StatusBar statusBar = new StatusBar();

 private StatusBarPanel sbPnlPrompt = new StatusBarPanel();

 private StatusBarPanel sbPnlTime = new StatusBarPanel();

 public MainForm ()

 {

 ...

 BuildStatBar(); // Do all the status bar stuff...

C# and the .NET Platform Chapter 8: Building a Better Window

-446 I ♡ Flyheart-

 }

 private void BuildStatBar()

 {

 // Configure the status bar.

 statusBar.ShowPanels = true;

 statusBar.Size = new System.Drawing.Size(212, 20);

 statusBar.Location = new System.Drawing.Point(0, 216);

 // AddRange() allows you to add a set of panes at once.

 statusBar.Panels.AddRange(new StatusBarPanel[]

 {sbPnlPrompt, sbPnlTime});

 // Configure prompt panel.

 sbPnlPrompt.BorderStyle = StatusBarPanelBorderStyle.None;

 sbPnlPrompt.AutoSize = StatusBarPanelAutoSize.Spring;

 sbPnlPrompt.Width = 62;

 sbPnlPrompt.Text = "Ready";

 // Configure time pane.

 sbPnlTime.Alignment = HorizontalAlignment.Right;

 sbPnlTime.Width = 76;

 // Add an icon (more details in Chapter 9).

 try

 { // This icon must be in the same app directory.

 // Chapter 9 will illustrate how to embed

 // resources into your assembly!

 Icon i = new Icon("status.ico");

 sbPnlPrompt.Icon = i;

 }

 catch(Exception e)

 {

 MessageBox.Show(e.Message);

 }

C# and the .NET Platform Chapter 8: Building a Better Window

-447 I ♡ Flyheart-

 // Now add this new status bar to the Form's Controls collection.

 this.Controls.Add(statusBar);

 }

}

Working with the Timer Type

Recall that the second pane should display the current time. The first step to take to
achieve this design goal is to add a Timer member variable to the Form. If you have a
Visual Basic background, you should understand this object quite well. C++ programmers
also understand the notion of timers given the WM_TIMER message. Regardless of your
background, a Windows Forms Timer object is simply a type that calls some method
(specified by the Tick event) at a given interval (specified by the Interval property). Table
8-22 lists some core members.

Table 8-22: The Timer Type

TIMER
MEMBER

MEANING IN LIFE

Enabled This property enables or disables the Timer's ability to fire
the Tick event. You may also use Start() and Stop() to
achieve the same effect.

Interval Sets the number of milliseconds between ticks.

Start()

Stop()

Like the Enabled property, these methods control the firing
of the Tick event.

OnTick() This member may be overridden in a custom class deriving
from Timer.

Tick The Tick event adds a new event handler to the underlying
MulticastDelegate.

Thus, you can update our class as follows:

public class MainForm : Form

{

...

 private Timer timer1 = new Timer();

 public MainForm ()

 {

C# and the .NET Platform Chapter 8: Building a Better Window

-448 I ♡ Flyheart-

 // Configure the timer.

 timer1.Interval = 1000;

 timer1.Enabled = true;

 timer1.Tick += new EventHandler(timer1_Tick);

 ...

 }

 // This method will be called (roughly) every second.

 private void timer1_Tick(object sender, EventArgs e)

 {

 DateTime t = DateTime.Now;

 string s = t. ToLongTimeString();

 // Change text of pane to current time.

 sbPnlTime.Text = s ;

 }

}

Notice that the Timer event handler makes use of the DateTime type. Here, you simply
find the current system time using the Now property, and use it to set the Text property of
the correct StatusBarPanel object.

Displaying Menu Selection Prompts

Finally, you must configure the first pane to hold menu help strings. As you know, most
applications send a small bit of text information to the first pane of a status bar whenever
the end user selects a menu item (e.g., "This terminates the application").

Assume the menu system for this application is identical to the Simple Menu application.
This time however, you need to respond to the Select event of each subitem. When the
user selects "File | Exit" or "Help | About" you tell the fist StatusBarPanel object to display
a given text message. You also handle the MenuComplete event, to ensure that when the
user has finished manipulating the menu, place a default message in the first pane of the
status bar. Here is the update:

public class MainForm: Form

{

 ...

 public MainForm ()

 {

C# and the .NET Platform Chapter 8: Building a Better Window

-449 I ♡ Flyheart-

 ...

 // The MenuComplete event is sent when the user clicks off

 // the menu. We want to capture this event in order to

 // set the text of the first pane to "Ready". If we did not,

 // the StatusBarPanel text would always be based on the last menu

 // selected!

 this.MenuComplete += new EventHandler(StatusForm_MenuDone);

 BuildMenuSystem();

 }

 private void FileExit_Selected(object sender, EventArgs e)

 {

 sbPnlPrompt.Text = "Terminates this app";

 }

 private void HelpAbout_Selected(object sender, EventArgs e)

 {

 sbPnlPrompt.Text = "Displays app info";

 }

 private void StatusForm_MenuDone(object sender, EventArgs e)

 {

 sbPnlPrompt.Text = "Ready"; // See big comment in ctor...

 }

 // Helper functions.

 private void BuildMenuSystem()

 {

 // First make the main menu.

 mainMenu = new MainMenu();

 // Create the 'File' Menu.

 MenuItem miFile = mainMenu.MenuItems.Add("&File");

 miFile.MenuItems.Add(new MenuItem("E&xit",

 new EventHandler(this.FileExit_Clicked),

C# and the .NET Platform Chapter 8: Building a Better Window

-450 I ♡ Flyheart-

 Shortcut.CtrlX));

 // Handle the Select event for the Exit menu item.

 miFile.MenuItems[0].Select += new EventHandler(FileExit_Selected);

 // Now create a 'Help | About' menu.

 MenuItem miHelp = mainMenu.MenuItems.Add("Help");

 miHelp.MenuItems.Add(new MenuItem("&About",

 new EventHandler(this.HelpAbout_Clicked),

 Shortcut.CtrlA));

 // Handle the Select event for the About menu item.

 miHelp.MenuItems[0].Select +=

 new EventHandler(HelpAbout_Selected);

 // Attach main menu to the Form object.

 this.Menu = mainMenu;

 }

...

}

Excellent! As you may guess, the Visual Studio IDE also provides some design-time
assistance to facilitate the building of status bar objects. In just a bit, you examine how to
build a toolbar using tools provided by the IDE. Once you understand this process, you
should have no problems designing status bars using the design-time tools.

SOURCE
CODE

The StatusBar project is included under the Chapter 8
subdirectory.

Building a Tool Bar
The final Form level GUI item to examine in this chapter is the ToolBar type. As you know,
tool bars typically provide an alternate means to activate a given menu item. Thus, if the
user would rather click a Save button, this has the same effect as selecting "File | Save."
In the Windows Forms namespace, a handful of types are defined to allow you to build
such a beast. Let's start with the ToolBar class itself. Note the core properties as seen in

Table 8-23.

C# and the .NET Platform Chapter 8: Building a Better Window

-451 I ♡ Flyheart-

Table 8-23: Properties of the ToolBar Type

TOOLBAR
PROPERTY

MEANING IN LIFE

BorderStyle The kind of border around this control, as specified by the
BorderStyle enumeration.

Buttons The collection of buttons belonging to the toolbar (e.g.,
ToolBar$ToolBarButtonCollection).

ButtonSize Determines the size of a button in the ToolBar.

ImageList Returns the ImageList control that maintains the images
for this ToolBar.

ImageSize The method to return the size of the images within the
toolbar's image list.

ShowToolTips Indicates whether or not the ToolBar will show tool tips for
each button.

Wrappable ToolBar buttons can optionally "wrap" to the next line
when the ToolBar becomes too narrow to include all
buttons on the same line.

When a Form maintains a ToolBar (or two), the goal is to create some number of
individual ToolBarButton objects and add them to the ToolBar$ToolBarButtonCollection
type. Each button may contain text, images, or both. To keep things simple, let's build a
toolbar containing two buttons displaying text prompts only. Table 8-24 presents some
important members of the ToolBarButton.

Table 8-24: Properties of the ToolBarButton Type

TOOLBARBUTTON
PROPERTY

MEANING IN LIFE

DropDownMenu ToolBarButtons can optionally specify a pop-up
menu that is shown whenever the drop-down
button is pressed. This property lets you control just
which menu is shown. Note that this is only shown
if the Style property is set to DropDownButton.

ImageIndex Returns the index of the image that this
ToolBarButton is using. The index comes from the
parent ToolBar's ImageList

Style Returns the style of the ToolBar button. This will
form the ToolBarButtonStyle enumeration.

C# and the .NET Platform Chapter 8: Building a Better Window

-452 I ♡ Flyheart-

Table 8-24: Properties of the ToolBarButton Type

TOOLBARBUTTON
PROPERTY

MEANING IN LIFE

Text The caption that will be displayed in this ToolBar
button.

ToolTipText If the parent ToolBar has the ShowToolTips
property turned on, then this property describes the
text that will be displayed for this button

Visible Indicates whether the button is visible or not. If the
button is not visible, it will not be shown and will be
unable to receive user input

Your custom toolbar will contain two buttons, echoing the behavior supplied by the Save
and Exit menu items. Here is the code update:

public class MainForm: Form

{

 // State data for the toolbar and two buttons.

 private ToolBarButton tbSaveButton = new ToolBarButton();

 private ToolBarButton tbExitButton = new ToolBarButton();

 private ToolBar toolBar = new ToolBar();

 public MainForm()

 {

 ...

 BuildToolBar(); // Helper function.

 }

 ...

 private void BuildToolBar()

 {

 // Configure each button.

 tbSaveButton.Text = "Save";

 tbSaveButton.ToolTipText = "Save";

 tbExitButton.Text = "Exit";

 tbExitButton.ToolTipText = "Exit";

C# and the .NET Platform Chapter 8: Building a Better Window

-453 I ♡ Flyheart-

 // Configure ToolBar and add buttons.

 toolBar.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;

 toolBar.ShowToolTips = true;

 toolBar.Buttons.AddRange(new ToolBarButton[]

 {tbSaveButton, tbExitButton});

 toolBar.ButtonClick += new

 ToolBarButtonClickEventHandler(ToolBar_Clicked));

 // Add the new bar to the Controls collection.

 this.Controls.Add(toolBar);

 }

 // Button click handler.

 private void ToolBar_Clicked(object sender, ToolBarButtonClickEventArgs e)

 {

 MessageBox.Show(e.Button.ToolTipText);

 }

}
Figure 8-29 shows a test run.

Figure 8-29: A very simple ToolBar

Bland, huh? We will add some images in just a moment, but first let's analyze some code.
The BuildToolBar() helper function begins by configuring some basic properties for each
ToolBarButton. Next, add them to the ToolBar collection using the AddRange() method
(rather than calling Add() multiple times). To handle the click events for a given button,
you must handle the ButtonClick event.

toolBar.ButtonClick += new ToolBarButtonClickEventHandler(ToolBar_Clicked);

The name of the new ToolBarButtonClickEventHandler delegate must have a signature
such that the second parameter is of type ToolBarButtonClickEventArgs. This type may
be examined to determine which button sent the event, using the Button property:

private void ToolBar_Clicked(object sender, ToolBarButtonClickEventArgs e)

C# and the .NET Platform Chapter 8: Building a Better Window

-454 I ♡ Flyheart-

{

 // Just show the corresponding tool bar text.

 MessageBox.Show(e.Button.ToolTipText);

}

Adding Images to Your Toolbar Buttons

Real Toolbar buttons contain images. When you wish to configure your buttons to do so,
the first step is to have the Form create an ImageList type. This class represents a set of
images that are consumed by some other type (like a ToolBar). If you have ever created a
toolbar using Visual Basic 6.0, you should feel right at home with this aspect of Windows
Forms. Let's update your existing ToolBarForm to make use of two icons for display
purposes, in addition to simple text strings. Here is the relevant update:

public class MainForm: Form

{

 // Contains the images used by the toolbar.

 private ImageList toolBarIcons = new ImageList();

 ...

 private void BuildToolBar()

 {

 // Configure save button.

 tbSaveButton.ImageIndex = 0;

 tbSaveButton.ToolTipText = "Save";

 // Configure exit button.

 tbExitButton.ImageIndex = 1;

 tbExitButton.ToolTipText = "Exit";

 // Create ToolBar and add buttons.

 toolBar.ImageList = toolBarIcons;

 ...

 // Load images (again, the icons need to be in the app dir).

 toolBarIcons.ImageSize = new System.Drawing.Size(32, 32);

 toolBarIcons.Images.Add(new Icon("filesave.ico"));

 toolBarIcons.Images.Add(new Icon("fileexit.ico"));

 toolBarIcons.ColorDepth = ColorDepth.Depth16Bit;

 toolBarIcons.TransparentColor = System.Drawing.Color.Transparent;

C# and the .NET Platform Chapter 8: Building a Better Window

-455 I ♡ Flyheart-

 ...

 }

}

Notice the following points:

 We must tell each ToolBarButton which image to use, via the ImageIndex

property.
 We add new images to the ImageList class using the Images.Add()

method.
 The ToolBar itself must be told which ImageList it is associated to using

the ImageList property.
If you were to now run the application (Figure 8-30), you would see a much more pleasing
end result (if you wish these buttons to look more standard, simply adjust the size to 16 ×
16):

Figure 8-30: A more interesting ToolBar

SOURCE
CODE

The SimpleToolBar project is included under the Chapter 8
subdirectory.

Building ToolBars at Design Time
Design-time configuration of the ToolBar is accomplished using the Properties Window.
For example, if you wish to add buttons to the ToolBar type, doubleclick the Buttons
property (Figure 8-31).

C# and the .NET Platform Chapter 8: Building a Better Window

-456 I ♡ Flyheart-

Figure 8-31: Adding ToolBar buttons at design time

This opens a dialog that allows you to add, remove, and configure the individual
ToolBarButton items (Figure 8-32).

Figure 8-32: Configuring Button types at design time

Adding an ImageList at Design Time

Notice how this same dialog also allows you to assign an iconic image to each button
using the ImageIndex property. However, this property is useless until you add an
ImageList type to your current project. To add an ImageList member to a Form at design
time, return to the Toolbox window and select the icon (see Figure 8-33).

C# and the .NET Platform Chapter 8: Building a Better Window

-457 I ♡ Flyheart-

Figure 8-33: Adding an ImageList

At this point, you can use the Properties window to add the individual images using the
Images property (Figure 8-34).

Figure 8-34: Adding Images to your ImageList
Once you have added each image file to the ImageList, inform the ToolBar which
ImageList it is to make use of using the Properties window (Figure 8-35).

C# and the .NET Platform Chapter 8: Building a Better Window

-458 I ♡ Flyheart-

Figure 8-35: Associating an ImageList to a ToolBar

At this point, let's return to the ToolBar button editor and map a given image in the
ImageList to each button (Figure 8-36).

Figure 8-36: Mapping images to buttons

Cool! Now that you understand how to make use of the Visual Studio.NET IDE to
configure a ToolBar type, I assume you will continue to explore similar design-time
configurations. For example, using (more or less) the same process, you can design a
fully functional status bar with minimal coding on your part.

A Minimal and Complete Windows Forms Application

At this point you can build a Form that hosts a main menu, a pop-up menu, a status bar
and toolbar. This chapter wraps up by rounding out your current understanding of

C# and the .NET Platform Chapter 8: Building a Better Window

-459 I ♡ Flyheart-

Windows Forms basics by building a final application that pulls together the information
you have learned thus far.

Let's extend the functionality of the StatusBar application created previously. In addition
to the existing logic, let's add code to read and write our application data to (and from) the
system registry as well as to illustrate how to interact with the Windows 2000 event log.
First, let's create a new top-most menu item ("Background Color") that allows the user to
select the background color of the client area from a set of possible choices. Each color
submenu has an associated help string to be displayed in the first pane of the StatusBar
object. The Clicked event for each Color subitem is handled by the same event handler
(ColorItem_Clicked). Likewise, the Selected event for each subitem is handled by a
method named ColorItem_Selected. Here is the code update:

private void BuildMenuSystem()

{

...

 // Create the 'Background Color' menu.

 MenuItem miColor = mainMenu.MenuItems.Add("&Background Color");

 miColor.MenuItems.Add("&DarkGoldenrod",

 new EventHandler(ColorItem_Clicked));

 miColor.MenuItems.Add("&GreenYellow",

 new EventHandler(ColorItem_Clicked));

 miColor.MenuItems.Add("&MistyRose",

 new EventHandler(ColorItem_Clicked));

 miColor.MenuItems.Add("&Crimson",

 new EventHandler(ColorItem_Clicked));

 miColor.MenuItems.Add("&LemonChiffon",

 new EventHandler(ColorItem_Clicked));

 miColor.MenuItems.Add("&OldLace",

 new EventHandler(ColorItem_Clicked));

 // All color menu items have the same Selected event handler.

 for(int i = 0; i < miColor.MenuItems.Count; i++)

 miColor.MenuItems[i].Select +=

 new EventHandler(ColorMenuItem_Selected);

...

}

C# and the .NET Platform Chapter 8: Building a Better Window

-460 I ♡ Flyheart-

When the end user selects a given subitem from the Background Color menu, the Select
event occurs. In the event handler, your task is to extract the text name of the selected
menu item (e.g., OldLace, GreenYellow, etc.) and display it on your status bar. Here is
the code:

private void ColorMenuItem_Selected(object sender, EventArgs e)

{

 // Figure out the string name of the selected item and strip '&'.

 MenuItem miClicked = (MenuItem)sender;

 string item = miClicked.Text.Remove(0,1);

 // Assume a new data point: StatusBarPanel sbPnlPrompt.

 sbPnlPrompt.Text = "Select " + item;

}

When the user clicks a given color menu item, you simply set the Form's BackColor
based on the MenuItem's Text property. Notice that we are "remembering" this color by
storing the value in a string member variable named currColor:

// Color | X Menu item handler.

private void ColorItem_Clicked(object sender, EventArgs e)

{

 // Figure out the string name of the color menu item.

 MenuItem miClicked = (MenuItem)sender;

 // Remove the '&' from the text in the menu item.

 string color = miClicked.Text.Remove(0,1);

 // Now set the color.

 this.BackColor = Color.FromName(color);

 currColor = BackColor;

}

So far so good. As you can tell, this is just basic menu logic. Next, let's save the user
preferences in the system registry!

Interacting with the System Registry

If you are a COM programmer by trade, there is no escaping the (pain of the) Window's
registry. When living in the world of .NET, your reliance on the system registry dwindles

C# and the .NET Platform Chapter 8: Building a Better Window

-461 I ♡ Flyheart-

away to little more than a convenient place to store user preferences. The
Microsoft.Win32 namespace defines a handful of types that make reading from (and
writing to) the system registry a piece of cake (Table 8-25).

Table 8-25: Registry Manipulation Types

MICROSOFT.WIN32
TYPE

MEANING IN LIFE

Registry A high-level abstraction of the registry itself, and all
associated hives.

RegistryKey This is the core type, which allows you to insert,
remove and update information stored in the
registry.

RegistryHive A simple enumeration of each hive in the registry.

The goal of the current application is to allow end users to save their preferences (e.g.,
font size and background color) to the registry for later use. To do so, you must make use
of the RegistryKey class, which provides the core members shown in Table 8-26.

Table 8-26: Properties of the RegistryKey Type

REGISTRYKEY
MEMBERS

MEANING IN LIFE

Name This property retrieves the name of the key.

SubKeyCount This property retrieves the count of subkeys.

ValueCount This property retrieves the count of values in the
key.

Close() Closes this key and flushes it to disk if the
contents have been modified.

CreateSubKey() Creates a new subkey or opens an existing
subkey. The string subKey is not case sensitive.

DeleteSubKey() Deletes the specified subkey. To delete child
subkeys, use DeleteSubKeyTree. The string
subKey is not case sensitive.

DeleteSubKeyTree() Recursively deletes a subkey and any child
subkeys. The string subKey is not case
sensitive.

GetSubKeyNames() Retrieves an array of strings containing all the
subkey names.

C# and the .NET Platform Chapter 8: Building a Better Window

-462 I ♡ Flyheart-

Table 8-26: Properties of the RegistryKey Type

REGISTRYKEY
MEMBERS

MEANING IN LIFE

GetValue() Overloaded. Retrieves the specified value.

GetValueNames() Retrieves an array of strings containing all the
value names.

OpenRemoteBaseKey() Opens a new RegistryKey that represents the
requested key on a foreign machine.

OpenSubKey() Overloaded. Retrieves a subkey.

SetValue() Sets the specified value. The string SubKey is
not case sensitive.

Assume you have added a new "File | Save" menu item. When this is selected you will
create a RegistryKey object and insert the current background color and font size under
HKEY_CURRENT_USER\Software\Intertech\Chapter8App. Also assume your Form has
two member variables (currFontSize and currColor) to hold the current font size as well as
the current background color. Here is the relevant code (note the use of
RegistryKey.SetValue()):

// Assume the following state data.

// Color currColor = Color.MistyRose;

// private int currFontSize = TheFontSize.Normal;

private void FileSave_Clicked(object sender, EventArgs e)

{

 // Save user preferences to registry.

 RegistryKey regKey = Registry.CurrentUser;

 regKey = regKey.CreateSubKey("Software\\Intertech\\Chapter8App");

 regKey.SetValue("CurrSize", currFontSize);

 regKey.SetValue("CurrColor", currColor.Name);

}
If the user were now to set the current color to LemonChiffon and the current font size to
30 (and save these settings), you would find the following information inserted into the
system registry (Figure 8-37).

C# and the .NET Platform Chapter 8: Building a Better Window

-463 I ♡ Flyheart-

Figure 8-37: Saving application data to HKCU

Reading this information from the registry also makes use of the RegistryKey type. Let's
retrofit the constructor of your Form-derived class to read the background color and font
size from the registry, to assign the corresponding member data to the correct values. In
this way, the application starts up having the same look and feel as the previous session
(note the use of RegistryKey.GetValue()):

public MainForm()

{

 // Open a subkey.

 RegistryKey regKey = Registry.CurrentUser;

 regKey = regKey.CreateSubKey("Software\\Intertech\\Chapter8App");

 // Read values and assign state data.

 currFontSize = (int)regKey.GetValue("CurrSize", currFontSize);

 string c = (string)regKey.GetValue("CurrColor", currColor.Name);

 currColor = Color.FromName(c);

 BackColor = currColor;

 ...

}

One question that might pop into mind is "What if there are currently no entries for these
data points in the registry?" For example, assume the user launched the application for
the very first time and has not yet saved any settings. In this case, when the constructor
logic is hit, the RegistryKey object is not able to locate the correct data!

The good news is, the GetValue() method may take an optional second parameter (as
seen in the previous code). This parameter specifies the value to use in place of an empty
registry entry. Notice that you have sent in currFontSize and currColor member variables.
Given that the Form sets these variables to an initial value, these will be used in place of
any absent registry entries:

public class MainForm : Form

{

C# and the .NET Platform Chapter 8: Building a Better Window

-464 I ♡ Flyheart-

 Color currColor = Color.MistyRose;

 private int currFontSize = TheFontSize.Normal;

...

}

The final touch is to update the BuildMenuSystem() helper function to check the correct
subitem on the pop-up menu based on the information read in from the registry. In the
previous PopUpMenu application, you specified that the currently selected item was
TheFontSize.Normal. This may not be the case anymore, given that the user can save
preferences to the registry. Here is the update:

private void BuildMenuSystem()

{

...

 // Current size?

 if(currFontSize = = TheFontSize.Huge)

 currentCheckedItem = checkedHuge;

 else if(currFontSize = = TheFontSize.Normal)

 currentCheckedItem = checkedNormal;

 else

 currentCheckedItem = checkedTiny;

 currentCheckedItem.Checked = true;

}

Interacting with the Event Viewer
The Windows 2000 operating system supplies an MMC (Microsoft Management Console)
snap-in called the "Event Viewer." The Event Viewer maintains three separate logs
(Application, Security, and System) that provide a way for you to gather information about
hardware, software, and system problems, and to monitor various security events (Figure
8-38).

C# and the .NET Platform Chapter 8: Building a Better Window

-465 I ♡ Flyheart-

Figure 8-38: The Win2000 Event Viewer

When you wish to programmatically manipulate the Event Viewer, you will want to make
use of various types defined within the System.Diagnostics namespace. Table 8-27 gives
a rundown of the core items you must be aware of.

Table 8-27: Types of the System.Diagnostics Namespace

SYSTEM.DIAGNOSTICS
TYPE

MEANING IN LIFE

EventLog This class is your entry point to manipulate
the Windows 2000 Event Viewer.

EventLog.EventLogEntryC
ollection

Holds individual EventLogEntry types that
represent an entry in a given event log.

EventLogEntry The EventLogEntry type represents a single
record in the event log.

EventLogNames This sealed type provides fields to define the
log you wish to manipulate (Application,
Security, or System).

Using the EventLog class, you can read from existing logs (Application, Security, and
System), write entries to logs, delete logs, and react to entries your log receives. If you so
desire, you can even create new custom logs when creating an event source. Table 8-28
lists some core members.

Table 8-28: Members of the EventLog Type

EVENTLOG
MEMBER

MEANING IN LIFE

Entries Gets the contents of the event log, held in an
EventLog.EventLogEntryCollection type. As you
would expect, this collection contains individual

C# and the .NET Platform Chapter 8: Building a Better Window

-466 I ♡ Flyheart-

Table 8-28: Members of the EventLog Type

EVENTLOG
MEMBER

MEANING IN LIFE

EventLogEntry items.

Log Gets or sets the name of the log to read from and
write to. This can be "Application," "System,"
"Security," an application-specific log or a custom
log name.

MachineName Gets or sets the name of the computer on which to
read or write events. If you do not specify the
MachineName, the local computer (".") is assumed.

Source Gets or sets the application name (source name) to
register and use when writing to the event log.

Clear() Clears all entries from an event log.

Close() Closes a log and releases read and write handles.

CreateEventSource() Establishes an application as an event source.

GetEventLogs() Creates an array containing the event logs.

WriteEntry() Inserts an entry in the event log.

As mentioned, your application will write an entry to the Application log when the
application is terminated. As a simple example, you might write the following logic in our
FileExit_Clicked() event handler:

// File | Exit Menu item handler

private void FileExit_Clicked(object sender, EventArgs e)

{

 // Just for kicks, let's log this event to the Application Log...

 EventLog log = new EventLog();

 log.Log = "Application";

 log.Source = Text;

 log.WriteEntry("Hey dude, this app shut down..."); // Insightful, huh?

 log.Close();

 // Now shut down the app.

 this.Close();

}

C# and the .NET Platform Chapter 8: Building a Better Window

-467 I ♡ Flyheart-

If you were now to examine the Application log, you would find the entry displayed in
Figure 8-39 has been inserted.

Figure 8-39: Our custom application log

To examine our very helpful message entry (e.g., "Hey dude, this app shut down. . ."),
double-click the log entry (Figure 8-40).

Figure 8-40: Our message

Reading from the Event Log

Now assume you wish to read some information from a given log. This too is quite simple.
Recall that the EventLog class defines a property named Entries. This item returns an

C# and the .NET Platform Chapter 8: Building a Better Window

-468 I ♡ Flyheart-

instance of EventLog.EventLogEntryCollection. This collection contains some number of
indexable EventLogEntry types, each of which represents an entry in a given log (Table
8-29).

Table 8-29: The EventLogEntry Type

EVENTLOGENTRY
MEMBER

MEANING IN LIFE

Category Gets the text associated with the CategoryNumber
for this entry.

CategoryNumber Gets the application-specific category number for
this entry.

Data Gets the binary data associated with the entry.

EntryType Gets the type of this entry.

EventID Gets the application-specific event identifier of this
entry.

MachineName Gets the name of the computer on which this entry
was generated.

Message Gets the localized message corresponding to this
event entry.

Source Gets the name of the application that generated this
event.

TimeGenerated Gets the time at which this event was generated.

TimeWritten Gets the time at which this event was written to the
log, in local time.

UserName Gets the name of the user responsible for this event.

If you then update the FileExit_Clicked() method as follows:

private void FileExit_Clicked(object sender, EventArgs e)

{

 ...

 // Display the first 5 entries in the Application log.

 for(int i = 0; i < 5; i++)

 {

 try

 {

 MessageBox.Show("Message: " + log.Entries[i].Message + "\n" +

C# and the .NET Platform Chapter 8: Building a Better Window

-469 I ♡ Flyheart-

 "Box name: " + log.Entries[i].MachineName + "\n" +

 "App: " + log.Entries[i].Source + "\n" +

 "Time entered: " + log.Entries[i].TimeWritten,

 "Application Log entry:");

 }catch{}

 }

}
you would see five messages pop up (what they will be depends on exactly what is in
your event log). Here then is your complete Windows Forms application in action (Figure
8-41).

Figure 8-41: The final product

SOURCE
CODE

The FinalFormsApp project is included under the Chapter 8
subdirectory.

Summary

This chapter introduced the fine art of building a user interface with the types contained in
the System.Windows.Forms namespace. It began by examining the basic steps you must
take to build a custom Form. This entailed a discussion of the Application object, and its
various members. As you have seen, the Form type gains a majority of its functionality
from a rather long chain of base types.

During the course of this chapter, you learned how to build top-most menus (and pop-up
menus) and how to respond to a number of menu events. You also came to understand
how to further enhance your Form objects using toolbars and status bars. Finally, this
chapter provided some bonus information, illustrating how to interact with the system
registry as well as the Windows 2000 Event viewer.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-470 I ♡ Flyheart-

Chapter 9: A Better Painting Framework

(GDI+)

Overview
The previous chapter introduced you to the fine art of building a traditional main window
using various types contained within the System.Windows.Forms namespace. Now that
you can assemble a Form to represent the shell of your GUI-based applications, the next
logical task is to understand the details of rendering geometric images (including text and
bitmaps) onto the Form's client area.

We begin by taking a high-level overview of the numerous drawing-related namespaces,
and examine the process of responding to (and initiating) paint sessions. As well, you will
discover various ways of obtaining (and configuring) a Graphics object. Once you
understand the general layout of the GDI+ landscape, the remainder of this chapter
covers how to manipulate colors, fonts, geometric shapes, and bitmap images. This
entails understanding a number of related types such as Brush, Pen, Color, Point, and
Rectangle (among others). This chapter also explores a number of GDI+ centric
programming techniques such as nonrectangular hit testing and GUI drag-and-drop logic.

The chapter concludes by exploring the new .NET resource format, and you learn how to
embed your application's external resources into a .NET assembly. During the process,
you explore the System.Resources namespace and learn how to perform read/write
operations on the underlying *.resx file by hand, as well as pull resources from an
assembly at runtime using the ResourceManager type.

Survey of the GDI+ Namespaces
The .NET framework provides a number of namespaces devoted to two-dimensional
graphical rendering. In addition to the basic functionality you would expect to find in a
graphics package (color, font, pen, brush, and image manipulation), you also find types
that enable geometric transformations, antialiasing, palette blending, and document
printing support. Collectively speaking, these namespaces make up the .NET facility we
call GDI+. Table 9-1 gives a high-level view of each major player.

Table 9-1: The Core GDI+ Namespaces

GDI+NAMESPACE MEANING IN LIFE

System.Drawing This is the core GDI+ namespace, which
defines numerous types for basic rendering
(fonts, pens, basic brushes, etc) as well as
the almighty Graphics type.

System.Drawing.Drawing2D This namespace offers types used for more
advanced two-dimensional graphics

C# and the .NET Platform Chapter 9: A Better Painting Framework

-471 I ♡ Flyheart-

Table 9-1: The Core GDI+ Namespaces

GDI+NAMESPACE MEANING IN LIFE

functionality (e.g., gradient brushes,
geometric transforms, etc).

System.Drawing.Imaging This namespace defines types that allow
you to directly manipulate graphical images
(e.g., change the palette, extract image
metadata, manipulate metafiles, and so
forth).

System.Drawing.Printing This namespace defines types that allow
you to render images to the printed page,
interact with the printer itself, and format the
appearance of a given print job.

System.Drawing.Text This namespace allows you to manipulate
collections of fonts. For example, as you see
in this chapter, the FontCollection type
allows you to dynamically discover the set of
installed fonts on the target machine.

Configuring a GDI+ Project Workspace

When you wish to make use of GDI+, you must set a reference to the System.Drawing.dll
assembly. This single binary contains types for each of the core GDI+ namespaces. Be
aware that if you select a new Windows Application Project Workspace using VS.NET,
this reference is set on your behalf automatically. Once you have set this reference, just
make use of the C# "using" keyword and you are ready to render. To begin the journey,
let's examine the functionality defined by the System.Drawing namespace.

Overview of the System.Drawing Namespace
A vast majority of the types used when programming GDI+ applications are found within
the System.Drawing namespace. As you would expect, there are classes that represent
images, brushes, pens, and fonts. Furthermore, System.Drawing defines a number of
related types such as Color, Point, and Rectangle. Table 9-2 lists some (but not all) of the
core types.

Table 9-2: Core Members of the System.Drawing Namespace

SYSTEM.DRAWING
TYPE

MEANING IN LIFE

Bitmap Encapsulates a given image file and defines a
number of methods to manipulate the underlying
graphical data.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-472 I ♡ Flyheart-

Table 9-2: Core Members of the System.Drawing Namespace

SYSTEM.DRAWING
TYPE

MEANING IN LIFE

Brush

Brushes

SolidBrush

SystemBrushes

TextureBrush

Brush objects are used to fill the interiors of
graphical shapes such as rectangles, ellipses, and
polygons. These types represent a number of
brush variations, with Brush functioning as the
abstract base class to the remaining types.
Additional Brush types are defined in the
System.Drawing.Drawing2D namespace.

Color

SystemColors

Color Translator

As you have already seen in the previous chapter,
the Color structure defines a number of static fields
that can be used to Translator configure the color of
fonts, brushes, and pens. The Color type allows
you to build a new .NET Color type from other color
representations (Win32, the OLE_COLOR type,
HTML color constants, etc.).

Font

FontFamily

The Font type encapsulates the characteristics of a
given font (i.e., type name, bold, italic, point size,
and so forth). FontFamily provides an abstraction
for a group of fonts having a similar generic design
but having certain variations in styles.

Graphics This core class represents a valid drawing surface,
as well as a number of methods to render text,
images, and geometric patterns. Consider this type
the .NET equivalent of a Win32 HDC.

Icon

SystemIcons

These classes represent custom icons, as well as
the set of standard system supplied icons.

Image

ImageAnimator

Image is an abstract base class that provides
functionality for the Bitmap, Icon, and Cursor types.
ImageAnimator provides a way to iterate over a
number of Image-derived types at some specified
interval.

Pen

Pens

SystemPens

Pens are objects used to draw lines and curves.
The Pens type defines a number of static
properties that return a new Pen of a given color.

Point

PointF

These structures represent an (x, y) coordinate
mapping to an underlying integer or float
(respectively).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-473 I ♡ Flyheart-

Table 9-2: Core Members of the System.Drawing Namespace

SYSTEM.DRAWING
TYPE

MEANING IN LIFE

Rectangle

RectangleF

These structures represent a rectangular
dimension (again mapping to an underlying integer
or float).

Size

SizeF

These structures represent a given height/width
(again mapping to an underlying integer or float).

StringFormat This type is used to encapsulate various features of
textual layout (i.e., alignment, line spacing, etc).

Region Describes the interior of a geometric image
composed of rectangles and paths.

Many of these core types make substantial use of a number of related enumerations,
most of which are also defined within the System.Drawing name-space. As you can
guess, these enumerations are used to configure the look and feel of brushes and pens.
For example, ponder the types listed in Table 9-3.

Table 9-3: Enumerations in the System.Drawing Namespace

SYSTEM.DRAWING
ENUMERATION MEANING IN LIFE

ContentAlignment Specifies how to align content on a drawing surface
(center, left, right, and so forth).

FontStyle Specifies style information applied to text (bold,
italic, etc).

GraphicsUnit Specifies the unit of measure for the given item
(much like the Win32 mapping mode constants).

KnownColor Specifies friendly names for the known system
colors.

StringAlignment Specifies the alignment of a text string relative to its
layout rectangle.

StringFormatFlags Specifies the display and layout information for text
strings (e.g. NoWrap, LineLimit, and so on).

StringTrimming Specifies how to trim characters from a string that
does not completely fit into a layout shape.

StringUnit Specifies the units of measure for a text string.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-474 I ♡ Flyheart-

If you currently have a background using graphics toolkits found in other frameworks
(especially Java) you should feel right at home with the functionality provided by the
System.Drawing namespace. Next up, let's examine the set of basic utility types that are
commonly used in GDI+ programming.

Examining the System.Drawing Utility Types
Many of the drawing methods defined by the Graphics object require you to specify the
position or area in which you wish to render a given item. For example, the DrawString()
method requires you to specify the location to render the text string on the Control-derived
type. Given that DrawString() has been overloaded a number of times, this positional
parameter may be specified using an (x, y) coordinate or the location of a "box" to draw
within. Other GDI+ type methods may require you to specify the width and height of a
given item, or the internal bounds of a geometric image.

To specify such information, the System.Drawing namespace defines the Point,
Rectangle, Region, and Size types. Obviously, a Point represents some (x, y) coordinate.
Rectangle types capture a pair of points representing the upper left and bottom right
bounds of a rectangular region. Size types are similar to Rectangles, however these
structures represent a given dimension using a given length and width. Regions provide a
way to represent and manipulate nonrectangular drawing surfaces.

The member variables used by the Point, Rectangle, and Size types are internally
represented as an integer data type. However, if you need a finer level of granularity, you
are free to make use of the corresponding PointF, RectangleF, and SizeF types, which
(as you might guess) map to an underlying float. Regardless of the underlying data
representation, each type has an identical set of members, including a number of
overloaded operators. A quick run-through follows.

Point(F) Type

The first utility type you should be aware of is System.Drawing.Point(F). As you recall,
you created a custom Point class in Chapter 5, which in many ways was a slimmed down
version of the official GDI+ Point type. A breakdown of each member is shown in Table
9-4.

Table 9-4: Members of the Point(F) Types

POINT AND POINTF
MEMBER MEANING IN LIFE

+
−

==

!=

Allows you to manipulate the underlying (x,
y) point using common overloaded
operators.

X These properties allow you to get and set

C# and the .NET Platform Chapter 9: A Better Painting Framework

-475 I ♡ Flyheart-

Table 9-4: Members of the Point(F) Types

POINT AND POINTF
MEMBER MEANING IN LIFE

Y the underlying (x, y) values.

IsEmpty This property returns true if X and Y are
both set to zero.

Offset() This method translates a given Point type
by a given amount.

Although this type is most commonly used when working with GDI+ and user interface
applications, do be aware that you may make use of any utility type from any application.
To illustrate, here is a console application that makes use of the System.Drawing.Point
type (see Figure 9-1 for output).

Figure 9-1: Working with basic utility types

namespace DrawingUtilTypes

{

using System;

using System.Drawing; // Need this namespace to access GDI+ types!

public class UtilTypes

{

 public static int Main(string[] args)

 {

 // Create and offset a point.

 Point pt = new Point(100, 72);

 System.Console.WriteLine(pt);

 pt.Offset(20, 20);

 System.Console.WriteLine(pt);

C# and the .NET Platform Chapter 9: A Better Painting Framework

-476 I ♡ Flyheart-

 // Overloaded Point operators.

 Point pt2 = pt;

 if(pt = = pt2)

 Console.WriteLine("Points are the same");

 else

 Console.WriteLine("Different points");

 // Change pt2's X value.

 pt2.X = 4000;

 // Now show each X:

 Console.WriteLine("First point: {0}", pt.ToString());

 Console.WriteLine("Second point: {0}", pt2.ToString());

 return 0;

 }

}

}

Rectangle(F) Type

Rectangles, like Points are useful in any application (GUI-based or otherwise). Some core
members to be aware of are listed in Table 9-5.

Table 9-5: Members of the Rectangle(F) Types

RECTANGLE
AND
RECTANGLEF
MEMBER MEANING IN LIFE

==

!=

Allows you to test if two rectangles have identical
values (or not).

Inflate()

Intersect()

Union()

These static methods allow you to expand a rectangle,
as well as create new rectangles that are a result of an
intersection or union operation.

Top

Left

These properties set the dimensions of a new
Rectangle type.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-477 I ♡ Flyheart-

Table 9-5: Members of the Rectangle(F) Types

RECTANGLE
AND
RECTANGLEF
MEMBER MEANING IN LIFE

Bottom

Right

Height

Width

Configures the height and width of a given Rectangle.

Contains() This method can be used to determine if a given Point
(or Rectangle) is within the bounds of the current
Rectangle. Great for hit testing a point within a
rectangle.

X

Y

These properties return the x or y coordinate of the
Rectangle's upper left corner.

One of the most useful methods of the Rectangle type is Contains(). This method allows
you to determine if a given Point or Rectangle is within the current bounds of another
Rectangle object. Later in this chapter, you see how to make use of this method to reform
hit testing of GDI+ images. Until then, here is a simple example:

public static int Main(string[] args)

{

 ...

 Rectangle r1 = new Rectangle(0, 0, 100, 100);

 Point pt3 = new Point(101, 101);

 if(r1.Contains(pt3))

 Console.WriteLine("Point is within the rect!");

 else

 Console.WriteLine("Point is not within the rect!");

 // Now place point in rectangle's area.

 pt3.X = 50;

 pt3.Y = 30;

 if(r1.Contains(pt3))

 Console.WriteLine("Point is within the rect!");

C# and the .NET Platform Chapter 9: A Better Painting Framework

-478 I ♡ Flyheart-

 else

 Console.WriteLine("Point is not within the rect!");

 return 0;

}

Size(F) and Region Types

The Size and SizeF types are quite simple to manipulate, and require little comment.
Beyond the inherited members, these types each define Height and Width properties and
a handful of overloaded operators (Table 9-6).

Table 9-6: Members of the Size(F) Types

SIZE AND SIZEF
MEMBER

MEANING IN LIFE

+
−

==

!=

Operators to manipulate Size types.

Height

Width

These properties are used to manipulate the current
dimension of a Size type.

The Region Class

Finally we have the Region class. This type represents the interior of a geometric shape.
Given this last statement, it should make sense that the constructors of the Region class
require you to send an instance of some existing geometric pattern. For example, assume
you have created a rectangle 100 * 100 pixels. If you wish to gain access to the
rectangle's interior region, you could write the following:

// Get the interior of this rectangle.

Rectangle r = new Rectangle(0, 0, 100, 100);

Region rgn = new Region(r);

Once you do have the interior detentions of a given shape, you may manipulate it using
the core members shown in Table 9-7.

Table 9-7: Members of the Region Class

REGION
MEMBER

MEANING IN LIFE

C# and the .NET Platform Chapter 9: A Better Painting Framework

-479 I ♡ Flyheart-

Table 9-7: Members of the Region Class

REGION
MEMBER

MEANING IN LIFE

Complement() Updates this Region to the portion of the specified
graphics object that does not intersect with this Region.

Exclude() Updates this Region to the portion of its interior that does
not intersect with the specified graphics object.

GetBounds() Returns a RectangleF that represents a rectangular
region that bounds this Region.

Intersect() Overloaded. Updates this Region to the intersection of
itself with the specified graphics object.

IsEmpty()

MakeEmpty()

Tests whether this Region has an empty interior on the
specified drawing surface (or sets the current Region
empty).

IsInfinite()

MakeInfinite()

Tests whether this Region has an infinite interior on the
specified drawing surface (or sets the current Region
infinite).

Transform() Transforms this Region by the specified Matrix.

Translate() Offsets the coordinates of this Region by the specified
amount.

Union() Updates this Region to the union of itself and the
specified graphics object.

Xor() Updates this Region to the union minus the intersection
of itself with the specified graphics object.

I'm sure you get the general idea behind these coordinate primitives. You will have a
chance to work with each of them during the course of this chapter (and any time you
program against GDI+). Now then, on to some more interesting material!

SOURCE
CODE

The UtilTypes project is included under the Chapter 9
subdirectory.

Understanding Paint Sessions
As you have seen in the previous chapter, the Control class defines a virtual method
named OnPaint(). When a Form (or any descendent of Control) wishes to render
graphical information, you may override this method and extract a Graphics object from
the incoming PaintEventArgs parameter:

public class MainForm : Form

C# and the .NET Platform Chapter 9: A Better Painting Framework

-480 I ♡ Flyheart-

{

 public MainForm()

 {

 CenterToScreen();

 this.Text = "Basic Paint Form";

 }

 public static void Main(string[] args)

 {

 Application.Run(new MainForm());

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 g.DrawString("Hello GDI+", new Font("Times New Roman", 20),

 new SolidBrush(Color.Black), 0, 0);

 }

}

Recall that when responding to GUI events, you actually have two options at your
disposal. In this last example, you overrode the OnPaint() method directly. The other
(preferred) approach is to directly handle the raw Paint event. Thus, you can retrofit the
previous class definition as follows:

public class MainForm : Form

{

 public MainForm()

 {

 ...

 // Add a new handler.

 this.Paint += new

 System.Windows.Forms.PaintEventHandler(MainForm_Paint);

 }

 //Note the signature of the event handler...

C# and the .NET Platform Chapter 9: A Better Painting Framework

-481 I ♡ Flyheart-

 public void MainForm_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 ...

 }

 public static void Main(string[] args)

 {

 Application.Run(new MainForm());

 }

}

Regardless of how you respond to the Paint event, be aware that whenever a window
becomes "dirty" a paint message is placed into the application's message queue. As you
are most likely aware, a window is "dirty" whenever it is resized, covered by another
window (partially or completely) or is minimized and then restored. Eventually, the flow of
logic is routed to the method that handles repainting the window. In these cases, the .NET
framework ensures that when your Form needs to be redrawn, the Paint handler is called
automatically.

Invalidating Your Client Area

You may need to explicitly inform a window that it needs to redraw itself (in other words,
you need to place a paint message into the queue programmatically). For example, you
may have a program that allows the end user to select from a number of bitmap images
using a custom dialog. Once the dialog is dismissed, you need to draw the newly selected
image onto the client area. Obviously, if you waited for the window to become "naturally
dirty," the user would not see the change take place until it was resized or covered by
another window. When you need to force a window to repaint itself programmatically, call
Invalidate(). For example:

public class MainForm: Form

{

...

 private void MainForm_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 ...

 // Logic to render a bitmap...

 }

C# and the .NET Platform Chapter 9: A Better Painting Framework

-482 I ♡ Flyheart-

 private void GetNewBitmap()

 {

 // Show dialog and get new image...

 // Now repaint the client area.

 Invalidate();

 }

}

Do be aware that the Invalidate() method has been overloaded a number of times to allow
you to specify a specific rectangular region to repaint, rather than the entire client area
(which is the default). If you only wish to update the extreme upper left rectangle of the
client area, you could write:

// Repaint a given rectangular area of the Form.

private void UpdateUpperArea()

{

 Rectangle myRect = new Rectangle(0, 0, 75, 150);

 Invalidate(myRect);

}

Rendering GDI+ Objects Outside Paint Handlers

On a related note, you may find yourself in the position of needing to render some image
outside the scope of a standard Paint event handler. For example, assume you wish to
draw a small circle at the (x, y) position where the mouse has been clicked. The first step
(of course) is to obtain a valid Graphics object, which can be obtained using the static
Graphics.FromHwnd() method. Notice that you are passing your current Handle as the
sole parameter (recall that the Handle property is inherited from the Control class):

private void MainForm_MouseDown(object sender, MouseEventArgs e)

{

 // Grab a Graphics object.

 Graphics g = Graphics.FromHwnd(this.Handle);

 // Now draw a 10*10 circle at mouse click.

 g.DrawEllipse(new Pen(Color.Green), e.X, e.Y, 10, 10);

}

Now, while this logic renders a circle outside an OnPaint() event handler, it is very
important to understand that if form is invalidated (and thus redrawn), each of the circles

C# and the .NET Platform Chapter 9: A Better Painting Framework

-483 I ♡ Flyheart-

is erased! This should make sense, given that this rendering only happens within the
context of a mouse click.

A better approach is to have the MouseUp logic add a new point to an internal collection
(such as an ArrayList) of Point objects, followed by a call to Invalidate(). At this point, the
OnPaint() method can simply iterate over the collection and draw each item:

public class MainForm : System.Windows.Forms.Form

{

 // Used to hold all the points.

 private ArrayList myPts = new ArrayList();

 ...

 private void MainForm_MouseDown(object sender, MouseEventArgs e)

 {

 // Grab a new Graphics object.

 Graphics g = Graphics.FromHwnd(this.Handle);

 // Now draw a 10*10 circle at mouse click.

 // g.DrawEllipse(new Pen(Color.Green), e.X, e.Y, 10, 10);

 // Add to points collection.

 myPts.Add(new Point(e.X, e.Y));

 Invalidate();

 }

 private void MainForm_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 g.DrawString("Hello GDI+", new Font("Times New Roman", 20),

 new SolidBrush(Color.Black), 0, 0);

 // Draw all points.

 foreach(Point p in myPts)

 g.DrawEllipse(new Pen(Color.Green), p.X, p.Y, 10, 10);

 }

C# and the .NET Platform Chapter 9: A Better Painting Framework

-484 I ♡ Flyheart-

}
In any case, realize that the Graphics.FromHwnd() method provides a handy way to
obtain a Graphics object outside of a registered paint handler. Figure 9-2 shows a test run
of this initial GDI+ application.

Figure 9-2: A basic GDI+ application
SOURCE
CODE

The BasicPaintForm project is included under the Chapter 9
subdirectory.

Understanding the Graphics Class
Now that you understand how to obtain a Graphics object, you need to understand
exactly how to manipulate it. The System.Drawing.Graphics object is your gateway to
GDI+ rendering functionality. This class represents a valid device context (e.g., HDC)
coupled together with a slew of methods that allow you to render text, images (icons,
bitmaps, and so on), as well as numerous geometric patterns. Table 9-8 gives a partial list
of intriguing members.

Table 9-8: Members of the Graphics Class

GRAPHICS
METHODS MEANING IN LIFE

FromHdc()

FromHwnd()

FromImage()

These static methods provide a way to obtain a valid
Graphics object from a given image (e.g., icon,
bitmap, etc.) or GUI widget.

Clear() Fills a Graphics object with a specified color, erasing
the current drawing surface in the process.

DrawArc()

DrawBezier()

DrawBeziers()

DrawCurve()

DrawEllipse()

DrawIcon()

DrawLine()

DrawLines()

These methods (among others) are used to render a
given image or geometric pattern.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-485 I ♡ Flyheart-

Table 9-8: Members of the Graphics Class

GRAPHICS
METHODS MEANING IN LIFE

DrawPie()

DrawPath()

DrawRectangle()

DrawRectangles()

DrawString()

FillEllipse()

FillPath()

FillPie()

FillPolygon()

FillRectangle()

These methods (among others) are used to fill the
interior of a given geometric shape.

MeasureString() Returns a Size structure that represents the bounds
of a given block of text.

As well as providing a number of rendering methods, the Graphics class defines
additional members that encapsulate details regarding how the current rendering
operation will look and feel. In more concrete terms, the Graphics type allows you to
configure the state of the Graphics object using the property set in Table 9-9.

Table 9-9: Stateful Properties of the Graphics Class

GRAPHICS
PROPERTY

MEANING IN LIFE

Clip

ClipBounds

VisibleClipBounds

IsClipEmpty

IsVisibleClipEmpty

These properties allow you to set the clipping options
used with the current Graphics object.

Transform Allows you to transform "world coordinates" (more
later).

PageUnit

PageScale

DpiX

DpiY

These properties allow you to configure the point of
origin for your rendering operations, as well as
configure the unit of measurement.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-486 I ♡ Flyheart-

Table 9-9: Stateful Properties of the Graphics Class

GRAPHICS
PROPERTY

MEANING IN LIFE

SmoothingMode

PixelOffsetMode

TextRenderingHint

These properties allow you to configure the
smoothness of geometric objects and text. These are
set with corresponding enumerations defined in the
System.Drawing and System.Drawing.Drawing2D
namespaces.

CompositingMode

CompositingQuality

The CompositingMode property determines whether
drawing overwrites the background or is blended with
the background. The value is set with the
corresponding CompositingMode enumeration
defined in the System.Drawing.Drawing2D
namespace.

The CompositingQuality property specifies the
complexity of the blending process. Makes use of the
CompositingQuality enumeration, also in
System.Drawing.Drawing2D.

InterpolationMode Specifies how data is interpolated between
endpoints, using a related enumeration.

During the course of this chapter you configure a number of these state properties.

Default GDI+ Coordinate System
Before learning about the ins and outs of rendering GDI+ objects, you need a bit of
background regarding the underlying coordinate system. Like the raw Win32 API, GDI+
allows you to choose from a variety of coordinate systems. The default unit of
measurement is pixel-based and places the origin in the upper left corner with the x-axis
increasing to the right and the y-axis increasing downward (Figure 9-3).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-487 I ♡ Flyheart-

Figure 9-3: The default coordinate system
For example, if you render a Rectangle as follows (Figure 9-4):

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 // Draw a rectangle using the default coordinate system.

 e.Graphics.DrawRectangle(new Pen(Color.Red, 5), 10, 10, 100, 100);

}

you would see a square rendered 10 pixels down and in from the top left client edge,
which spans 90 pixels in both directions.

Figure 9-4: Pixel-based rendering

The default GDI+ coordinate system will most likely be your mapping mode of choice.
However, like most things in the .NET framework, you are able to configure the GDI+
mapping mode to your liking.

Specifying an Alternative Unit of Measurement

As just described, the default graphics unit is the pixel. However, you are able to change
this default setting by setting the PageUnit property of the Graphics object. The PageUnit
property can be assigned any member of the GraphicsUnit enumeration (Table 9-10).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-488 I ♡ Flyheart-

Table 9-10: The GraphicsUnit enumeration

GRAPHICSUNIT
ENUMERATION
VALUE DESCRIPTION

Display Specifies 1/75 inch as the unit of measure.

Document Specifies the document unit (1/300 inch) as the unit of
measure.

Inch Specifies the inch as the unit of measure.

Millimeter Specifies the millimeter as the unit of measure.

Pixel Specifies a device pixel as the unit of measure.

Point Specifies a printer's point (1/72 inch) as the unit of
measure.

For example, if you update your previous rendering code as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 // Draw a rectangle in inches...not pixels.

 e.Graphics.PageUnit = GraphicsUnit.Inch;

 e.Graphics.DrawRectangle(new Pen(Color.Red, 5), 0, 0, 100, 100);

}
you would find a radically different rectangle (Figure 9-5).

Figure 9-5: Inch-based rendering

C# and the .NET Platform Chapter 9: A Better Painting Framework

-489 I ♡ Flyheart-

The reason that 85% (or so) of the Form's client area is now filled in is due to the fact that
you have configured a Pen with a five inch nib! The rectangle itself is 100 * 100 inches in
size! In fact, the small gray box you see located in the lower right corner is the upper left
interior of the rectangle.

Specifying an Alternative Point of Origin

Recall, that when you make use of the default mapping mode, point (0, 0) is at the
extreme upper left of the client area. Again, this is typically what you desire. However,
what if you wish to alter the location where rendering begins? For example, let's assume
that your application always needs to reserve a 100-pixel boundary around the Form's
client area (for whatever reason). You need to ensure that all GDI+ operations take place
somewhere within this internal region.

One approach you could take is to offset all your rendering code manually. This of course
is a huge bother. It would be far better (and simpler) if you could set a property that says
in effect "Although I might say render a rectangle with a point of origin at (0, 0), make sure
you begin at point (100, 100). This would simplify your life a great deal, as you can
continue to specify your plotting points without modification.

In GDI+, you can adjust the point of origin by setting the transformation value using the
TranslateTransform() method of the Graphics class. For example, the following code
allows you to keep your logical mapping at (0, 0) while modifying the device view to begin
at (100, 100):

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 // Configure graphics unit.

 e.Graphics.PageUnit = GraphicsUnit.Point;

 // Configure device origin to (100, 100).

 e.Graphics. TranslateTransform(100,100);

 // World origin is still (0, 0).

 e.Graphics.DrawRectangle(new Pen(Color.Red, 1), 0, 0, 100, 100);

}

To help you experiment with some of the ways to alter the default GDI+ coordinate
system, the companion code contains a sample application named (of course)
CoorSystem. Using two top-most menu items, you are able to alter the point of origin as
well as the unit of measurement. For an example, check out Figure 9-6.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-490 I ♡ Flyheart-

Figure 9-6: The coordinate test application

You configure other state properties of the Graphics object later in this chapter. For now,
the next order of business is to examine more details of GDI+ color manipulation.

Establishing an Active Color

Many of the rendering methods defined by the Graphics class require you to specify the
color that should be used during the drawing process. The Color structure represents an
alpha-red-green-blue (ARGB) color constant. Most of the Color type's functionality comes
by way of a number of static properties, which return a new (correctly configured), Color
type:

// One of many predefined colors...

Color c = Color.PapayaWhip;

As shown in Table 9-11, there are other ways you can create a Color type. Regardless of
the method you use, you are then able to extract relevant information using any of the
members listed in Table 9-11.

Table 9-11: Members of the Color Type

COLOR MEMBER MEANING IN LIFE

FromArgb() Returns a new Color object based on numerical red,
green, and blue values.

FromKnownColor() Returns a new Color object based on a member of
the KnownColor enumeration.

FromName() Returns a new Color object based on a string name

C# and the .NET Platform Chapter 9: A Better Painting Framework

-491 I ♡ Flyheart-

Table 9-11: Members of the Color Type

COLOR MEMBER MEANING IN LIFE

(e.g., "Red").

A, R, G, B These properties return the value assigned to the
alpha, red, green, and blue aspect of a Color object.

IsNamedColor()

Name

These members can be applied to a Color object to
determine if the current ARGB values have a
predefined name (e.g., "Red") and if so, retrieve it via
the Name property.

GetBrightness()

GetHue()

GetSaturation()

GDI+ Color types have an associated
Hue-Saturation-Brightness (HSB) value. These
methods retrieve the specifics.

ToArgb()

ToKnownColor()

Returns the ARGB value of the Color type, or the
KnownColor enumeration value based on a valid
Color object.

Examining the ColorDialog Class

On a related note, the System.Windows.Forms namespace provides a predefined dialog
box class (ColorDialog) that can be used to prompt the end user for his or her color
selection (Figure 9-7). Note that the RGB and HSB values can be adjusted using a slider
control or directly via a given edit field.

Figure 9-7: The canned Color dialog

Working with this dialog is simple. From a valid instance of the ColorDialog type, call
ShowDialog() to display the dialog modally. Once the user has closed the dialog, you can
extract the corresponding Color object using the ColorDialog.Color property.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-492 I ♡ Flyheart-

For example, assume you wish to allow the user to configure the background color of the
client area using the ColorDialog. To keep things simple, let's assume that when the user
clicks anywhere on the client area, you show the ColorDialog object and act accordingly.
Here is the code:

public class ColorDlgForm : System.Windows.Forms.Form

{

 // Our ColorDialog.

 private System.Windows.Forms.ColorDialog colorDlg;

 public ColorDlgForm()

 {

 colorDlg = new System.Windows.Forms.ColorDialog();

 Text = "Click on me to change the color";

 this.MouseUp +=

 new MouseEventHandler(this. ColorDlgForm _MouseUp);

 }

...

 private void ColorDlgForm_MouseUp(object sender, MouseEventArgs e)

 {

 if (colorDlg.ShowDialog() != DialogResult.Cancel)

 {

 currColor = colorDlg.Color;

 this.BackColor = currColor;

 // Show current color.

 string strARGB = colorDlg.Color.ToString();

 MessageBox.Show(strARGB, "Color is:");

 }

 }

}
Figure 9-8 shows a test run.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-493 I ♡ Flyheart-

Figure 9-8: Reading ARGB values

Although there has not yet been a formal discussion of how to manipulate dialog boxes,
the previous code should not raise too many eyebrows. Notice that you are able to
determine which button has been clicked (OK or Cancel) by testing the return value of
ShowDialog() against the DialogResult enumeration. You will see additional stock dialog
boxes used in this chapter. Later, in Chapter 10, you learn how to build custom dialogs to
gather (and validate) user input.

SOURCE
CODE

The ColorDlg application is included under the Chapter 9
subdirectory.

Manipulating Fonts
Although you have been rendering text since Chapter 8, you have yet to examine the
specifics of the Font class (and related types). The System.Drawing.Font type represents
a given font installed on the user's machine. While the Font class defines a number of
overloaded constructors, here are some common options:

// Create a Font of a given type name and size.

Font f = new Font("Times New Roman", 12);

// Create a Font with a given name, size, and style set.

Font f2 = new Font("WingDings", 50, FontStyle.Bold | FontStyle.Underline);
Here, f2 has been created using a set of FontStyle flags. The members of this
enumeration allow you to configure a number of properties of the Font object such as bold
or italic (if you require more than one FontStyle, simply OR each item together). Table
9-12 lists your choices.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-494 I ♡ Flyheart-

Table 9-12: The FontStyle Enumeration

FONTSTYLE
ENUMERATION
MEMBER

MEANING IN LIFE

Bold Bold text

Italic Italic text

Regular Normal text

Strikeout Text with a line through the middle

Underline Underlined text

Once you have configured the look and feel of your Font object, the next obvious task is
to pass it as a parameter to the Graphics.DrawString() method. Although DrawString()
has also been overloaded a number of times, each variation typically requires the same
basic information: A string to draw, the font to draw it in, a brush used for rendering, and a
location to place it. For example:

// public void DrawString(String, Font, Brush, Point);

g.DrawString("My string", new Font("Pop", 25),

 new SolidBrush(Color.Black), new Point(0,0));

// public void DrawString(String, Font, Brush, float, float);

g.DrawString("Another string", new Font("Times New Roman", 16),

 new SolidBrush(Color.Red), 40, 40);

In each of these examples, you have made use of a SolidBrush type (of a particular color).
It is possible to configure a number of brush types. For the time being, a solid brush fits
the bill; you see more exotic brush types a bit later in this chapter.

Once you have created a valid Font type, you are able to extract its current settings using
a number of properties (e.g., Bold, Italic, Unit, Height, Size, Font-Family, and so forth).

Working with Font Families

The System.Drawing namespace also defines the FontFamily type, which abstracts a
group of typefaces having a similar basic design but having certain style variations (such
as point size). A family of fonts, like Verdana, can include several fonts that differ in style
and size. For example, Verdana 12-point bold and Verdana 24-point italic are different
fonts in the Verdana font family.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-495 I ♡ Flyheart-

The constructor of the FontFamily type takes a string representing the name of the font
family you are attempting to capture. Once you create the generic family, you are then
able to create a more specific Font object:

// Make a family of fonts.

FontFamily myFamily = new FontFamily("Verdana");

// Pass family into ctor of Font.

Font myFont = new Font(myFamily, 12);

e.Graphics.DrawString("Hello?", myFont, Brushes.Blue, 10, 10);
Of greater interest is the ability to gather various statistics regarding a given family of
fonts. For example, let's say you were building text-processing application and wish to
determine the average width of a character in a particular Font-Family. What if you wish
to understand the ascending and descending values for a given character? To answer
such questions, the FontFamily type defines the members shown in Table 9-13. Note that
each requires you to specify the font style using the FontStyle enumeration (Table 9-13).

Table 9-13: Members of the FontFamily Type

FONTFAMILY
MEMBER

MEANING IN LIFE

GetCellAscent() Returns the ascender metric for the members in this
family.

GetCellDescent() Returns the descender metric for members in this
family.

GetEmHeight() Gets the size of the em square for the specified style.

GetLineSpacing() Returns the distance between two consecutive lines
of text for this FontFamily with the specified
FontStyle.

GetName() Returns the name of this FontFamily in the specified
language.

IsStyleAvailable() Indicates whether the specified FontStyle is
available.

To illustrate, here is a Paint handler that prints a number of characteristics of the Verdana
font family:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

C# and the .NET Platform Chapter 9: A Better Painting Framework

-496 I ♡ Flyheart-

 FontFamily myFamily = new FontFamily("Verdana");

 Font myFont = new Font(myFamily, 12);

 int y = 0; // Y offset.

 int fontHeight = myFont.Height; // Get pixel height of font.

 // Show units of measurement for FontFamily members.

 this.Text = "Measurements are in GraphicsUnit." + myFont.Unit.ToString();

 g.DrawString("The Verdana family.", myFont, Brushes.Blue, 10, y);

 y += 20;

 // Print our family ties...

 g.DrawString("Ascent for bold Verdana: " +

 myFamily.GetCellAscent(FontStyle.Bold),

 myFont, Brushes.Black, 10, y + fontHeight);

 y += 20;

 g.DrawString("Descent for bold Verdana: " +

 myFamily.GetCellDescent(FontStyle.Bold),

 myFont, Brushes.Black, 10, y + fontHeight);

 y += 20;

 g.DrawString("Line spacing for bold Verdana: " +

 myFamily.GetLineSpacing(FontStyle.Bold),

 myFont, Brushes.Black, 10, y + fontHeight);

 y += 20;

 g.DrawString("Height for bold Verdana: " +

 myFamily.GetEmHeight(FontStyle.Bold),

 myFont, Brushes.Black, 10, y + fontHeight);

 y += 20;

}
Figure 9-9 shows the result. Note that these members of the FontFamily type return
values using GraphicsUnit.Point (not Pixel) as the unit of measurement, which

C# and the .NET Platform Chapter 9: A Better Painting Framework

-497 I ♡ Flyheart-

corresponds to 1/72 inch. You are free to transform these values to other units of
measurement as you see fit.

Figure 9-9: Font matrix

SOURCE
CODE

The FontFamily application is included under the Chapter 9
subdirectory.

Understanding Font Metrics

If you have not worked with Fonts using this level of detail before, here are a few words
regarding character measurements. The dimensions of a given Font are all based on the
baseline value, which is the imaginary line on which each character "sits." Some
characters (such as "j," "y," or "g") have a portion that drops below this baseline. This is
called the descending value. The ascending value represents the amount a given
character rises above the baseline. The leading value represents the difference between
the height and ascent, where height is the total distance between the leading and
descending values.
To keep all these items fixed in your mind, ponder Figure 9-10 (the baseline is identified
by the thicker line toward the bottom).

Figure 9-10: The anatomy of a Font

Building a Font Application

Now, let's build a more complex application that allows the end user to manipulate a Font
object. The application will allow the user to select the current font face using the
"Configure | Font Face" menu selection. Figure 9-11 shows the layout.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-498 I ♡ Flyheart-

Figure 9-11: The menu system of the Font App

Let's allow the user to indirectly control the size of the Font object using a Windows
Forms Timer object. If the user activates the Timer using the "Configure | Swell?" menu
item, the size of the Font object increases at a regular interval (checking for a maximum
upper limit). In this way, the text appears to swell and thus provides a simple animation
cycle of "breathing" text.

To begin, you need to derive a new class from System.Windows.Forms.Form. Next, you
need some data members to represent your Timer object, the current font face, and an
integer (swellValue) to hold the amount to adjust the font size:

public class FontForm : System.Windows.Forms.Form

{

 private Timer timer;

 private int swellValue;

 private string fontFace = " WingDings"; // Default font face.

 public FontForm()

 {

 // The menu system has been designed using the IDE...

 InitializeComponent();

 timer = new Timer();

 Text = "Font App";

 Width = 425;

 Height = 150;

 BackColor = Color.Honeydew;

 CenterToScreen();

 // Configure the Timer.

 timer.Enabled = true;

C# and the .NET Platform Chapter 9: A Better Painting Framework

-499 I ♡ Flyheart-

 timer.Interval = 100;

 timer.Tick += new EventHandler(FontForm_OnTimer);

 }

}
Notice that the constructor calls InitializeComponent() to create and attach the main menu
system. The code behind this method is standard menu logic (as described in Chapter 8),
and I assume you will examine the companion code for complete details.
Of greater importance is the manipulation of the Timer object. You also saw the use of
this type in Chapter 8.

In the Tick event handler, increase the value of the swellValue data member, and refresh
your client area. Recall, the swellValue value is added to the current font size to provide a
simple animation (notice the swellValue has a maximum upper limit of 50). In order to
help reduce the flicker that can occur when redrawing the entire client area, you only
refresh the minimum dirty rectangular region:

private void FontForm_OnTimer(object sender, EventArgs e)

{

 // Increase current swellValue by 5.

 swellValue += 5;

 // If this value is greater than or equal to 50, reset to zero.

 if(swellValue >= 50)

 swellValue = 0;

 // Just invalidate the 'minimal dirty rectangle' to help reduce flicker.

 Invalidate(new Rectangle(0, 0, ClientRectangle.Width, 100));

}

Now that the upper 100 pixels of your client area are refreshed with each tick of the Timer,
you better have something to render! In the Form's Paint handler, create a Font object
based on the user-defined font face (as selected from the appropriate menu item) and
current swellValue (as dictated by the timer). Once you have your Font object fully
configured, render a message into the center of the dirty rectangle:

private void FontForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 // The font size can be between 12 and 62,

 // based on the current swellValue.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-500 I ♡ Flyheart-

 Font theFont = new Font(fontFace, 12 + swellValue);

 string message = "Hello GDI+";

 // Display message in the center of the rect.

 float windowCenter = this.DisplayRectangle.Width/2;

 SizeF stringSize = g.MeasureString(message, theFont);

 float startPos = windowCenter − (stringSize.Width/2);

 g.DrawString(message, theFont, new SolidBrush(Color.Blue), startPos, 10);

}

The remaining logic of the FontForm class that deserves comment is the menu handler
for the Swell menu item. If the user wishes to stop or start the swelling of the text (i.e.,
enable or disable the animation), you must configure the Clicked handler to enable or
disable the Timer as follows:

private void ConfigSwell_Clicked(object sender, EventArgs e)

{

 timer.Enabled = !timer.Enabled;

 mainMenu.MenuItems[1].MenuItems[0].Checked = timer.Enabled;

}

Enumerating Installed Fonts (System.Drawing.Text)

Next, let's expand the FontApp to programmatically discover the set of installed fonts on
the target machine. Doing so gives you a chance to explore another namespace of GDI+,
System.Drawing.Text. This namespace contains a (small) handful of useful types that can
be used to discover and manipulate the set of fonts installed on the target machine. The
highlights are shown in Table 9-14.

Table 9-14: The Text Type

SYSTEM.DRAWING.TEXT
TYPE

MEANING IN LIFE

InstalledFontCollection Represents the set of all fonts installed on
the target system.

PrivateFontCollection Encapsulates a collection of specific Font
types.

LineSpacing This enumeration specifies the spacing

C# and the .NET Platform Chapter 9: A Better Painting Framework

-501 I ♡ Flyheart-

Table 9-14: The Text Type

SYSTEM.DRAWING.TEXT
TYPE

MEANING IN LIFE

between lines of text in a text string that
spans more than a single line.

TextRenderingHint Another enumeration that allows you to
specify the quality of the current text
rendering operation. For example, the Text
value represents a fast (but low quality)
rendering. AntiAliased marks better quality
but a slower rendering cycle.

To illustrate, assume your current application has an additional menu item named "List
Installed Fonts" (Figure 9-12).

Figure 9-12: Enumerating all installed fonts

When the user selects this menu item, the corresponding Clicked handler creates an
instance of the InstalledFontCollection class. This class maintains an array named
FontFamily, which represents the set of all fonts on the target machine, and may be
obtained using the InstalledFontCollection.Families

property. Using the FontFamily.Name property, you are able to extract the font face (e.g.,
Times New Roman, Arial, etc.) for each font.

Here, you have added a private string data member named installedFonts to hold each
font face. The logic in the "List Installed Fonts" menu handler creates an instance of the
InstalledFontCollection type, reads the name of each string, and adds the new font face to
the private installedFonts data member:

public class FontForm : System.Windows.Forms.Form

{

 // Holds the list of fonts.

 private string installedFonts;

 // Menu handler to get the list of installed fonts.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-502 I ♡ Flyheart-

 private void mnuConfigShowFonts_Clicked(object sender, EventArgs e)

 {

 InstalledFontCollection fonts = new InstalledFontCollection();

 for(int i = 0; i < fonts.Families.Length; i++)

 {

 installedFonts += fonts.Families[i].Name + " ";

 }

 // This time, we need to invalidate the entire client area,

 // as we will paint the installedFonts string on the lower half

 // of the client rectangle.

 Invalidate();

 }

...

}

The final task is to render the installedFonts string to the client area, directly below the
screen real estate that is used for your swelling text:

private void FontForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 Font theFont = new Font(fontFace, 12 + swellValue);

 string message = "Hello GDI+";

 // Display message in the center of the window!

 float windowCenter = this.DisplayRectangle.Width/2;

 SizeF stringSize = e.Graphics.MeasureString(message, theFont);

 float startPos = windowCenter − (stringSize.Width/2);

 g.DrawString(message, theFont, new SolidBrush(Color.Blue), startPos, 10);

 // Show installed fonts in the rectangle below the swell area.

 Rectangle myRect = new Rectangle(0, 100,

 ClientRectangle.Width, ClientRectangle.Height);

C# and the .NET Platform Chapter 9: A Better Painting Framework

-503 I ♡ Flyheart-

 // Paint this area of the Form black.

 g.FillRectangle(new SolidBrush(Color.Black), myRect);

 g.DrawString(installedFonts, new Font("Arial", 12),

 new SolidBrush(Color.White), myRect);

}

Recall that the size of the "dirty rectangle" has been mapped to the upper 100 pixels of
the client rectangle. Because your Tick handler only invalidates a portion of the Form, the
remaining area is not redrawn when the Tick event has been sent (to help optimize the
rendering of the client area).

As a final touch, to ensure proper redrawing let's handle the Resize event to insure that if
the user resizes the Form, the lower part of client rectangle is redrawn correctly:

private void FontForm_Resize(object sender, System.EventArgs e)

{

 Rectangle myRect = new Rectangle(0, 100,

 ClientRectangle.Width, ClientRectangle.Height);

 Invalidate(myRect);

}
With that, Figure 9-13 shows the final result.

Figure 9-13: Displaying all installed fonts

SOURCE
CODE

The FontApp application is included under the Chapter 9
subdirectory.

The FontDialog Class

As you might assume, there is a default font dialog box (FontDialog). Figure 9-14 shows
what it looks like.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-504 I ♡ Flyheart-

Figure 9-14: The canned Font Dialog
Like the ColorDialog type examined earlier in this chapter, when you wish to work with the
FontDialog, simply call the ShowDialog() method. Using the Font property, you may
extract the characteristics of the current selection for use in the application. To illustrate,
here is a new Form that mimics the logic of the previous ColorDlgForm (i.e., click on the
form to launch the File dialog). The output can be seen in Figure 9-15.

Figure 9-15: Extracting data from the Font dialog

public class FontDlgForm : System.Windows.Forms.Form

{

 private System.Windows.Forms.FontDialog fontDlg;

 private Font currFont;

 // Event handler for Paint event.

 private void FontDlgForm_Paint(object sender, PaintEventArgs e)

 {

 Graphics g = e.Graphics;

 g.DrawString("Testing...", currFont,

 new SolidBrush(Color.Black), 0, 0);

 }

C# and the .NET Platform Chapter 9: A Better Painting Framework

-505 I ♡ Flyheart-

 public FontDlgForm()

 {

 CenterToScreen();

 fontDlg = new System.Windows.Forms.FontDialog();

 fontDlg.ShowHelp = true;

 Text = "Click on me to change the font";

 currFont = new Font("Times New Roman", 12);

 ...

 }

 // Event handler for MouseUp event.

 private void FontDlgForm_MouseUp(object sender, MouseEventArgs e)

 {

 if (fontDlg.ShowDialog() != DialogResult.Cancel)

 {

 currFont = fontDlg.Font;

 Invalidate();

 }

 }

}

SOURCE
CODE

The FontDlgForm application is included under the Chapter 9
subdirectory.

Survey of the System.Drawing.Drawing2D Namespace

Your next task is to examine how to manipulate Pen and Brush objects to render
geometric patterns. While you could do so making use of nothing more than the types
found in the System.Drawing namespace, you should be aware that many of the more
"sexy" pen and brush configurations (for example, gradient brushes) require types
defined within the System.Drawing.Drawing2D namespace.

This additional GDI+ namespace (which is substantially smaller than System.Drawing)
provides a number of classes that allow you to modify the line cap (triangle, diamond, etc)
used for a given pen, build textured brushes, as well as work with vector graphic
manipulations. Some core types to be aware of, grouped by related functionality are
shown in Table 9-15.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-506 I ♡ Flyheart-

Table 9-15: The Classes of System.Drawing.Drawing2D

SYSTEM.DRAWING.DRAWING2D
CLASS

MEANING IN LIFE

AdjustableArrowCap

CustomLineCap

Pen caps are used to paint the
beginning and end points of a given
line. These types represent an
adjustable arrow-shaped and
user-defined cap.

Blend

ColorBlend

Used to define a blend pattern (and
colors) used in conjunction with a
LinearGradientBrush.

GraphicsPath

GraphicsPathIterator

PathData

A GraphicsPath object represents a
series of connected lines and
curves. This class allows you to
insert just about any type of
geometrical pattern (arcs,
rectangles, lines, strings, polygons,
etc) into the path.

PathData holds the graphical data
that makes up a path.

HatchBrush

LinearGradientBrush

PathGradientBrush

Exotic brush types.

Also be aware that the System.Drawing.Drawing2D namespace defines another set of
enumerations that are used in conjunction with these core types. Table 9-16 gives a quick
rundown.

Establishing the Rendering Quality

Notice that some of the enumerations defined in the System.Drawing.Drawing2D
namespace (such as QualityMode and SmoothingMode) allow you to configure the
overall quality of the current rendering operation. When you obtain a Graphics object, it
has a default rendering mode, which is a middle of the road combination of speed and
overall quality. Let's examine one way to tweak a Graphics object to override these
default values.

The SmoothingMode enumeration (Table 9-17) is typically used to control how the GDI+
objects being rendered with the current Graphics object are antialiased (or not).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-507 I ♡ Flyheart-

Table 9-16: The Enumerations of System.Drawing.Drawing2D

SYSTEM.DRAWING.DRAWING2D
ENUMERATION MEANING IN LIFE

DashStyle Specifies the style of dashed lines
drawn with a Pen.

FillMode Specifies how the interior of a closed
path is filled.

HatchStyle Specifies the different patterns
available for HatchBrush objects.

LinearGradientMode Specifies the direction to apply a
linear gradient.

LineCap Specifies the current cap styles used
by a Pen.

PenAlignment Specifies the alignment of a Pen in
relation to the line being drawn.

PenType Specifies the type of fill a Pen uses
to fill lines.

QualityMode

SmoothingMode

RenderingHint

Specifies the overall quality used to
render a graphic image.

Table 9-17: Possible Smoothing Values

SMOOTHINGMODE
VALUE

MEANING IN LIFE

AntiAlias Specifies antialiased rendering. The AntiAlias
mode uses shades of gray or color to smooth the
edges of lines and curves, and is effective on CRT
screens as well as LCD screens.

HighQuality Specifies high quality, lower performance
rendering. The highquality mode uses more
sophisticated techniques that take advantage of the
subpixel resolution of LCD screens.

A single pixel on an LCD screen is divided into
three stripes that are set to various shades in order
to produce the line or curve that appears the most
smooth to the human eye.

HighSpeed Specifies low quality, high performance rendering.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-508 I ♡ Flyheart-

Table 9-17: Possible Smoothing Values

SMOOTHINGMODE
VALUE

MEANING IN LIFE

The highspeed mode does no smoothing of the
item being rendered; pixels are either on or off.

When you wish to override the default rendering quality for a current GDI+ rendering
operation, make use of the SmoothingMode property of the Graphics object:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 // Set quality of GDI+ object rendering.

 g.SmoothingMode = SmoothingMode.AntiAlias;

 ...

}

Be aware that the SmoothingMode property is only used to control the quality of rendering
GDI+ objects, not textual information. If you wish to modify the rendering quality for Font
types, you need to set the TextRenderingHint property using the related
System.Drawing.TextRenderingHint enumeration.

Working with Pens

GDI+ Pen objects are used to draw lines (not too much of a stretch there!). However, a
pen in and of itself is of little value. When you need to render a geometric shape onto a
Control-derived type, you send a pass valid Pen type to any number of render methods
defined by the Graphics class. In general, the DrawXXXX() methods are used to render
some set of lines to a graphics surface, and are typically used with Pen objects. The
Graphics class also defines a number of FillXXXX() methods that render an image using
some sort of Brush-derived type (more on those in just a minute).

Although you have seen many drawing members earlier in the chapter, here they are
again (Table 9-18) in a bit more detail (be aware that each of these methods have been
overloaded a number of times).

Now that you better understand the core methods used to render geometric images, you
can examine the Pen class itself. This class defines a small set of constructors that allow
you to determine the initial color and width of the pen nib (you can also construct a new

C# and the .NET Platform Chapter 9: A Better Painting Framework

-509 I ♡ Flyheart-

Pen based on an existing Brush object...more later). Most of a Pen's functionality comes
by way of its supported properties. Table 9-19 gives a partial list.

Table 9-18: Drawing Members of the Graphics Class

DRAWING METHOD OF
GRAPHICS CLASS MEANING IN LIFE

DrawArc() This method renders an arc given a pen
and ellipse on which to base the angle of
the arc.

DrawBezier()

DrawBeziers()

Given four points, this method draws a
cubic Bezier curve (or a number of
Beziers).

DrawCurve() Draws a curve defined by an array of
points.

DrawEllipse() Draws the outline of an ellipse within the
scope of a bounding rectangle.

DrawLine()

DrawLines()

Given a Point (or an array of Point
types), these methods connect the dots
(if you will).

DrawPath() Using the GraphicsPath type defined in
the System.Drawing.Drawing2D
namespace, this method renders a
collection of lines/curves as specified by
the path.

DrawPie() Draws the outline of a pie section defined
by an ellipse and two radial lines.

DrawPolygon() Draws the outline of a polygon defined by
an array of Point types.

DrawRectangle()

DrawRectangles()

Renders a box, or a whole bunch of
boxes, based on top-left-bottom-right
coordinates. This can be specified using
Rectangle types, integers, or floating
point numbers.

Table 9-19: Pen Properties

PEN PROPERTY MEANING IN LIFE

Brush Determines the Brush used by this Pen.

Color Determines the Color type used by this Pen.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-510 I ♡ Flyheart-

Table 9-19: Pen Properties

PEN PROPERTY MEANING IN LIFE

CompoundArray Gets or sets an array of custom dashes and
spaces.

CustomStartCap

CustomEndCap

Gets or sets a custom cap style to use at the
beginning or end of lines drawn with this Pen.

Cap styles are simply the term used to describe
how the initial and final stroke of the pen should
look and feel. These properties allow you to build
custom caps for your Pen types.

DashCap Gets or sets the cap style used at the beginning or
end of dashed lines drawn with this Pen.

DashOffset Gets or sets the distance from the start of a line to
the beginning of a dash pattern.

DashPattern Gets or sets an array of custom dashes and
spaces. The dashes are made up of line segments.

DashStyle Gets or sets the style used for dashed lines drawn
with this Pen.

LineJoin Gets or sets the join style for the ends of two
overlapping lines drawn with this Pen.

PenType Gets the style of lines drawn with this Pen.

StartCap

EndCap

Gets or sets the predefined cap style used at the
beginning or end of lines drawn with this Pen.

Set the cap of your Pen Using the LineCap
enumeration defined in the
System.Drawing.Drawing2D namespace.

Width Gets or sets the width of this Pen.

Remember that in addition of the Pen type, GDI+ also provides a Pens collection. Using a
number of static properties, you are table to retrieve a Pen (or a given color) on the fly,
rather than creating a custom Pen by hand. Be aware however, that the Pen types
returned will always have a Width of 1. If you require a more exotic pen, you will need to
build a Pen type by hand.

First, let's render some geometric images using simple Pen types. Assume we have a
main Form object, which is capable of responding to paint requests. The implementation
is as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)

C# and the .NET Platform Chapter 9: A Better Painting Framework

-511 I ♡ Flyheart-

{

 Graphics g = e.Graphics;

 // Make a big blue pen.

 Pen bluePen = new Pen(Color.Blue, 20);

 // Get a stock pen from the Pens Type.

 Pen pen2 = Pens.Firebrick;

 pen2.Width = 5;

 // Render some shapes with the pens.

 g.DrawEllipse(bluePen, 10, 10, 100, 100);

 g.DrawLine(pen2, 10, 130, 110, 130);

 g.DrawPie(Pens.Black, 150, 10, 120, 150, 90, 80);

 // Draw a purple dashed polygon as well...

 Pen pen3 = new Pen(Color.Purple, 5);

 pen3.DashStyle = DashStyle.DashDotDot;

 g.DrawPolygon(pen3, new Point[]{ new Point(30, 140),

 new Point(265, 200),

 new Point(100, 225),

 new Point(190, 190),

 new Point(50, 330),

 new Point(20, 180)});

 // And a rectangle containing some text...

 Rectangle r = new Rectangle(150, 10, 130, 60);

 g.DrawRectangle(Pens.Blue, r);

 g.DrawString("Hello out there...How are ya?",

 new Font("Arial", 12), Brushes.Black, r);

}
The output (Figure 9-16), while not earth shattering, should drive the point home.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-512 I ♡ Flyheart-

Figure 9-16: Working with pen types

Notice that the Pen that is used to render your polygon makes use of the DashStyle
enumeration (defined in System.Drawing.Drawing2D). This is the .NET equivalent of the
raw Win32 pen style flags (e.g., PS_SOLID). Table 9-20 lists your choices.

Table 9-20: Dash Styles

DASHSTYLE
VALUE

MEANING IN LIFE

Custom Specifies a user-defined custom dash style.

Dash Specifies a line comprised of dashes.

DashDot Specifies a line comprised of an alternating pattern
of dash-dot-dash-dot.

DashDotDot Specifies a line comprised of an alternating pattern
of dash-dot-dot-dash-dot-dot.

Dot Specifies a line comprised of dots.

Solid Specifies a solid line.

In addition to the preconfigured DashStyles, you are also able to define custom dash
types using the DashPattern property of the Pen type (Figure 9-17).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-513 I ♡ Flyheart-

Figure 9-17: Working with dash styles

// Draw custom dash pattern all around the boarder of the form.

Pen customDashPen = new Pen(Color.BlueViolet, 5);

float[] myDashes = {5.0f, 2.0f, 1.0f, 3.0f};

customDashPen.DashPattern = myDashes;

g.DrawRectangle(customDashPen, ClientRectangle);

SOURCE
CODE

The PenApp project is included under the Chapter 9
subdirectory.

Working with Pen Caps

If you examine the output of the previous pen example, you should have noticed that the
beginning and end of each line was rendered using a standard pen protocol (an end cap
composed of 90 degree angles). Using the LineCap enumeration however, you are able
to build Pens that exhibit a bit more flair. The core values of this enumeration are seen in
Table 9-21.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-514 I ♡ Flyheart-

Table 9-21: LineCap Values

LINECAP
VALUES

MEANING IN LIFE

ArrowAnchor Specifies an arrow-shaped cap.

DiamondAnchor Specifies a diamond anchor cap.

Flat Specifies a flat line cap.

Round Specifies a round line cap.

RoundAnchor Specifies a round anchor cap.

Square Specifies a square line cap.

SquareAnchor Specifies no line cap.

Triangle Specifies a triangular line cap.

To illustrate, the following Pens application draws a series of lines using each of the
LineCap styles. First, the end result can be seen in Figure 9-18.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-515 I ♡ Flyheart-

Figure 9-18: Pen caps

The code simply loops through each member of the LineCap enumeration, and prints out
the name of the item (i.e., ArrowAnchor) and then configures and draws a line with the
current cap:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 Pen thePen = new Pen(Color.Black, 10);

 int yOffSet = 10;

 // Get all members of the LineCap enum.

 Array obj = Enum.GetValues(typeof(LineCap));

 // Draw a line with a LineCap member.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-516 I ♡ Flyheart-

 for(int x = 0; x < obj.Length; x++)

 {

 // Get next cap and configure pen.

 LineCap temp = (LineCap)obj.GetValue(x);

 thePen.StartCap = temp;

 thePen.EndCap = temp;

 // Print name of LineCap enum.

 g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

 new SolidBrush(Color.Black), 0, yOffSet);

 // Draw a line with the correct cap.

 g.DrawLine(thePen, 100, yOffSet, Width − 50, yOffSet);

 yOffSet += 40;

 }

}
SOURCE
CODE

The PenCapApp project is included under the Chapter 9
subdirectory.

Working with Solid Brushes

So much for drawing lines. GDI+ Brush-derived types are used to fill the space between
the lines, with a given color, pattern or image. Recall that the Brush class is an abstract
type, and cannot be directly created. Rather, this type serves as a base class to the other
related brush types (for example, SolidBrush, HatchBrush, LinearGradientBrush and so
forth). In addition to the aforementioned Brush-derived types, the System.Drawing
namespace also defines two types that return a configured brush using a number of static
properties: Brushes and SystemBrushes. Using a properly configured brush, you are able
to call any number of methods (such as DrawString()), as well as the following set of
FillXXXX() methods (Table 9-22).

Table 9-22: Fill Methods of the Graphics Type

FILL METHOD OF
GRAPHICS CLASS MEANING IN LIFE

FillClosedCurve() Fills the interior of a closed curve defined by an
array of points.

FillEllipse() Fills the interior of an ellipse defined by a bounding
rectangle.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-517 I ♡ Flyheart-

Table 9-22: Fill Methods of the Graphics Type

FILL METHOD OF
GRAPHICS CLASS MEANING IN LIFE

FillPath() Fills the interior of a path.

FillPie() Fills the interior of a pie section.

FillPolygon() Fills the interior of a polygon defined by an array of
points.

FillRectangle() Fills the interior of a rectangle (or a number of
rectangles)

FillRectangles() with a Brush.

FillRegion() Fills the interior of a Region.

Also recall, that you are able to build a custom Pen type by making use of a given brush.
In this way, you are able to build some brush of interest (for example, a brush that paints
a bitmap image) and render geometric patterns with configured Pen.
To illustrate, here is a small sample program that makes use of the SolidBrush and
Brushes types [the output of this program (Figure 9-19) should look familiar...]

Figure 9-19: Working with Brush types

C# and the .NET Platform Chapter 9: A Better Painting Framework

-518 I ♡ Flyheart-

If you can't tell, this application is little more than the original Pens application, making
use of the FillXXXX() methods and SolidBrush types, rather than pens and the related
DrawXXXX() methods. Here is the implementation of the paint handler:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 // Make a blue SolidBrush.

 SolidBrush blueBrush = new SolidBrush(Color.Blue);

 // Get a stock brush from the Brushes type.

 SolidBrush pen2 = (SolidBrush)Brushes.Firebrick;

 // Render some shapes with the brushes.

 g.FillEllipse(blueBrush, 10, 10, 100, 100);

 g.FillPie(Brushes.Black, 150, 10, 120, 150, 90, 80);

 // Draw a purple polygon as well...

 SolidBrush brush3= new SolidBrush(Color.Purple);

 g.FillPolygon(brush3, new Point[]{ new Point(30, 140),

 new Point(265, 200),

 new Point(100, 225),

 new Point(190, 190),

 new Point(50, 330),

 new Point(20, 180)});

 // And a rectangle with some text...

 Rectangle r = new Rectangle(150, 10, 130, 60);

 g.FillRectangle(Brushes.Blue, r);

 g.DrawString("Hello out there...How are ya?",

 new Font("Arial", 12), Brushes.White, r);

}

SOURCE
CODE

The SolidBrushApp project is included under the Chapter 9
subdirectory.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-519 I ♡ Flyheart-

Working with Hatch Style Brushes

The System.Drawing.Drawing2D namespace defines another Brush-derived type named
HatchBrush. This type allows you to fill a region using a (very large) number of predefined
patterns, represented by the HatchStyle enumeration. Here are some (but not all) of the
hatch values (Table 9-23).

Table 9-23: Hatch Styles

HATCHSTYLE
ENUMERATION VALUE MEANING IN LIFE

BackwardDiagonal Creates a brush consisting of backwards
diagonal lines.

Cross Creates a brush consisting of horizontal and
vertical crossing lines.

DiagonalCross Creates a brush consisting of diagonal
crossing lines.

ForwardDiagonal Creates a brush consisting of forward
diagonal lines.

Hollow Configures a "Hollow" brush that doesn't
paint anything.

Horizontal Creates a brush consisting of horizontal
lines.

Pattern Creates a Brush with a pattern consisting of a
custom bitmap.

Solid Creates a solid colored brush (as an
alternative to using the SolidBrush type
directly).

Vertical A brush consisting of vertical lines.

In addition, when constructing a HatchBrush, you need to specify the foreground and
background colors to use during the fill operation. To illustrate, let's rework the logic seen
previously from the PenCapApp example. The output renders a filled oval for the first 10
hatch values (Figure 9-20).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-520 I ♡ Flyheart-

Figure 9-20: Hatch Styles

Here is the code behind the Form:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 int yOffSet = 10;

 // Get all members of the HatchStyle enum.

 Array obj = Enum.GetValues(typeof(HatchStyle));

 // Draw an oval with a HatchStyle member 1–10.

 for(int x = 0; x < 10; x++)

 {

 // Configure Brush.

 HatchStyle temp = (HatchStyle)obj.GetValue(x);

C# and the .NET Platform Chapter 9: A Better Painting Framework

-521 I ♡ Flyheart-

 HatchBrush theBrush = new HatchBrush(temp,

 Color.White, Color.Black

 // Print name of HatchStyle enum.

 g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

 new SolidBrush(Color.Black), 0, yOffSet);

 // Fill a rectangle with the correct brush.

 g. FillEllipse(theBrush, 150, yOffSet, 200, 25);

 yOffSet += 40;

 }

}
SOURCE
CODE

The BrushStyles application is included under the Chapter 9
subdirectory.

Working with Textured Brushes

Next, we have the TextureBrush type. This type allows you to attach a bitmap image to a
brush, which can then be used in conjunction with a fill operation. In just a few pages, you
will learn about the details of the GDI+ Image class. For the time being, understand that a
TextureBrush is assigned an Image reference for use during its lifetime. The image itself
is typically found stored in some local file (*.bmp, *.gif, *.jpg) or embedded into a .NET
assembly.

Let's build a sample application that makes use of the TextureBrush type. One brush is
used to paint the entire client area with the image found in a file named "clouds.bmp,"
while the other brush is used to paint text with the image found within "soap bubbles.bmp"
(yes, you can use TextureBrush types to render text as well!). The output is shown in
Figure 9-21.

The code is very simple. To begin, your Form-derived class maintains two abstract Brush
types, which are assigned to a new TextureBrush in the constructor. Notice that the
constructor of the TextureBrush type requires an Image object reference:

C# and the .NET Platform Chapter 9: A Better Painting Framework

-522 I ♡ Flyheart-

Figure 9-21: Bitmap brushes

public class MainForm : System.Windows.Forms.Form

{

 // Data for the image brush.

 private Brush texturedTextBrush;

 private Brush texturedBGroundBrush;

 public MainForm()

 {

 ...

 // Load image for background brush.

 Image bGroundBrushImage = new Bitmap("Clouds.bmp");

 texturedBGroundBrush = new TextureBrush(bGroundBrushImage);

 // Now load image for text brush.

 Image textBrushImage = new Bitmap("Soap Bubbles.bmp");

 texturedTextBrush = new TextureBrush(textBrushImage);

 }

...

}

Now that you have two TextureBrush types to render with, the paint handler should be a
no-brainer:

C# and the .NET Platform Chapter 9: A Better Painting Framework

-523 I ♡ Flyheart-

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 Rectangle r = ClientRectangle;

 // Paint the clouds on the client area.

 g.FillRectangle(texturedBGroundBrush, r);

 // Some big bold text with a textured brush.

 g.DrawString("Bitmaps as brushes! Way cool...",

 new Font("Arial", 60,

 FontStyle.Bold | FontStyle.Italic),

 texturedTextBrush,

 r);

}

Not bad at all huh? For those of you who have spent time achieving the same effects
using the raw Win32 API (or even MFC for that matter), you should be quite pleased with
the minimal amount of work required to achieve rather complex end results. Now, before
moving on to a discussion of image manipulation, there is one final brush type to
consider.

SOURCE
CODE

The TexturedBrushes application is included under the
Chapter 9 subdirectory.

Working with Gradient Brushes

Last but not least, there is the LinearGradientBrush type, which can be used whenever
you want to blend two colors together in a gradient pattern. Working with this type is just
as simple as working with the other brush types. The only point of interest is that when
building a LinearGradientBrush, you need to specify the direction of the blend, using a
value from the LinearGradientMode enumeration (Table 9-24).

Table 9-24: LinearGradientMode Enumeration

LINEARGRADIENTMODE
VALUE

MEANING IN LIFE

BackwardDiagonal Specifies a gradient from upper-right to
lower-left.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-524 I ♡ Flyheart-

Table 9-24: LinearGradientMode Enumeration

LINEARGRADIENTMODE
VALUE

MEANING IN LIFE

ForwardDiagonal Specifies a gradient from upper-left to
lower-right.

Horizontal Specifies a gradient from left to right.

Vertical Specifies a gradient from top to bottom.

To test each type, let's make use of the System.Enum class yet again, and draw a series
of rectangles using a LinearGradientBrush (I selected Color.Red and Color.Blue). First,
the output as shown in Figure 9-22.

Figure 9-22: Gradient brushes

Now the code, which I assume requires little comment at this point:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 Rectangle r = new Rectangle(10, 10, 100, 100);

 // A gradient brush.

 LinearGradientBrush theBrush = null;

 int yOffSet = 10;

 // Get all members of the LinearGradientMode enum.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-525 I ♡ Flyheart-

 Array obj = Enum.GetValues(typeof(LinearGradientMode));

 // Draw an oval with a LinearGradientMode member.

 for(int x = 0; x < obj.Length; x++)

 {

 // Configure Brush.

 LinearGradientMode temp = (LinearGradientMode)obj.GetValue(x);

 theBrush = new LinearGradientBrush(r, Color.Red,

 Color.Blue, temp);

 // Print name of LinearGradientMode enum.

 g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

 new SolidBrush(Color.Black), 0, yOffSet);

 // Fill a rectangle with the correct brush.

 g. FillRectangle(theBrush, 150, yOffSet, 200, 50);

 yOffSet += 80;

 }

}
SOURCE
CODE

The GradientBrush application is included under the Chapter 9
subdirectory.

Rendering Images

At this point you have examined how to manipulate three of the four major GDI+ types
(fonts, pens, and brushes) the final type you examine in this chapter is the Image class,
and related subtypes. System.Drawing.Image defines a number of methods and
properties that hold various bits of information regarding the underlying pixel set it
represents. For example, the Image class supplies the Width, Height, and Size properties
to retrieve the dimensions of the image. Other properties allow you to gain access to the
underlying palette.

In addition, a number of types defined within the System.Drawing.Imaging namespace
define a whole slew of types that facilitate a number of advanced image transformations.
The truth of the matter is that a separate book could be written on the topic of GDI+ image
manipulation. This is not that book. The goal here is to provide you with a number of
imaging techniques you are likely to use on a day-to-day basis (plus some extra
eye-candy for good measure). If you require additional information, check out online Help.
With that disclaimer out of the way, the Image class defines the following core members
(Table 9-25) many of which are abstract (some of which are static).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-526 I ♡ Flyheart-

Table 9-25: Members of the Image Type

IMAGE MEMBER
NAME

MEANING IN LIFE

FromFile() This static method creates an Image from the
specified file.

FromHbitmap() Creates a Bitmap from a Windows handle (also
static).

FromStream() Creates an Image from the specified data stream
(also static).

Height

Width

Size

PhysicalDimensions

HorizontalResolution

VerticalResolution

These properties return information regarding the
dimensions of this Image.

Palette This property returns a ColorPalette data type that
represents the underlying palette used for this
Image.

GetBounds() Returns a Rectangle that represents the current
size of this Image.

Save() Saves an Image to file.

Given that the abstract Image class cannot be directly created, you typically assign
objects of type Image to a new instance of the Bitmap class (or simply make a direct
instance of the Bitmap type). For example, assume you have some Form-derived class
that renders three bitmaps into the client area. To begin, you may create three private
Image data members, each of which is assigned to a given Bitmap on startup:

public class MainForm : System.Windows.Forms.Form

{

 // The images.

 private Image bMapImageA;

 private Image bMapImageB;

 private Image bMapImageC;

 public MainForm()

C# and the .NET Platform Chapter 9: A Better Painting Framework

-527 I ♡ Flyheart-

 {

 ...

 // Fill the images with bitmaps.

 bMapImageA = new Bitmap("imageA.bmp");

 bMapImageB = new Bitmap("imageB.bmp");

 bMapImageC = new Bitmap("imageC.bmp");

 }

...

}

Rendering these items from within the context of a paint handler is easy as could be,
given that the Graphics class has a member named (appropriately enough) DrawImage().
This method has been overloaded numerous times, to provide various ways to place the
image onto the drawing surface. For example, you may specify optional ImageAttributes
and GraphicsUnit enumerations. For your purposes, all you need to do is specify the
location at which to render each image (which may be defined using Point, Rectangles,
integers, or floats):

protected void OnPaint (object sender, System.Windows.Forms.PaintEventArgs e)

{

 Graphics g = e.Graphics;

 // Render all three images.

 g.DrawImage(bMapImageA, 10, 10, 90, 90);

 g.DrawImage(bMapImageB, 10, 110, 90, 90);

 g.DrawImage(bMapImageC, 10, 210, 90, 90);

}
The end result can be seen in Figure 9-23.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-528 I ♡ Flyheart-

Figure 9-23: Rendering images

Also be aware that regardless of the name given to the Bitmap type, you are able to load
in images stored in any number of file formats. For example:

// The Bitmap type can hold work with any number of file formats!

Bitmap myBMP = new Bitmap("CoffeeCup.bmp");

Bitmap myGIF = new Bitmap("Candy.gif");

Bitmap myJPEG = new Bitmap("Clock.jpg");

Bitmap myPNG = new Bitmap("Speakers.png");

Bitmap myTIFF = new Bitmap("FooFighters.tif");

// Now render each onto the Graphics context.

g.DrawImage(myBMP, 10, 10);

g.DrawImage(myGIF, 220, 10);

g.DrawImage(myJPEG, 280, 10);

g.DrawImage(myPNG, 150, 200);

g.DrawImage(myTIFF, 300, 200);

SOURCE
CODE

The Images application is included under the Chapter 9
subdirectory.

Dragging, Hit Testing, and the PictureBox Control

While you are free to render Bitmap images directly onto a Control-derived type, you will
find that you gain far greater control and functionality if you instead choose to create a

C# and the .NET Platform Chapter 9: A Better Painting Framework

-529 I ♡ Flyheart-

PictureBox type to hold your image on your behalf. There are numerous reasons to do so.
First of all, because the PictureBox type derives from Control, you inherit a great deal of
functionality, such as the ability to capture a number of events for a particular image,
assign a tool tip or context menu and numerous other details. While you could achieve
similar behaviors using a raw Bitmap, you would be required to add a fair amount of
boilerplate code.

To illustrate the usefulness of the PictureBox type, let's create an application that
illustrates the ability to capture MouseUp, MouseDown, and MouseMove events from a
graphical image contained in a PictureBox.

If the user clicks the mouse down somewhere within the bounds of the image, they are in
"dragging" mode and can move the image around the Form. To make things more
interesting, let's monitor where they release the image. If it is within the bounds of a
GDI+-rendered rectangle, we take some additional course of action (seen shortly). As you
may know, the process of testing for mouse click events within the context of a region of
the screen is termed "hit testing."

When it comes to the functionality provided by the PictureBox type, there is little to say, as
all of the necessary functionality comes from the Control base class. Given that you have
already explored a number of the members for these types, you can quickly turn your
attention to the process of assigning an image to the PictureBox member variable:

public class MainForm : System.Windows.Forms.Form

{

 // This holds an image of a smiley face.

 private PictureBox happyBox;

 public MainForm()

 {

 // Configure the PictureBox.

 happyBox = new PictureBox();

 happyBox.SizeMode = PictureBoxSizeMode.StretchImage;

 happyBox.Location = new System.Drawing.Point(64, 32);

 happyBox.Size = new System.Drawing.Size(50, 50);

 happyBox.Cursor = Cursors.Hand;

 happyBox.Image = new Bitmap("happy.bmp");

 // Now add to the Form's Controls collection.

 Controls.Add(happyBox);

C# and the .NET Platform Chapter 9: A Better Painting Framework

-530 I ♡ Flyheart-

 }

 ...

}

The only point of interest is the SizeMode property, which makes use of the
PictureBoxSizeMode enumeration. This type is used to control how the associated image
should be rendered within the bounding rectangle of the PictureBox. Here, you assigned
StretchImage, indicating that you wish to skew the image over the entire client area.
Other possible values appear in Table 9-26.

Table 9-26: The PictureBoxSizeMode Enumeration

PICTUREBOXSIZEMODE
MEMBER NAME MEANING IN LIFE

AutoSize The PictureBox is sized equal to the size of
the image that it contains.

CenterImage The image is displayed in the center if the
PictureBox is larger than the image. If the
image is larger than the PictureBox, the
picture is placed in the center of the
PictureBox and the outside edges are
clipped.

Normal The image is located in the upper-left corner
of the PictureBox. If the PictureBox is smaller
than the image, it will be clipped.

Now that you have configured the initial look and feel of the PictureBox, you need to hook
up some handlers for the MouseMove, MouseUp, and MouseDown events. This is simple,
as PictureBox "is-a" Control. Thus, you can update your constructor logic as follows:

// Add handlers for the following events.

happyBox.MouseDown += new MouseEventHandler(happyBox_MouseDown);

happyBox.MouseUp += new MouseEventHandler(happyBox_MouseUp);

happyBox.MouseMove += new MouseEventHandler(happyBox_MouseMove);
The logic behind MouseDown stores the incoming (x, y) location of the mouse click for
later use, and sets a boolean member variable (isDragging) to true, to indicate that a drag
operation is in process.

// Mouse event handler to initiate dragging the pictureBox around.

private void happyBox_MouseDown(object sender, MouseEventArgs e)

{

C# and the .NET Platform Chapter 9: A Better Painting Framework

-531 I ♡ Flyheart-

 isDragging = true;

 // Save the (x, y) of the mouse down click,

 // because we need it as an offset when dragging the image.

 oldX = e.X;

 oldY = e.Y;

}

The MouseMove handler simply relocates the position of the PictureBox (using the Top
and Left properties) by offsetting the current cursor location with the (x, y) position
captured at when the mouse went down.

// If the user clicks on the image and moves the mouse,

// redraw the image at the new location.

private void happyBox_MouseMove(object sender, MouseEventArgs e)

{

 if (isDragging)

 {

 // Need to figure new Y value based on where the mouse

 // down click happened.

 happyBox.Top = happyBox.Top + (e.Y − oldY);

 // Same deal for X (use oldX as a base line).

 happyBox.Left = happyBox.Left + (e.X − oldX);

 }

}

Finally, MouseUp sets the isDragging boolean to false, to signal the end of the drag
operation. Recall however, that this application has one extra point of logic. If the
MouseUp event occurs when the PictureBox is contained within a GDI+ Rectangle object,
you can assume the user has won the game (albeit a rather lame game...). That said,
here is the remainder of the Form's logic:

// When the mouse goes up, they are done dragging.

// See if they dropped the image in the rectangle...

private void happyBox_MouseUp(object sender, MouseEventArgs e)

{

 isDragging = false;

C# and the .NET Platform Chapter 9: A Better Painting Framework

-532 I ♡ Flyheart-

 // Is the mouse within the area of the drop rect?

 if(dropRect.Contains(happyBox.Bounds))

 {

 MessageBox.Show("You win!", "What an amazing test of skill...");

 }

}

// Assume we have a private Rectangle configured as follows:

// Rectangle dropRect = new Rectangle(100, 100, 150, 150);

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 // Draw the drop box.

 Graphics g = e.Graphics;

 g.FillRectangle(Brushes.AntiqueWhite, dropRect);

 // Display instructions.

 g.DrawString("Drag the happy guy in here...",

 new Font("Times New Roman", 25), Brushes.Red, dropRect);

}
As a reminder, it is worth pointing out that the Rectangle type defines the Contains()
method that has been overloaded to test for a contained Rectangle, Point, or two integer
values. This member can be quite helpful when calculating if a mouse click has occurred
within a given rectangular region (as seen in the MouseUp event handler). When you run
the application, you are presented with what appears in Figure 9-24.
If you have what it takes to win the game, you are rewarded with the kudos shown in
Figure 9-25.

SOURCE
CODE

The DraggingImages application is included under the Chapter
9 subdirectory.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-533 I ♡ Flyheart-

Figure 9-24: Dragging, dropping, and hit-testing images

Figure 9-25: A true test of skill

More Hit Testing Details

Validating a hit test against a Control derived type (such as a button) is very simple, as
each can respond to mouse events directly, However, what if you wish to perform a hit
test on a geometric shape such as a region rendered on the screen using a GDI+ pen? To
illustrate, let's revisit the previous Images application, and add some additional
functionally.
The goal is to determine when the user clicks on a given image (which as you recall was
not rendered within a PictureBox control), Once you discover which image was clicked,

C# and the .NET Platform Chapter 9: A Better Painting Framework

-534 I ♡ Flyheart-

adjust the Text property of the Form, and highlight the image with a red outline. For
example check out Figure 9-26.

Figure 9-26: Highlighting images

The first step is to intercept the MouseDown event for the Form itself. When the event
occurs, you need to programmatically figure out if the incoming (x, y) coordinate is
somewhere within the bounds of the Rectangles used to represent the dimension of each
Image. If the user does click on a given image, you set a private boolean member variable
(isImageClicked) to true, and set indicate which image was selected via another member
variable (of type integer):

public class MainForm : System.Windows.Forms.Form

{

...

 // Did they click on an image?

 private bool isImageClicked = false;

 private int imageClicked;

 protected void OnMouseDown (object sender, MouseEventArgs e)

 {

 // Get (x, y) of mouse click.

 Point mousePt = new Point(e.X, e.Y);

 // See if the mouse is anywhere in the 3 regions...

 if(rectA.Contains(mousePt))

C# and the .NET Platform Chapter 9: A Better Painting Framework

-535 I ♡ Flyheart-

 {

 isImageClicked = true;

 imageClicked = 0;

 this.Text = "You clicked image A";

 }

 else if(rectB.Contains(mousePt))

 {

 isImageClicked = true;

 imageClicked = 1;

 this.Text = "You clicked image B";

 }

 else if(rectC.Contains(mousePt))

 {

 isImageClicked = true;

 imageClicked = 2;

 this.Text = "You clicked image C";

 }

 else // Not in any shape, set defaults.

 {

 isImageClicked = false;

 this.Text = "Images";

 }

 // Redraw the client area.

 Invalidate();

 }

...

}

Notice that the final conditional check sets the isImageClicked member variable to false,
indicating that the user did not click one of your three images. This is important, as you
want to erase the red outline of the previously selected image. Once all items have then
been checked, invalidate the client area. Here is the updated Paint handler:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

C# and the .NET Platform Chapter 9: A Better Painting Framework

-536 I ♡ Flyheart-

 Graphics g = e.Graphics;

 // Render all three images.

 ...

 // Draw outline (if clicked...)

 if(isImageClicked = = true)

 {

 Pen outline = new Pen(Color.Red, 5);

 switch(imageClicked)

 {

 case 0:

 g.DrawRectangle(outline, rectA);

 break;

 case 1:

 g.DrawRectangle(outline, rectB);

 break;

 case 2:

 g.DrawRectangle(outline, rectC);

 break;

 default:

 break;

 }

 }

}

Hit Testing Nonrectangular Images

Now, what if you wish to perform a hit test in a nonrectangular region, rather than a simple
square? Assume you updated your application to render an oddball geometric shape that
will also sport a red outline when clicked (Figure 9-27).
This geometric image was rendered on the Form using the FillPath() method of the
Graphics type. This method takes an instance of a GraphicsPath object, which was
mentioned earlier during your examination of the System.Drawing.Drawing2D
namespace. The GraphicsPath object encapsulates a series of connected lines, curves,

C# and the .NET Platform Chapter 9: A Better Painting Framework

-537 I ♡ Flyheart-

and (interestingly enough) strings. Adding new items to a GraphicsPath instance is
achieved using a number of related "add" methods (Table 9-27).

Figure 9-27: Highlighting oddball shapes

Table 9-27: Add-Centric Methods of the GraphicsPath Class

GRAPHICSPATH
"ADD" METHOD

MEANING IN LIFE

AddArc() Appends an elliptical arc to the current figure.

AddBezier()

AddBeziers()

Adds a cubic Bezier curve (or set of Bezier curves) to
the current figure.

AddClosedCurve() Adds a closed curve to the current figure.

AddCurve() Adds a curve to the current figure.

AddEllipse() Adds an ellipse to the current figure.

AddLine()

AddLines()

Appends a line segment to the current figure.

AddPath() Appends the specified GraphicsPath to the current
figure.

AddPie() Adds the outline of a pie shape to the current figure.

AddPolygon() Adds a polygon to the current figure.

AddRectangle()

AddRectangles()

Adds one (or more) rectangle to the current figure.

AddString() Adds a text string to the current figure.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-538 I ♡ Flyheart-

Assume that you have added a private GraphicsPath member variable to your current
Images application. In the Form's constructor, build the set of items that represent your
path as follows:

public MainForm : System.Windows.Forms.Form

{

 // A polygon region.

 GraphicsPath myPath = new GraphicsPath();

 public MainForm()

 {

 // Create an interesting region.

 myPath.StartFigure();

 myPath.AddLine(new Point(150, 10), new Point(120, 150));

 myPath.AddArc(200, 200, 100, 100, 0, 90);

 Point point1 = new Point(250, 250);

 Point point2 = new Point(350, 275);

 Point point3 = new Point(350, 325);

 Point point4 = new Point(250, 350);

 Point[] points = {point1, point2, point3, point4};

 myPath.AddCurve(points);

 myPath.CloseFigure();

 ...

 }

}

Notice the calls to StartFigure() and CloseFigure(). When you call StartFigure(), you are
able to insert a new item into the current path you are building. A call to CloseFigure()
closes the current figure and begins a new figure (if you require one). If the figure contains
a sequence of connected lines and curves (as in the case of the myPath instance), the
loop is closed by connecting a line from the endpoint to the starting point.

There are more members for System.Drawing.Drawing2D.GraphicsPath, but let's keep
focused on the hit-testing logic. The next step would be to update your existing
MouseDown event handler to test for the presence of the cursor's (x, y) position within the
bounds of the GraphicsPath. Like a Region type, this can be discovered using the
IsVisible() member:

protected void OnMouseDown (object sender, MouseEventArgs e)

C# and the .NET Platform Chapter 9: A Better Painting Framework

-539 I ♡ Flyheart-

{

 // Get (x, y) of mouse click.

 Point mousePt = new Point(e.X, e.Y);

 ...

 else if(myPath.IsVisible(mousePt))

 {

 isImageClicked = true;

 imageClicked = 3;

 this.Text = "You clicked the strange shape...";

 }

...

}

Finally, you can update the Paint handler as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 ...

 // Draw the graphics path.

 g.FillPath(Brushes.AliceBlue, myPath);

 // Draw outline (if clicked...)

 if(isImageClicked == true)

 {

 Pen outline = new Pen(Color.Red, 5);

 switch(imageClicked)

 {

 ...

 case 3:

 g.DrawPath(outline, myPath);

 break;

 default:

 break;

C# and the .NET Platform Chapter 9: A Better Painting Framework

-540 I ♡ Flyheart-

 }

 }

}

SOURCE
CODE

The Images project is included under the Chapter 9
subdirectory.

Understanding the .NET Resource Format

Up to this point, each application that made use of external resources (such as bitmaps)
assumed that they were located in a separate standalone file. For example, the previous
Images application rendered three bitmap images, which as you recall were loaded
directly from file:

// Fill the images with bitmaps.

bMapImageA = new Bitmap("imageA.bmp");

bMapImageB = new Bitmap("imageB.bmp");

bMapImageC = new Bitmap("imageC.bmp");
This logic of course demands that the application directory does indeed contain three files
named "imageA.bmp," "imageB.bmp," and "imageC.bmp" (see Figure 9-28).

Figure 9-28: Standalone external resources

If any of these files are deleted, renamed, or relocated outside of the application directory,
the program fails to execute (give it a try just for verification's sake). Now, as you recall
from Chapter 6, an assembly is a collection of types and optional resources. The time has
now come to learn how to bundle external resources (such as image files and strings) into
the assembly itself. In this way, your .NET binary is truly self-contained. In a nutshell,
bundling external resources into a .NET assembly involves the following steps:

C# and the .NET Platform Chapter 9: A Better Painting Framework

-541 I ♡ Flyheart-

 Create an *.resx file which establishes name/value pairs for each resource in
your application using XML syntax.

 Use the resgen.exe utility to convert your XML-based *.resx file into a binary
equivalent (a *.resources file).

 Using the /resource flag (or the shorthand /res flag) of the C# compiler, embed
the binary *.resources file into your assembly.

As you might suspect, all these steps are followed automatically when using the Visual
Studio.NET IDE. You examine how the IDE will assist you in just a bit. For now, take the
time to work with the .NET resource format in the raw.

System.Resources Namespace
The key to understanding the .NET resource format is to know the types defined within
the System.Resources namespace. This set of types provides the programmatic means
to manipulate both *.resx (XML) and *.resources (binary) files. Table 9-28 provides a
rundown of the core types.

Table 9-28: Members of the System.Resources Namespace

SYSTEM.RESOURCES
TYPE

MEANING IN LIFE

IResourceReader

IResourceWriter

These interfaces are implemented by types that
understand how to read and write .NET
resources (in various formats). You do not need
to implement these interfaces yourself unless
you are interested in building a custom resource
reader/writer.

ResourceReader

ResourceWriter

These classes provide an implementation of the
IResourceReader and IResourceWriter
interfaces. Using the ResourceReader and
ResourceWriter types, you are able to read from
and write to binary *.resources files.

ResXResourceReader

ResXResourceWriter

These classes also provide an implementation
of the IResourceReader and IResourceWriter
interfaces. Using the ResXResourceReader and
ResXResourceWriter types, you are able to
read from and write to XML *.resx files. This file
may be turned into a binary equivalent (the
*.resources file) using the resgen.exe utility.

ResourceManager Provides easy access to culture-specific
resources (BLOBs and string resources) at

C# and the .NET Platform Chapter 9: A Better Painting Framework

-542 I ♡ Flyheart-

Table 9-28: Members of the System.Resources Namespace

SYSTEM.RESOURCES
TYPE

MEANING IN LIFE

runtime.

Programmatically Creating an *.resx File
As mentioned, an *.resx file is a block of XML data that assigns name/value pairs for each
resource in your application. The ResXResourceWriter class provides a set of members
that allow you to create the *resx file, add binary and string-based resources, and commit
them to storage. To illustrate, assume you have a simple application whose job in life is to
build an *.resx file containing an entry for the happy.bmp image seen earlier in this
chapter, and a single string resource. The GUI is as simple as possible (Figure 9-29).

Figure 9-29: The simple UI

The Click event handler for the "Add resources" button does the grunt work of adding the
happy.bmp and string resource to the *.resx file. Here is the code:

protected void btnMakeResxFile_Click (object sender, System.EventArgs e)

{

 // Make a resx writer & specify the file to write to.

 ResXResourceWriter w =

 new ResXResourceWriter("ResXForm.resx");

 // Add happy dude.

 Image i = new Bitmap("happy.bmp");

 w.AddResource("happyDude", i);

 // Add a string.

 w.AddResource("welcomeString", "Hello new resource format!");

C# and the .NET Platform Chapter 9: A Better Painting Framework

-543 I ♡ Flyheart-

 // Commit it.

 w.Generate();

 w.Close();

}

The member of interest is ResXResourceWriter.AddResource(). This method has been
overloaded a few times to allow you to insert binary BLOB data (as you did with the
happy.bmp image), as well as textual data (as you have done for your test string). Notice
that each version takes two parameters: the name of a given resources in the *resx file
and the data itself. The Generate() method commits the information to file.

Understand that you are not the one in charge of writing the raw XML that describes your
resources. Rather, the logic within the ResXResourceWriter class is responsible for
building the XML description of the inserted items. To prove the point, load the new *.resx
file using Visual Studio.NET and peek inside the contents (Figure 9-30). To do so, simply
access the "Project | Add Existing Item" menu command and navigate to the *resx data
file (which of course will not be present until you click the correct button!).

Figure 9-30: The XML representation of your external resources

Here, you can see the raw XML that describes your resources. If you look carefully, you
should be able to identify happyDude and welcomeString by name. The XML syntax
which is used to represent your name/value pairs follows (note the binary representation
of the happy dude bitmap...):

< data name="happyDude" mimetype="text/microsoft-urt/binary-serialized/base64" >

<value>AAEAAAD/////AQAAAAAAAAAMAgAAADxTeXN0ZW0uRHJhd2luZywgVmVyPT
EuMC4yMjA0LjIxLC

BMb2M9IiIsIFNOPTAzNjg5MTE2ZDNhNGFlMzMFAQAAABVTeXN0ZW0uRHJhd2luZy5
CaXRtYXABAAAABER

hdGEDDVN5c3RlbS5CeXRlW10CAAAACQMAAAAHAwAAAAABAAAATgEAAAACiVB
ORw0KGgoAAAANSUhEUgAA

C# and the .NET Platform Chapter 9: A Better Painting Framework

-544 I ♡ Flyheart-

ACAAAAAgBAMAAACBVGfHAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAA
AAgY0hSTQAAeiYAAICEA

AD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAADBQTFRFAAAAgAAAAIAAgI
AAAACAgACAAICAgICAwM

DA/wAAAP8A//8AAAD//wD/AP//////ex+xxAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAAHt
JREFUKM+FkUE

OwCAIBLkaPu+VX3Dnc21Bt6A2JfHgAMK6ROewO9KVzUNLPteYVcIv0KVglKzg6VCO4
z2RiOMlv4Ar0A+A

KQNMcZ9A554cIMs/tZChh7GpYjZW9+eGFlfdidqU74km0suPqQgDQB6cWW3Yjdqt3Mz
OcQEjV+MdZ/YPN

QAAAABJRU5ErkJgggsAAAAAAAAAAAAAAAAAAAAAAAA= </value>

</data>

<data name="welcomeString">

<value>Hello new resource format!</value>

</data>

Programmatically Reading an *.resx File

To illustrate how you can load and investigate an *resx file programmatically let's examine
the code behind the "Read *resx" button. This time, make use of a ResXResourceReader
type. Once the correct file has been opened, ask the reader for a reference to its
IDictionaryEnumerator interface, and loop over each name/value pair:

protected void btnReadResxFile_Click (object sender, System.EventArgs e)

{

 // Make a resx reader.

 ResXResourceReader r = new ResXResourceReader("ResXForm.resx");

 // Grab the IDictionaryEnumerator interface and show everything.

 IDictionaryEnumerator en = r.GetEnumerator();

 while (en.MoveNext())

 {

 MessageBox.Show("Value:" + en.Value.ToString(),

 "Key: " + en.Key.ToString());

 }

 r.Close();

C# and the .NET Platform Chapter 9: A Better Painting Framework

-545 I ♡ Flyheart-

}
When you click the button, you see a pair of message boxes pop up, as the
ResXResourceReader type loops through the XML file for each named value. For
example, Figure 9-31 offers the listing for the happy dude.

Figure 9-31: Extracting the name/value pair

Building the *.resources File

Now that you understand how to build and manipulate an *.resx file, you can make use of
the resgen.exe utility to produce the binary equivalent. Again, Visual Studio.net will do so
automatically, but just for the love of learning, here is the raw command:

resgen resxform.resx resxform.resources
Of course, you must open a command prompt in the directory containing the *resx file
before running resgen.exe. Once you do however, you are able to open the new
*resources file and check out the binary (Figure 9-32).

Figure 9-32: The binary *resources file

C# and the .NET Platform Chapter 9: A Better Painting Framework

-546 I ♡ Flyheart-

Binding the *resources File into the Owning Assembly

Cool! At this point you are able to add this *resources file as a command-line argument to
the C# compiler (again using the /res flag). Recall that doing so also requires you to
reference each external assembly (i.e., System.Drawing.dll):

csc /res:resxform.resources /r:System.Drawing.dll

/r:System.Windows.Forms.dll /r:System.dll resxform.cs
If you were to now open your new assembly using ILDasm.exe, you would find the entry
shown in Figure 9-33 in the assembly metadata.

Figure 9-33: The updated manifest

As you can see, the manifest has recorded the name of the binary resources that are now
contained in the owning assembly. In just a bit you will see how to programmatically read
this information from an assembly to make use of it in your application.

SOURCE
CODE

The ResXWriterReader project is included under the Chapter 9
subdirectory.

Working with ResourceWriters

The previous example made use of the ResXResourceReader and ResXResourceWriter
types to generate an XML file that contains name/value pairs for each application
resource. The resulting *.resx file was then run through the resgen.exe utility. Finally the
*.resources file was bound into the owning assembly using the /res flag. The truth of the
matter is that you do not need to build an *.resx file (although having an XML
representation of your resources can come in handy).

If you do not require an *.resx file, you can make use of the ResourceWriter type to
automatically create a *.resources file. To illustrate, assume you have created a new C#
Console Application named ResourceTest. The Main() method of the ResourceGenerator
class uses the ResourceWrite type to directly generate the myResources.resources file:

class ResourceGenerator

{

 static void Main(string[] args)

 {

C# and the .NET Platform Chapter 9: A Better Painting Framework

-547 I ♡ Flyheart-

 // Make a new *.resources file.

 ResourceWriter rw;

 rw = new ResourceWriter("myResources.resources");

 // Add 1 image and 1 string.

 rw.AddResource("happyDude", new Bitmap("happy.bmp"));

 rw.AddResource("welcomeString", "Welcome to .NET resources.");

 rw.Generate();

 }

}

At this point, compile and run the application to generate the *.resource file. Now, we can
bind the contained binary data to the owning assembly as before:

csc /res:myresources.resources /r:System.Drawing.dll

/r:System.Windows.Forms.dll /r:System.dll ResourcesGen.cs

If you wish to read the raw name/value data from the binary *.resources file, you are free
to make use of the ResourceReader class. This is almost identical to working with the
ResXResourceWriter type.

Working with ResourceManagers

Rather than working with the ResourceReader class directly, you will most likely use the
ResourceManager type. The reason is simple: It is easier to work with! Using the
ResourceManager, you are able to extract binary and textual data from an assembly for
use in your application.
To illustrate, assume you have added a new class to the current project named
MyResourceReader. This type uses a ResourceManager type to pull the happyDude and
welcomeString resources from the assembly and dump them into a PictureBox and Label
object using the GetObject() and GetString() members. Be very aware however, that the
double quoted strings you send into these methods are case sensitive. Here is the code:

class MyResourceReader

{

 public void ReadMyResources()

 {

 // Open the resources file.

 ResourceManager rm = new ResourceManager("myResources",

 Assembly.GetExecutingAssembly());

C# and the .NET Platform Chapter 9: A Better Painting Framework

-548 I ♡ Flyheart-

 // Load image resource.

 PictureBox p = new PictureBox();

 Bitmap b = (Bitmap)rm.GetObject("happyDude");

 p.Image = (Image)b;

 p.Height = b.Height;

 p.Width = b.Width;

 p.Location = new Point(10, 10);

 // Load string resource.

 Label label1 = new Label();

 label1.Location = new Point(50, 10);

 label1.Font = new Font(label1.Font.FontFamily, 12, FontStyle.Bold);

 label1.AutoSize = true;

 label1.Text = rm.GetString("welcomeString");

 // Build a Form to show the resources.

 Form f = new Form();

 f.Height = 100;

 f.Width = 370;

 f.Text = "These resources are embedded in the assembly!";

 // Add controls and show Form.

 f.Controls.Add(p);

 f.Controls.Add(label1);

 f.ShowDialog();

 }

}

Before you run the application, be sure to update Main() to call the ReadMyResources()
method:

static void Main(string[] args)

{

 ...

 MyResourceReader r = new MyResourceReader();

 r.ReadMyResources();

C# and the .NET Platform Chapter 9: A Better Painting Framework

-549 I ♡ Flyheart-

}
When you run this application, you should find what appears in Figure 9-34.

Figure 9-34: Extracting resources with the ResourceManager

SOURCE
CODE

The ResourceTest project is included under the Chapter 9
subdirectory.

Automatic Resource Configuration a la Visual Studio.NET

To wrap things up, let's look at how the Visual Studio.NET IDE gets you up and running
with the correct resource file configuration automatically.

When you create a new Windows Forms project workspace using Visual Studio.NET, the
IDE automatically defines an *.resx file for your application. Furthermore, when you insert
new resources to the project, the name/value pairs contained in the *.resx file are updated
on your behalf. You can view the project's *resx file by selecting the "Show all files" option
from the Solution Explorer window (Figure 9-35).

Figure 9-35: Viewing the freebee *resx file

Once you select this file, check out the Properties window. You will see that the build
action for this file has been configured as "Embedded Resource" (Figure 9-36).

C# and the .NET Platform Chapter 9: A Better Painting Framework

-550 I ♡ Flyheart-

Figure 9-36: Configuring the Build Action for the *resx file

This option compiles the *.resx file to produce the corresponding *.resources file, which is
then embedded into your assembly.
To illustrate this process, create a new C# Windows Application workspace named
ResLoader. The Form contains two PictureHolder types, one of which has its Image
property set to the happy.bmp file, the other of which is empty. In addition, a single button
type will be used to dynamically read this happy dude from file, and place it into the empty
PictureHolder. The GUI is shown in Figure 9-37.

Figure 9-37: Before loading happy dude

As you insert resources (such as a bitmap) into the project, the IDE responds by creating
an instance of the ResourceManager type within the scope of your InitializeComponent()
method:

private void InitializeComponent()

{

 System.Resources.ResourceManager resources =

 new System.Resources.ResourceManager (typeof(MainForm));

 ...

C# and the .NET Platform Chapter 9: A Better Painting Framework

-551 I ♡ Flyheart-

 pictureBox1.Image =

 (System.Drawing.Image) resources.GetObject ("pictureBox1.Image");

}

Needless to say, you are free to add a private ResourceManager member variable for use
throughout your application. To illustrate, here is the code behind the button's Click event:

// Be sure to specify 'using System.Resources'

private void btnLoadRes_Click(object sender, System.EventArgs e)

{

 // Make a ResourceManager

 ResourceManager resources = new ResourceManager (typeof(MainForm));

 // Read happy dude from assembly and place it

 // into the second PictureBox object.

 this.pictureBox2.Image =

 ((System.Drawing.Bitmap)(resources.GetObject("pictureBox1.Image")));

 // All done!

 resources.ReleaseAllResources();

}

If you were to run the application and click the button, you would find that the image has
been extracted from the assembly and placed into the second PictureBox (Figure 9-38):

Figure 9-38: After loading happy dude

SOURCE
CODE

The ResLoader project is included under the Chapter 9
subdirectory.

C# and the .NET Platform Chapter 9: A Better Painting Framework

-552 I ♡ Flyheart-

Summary

GDI+ is the name given to a number of related .NET namespaces, each of which is used
to render graphic images to a Control derived type. The chapter began by examining the
core types defined within the System.Drawing namespace (including a number of useful
utility types), and learned how to intercept paint events. A key aspect to GDI+ is, of
course, the Graphics object.

The bulk of this chapter was spent examining how to work with core GDI+ object types.
The Pen and Brush types provide a good deal of specialized functionality, especially
when making use of the more exotic types defined in System.Drawing.Drawing2D. Font
types require a fair amount of information (a Brush type, Color type, location to render the
text, etc), however this does offer a good deal of functionality.

This chapter wrapped up by examining the new .NET resource format. As you have seen,
an application does not need to bundle its external resources into the containing
assembly, however if you do so, your binary image is far more portable. The *.resx file is
used to describe (in XML syntax) a set of name/value pairs. This file is fed into the
resgen.exe utility, resulting in a binary format (*.resources) that can then be embedded
into the owning assembly. The ResourceManager type is your key to programmatically
obtaining this information.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-553 I ♡ Flyheart-

Chapter 10: Programming with Windows Form

Controls

Overview
This chapter is concerned with providing a roadmap of the suite of GUI widgets defined in
the System.Windows.Forms namespace. If you have been reading this book from the
beginning, you have already had a chance to work with some Form-level Control types
such as MainMenu, MenuItem, StatusBar, and ToolBar (see Chapter 8). In this chapter, I
am interested in examining the types that tend to exist within the boundaries of a Form's
client area (e.g., Buttons, TrackBars, TextBoxes, Panels, and the like).

In addition to giving you a formal grounding in the Windows Forms Control set, this
chapter also details a number of related topics, such as establishing the tab order for your
widgets, as well as configuring the "docking" and "anchoring" behaviors for your family of
GUI types.

The chapter wraps up with a discussion of building custom dialog boxes, including
techniques for responding to (and validating) user input. Finally, I examine a new facility
offered by the .NET Windows Forms architecture: Form inheritance. As you will see, it is
now possible to establish "is-a" relationships between related Forms.

Understanding the Windows Forms Control Hierarchy
The System.Windows.Forms namespace contains a number of types that represent
common GUI widgets. Using these types, you can respond to user input in a Windows
Forms application. Because .NET is a system of types built on standard OO principles,
these Controls are arranged in a hierarchy of related types. Figure 10-1 illustrates the big
picture. (Note that Control is the common base class for all widgets.)

Figure 10-1: The Windows Forms control hierarchy

As you learned in Chapter 8, the Control type is the base class that provides a minimal
and complete set of behaviors for all descending widgets. This includes the ability to

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-554 I ♡ Flyheart-

process mouse and keyboard events, establish the physical dimensions of the widget
using various properties (Height, Width, Left, Right, Location, and so on), manipulate
background and foreground colors, establish the active font, and so forth.

As you read through this chapter, remember that the Controls I examine gain most of their
functionality from the Control base class. Here I focus (more or less) on a given type's
unique members. (I assume you will explore the base class functionality on your own.)
And now, on to the show!

Adding Controls to Forms (by Hand)
Regardless which type of Control you choose to place on a Form, you follow a similar set
of steps. First of all, create any number of private member variables that represent the
GUI items maintained by the Form. Next, inside the Form's constructor (or in the
InitializeComponent() method), configure the look and feel of each Control using the
provided properties, methods, and events. Finally (and most important), once the Control
has been set to its initial state, add it to the Form's Controls collection (using the Control
property). If you forget this final step, your Control will not be visible at runtime! To
illustrate the process, consider the MyForm class, shown here:

// Don't forget to add a reference to System.Windows.Forms.dll.

using System.Windows.Forms;

class MyForm : Form

{

 // 1) Add the private data member....

 private TextBox firstNameBox = new TextBox();

 MyForm()

 {

 this.Text = "Controls in the raw";

 // 2) Configure new TextBox.

 firstNameBox.Text = "Chucky";

 firstNameBox.Size = new Size(150, 50);

 firstNameBox.Location = new Point(10, 10);

 // 3) Add new Controls to the Form's Controls collection.

 this.Controls.Add(firstNameBox);

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-555 I ♡ Flyheart-

 }

...

}

The Control$ControlCollection Type

While the process of adding a new widget to a Form is quite simple, I'd like to discuss the
Controls property in a bit more detail. This property returns a reference to a nested class
named ControlCollection defined by the Control class (i.e., Control$ControlCollection).
The Control$ControlCollection type maintains an entry for each widget placed on the
Form. You can obtain a reference to this collection any time you want to "walk the list" of
child widgets, as shown here:

// Get access to the Control$ControlCollection type for this Form.

Control.ControlCollection coll = this.Controls;
Once you have a reference, you can call any of the members described in table 10-1
(which should look quite familiar, given your work in Chapter 5). Be aware that by default
Controls are placed in the ControlCollection type using an (n + 1) insertion policy.

Table 10-1: Nested ControlCollection Properties

CONTROL$CONTROLCOLLECTION
PROPERTY MEANING IN LIFE

Add()

AddRange()

Used to insert a new
Control-derived type (or array of
types) in the collection

Clear() Removes all entries in the
collection.

Count Returns the number of items in
the collection.

GetChildIndex()

SetChildIndex()

Returns (or sets) the index value
for a specified item in the
collection.

GetEnumerator() Returns the IEnumerator interface
for this collection.

Remove() Removes a given Control from
the collection, given its index.

To illustrate programmatic manipulation of this very important collection, assume you
have now added another widget (a Button) to the Form's collection. Also assume you
have added an event handler for the Button's Click event. In the implementation of this

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-556 I ♡ Flyheart-

method, you loop over each item in the Controls collection and print out some relevant
information about the current Control, as shown here:

class MyForm : Form

{

 private TextBox firstNameBox = new TextBox();

 private Button btnShowControls = new Button();

 MyForm()

 {

 // Configure new TextBox

 ...

 // Add a new Button.

 btnShowControls.Text = "Examine Controls collection";

 btnShowControls.Size = new Size(90, 90);

 btnShowControls.Location = new Point(10, 70);

 btnShowControls.Click +=

 new EventHandler(btnShowControls_Clicked);

 this.Controls.Add(btnShowControls);

 }

 protected void btnShowControls_Clicked(object sender, EventArgs e)

 {

 // Display information for each item in the collection.

 Control.ControlCollection coll = this.Controls;

 foreach(Control c in coll)

 {

 // Second parameter of GetChildIndex() enables or disables

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-557 I ♡ Flyheart-

 // the throwing of an exception if the item is not present.

 if(c != null)

 MessageBox.Show(c.Text, "Index numb: "

 + coll.GetChildIndex(c, false));

 }

 }

 ...

}

Figure 10-2 shows the complete GUI. Notice how the default behavior of the Button.Text
property is to wrap text in the display rectangle.

Figure 10-2: Form Controls

Clicking the Button widget results in two messages, which identify the Controls in the
internal collection (Figure 10-3).

Figure 10-3: Investigating contained Controls

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-558 I ♡ Flyheart-

SOURCE
CODE

The ControlsByHand project is included under the Chapter 10
subdirectory.

Adding Controls to Forms (the Easy Way)

Although you are always free to write Windows Forms code "in the raw," you will probably
choose to use the Visual Studio.NET IDE instead. When you drop a widget on the design
time Form, the IDE responds by adding a member variable on your behalf. Of course, you
will typically want to change the name of this new variable to represent its overall
functionality (e.g., "btnFirstName" rather than the default "button1").
As you design the look and feel of the widget using the IDE's Properties window (Figure
10-4), the underlying code changes are added to the InitializeComponent() member
function.

Figure 10-4: Configuring Controls at design time

Be aware that this window allows you to configure not only the property set of a given GUI
item, but the set of events as well (Figure 10-5). Simply select the widget from the
drop-down list and type in the name of the method to be called for the events you are
interested in responding to.

Figure 10-5: Building event handlers at design time

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-559 I ♡ Flyheart-

If you examine the code generated in the InitializeComponent() method, you find
something like the following (note that the new GUI item is inserted in the Form's Controls
collection on your behalf using the AddRange() method):

private void InitializeComponent()

{

 this.firstNameBox = new System.Windows.Forms.TextBox();

 this.firstNameBox.Location = new System.Drawing.Point(32, 40);

 this.firstNameBox.TabIndex = 0;

 this.firstNameBox.Text = "Chucky";

 this.firstNameBox.TextChanged += new

 System.EventHandler(this.firstNameBox_TextChanged);

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.ClientSize = new System.Drawing.Size(292, 273);

 this.Controls.AddRange(new System.Windows.Forms.Control[]

 {this.firstNameBox});

 ...

}

Finally, you are given the following empty code stub to handle the TextChanged event for
this TextBox, as shown here:

protected void firstNameBox_TextChanged (object sender, System.EventArgs e)

{

 // Do whatever you need to do...

}

The remainder of this chapter focuses on a number of behaviors offered by numerous
GUI widgets by examining the "raw" code behind the scenes. If you decide to use the
Visual Studio.NET IDE, be sure to examine the code generated inside the
IntializeComponent() method to gain a true understanding of Windows Form
programming.

The TextBox Control
The TextBox Control is the first item under investigation. This GUI widget holds some
blurb of text or possibly multiple lines of text. A TextBox Control can also be configured as
read only and support scroll bars. The immediate base class of TextBox is TextBoxBase,
which provides many common behaviors for the TextBox and RichTextBox Controls.
Table 10-2 describes some of the core properties provided by the TextBoxBase type.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-560 I ♡ Flyheart-

Table 10-2: TextBoxBase Properties

TEXTBOXBASE
PROPERTY

MEANING IN LIFE

AcceptsTab Indicates if pressing the Tab key in a multiline TextBox
Control tabs in the Control itself, rather than moving the
focus to the next Control in the tab order.

AutoSize Determines if the size of the Control automatically
adjusts when the assigned font is changed.

BackColor

ForeColor

Gets or sets the background or foreground color of the
Control.

HideSelection Gets or sets a value indicating whether the selected
text in the TextBox Control remains highlighted when
the Control loses focus.

MaxLength Configures the maximum number of characters that
can be entered in the TextBox Control.

Modified Gets or sets a value that indicates that the TextBox
Control has been modified by the user since the Control
was created or its contents were last set.

Multiline Specifies if this TextBox can contain multiple lines of
text.

ReadOnly Marks this TextBox as read only.

SelectedText

SelectionLength

Contains the currently selected text (or some number of
characters) in the Control.

SelectionStart Gets or sets the starting point of text selected in the
TextBox.

WordWrap Indicates whether a multiline TextBox Control
automatically wraps words to the beginning of the next
line when necessary.

The TextBoxBase type also defines a number of methods, which allow the derived type to
handle clipboard operations (via the Cut(), Copy(), and Paste() methods), undo
operations (Undo(), of course), and carry out other related functionality (Clear(),
AppendText(), and so on).

As far as the events defined by TextBoxBase, the item of interest is TextChange (the
Windows Forms equivalent of the raw EN_CHANGE message). As you may know, this
event is fired whenever the content in a TextBoxBase derived type is modified. This can

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-561 I ♡ Flyheart-

be very helpful when you wish to block the user from entering in certain types of
characters (e.g., numerical data only or alphabetic data only).
In addition to the behavior inherited by TextBoxBase, the TextBox type grabs a good deal
of functionality from the Control base class. In fact, the properties defined by TextBox
alone are quite limited (Table 10-3).

Table 10-3: TextBox Properties

TEXTBOX
PROPERTY

MEANING IN LIFE

AcceptsReturn Gets or sets a value indicating whether pressing Enter
in a multiline TextBox Control creates a new line of text
in the Control or activates the default Button for the
Form.

CharacterCasing Gets or sets whether the TextBox Control modifies the
case of characters as they are typed.

PasswordChar Gets or sets the character used to mask characters in a
single-line TextBox Control used to enter passwords.

ScrollBars Gets or sets which scroll bars should appear in a
multiline TextBox Control.

TextAlign Gets or sets how text is aligned in a TextBox Control,
using the HorizontalAlignment enumeration.

The HorizontalAlignment enumeration used in conjunction with the TextAlign property
offers the values described in Table 10-4.

Table 10-4: HorizontalAlignment Values

HORIZONTALA
LIGNMENT
VALUE MEANING IN LIFE

Center The object or text is aligned in the center of the Control
element.

Left The object or text is aligned on the left of the Control
element.

Right The object or text is aligned on the right of the Control
element.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-562 I ♡ Flyheart-

Fun with TextBoxes

To illustrate some of the more exotic aspects of the TextBox, build a multiline text area
that has been configured to accept Return and Tab keystrokes and supports a vertical
scroll bar. Here is the configuration code (assume you have already created a member of
type TextBox named multiLineBox):

// Your first TextBox.

multiLineBox.Location = new System.Drawing.Point (152, 8);

multiLineBox.Text = "Type some stuff here (and hit the return and tab keys...)";

multiLineBox.Multiline = true;

multiLineBox.AcceptsReturn = true;

multiLineBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical;

multiLineBox.TabIndex = 0;

multiLineBox.AcceptsTab = true;

Notice that the ScrollBars property is assigned a value from the ScrollBars enumeration,
which defines the values Vertical, Horizontal, None, and Both.
Now assume you have placed a simple Button on the Form and added an event handler
for the Button's Click event. The implementation of this method simply places the
TextBox's text in a message box (just to illustrate grabbing values from a TextBox
Control). The current UI is shown in Figure 10-6.

Figure 10-6: Building event handlers at design time

The code behind the Button Click event is simple, as shown here:

protected void btnGetMultiLineText_Click (object sender, System.EventArgs e)

{

 MessageBox.Show(multiLineBox.Text, "Here is your text");

}
The equally simple response is shown in Figure 10-7.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-563 I ♡ Flyheart-

Figure 10-7: Extracting data from the TextBox

Next, add some additional TextBoxes to the Form, this time focusing on the masking
capabilities of the widget (Figure 10-8). The second TextBox (capsOnlyBox) forces all
keystrokes to be converted to uppercase. The third TextBox (passwordBox) forces all
keystrokes to be converted to a password character (which I have chosen to be "$,"
signifying how your financial life as a .NET developer should pan out).

Figure 10-8: Masking capabilities of the TextBox

The additional Button (btnPasswordDecoderRing) supports a Click event handler that
extracts the real keystrokes typed in the passwordBox TextBox, as shown here:

protected void btnGetMultiLineText_Click (object sender, System.EventArgs e)

{

 MessageBox.Show(multiLineBox.Text, "Here is your text");

}

Here is the relevant code that configures these new TextBox types:

// The 'Caps Only!' Button.

// Note that CharacterCasing is established by an associated enumeration,

// which can be assigned Upper, Lower, or Normal.

capsOnlyBox.Location = new System.Drawing.Point (14, 176);

capsOnlyBox.CharacterCasing = System.Windows.Forms.CharacterCasing.Upper;

capsOnlyBox.Size = new System.Drawing.Size (120, 20);

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-564 I ♡ Flyheart-

// The password TextBox

passwordBox.Location = new System.Drawing.Point (160, 176);

passwordBox.PasswordChar = '$';

As mentioned, TextBoxBase has an additional derived type named RichTextBox. This
class is a Control that supports the display and manipulation of (highly) formatted text. For
example, you can configure multiple font selections in a single widget, URLs, bulleted text,
and so forth. I assume interested readers will consult online help for further details.

SOURCE
CODE

The TextBoxes application is included under the Chapter 10
subdirectory.

The Mighty Button Type (and the ButtonBase Parent Class)
Of all user interface widgets, the Button can be regarded as the simplest, but most
well-respected GUI input device. The role of the System.Windows.Forms.Button type is to
provide a simple vehicle for user input, typically in response to a mouse click or key press.
The Button class immediately derives from an abstract type named ButtonBase, which
provides a number of key behaviors for all Button-related types (CheckBox, RadioButton,
and Button). Table 10-5 describes some (but by no means all) core ButtonBase
properties.

Table 10-5: ButtonBase Properties

BUTTONBASE
PROPERTY

MEANING IN LIFE

FlatStyle Gets or sets the flat style appearance of the Button
Control, using members of the FlatStyle enumeration.

Image Configures which (optional) image is displayed
somewhere within the bounds of a ButtonBase derived
type. Recall that Control also defines a
BackgroundImage property, which is used to render an
image over the entire surface area of a widget.

ImageAlign Sets the alignment of the image on the Button Control,
using the ContentAlignment enumeration.

ImageIndex

ImageList

Work together to set the image list index value of the
image displayed on the Button Control, from the
corresponding ImageList Control.

IsDefault Specifies whether the Button Control is the default
Button (i.e., receives focus in response to pressing of the
Enter key).

TextAlign Gets or sets the alignment of the text on the Button

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-565 I ♡ Flyheart-

Table 10-5: ButtonBase Properties

BUTTONBASE
PROPERTY

MEANING IN LIFE

Control, using the ContentAlignment enumeration.

The FlatStyle property controls the general appearance of the Button itself and can be
assigned any member of the related FlatStyle enumeration (Table 10-6).

Table 10-6: FlatStyle Values

FLATSTYLE
ENUMERATI
ON VALUE MEANING IN LIFE

Flat The Control appears flat, with no three-dimensional
rendering. When the cursor is over the Button, the text color
changes to indicate it has the current focus.

Popup A Control appears flat until the cursor moves over it, at
which point it appears three dimensional.

Standard The Control appears three dimensional, like the familiar
standard pushbutton.

System The appearance of the Control is determined by the user's
operating system.

The Button class itself defines almost no additional functionality beyond that inherited by
the ButtonBase base class, with the core exception of the DialogResult property. As you
will see later in this chapter, a dialog box makes use of this property to return a value
representing which Button was clicked (e.g., OK, Cancel, and so on) when the dialog box
was terminated.

Configuring the Content Position

Most people assume that the text contained in a Button is always placed on the middle of
the Button, equidistant from all sides. While this can be a well-established standard, the
TextAlign property of the ButtonBase type makes it extremely simple to position text at
just about any location. To set the position of your Button's caption, use the
ContentAlignment enumeration (Table 10-7). Be aware that this same enumeration is
used to configure the location of any optional Button image (as you will see).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-566 I ♡ Flyheart-

Table 10-7: ContentAlignment Values

CONTENTALIGNMENT
VALUE

MEANING IN LIFE

BottomCenter Content is vertically aligned at the bottom and
horizontally aligned at the center.

BottomLeft Content is vertically aligned at the bottom and
horizontally aligned on the left.

BottomRight Content is vertically aligned at the bottom and
horizontally aligned on the right.

MiddleCenter Content is vertically aligned in the middle and
horizontally aligned at the center.

MiddleLeft Content is vertically aligned in the middle and
horizontally aligned on the left.

MiddleRight Content is vertically aligned in the middle and
horizontally aligned on the right.

TopCenter Content is vertically aligned at the top and
horizontally aligned at the center.

TopLeft Content is vertically aligned at the top and
horizontally aligned on the left.

TopRight Content is vertically aligned at the top and
horizontally aligned on the right.

Fun with Buttons

To illustrate working with this most primitive of user input widgets, the following
application uses the FlatStyle, ImageAlign, and TextAlign properties. The most interesting
aspect of the underlying code is in the Click event handler for the btnStandard type (which
would be the Button in the middle of the Form). This illustration cycles through each
member of the ContentAlignment enumeration and changes the Button's caption text and
caption location based on the current value.

Also, the fourth Button on the Form (btnImage) supports a background image and a small
bull's-eye icon, which is also dynamically relocated based on the current value of the
ContentAlignment enumeration. Figure 10-9 shows the program in action.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-567 I ♡ Flyheart-

Figure 10-9: ContentAlignment in action

Here is the relevant code:

public class ButtonForm: System.Windows.Forms.Form

{

 // You have 4 Buttons on this Form.

 private System.Windows.Forms.Button btnImage;

 private System.Windows.Forms.Button btnStandard;

 private System.Windows.Forms.Button btnPopup;

 private System.Windows.Forms.Button btnFlat;

 // Hold the current alignment value.

 ContentAlignment currAlignment = ContentAlignment.MiddleCenter;

 int currEnumPos = 0;

 // InitializeComponent() omitted...

 protected void btnStandard_Click (object sender, System.EventArgs e)

 {

 // Get all possible values of the ContentAlignment enum.

 Array values = Enum.GetValues(currAlignment.GetType());

 // Bump the current position in the enum.

 // & check for wraparound.

 currEnumPos++;

 if(currEnumPos >= values.Length)

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-568 I ♡ Flyheart-

 currEnumPos = 0;

 // Change the current enum value.

 currAlignment =

 (ContentAlignment)ContentAlignment.Parse(currAlignment.GetType(),

 values.GetValue(currEnumPos).ToString());

 // Paint enum value name on Button.

 btnStandard.Text = currAlignment.ToString();

 btnStandard.TextAlign = currAlignment;

 // Now assign the location of the ICON on btnImage...

 btnImage.ImageAlign = currAlignment;

 }

 ...

}

SOURCE
CODE

The Buttons application is included under the Chapter 10
subdirectory.

Working with CheckBoxes
The other two ButtonBase-derived types of interest are CheckBox (which can support up
to three possible states) and RadioButton (which can be either selected or not selected).
Like the Button, these types also receive most of their functionality from the Control base
class. However, each class defines some additional functionality. First, consider the core
properties of the CheckBox widget described in Table 10-8.

Table 10-8: CheckBox Properties

CHECKBOX
PROPERTY

MEANING IN LIFE

Appearance Configures the appearance of a CheckBox Control, using
the Appearance enumeration.

AutoCheck Gets or sets a value indicating whether the Checked or
CheckState value and the CheckBox's appearance are
automatically changed when it is clicked.

CheckAlign Gets or sets the horizontal and vertical alignment of a

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-569 I ♡ Flyheart-

Table 10-8: CheckBox Properties

CHECKBOX
PROPERTY

MEANING IN LIFE

CheckBox on a CheckBox Control, using the
ContentAlignment enumeration (see the Button type for a
full description).

Checked Returns a Boolean value representing the state of the
CheckBox (checked or unchecked). If the ThreeState
property is set to true, the Checked property returns true
for either checked or indeterminately checked values.

CheckState Gets or sets a value indicating whether the CheckBox is
checked, using a CheckState enumeration, rather than a
Boolean value. This is very helpful when working with
tristate CheckBoxes.

ThreeState Configures whether the CheckBox supports three states
of selection (as specified by the CheckState
enumeration) rather than two.

The ThreeState property is configured using the CheckState enumeration (Table 10-9).

Table 10-9: CheckState Values

CHECKSTATE
VALUE

MEANING IN LIFE

Checked The Control is checked.

Indeterminate The Control is indeterminate. An indeterminate Control
generally has a shaded appearance.

Unchecked The Control is unchecked.

You have probably seen examples of Controls with these check states. For example,
imagine a TreeView Control supporting a main node that expands to 10 checkable
subnodes. If the user selects 6 of the 10 subnodes, the main node is in an indeterminate
state (as 4 items are left unchecked).

Working with RadioButtons and GroupBoxes

The RadioButton type really requires little comment, given that it is (more or less) just a
slightly redesigned CheckBox. In fact, the members of a RadioButton are almost identical
to those of the CheckBox type. The only notable difference is the CheckedChanged event,
which is fired when the Checked value changes. Also, the RadioButton type does not
support the ThreeState property, as a RadioButton must be on or off.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-570 I ♡ Flyheart-

Typically, multiple RadioButton objects are logically and physically grouped together to
function as a whole. For example, if you have a set of four RadioButton types
representing the color choice of a given automobile, you may wish to ensure that only one
of the four types can be checked at a time. Rather than writing code programmatically to
do so, use the GroupBox Control. Like the RadioButton, there is little to say about the
GroupBox Control, given that it receives all of its functionality from the Control base class.

Fun with RadioButtons (and CheckBoxes)

To illustrate working with the CheckBox, RadioButton, and GroupBox types, create a new
Windows Form Application named CarConfig. The main Form allows users to enter in
(and confirm) information about a new vehicle they intend to purchase. Figure 10-10
shows the user interface.

Figure 10-10: Grouped RadioButtons

Assume you have initialized a number of private member variables representing each
GUI widget. First, you have your CheckBox, constructed as shown here:

// Create your CheckBox.

checkFloorMats.Location = new System.Drawing.Point (16, 16);

checkFloorMats.Text = "Extra Floor Mats";

checkFloorMats.Size = new System.Drawing.Size (136, 24);

checkFloorMats.FlatStyle = System.Windows.Forms.FlatStyle.Popup;

// Add to Control collection.

this.Controls.Add (this.checkFloorMats);

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-571 I ♡ Flyheart-

Programmatically speaking, when you wish to place a widget under the ownership of a
related GroupBox, you want to add each item to the GroupBox's Controls collection (in
the same way you add widgets to the Form's Controls collection). To make things a bit
more interesting, respond to the Enter and Leave events sent by the GroupBox object as
shown here:

// Yellow RadioButton.

radioYellow.Location = new System.Drawing.Point (96, 24);

radioYellow.Text = "Yellow";

radioYellow.Size = new System.Drawing.Size (64, 23);

// Green, Red and Pink Buttons configured in a similar vein....

// Now build the group of radio items.

groupBox1.Location = new System.Drawing.Point (16, 56);

groupBox1.Text = "Exterior Color";

groupBox1.Size = new System.Drawing.Size (264, 88);

groupBox1.Leave += new System.EventHandler (groupBox1_Leave);

groupBox1.Enter += new System.EventHandler (groupBox1_Enter);

groupBox1.Controls.Add (this.radioPink);

groupBox1.Controls.Add (this.radioYellow);

groupBox1.Controls.Add (this.radioRed);

groupBox1.Controls.Add (this.radioGreen);
Understand that you do not need to capture that Enter or Leave events for a GroupBox.
However, to illustrate, the event handlers update the caption text of the GroupBox as
shown here:

// Figure out when the focus is in your group.

protected void groupBox1_Leave (object sender, System.EventArgs e)

{

 groupBox1.Text = "Exterior Color: Thanks for visiting the group...";

}

protected void groupBox1_Enter (object sender, System.EventArgs e)

{

 groupBox1.Text = "Exterior Color: You are in the group...";

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-572 I ♡ Flyheart-

}

The final GUI widgets on this Form (the Label and Button types) also need to be
configured and inserted in the Form's Controls collection. The Label is used to display the
order confirmation, which is formatted in the Click event handler of the order Button, as
shown here:

protected void btnOrder_Click (object sender, System.EventArgs e)

{

 // Build a string to display information.

 string orderInfo = "";

 if(checkFloorMats.Checked)

 orderInfo += "You want floor mats.\n";

 if(radioRed.Checked)

 orderInfo += "You want a red exterior.\n";

 if(radioYellow.Checked)

 orderInfo += "You want a yellow exterior.\n";

 if(radioGreen.Checked)

 orderInfo += "You want a green exterior.\n";

 if(radioPink.Checked)

 orderInfo += "Why do you want a PINK exterior?\n";

 // Send this string to the Label.

 infoLabel.Text = orderInfo;

}

Notice that both the CheckBox and RadioButton support the Checked property, which
allows you to investigate the state of the widget. Recall that if you have configured a
tristate CheckBox, you want to check the state of the widget using the CheckState
property (and the corresponding CheckState enumeration).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-573 I ♡ Flyheart-

Examining the CheckedListBox Control

Now that I have explored the basic Button-centric widgets, I will move on to the set of list
selection-centric types. Specifically, the CheckedListBox, ListBox, and ComboBox types.
The CheckedListBox widget allows you to group together related CheckBox options in a
scrollable list Control. Assume you have added such a Control to your CarConfig
application, which allows the user to configure a number of options for regarding the
automobile's sound system (Figure 10-11).

Figure 10-11: The CheckedListBox type

Like the Controls examined thus far, the CheckedListBox type gains most of its
functionality from the Control base class type. Also, the CheckedListBox type inherits
additional functionality from its direct base class, ListBox (examined later in this chapter).

To insert new items in a CheckedListBox, call Add() for each item or use the AddRange()
method and send in an array of objects (strings, to be exact) that represent the full set of
checkable items. Here is the configuration code (be sure to check out online help for
details about these new properties):

// Configure the CheckedListBox.

checkedBoxRadioOptions.Location = new System.Drawing.Point (16, 48);

checkedBoxRadioOptions.Cursor = Cursors.Hand;

checkedBoxRadioOptions.Size = new System.Drawing.Size (256, 64);

checkedBoxRadioOptions.CheckOnClick = true;

// Add items to the CheckedListBox.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-574 I ♡ Flyheart-

checkedBoxRadioOptions.Items.AddRange(new object[6]

 {"Front Speakers", "8-Track Tape Player",

 "CD Player", "Cassette Player",

 "Rear Speakers", "Ultra Base Thumper"});

// As always, add the new widget to the Controls collection.

this.Controls.Add (this.checkedBoxRadioOptions);

Now update the logic behind the Click event for the Order Button. Ask the
CheckedListBox which of its items are currently selected and add them to the orderInfo
string. Here is the relevant code:

protected void btnOrder_Click (object sender, System.EventArgs e)

{

 // Build a string to display information.

 string orderInfo = "";

 ...

 // For each item in the CheckedListBox:

 for(int i = 0; i < checkedBoxRadioOptions.Items.Count; i++)

 {

 // Is the current item checked?

 if(checkedBoxRadioOptions.GetItemChecked(i))

 {

 // Get text of checked item and append to orderinfo string.

 orderInfo += "Radio Item: ";

 orderInfo += checkedBoxRadioOptions.Items[i].ToString();

 orderInfo += "\n";

 }

 }

 ...

}

The final note regarding the CheckedListBox type is that it supports the use of multiple
columns through the inherited MultiColumn property. Thus, if you make the following
update:

checkedBoxRadioOptions.MultiColumn = true;
You see the multiline CheckedListBox shown in Figure 10-12.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-575 I ♡ Flyheart-

Figure 10-12: A multiline CheckedListBox

ListBoxes and ComboBoxes
As mentioned, the CheckedListBox type inherits most of its functionality from the ListBox
type. The same holds true for the ComboBox class. Some core properties provided by
System.Windows.Forms.ListBox are described in Table 10-10.

Table 10-10: ListBox Properties

LISTBOX
PROPERTY

MEANING IN LIFE

ScrollAlwaysVisible Determines if the associated scroll bar is shown at all
times.

SelectedIndex The index of the currently selected item in the list (if
any). The value of −1 indicates "no selection." If the
value is 0 or greater, the value is the index of the
currently selected item.

SelectedIndices A collection of the indices of the selected items in the
list box. If no selected items are in the list box, the
result is an empty collection.

SelectedItem The value of the currently selected item in the list. If
the value is null, there is currently no selection.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-576 I ♡ Flyheart-

Table 10-10: ListBox Properties

LISTBOX
PROPERTY

MEANING IN LIFE

SelectedItems Returns a collection of all selected items (for a
multiselection list box).

SelectionMode Controls how many items at a time can be selected in
the list box, using the SelectionMode enumeration.

Sorted Indicates if the ListBox is sorted (alphabetically) or
not.

TopIndex Returns the index of the first visible item in a list box.

In addition to this property set, the ListBox also defines a number of methods. As most of
them echo the functionality in various class properties, I'll leave it to you to check things
out on your own.

To illustrate using the ListBox type, add another feature to the current CarConfig
application: the ability to select the make (BMW, Yugo, and so on) of the automobile.
Figure 10-13 shows the desired UI.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-577 I ♡ Flyheart-

Figure 10-13: The ListBox type

As always, begin by creating a member variable to manipulate your type (in this case a
ListBox type). Next, configure the look and feel and insert the new widget in the Form's
Controls collection, as shown here:

// Configure the list box.

carMakeList.Location = new System.Drawing.Point (168, 48);

carMakeList.Size = new System.Drawing.Size (112, 67);

carMakeList.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

carMakeList.ScrollAlwaysVisible = true;

carMakeList.Sorted = true;

// Populate the listBox using the AddRange() method.

carMakeList.Items.AddRange(new object[9] {"BMW", "Caravan", "Ford",

"Grand Am", "Jeep", "Jetta", "Saab", "Viper", "Yugo"});

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-578 I ♡ Flyheart-

// Add new widget to Form's Control collection.

this.Controls.Add (this.carMakeList);

The update to the btnOrder_Click() event handler is also simple, as shown here:

protected void btnOrder_Click (object sender, System.EventArgs e)

{

 // Build a string to display information.

 string orderInfo = "";

 ...

 // Get the currently selected item (not index of the item).

 if(carMakeList.SelectedItem != null)

 orderInfo += "Make: " + carMakeList.SelectedItem + "\n";

 ...

}

Fun with ComboBoxes

Like a ListBox, a ComboBox allows the user to make a selection from a well-defined set
of possibilities. However, the ComboBox type is unique in that the user can also insert
additional items. Recall that ComboBox derives from ListBox (which then derives from
Control). Beyond this mass of functionality, ComboBox offers the additional properties
described in Table 10-11.

Table 10-11: ComboBox Properties

COMBOBOX
PROPERTY

MEANING IN LIFE

DroppedDown Indicates whether the drop-down portion of the
combo is dropped down.

MaxDropDownItems Indicates the maximum number of items to be
shown in the drop-down portion of the ComboBox.
This number can be from 1 to 100.

MaxLength Indicates the maximum length of the text the user
can type in the edit Control of a combo box.

SelectedIndex Indicates the zero-based index of the selected item
in the combos list. If the value of index is −1, there is
no selected item.

SelectedItem Indicates the handle to the object selected in the

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-579 I ♡ Flyheart-

Table 10-11: ComboBox Properties

COMBOBOX
PROPERTY

MEANING IN LIFE

combos list.

SelectedText Indicates the selected text in the edit component of
the ComboBox.

SelectionLength Indicates the length, in characters, of the selection
in the edit box portion of the ComboBox.

Style Indicates the type of combo. The value comes from
the ComboBoxStyle enumeration.

Text Gives access to whatever is in the edit box. The
inherited Text property is generally most useful
when working with ComboBoxes.

A given ComboBox has an associated style that is specified using the ComboBoxStyle
enumeration (Table 10-12).

Table 10-12: ComboBox Styles

COMBOBOX STYLE MEANING IN LIFE

DropDown The text portion is editable. The user must click
the Arrow Button to display the list portion.

DropDownList The user cannot directly edit the text portion. The
user must click the Arrow Button to display the list
portion.

Simple The text portion is editable. The list portion is
always visible.

To illustrate, add yet another GUI widget to the CarConfig application, which allows a user
to enter the name of a preferred salesperson. If the salesperson in question is not on the
list, the user can enter a custom name. The GUI update is shown in Figure 10-14 (this
time with a more attractive output Label).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-580 I ♡ Flyheart-

Figure 10-14: The ComboBox type

This modification begins with configuring the ComboBox itself. As you can see here, the
logic looks identical to that for the ListBox:

// ComboBox configuration.

comboSalesPerson.Location = new System.Drawing.Point (152, 16);

comboSalesPerson.Size = new System.Drawing.Size (128, 21);

comboSalesPerson.Items.AddRange(new object[4] {"Baby Ry-Ry", "SPARK!", "Danny

Boy", "Karin 'Baby' Johnson"});

this.Controls.Add (this.comboSalesPerson);

The update to the btnOrder_Click() event handler is again simple, as shown here:

protected void btnOrder_Click (object sender, System.EventArgs e)

{

 // Build a string to display information.

 string orderInfo = "";

 ...

 // Use the Text property to figure out the user's salesperson.

 if(comboSalesPerson.Text != "")

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-581 I ♡ Flyheart-

 orderInfo += "Sales Person: " + comboSalesPerson.Text + "\n";

 else

 orderInfo += "You did not select a sales person!" + "\n";

 ...

}

Configuring the Tab Order

To finish up this first attempt at functional user interface, I will address the issue of tab
order. As you know, when a Form or dialog box contains multiple GUI widgets, users
expect to be able to shift focus using the Tab key. Configuring the tab order for your set of
Controls requires that you understand two properties: TabStop and TabIndex.

The TabStop property can be set to true or false, based on whether or not you wish this
GUI item to be reachable using the Tab key. Assuming the TabStop property has been
set to true for a given widget, the TabOrder property is then set to establish its order of
activation in the tabbing sequence. Consider this example:

// Configure tabbing properties.

radioRed.TabIndex = 2;

radioRed.TabStop = true;
As you would expect, these properties can be set using the Properties window (Figure
10-15).

Figure 10-15: Configuring tab properties

The Tab Order Wizard

The Visual Studio.NET IDE supplies a Tab Order Wizard, accessed using the View | Tab
Order menu selection (Figure 10-16). Once activated, your design time Form displays the
current TabIndex value for each widget. To change these values, click each item in the
order you choose. (Notice that Controls added to a GroupBox's Control collection function
as a collective.)

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-582 I ♡ Flyheart-

Figure 10-16: The TabOrder Wizard

Excellent! At this point you have learned about some very common GUI types. Now that
you have the basics in mind, you can begin to examine some more exotic widgets.

SOURCE
CODE

The CarConfig project is included under the Chapter 10
subdirectory.

The TrackBar Control
The TrackBar Control allows users to select from a range of values, using a scroll bar-like
input mechanism. In many respects a TrackBar is functionally similar to a traditional scroll
bar. When working with this type, you need to set the minimum and maximum range, the
minimum and maximum change increments, and the starting location of the slider's
thumb. Each of these aspects can be set using the properties described in Table 10-13.

Table 10-13: TrackBar Properties

TRACKBAR
PROPERTY

MEANING IN LIFE

LargeChange The number of ticks by which the TrackBar changes
when an event considered a large change occurs (e.g.,
clicking the mouse button while the cursor is on the
sliding range and using the Page Up or Page Down key.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-583 I ♡ Flyheart-

Table 10-13: TrackBar Properties

TRACKBAR
PROPERTY

MEANING IN LIFE

Maximum

Minimum

Configure the upper and lower bounds of the TrackBar's
range.

Orientation The orientation for this TrackBar. Valid values are from
the Orientation enumeration (i.e., horizontally or
vertically).

SmallChange The number of ticks by which the TrackBar changes
when an event considered a small change occurs (e.g.,
using the arrow keys).

TickFrequency Indicates how many ticks are drawn. For a TrackBar with
an upper limit of 200, it is impractical to draw all 200 ticks
on a Control 2 inches long. If you set the TickFrequency
property to 5, the TrackBar draws 20 total ticks (each tick
represents 5 units).

TickStyle Indicates how the TrackBar Control draws itself. This
affects both where the ticks are drawn in relation to the
movable thumb and how the thumb itself is drawn (using
the TickStyle enumeration).

Value Gets or sets the current location of the TrackBar. Use this
property to obtain the numeric value contained by the
TrackBar for use in your application.

Now you can build an application that makes use of three TrackBars. Each widget has an
upper range of 255 and a lower range of 0. As the user slides each thumb, the application
intercepts the Scroll event and dynamically builds a new Color type based on the value of
each slider. In this way, the user is able to view the underlying RGB value (and see the
color) for a given selection. (Of course, the System.Windows.Forms namespace already
provides a ColorDialog type for this purpose.) Figure 10-17 shows the GUI for this
application.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-584 I ♡ Flyheart-

Figure 10-17: TrackBars

First you need to configure each TrackBar. Assume your Form contains three private
TrackBar member variables (redTrackBar, greenTrackBar, and blueTrackBar). Here is
the relevant code for blueTrackBar (the remaining bars look almost identical, with the
exception of the name of the Scroll event handler):

// Here is the blue TrackBar.

blueTrackBar.TickFrequency = 5;

blueTrackBar.Location = new System.Drawing.Point (104, 200);

blueTrackBar.TickStyle = System.Windows.Forms.TickStyle.TopLeft;

blueTrackBar.Maximum = 255;

blueTrackBar.Scroll += new System.EventHandler (this.blueTrackBar_Scroll);

Note that the default minimum value of the TrackBar is 0 and thus does not need to be
explicitly set. In the event handlers for each TrackBar, you make a call to an internal
private helper function named UpdateColor(), which does the real grunt work, as shown
here:

protected void blueTrackBar_Scroll (object sender, System.EventArgs e)

{

 UpdateColor();

}

UpdateColor() is responsible for two major tasks. First you read the current value of each
TrackBar and send this state data to a new Color variable (using the FromArgb()
member). Once you have the newly configured color, you update a Form-level member
variable of type PictureBox (named colorBox), which in this case does not hold an actual
bitmap image, but simply maintains the current background color. Finally, the

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-585 I ♡ Flyheart-

UpdateColor() method formats this information in a string placed on the Form's color
display label (lblCurrColor), as shown here:

private void UpdateColor()

{

 // Get the new color.

 Color c = Color.FromArgb(redTrackBar.Value,

 greenTrackBar.Value,

 blueTrackBar.Value);

 // Change the color in the PictureBox.

 colorBox.BackColor = c;

 // Set color label.

 lblCurrColor.Text = "Current color is: " + "(" +

 redTrackBar.Value + ", " +

 greenTrackBar.Value + " ," +

 blueTrackBar.Value + ")";

}

The final detail is to set the initial values of each slider when the Form comes to life and
render the current color, as shown here:

public TrackForm()

{

 InitializeComponent();

 CenterToScreen();

 // Set initial position of each slider.

 redTrackBar.Value = 100;

 greenTrackBar.Value = 255;

 blueTrackBar.Value = 0;

 UpdateColor();

}

SOURCE
CODE

The Tracker application can be found under the Chapter 10
subdirectory.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-586 I ♡ Flyheart-

The MonthCalendar Control
The System.Windows.Forms namespace provides an extremely useful widget, which
allows the user to select a date (or range of dates) using a friendly user interface: the
MonthCalendar Control. To showcase this new Control, update the existing CarConfig
application to allow the user to enter in the new vehicle's delivery date. Figure 10-18
shows the updated (and slightly rearranged) Form.

Figure 10-18: The MonthCalendar Control

To begin understanding this new type, examine the core MonthCalendar properties
described in Table 10-14.

Table 10-14: MonthCalendar properties

MONTHCALENDAR
PROPERTY

MEANING IN LIFE

BoldedDates The array of DateTime objects that determine dates
are shown in bold.

CalendarDimensions The number of columns and rows of months
displayed in the MonthCalendar Control.

FirstDayOfWeek The first day of the week for the MonthCalendar
Control.

MaxDate The maximum allowable date that can be selected.
(The default is no maximum date.)

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-587 I ♡ Flyheart-

Table 10-14: MonthCalendar properties

MONTHCALENDAR
PROPERTY

MEANING IN LIFE

MaxSelectionCount The maximum number of days that can be selected
in a MonthCalendar Control.

MinDate The minimum allowable date that can be selected.
(The default is no minimum date.)

MonthlyBoldedDates The array of DateTime objects that determine
which monthly days to bold.

SelectionEnd Indicates the end date of the selected range of
dates.

SelectionRange Retrieves the selection range for a MonthCalendar
Control.

SelectionStart Indicates the start date of the selected range of
dates.

ShowToday

ShowTodayCircle

Indicates whether the MonthCalendar Control
displays the today date at the bottom of the Control,
as well as circle the current date.

ShowWeekNumbers Indicates whether the MonthCalendar Control
displays the week numbers (1–52) to the left of
each row of days.

TodayDate The date shown as Today in the MonthCalendar
Control. By default, Today is the current date at the
time the MonthCalendar Control is created.

TodayDateSet Indicates whether or not the TodayDate property
has been explicitly set by the user. If TodayDateSet
is true, TodayDate returns whatever the user has
set it to.

Although the MonthCalendar Control offers a fair bit of functionality, it is very simple to
programmatically capture the range of dates selected by the user. The default behavior of
this type is to always select (and circle) today's date automatically. To obtain the currently
selected date programmatically, you can update the Click event handler for the order
Button, as shown here:

protected void btnOrder_Click (object sender, System.EventArgs e)

{

 // Build a string to display information.

 string orderInfo = "";

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-588 I ♡ Flyheart-

 ...

 // Get ship date.

 DateTime d = monthCalendar.SelectionStart;

 string dateStr = d.Month + " / " + d.Day + " / " + d.Year;

 orderInfo += "Car will be sent: " + dateStr;

...

}

Notice that you can ask the MonthCalendar Control for the currently selected date by
using the SelectionStart property. This property returns a DateTime reference, which you
store in a local variable (d). Using a handful of properties of the DateTime type, you can
extract out the information you need in a custom format. (Note that this type returns the
clock time as well, which you are not interested in.)

At this point I assume the user will specify exactly one day on which to deliver the new
auto. However, what if you want to allow the user to select a range of possible shipping
dates? In that case all the user needs to do is drag the cursor across the range of
possible shipping dates (Figure 10-19).

Figure 10-19: Multiple date selection

You already have seen that you can obtain the start of the selection using the
SelectionStart property. The end of the selection can be determined using the
SelectionEnd property. Here is the code update:

protected void btnOrder_Click (object sender, System.EventArgs e)

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-589 I ♡ Flyheart-

{

 // Build a string to display information.

 string orderInfo = "";

 ...

 // Get ship date range....

 DateTime startD = monthCalendar.SelectionStart;

 DateTime endD = monthCalendar.SelectionEnd;

 string dateStartStr = startD.Month + " / " + startD.Day + " / " +

 startD.Year;

 string dateEndStr = endD.Month + " / " + endD.Day + " / " + endD.Year;

 // The DateTime type supports overloaded operators!

 if(dateStartStr != dateEndStr)

 {

 orderInfo += "Car will be sent between "

+ dateStartStr + " and\n" + dateEndStr;

 }

 else // they picked a single date.

 orderInfo += "Car will be sent on " + dateStartStr;

 ...

}

More on the DateTime Type

In the current example, you extracted a DateTime type from the MonthCalendar widget
using the SelectionStart and SelectionEnd properties, as shown here:

// Get a DateTime (or two).

DateTime startD = monthCalendar.SelectionStart;

DateTime endD = monthCalendar.SelectionEnd;

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-590 I ♡ Flyheart-

After this point, you used the Month, Day, and Year properties to build a custom format
string. While this is permissible, it is not optimal, given that the DateTime type has a
number of built-in formatting options (Table 10-15).

Table 10-15: DateTime Members

DATETIME MEMBER MEANING IN LIFE

Date Retrieves the date of the instance with the time
value set to midnight.

Day

Month

Year

Extract the day, month, and year of the current
DateTime type.

DayOfWeek Retrieves the day of the week represented by
this instance.

DayOfYear Retrieves the day of the year represented by this
instance.

Hour

Minute

Second

Millisecond

Extract various time-related details from a
DateTime variable.

MaxValue

MinValue

Represent the minimum and maximum
DateTime value.

Now

Today

These static members retrieve a DateTime type
representing the current date and time (Now) or
date (Today).

Ticks Retrieves the 100-nanosecond tick count for this
instance.

ToLongDateString()

ToLongTimeString()

ToShortDateString()

ToShortTimeString()

Convert the current value of the DateTime type
to a string representation.

Using these members, you can replace the previous formatting you programmed by hand
with the following (you will see no change in the program's output):

// Ditch the custom formatting!

// string dateStartStr = startD.Month + " / " + startD.Day + " / " + startD.Year;

// string dateEndStr = endD.Month + " / " + endD.Day + " / " + endD.Year;

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-591 I ♡ Flyheart-

string dateStartStr = startD.Date.ToShortDateString();

string dateEndStr = endD.Date.ToShortDateString();

The Spin Controls: DomainUpDown and NumericUpDown
Windows Forms provide two widgets that function as "spin controls" (also known as
up/down controls). Like the ComboBox and ListBox types, these new items also allow the
user to choose an item from a range of possible selections. The difference is that when
using a DomainUpDown or NumericUpDown Control, the information is selected using a
small pair of up and down arrows. For example, check out Figure 10-20.

Figure 10-20: Spin Controls

Given your work with previous (and similar) types, you should find working with the
UpDown Controls painless. The DomainUpDown widget allows the user to select from a
set of string data. NumericUpDown allows selections from a range of numeric data points.
Each widget derives from a common direct base class: UpDownBase. Table 10-16
describes some important properties of this class.

Table 10-16: UpDownBase Properties

UPDOWNBASE
PROPERTY

MEANING IN LIFE

InterceptArrowKeys Gets or sets a value indicating whether the user can
use the Up Arrow and Down Arrow keys to select
values.

ReadOnly Gets or sets a value indicating whether the text can
only be changed by the use of the up or down arrows
and not by typing in the Control to locate a given
string.

Text Gets or sets the current text displayed in the spin
Control.

TextAlign Gets or sets the alignment of the text in the spin
Control.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-592 I ♡ Flyheart-

Table 10-16: UpDownBase Properties

UPDOWNBASE
PROPERTY

MEANING IN LIFE

UpDownAlign Gets or sets the alignment of the up and down arrows
on the spin Control, using the LeftRightAlignment
enumeration.

The DomainUpDown Control adds a small set of properties (Table 10-17), which allow
you to configure and manipulate the textual data in the widget.

Table 10-17: DomainUpDown Properties

DOMAINUPDOWN
PROPERTY

MEANING IN LIFE

Items Allows you to gain access to the set of types stored
in the widget.

SelectedIndex Returns the zero-based index of the currently
selected item.

SelectedItem Returns the selected item itself (not its index).

Sorted Configures whether or not the strings should be
alphabetized.

Wrap Controls if the collection of items continues to the
first or last items if the user continues past the end of
the list.

The NumericUpDown type in just as simple (Table 10-18).

Table 10-18: NumericUpDown Properties

NUMERICUPDOWN
PROPERTY

MEANING IN LIFE

DecimalPlaces

ThousandsSeparator

Hexadecimal

Used to configure how the numerical data is to be
displayed.

Increment Sets the numerical value to increment the value in
the Control when the up or down arrow is clicked.
The default is to advance the value by 1.

Minimum

Maximum

Sets the upper and lower limits of the value in the
Control.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-593 I ♡ Flyheart-

Table 10-18: NumericUpDown Properties

NUMERICUPDOWN
PROPERTY

MEANING IN LIFE

value Returns the current value in the Control.

Here is the code behind the sample application. Each Control is configured using a
subset of all possible properties:

// Configure DomainUpDown widget.

domainUpDown.Sorted = true;

domainUpDown.Wrap = true;

domainUpDown.Items.AddRange(new object[4] {"Another Boring String named B",

"Boring String A", "BORING String C", "Final Boring string (D)"});

domainUpDown.SelectedIndex = 2;

// Configure NumericUpDown widget.

numericUpDown.Maximum = new decimal (5000);

numericUpDown.ThousandsSeparator = true;

numericUpDown.UpDownAlign = LeftRightAlignment.Left;

The Click event handler for the Form's Button type simply asks each type for its current
value and places it in the appropriate Label as a formatted string, as shown here:

protected void btnGetSelections_Click (object sender, System.EventArgs e)

{

 // Get info from updowns.

 lblCurrSel.Text = "String: "

 + domainUpDown.Text

 + "\n"

 + "Number: "

 + numericUpDown.Value;

}

Of course, the DomainUpDown and NumericUpDown types support a number of events.
If you ever need to capture when the selection changes, you can use
SelectedItemChanged (for DomainUpDown types) or ValueChanged (for
NumericUpDown types). Here is an example:

// Intercept the SelectedItemChanged event.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-594 I ♡ Flyheart-

domainUpDown.SelectedItemChanged

 += new EventHandler (domainUpDown_SelectedItemChanged);

...

// Handle the event.

protected void domainUpDown_SelectedItemChanged (object sender,

 System.EventArgs e)

{

 this.Text = "You changed the string value...";

}

SOURCE
CODE

The UpAndDown application is included under the Chapter 10
subdirectory.

Working with Panel Controls

As you have seen earlier in this chapter, the GroupBox Control can be used to logically
bind a number of Controls (such as RadioButtons) to function as a collective. Closely
related to the GroupBox is the Panel Control. Panels are also used to group related
Controls in a logical unit. One difference is that the Panel type derives from the
ScrollableControl class, and thus it can support scroll bars, which is not possible with a
GroupBox. Another subtle difference is that a Panel does not support an automatic
caption (unlike a GroupBox).
Panels can be used to conserve screen real estate. For example, if you have a group of
Controls that take up the entire bottom half of a Form, you can contain them in a Panel
that is half the size and set the AutoScroll property to true. In this way, the user can use
the scroll bar(s) to view the hidden items. To illustrate, update the previous TrackBar
application. This time, each TrackBar is contained in a single Panel. Figure 10-21 shows
the update.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-595 I ♡ Flyheart-

Figure 10-21: The Scrollable Panel type containing other widgets

The underlying code looks almost identical to that of a GroupBox. Begin by declaring a
Panel data member (panel1) and add each item using the Controls property, as shown
here:

// Configure the panel.

panel1.AutoScroll = true;

panel1.Controls.Add (this.label2);

panel1.Controls.Add (this.blueTrackBar);

panel1.Controls.Add (this.label3);

panel1.Controls.Add (this.greenTrackBar);

panel1.Controls.Add (this.redTrackBar);

panel1.Controls.Add (this.label1);

Assigning ToolTips to Controls
Most modern user interfaces support tool tips. In the System.Windows.Forms namespace,
the ToolTip type represents this functionality. These widgets are simply small floating
windows that display a helpful message when the cursor hovers over a given item. Table
10-19 describes the core properties of the ToolTip type.

Table 10-19: ToolTip Properties

TOOLTIP PROPERTY MEANING IN LIFE

Active Configures if the tool tip is activated or not. For
example, perhaps you have a menu item that
disables all tool tips for advanced users. This
property allows you to turn off the pop-up text.

AutomaticDelay Gets or sets the time (in milliseconds) that
passes before the ToolTip appears.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-596 I ♡ Flyheart-

Table 10-19: ToolTip Properties

TOOLTIP PROPERTY MEANING IN LIFE

AutoPopDelay The period of time (in milliseconds) that the
ToolTip remains visible when the cursor is
stationary in the ToolTip region. The default
value is 10 times the AutomaticDelay property
value.

GetToolTip() Returns the tool tip text assigned to a specific
Control.

InitialDelay The period of time (in milliseconds) that the
cursor must remain stationary in the ToolTip
region before the ToolTip text is displayed. The
default is equal to the AutomaticDelay property.

ReshowDelay The length of time (in milliseconds) that it takes
subsequent ToolTip instances to appear as the
cursor moves from one ToolTip region to
another. The default is 1/5 of the
AutomaticDelay property value.

SetToolTip() Associates a tool tip to a specific Control.

To illustrate, add a tool tip to the CarConfig application. Specifically, you want to add the
tool tip for the MonthCalendar widget shown in Figure 10-22.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-597 I ♡ Flyheart-

Figure 10-22: Tool tip

Like with any widget, begin by creating a new member variable, this time of type ToolTip.
Next, configure the set of properties for the new item. Notice that you make a call to
SetToolTip(), which configures not only the text to be displayed, but also the widget to
which it is assigned:

// Create and associate a tool tip to the calendar

calendarTip.Active = true;

calendarTip.SetToolTip (monthCalendar,

"Please select the date (or dates)\n when we can deliver your new car!");

Adding ToolTips at Design Time

If you use the Visual Studio.NET IDE to build your tool tips, begin by adding a ToolTip
widget to your Form using the Toolbox window (Figure 10-23).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-598 I ♡ Flyheart-

Figure 10-23: Adding ToolTip types at design time
At this point, you can configure the ToolTip using the Properties window. To associate the
new tip with a given widget, select the widget that should activate the tip and set the
"ToolTip on..." property (Figure 10-24).

Figure 10-24: Associating a ToolTip with a widget

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-599 I ♡ Flyheart-

Working with the ErrorProvider

Your Windows Forms application will need to validate user input. This is especially true
when with dialog boxes, as you should inform users if they make a processing error
before continuing forward. (I examine dialog box programming later in this chapter.)
The ErrorProvider type can be used to provide a visual cue of user input error. For
example, assume you have a Form containing a TextBox and Button widget. If the user
enters more than five characters in the TextBox, the error information shown in Figure
10-25 is displayed.

Figure 10-25: The ErrorProvider

Here, you have detected that the user entered more than five characters and responded
by placing a small error icon (!) next to the TextBox object. When the user places the
cursor over this icon, the descriptive error text appears as a pop-up. Also, this
ErrorProvider is configured to blink the icon a number of times to strengthen the visual
cue (which of course you can't see without running the application).

If you wish to support this type of input validation, the first step is to understand the
properties of the Control class (Table 10-20).

Table 10-20: Control Properties

CONTROL PROPERTY MEANING IN LIFE

CausesValidation Indicates whether selecting this Control causes
validation on the Controls requiring validation.

Validated Occurs when the Control is finished performing
its validation logic.

Validating Occurs when the Control is validating user
input (e.g., when the Control loses focus).

Every GUI widget can set the CausesValidation property to true or false. (The default is
false.) If you set this bit of state data to true, the Control forces the other Controls on the
Form to validate themselves when it receives focus (provided the CausesValidation
property is also set to true).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-600 I ♡ Flyheart-

Once a validating Control has received focus, the Validating and Validated events are
fired for each Control. It is in the scope of the Validating event handler in which you
configure a corresponding ErrorProvider. Optionally, the Validated event can be handled
to determine when the Control has finished its validation cycle.

To begin, assume you have set the CausesValidation property to true for the Button and
TextBox and have added a member variable of type ErrorProvider. Here is the
configuration code:

// Configure the error provider.

errorProvider1.DataMember = "";

errorProvider1.DataSource = null;

errorProvider1.ContainerControl = null;

errorProvider1.BlinkStyle = System.Windows.Forms.ErrorBlinkStyle.AlwaysBlink;

errorProvider1.BlinkRate = 500;

The ErrorProvider type has a small set of members. The most important item for your
purposes is the BlinkStyle property, which can be set to any of the values of the
ErrorBlinkStyle enumeration described in Table 10-21.

Table 10-21: ErrorBlinkStyle Properties

ERRORBLINKSTYLE
PROPERTY

MEANING IN LIFE

AlwaysBlink Blinks the error icon when the error is first displayed
or when a new error description string is set for the
Control and the error icon is already displayed.

BlinkIfDifferentError Blinks only if the error icon is already displayed, but
a new error string is set for the Control.

NeverBlink Never blinks the error icon.

The ErrorProvider also has additional members beyond BlinkStyle and BlinkRate. For
example, if you wish to associate a custom icon to the error, you can do so using the Icon
property. Nevertheless, once you have configured how the ErrorProvider looks and feels,
you bind the error to the TextBox within the scope of its Validating event handler, as
shown here:

protected void txtInput_Validating (object sender, System.EventArgs e)

{

 // Check if the text length is greater than 5.

 if(txtInput.Text.ToString().Length > 5)

 {

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-601 I ♡ Flyheart-

 errorProvider1.SetError(txtInput, "Can't be greater than 5!");

 }

 else // Things are OK, don't show anything.

 errorProvider1.SetError(txtInput, "");

}
SOURCE
CODE

The ErrorProvider application is included under the Chapter 10
subdirectory.

Configuring a Control's Anchoring Behavior
When you are creating a Form containing widgets, you need to decide whether the Form
should be resizable. Typically speaking, main windows are resizable, whereas dialog
boxes are not. To configure the resizability of your Form, adjust the FormBorderStyle
property to any of the values described in Table 10-22.

Table 10-22: FormBorderStyle Properties

FORMBORDERSTYLE
PROPERTY

MEANING IN LIFE

Fixed3D A nonresizable, three-dimensional border.

FixedDialog A thick, nonresizable dialog box-style border.

FixedSingle A nonresizable, single-line border.

FixedToolWindow A tool window border that is not resizable.

None No border at all.

Sizable A resizable border.

SizableToolWindow A resizable tool window border.

Assume that you have configured your Form to be resizable. This brings up some
interesting questions regarding the contained Controls. For example, if the user makes
the Form smaller than the rectangle needed to display each Control, should the Controls
adjust their size (and possibly location) to morph correctly with the Form?

In the Windows Forms worldview, the Anchor property is used to define a relative fixed
position in which the Control should always be rendered. Every Control derived type has
an Anchor property, which can be set to any of the values from the AnchorStyles
enumeration described in Table 10-23.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-602 I ♡ Flyheart-

Table 10-23: AnchorStyles Values

ANCHORSTYLES
VALUE

MEANING IN LIFE

Bottom The Control is anchored to the bottom edge of its
container.

Left The Control is anchored to the left edge of its
container.

None The Control is not anchored to any edges of its
container.

Right The Control is anchored to the right edge of its
container.

Top The Control is anchored to the top edge of its
container.

To anchor a widget at the upper left corner, you are free to OR styles together (e.g.,
AnchorStyles.Top|AnchorStyles.Left). Again, the idea behind the Anchor property is to
configure which edges of the Control are anchored to the edges of its container. For
example, if you configure a Button with the following Anchor value:

// Anchor this widget relative to the right position.

myButton.Anchor = AnchorStyles.Right;

you are ensured that as the Form is resized, this Button maintains its position relative to
the right side of the Form (which is not very easy to visualize on the printed page).

Configuring a Control's Docking Behavior
Another aspect of Windows Forms programming is establishing the docking behavior of
your Controls. If you so choose, you can set a widget's Dock property to configure which
side (or sides) of a Form the widget should be attached to. The value you assign to a
Control's Dock property is honored, regardless of the Form's current dimensions. Table
10-24 describes possible options.

Table 10-24: DockStyle Values

DOCKSTYLE
VALUE

MEANING IN LIFE

Bottom The Control's bottom edge is docked to the bottom of its
containing Control.

Fill All the Control's edges are docked to all the edges of its
containing Control and sized appropriately.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-603 I ♡ Flyheart-

Table 10-24: DockStyle Values

DOCKSTYLE
VALUE

MEANING IN LIFE

Left The Control's left edge is docked to the left edge of its
containing Control.

None The Control is not docked.

Right The Control's right edge is docked to the right edge of its
containing Control.

Top The Control's top edge is docked to the top of its
containing Control.

So, for example, if you want to ensure that a given widget is always docked on the left
side of a Form, you would write:

// This item is always located on the left of the Form, regardless

// of the Form's current size.

myButton.Dock = DockStyle.Left;
Figure 10-26 shows the output.

Figure 10-26: Anchoring behaviors
To explore the various anchor and docking styles, check out the AnchoringControls
application (under the Chapter 10 subdirectory). Using the topmost menu system, you
can select from a set of AnchorStyles and DockStyles values and observe the change in
behavior of the Button type (Figure 10-27).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-604 I ♡ Flyheart-

Figure 10-27: Docking and anchoring behaviors

Building Custom Dialog Boxes

Now that you have a solid understanding of the core Controls defined in the
System.Windows.Forms namespace, you need to examine the construction of custom
dialog boxes. The good news is that everything you have already learned about
System.Windows.Forms applies directly to dialog box programming. There is no Dialog
base class in the System.Windows.Forms namespace. Rather, a dialog box is nothing
more than a stylized Form.

First of all, understand that most dialog boxes are nonsizable. Therefore, you will typically
want to set the BorderStyle property to FormBorderStyle.FixedDialog. Also, you will want
to set the ControlBox, MinimizeBox, and MaximizeBox properties to false. In this way the
dialog box is configured to be a fixed constant.

To launch a Form as a modal dialog box (i.e., the owning Form cannot receive focus until
the dialog box is dismissed), call the ShowDialog() method. Assume you have a topmost
menu item, which triggers the following logic:

// Launch a modal dialog box.

protected void mnuModalBox_Click (object sender, System.EventArgs e)

{

 SomeCustomForm myForm = new SomeCustomForm();

 // Could assign in the ctor of SomeCustomForm as well.

 myForm.BorderStyle = FormBorderStyle.FixedDialog;

 myForm.ControlBox = false;

 myForm.MinimizeBox = false;

 myForm.MaximizeBox = false;

 // Passing in a reference to the parent Form.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-605 I ♡ Flyheart-

 myForm.ShowDialog(this);

 DoSomeMoreWork();

}

Notice that directly after the ShowDialog() call, you have a private helper function named
DoSomeMoreWork(). Be aware that when you show a modal dialog box, the flow of
processing is stopped until the ShowDialog() method returns. (After all, that is what
makes it modal!) To show a modeless dialog box (i.e., the launching window and dialog
box can alternate focus), substitute the ShowDialog() call with a call to Show(), as shown
here:

// Launch a modeless dialog box.

protected void menuShowMyDlg_Click (object sender, System.EventArgs e)

{

 SomeCustomForm myForm = new SomeCustomForm();

 myForm.BorderStyle = FormBorderStyle.FixedDialog;

 myForm.ControlBox = false;

 myForm.MinimizeBox = false;

 myForm.MaximizeBox = false;

 myForm.Show();

 DoSomeMoreWork();

}

In this case, DoSomeMoreWork() would be hit immediately after the call to Show().

A Dialog Box Example Application

Now you can put some real code behind the previous example. Assume you have a Form
named mainForm, which supports a topmost menu, allowing the user to launch a modal
dialog box (Figure 10-28).

Figure 10-28: Launching your dialog box

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-606 I ♡ Flyheart-

When the user selects this option, a simple dialog box is displayed. The goal is to allow
the user to type in some text, which is then painted on the parent Form (but only if the OK
Button is selected). Figure 10-29 shows the UI of your dialog box.

Figure 10-29: The simple dialog box

When the user clicks the OK Button, the end result is that the string is extracted from the
TextBox maintained by the custom dialog box and painted in the parent Form's client area
(Figure 10-30).

Figure 10-30: Using dialog box data

Moreover, if the user reactivates the dialog box, the parent Form assigns the previous text
message to the dialog box's TextBox (Figure 10-31).

Figure 10-31: Prepping the dialog box

The code representing the custom dialog box should be of no surprise, given that a dialog
box is nothing more than a Form with minor modifications. Here is the relevant code:

// Your dialog box.

public class SomeCustomForm : System.Windows.Forms.Form

{

 private System.Windows.Forms.Button btnCancel;

 private System.Windows.Forms.Button btnOK;

 private System.Windows.Forms.Label label1;

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-607 I ♡ Flyheart-

 private System.Windows.Forms.TextBox txtMessage;

 public SomeCustomForm()

 {

 InitializeComponent();

 this.StartPosition = FormStartPosition.CenterParent;

 }

 ...

 private void InitializeComponent()

 {

 ...

 // OK Button configuration.

 btnOK.DialogResult = System.Windows.Forms.DialogResult.OK;

 btnOK.Size = new System.Drawing.Size (96, 24);

 btnOK.Text = "OK";

 // Cancel Button configuration.

 btnCancel.DialogResult = System.Windows.Forms.DialogResult.Cancel;

 btnCancel.Size = new System.Drawing.Size (96, 24);

 btnCancel.Text = "Cancel";

 // Form configured to function as dialog box.

 this.Text = "Some Custom Dialog";

 this.MaximizeBox = false;

 this.ControlBox = false;

 this.MinimizeBox = false;

 ...

 }

}

The first point of interest is in the constructor of the Form. Notice that you are setting the
StartPosition property on startup. Earlier you directly called CenterToScreen() to ensure
that the Form was centered correctly. Using the StartPosition property (and the
FormStartPosition enumeration), you can gain a finer level of granularity. Usually you
should use FormStartPosition.CenterParent to ensure that the location of the dialog box

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-608 I ♡ Flyheart-

is centered with regard to the parent (regardless of the parent's location on the screen),
as shown here:

// Place dialog box centered to parent.

public SomeCustomForm()

{

 InitializeComponent();

 this.StartPosition = FormStartPosition.CenterParent;

}

Another important aspect of dialog box programming is to assign the termination Buttons
to a value defined by the DialogResult enumeration. As you know, most dialog boxes
define an OK Button that says, in effect, "I am happy with my selections. Please use them
in the program." Furthermore, most dialog boxes have a Cancel Button that allows the
user to back out of a selection. To configure how the dialog box's Button should respond
with respect to dialog box processing, use the DialogResult property, as shown here:

private void InitializeComponent()

{

 ...

 // OK Button configuration.

 btnOK.DialogResult = System.Windows.Forms.DialogResult.OK;

 // Cancel Button configuration.

 btnCancel.DialogResult = System.Windows.Forms.DialogResult.Cancel;

 ...

}
What exactly does it mean to assign a Button's DialogResult value? First of all, when a
Button has been set to DialogResult.OK or DialogResult.Cancel, the Form automatically
closes. Also, you can query this property back in the code that launched this dialog box to
see which Button the user selected, as shown here:

protected void mnuModalBox_Click (object sender, System.EventArgs e)

{

 // Style props set in Form.

 SomeCustomForm myForm = new SomeCustomForm();

 // Passing in a reference to the launching dialog box is optional.

 myForm.ShowDialog(this);

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-609 I ♡ Flyheart-

 if(myForm.DialogResult == DialogResult.OK)

 {

 // User hit OK, do whatever.

 }

 DoSomeMoreWork();

}
Table 10-25 describes the possible values of the DialogResult enumeration. (Remember,
in the dialog box itself you assign these values to the Button widgets. In the launching
code you ask the dialog box itself for the value!)

Table 10-25: DialogResult Values

DIALOGRESULT
VALUE

MEANING IN LIFE

Abort The dialog box's return value is Abort (usually sent
from a Button labeled Abort).

Cancel The dialog box's return value is Cancel (usually sent
from a Button labeled Cancel).

Ignore The dialog box's return value is Ignore (usually sent
from a Button labeled Ignore).

No The dialog box's return value is No (usually sent from
a Button labeled No).

None Nothing is returned from the dialog box. This means
that the modal dialog box continues running.

OK The dialog box's return value is OK (usually sent from
a Button labeled OK).

Retry The dialog box's return value is Retry (usually sent
from a Button labeled Retry).

Yes The dialog box's return value is Yes (usually sent from
a Button labeled Yes).

Grabbing Data from a Dialog Box

Now that you can configure, launch, and test for a dialog box's Button click, you need to
understand how to obtain the information from the dialog box. Your current dialog box
allows the user to enter a custom string, which is used in the parent Form. Thus, the first
step you need to take is to add some number of member variables that represent the data
the dialog box is responsible for, as shown here:

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-610 I ♡ Flyheart-

public class SomeCustomForm : System.Windows.Forms.Form

{

 public SomeCustomForm()

 {

 InitializeComponent();

 this.StartPosition = FormStartPosition.CenterParent;

 }

 // The dialog box's state data (and a way to get it).

 private string strMessage;

 public string Message

 {

 get{ return strMessage;}

 // The set function allows the owner to send

 // in a startup string that you place in the

 // TextBox.

 set

 {

 strMessage = value;

 txtMessage.Text = strMessage;

 }

 }

...

}

Now, to transfer the value in the TextBox to this private member variable requires that you
intercept the Click event for the OK Button. Remember that the DialogResult.OK
assignment already ensures that your Form is destroyed when this Button is clicked. This
time, however, you need to do some additional work, as shown here:

protected void btnOK_Click (object sender, System.EventArgs e)

{

 // OK Button clicked! Configure new message.

 strMessage = txtMessage.Text;

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-611 I ♡ Flyheart-

}

That's it! Of course, if you had a more elaborate dialog box (such as the CarConfig Form),
you would no doubt need a number of custom properties to represent the full set of user
selections. To complete your example dialog box application, you can update the code
that launched this dialog box to extract the internal message and use it in the program.
Here is the complete menu selection logic:

protected void mnuModalBox_Click (object sender, System.EventArgs e)

{

 // Style props set in Form.

 SomeCustomForm myForm = new SomeCustomForm();

 // Assume this Form has a string variable named 'dlgMsg'.

 myForm.ShowDialog(this);

 myForm.Message = dlgMsg;

 if(myForm.DialogResult == DialogResult.OK)

 {

 dlgMsg = myForm.Message;

 Invalidate();

 }

 DoSomeMoreWork();

}

The extracted string is then painted on the client area using standard GDI+ logic, as
shown here:

protected void mainForm_Paint (object sender, PaintEventArgs e)

{

 // Paint the message obtained from the dialog box.

 Graphics g = e.Graphics;

 g.DrawString(dlgMsg, new Font("times New Roman", 24),

 Brushes.Blue, this.ClientRectangle);

}
SOURCE
CODE

The SimpleDialog application is included under the Chapter 10
subdirectory.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-612 I ♡ Flyheart-

Form Inheritance

The final topic of this chapter is Form inheritance. As you are aware, inheritance is the
pillar of OOP that allows one class to extend the functionality of another class. Typically,
when you speak of inheritance, you envision one non-GUI type deriving from another
non-GUI type. However, in the world of Windows Forms it is possible for one Form to
derive from another Form and bring with it all the previously configured widgets and base
class functionality.

For the sake of illustration, assume you have placed your CarConfigForm.cs class in a
new C# Code Library application (CarConfigLib) and compiled the binary. Once this is
done, create a new Windows Application project workspace. To derive one Form from
another, the first step is to set a reference to the external assembly (in this case, the new
DLL). Next, specify the base Form using standard C# syntax, as shown here:

// The namespace of the base Form.

using CarConfig;

// Your new Form is really a subclass of CarConfigForm!

public class DerivedForm : CarConfig.CarConfigForm

{...};

If you now save and reopen the DerivedForm type, you will see that the new class has
inherited all the widgets! If you examine the generated code, you will see basic startup
code placed in InitializeComponent(). Also be aware that all Controls that have been
declared as private may not be repositions. If you update the logic in the CarConfigLib.dll
to specify protected members, you can then relocate these items using the design time
template. At this point, you are free to extend this Form any way you choose. For test
purposes, simply add a new MainMenu that allows the user to exit this application (Figure
10-32).

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-613 I ♡ Flyheart-

Figure 10-32: The derived Form supports a topmost menu

The Click event handler simply shuts down the application, as shown here:

private void mnuFileExit_Click(object sender, System.EventArgs e)

{

 this.Close();

}

Finally, it is worth pointing out that the Visual Studio.NET IDE provides an integrated
Wizard to create derived forms. To access its functionality, activate the "Project | Add
Inherited Form" menu item. Once you provide a name for your new class, you are asked
to specify the name of the DLL assembly that contains the base class Form.

SOURCE
CODE

The MyDerivedForm and CarConfigLib applications are
included under the Chapter 10 subdirectory.

Summary

This chapter rounded off your current understanding by examining the programming of
numerous GUI widgets from the simple (Button) to the exotic (MonthCalendar). Of course,
there are some remaining types for you to explore on your own. However, given your
current understanding of these core types, you are in the perfect position to do so.

You also explored the various anchoring and docking behaviors that can be used to
enforce a specific layout of your GUI types, regardless of the size of the owning Form.

C# and the .NET Platform Chapter 10: Programming with Windows Form Controls

-614 I ♡ Flyheart-

In the later half of this chapter, you learned how to turn a Form into a dialog box (and vice
versa) and examined a number of issues related to dialog boxes. Finally you learned how
you can now derive a new Form from an existing Form type using Form inheritance.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-615 I ♡ Flyheart-

Chapter 11: Input, Output, and

Object Serialization

Overview

When you are creating full-blown desktop applications, the ability to save information between
user sessions is imperative. This chapter examines a number of IO-related topics as seen
through the eyes of the .NET framework. The first order of business is to explore the core
types defined in the System.IO namespace and come to understand how to programmatically
modify a machine's directory and file structure. Once you can do so, the next task is to explore
various ways to read to and write from character-based, binary-based, string-based, and
memory-based data stores.

The second half of this chapter examines the .NET serialization schema. Serialization is the
process of transforming the state of an object (or set of related objects) in a byte pattern (or
XML format), which can then be placed in (and later recovered from) a stream. During this
discussion, you will learn the role of the [Serializable] and [NonSerialized] attributes. You will
also see how to take more control over the serialization process through the implementation of
the ISerializable interface.

Finally, to showcase some of these concepts from a real-world point of view, I conclude this
chapter with a complete Windows Forms application, which allows the end user to manage a
collection of Car types that can be persisted to (and recovered from) a file. As an interesting
bonus, the application in question also examines the use of the DataGrid widget (uses
extensively during the examination of ADO.NET).

Exploring the System.IO Namespace

In the framework of .NET, the System.IO namespace is the region of the base class libraries
devoted to file-based (and memory-based) input and output services. Like any namespace,
System.IO defines a set of classes, enumerations, structures, and delegates, all of which are
contained in mscorlib.dll. Figure 11-1 shows a partial ILDasm.exe dump.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-616 I ♡ Flyheart-

Figure 11-1: The System.IO namespace

As you will see during this chapter, the classes in the System.IO namespace typically focus on
the manipulation of physical directories and files. However, additional types provide support to
read data from and write data to string buffers as well as raw memory locations. To give you a
roadmap of the functionality in System.IO, Table 11-1 outlines the core (nonabstract) classes.

Table 11-1: System.IO Namespace Core Types

CREATABLE IO

TYPE

MEANING IN LIFE

BinaryReader

BinaryWriter

Allow you to store and retrieve primitive data types

(integers, Booleans, strings, and so on) as binary

values.

BufferedStream Provides temporary storage for a stream of bytes,

which can be committed to storage later.

Directory

DirectoryInfo

File

FileInfo

Used to manipulate the properties for a given

directory or physical file as well as create new

files and extend the current directory structure.

The Directory and File types expose their

functionality primarily as static methods. The

DirectoryInfo and FileInfo types expose similar

functionality from a valid object instance.

FileStream Allows for random file access (i.e., seeking

capabilities) with data represented as a stream of

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-617 I ♡ Flyheart-

Table 11-1: System.IO Namespace Core Types

CREATABLE IO

TYPE

MEANING IN LIFE

bytes.

MemoryStream Allows random access to streamed data, stored in

memory, rather than a physical file.

StreamWriter

StreamReader

Used to store (and retrieve) textual information to

(or from) a file. These types do not support random

file access.

StringWriter

StringReader

Like the StreamReader/StreamWriter types, these

classes also work with textual information.

However, the underlying storage is a string buffer

rather than a physical file.

In addition to these creatable types, there are a number of enumerations and abstract classes
(Stream, TextReader, TextWriter, and so forth) that define a shared polymorphic interface to
all descendents. You will read about many of these types in this chapter.

The Directory(Info) and File(Info) Types

System.IO provides four types that allow you to manipulate individual files, as well as interact
with a machine's directory structure. The first two types, Directory and File, expose creation,
deletion, and manipulation operations using various static members. The closely related
FileInfo and DirectoryInfo types expose similar functionality as instance-level methods. In
Figure 11-2, notice that the Directory and File types directly extend System.Object, while
DirectoryInfo and FileInfo derive from the abstract FileSystemInfo type.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-618 I ♡ Flyheart-

Figure 11-2: The File- and Directory-centric types

The Abstract FileSystemInfo Base Class

The DirectoryInfo and FileInfo types receive many behaviors from the abstract FileSystemInfo
type. By and large, the members of the FileSystemInfo class can be used to discover general
characteristics (such as time of creation, various attributes, and so forth) about a given file or
directory. Table 11-2 lists some core properties of interest.

Table 11-2: FileSystemInfo Properties

FILESYSTEMINFO

PROPERTY

MEANING IN LIFE

Attributes Gets or sets the attributes associated to the

current file, which are represented by the

FileAttributes enumeration.

CreationTime Gets or sets the time of creation for the current

file or directory.

Exists Can be used to determine if a given file or

directory exists.

Extension Used to retrieve a file's extension.

FullName Gets the full path of the directory or file.

LastAccessTime Gets or sets the time the current file or directory

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-619 I ♡ Flyheart-

Table 11-2: FileSystemInfo Properties

FILESYSTEMINFO

PROPERTY

MEANING IN LIFE

was last accessed.

LastWriteTime Gets or sets the time when the current file or

directory was last written to.

Name Returns the name of a given file; is a read-only

property. For directories, gets the name of the

last directory in the hierarchy if possible;

otherwise, retrieves the fully qualified name.

The FileSystemInfo type also defines the Delete() method. This is implemented by derived
types to delete a given file or directory from the hard drive. As well, Refresh() can be called
prior to obtaining attribute information to ensure that the information is not outdated.

Working with the DirectoryInfo Type

The first creatable type you must understand is the DirectoryInfo class. This class contains a
set of members used for creating, moving, deleting, and enumerating over directories and
subdirectories. In addition to the functionality provided by the FileSystemInfo base class,
DirectoryInfo offers the following members (Table 11-3).

Table 11-3: Directory Members

DIRECTORYINFO

MEMBERS

MEANING IN LIFE

Create()

CreateSubdirectory()

Creates a directory (or subdirectories) given

a path name.

Delete() Deletes a directory and all its contents.

GetDirectories() Returns an array of strings that represent all

subdirectories in the current directory.

GetFiles() Gets the files in the specified directory (as

an array of FileInfo types).

MoveTo() Moves a directory and its contents to a new

path.

Parent Retrieves the parent directory of the

specified path.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-620 I ♡ Flyheart-

You begin working with the DirectoryInfo type by specifying a specific directory path (e.g.,
"C:\," "D:\WinNT," "\\CompanyServer\\Utils," "A:\," or what have you) as a constructor
parameter. If you want access to the active directory (i.e., the directory of the executing
application), use the "." notation. Here are some examples:

// Create a new directory bound to the current directory.

DirectoryInfo dir1 = new DirectoryInfo(".");

// Create a new directory bound to C:\Foo\Bar.

DirectoryInfo dir2 = new DirectoryInfo(@"C:\Foo\Bar");

If you attempt to map to a nonexistent directory, you are thrown a
System.IO.DirectoryNotFoundException. Assuming that this error has not been thrown, you
can investigate the underlying directory contents using any of the properties inherited from
FileSystemInfo. To illustrate, the following class creates a new DirectoryInfo type mapped to
"D:\WinNT" (adjust your letter drive if need be) and dumps out a number of interesting
statistics (see Figure 11-3 for output):

Figure 11-3: D:\WinNT directory information

class MyDirectory

{

 public static void Main(String[] args)

 {

 // Create a new directory bound to the D drive.

 DirectoryInfo dir = new DirectoryInfo(@"D:\WinNT");

 // Dump directory information.

 Console.WriteLine("***** Directory Info *****");

 Console.WriteLine("FullName: {0}", dir.FullName);

 Console.WriteLine("Name: {0}", dir.Name);

 Console.WriteLine("Parent: {0}", dir.Parent);

 Console.WriteLine("Creation: {0}", dir.CreationTime);

 Console.WriteLine("Attributes: {0}",

dir.Attributes.ToString());

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-621 I ♡ Flyheart-

 Console.WriteLine("Root: {0}", dir.Root);

 Console.WriteLine("**************************\n");

 }

}

The FileAttributes Enumeration

As shown in the previous code sample, the Attributes property obtains various traits for the
current directory or file, all of which are represented by the FileAttributes enumeration. Table
11-4 describes some core values.

Table 11-4: Select FileAttributes Values

FILEATTRIBUTES

ENUMERATION VALUE MEANING IN LIFE

Archive The file's archive status. Applications use

this attribute to mark files for backup or

removal.

Compressed The file is compressed.

Directory The file is a directory.

Encrypted The file is encrypted.

Hidden The file is hidden and thus is not included in

an ordinary directory listing.

Normal The file is normal and has no other attributes

set. This attribute is valid only if used

alone.

Offline The file is offline. The data of the file is

not immediately available.

ReadOnly The file is read only.

System The file is a system file. The file is part of

the operating system or is used exclusively by

the operating system.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-622 I ♡ Flyheart-

Enumerating Files with the DirectoryInfo Type

You can extend the current MyDirectory class to use some methods of the DirectoryInfo type.
First, use the GetFiles() method to read all *.bmp files located under the "D:\WinNT" directory.
This method returns an array of FileInfo types, which you can iterate over using the foreach
construct (details of the FileInfo type are explored later in this chapter), as shown here:

class MyDirectory

{

 public static void Main(String[] args)

 {

 // Create a new directory object bound to the D drive.

 DirectoryInfo dir = new DirectoryInfo(@"D:\WinNT");

 ...

 // Get all files with a BMP extension.

 FileInfo[] bitmapFiles = dir.GetFiles("*.bmp");

 // How many did you find?

 Console.WriteLine("Found {0} *.bmp files\n",

bitmapFiles.Length);

 // Now print out info for each file.

 foreach (FileInfo f in bitmapFiles)

 {

 Console.WriteLine("***************************\n");

 Console.WriteLine("File name: {0}", f.Name);

 Console.WriteLine("File size: {0}", f.Length);

 Console.WriteLine("Creation: {0}", f.CreationTime);

 Console.WriteLine("Attributes: {0}",

f.Attributes.ToString());

 Console.WriteLine("***************************\n");

 }

 }

}

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-623 I ♡ Flyheart-

Once you run the application, you see a listing something like that shown in Figure 11-4. (Your
bitmaps may vary!)

Figure 11-4: Bitmap file information

Creating Subdirectories with the DirectoryInfo Type

You can programmatically extend a directory structure using the CreateSubdirectory() method.
This method can create a single subdirectory on the root, as well as multiple nested
subdirectories. To illustrate, here is a block of code that extends the directory structure of
"D:\WinNT" with some custom subdirectories:

class MyDirectory

{

 public static void Main(String[] args)

 {

 DirectoryInfo dir = new DirectoryInfo(@"D:\WinNT");

 ...

 // Now add new directories to D:\WinNT:

 try

 {

 // Create D:\WinNT\MyFoo

 dir.CreateSubdirectory("MyFoo");

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-624 I ♡ Flyheart-

 // Create D:\WinNT\MyBar\MyQaaz

 dir.CreateSubdirectory(@"MyBar\MyQaaz");

 }

 catch(IOException e) { Console.WriteLine(e.Message);}

 }

}

If you examine your WinNT folder using Windows Explorer, you will see the new subdirectories
there (Figure 11-5).

Figure 11-5: Creating subdirectories

Although you are not required to capture the return value of the CreateSubdirectory() method,
be aware that a Directory type is passed back on successful execution, as shown here:

// CreateSubdirectory() returns a Directory representing the new item.

try

{

 Directory d = dir.CreateSubdirectory("MyFoo");

 Console.WriteLine("Created: {0}", d.FullName);

 d = dir. CreateSubdirectory(@"MyBar\MyQaaz");

 Console.WriteLine("Created: {0}", d.FullName);

}

catch(IOException e) { Console.WriteLine(e.Message); }

The Static Members of the Directory Class

Now that you have seen the DirectoryInfo type in action, you can learn about the Directory type.
By and large, the members of the Directory mimic the same functionality provided by the
instance-level members defined by DirectoryInfo, with a few notable exceptions

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-625 I ♡ Flyheart-

(GetLogicalDrives() for one). Due to the common public interface of each type, I assume you
will consult online help to view each member of the Directory class.

This final iteration of the MyDirectory class lists the names of all drives mapped to the current
computer and uses the static Delete() method to remove the \MyFoo and \MyBar\MyQaaz
subdirectories previously created:

class MyDirectory

{

 public static void Main(String[] args)

 {

 // Create a new directory object bound to the D drive.

 DirectoryInfo dir = new DirectoryInfo(@"D:\WinNT");

 ...

 // Now call some static members of the Directory class.

 // List all drives.

 string[] drives = Directory.GetLogicalDrives();

 Console.WriteLine("Here are your drives:");

 foreach(string s in drives)

 {

 Console.WriteLine("->{0}", s);

 }

 // Delete what you made.

 Console.Write("Going to delete\n->" + dir.FullName +

 "\\MyBar\\MyQaaz.\nand\n->" + dir.FullName +

 "\\MyFoo.\n" +"Press a key to continue!");

 Console.Read();

 try

 {

 Directory.Delete(@"D:\WinNT\MyFoo");

 // The optional second parameter specifies if you

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-626 I ♡ Flyheart-

 // wish to blow away any internal subdirectories.

 Directory.Delete(@"D:\WinNT\MyBar", true);

 }

 catch(IOException e)

 {

 Console.WriteLine(e.Message);

 }

 }

}

Figure 11-6 shows the final output of the application.

Figure 11-6: Working with the static members of a directory

Great! At this point you have investigated some core behaviors of the Directory and
DirectoryInfo types. Next, you need to learn how to create, open, close, and destroy the files
that populate a given directory.

 SOURCE
CODE The MyDirectoryApp project is located under the Chapter 11 subdirectory.

The FileInfo Class

The role of the FileInfo class is to encapsulate a number of details regarding existing files on
your hard drive (time created, size, file attributes, and so forth) as well as aid in the creation
and destruction of new files. In addition to the set of functionality inherited by FileSystemInfo,
Table 11-5 describes some core members unique to the FileInfo class.

Table 11-5: FileInfo Core Members

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-627 I ♡ Flyheart-

FILEINFO

MEMBER

MEANING IN LIFE

AppendText() Creates a StreamWriter type (described later) that

appends text to a file.

CopyTo() Copies an existing file to a new file.

Create() Creates a new file and returns a FileStream type

(described later) to interact with the created file.

CreateText() Creates a StreamWriter type that writes a new text

file.

Delete() Deletes the file to which a FileInfo instance is

bound.

Directory Gets an instance of the parent directory.

DirectoryName Gets the full path to a file.

Length Gets the size of the current file or directory.

MoveTo() Moves a specified file to a new location, providing

the option to specify a new file name.

Name Gets the name of the file.

Open() Opens a file with various read/write and sharing

privileges.

OpenRead() Creates a read-only FileStream.

OpenText() Creates a StreamReader type (described later) that

reads from an existing text file.

OpenWrite() Creates a read/write FileStream type.

First, you should be aware that many methods defined by FileInfo return a specific type
(FileStream, StreamWriter, StreamReader, and so forth) that allows you to begin reading and
writing data to (or from) the associated file in a variety of ways. This chapter examines these
new types. Until then, the following class illustrates the most generic (and least flexible) way to
create a file programmatically:

public class FileManipulator

{

 public static int Main(string[] args)

 {

 // Make a new file on the C: drive.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-628 I ♡ Flyheart-

 FileInfo f = new FileInfo(@"C:\Test.txt");

 FileStream fs = f.Create();

 // Print some basic traits of the test.txt file.

 Console.WriteLine("Creation: {0}", f.CreationTime);

 Console.WriteLine("Full name: {0}", f.FullName);

 Console.WriteLine("Full atts: {0}", f.Attributes.ToString());\

 Console.Write("Press a key to delete file");

 Console.Read();

 // Close the file stream and delete the file.

 fs.Close();

 f.Delete();

 return 0;

 }

}

Notice that the Create() method returns a FileStream type that allows you to close the new file
before removing it from the hard drive. (You will see additional uses of FileStream later in the
chapter.) When you run this application, you can see your new file at the specified directory
(Figure 11-7) given the call to Create().

Figure 11-7: Programmatically creating a physical file

Examining the FileInfo.Open() Method

The Open() method of the FileInfo type can be used to open existing files as well as create
new files with far more precision than the FileInfo.Create() method. To illustrate, ponder the
following logic:

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-629 I ♡ Flyheart-

// Open (or create) a file with read/write attributes (no sharing),

// and store file handle in a FileStream object.

FileInfo f2 = new FileInfo(@"C:\HelloThere.ini");

FileStream s = f2.Open(FileModeOpenOrCreate, FileAccess.ReadWrite,

 FileShare.None);

s.Close();

f2.Delete();

This version of the overloaded Open() method requires three parameters. The first parameter
specifies the general flavor of the open request (e.g., make a new file, open an existing file,
append to a file, and so on), which is specified using the FileMode enumeration (Table 11-6).

Table 11-6: FileMode Enumeration Values

FILEMODE

ENUMERATION

VALUE MEANING IN LIFE

Append Opens the file if it exists and seeks to the end of

the file. If the specified file does not exist, a

new file is created. Be aware that FileMode.Append

can only be used in conjunction with

FileAccess.Write.

Create Specifies that the operating system should create

a new file. Be very aware that if the file already

exists, it is overwritten!

CreateNew Specifies that the operating system should create

a new file. If the file already exists, an

IOException is thrown.

Open Specifies that the operating system should open an

existing file.

OpenOrCreate Specifies that the operating system should open a

file if it exists; otherwise, a new file should be

created.

Truncate Specifies that the operating system should open an

existing file. Once opened, the file should be

truncated so that its size is zero bytes.

The second parameter, FileAccess, is used to determine the read/write behavior of the
underlying stream (Table 11-7).

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-630 I ♡ Flyheart-

Table 11-7: FileAccess Enumeration Values

FILEACCESS

ENUMERATION VALUE MEANING IN LIFE

Read Specifies read-only access to the file (i.e.,

data can only be obtained from the file).

ReadWrite Specifies read and write access to the file

(i.e., data can be added to or obtained from the

file).

Write Specifies write access to the file (i.e., data

can only be added to the file).

Finally, you have the third parameter (FileShare), which specifies how the currently open file is
to be shared among other file handles (Table 11-8).

Table 11-8: FileShare Enumeration Values

FILESHARE

ENUMERATION

VALUE MEANING IN LIFE

None Declines sharing of the current file. Any request to

open the file (by this process or another process)

fails until the file is closed.

Read Allows subsequent opening of the file for reading.

If this flag is not specified, any request to open

the file for reading (by this process or another

process) fails until the file is closed.

ReadWrite Allows subsequent opening of the file for reading or

writing. If this flag is not specified, any request

to open the file for writing or reading (by this

process or another process) fails until the file is

closed.

Write Allows subsequent opening of the file for writing.

If this flag is not specified, any request to open

the file for writing (by this process or another

process) fails until the file is closed.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-631 I ♡ Flyheart-

The FileInfo.OpenRead() and FileInfo.OpenWrite()

Members

In addition to the Open() method, the FileInfo class also has members named OpenRead()
and OpenWrite(). As you would imagine, these methods return a read-only or write-only
FileStream type. Here is an example:

// Get a FileStream object with read-only permissions.

FileInfo f3 = new FileInfo(@"C:\boot.ini");

FileStream readOnlyStream = f3.OpenRead();

readOnlyStream.Close();

// Now get a FileStream object with write-only permissions.

FileInfo f4 = new FileInfo(@"C:\config.sys");

FileStream writeOnlyStream = f4.OpenWrite();

writeOnlyStream.Close();

 SOURCE
CODE The BasicFileApp project is included under the Chapter 11 subdirectory.

The FileInfo.OpenText(), FileInfo.CreateText(), and

FileInfo.AppendText() Members

Another "open-centric" member of the FileInfo type is OpenText(). Unlike Open(), OpenRead(),
and OpenWrite(), the OpenText() method returns an instance of the StreamReader type,
rather than a FileStream derived type, as shown here:

// Get a StreamReader object.

FileInfo f5 = new FileInfo(@"C:\bootlog.txt");

StreamReader sreader = f5.OpenText();

sreader.Close();

The final two methods of interest at this point are CreateText() and AppendText(), both of
which return a StreamWriter reference, as shown here:

// Get some StreamWriters.

FileInfo f6 = new FileInfo(@"D:\AnotherTest.txt");

f6.Open(FileMode.Create, FileAccess.ReadWrite);

StreamWriter swriter = f6.CreateText();

swriter.Close();

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-632 I ♡ Flyheart-

FileInfo f7 = new FileInfo(@"D:\FinalTest.txt");

f7.Open(FileMode.Create, FileAccess.ReadWrite);

StreamWriter swriterAppend = f7.AppendText();

swriterAppend.Close();

At this point, you have a good feel for the functionality provided by the FileInfo type. (You will
see exactly what to do with the FileStream, StreamReader, and StreamWriter types shortly.)
Be aware that the File type provides almost identical functionality using a number of static
members. You will see the File type in action where appropriate, but be sure to check out
online help for an exhaustive listing of each member.

The Abstract Stream Class

In the world of IO manipulation, a stream is an entity that is able to obtain or produce chunks of
data. The abstract System.IO.Stream class defines a number of members that provide support
for synchronous and asynchronous interactions with the storage medium (e.g., an underlying
file or memory location). Figure 11-8 shows the basic stream hierarchy.

Figure 11-8: Stream-derived types

Stream descendents represent data as a raw stream of bytes (rather than text-based data).
Also, Streams-derived types support seeking, which refers to the process of obtaining and
adjusting the current position in a stream. To begin understanding the functionality provided by
the Stream class, take note of the core members described in Table 11-9.

Table 11-9: Abstract Stream Members

STREAM

MEMBER

MEANING IN LIFE

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-633 I ♡ Flyheart-

Table 11-9: Abstract Stream Members

STREAM

MEMBER

MEANING IN LIFE

CanRead

CanSeek

CanWrite

Determines whether the current stream supports

reading, seeking, and/or writing.

Close() Closes the current stream and releases any resources

(such as sockets and file handles) associated with the

current stream.

Flush() Updates the underlying data source or repository with

the current state of the buffer and then clears the

buffer. If a stream does not implement a buffer, this

method does nothing.

Length Returns the length of the stream, in bytes.

Position Determines the position in the current stream.

Read()

ReadByte()

Reads a sequence of bytes (or a single byte) from the

current stream and advances the current position in the

stream by the number of bytes read.

Seek() Sets the position in the current stream.

SetLength() Sets the length of the current stream.

Write()

WriteByte()

Writes a sequence of bytes (or a single byte) to the

current stream and advances the current position in

this stream by the number of bytes written.

Working with FileStreams

The FileStream class provides implementations for the abstract Stream members in a manner
appropriate for file-based streaming. Like the DirectoryInfo and FileInfo types, FileStream
provides the ability to open existing files as well as create new files. FileStreams are usually
created using the FileMode, FileAccess, and FileShare enumerations. For example, the
following logic creates a new file (test.dat) in the application directory:

// Create a new file in the working directory.

FileStream myFStream = new FileStream("test.dat", FileMode.OpenOrCreate,

 FileAccess.ReadWrite);

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-634 I ♡ Flyheart-

You can experiment with the synchronous read/write capabilities of the FileStream type. To
write a stream of bytes to a file, make calls to the inherited WriteByte() or Write() method, both
of which advance the internal file pointer automatically. To read the bytes back from a file,
simply call Read() or ReadByte(). Here is an example:

// Write bytes to the *.dat file.

for(int i = 0; i < 256; i++)

{

 myFStream.WriteByte((byte)i);

}

// Reset internal position.

myFStream.Position = 0;

// Read bytes from the *.dat file.

for(int i = 0; i < 256; i++)

{

 Console.Write(myFStream.ReadByte());

}

myFStream.Close();

If you open this new file from the Visual Studio.NET IDE, you can see the underlying byte
stream (Figure 11-9).

Figure 11-9: The binary dump

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-635 I ♡ Flyheart-

Working with MemoryStreams

The MemoryStream type works much like FileStream, with the obvious difference that you are
now writing to memory rather than a physical file. Given that each of these types derives from
Stream, you can update the previous FileStream logic as shown here:

// Create a memory stream with a fixed capacity.

MemoryStream myMemStream = new MemoryStream();

myMemStream.Capacity = 256;

// Write bytes to stream.

for(int i = 0; i < 256; i++)

{

 myMemStream.WriteByte((byte)i);

}

// Reset internal position.

myMemStream.Position = 0;

// Read bytes from stream.

for(int i = 0; i < 256; i++)

{

 Console.Write(myMemStream.ReadByte());

}

myMemStream.Close();

The output of this logic is identical to that of the previous FileStream example. The only
difference is where you stream the information (file or memory). In addition to the inherited
members, MemoryStream supplies other members. For example, the previous code used the
Capacity property to specify how much memory to carve out for the streaming operation. Table
11-10 shows the core MemoryStream type members.

Table 11-10: MemoryStream Core Members

MEMORYSTREAM

MEMBER

MEANING IN LIFE

Capacity Gets or sets the number of bytes allocated for this

stream.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-636 I ♡ Flyheart-

Table 11-10: MemoryStream Core Members

MEMORYSTREAM

MEMBER

MEANING IN LIFE

GetBuffer() Returns the array of unsigned bytes from which this

stream was created.

ToArray() Writes the entire stream contents to a byte array,

regardless of the Position property.

WriteTo() Writes the entire contents of this MemoryStream to

another stream-derived type (such as a file).

Notice the possible interplay between the MemoryStream and FileStream types. Using the
WriteTo() method, you can easily transfer data stored in memory to a file. Furthermore, you
can also retrieve the memory stream as a byte array:

// Dump memory data to file.

FileStream dumpFile = new FileStream("Dump.dat", FileMode.Create,

 FileAccess.ReadWrite);

myMemStream.WriteTo(dumpFile);

// Dump memory data to a byte array.

byte[] bytesinMemory = myMemStream.ToArray();

myMemStream.Close();

Working with BufferedStreams

The final Stream-derived type to consider is BufferedStream. This type can be used as a
temporary location to read or write information, which can later be committed to permanent
storage. For example, assume you have opened a data file and need to write out a large series
of bytes. While you could stuff each item directly to file using FileStream.Write(), you may wish
to help optimize the process by storing the new items in a BufferedStream type and make a
final commit when each addition has been accounted for. In this way, you can reduce the
number of times you must hit the physical file. Here is an example:

// Build a buffer attached' to a valid FileStream.

BufferedStream myFileBuffer = new BufferedStream(dumpFile);

// Add some bytes to the buffer.

byte[] str = {127, 0x77, 0x4, 0x10, 0x0, 0x16};

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-637 I ♡ Flyheart-

myFileBuffer.Write(str, 0, str.Length);

// Commit changes to file.

myMemStream.Close(); // Flushes.

 SOURCE
CODE The Streamer project illustrates working with the FileStream, MemoryStream

and BufferedStream types, and is located under the Chapter 11 subdirectory.

Working with StreamWriters and StreamReaders

The StreamWriter and StreamReader classes are useful whenever you need to read or write
character-based data (e.g., strings). Both of these types work by default with Unicode
characters; however, this can be changed by supplying a properly configured
System.Text.Encoding object reference. To keep things simple, let's assume that the default
Unicode encoding fits the bill. (Be sure to check out the System.Text namespace for other
possibilities.)

StreamReader derives from an abstract type named TextReader, as does the related
StringReader type (discussed later in this chapter). The TextReader base class provides a
very limited set of functionality to each of these descendents, specifically the ability to read and
peek into a character stream.

The StreamWriter type (as well as StringWriter, also examined later in this chapter) derives
from a base class named TextWriter. This class defines members that allow derived types to
write textual data to a given character stream. The relationship between each of these new
IO-centric types is shown in Figure 11-10.

Figure 11-10: Readers and writers

To understand the writing capabilities of the StreamWriter class, you need to examine the
base class functionality inherited from the TextWriter type. This abstract class defines the
members described in Table 11-11.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-638 I ♡ Flyheart-

Table 11-11: System.IO Namespace Core Types

TEXTWRITER

MEMBER NAME

MEANING IN LIFE

Close() Closes the writer and frees any associated

resources. In the process, the buffer is

automatically flushed.

Flush() Clears all buffers for the current writer and causes

any buffered data to be written to the underlying

device, but does not close the writer.

NewLine Used to make the new line constant for the derived

writer class. The default line terminator is a

carriage return followed by a line feed ("\r\n").

Write() Writes a line to the text stream, without a new line

constant.

WriteLine() Writes a line to the text stream, with a new line

constant.

The last two members of the TextWriter class probably look familiar to you. If you recall, the
System.Console type has similar members that write textual data to the standard output
device. Here, TextWriter moves the information to a specified file.

The derived StreamWriter class provides an appropriate implementation for the Write(),
Close(), and Flush() methods, as well as defines the additional AutoFlush property. This
property, when set to true, forces StreamWriter to flush all data every time you perform a write
operation. Be aware that you can gain better performance by setting AutoFlush to false,
provided you always call Close() when you are done writing with a StreamWriter.

Writing to a Text File

Now for an example of working with the StreamWriter type. The following class creates a new
file named thoughts.txt using the FileInfo class. Using the CreateText() method, you can obtain
a valid StreamWriter. At this point, you add some textual data to the new file, as shown here:

public class MyStreamWriterReader

{

 public static int Main(string[] args)

 {

 // Make a file.

 FileInfo f = new FileInfo("Thoughts.txt");

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-639 I ♡ Flyheart-

 // Get a StreamWriter and write some stuff.

 StreamWriter writer = f.CreateText();

 writer.WriteLine("Don't forget Mother's Day this year...");

 writer.WriteLine("Don't forget Father's Day this year...");

 writer.WriteLine("Don't forget these numbers:");

 for(int i = 0; i < 10; i++)

 {

 writer.Write(i + " ");

 }

 writer.Write(writer.NewLine); // Insert a carriage return.

 // Closing automatically flushes!

 writer.Close();

 Console.WriteLine("Created file and wrote some thoughts...");

 }

}

If you locate this new file, you should be able to double-click it to open it a la Notepad. Figure
11-11 shows the content of your new file.

Figure 11-11: The contents of your *.txt file

Cool! As you can see, the StreamWriter has written your data to a file. The Write() and
WriteLine() methods have each been overloaded numerous times to provide a number of ways
to add textual and numeric data (which defaults to Unicode encoding).

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-640 I ♡ Flyheart-

Reading from a Text File

Now you need to understand how to programmatically read data from a file using the
corresponding StreamReader type. As you probably recall, this class derives from TextReader,
which offers the following functionality described in Table 11-12.

Table 11-12: TextReader Core Members

TEXTREADER

MEMBER NAME

MEANING IN LIFE

Peek() Returns the next available character without

actually changing the position of the reader.

Read() Reads data from an input stream.

ReadBlock() Reads a maximum of count characters from the

current stream and writes the data to a buffer,

beginning at index.

ReadLine() Reads a line of characters from the current stream

and returns the data as a string. (A null string

indicates EOF.)

ReadToEnd() Reads all characters from the current position to

the end of the TextReader and returns them as one

string.

If you now extend the current MyStreamWriterReader class to use a StreamReader, you can
read in the textual data from the thoughts.txt file, as shown here:

public class MyStreamWriterReader

{

 public static int Main(string[] args)

 {

 // Writing logic as before.

 // Now read it all back in using a StreamReader.

 Console.WriteLine("Here are your thoughts:\n");

 StreamReader sr = File.OpenText("Thoughts.txt");

 string input = null;

 while ((input = sr.ReadLine()) != null)

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-641 I ♡ Flyheart-

 {

 Console.WriteLine (input);

 }

 sr.Close();

 return 0;

 }

}

Running the program, you would see the output shown in Figure 11-12.

Figure 11-12: Reading from a file

You obtained a valid StreamReader using the static File.OpenText() method. The read logic
makes use of StreamReader.Peek() to ensure that you have an additional character ahead of
the reader's current position. If so, you read the next line and pump it to the console. To obtain
the contents of the entire file, you could avoid the "peeking" and simply call ReadToEnd(), as
shown here:

// I want it all!

string allOfTheData = sr.ReadToEnd();

MessageBox.Show(allOfTheData, "Here it is:");

sr.Close();

As you can see, the StreamReader and StreamWriter types provide a custom implementation
of the abstract members defined by their respective base classes. Just remember that these
two types are concerned with moving text-based data to and from a specified file.

 SOURCE
CODE The StreamWriterReaderApp project is included under the Chapter 11

subdirectory.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-642 I ♡ Flyheart-

Working with StringWriters

Using the StringWriter and StringReader types, you can treat textual information as a stream
of in-memory characters. This can prove helpful when you wish to append character-based
information to an underlying buffer. To gain access to the underlying buffer from an instance of
a StringWriter type, you can call the overridden ToString() method (to receive a System.String
type) or the GetStringBuilder() method, which returns an instance of StringBuilder. Recall from
Chapter 2 that the System.Text.StringBuilder type allows you to directly modify a string buffer.

To illustrate, reengineer the previous example to write the character information to a
StringWriter instance rather than a generated file. As you should notice, the two programs are
nearly identical, given that both StringWriter and StreamWriter inherit the same base class
functionality, as shown here:

public class MyStringWriterReader

{

 public static int Main(string[] args)

 {

 // Get a StringWriter and write some stuff.

 StringWriter writer = new StringWriter();

 writer.WriteLine("Don't forget Mother's Day this year...");

 writer.WriteLine("Don't forget Father's Day this year...");

 writer.WriteLine("Don't forget these numbers:");

 for(int i = 0; i < 10; i++)

 {

 writer.Write(i + " ");

 }

 writer.Write(writer.NewLine); // Insert a carriage return.

 // Closing automatically flushes!

 writer.Close();

 Console.WriteLine("Stored thoughts in a StringWriter...");

 // Get a copy of the contents (stored in a string) and pump

 // to console.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-643 I ♡ Flyheart-

 Console.WriteLine("Contents: {0}", writer.ToString());

 return 0;

 }

}

Running this program of course dumps out textual data to the console (Figure 11-13).

Figure 11-13: Dumping the StringWriter

Now gain access to the underlying StringBuilder maintained by the StringWriter, and add the
following logic:

// For StringBuilder type!

using System.Text;

public class MyStringWriterReader

{

 public static int Main(string[] args)

 {

 // Previous logic...

 ...

 // Get the internal StringBuilder.

 StringBuilder str = writer.GetStringBuilder();

 string allOfTheData = str.ToString();

 Console.WriteLine("StringBuilder says:\n{0} ", allOfTheData);

 // Insert item to buffer at position 20.

 str.Insert(20, "INSERTED STUFF");

 allOfTheData = str.ToString();

 Console.WriteLine("New StringBuilder says:\n{0} ",

allOfTheData);

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-644 I ♡ Flyheart-

 // Remove the inserted string.

 str.Remove(20, "INSERTED STUFF".Length);

 allOfTheData = str.ToString();

 Console.WriteLine("Original says:\n{0}", allOfTheData);

 return 0;

 }

}

Here, you can write some character data to a StringWriter type and extract and manipulate a
copy of the contents using the GetStringBuilder() member function. Figure 11-14 shows the
output.

Figure 11-14: Manipulating the StringBuilder

Working with StringReaders

Next is the StringReader type, which (as you would expect) functions identically to the related
StreamReader class. In fact, the StringReader class does nothing more than override the
inherited members to read from a block of character data, rather than a file, as shown here:

// Now dump using a StringReader.

StringReader sr = new StringReader(writer.ToString());

string input = null;

while ((input = sr.ReadLine()) != null)

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-645 I ♡ Flyheart-

{

 Console.WriteLine (input);

}

sr.Close();

If you were paying attention to the previous sample applications, you may have noticed one
limitation of the TextReader and TextWriter descendents. None of these types has the ability
to provide random access to its contents (e.g., seeking). For example, StreamReader has no
members that allow you to reset the internal file cursor or jump over some number of
characters and begin reading from that point. To gain this sort of functionality, you need to use
various descendents of the Stream type.
 SOURCE
CODE The StringReaderWriterApp is included under the Chapter 11 subdirectory.

Working with Binary Data (BinaryReaders and

BinaryWriters)

The final two core classes provided by the System.IO namespace are BinaryReader and
BinaryWriter, both of which derive directly from Object, as shown in Figure 11-15.

Figure 11-15: Binary readers and writers

These types allow you to read and write discrete data types to an underlying stream. The
BinaryWriter class defines a highly overloaded method named (of course) Write() to place a
data type in the corresponding stream. The BinaryWriter class also provides some other
familiar-looking members (Table 11-13).

Table 11-13: BinaryWriter Core Members

BINARYWRITER

MEMBER

MEANING IN LIFE

BaseStream Represents the underlying stream used with the

binary reader.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-646 I ♡ Flyheart-

Table 11-13: BinaryWriter Core Members

BINARYWRITER

MEMBER

MEANING IN LIFE

Close() Closes the binary stream.

Flush() Flushes the binary stream.

Seek() Sets the position in the current stream.

Write() Writes a value to the current stream.

The BinaryReader class complements the functionality offered by BinaryWriter with the
members described in Table 11-14.

Table 11-14: BinaryReader Core Members

BINARYREADER

MEMBER

MEANING IN LIFE

BaseStream Enables access to the underlying stream.

Close() Closes the binary reader.

PeekChar() Returns the next available character without

actually advancing the position in the stream.

Read() Reads a given set of bytes or characters and stores

them in the incoming array.

ReadXXXX() The BinaryReader class defines numerous ReadXXXX

methods, which grab the next type from the stream

(ReadBoolean(), ReadByte(), ReadInt32(), and so

forth).

The following class writes a number of character types to a new *.dat file created and opened
using the FileStream class. Once you have a valid FileStream, pass this object to the
constructor of the BinaryWriter type. Understand that the constructor of BinaryWriter takes any
Stream-derived type (for example, FileStream, MemoryStream, or BufferedStream). Once the
data has been written, a corresponding BinaryReader reads each byte back, as shown here:

public class ByteTweaker

{

 public static int Main(string[] args)

 {

 Console.WriteLine("Creating a file and writing binary data...");

 FileStream myFStream

 = new FileStream("temp.dat", FileMode.OpenOrCreate,

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-647 I ♡ Flyheart-

 FileAccess.ReadWrite);

 // Write some binary info.

 BinaryWriter binWrit = new BinaryWriter(myFStream);

 binWrit.WriteString("Hello as binary info...");

 int myInt = 99;

 float myFloat = 9984.82343F;

 bool myBool = false;

 char[] myCharArray = {'H', 'e', 'l', 'l', 'o'};

 binWrit.Write(myInt);

 binWrit.Write(myFloat);

 binWrit.Write(myBool);

 binWrit.Write(myCharArray);

 // Reset internal position.

 binWrit.BaseStream.Position = 0;

 // Read the binary info as raw bytes.

 Console.WriteLine("Reading binary data...");

 BinaryReader binRead = new BinaryReader(myFStream);

 int temp = 0;

 while(binRead.PeekChar() != -1)

 {

 Console.Write(binRead.ReadByte());

 temp = temp + 1;

 if(temp = = 5)

 {

 // Add a blank line every 5 bytes.

 temp = 0;

 Console.WriteLine();

 }

 }

 // Clean things up.

 binWrit.Close();

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-648 I ♡ Flyheart-

 binRead.Close();

 myFStream.Close();

 }

}

Figure 11-16 shows the output.

Figure 11-16: A binary read/write session

An Interesting Side Note

Although you may never need to read and write individual bytes to a stream, you should know
that other types in the .NET namespaces use these same IO primitives behind the scenes. For
example, the System.Windows.Forms.Bitmap type supports a member named Save(), which
writes binary data to a new file. It is also possible to construct a new Bitmap type by passing in
a Stream-derived type. Given these aspects of the Bitmap type, it is possible to modify the
underlying pixel information at runtime. While you could calculate these (x, y) coordinates by
hand, it is far simpler to use the SetPixel() method, as shown here:

// Now open a bitmap in the application directory.

Console.WriteLine("Modifying a bitmap in memory");

myFStream = new FileStream("Paint Splatter.bmp", FileMode.Open,

 FileAccess.ReadWrite);

// Build a Bitmap based on a stream.

Bitmap rawBitmap = new Bitmap(myFStream);

// Draw a white 'X' over the image.

// (This logic assumes the height and width of the image are identical.)

for(int i = 0; i < rawBitmap.Width; i++)

{

 rawBitmap.SetPixel(i, i, Color.White);

 rawBitmap.SetPixel((rawBitmap.Width - i) - 1, i - 1, Color.White);

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-649 I ♡ Flyheart-

}

// Now save the modified image to file.

rawBitmap.Save("newImage.bmp");

myFStream.Close();

Figure 11-17 shows how the paint splatter.bmp file looks before the pixel modification.

Figure 11-17: The unmodified image

Figure 11-18 shows how the newImage.bmp file looks after new pixels are rendered.

Figure 11-18: The modified image

That wraps up the investigation of the core types in the System.IO namespace. At this point,
you are in a position to read and write textual, binary, and intrinsic data types. This chapter
concludes with an examination of how the .NET framework supports the serialization of
custom types.

 SOURCE
CODE The BinaryReaderWriter application is included under the Chapter 11

subdirectory.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-650 I ♡ Flyheart-

Object Persistence in the .NET Framework

As you have seen, the System.IO namespace defines a number of types that allow you to
send binary and character-based data to some storage device (such as a file or memory
location). What has not yet been addressed is how to save instances of custom class types to
a stream and how to read instances back from storage.

In the .NET framework, serialization is the term describing the process of converting the state
of an object to a linear sequence of bytes. This byte stream contains all necessary information
to reconstruct (or deserialize) the state of the object for use later. The .NET serialization
services are quite sophisticated: when an object is serialized to a stream, any additional object
references required by the root object are serialized as well. For example, when a derived
class is serialized, each object up the chain of inheritance is able to write its own custom state
data to the byte stream.

Once a set of objects has been saved to a stream, the byte pattern can be relocated as
necessary. For example, imagine you have serialized a stream of objects to a MemoryStream.
This stream could be forwarded to a remote computer or the Windows clipboard, burned to a
CD, or simply stored in a file. The byte stream itself does not care where it is stored. All that
matters is the fact that this stream of 1's and 0's correctly represents the state of the serialized
objects.

The Role of Object Graphs

The chain of related objects serialized to a stream is collectively referred to as an object graph.
Object graphs provide a simple way to document how a set of objects refer to each other and
are not intended to directly model classic OO relationships (such as the "is-a" or "has-a"
relationship). To establish the relations among objects in a graph, each object is assigned a
unique numerical value, followed by a graph of all related items. Keep in mind that the
numbers assigned to the members in an object graph are arbitrary and have no real meaning
to the outside world.

As a simple example, assume you have created a set of classes that model (of course) some
automobiles. You have a topmost type named Car, which "has-a" Radio. Another class named
JamesBondCar extends the basic Car type. An object graph that models these relationships is
shown in Figure 11-19.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-651 I ♡ Flyheart-

Figure 11-19: A simple object graph

In Figure 11-19 you can see that the Car class refers to the Radio class (given the "has-a"
relationship). The JamesBondCar refers to the Car (as it is a subclass) as well as the Radio
(as it inherits this protected member). Given that each object reference has been assigned an
arbitrary number, you can build the following formula:

[Car 3, ref 2], [Radio 2], [JamesBondCar 1, ref 3, ref 2]

This formula is the pattern that is serialized to a stream, along with the values for each
member variable in the Car, Radio, and JamesBondCar types. You can see that the Car type
has a dependency on item 2 (the Radio). Also, the JamesBondCar has a dependency on item
3 (the Car) as well as item 2 (the Radio). If you serialize an instance of JamesBondCar to a
stream, the object graph ensures that the Radio and Car types also participate in the process.
The beautiful thing about the serialization process is that the graph representing the
relationships among your objects is established automatically behind the scenes.

Configuring Objects for Serialization

To make an object available for serialization, you mark each class with the [Serializable]
attribute. That's it (really). If you determine that a given class has some member data that
should not participate in the serialization scheme, you can mark such fields with the
[NonSerialized] attribute. This can be helpful if you have member variables (or properties) in a
serializable class that do not need to be "remembered" (e.g., constants, transient data, and so
on). For example, here is the Radio class, which has been marked as serializable (except for a
single member variable):

// The Radio class can participate in the .NET serialization scheme.

[Serializable]

public class Radio

{

 // But you don't care to save this member.

 [NonSerialized]

 private int objectIDNumber = 9;

 public Radio(){}

 public void On(bool state)

 {

 if(state == true)

 MessageBox.Show("Music is on...");

 else

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-652 I ♡ Flyheart-

 MessageBox.Show("No tunes...");

 }

}

These attributes are marked in the type's metadata, as seen from ILDasm.exe (Figure 11-20).

Figure 11-20: The Serializable and NonSerialized attributes

To finish the coding of this car hierarchy, here are the definitions for the Car base class and
JamesBondCar subtype, each marked with the [Serializable] attribute:

// The Car class is serializable!

[Serializable]

public class Car

{

 protected string petName;

 protected int maxSpeed;

 protected Radio theRadio = new Radio();

 public Car(string petName, int maxSpeed)

 {

 this.petName = petName;

 this.maxSpeed = maxSpeed;

 }

 public Car() {} // state data set to defaults automatically...

 public String PetName

 {

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-653 I ♡ Flyheart-

 get { return petName; }

 set { petName = value; }

 }

 public int MaxSpeed

 {

 get { return maxSpeed; }

 set { maxSpeed = value; }

 }

 public void TurnOnRadio(bool state)

 {

 theRadio.On(state);

 }

}

// The JamesBondCar class is also serializable!

[Serializable]

public class JamesBondCar : Car

{

 protected bool isFlightWorthy;

 protected bool isSeaWorthy;

 public JamesBondCar(){}

 public JamesBondCar(string petName, int maxSpeed,

 bool canFly, bool canSubmerge)

 : base(petName, maxSpeed)

 {

 this.isFlightWorthy = canFly;

 this.isSeaWorthy = canSubmerge;

 }

 public void Fly()

 {

 if(isFlightWorthy)

 MessageBox.Show("Taking off!");

 else

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-654 I ♡ Flyheart-

 MessageBox.Show("Falling off cliff!");

 }

 public void GoUnderWater()

 {

 if(isSeaWorthy)

 MessageBox.Show("Diving....");

 else

 MessageBox.Show("Drowning!!!");

 }

}

Choosing a Formatter

Once you have configured your types to participate in the .NET serialization scheme, your next
step is to choose which format to use to persist your object graph. The
System.Runtime.Serialization.Formatters namespace contains two additional nested
namespaces (*.Binary and *.Soap) that provide two default formatters. As you can guess, the
BinaryFormatter type serializes your object graph to a stream using a compact binary format.
The SoapFormatter type represents your graph as a SOAP (Simple Object Access Protocol)
message (which is expressed in XML format).

The BinaryFormatter type is defined in the mscorlib.dll assembly. Therefore, to serialize your
objects to a binary format, all you need to do is specify the following using directive:

// Need to send objects to a binary format!

using System.Runtime.Serialization.Formatters.Binary;

However, the SoapFormatter type is defined in a separate assembly. To format your object
graph as a SOAP message, begin by setting a reference to the
System.Runtime.Serialization.Formatters.Soap.dll assembly and make the following using
directive:

// Need to send objects to a SOAP format!

using System.Runtime.Serialization.Formatters.Soap;

The Role of the System.Runtime.Serialization Namespace

If you ever need to build a custom formatter, you will need to use a number of types defined in
the System.Runtime.Serialization namespace. Also, if you wish to configure your objects to
employ custom serialization, these types will also be of interest. Although building a custom
formatter is outside the scope of this book, Table 11-15 describes some (but not all) of the core
classes to be aware of.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-655 I ♡ Flyheart-

Table 11-15: System.Runtime.Serialization Namespace Core Types

TYPES OF THE

SYSTEM.RUNTIME.SERIALIZATION

NAMESPACE MEANING IN LIFE

Formatter An abstract base class that provides

base functionality for runtime

serialization formatters.

ObjectIDGenerator Generates IDs for objects in an

object graph.

ObjectManager Keeps track of objects as they are

being deserialized.

SerializationBinder An abstract base class that provides

functionality to serialize a type to

a stream.

SerializationInfo Used by objects that have custom

serialization behavior.

SerializationInfo holds together

all of the data needed to serialize

or deserialize an object. In

essence, this class is a "property

bag" that allows you to establish

name/value pairs to represent the

state of an object.

In addition to these types, there are two core interfaces to be aware of: IFormatter and
ISerializable. Later this chapter revisits the ISerializable interface and the issue of custom
serialization.

Regardless which formatter you choose (including any custom formatter you dream up), the
formatter is in charge of transmitting all of the information required to persist the object during
the serialization process. The necessary information includes the full type name of the object
(e.g., MyProject.MyClasses.Foo), the name of the assembly containing the object (e.g.,
friendly name, version, and an optional strong name), as well as any stateful information,
represented by the SerializationInfo type.

During the deserialization process, the formatter uses this information to build an identical
copy of the object, using the information extracted from the underlying stream. The big picture
can be visualized as shown in Figure 11-21.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-656 I ♡ Flyheart-

Figure 11-21: The serialization process

Serialization Using a Binary Formatter

Recall that the BinaryFormatter type is a member of the
System.Runtime.Serialization.Formatters.Binary namespace, which is located in the
mscorlib.dll assembly. BinaryFormatter defines two core methods that read and write an object
graph to stream (Table 11-16).

Table 11-16: BinaryFormatter Members

BINARYFORMATTER

MEMBER MEANING IN LIFE

Deserialize() Deserializes a stream of bytes to an object

graph.

Serialize() Serialize an object or graph of connected

objects to a stream.

In addition, the BinaryFormatter type defines a number of properties that configure specific
details regarding the (de)serialization process. By and large, the default configuration of
BinaryFormatter is all you need to concern yourself with.

To illustrate, assume you have created an instance of JamesBondCar, modified some state
data, and want to persist your spymobile in a *.dat file, as shown here:

using System.Runtime.Serialization.Formatters.Binary,

public static void Main()

{

 Make a car and operate vehicle.

 JamesBondCar myAuto = new JamesBondCar("Fred", 50, false, true);

 myAuto.TurnOnRadio(true);

 myAuto.GoUnderWater();

 // Create a file stream.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-657 I ♡ Flyheart-

 FileStream myStream = File.Create("CarData.dat");

 // Move your graph into the stream using a binary format.

 BinaryFormatter myBinaryFormat = new BinaryFormatter();

 myBinaryFormat.Serialize(myStream, myAuto);

 myStream.Close();

 ...

}

As you can see, the BinaryFormatter.Serialize() method is the member responsible for
composing the object graph and moving the byte sequence to some Stream-derived type. In
this case, the stream happens to be a physical file. However, you could also serialize your
object types to any Stream-derived type (such as a memory location, given that
MemoryStream is a descendent of the Stream type). If you open the underlying binary file, you
can peek inside the byte sequence (Figure 11-22).

Figure 11-22: JamesBondCar serialized using a BinaryFormatter

Suppose you want to read the persisted JamesBondCar back to an object variable. To do so,
use the BinaryWriter.Deserialize() method. Be aware that Deserialize() returns a generic
System.Object type, and therefore you need to impose an explicit cast, as shown here:

// Read in the Car from the binary stream.

myStream = File.OpenRead("CarData.dat");

JamesBondCar carFromDisk =

 (JamesBondCar)myBinaryFormat.Deserialize(myStream);

Console.WriteLine(carFromDisk.PetName + " is alive!");

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-658 I ♡ Flyheart-

carFromDisk.TurnOnRadio(true);

myStream.Close();

Notice that when you call Deserialize(), you pass the Stream-derived type that represents the
location of the persisted objects (again a file stream in this case). Now if that is not painfully
simple, I'm not sure what is. In a nutshell, mark each class you wish to persist to a stream with
the [Serializable] attribute. After this point, use the BinaryFormatter type to move your object
graph to and from a stream.

Serialization Using a SOAP Formatter

The other available formatter for serializing your types is SoapFormatter. To use this type, you
need to set a reference to the containing assembly,
System.Runtime.Serialization.Formatters.Soap.dll. The following block of code extends the
previous serialization example to persist the JamesBondCar using the SoapFormatter type
(Chapter 15 describes SOAP messages in greater detail):

using System.Runtime.Serialization.Formatters.Soap;

// Save the same car to XML format.

FileStream myStream = File.Create("CarData.xml");

SoapFormatter myXMLFormat = new SoapFormatter();

myXMLFormat.Serialize(myStream, myAuto);

myStream.Close();

// Read in the Car from the XML file.

myStream = File.OpenRead("CarData.xml");

JamesBondCar carFromXML =

 (JamesBondCar)myXMLFormat.Deserialize(myStream);

Console.WriteLine(carFromXML.PetName + " is alive!");

myStream.Close();

As you can see, the SoapFormatter type has the same public interface as the BinaryFormatter.
As before, use Serialize() and Deserialize() to move the object graph in and out of the stream.
If you open the resulting *.xml file (Figure 11-23), you can locate the XML tags that mark the
stateful values of the current JamesBondCar (as well as the relationship maintained by the
graph).

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-659 I ♡ Flyheart-

Figure 11-23: JamesBondCar serialized using a SoapFormatter
 SOURCE
CODE The CarToFile application (demonstrating both binary and SOAP formatting)

is located under the Chapter 11 subdirectory.

Custom Serialization (and the ISerializable Interface)

The default approach to persist a custom type is simple: Mark a class with the [Serializable]
attribute. When a formatter is passed the object graph, all referenced objects are sent to the
stream. While this is typically exactly the behavior you desire, the
System.Runtime.Serialization namespace provides ways to customize how the serialization
process occurs.

When you wish to "get involved" with the serialization process, your first step is to implement
the standard ISerializable interface on the class that will use custom serialization, as shown
here:

// When you wish to tweak the serialization process, implement

ISerializable.

public interface ISerializable

{

 public virtual void GetObjectData(SerializationInfo info,

 StreamingContext context);

}

This interface defines a single method named GetObjectData(), which is called by the
formatter during the serialization process. The implementation of this method populates the
incoming SerializationInfo parameter with a series of name/value pairs. The SerializationInfo
type is essentially a "property bag," which is no doubt familiar to classic COM programmers.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-660 I ♡ Flyheart-

In addition to implementing the ISerializable interface, all objects that are implementing custom
serialization must provide a special constructor taking the following signature:

// You must supply a custom constructor with this signature

// to allow the runtime engine to set the state of your object.

class SomeClass

{

 private SomeClass (SerializationInfo si, StreamingContext ctx){...}

}

Notice that the visibility of this constructor is set as private. This is permissible given that the
formatter will have access to this member regardless of its visibility. These special
constructors tend to be marked as private to ensure that the casual object user would never
create an object in this manner.

As you can see, the first parameter of this constructor is an instance of the SerializationInfo
type, which allows you to configure a set of name/value pairs representing the state of your
object. The SerializationInfo type defines a member named AddValue(), which has been
overloaded numerous times to allow you to specify any type of data (strings, integers, floats,
Booleans, and so on). Also, numerous GetXXXX() methods are supplied to extract information
from the SerializationInfo type to populate the object's member variables. You will see these in
action in just a moment.

The second parameter to this special constructor is a StreamingContext type, which contains
information regarding the source or destination of the bits. The most informative member of
this type is the State property, which represents a value from the StreamingContextStates
enumeration (Table 11-17).

Table 11-17: StreamingContextStates Enumeration Members

STREAMINGCONTEXTSTATES

MEMBER NAME MEANING IN LIFE

All Specifies that the serialized data can be

transmitted to or received from any of the

other contexts.

Clone Specifies that the object graph is being

cloned.

CrossAppDomain Specifies that the source or destination

context is a new AppDomain.

CrossMachine Specifies that the source or destination

context is a different machine.

CrossProcess Specifies that the source or destination

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-661 I ♡ Flyheart-

Table 11-17: StreamingContextStates Enumeration Members

STREAMINGCONTEXTSTATES

MEMBER NAME MEANING IN LIFE

context is a different process on the same

machine.

File Specifies that the source or destination

context is a file.

Other Specifies that the serialization context

is unknown.

Persistence Specifies that the source or destination

context is a persisted store. This could

include databases, files, or other backing

stores. Users should assume that persisted

data is more long lived than the process

that created the data and not serialize

objects in such a way that deserialization

requires accessing any data from the

current process.

Remoting Specifies that the source or destination

context is remoting to an unknown

location. Users cannot make any

assumptions as to whether this is on the

same machine.

A Simple Example

Let me reiterate that you will typically not need to bypass the default serialization mechanism
provided by the .NET runtime. However, to illustrate, here is an updated version of the Car
type that has been configured to take part of custom serialization. You are not doing anything
special in the implementation of GetObjectState() or the custom constructor. Rather, each
method dumps out information regarding the current context and manipulates the incoming
SerializationInfo type:

public class CustomCarType : ISerializable

{

 public string petName;

 public int maxSpeed;

 public CustomCarType(string s, int i) { petName = s; maxSpeed = i;}

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-662 I ♡ Flyheart-

 // Return state info to the formatter.

 public void GetObjectData(SerializationInfo si, StreamingContext

ctx)

 {

 // What context is the stream?

 Console.WriteLine("[GetObjectData] Context State: {0}",

 ctx.State.Format());

 si.AddValue("CapPetName", petName);

 si.AddValue("maxSpeed", maxSpeed);

 }

 // Rehydrate a new object based on incoming SerializationInfo type.

 private CustomCarType(SerializationInfo si, StreamingContext ctx)

 {

 // What context is the stream?

 Console.WriteLine("[ctor] Context State: {0}",

ctx.State.Format());

 petName = si.GetString("CapPetName");

 maxSpeed = si.GetInt32("maxSpeed");

 }

}

Now that the type has been configured with the correct infrastructure, you will be happy to see
that the serialization and deserialization process remains unaltered (see Figure 11-24 for
output):

public static int Main(string[] args)

{

 CustomCarType myAuto = new CustomCarType("Siddhartha", 50);

 Stream myStream = File.Create("CarData.dat");

 // ISerializable interface obtained!

 BinaryFormatter myBinaryFormat = new BinaryFormatter();

 myBinaryFormat.Serialize(myStream, myAuto);

 myStream.Close();

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-663 I ♡ Flyheart-

 myStream = File.OpenRead("CarData.dat");

 // Special constructor called!

 CustomCarType carFromDisk =

 (CustomCarType)myBinaryFormat.Deserialize(myStream);

 Console.WriteLine(carFromDisk.petName + " is alive!");

 return 0;

}

Figure 11-24: Custom serialization
 SOURCE
CODE The CustomSerialization project is included under the Chapter 11

subdirectory.

A Windows Forms Car Logger Application

To wrap up this examination of object serialization, the remainder of this chapter walks you
through a minimal and complete Windows Forms application that uses many of the techniques
examined thus far. The CarLogApp allows the end user to create an inventory of Car types
(contained in an ArrayList), which are displayed in yet another Windows Form control, the
DataGrid (Figure 11-25). To keep focused on the serialization logic, this grid is read only.

Figure 11-25: The car logger application

The topmost File menu provides a number of choices, which operate on the underlying
ArrayList. Table 11-18 describes the possible selections.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-664 I ♡ Flyheart-

I will not bother to detail the menu construction logic, as you have already seen these steps
during the formal discussion of Windows Forms (see Chapter 8). The first task is to define the
Car type itself. This is the class that represents not only a unique row in the DataGrid, but also
an item in the serialized object graph.

Table 11-18: The CarLogApp Menu System

FILE

SUBMENU

ITEM

MEANING IN LIFE

Clear All

Cars

Empties the ArrayList and refreshes the DataGrid.

Exit Duh!

Make New

Car

Displays a custom dialog box that allows the user to

configure a new Car and refreshes the DataGrid.

Open Car

File

Allows the user to open an existing *.car file and

refreshes the DataGrid. This file is the result of a

BinaryFormatter.

Save Car

File

Saves all cars displayed in the DataGrid to a *.car file.

There are numerous iterations of the Car class throughout this book, so this version is brutally
bland:

[Serializable]

public class Car

{

 // Make public for easy access.

 public string petName, make, color;

 public Car(string petName, string make, string color)

 {

 this.petName = petName;

 this.color = color;

 this.make = make;

 }

}

Next, you need to add a few members to the main Form class. The overall UI of the DataGrid
type is configured using a small set of properties, all of which have been assigned using the

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-665 I ♡ Flyheart-

Property window of the Visual Studio.NET IDE. The most important property for this example
is the ReadOnly member (set to true), which prevents the user from editing the cells in the
DataGrid. The remaining configurations establish the type's color scheme and physical
dimensions (which you can explore at your leisure).

In addition, the main Form maintains a private ArrayList type, which holds each of the Car
references. The Form's constructor adds a number of default cars to allow the user to view
some initial items in the grid. Once these Car types have been added to the collection, you call
a helper function named UpdateGrid(), as shown here:

public class mainForm : System.Windows.Forms.Form

{

 // List for object serialization.

 private ArrayList arTheCars = null;

 public mainForm()

 {

 InitializeComponent();

 CenterToScreen();

 // Add some cars.

 arTheCars = new ArrayList();

 arTheCars.Add(new Car("Siddhartha", "BMW", "Silver"));

 arTheCars.Add(new Car("Chucky", "Caravan", "Pea Soup Green"));

 arTheCars.Add(new Car("Fred", "Audi TT", "Red"));

 // Display data in grid.

 UpdateGrid();

 }

...

}

The UpdateGrid() method is responsible for creating a System.Data.DataTable type that
contains a row for each Car in the ArrayList. Once the DataTable has been populated, you
then bind it the DataGrid type. Chapter 13 examines the ADO.NET types (such as the
DataTable) in much greater detail, so here the focus is on the basics for the time being. Here is
the code:

private void UpdateGrid()

{

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-666 I ♡ Flyheart-

 if(arTheCars != null)

 {

 // Make a DataTable object named Inventory.

 DataTable inventory = new DataTable("Inventory");

 // Create DataColumn objects.

 DataColumn make = new DataColumn("Car Make");

 DataColumn petName = new DataColumn("Pet Name");

 DataColumn color = new DataColumn("Car Color");

 // Add columns to data table.

 inventory.Columns.Add(petName);

 inventory.Columns.Add(make);

 inventory.Columns.Add(color);

 // Iterate over the array list to make rows.

 foreach(Car c in arTheCars)

 {

 DataRow newRow;

 newRow = inventory.NewRow();

 newRow["Pet Name"] = c.petName;

 newRow["Car Make"] = c.make;

 newRow["Car Color"] = c.color;

 inventory.Rows.Add(newRow);

 }

 // Now bind this data table to the grid.

 carDataGrid.DataSource = inventory;

 }

}

Begin by creating a new DataTable type named Inventory. In the world of ADO.NET, a
DataTable is an in-memory representation of a single table of information. While you might
assume that a DataTable would be created as a result of some SQL query, you can also use
this type as a stand-alone entity.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-667 I ♡ Flyheart-

Once you have a new DataTable, you need to establish the set of columns that should be
listed in the table. The System.Data.DataColumn type represents a single column. Given that
this iteration of the Car type has three public fields (make, color, and pet name), create three
DataColumns and insert them in the table using the DataTable.Columns property.

Next, you need to add each row to the table. Recall that the main Form maintains an ArrayList
that contains some number of Car types. Given that ArrayList implements the IEnumerable
interface, you can fetch each Car from the collection, read each public field, and compose and
insert a new DataRow in the table. Finally, the new DataTable is bound to the GUI DataGrid
widget using the Data-Source property.

Now then! If you run the application at this point, you will find that the grid is indeed populated
with the default automobiles. This is a good start, but you can do better.

Implementing the Add New Car Logic

The CarLogApp project defines another Form-derived type (AddCarDlg), which functions as a
modal dialog box (Figure 11-26). Because you examined the construction of custom dialog
boxes in Chapter 10, I'll hold off on the details. However, from a GUI point of view, this type is
composed of a TextBox (to hold the pet name) and two ListBox types (to allow the user to
select the color and make).

Figure 11-26: The Add a Car dialog box

As far as the code behind the Form, the OK button has been assigned the DialogResult
property DialogResult.OK. As you recall from Chapter 10, this value marks a Button type to
function as a standard OK button. Also, this Form maintains a public Car type (for easy
access), which is configured when the user clicks the OK button. The remainder of the code is
nothing more than some GUI control prep work. The relevant logic is as follows:

public class AddCarDlg : System.Windows.Forms.Form

{

 // Make public for easy access.

 public Car theCar = null;

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-668 I ♡ Flyheart-

 ...

 protected void btnOK_Click (object sender, System.EventArgs e)

 {

 // Configure a new Car when user clicks OK button.

 theCar = new Car(txtName.Text, listMake.Text, listColor.Text);

 }

}

The main Form displays this dialog box when the user selects the Make New Car menu item.
Here is the code behind that object's Clicked event:

protected void menuItemNewCar_Click (object sender, System.EventArgs e)

{

 // Show the dialog and check for OK click.

 AddCarDlg d = new AddCarDlg();

 if(d.ShowDialog() == DialogResult.OK)

 {

 // Add new car to array list.

 arTheCars.Add(d.theCar);

 UpdateGrid();

 }

}

No surprises here. You just show the Form as a modal dialog box, and if the OK button has
been clicked, you read the public Car member variable, add it to the ArrayList, and refresh
your grid.

The Serialization Logic

The core logic behind the Save Car File and Open Car File Click event handlers should pose
no problems at this point. When the user chooses to save the current inventory, you create a
new file and use a BinaryFormatter to serialize the object graph. However, just to keep things
interesting, the user can establish the name and location of this file using a
System.Windows.Forms.SaveFileDialog type. This type is yet another standard dialog box and
is illustrated in Figure 11-27.

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-669 I ♡ Flyheart-

Figure 11-27: The Standard File Save dialog box

Notice that the SaveFileDialog is listing a custom file extension (*.car). While I leave the task of
investigating the complete functionality of the SaveFileDialog in your capable hands, it is worth
pointing out that this has been assigned using the Filter property. This property takes an
OR-delimited string that represents the text to be used in the drop-down "File name" and
"Save as type" combo boxes. Here is the full implementation:

protected void menuItemSave_Click (object sender, System.EventArgs e)

{

 // Configure look and feel of save dialog box.

 SaveFileDialog mySaveFileDialog = new SaveFileDialog();

 mySaveFileDialog.InitialDirectory = ".";

 mySaveFileDialog.Filter = "car files (*.car)|*.car|All files

(*.*)|*.*" ;

 mySaveFileDialog.FilterIndex = 1 ;

 mySaveFileDialog.RestoreDirectory = true ;

 mySaveFileDialog.FileName = "carDoc";

 // Do you have a file?

 if(mySaveFileDialog.ShowDialog() = = DialogResult.OK)

 {

 Stream myStream = null;

 if((myStream = mySaveFileDialog.OpenFile()) != null)

 {

 // Save the cars!

 BinaryFormatter myBinaryFormat = new BinaryFormatter();

 myBinaryFormat.Serialize(myStream, arTheCars);

 myStream.Close();

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-670 I ♡ Flyheart-

 }

 }

}

Also note that the OpenFile() member of the SaveFileDialog type returns a Stream that
represents the specified file selected by the end user. As seen earlier in this chapter, this is the
very thing needed by the BinaryFormatter type.

The logic behind the Open Car File Click event handler looks very similar. This time you create
an instance of the System.Windows.Forms OpenFileDialog type, configure accordingly, and
obtain a Stream reference based on the selected file. Next you dump the contents of the
ArrayList and read in the new object graph using the BinaryFormatter.Deserialize() method, as
shown here:

protected void menuItemOpen_Click (object sender, System.EventArgs e)

{

 // Configure look and feel of open dialog box.

 OpenFileDialog myOpenFileDialog = new OpenFileDialog();

 myOpenFileDialog.InitialDirectory = ".";

 myOpenFileDialog.Filter = "car files (*.car)|*.car|All files

(*.*)|*.*" ;

 myOpenFileDialog.FilterIndex = 1 ;

 myOpenFileDialog.RestoreDirectory = true ;

 // Do you have a file?

 if(myOpenFileDialog.ShowDialog() = = DialogResult.OK)

 {

 // Clear current array list.

 arTheCars.Clear();

 Stream myStream = null;

 if((myStream = myOpenFileDialog.OpenFile()) != null)

 {

 // Get the cars!

 BinaryFormatter myBinaryFormat = new BinaryFormatter();

 arTheCars =

(ArrayList)myBinaryFormat.Deserialize(myStream);

 myStream.Close();

C# and the .NET Platform Chapter 11: Input, Output, and Object Serialization

-671 I ♡ Flyheart-

 UpdateGrid();

 }

 }

}

Great! At this point, the application can save and load the entire set of Car types held in the
ArrayList using a BinaryFormatter. The final menu items are self-explanatory, as shown here:

protected void menuItemClear_Click (object sender, System.EventArgs e)

{

 arTheCars.Clear();

 UpdateGrid();

}

protected void menuItemExit_Click (object sender, System.EventArgs e)

{

 Application.Exit();

}

 SOURCE
CODE The CarLogApp project is included under the Chapter 11 subdirectory.

Summary

This chapter began by examining the use of the Directory(Info) and File(Info) types. As
you have seen, these classes allow you to manipulate a physical file or directory on your
hard drive.

The chapter next examined a number of types derived from the abstract Stream class,
including FileStream, MemoryStream, and BufferedStream. Given that each of these
types has (more or less) the same public interface, you can easily swap them in and out
of your code to alter the ultimate location of your byte array. When you are interested in
persisting textual data, the StreamReader and StreamWriter types usually fit the bill.

Finally, this chapter concluded by examining how the .NET framework provides the
necessary infrastructure needed to persist your objects in a binary or SOAP message
format. Although the [Serializable] and [NonSerialized] attributes are typically all you need
to concern yourself with, you also saw how to configure a class to support custom
serialization (e.g., the ISerializable interface).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-672 I ♡ Flyheart-

Chapter 12: Interacting with Unmanaged Code

Overview

By now, you have gained a solid foundation of the C# language and the core services
provided by the .NET platform. I suspect that when you contrast the object model
provided by .NET to previous frameworks and architectures (classic COM, MFC, and so
forth), you are no doubt on your way to becoming a .NET head. Sadly, few of us are in a
position to completely abandon the ways of COM, ATL, Visual Basic 6.0, and classic
Windows DNA. The truth is that hundreds of thousands of person hours have been spent
building systems that make substantial use of these technologies. If .NET is to succeed
as a platform, it must have a way to interact gracefully with the legacy systems of today.
This chapter begins with an examination of how .NET types can access the raw Win32
API using a service termed PInvoke (Platform Invoke). Next it covers the more exciting
topic of .NET to COM interoperability and the related Runtime Callable Wrapper (RCW).
The later part of this chapter examines the opposite situation: a COM type communicating
with a .NET type using a COM Callable Wrapper (CCW). Finally, I examine the process of
building managed types that can interact with the services provided by the COM+ runtime
layer (e.g., object pooling, object constructor strings, and so on).

Understanding Interoperability Issues

When you build assemblies using a .NET-aware compiler, you are creating "managed
code" that can be hosted by the Common Language Runtime (CLR). Managed code
offers a number of benefits such as automatic memory management, a unified type
system (CTS), self-describing assemblies, and so forth. As you have seen, .NET
assemblies have a particular internal composition. In addition to IL instructions and type
metadata, assemblies contain a manifest that fully describes the internal types and
documents any required external assemblies.

On the other side of the spectrum are classic COM servers (which are of course
"unmanaged code"). These binaries bear no relationship to .NET assemblies beyond a
shared file extension. First, COM servers contain platform-specific machine code, not
platform-agnostic IL instructions. COM servers work with a unique set of data types
(BSTRs, VARIANTs, and so forth) that are mapped very differently between COM-aware
languages. In addition to the necessary COM-goo required by all COM binaries (e.g.,
class factories, registry entries, and IDL code) is the fact that COM types demand to be
reference counted. Mismanaged reference counting can lead to memory leaks, as
coclasses are not allocated on a managed heap.

Given that .NET types and COM types have so little in common, you may wonder how
these two architectures can coexist. Unless you are lucky enough to work for a company
dedicated to "100% Pure .NET" development, you will most likely need to build .NET
solutions that use legacy COM types. Furthermore, you will probably never need to fire up

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-673 I ♡ Flyheart-

Visual Basic 6.0 or the ATL AppWizard again during your career. The chances are good
that you will still need to build a COM server or two that need to communicate with a shiny
new .NET assembly.

The bottom line is that for some time to come, COM and .NET must learn how to get
along. This chapter examines the issues that arise when managed and unmanaged types
attempt to coexist. In general, the .NET framework supports the following types of
interoperability:

 .NET types calling raw C DLLs (e.g., the Win32 API or custom DLLs)
 .NET types calling COM types
 COM types calling .NET types
 .NET types using COM+ services

As you will see throughout this chapter, the .NET SDK supplies a number of tools that
help bridge the gap between these unique architectures. Also, the .NET base class
libraries define a number of types dedicated solely to the issue of interoperability.

The System.Runtime.InteropServices Namespace
When you use .NET interoperability services, you directly or indirectly interact with the
types defined in the System.Runtime.InteropServices namespace. Table 12-1 offers a
high-level overview of some (but not all) core types.

Table 12-1: Select Members of the System.Runtime.InteropServices Namespace

SYSTEM.RUNTIME.I
NTEROPSERVICES
TYPE MEANING IN LIFE

ClassInterfaceAttribute Used to control how a managed type exposes its
public members to COM clients.

ComRegisterFunctionA
ttribute

ComUnregisterFunctio
nAttribute

May be associated to custom methods to indicate
that they should be called when the assembly is
registered (or unregistered) for use by COM.

ComSourceInterfacesA
ttribute

Identifies the list of interfaces that are sources of
events for the class (e.g., outbound interfaces).

DispIdAttribute Custom attribute that specifies the COM DISPID of
a method, field, or property.

DllImportAttribute Used by the platform invoke services (PInvoke) to
call unmanaged code.

GuidAttribute Used to define a specific GUID for a class,
interface, or type library.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-674 I ♡ Flyheart-

Table 12-1: Select Members of the System.Runtime.InteropServices Namespace

SYSTEM.RUNTIME.I
NTEROPSERVICES
TYPE MEANING IN LIFE

IDispatchImplAttribute Indicates which IDispatch implementation the CLR
should use when exposing dual interfaces and
dispinterfaces.

InterfaceTypeAttribute Controls how a managed interface is exposed to
COM clients (IDispatch derived or IUnknown
derived).

OutAttribute

InAttribute

Used on a parameter or field to indicate that data
should be marshaled out from callee back to caller
or from caller to callee.

ProgIdAttribute Custom attribute that allows the user to specify the
prog ID of a .NET type.

As you may have noticed, all of these types are attributes used to help marshal data
between .NET types and COM types. Of course, the System.Runtime.InteropServices
namespace also defines a number of interfaces, enumerations, and structures.
(Examples are given where appropriate.) The journey begins by examining the use of
PInvoke.

Interacting with C DLLs

Platform Invocation Services (PInvoke) provides a way for managed code to call
unmanaged functions implemented in a traditional C (non-COM) DLL. Using PInvoke,
the .NET developer is shielded from the task of locating and invoking the correct function
export. Furthermore, PInvoke takes care of marshaling managed data (e.g., integers,
strings, arrays, and structures) to and from their unmanaged counterparts.

The most typical use of PInvoke is to allow .NET components to interact with the Win32
API in the raw. As you know, the .NET base class library exists to hide the low-level API
from view. Thus, while you might not ever need to drop down to the raw Win32, PInvoke
provides the ability to do so. PInvoke can also be used to access function exports defined
in custom DLLs. Therefore, if you have a body of legacy C code wrapped up in a dynamic
link library, you will be happy to know that your .NET components can still use them.

To illustrate the use of PInvoke, you can build a C# class that makes a call to the Win32
MessageBox() function. First, the source code, shown here:

namespace PInvokeExample

{

using System;

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-675 I ♡ Flyheart-

 // Must reference to gain access to the PInvoke types.

 using System.Runtime.InteropServices;

 public class PInvokeClient

 {

 // The Win32 MessageBox() function lives in user32.dll.

 [DllImport("user32")]

 public static extern int MessageBox(int hWnd,

 String pText,

 String pCaption,

 int uType);

 public static int Main(string[] args)

 {

 // Send in some managed data.

 String pText = "Hello World!";

 String pCaption = "PInvoke Test";

 MessageBox(0, pText, pCaption, 0);

 return 0;

 }

 }

}

The process of calling a C-style DLL begins by declaring the function to call using the
static and extern C# keywords. (This step is not optional.) Notice that when you declare
the C function prototype, you must list the return type function name and arguments in
terms of managed data types. Thus, you do not send in char* or wchar_t* arrays, but the
managed System.String type.

Once you have prototyped the method you intend to call, your next step is to adorn this
member with the DllImport attribute. At absolute minimum, you need to specify the name
of the raw DLL that contains the function you are attempting to call, as shown here:

[DllImport("user32")]

public static extern int MessageBox(...);

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-676 I ♡ Flyheart-

The DllImportAttribute type defines a set of public fields, which can be specified to further
configure the process of binding to the function export. Table 12-2 describes these fields.

Table 12-2: Fields of the DllImportAttribute Type

DLLIMPORTATTRIBUTE
FIELD MEANING IN LIFE

CallingConvention Used to establish the calling convention used
in passing method arguments.

CharSet Indicates how string arguments to the method
should be marshaled.

EntryPoint Indicates the name or ordinal of the function to
be called.

ExactSpelling As you will see, PInvoke attempts to match the
name of the function you specify with the real
name as prototyped. If this field is set to true,
you are indicating that the name of the entry
point in the unmanaged .dll must exactly
match the name you are passing in.

PreserveSig When set to true (the default setting),
unmanaged method signatures not
transformed into a managed signature that
returns an HRESULT and has an additional
[out, retval] argument for the return value.

SetLastError Set to true to indicate that the caller can call
the Win32 GetLastError() function to
determine if an error occurred while executing
the method; the default is false.

To set these values for your current DllImportAttribute object instance, simply specify
each as a name/value pair to the class constructor. If you check out the definition of the
DllImportAttribute constructor, you can see that it takes a single parameter of type
System.String, as shown here:

class DllImportAttribute

{

 // Constructor takes a string that holds all field values.

 public DllImportAttribute(string val);

...

}

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-677 I ♡ Flyheart-

It should be clear that it does not matter in which order you specify these values. The
DllImport class simply parses the string internally and uses the values to set its internal
state data.

Specifying the ExactSpelling Field

The first field of interest is ExactSpelling, which is used to control if the name of the
managed function is identical to that of the name of the unmanaged function. For example,
as you may know, there is no function named MessageBox in the Win32 API. Rather
there are an ANSI version (MessageBoxA) and a Unicode version (MessageBoxW).
Given that you specified a method named MessageBox, you can correctly assume that
the default value of ExactSpelling is false. However, if you set this value to true, you have
the following:

[DllImport("user32", ExactSpelling = true)]

public static extern int MessageBox(...); // Uh-oh!

You now receive an EntryPointNotFoundException exception, as there is no function
named MessageBox in user32.dll! As you can see, the ExactSpelling field basically
allows you to "be lazy" and ignore the details of W or A suffixes. Clearly, however,
PInvoke does need to ultimately resolve the exact name of the function you are calling.
When you leave ExactSpelling as its default value (false), the letter A is appended to the
method name under ANSI environments or the letter W under Unicode environments.

Specifying the Character Set

To explicitly specify the character set used to marshal data between managed code and
the raw DLL export, you can set the value of the CharSet field using a value from the
related CharSet enumeration (Table 12-3).

Table 12-3: CharSet Values

CHARSET
MEMBER
NAME MEANING IN LIFE

Ansi Specifies that strings should be marshaled as ANSI
1-byte chars.

Auto Informs PInvoke to marshal string correctly as required
by the target platform (Unicode on WinNT/Win2000 and
ANSI on Win 9x).

None Signifies that you didn't specify how to marshal strings
(default) and wish the runtime to figure things out
automatically.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-678 I ♡ Flyheart-

Table 12-3: CharSet Values

CHARSET
MEMBER
NAME MEANING IN LIFE

Unicode Specifies that strings should be marshaled as Unicode
2-byte chars.

By way of example, to enforce that all strings be marshaled as Unicode (and thus risk not
working correctly on Win95, Win98, or WinME platforms), you would write the following:

// Demand the exact name, and specify the Unicode character set.

[DllImport("user32", ExactSpelling = true, CharSet=CharSet.Unicode)]

public static extern int MessageBoxW(...);

Generally speaking, it is safer to set the CharSet value to CharSet.Auto (or simply accept
the default). In this way, textual parameters are marshaled correctly regardless of the
target platform, leaving your code base far more portable.

Specifying Calling Conventions and Entry Points

The final fields of interest are CallingConvention and EntryPoint. As you know, Win32 API
functions can be adorned with a number of typedefs that specify how parameters should
be passed to the function (C declaration, fast call, standard call, and so forth). You can
set CallingConvention field using any value from the CallingConvention enumeration.
This enumeration specifies values such as Cdecl, Winapi, StdCall, and so forth. The
default of this field is StdCall, and thus you can typically ignore explicitly setting this field
(since this is the most common Win32 calling convention).

Last but not least is the EntryPoint field. By default, this value is the same as the name of
the function you are prototyping. Therefore, in the following declaration, EntryPoint is
implicitly set to MessageBoxW:

// EntryPoint automatically set to'MessageBoxW'.

[DllImport("user32", ExactSpelling = true, CharSet=CharSet.Unicode)]

public static extern int MessageBoxW(...);

To establish an alias for the exported function, you can specify the real name using the
EntryPoint field, effectively renaming the function for use in your managed code.
Obviously, this is a helpful way to avoid possible name clashes. To illustrate, here is the
final iteration of the PInvoke example, which maps MessageBoxW() function to a friendly
alias (DisplayMessage):

public class PInvokeClient

{

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-679 I ♡ Flyheart-

 // Map the MessageBoxW function to DisplayMessage.'

 [DllImport("user32", ExactSpelling = true,

 CharSet=CharSet.Unicode, EntryPoint = "MessageBoxW")]

 public static extern int DisplayMessage(int hWnd, String pText,

 String pCaption, int uType);

 public static int Main(string[] args)

 {

 String pText = "Hello World!";

 String pCaption = "PInvoke Test";

 // This really calls MessageBoxW()....

 DisplayMessage(0, pText, pCaption, 0);

 return 0;

 }

}
SOURCE
CODE

The PInvokeExample application is included under the Chapter
12 subdirectory.

Understanding .NET to COM Interoperability

Next is an examination of how managed code can use unmanaged COM types. As you
begin to build .NET solutions, your fancy new assemblies will probably like to use the
logic in existing COM servers. To do so, there must be some intervening layer that
correctly exposes COM types as .NET equivalents. In the best of all possible worlds, the
mapping process would be extremely transparent, thus allowing the .NET type to treat the
COM type as one of its own.
The black box to which I am referring to is termed the RCW (Runtime Callable Wrapper).
The RCW can be understood as a proxy to the real COM class (coclass). Every coclass
accessed by a .NET client requires a corresponding RCW. Thus, if you have a
single .NET application that uses three COM coclasses, you end up with three distinct
RCWs that map .NET calls into COM requests. Figure 12-1 illustrates the big picture.

Figure 12-1: RCW functions as proxies to the coclass

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-680 I ♡ Flyheart-

Also be aware that there is a single RCW per COM object, regardless how many discrete
interfaces the .NET client has obtained from a given COM class. Using this technique, the
RCW can maintain the correct COM identity (and reference count) of the COM type.

The good news is that the RCW is generated automatically using a tool named tlbimp.exe
(type library importer). The other bit of good news is that legacy COM classes do not
require any modifications to be consumed by a .NET-aware language. The intervening
RCW takes care of the internal work. I will explain how this is achieved by formalizing the
responsibilities of the RCW.

Exposing COM Types as .NET Equivalents

The RCW is in charge of exposing COM data types as their managed equivalents. As a
simple example, assume you have a COM interface method defined in IDL, as shown
here:

// COM IDL method definition.

HRESULT DisplayThisString([in] BSTR msg);

The RCW exposes this method to a .NET client as the following:

// C# mapping of COM IDL method.

void DisplayThisString(String msg);

Most COM data types (including all of the [oleautomation] compatible data types) have a
corresponding .NET equivalent. To help you gain your bearings, Table 12-4 documents
the mapping between COM (IDL) data types and .NET data types (including the
corresponding C# alias).

Also be aware that if you have an IDL pointer definition (e.g., int* rather than int), it will
map to the same base class and C# alias (i.e., System.Int32 / int). Later in this chapter,
when you build your ATL COM server, you will have a chance to see conversion of more
interesting COM types such as SAFEARRAYs and COM enums.

Managing a Coclass's Reference Count

Another important duty of the RCW is to manage the reference count of the underlying
coclass. The COM reference-counting scheme is a joint venture between coclass and
client and revolves around the proper use of AddRef() and Release() calls. COM classes
self-destruct when they detect that they have no outstanding references.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-681 I ♡ Flyheart-

Table 12-4: Mapping Intrinsic COM Types to .NET Types

COM (IDL)
DATA TYPE

.NET DATA TYPE C# ALIAS

char, boolean,
small

System.SByte sbyte

wchar_t, short System.Int16 short

long, int System.Int32 int

hyper System.Int64 long

unsigned char,
byte

System.Byte byte

unsigned short System.UInt16 ushort

unsigned long,
unsigned int

System.UInt32 uint

unsigned hyper System.UInt64 ulong

single System.Single float

double System.Double double

VARIANT_BOOL n/a bool

HRESULT System.Int32 int

BSTR System.String string

LPSTR or char * System.String string

LPWSTR or

wchar_t * System.String string

VARIANT System.Object object

DECIMAL System.Decimal n/a

DATE System.DateTime n/a

GUID System.Guid n/a

CURRENCY System.Decimal n/a

IUnknown * System.Object object

IDispatch * System.Object object

However, .NET types do not use the COM reference-counting scheme, and therefore
a .NET client should not be forced to call Release() on the COM types it uses. To keep
each participant happy, the RCW caches all interface references internally and triggers

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-682 I ♡ Flyheart-

the final release when the type is no longer used by the .NET client. The bottom line is
that .NET clients never explicitly call AddRef(), Release() or QueryInterface().

Hiding Low-Level COM Interfaces

The final role of the RCW is to consume a number of select COM interfaces. Because the
RCW tries to do everything it can to fool the .NET client into thinking it is using a .NET
type, the RCW must hide various low-level COM interfaces from view. In many respects,
the RCW takes the same approach as Visual Basic 6.0.

For example, when you build a COM class that supports IConnectionPointContainer (and
maintains a subobject or two supporting IConnectionPoint), the coclass in question is able
to fire events back to the COM client. With C++ COM clients you would have to take a
number of steps to establish a connection with the object (e.g., build a sink that
implements the [source] interface, obtain an IConnectionPoint reference, call Advise(),
and so forth).

Visual Basic 6.0 hides this entire process from view using the WithEvents keyword. In the
same vein, the RCW also hides such COM-goo from the .NET client. Because the RCW
hides these low-level interfaces, the external .NET client only sees (and interacts with)
the set of custom interfaces implemented by the coclass. Table 12-5 outlines some of
these hidden COM interfaces.

Table 12-5: Hidden COM Interfaces

HIDDEN COM INTERFACE MEANING IN LIFE

IClassFactory Provides a language- and location-neutral
way to activate a COM class.

IConnectionPointContainer

IConnectionPoint

Enable a coclass to send events back to an
interested client.

IDispatch

IDispatchEx

IProvideClassInfo

Used to facilitate late binding to a coclass.

IEnumVariant COM classes can expose collections of
internal types. This interface facilitates this
possibility.

IErrorInfo

ISupportErrorInfo

ICreateErrorInfo

Enable COM clients and coclasses to send
and respond to error objects.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-683 I ♡ Flyheart-

Table 12-5: Hidden COM Interfaces

HIDDEN COM INTERFACE MEANING IN LIFE

IUnknown Manages the reference count and allows
clients to obtain a discrete interface from
the coclass

At this point you have a solid understanding of the role of the Runtime Callable Wrapper. I
will now begin examining the programmatic details of .NET to COM communications with
a very simple example using Visual Basic 6.0 (to build the COM server) and C# (to build
the .NET client). Later in this chapter I will develop a more exotic (and complex) COM
server using ATL 3.0.

Building a Painfully Simple Visual Basic COM Server
To wet your feet with the topic of .NET to COM interoperability using VB 6.0 let's build an
appropriately named COM server (PainfullySimpleVBCOMServer). Begin by opening up
Visual Basic 6.0 and selecting an ActiveX DLL project workspace (Figure 12-2) from the
New Project dialog box. (If you are coming from an ATL background, understand that this
workspace type is just another name for an in-process COM server.)

Figure 12-2: Building a VB COM server
Using the Properties Window, you can take the plunge and rename the project to
PainfullySimpleVBCOMServer (or perhaps something shorter) and rename your initial
class to CoCalc. This information will be used to build the coclass's ProgID using the
standard ServerName.ObjectName notation.

Next, open the code window for the VB 6.0 CoCalc class and add the following trivial
function definition:

' Recall! This is really a method of the

' default interface: _CoCalc!

'

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

 Add = x + y

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-684 I ♡ Flyheart-

End Function
Finally, save your workspace and compile the COM server using the File|Make. . . menu
option (which automatically registers the server into the system registry). Figure 12-3
shows the resulting ProgID.

Figure 12-3: The COM type's ProgID

The end result is a new COM server containing a single coclass (CoCalc) that implements
a single [default] interface named _CoCalc. (In the world of VB COM, you always receive
an initial interface for free.)
Before you shut down this VB project, be sure to select the Project | Properties menu
option and set Binary Compatibility for this COM server (Figure 12-4). This informs VB to
stop generating new GUIDs with each compile.

Figure 12-4: Stopping VB GUID generation

SOURCE
CODE

The PainfullySimpleVBCOMServer project is included under
the Chapter 12 subdirectory.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-685 I ♡ Flyheart-

Observing the Generated IDL for Your VB COM Server

Open the OLE/COM Object Viewer and hunt down the ProgID of your VB COM server
(Figure 12-5). You should see the name of your default custom interface (CoCalc) as well
as a number of other COM interfaces implemented by VB on your behalf.

Figure 12-5: Hunting down the coclass using the OLE/COM object viewer

To view the underlying IDL, right-click the coclass and select the View Type Information
menu option. If you examine the IDL file's library statement, you can see the relevant
code that configures the [default] interface, as shown here:

[odl, uuid(DDA5B80E-8DA4-45DF-B8FF-B6BFFFBCD9E6),

version(1.0), hidden, dual, nonextensible, oleautomation]

interface _CoCalc : IDispatch

{

 [id(0x60030000)]

 HRESULT Add([in] short x, [in] short y, [out, retval] short*);

};

[uuid(D1D1660C-88D9-4C40-961A-365121C43AF1), version(1.0)]

coclass CoCalc

{

 [default] interface _CoCalc;

};

As you can see, Visual Basic always configures your custom interfaces as [dual]
interfaces. This enables your coclass to be manipulated by various scripting languages
via the IDispatch interface. With this, the VB COM server is complete! Now that you have
a simple COM server, it's time to test it with an equally simple VB COM client.

Building a Painfully Simple COM Client

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-686 I ♡ Flyheart-

Open VB once again, but this time select a Standard EXE project workspace. Next, add a
reference to the PainfullySimpleVBCOMServer using the Project|References menu
selection and find the name of your classic COM server (Figure 12-6).

Figure 12-6: Setting a reference to the COM server

As for the GUI front end, keep things simple. Place two TextBox objects, a Button and
some descriptive labels, onto the main Form. Figure 12-7 shows one possible design.

Figure 12-7: The painfully simple GUI

The only code you need to write is in response to the Button's Click event. Create an
instance of your coclass and send in the values in each text box to the Add() method. For
simplicity, place the result in a VB message box, as shown here:

Private Sub btnAdd_Click()

 Dim c As New CoCalc

 MsgBox c.Add(txtNumb1, txtNumb2)

End Sub

At this point you have a COM client and COM server chatting in harmony. Now build a C#
client that uses this same classic COM binary.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-687 I ♡ Flyheart-

SOURCE
CODE

The PainfullySimpleVBCOMClient project is included under the
Chapter 12 subdirectory.

Importing the Type Library

The first step you must take before you can call classic COM servers from managed code
is build a proxy class that contains the necessary information used to create the RCW.
The tool responsible for building the proxy is named tlbimp.exe (type library importer).

To run this utility at the command line, begin by navigating to the location of the COM
binary from a Command Prompt window. Next, specify the name of the COM server and
the name of the resulting RCW assembly (using the /out: flag). Here is the command:

tlbimp PainfullySimpleVBCOMServer.dll /out:SimpleAssembly.dll
At this point, you can open the generated assembly using ILDasm.exe (Figure 12-8). The
details of what the underlying IL actually boils down to are discussed later in this chapter.
For the time being, just notice that the [default] _CoCalc interface as well as the CoCalc
coclass have each been mapped as.NET equivalents:

Figure 12-8: Types in the generated assembly

Referencing the Assembly
When a .NET binary makes calls to the generated proxy, the request is forwarded to the
associated COM class. To illustrate how simple the process can be on the surface, build
a C# COM client (CSharpCalcClient). Begin by creating a new C# Console Application.
Once you have your new project workspace, set a reference to the generated assembly
using the Add Reference dialog box. If you examine your Solution Explorer window, you

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-688 I ♡ Flyheart-

will see that the corresponding reference is now listed as part of your C# project (Figure
12-9).

Figure 12-9: Managed code must reference the generated assembly.

Early Binding to the CoCalc COM Class

Because you have added a direct reference to the generated assembly, you can use
early binding. In the following code, notice that as far as the C# client is concerned,
CoCalc is nothing more than a .NET type contained in a valid assembly. In reality, the
RCW is intercepting calls and forwarding them to the coclass in question:

namespace CSharpCalcClient

{

 using System;

 // You need to reference the namespace containing the proxy.

 using SimpleAssembly;

 public class CalcClient

 {

 public static int Main(string[] args)

 {

 // Make the calc!

 CoCalc c = new CoCalc();

 // Add some numbers!

 Console.WriteLine("30 + 99 is: " + c.Add(30, 99));

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-689 I ♡ Flyheart-

 return 0;

 }

 }

}

As you can see, the conversion process exposes all members of a coclass's [default]
interface directly from an object instance. Should you need to explicitly reference the
underlying _CoCalc interface, you could write the following (logically equivalent) code:

public class CalcClient

{

 public static int Main(string[] args)

 {

 // Make the calc!

 CoCalc c = new CoCalc();

 // Explicitly obtain the [default] interface.

 _CoCalc icalc = c;

 Console.WriteLine(icalc.Add(9, 80));

 return 0;

 }

}

SOURCE
CODE

The CSharpCalcClient project is included under the Chapter 12
subdirectory.

Early Binding Using Visual Studio.NET

It is worth noting that the VS.NET IDE allows you to select a classic COM server using the
COM tab of the Add Reference dialog box (Figure 12-10).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-690 I ♡ Flyheart-

Figure 12-10: Referencing COM types using VS.NET

This automatically invokes the tlbimp.exe utility on your behalf and saves the new
assembly under your Debug (or Release) folder. I assume that you will use the Add
Reference dialog box during the remainder of this chapter.

Late Binding to the CoCalc Coclass

As you recall from Chapter 7, the System.Reflection namespace provides a way for you
to programmatically inspect the types contained in a given assembly at runtime. In COM,
the same sort of functionality is supported through the use of a set of standard interfaces
(e.g., ITypeLib, ITypeInfo, and so on). When a client binds to a member at runtime (rather
than compile time), the client is said to exercise late binding.

By and large, you should always prefer the early binding technique just examined. There
are times, however, when you must use late binding to a coclass. For example, some
legacy COM servers may have been constructed in such a way that they provide no type
information whatsoever. If this is the case, it should be clear that you cannot run the
tlbimp.exe utility in the first place! For these rare occurrences, you can access classic
COM types using .NET reflection services.

The process of late binding begins with a client obtaining the IDispatch interface from a
given coclass. This standard COM interface defines a total of four methods, only two of
which need to concern you at the moment. First, you have GetIDsOfNames(). This
method allows a late bound client to obtain the numerical value (called the DISPID) used
to identify the method it is attempting to invoke.

In COM IDL, a member's DISPID is assigned using the [id] attribute. If you examine the
IDL code generated by Visual Basic (using the OLE/COM Object Viewer), you will see
that the DISPID of the Add() method has been assigned a DISPID such as the following:

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-691 I ♡ Flyheart-

[id(0x60030000)] HRESULT Add([in] short x, [in] short y, [out, retval] short*);

This is the value that GetIDsOfNames() returns to the late bound client. Once the client
obtains this value, it makes a call to the next method of interest, Invoke(). This method of
IDispatch takes a number of arguments, one of which is the DISPID obtained using
GetIDsOfNames().

In addition, the Invoke() method takes an array of COM VARIANT types that represent
the parameters passed to the function. In the case of the Add() method, this array
contains two shorts (of some value). The final argument of Invoke() is another VARIANT
that holds the return value of the method invocation (again, a short).

Although a .NET client using late binding does not directly use the IDispatch interface, the
same general functionality comes through using the System.Reflection namespace. To
illustrate, here is another C# client that uses late binding to trigger the Add() logic. Notice
that this application does not make reference to the assembly in any way and therefore
does not require the use of the tlbimp.exe utility.

using System;

using System.Reflection;

public class LateBinder

{

 public static int Main(string[] args)

 {

 // First get IDispatch reference from coclass.

 Type calcObj =

 Type.GetTypeFromProgID("PainfullySimpleVBCOMServer.CoCalc");

 object calcDisp = Activator.CreateInstance(calcObj);

 // Make the array of args.

 object[] addArgs = { 100, 34 };

 // Invoke the Add() method and obtain summation.

 object sum = null;

 sum = calcObj.InvokeMember("Add", BindingFlags.InvokeMethod,

 null, calcDisp, addArgs);

 // Display result.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-692 I ♡ Flyheart-

 Console.WriteLine("Late bound adding:\n100 + 24 is: {0}", sum);

 return 0;

 }

}
SOURCE
CODE

The CSharpLateBoundCalcClient application is included under
the Chapter 12 subdirectory.

Examining the Generated Assembly

Now that you understand how to activate a COM type from managed code, take a look at
some specific details. To begin, load the assembly into ILDasm.exe and open the
manifest. Like in any assembly, you will first notice an external reference to mscorlib.dll
(the core .NET class library), followed by the necessary version information.

The real gems of information appear as a number of .NET attributes. When you examine
the manifest, you will find references to the GuidAttribute and
ImportedFromTypeLibAttribute types. If you look at the value of
ImportedFromTypeLibAttribute, you will see the hard-coded path to the classic COM
server (Figure 12-11).

Figure 12-11: The ImportedFromTypeLib attribute marks the path to the COM server.

This illustrates a very important point. If the COM server is relocated (or renamed) on the
target machine, you need to regenerate the assembly. Figure 12-12 illustrates what you
see if you examine the value assigned to GuidAttribute.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-693 I ♡ Flyheart-

Figure 12-12: GuidAttribute contains the GUID for various COM items.

This value is the GUID Visual Basic assigned to the type library (LIBID). If you open the
OLE/COM Object Viewer and check out the assigned LIBID, you will find an exact match
(Figure 12-13).

Figure 12-13: Verifying the GUID

Next you have the CoCalc class type itself. In addition to the Add() method, the CoCalc
has to be supplied with a default constructor. This should make sense, given that the
RCW is attempting to expose the raw coclass as a .NET type, and thus you need a
constructor to active it. Also, if you examine the definition of the CoCalc type using
ILDasm.exe, you will see various IL instructions marking the CoCalc's base class
(System.Object) and implemented interfaces (_CoCalc), as shown here:

.class public auto ansi import CoCalc

extends [mscorlib] System.Object

implements SimpleAssembly._CoCalc

{

...

} // end of class CoCalc

To further explore the COM to .NET type conversion, here is an updated Main() method
that interrogates your COM type using members of System.Object and System.Type:

public static int Main(string[] args)

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-694 I ♡ Flyheart-

{

 // Make the calc!

 CoCalc c = new CoCalc();

 // Your COM type now supports System.Object.ToString().

 Console.WriteLine("-> CoCalc to string: {0}", c.ToString());

 // Extract out some type info.

 Type t = c.GetType();

 Console.WriteLine("-> COM class? : {0}", t.IsCOMObject);

 Console.WriteLine("-> Full name? : {0}", t.FullName);

 Console.WriteLine("-> CLSID? : {0}", t.GUID.ToString());

 Console.WriteLine("-> Is it a interface? : {0}", t.IsInterface);

 return 0;

}
Figure 12-14 shows the output.

Figure 12-14: Interrogating your COM type

Great! At this point you looked at a (painfully) simple COM server and examined the basic
process used to allow .NET types to make calls to unmanaged coclasses. The next step
is to move deeper into this conversion process and come to understand the specific rules
used by the tlbimp.exe conversion utility.

Building an ATL Test Server
So much for our warm up exercise. To really understand the conversion process, you will
now focus on building an ATL COM server. This will give you a chance to work with IDL in
the raw. You will have an intimate view of how COM SAFEARRAYs, BSTRs, enums,
coclasses, and interfaces map to corresponding .NET equivalents. Now, understand that
this book is not an ATL tutorial. Therefore, the following section walks through the
step-by-step process of building an ATL COM server. If you are interested in further
information on ATL (or classic COM), I assume you will check out other resources
(perhaps even my own offering: Developer's Workshop to COM and ATL 3.0).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-695 I ♡ Flyheart-

To begin, open Visual Studio 6.0 and select a new ATL project workspace named
ClassicATLCOMServer. (While you could use ATL 4.0 and Visual Studio.NET, let's stick
with ATL 3.0, as it is probably the more familiar of the two versions.) Next, open the ATL
Object Wizard (using the Insert menu) and add a new Simple Object name CoCar. Using
the Names tab, rename the initial [default] interface to ICar (Figure 12-15).

Figure 12-15: Naming your new ATL coclass

Before you select OK, access the Attributes tab and select support for ISupportErrorInfo
as well as for COM connection points, because the coclass you are building will be able to
send COM errors and fire events back to the .NET client (Figure 12-16).

Figure 12-16: Adding support for COM errors and COM events

Finally, be sure you select a [dual] interface (rather than the default Custom). All other
settings can be left at their default. Go ahead and click OK and perform your first compile.

Populating the [default] COM Interface

Next you need to add some initial members to the [default] ICar interface. Using the Add
Method wizard (accessed by right-clicking the COM interface icon from Class View), add
two methods. The first method, SpeedUp(), takes a single input parameter of type int
(Figure 12-17).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-696 I ♡ Flyheart-

Figure 12-17: Defining parameters using IDL attributes

The second method, named GetCurSpeed(),returns an int pointer by way of an [out,
retval] parameter. Once you have added each member, your initial IDL interface definition
should look like this:

[object, uuid(A8E01A32-0300-402A-B1EC-ADCD2DC526B4), dual,

 helpstring("ICar Interface"), pointer_default(unique)]

interface ICar : IDispatch

{

 [id(1), helpstring("method SpeedUp")]

 HRESULT SpeedUp([in] int delta);

 [id(2), helpstring("method GetCurSpeed")]

 HRESULT GetCurSpeed([out, retval] int* currSp);

};

Implementing this logic in the supporting coclass is simple. First, add a private int data
type (named curSpeed) to your new CoCar class, initialize it to 0 in the constructor, and
implement each method as shown here:

STDMETHODIMP CCoCar::SpeedUp(int delta)

{

 // Add delta to current speed.

 curSpeed += delta;

 return S_OK;

}

STDMETHODIMP CCoCar::GetCurSpeed(int *currSp)

{

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-697 I ♡ Flyheart-

 // Return current speed.

 *currSp = curSpeed;

 return S_OK;

}

Just to be sure you have not injected any bugs, go ahead and recompile your server.

Firing a COM Event

Now, you will equip your CoCar coclass to raise a COM event. The first step is to add a
method to your outbound interface that represents the methods the coclass will call on the
client sink (recall that outbound interfaces are defined by the COM server but
implemented by the client). In ATL, the outbound interface is listed at the top of Class
View and is marked with a "_" prefix and "Events" suffix. Right-click this interface and
access the New Method Wizard. Add a single event named Exploded, which sends the
client a BSTR parameter (Figure 12-18).

Figure 12-18: Populating the [source] interface

Here is the resulting IDL code:

[uuid(E88DA278-AD04-407F-9BBB-D8C00AFE7984),

helpstring("_ICarEvents Interface")]

dispinterface _ICarEvents

{

 properties:

 methods:

 [id(1), helpstring("method Exploded")]

 HRESULT Exploded([in] BSTR deadMsg);

}

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-698 I ♡ Flyheart-

Once you have added this event to your outbound interface, recompile the project to
refresh the COM type information. Next you need to build an event proxy, which is used
by the ATL framework to fire the Exploded event to any connected client. To do so,
right-click the CoCar type from the Class View window and select Implement Connection
Point. In the resulting dialog box, check the name of your event interface (_CarEvents)
and click OK.

This tool responds by updating your CoCar in a number of ways. First, you will find that
the CONNECTION_MAP (listed in the header file of your CoCar) has been updated with a
new entry. It does not really matter what that entry is doing, but you need to be aware that
this tool has a bug that can cause this map to be updated incorrectly. At times, the
parameter to the CONNECTION_POINT_ENTRY macro is generated without the
required D prefix. Here is the repaired connection map (if you did not get the bug, don't
worry about it; just keep coding):

BEGIN_CONNECTION_POINT_MAP(CCoCar)

 // Oops! Wizard forgot D prefix!

 // CONNECTION_POINT_ENTRY(IID__ICarEvents) // Bad...

 CONNECTION_POINT_ENTRY(DIID__ICarEvents) // Good...

END_CONNECTION_POINT_MAP()

The second major update this tool performs is adding a new class in your CoCar class's
inheritance chain (CProxy_ICarEvents). This class implements a method named
Fire_Exploded() that hides the work of calling the list of currently connected clients.

To fire the Exploded event, add two new member variables named maxSpeed and dead.
(Don't forget to assign initial values in the constructor.) The first (integer) data type is used
to represent the maximum speed of the COM car. The second (Boolean) data type is
used to represent whether the car has already exploded. Once these members have
been added to your header file, update SpeedUp() with the following logic:

STDMETHODIMP CCoCar::SpeedUp(int delta)

{

 // Add delta and check for event condition.

 curSpeed += delta;

 // If I am not currently dead, and I went above the max speed...

 if(curSpeed >= maxSpeed && !dead)

 {

 // Fire event and set the'dead' Boolean.

 CComBSTR msg("You are toast...");

 Fire_Exploded(msg.Detach());

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-699 I ♡ Flyheart-

 curSpeed = maxSpeed;

 dead = true;

 }

 return S_OK;

}

Throwing a COM Error

Recall that when you created your ATL CoCar, you added support for the COM error
protocol. For your current purposes, you do not need to examine the low-level details of
COM error objects. All you need to know is that when you wish to report an error using the
ATL framework, you call the inherited Error() method. To illustrate, update the
implementation of GetCurSpeed() to return a COM error object if the user attempts to
obtain the current speed on a car that is already dead:

STDMETHODIMP CCoCar::GetCurSpeed(int *currSp)

{

 // Send error if dead.

 if(!dead)

 {

 *currSp = curSpeed;

 return S_OK;

 }

 else

 {

 *currSp = 0;

 Error("Sorry, this car has met it's maker");

 return E_FAIL;

 }

}

At this point you have created a COM class that supports a single [default] interface. Also,
this coclass can send out COM error information and errors to the connected clients. Go
ahead and compile once again to ensure that you have no typos.

Exposing an Internal Subobject (and Using SAFEARRAYs)

You will add two final bits of functionality to your ATL COM server. The first is exposing an
internal subobject from the CoCar type named CoEngine. To begin, insert a new ATL

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-700 I ♡ Flyheart-

Simple Object using the ATL Object Wizard, change the name of the [default] interface to
IEngine, and set the interface type to be [dual] from the Attributes tab.

Next, use the Add Method Wizard to add a single method to the IEngine interface named
GetCylinders(). This method returns a COM SAFEARRAY of BSTRs that represents the
pet names of each cylinder placed inside the engine. (OK, I admit most of us don't give
pet names to our cylinders, but this illustrates returning an array of strings to
a .NET-aware client.) Here is the IDL:

// The inner engine interface.

[object, uuid(23DT GetCyl2BB87-A8F8-4301-BED5-9D0CA77AE403), dual,

helpstring("IEngine Interface"), pointer_default(unique)]

interface IEngine : IDispatch

{

 [id(1), helpstring("method GetCylinders")]

 HRESUL GetCylinders([out, retval] VARIANT* arCylinders);

};

And here is the implementation for an engine supporting four cylinders:

STDMETHODIMP CCoEngine::GetCylinders(VARIANT *arCylinders)

{

 // Init and set the type of variant.

 VariantInit(arCylinders);

 arCylinders->vt = VT_ARRAY | VT_BSTR; // An array of strings.

 // Create the array.

 SAFEARRAY *pSA;

 SAFEARRAYBOUND bounds = {4, 0};

 pSA = SafeArrayCreate(VT_BSTR, 1, &bounds);

 // Fill the array.

 BSTR *theStrings;

 SafeArrayAccessData(pSA, (void**)&theStrings);

 theStrings[0] = SysAllocString(L"Grinder");

 theStrings[1] = SysAllocString(L"Oily");

 theStrings[2] = SysAllocString(L"Thumper");

 theStrings[3] = SysAllocString(L"Crusher");

 SafeArrayUnaccessData(pSA);

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-701 I ♡ Flyheart-

 // Return the array.

 arCylinders->parray = pSA;

 return S_OK;

}

Now, if you have never worked with COM SAFEARRAYs in raw C++ before, you are most
likely horrified by the previous code block (yet another case for using System.Array). The
basic idea of a SAFEARRAY is that it is a self-describing array of [oleautomation]
compatible types and maintains the upper and lower bounds of the items it contains.
SAFEARRAY types are created, filled, and manipulated using a set of COM library
functions (as shown in the previous code). Again, you have no need to deal with these
details here. All that matters at this point is that the GetCylinders() method allows the
outside world to obtain an array of COM strings (BSTRs).

The next step is to allow the COM client to obtain a valid IEngine interface reference from
a CoCar type. To do so, you use standard COM containment. The outer CoCar provides
access to the inner CoEngine using the following addition method of the ICar interface:

// Recall! Returning an interface pointer requires double indirection.

// Also be sure the definition of IEngine is placed above the ICar definition

// so the MIDL complier can 'see' the interface definition.

interface ICar : IDispatch

{

 ...

 [id(3), helpstring("method GetEngine")]

 HRESULT GetEngine([out, retval] IEngine** pEngine);

};

The implementation of GetEngine() uses some ATL types, so if you are not familiar with
these items, just understand that the static CComObject<>:: CreateInstance() method is
what creates the CoEngine. After this point, query for the IEngine interface and return it to
the client, as shown here:

STDMETHODIMP CCoCar::GetEngine(IEngine **pEngine)

{

 // Create a CoEngine and then return the IEngine interface to the client.

 CComObject<CCoEngine> *pEng;

 CComObject<CCoEngine>::CreateInstance(&pEng);

 pEng->QueryInterface(IID_IEngine, (void**)pEngine);

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-702 I ♡ Flyheart-

 return S_OK;

}

If you really want to address the finer details of this contained type, you can add the
noncreatable attribute to the CoEngine IDL definition. This attribute is used by numerous
languages (such as Visual Basic 6.0) to prevent the end user from New-ing the item (if
this is attempted, a compiler error is issued):

[uuid(32C07E17-F966-4EFD-B301-9729FE2D60B5),

helpstring("CoEngine Class"), noncreatable]

coclass CoEngine

{

 [default] interface IEngine;

};

Also, update the ATL OBJECT_MAP to mark CoEngine as a noncreatable type, which
prevents its direct creation by an external client, as shown here:

BEGIN_OBJECT_MAP(ObjectMap)

 OBJECT_ENTRY(CLSID_CoCar, CCoCar)

 OBJECT_ENTRY_NON_CREATEABLE(CCoEngine)

END_OBJECT_MAP()

The Final Step: Configuring an IDL Enumeration

There is one final step before you can create a proxy for this COM server. Open your
project's IDL file and define a single COM enumeration named CarType directly after the
import statements at the top of the file, as shown here:

// This COM enum is used to ID the car type.

typedef enum CarType {Jetta, BMW, Ford, Colt} CarType;

To allow the outside world to obtain a CarType enum, add one final method to the ICar
interface named GetCarType(), as shown here:

interface ICar : IDispatch

{

 [id(1), helpstring("method SpeedUp")]

 HRESULT SpeedUp([in] int delta);

 [id(2), helpstring("method GetCurSpeed")]

 HRESULT GetCurSpeed([out, retval] int* currSp);

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-703 I ♡ Flyheart-

 [id(3), helpstring("method GetEngine")]

 HRESULT GetEngine([out, retval] IEngine** pEngine);

 [id(4), helpstring("method GetCarType")]

 HRESULT GetCarType([out, retval] CarType* ct);

};

The implementation of GetCarType() creates and sets the value of the [out, retval]
CarType enumeration for use by the COM client, as shown here:

STDMETHODIMP CCoCar::GetCarType(CarType *ct)

{

 *ct = Colt; // Pick your favorite car....

 return S_OK;

}
I bet you did not intend to learn about ATL in the course of a C# book! In my defense, the
topic of this chapter is all about COM and .NET interoperability. The reason you took the
time to build a more complex server is because that programming is complex! The sorts
of COM servers you will want to use from a .NET client are bound to do far more than add
some numbers together. Here you have a COM server that supports error objects,
connection points, COM containment, enumerations, and some core COM data types
such as SAFEARRAY and BSTR.

Now that you have fully created your ATL COM server, you can build a proxy and check
out exactly how these exotic COM types are mapped to .NET. Before doing that, however,
look at the CoCar in action from the viewpoint of a Visual Basic 6.0 COM client.

SOURCE
CODE

The ClassicATLCOMServer project is included under the
Chapter 12 subdirectory.

Examining a Visual Basic 6.0 Test Client
Before we build a managed client, let's create a classic COM client using VB. I will just
cover the highlights here. First of all, Figure 12-19 shows the client application in action.

Figure 12-19: The VB 6.0 COM client

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-704 I ♡ Flyheart-

When the Form is loaded, create a new instance of the Car type (declared using the
WithEvents keyword to respond to the incoming Exploded event). The Exploded event
handler does little more than display the message sent by the doomed automobile, as
shown here:

Private Sub myCar_Exploded(ByVal deadMsg As String)

 MsgBox deadMsg, , "Message from CoCar!"

End Sub

The Speed Up button does just that. Recall that when you max out the speed of the car,
the Exploded event is sent by the CoCar. Also recall that when the user attempts to speed
up a previously exploded car, you are sent a COM error object (which is caught in VB
using the On Error Goto construct), as shown here:

Private Sub btnSpeedUp_Click()

On Error GoTo OOPS

 myCar.SpeedUp 50

 Label2.Caption = "Current Speed: " & myCar.GetCurSpeed

Exit Sub

OOPS:

 MsgBox Err.Description, , "Error from car!"

Resume Next

End Sub

Finally, the Get all Cylinders button obtains the IEngine interface from the CoCar, and
calls GetCylinders(), as shown here:

Private Sub btnGetCylinders_Click()

 ' First we need to get the engine.

 Dim q As CoEngine

 Set q = myCar.GetEngine

 ' Now get cylinders.

 Dim strs As Variant

 strs = q.GetCylinders

 ' Now get each name from SAFEARRAY and place in list box.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-705 I ♡ Flyheart-

 Dim upper As Integer

 Dim i As Integer

 upper = UBound(strs)

 For i = 0 To upper

 lstCylinderList.AddItem strs(i)

 Next i

End Sub

SOURCE
CODE

The VB6ATL project is included under the Chapter 12
subdirectory.

Building the Assembly (and Examining the Conversion

Process)

Open a command prompt window and run the tlbimp.exe utility to create the new
assembly representing the ClassicATLCOMServer.dll, as shown here:

tlbimp classicatlcomserver.dll /out:AtlServerAssembly.dll
Now, load this assembly into ILDasm.exe and check out the generated types (Figure
12-20). As you can see, the CarType, CoCar, and CoEngine COM types have all been
mapped to .NET equivalents. (The generated event helpers will be examined soon.)

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-706 I ♡ Flyheart-

Figure 12-20: The managed ATL CoCar

I will discuss the details of this conversion, beginning with the COM type library.

Type Library Conversion

As you have already seen, every COM type (enum, coclass, or custom interface) listed in
a COM server's library statement is used to populate the generated .NET namespace.

One additional point of interest is that the [version] attribute of the type library is used to
designate the version of the assembly. Thus, if you update your IDL version attribute as
shown here:

[uuid(69D8B2E2-4CC1-4414-9757-49C53620FF0C), version(9.7),

 helpstring("ClassicATLCOMServer 1.0 Type Library")]

library CLASSICATLCOMSERVERLib

{

 // All your stuff...

}

you find the following listing in the manifest:

.assembly AtlServerAssembly

{

...

 .ver 9:7:0:0

}

COM Interface Conversion

When a COM interface is represented as a .NET type, it is qualified using various
attributes from the System.Runtime.InteropServices namespace. First is the
GuidAttribute type, which is used in this case to document the interface's IID, as specified
by the [uuid] attribute in the IDL file.
Next is the InterfaceTypeAttribute type, which is used to catalog how the interface was
originally defined in IDL syntax (custom, dual, or dispinterface). This attribute can be
assigned any value from the ComInterfaceType enumeration (Table 12-6).

Table 12-6: COM Interface Types

COMINTERFACETYPE
MEMBER NAME

MEANING IN LIFE

InterfaceIsDual Indicates that the interface should be exposed

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-707 I ♡ Flyheart-

Table 12-6: COM Interface Types

COMINTERFACETYPE
MEMBER NAME

MEANING IN LIFE

to COM as a dual interface.

InterfaceIsIDispatch Indicates that an interface should be exposed as
a dispinterface.

InterfaceIsIUnknown Indicates that an interface should be exposed as
an IUnknown-derived interface, as opposed to a
dispinterface or a dual interface.

Oddly enough, if the proxy is representing a dual interface (as in this case), this attribute
is omitted. Instead, dual interfaces are marked using the TypeLibTypeAttribute, which is
used to document various aspects of the [dual] interface (e.g., licensed, hidden,
appobject, and so on).

IDL Parameter Attribute Conversion

In classic COM, parameters are configured using a set of IDL attributes. These attributes
are used to clearly mark the direction of travel of a given argument and to determine
proper memory management. Your ATL coclasses used the [in] and [out, retval] IDL
attributes. Additionally, a COM method parameter can be marked with the [out] or [in, out]
attribute. To illustrate each possibility, assume you have defined the following IParams
interface in IDL:

interface IParams : IDispatch

{

 // [in] params are allocated by the caller and sent to the method.

 [id(1)] HRESULT OnlyInParams([in] int x, [in] int y);

 // [out] params are filled by the callee.

 [id(2)] HRESULT OnlyOutParams([out] int* x, [out] int* y);

 // [retval] types map an output param to the physical return value

 // of the function (for example, VB would call this as"ans = Retval()").

 [id(3)] HRESULT Retval([out, retval] int* answer);

 // [in, out] params are passed into the callee and can be changed

 // during the process of the method invocation.

 [id(4)] HRESULT InAndOut([in, out] int* byRefParam);

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-708 I ♡ Flyheart-

};
Once you run this interface definition through the tlbimp.exe utility, you would find that
these items are mapped to the familiar C# out and ref keywords. (See chapter 2.) Figure
12-21 shows how your IParams interface is seen using the VS.NET Object Browser.

Figure 12-21: The managed IParams interface

Consider the following IDL to C# parameter conversions (Table 12-7).

Table 12-7: Mapping IDL Parameter Attributes to C# Keywords

IDL PARAMETER
ATTRIBUTE

C# PARAMETER
KEYWORD

MEANING IN LIFE

[in] No keyword. This is
the assumed
direction of travel.

Called function
receives a copy of
the data.

[out] out Value is assigned in
the called function
and returned to the
caller.

[in, out] ref Value is assigned by
the caller, but can
be reallocated by
the called function.

[out, retval] n/a These types
become the
physically returned
value of the function.
If no [out, retval] is
formally declared, it
is converted to a
void return type.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-709 I ♡ Flyheart-

Interface Hierarchy Conversion

Although you did not define a COM interface hierarchy in your ATL project, assume for
the sake of argument that you decided to derive a new interface from IEngine named
ITurboEngine. Here is the IDL:

interface ITurboEngine : IEngine

{

 HRESULT PowerBoost();

};
In terms of the conversion process, a derived interface is represented as a union of all
methods defined in the chain of inheritance (Figure 12-22). Thus, if you examine
ITurboEngine using ILDasm.exe, you find that you support not just PowerBoost(), but
GetCylinders() as well. (Also notice that the [implements] tag specifies the name of the
base interface.)

Figure 12-22: Derived interfaces support all members of the base interface(s).

Coclass (and COM Properties) Conversions

As illustrated by the previous VB COM server example, when the assembly is generated
using the tlbimp.exe utility, you receive. NET types for each standalone interface as well
as the coclass itself. Thus, you can exercise new CoCar type using two approaches. First,
you can create a direct instance of the coclass that provides access to each interface
member, as shown here:

// Here, you are really working with the [default] ICar interface.

CoCar viper = new CoCar();

viper.SpeedUp(30);

As an alternative, you can explicitly ask for the [default] interface, as shown here:

// Get ICar explicitly.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-710 I ♡ Flyheart-

CoCar viper = new CoCar();

ICar ic = (ICar)viper;

ic.SpeedUp(30);

In the current ATL example, the CoCar and CoEngine types each implement a single
[default] interface. However, assume you define the following additional interface, which
supports a single COM property (of type BSTR):

interface IDriverInfo : IDispatch

{

 [id(1), propget, helpstring("property DriverName")]

 HRESULT DriverName([out, retval] BSTR *pVal);

 [id(1), propput, helpstring("property DriverName")]

 HRESULT DriverName([in] BSTR newVal);

};

Also assume that the CoCar now implements this new interface (the implementation
simply gets or sets a private BSTR), as shown here:

coclass CoCar

{

 [default] interface ICar;

 interface IDriverInfo;

 [default, source] dispinterface _ICarEvents;

};

Given that CoCar now supports two custom interfaces, you might wonder exactly how this
is represented in terms of managed code. As you might suspect, the managed class
supports each member defined by the supported interfaces. In other words, if you now
create an instance of CoCar, you can call SpeedUp(), GetCurrentSpeed(), GetEngine(),
and GetCarType() as well as manipulate the DriverName property, as shown here:

// Notice we can get access to the property defined by IDriverInfo

// directly from the supporting coclass.

CoCar viper = new CoCar();

viper.DriverName = "Fred";

Console.WriteLine(viper.DriverName);

If you would rather, you can also explicitly access the IDriverInfo interface, as shown
here:

// Get and set the property using IDriverInfo.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-711 I ♡ Flyheart-

IDriverInfo idi = (IDriverInfo)viper;

idi.DriverName = "Fred";

Console.WriteLine("Name of driver is: " + idi.DriverName);
Oddly enough, if you check out the CoCar type using ILDasm.exe, you might be surprised
to find that the CoCar type does not directly define these members (Figure 12-23).

Figure 12-23: Managed classes do not directly define interface members

If you examine the situation a bit more closely, however, you will notice that CoCar
derives from a generated type named __CoCar. This intermediate class type defines the
members of the ICar and IDriverInfo interfaces (Figure 12-24).

Figure 12-24: The intervening type

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-712 I ♡ Flyheart-

When you check out the type metadata, you will find the following derivation of __CoCar
(in addition to a small set of attributes):

.class public auto ansi import __CoCar

 extends [mscorlib]System.Object

 implements CLASSICATLCOMSERVERLib.ICar,

 CLASSICATLCOMSERVERLib.IDriverInfo

{

 // TypeLibTypeAttribute attribute...

 // ComSourceInterfacesAttribute attribute...

 // GuidAttribute attribute...

 // HasDefaultInterfaceAttribute attribute...

} // end of class __CoCar

COM Enumeration Conversions

COM enumerations are mapped to managed types deriving from System.Enum.
Therefore, you can use any of the (very helpful) supported members. Here is an example:

public static int Main(string[] args)

{

 // Begin by making a car.

 CoCar viper = new CoCar();

 // Now get car type.

 CarType t = viper.GetCarType();

 Console.WriteLine("Car type: {0}", t.ToString());

 return 0;

}

Working with the COM SAFEARRAY

Next, examine how the COM SAFEARRAY is represented as managed code. As you
recall, the IEngine interface supports a single method named GetCylinders(), which
returns an array of BSTRs. The outside world accesses the IEngine interface by calling
the GetEngine() method of an existing CoCar. So, to begin you could write the following:

// First make the CoCar.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-713 I ♡ Flyheart-

CoCar viper = new CoCar();

// Get engine reference.

IEngine e = viper.GetEngine();

// Ask engine for cylinder SAFEARRAY.

object o = e.GetCylinders();

Recall that the SAFEARRAY was declared as an array of VARIANTs, using the
VT_ARRAY and VT_BSTR variant type flags, as shown here:

STDMETHODIMP CCoEngine::GetCylinders(VARIANT *arCylinders)

{

 // Init and set the type of variant.

 VariantInit(arCylinders);

 arCylinders->vt = VT_ARRAY | VT_BSTR;

 // Ugly COM goo removed for sanity.

 // Set return value.

 arCylinders->parray = pSA;

 return S_OK;

}

In the eyes of .NET, a VARIANT type is represented as an instance of System.Object.
However, given that you set the vt field of the VARIANT structure using the VT_ARRAY
and VT_BSTR flags, you will find System.String[] printed to the console:

// Who does 'o' think he is anyway?

IEngine e = viper.GetEngine();

object o = e.GetCylinders();

// o is of type System.String[]

Console.WriteLine("o is really this type: {0}", o);
To print the pet names for each cylinder, you could write the following (see Figure 12-25
for output):

// Get array of strings.

String[] cylinders = (string[])o;

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-714 I ♡ Flyheart-

// Print each item.

Console.WriteLine("Your cylinders are:");

foreach(string s in cylinders)

{

 Console.WriteLine("->" + s);

}

Figure 12-25: Iterating over your SAFEARRAY

Slick, isn't it? The next point of interest is to check out the process of hooking into the
CoCar's Exploded event.

Intercepting COM Events

In Chapter 5 you learned about the .NET event model. Recall that this architecture is
based on delegating the flow of logic from one part of the application to another. The
entity in charge of forwarding a request is a type deriving from System.MulticastDelegate.
The client is able to add a target to or remove a target from the internal list using the
overloaded += and -= operators.

When the tlbimp.exe utility encounters a [source] interface in the COM server's type
library, it responds by creating a number of managed types that wrap the low-level COM
connection point architecture. Using these types, you can pretend to add a member to a
System.MulticastDelegate's internal linked list. Under the hood, of course, the proxy is
mapping the incoming COM event to their managed equivalents. Recall that your
unmanaged CoCar defined the following outbound interface:

dispinterface _ICarEvents

{

 properties:

 methods:

 [id(1), helpstring("method Exploded")]

 HRESULT Exploded([in] BSTR deadMsg);

};

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-715 I ♡ Flyheart-

Tlbimp.exe responded by creating a set of types used to help map the COM connection
point architecture into the .NET delegate event system. Table 12-8 briefly describes these
types.

Table 12-8: COM Event Helper Types

GENERATED TYPE (BASED ON
_CAREVENTS [SOURCE]
INTERFACE) MEANING IN LIFE

_ICarEvents This is the managed definition for
the outbound interface (and is
generally not directly used).

_ICarEvents_Event This is a managed interface that
defines the add and remove
members used to add (or remove) a
method to (or from) the
System.MulticastDelegate's linked
list. This type is also not generally
used directly.

_ICarEvents_ExplodedEventHandler This is the managed delegate
(which derives from
System.MulticastDelegate). The
return type of a given managed
event handler must return an int.
The parameters will map to the
original COM event.

_ICarEvents_SinkHelper This generated class implements
the outbound interface in
a .NET-aware sink object. This
class assigns the cookie generated
by the COM type to the
m_dwCookie member variable.
Also, this class maintains an
internal member variable
(m_ExplodedDelegate)
representing the outbound interface
(_ICarEvents_ExplodedEventHandl
er).

In addition to these generated types, the coclass that defined the outbound interface
(CoCar) has been updated as well. First (and most importantly) you have a new event
named Exploded in your public sector, as shown here:

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-716 I ♡ Flyheart-

.class public auto ansi CoCar

 extends AtlServerAssembly.__CoCar

 implements AtlServerAssembly._ICarEvents_Event

{

 ...

} // end of class CoCar
Your managed CoCar will also have two private members that maintain the connection to
the COM event source (add_X and remove_X), as shown in Figure 12-26.

Figure 12-26: COM events mapped to a pair of functions

If you check out the underlying IL instruction set for add_Exploded(), you will find that a
new _ICarEvents_SinkHelper type created on your behalf. After this point, the assembly
proxy obtains the correct IConnectionPoint interface from the ATL CoCar, calls Advise(),
and caches the returned cookie. For completion, here are the generated IL instructions
(but remember, you can always choose to remain blissfully unaware of these low-level
details):

.method public virtual instance void add_Exploded(class

AtlServerAssembly._ICarEvents_ExplodedEventHandler A_1) cil managed

{

...

// Make Sink helper object.

 IL_0000: newobj instance void

AtlServerAssembly._ICarEvents_SinkHelper::.ctor()

 IL_0005: stloc.0

 IL_0006: ldc.i4.0

 IL_0007: stloc.1

 IL_0008: ldarg 0

 IL_000c: ldfld class

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-717 I ♡ Flyheart-

// Get IConnectionPoint interface.

[mscorlib]System.Runtime.InteropServices.UCOMIConnectionPoint

AtlServerAssembly.CoCar::m__ICarEventsCP

 IL_0011: ldloc.0

 IL_0012: castclass [mscorlib]System.Object

 IL_0017: ldloca.s V_1

 IL_0019: callvirt instance void

// Call IConnectionPoint::Advise().

[mscorlib]System.Runtime.InteropServices.UCOMIConnectionPoint::Advise(object,

 int32&)

 IL_001e: ldloc.0

 IL_001f: ldloc.1

// Store Cookie returned from Advise().

 IL_0020: stfld int32 AtlServerAssembly._ICarEvents_SinkHelper::m_dwCookie

 IL_0025: ldloc.0

 IL_0026: ldarg A_1

// Add SinkHelper to delegate.

 IL_002a: stfld class AtlServerAssembly._ICarEvents_ExplodedEventHandler

AtlServerAssembly._ICarEvents_SinkHelper::m_ExplodedDelegate

 IL_002f: ldarg 0

 IL_0033: ldfld class [mscorlib]System.Collections.ArrayList

AtlServerAssembly.CoCar::m_a_ICarEventsHelpers

 IL_0038: ldloc.0

 IL_0039: castclass [mscorlib]System.Object

 IL_003e: callvirt instance int32

[mscorlib]System.Collections.ArrayList::Add(object)

 IL_0043: pop

 IL_0044: ret

} // end of method CoCar::add_Exploded

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-718 I ♡ Flyheart-

Hooking into the COM Event

Now that you have a better feeling for how COM events are handled, you can learn how
easy it is to hook into a COM event from managed code. As you can see here, this looks
identical to the process of working with .NET delegates:

public class CoCarClient

{

 // The method that will be called when the car sends the event.

 // The delegation target must return an int!

 public static int ExplodedHandler(String msg)

 {

 Console.WriteLine("\nCar says: (COM Events)\n->"

 + msg + "\n");

 return 0;

 }

 public static int Main(string[] args)

 {

 CoCar viper = new CoCar();

 // Rig into event.

 viper.Exploded +=

 new _ICarEvents_ExplodedEventHandler(ExplodedHandler);

 // Do something to trigger the event.

 for(int i = 0; i < 5; i++)

 {

 try

 {

 viper.SpeedUp(50);

 Console.WriteLine("->Curr speed is: "

 + viper.GetCurSpeed());

 }

 catch(Exception ex)

 {

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-719 I ♡ Flyheart-

 Console.WriteLine("->COM error! " + ex.Message + "\n");

 }

 }

 }

}

All you need to do to be done is establish a delegate with the Exploded event, as shown
here:

// Rig into event.

viper.Exploded += new _ICarEvents_ExplodedEventHandler(ExplodedHandler);

When the CoCar fires the Exploded event (when the speed is over the maximum limit),
your event handler (ExplodedHandler) is called automatically.

Handling the COM Error

Last but not least, also notice that you wrapped the speedup logic in a try/catch block. If
the end user attempts to speed up a car that has exploded, the coclass returns a COM
error object, which is mapped into a .NET exception.

The Complete C# Client

Now that you have seen how each COM atom is expressed in the terms of .NET, here is
the complete C# client code that uses the generated proxy:

using System;

using AtlServerAssembly; // The assembly containing the proxy.

using System.Reflection;

public class CoCarClient

{

 public static int ExplodedHandler(String msg)

 {

 Console.WriteLine("\nCar says: (COM Events)\n->" + msg + "\n");

 return 0;

 }

 public static int Main(string[] args)

 {

 // Begin by making a car.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-720 I ♡ Flyheart-

 CoCar viper = new CoCar();

 // Rig into event.

 viper.Exploded += new

 _ICarEvents_ExplodedEventHandler(ExplodedHandler);

 // Set (and get) the driver name.

 viper.DriverName = "Fred";

 Console.WriteLine("Driver is named: (COM property)\n->" +

 viper.DriverName + "\n");

 // List type of car.

 CarType t = viper.GetCarType();

 Console.WriteLine("Car type is: (COM enum)\n->" + t.ToString() + "\n");

 // Get engine & cylinders.

 IEngine e = viper.GetEngine();

 object o = e.GetCylinders();

 // Unbox object ref into array of strings.

 String[] cylinders = (string[])o;

 // Print each item.

 Console.WriteLine("Your cylinders are: ");

 foreach(string s in cylinders)

 {

 Console.WriteLine("->" + s);

 }

// Now speed up the car to trigger event.

 for(int i = 0; i < 5; i++)

 {

 try

 {

 viper.SpeedUp(50);

 Console.WriteLine("->Curr speed is: "

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-721 I ♡ Flyheart-

 + viper.GetCurSpeed());

 }

 catch(Exception ex) // Catch COM error!

 {

 Console.WriteLine("->COM error! " + ex.Message + "\n");

 }

 }

 return 0;

 }

}
Figure 12-27 shows the final output.

Figure 12-27: C# code interacting with ATL code

Understanding COM to .NET Interoperability

The next topic of this chapter is the logically opposite interoperability scenario of what we
have just examined: a COM class calling a .NET type. As you might imagine, this
situation is less likely to occur than .NET to COM communications, but it is still worth
examining.
For a COM class to use a .NET type, you need to fool the coclass into believing that the
managed type is in fact unmanaged. In essence, you need to allow the coclass to interact
with the type using the functionality provided by the COM architecture. For example, the
COM type should be able to obtain new interfaces through QueryInterface() calls,
simulate unmanaged memory management using AddRef() and Release(), make use of
the COM connection point protocol, and so on.

Beyond fooling the COM client, COM to .NET interoperability also involves fooling the
COM runtime. As you know, a classic COM server is activated using the Service Control
Manager (SCM). For this to happen, the SCM must look up numerous bits of information

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-722 I ♡ Flyheart-

in the system registry (ProgIDs, CLSIDs, IIDs, and so forth). The problem of course is
that .NET assemblies are not registered (at all).

In a nutshell, to make your .NET assemblies available to classic COM clients, you must
take the following steps:

 Register your .NET assembly into the system registry to allow the COM SCM
to locate it.

 Generate a COM type library (*.tlb) file (based on the .NET metadata) to allow
the COM client to interact with the exposed types.

 Deploy the assembly in the same directory as the COM client or install the
assembly into the GAC.

You will examine the tool that automates these steps in just a moment. For now, check
out exactly how COM clients interact with .NET types using a CCW.

The Role of the CCW
When the COM client accesses a .NET type, the CLR uses a proxy termed the COM
Callable Wrapper (CCW) to negotiate the COM to .NET conversion (Figure 12-28).

Figure 12-28: COM types talk to .NET types using a CCW.

Understand that the CCW is a reference-counted entity. This should make sense, given
that the COM client is assuming that the CCW is a real COM type and thus must abide by
the rules of AddRef() and Release(). When the COM client has issued the final release,
the CCW releases its reference to the real .NET type, at which point it is ready to be
garbage collected.
The CCW implements a number of COM interfaces automatically to further the illusion
that the proxy represents a genuine coclass. In addition to the set of custom interfaces
defined by the .NET type (including an entity named the class interface that you will
examine in just a moment), the CCW provides support for the standard COM behaviors
described in Table 12-9.

Understanding the Class Interface

In classic COM, the only way a COM client can communicate with a COM object is using
an interface reference. However, some COM-aware languages (such as Visual Basic 6.0)
attempt to hide this fact from the programmer to facilitate the VB is easy mindset. The fact
remains that Visual Basic generates a [default] interface for each coclass in the COM
binary. Any member declared as Public is placed in the [default] interface. In this way, VB
clients can pretend to work with an object reference, when in fact they are working with an
interface reference, as shown here:

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-723 I ♡ Flyheart-

' Recall that VB hides the [default] interface.

' Dim o as New MyComClass ' Query for [default] _MyComClass

o.Hello ' Really calls _MyComClass->Hello()

Table 12-9: The CCW supports numerous core COM interfaces.

CCW IMPLEMENTED
INTERFACE

MEANING IN LIFE

IConnectionPointContainer

IConnectionPoint

If the .NET type supports any events, they
are represented as COM connection points.

IEnumVariant If the .NET type supports the IEnumerable
interface, it appears to the COM client as a
standard COM enumerator.

ISupportErrorInfo

IErrorInfo

These interfaces allow coclasses to send
COM error objects.

ITypeInfo

IProvideClassInfo

These interfaces allow the COM client to
pretend to manipulate an assembly's COM
type information. In reality, the COM client is
interacting with .NET metadata.

IUnknown

IDispatch

IDispatchEx

These core COM interfaces provide support
for early and late binding to the .NET type.
IDispatchEx can be supported by the CCW if
the .NET type implements the IExpando
interface.

In contrast, .NET types do not need to support any interfaces. It is possible to build a
complete solution using nothing but object references. However, given that classic COM
clients cannot work with object references, another responsibility of the CCW is to support
a class interface to represent each property, method, field, and event defined by the
type's public sector. As you can see, the CCW is taking the same approach as Visual
Basic 6.0.

Defining a Class Interface

The ClassInterface attribute is an optional but very important type. By default, any method
defined on a .NET class is exposed to COM as a raw dispinterface (i.e., a given
implementation of IDispatch). Thus, all COM clients that want to use class-level methods
must exercise late binding to manipulate your .NET types! To alter this default behavior,
use the ClassInterfaceAttribute type, which can be assigned any value of the
ClassInterfaceType enumeration (Table 12-10).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-724 I ♡ Flyheart-

Table 12-10: Values of the ClassInterfaceType Enumeration

CLASSINTERFACETYPE
MEMBER NAME MEANING IN LIFE

AutoDispatch Indicates that a dispatch-only interface be
generated for the class.

AutoDual Indicates that a dual interface be generated
for the class.

None Indicates that no interface be generated for
the class.

In the next example, you will specify ClassInterfaceType.AutoDual as the class interface
designation. In this way, late binding clients such as VBScript can access the Add() and
Subtract() methods using IDispatch, while early bound clients (such as VB proper and
C++) can use the class interface (named _CSharpCalc). Like in Visual Basic 6.0, the
name of your class interface is always based on your type name and prefixed with an
underbar.

Building Your .NET Type

To illustrate a COM type communicating with managed code, assume you have created a
simple C# Class Library that defines a single class named CSharpCalc, which supports
two methods named Add() and Subtract(). Also, assume you have defined (and
implemented) another interface named IAdvancedMath to allow multiplication and
division. The logic behind the class is simple; however, notice the use of the
ClassInterface attribute, as shown here:

namespace DotNetClassLib

{

 using System;

 using System.Runtime.InteropServices;

 public interface IAdvancedMath

 {

 int Multiple(int x, int y);

 int Divide(int x, int y);

 }

 [ClassInterface(ClassInterfaceType.AutoDual)]

 public class CSharpCalc: IAdvancedMath

 {

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-725 I ♡ Flyheart-

 public CSharpCalc(){}

 public int Add(int x, int y) {return x + y;}

 public int Subtract(int x, int y) {return x - y;}

 int IAdvancedMath.Multiple(int x, int y) {return x * y; }

 int IAdvancedMath.Divide(int x, int y)

 {

 if(y = = 0)

 // Intercepted as COM error object.

 throw new DivideByZeroException();

 return x / y;

 }

 }

}

Generating the Type Library and Registering the .NET Types

Once you compile the project, you have two approaches you can take to generate the
type information and register the assembly in the system registry. Your first approach is to
use the regasm.exe utility shipped with the .NET SDK. The default functionality of this tool
is to enter the necessary COM registration goo into the system, to allow the COM SCM to
locate and load the assembly on behalf of the COM client. However, if you specify the /tlb
flag, this tool also generates the required type library, as shown here:

regasm DotNetClassLib.dll /tlb:simpledotnetserver.tlb

As an alternative, you can use regasm.exe to register the correct information in the
system registry and generate the type information using a separate tool named tlbexp.exe.
(See online help for command-line options.) In either case, the end result is that
your .NET assembly has been configured in the system registry, and you have a COM
type library that describes its contents.

SOURCE
CODE

The DotNetClassLib application is included under the Chapter
12 subdirectory.

Examining the Exported Type Information

Now that you have generated the corresponding COM type library, you can view its
contents using the OLE/COM Object Viewer by simply loading the *tlb file. From there,
you will find the following IDL definition for the CSharpCalc class interface
(_CSharpCalc):

[uuid(AA165958-53F3-3129-83AE-7AE174FE923F), hidden,

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-726 I ♡ Flyheart-

dual, nonextensible,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "DotNetClassLib.CSharpCalc")]

interface _CSharpCalc : IDispatch

{

 // System.Object methods!

 [id(00000000), propget] BSTR ToString();

 [id(0x60020001)] VARIANT_BOOL Equals([in] VARIANT obj);

 [id(0x60020002)] long GetHashCode();

 [id(0x60020003)] _Type* GetType();

 // Methods of class interface.

 [id(0x60020000)]

 HRESULT Add([in] long x, [in] long y, [out, retval] long* pRetVal);

 [id(0x60020001)]

 HRESULT Subtract([in] long x, [in] long y, [out, retval] long* pRetVal);

};

As specified by the ClassInterface attribute, the [default] has been configured as a [dual].
(Notice that the members have been assigned automatic DISPIDs.) As you can see, the
class interface also has explicit listings for the members of System.Object. (More on this
in just a bit.)
One point of interest is the fact that the class interface does not support the members of
IAdvancedMath. The reason has to do with the fact that this interface is implemented
using explicit interface implementation. (See Chapter 4.) Thus, the generated type library
also contains an IDL definition of this custom interface, as shown here:

interface IAdvancedMath : IDispatch

{

 [id(0x60020000)] HRESULT Multiple([in] long x, [in] long y,

 [out, retval] long* pRetVal);

 [id(0x60020001)] HRESULT Divide([in] long x, [in] long y,

 [out, retval] long* pRetVal);

};

If you had not used explicit interface inheritance, you would still have a standalone
definition for IAdvancedMath. However, you would also find that the default class
interface would be populated with the Multiply() and Divide() members.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-727 I ♡ Flyheart-

The _Object Interface

The generated IDL contains an interface named _Object. This interface is the unmanaged
representation of System.Object. Thus, COM types that consume .NET types can use the
core members of this supreme base class. Here is the definition:

[uuid(98417C7D-32E8-3FA0-A54B-0F0B2EFBE91F), hidden, dual,

 nonextensible, custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

 "System.Object")]

dispinterface _Object

{

 properties:

 methods:

 [id(00000000), propget] BSTR ToString();

 [id(0x60020001)] VARIANT_BOOL Equals([in] VARIANT obj);

 [id(0x60020002)] long GetHashCode();

 [id(0x60020003)] _Type* GetType();

};

The IDL coclass definition automatically adds support for this interface type, as shown
here:

coclass CSharpCalc {

 interface IManagedObject;

 [default] interface _CSharpCalc;

 interface _Object;

 interface IAdvancedMath;

};

You will see the _Object interface in action in just a bit.

The Generated Library Statement

The final point of interest regarding the generated type information is the configuration of
the library statement. In classic COM, the library statement is used to represent every IDL
type that should be placed in the binary *.tlb file. This file is nothing more than a binary
equivalent of the underlying IDL and is the key to COM's language independence (and
plays a major role in marshaling types between boundaries). The rules used by
tlbexp.exe are simple. .NET namespaces are populated based on the COM library
statement.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-728 I ♡ Flyheart-

You have already seen the definitions of the .NET types (class interface, IAdvancedMath,
coclass, and so on). However, it is interesting to note that in addition to the import of the
standard OLE type information, your library statement also imports type information that
describes mscorlib.dll (the core .NET base class library assembly) and the runtime
execution engine (mscoree.dll), as shown here:

[uuid(5C202075-222E-30A4-BF50-4EFC20DDCD27), version(1.0)]

library DotNetClassLib // Based on namespace name.

{

 // TLib: {BED7F4EA-1A96-11D2-8F08-00A0C99A6186D}

 importlib("mscorlib.tlb");

 ...

 importlib("mscoree.tlb");

 ...

}

Viewing the Type Using the OLE/COM Object Viewer
COM supports the idea of component categoies. Ultimately, a COM category is a GUID
(termed a CATID) that identifies a collection of related coclasses. The OLE/COM Object
Viewer allows you to browse the registered CATIDs on your machine from a friendly GUI
Tree control. One new category that has been added given the advent of the CLR is
the .NET Category (Figure 12-29).

Figure 12-29: All registered assemblies gain membership to the .NET category.

If you search for the ProgID of your DotNetServerLib assembly, you will notice that when
you try to expand the related node, you are issued an error. This is a deployment issue.
Recall that when a COM client is attempting to use a .NET assembly, the assembly must
be in the same folder as the launching application (or installed into the GAC).
To rectify the problem, simply copy the assembly into the folder where the OLE/COM
Object Viewer utility is located (or install the assembly into the GAC). Once you have
done this, you will be able to examine the interfaces supported by the proxy (Figure
12-30).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-729 I ♡ Flyheart-

Figure 12-30: Interfaces implemented by the CCW

Examining the Registration Entries
The final details to examine before you can make use of your assembly from a COM
client are the registration entries installed by the regasm.exe utility. First and foremost,
you will receive the mandatory ProgID for each coclass defined in the assembly (Figure
12-31).

Figure 12-31: The registered ProgID
From the ProgID, you can navigate to the next item of interest, the CLSID (Figure 12-32).

Figure 12-32: The registered CLSID

When a COM client makes an activation request to the SCM, it responds by consulting
HKCR\CLSID to resolve the location of the registered server. The most important
subdirectory for our current purposes is InprocServer32, which holds the path to the
binary SCM will load for the client. However, you will not find a listing for the
DotNetClassLib.dll (due to the fact that it is not a COM server!). Rather, you will find the
path points to the CLR execution engine (Figure 12-33).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-730 I ♡ Flyheart-

Figure 12-33: InprocServer32 points to the .NET execution engine
Also listed under the InprocServer32 subdirectory is a new entry named Assembly. This
value holds the fully quantified name of the assembly (Figure 12-34).

Figure 12-34: The value of the assembly entry

Of course, there are other entries made by regasm.exe. For example, given that .NET
types always come through as IDispatch-based interfaces, each interface is configured to
use oleaut32.dll. The type information itself is registered under HKCR\TypeLib. The end
result is that as far as the COM SCM is concerned, it can load and manipulate the
contents of the .NET assembly. Under the hood, the CLR execution engine loads the
assembly, builds the CCW, and takes over the show.

Building a Visual Basic 6.0 Test Client

Now that the .NET assembly has been properly configured to interact with the COM
runtime, you can build some COM clients. You can create a simple VB 6.0 Standard EXE
project type and set a reference to the new generated type library. Before you add any
code, save the entire project to an easy-to-remember location on your hard drive. Next,
make a copy of the C# assembly and place it in the same folder as the calling client (or
install the assembly into the GAC).

As for the GUI front end, keep things really simple. A single Button object will be used to
manipulate the .NET type. However, recall that when you created your C# calculator, you
configured the Divide() method of the IAdvancedMath interface to send out a
DivideByZeroException under the correct circumstances. Thus, you can trap this .NET
exception as a classic COM error object. Here is the code (notice that you are also using
some inherited methods defined by the _Object interface):

Private Sub btnDoEverything_Click()

On Error GoTo OOPS:

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-731 I ♡ Flyheart-

 ' Make .NET type and add some numbers.

 Dim o As New CSharpCalc

 MsgBox o.Add(30, 30), , "Adding"

 ' Call some members of _Object.

 MsgBox o.ToString, , "To String"

 MsgBox o.GetHashCode, , "Hash code"

 Dim t As Object

 Set t = o.GetType()

 MsgBox t, , "Type"

 ' Get new interface (and trigger exception).

 Dim i As IAdvancedMath

 Set i = o

 MsgBox i.Multiple(4, 22), , "Multiply"

 MsgBox i.Divide(20, 2), , "Divide"

 MsgBox i.Divide(20, 0) ' Throw error.

OOPS:

MsgBox Err.Description, , "Error!" ' Print out exception.

End Sub

Notice that Visual Basic 6.0 does not allow you to gain access to the _Type interface
returned from _Object.GetType(), as it has been marked as a [hidden] interface. The best
you can do is hold it in a generic object variable (which makes things far less exciting).

SOURCE
CODE

The VBDotNetClient application is included under the Chapter
12 subdirectory.

.NET to COM Mapping Issues

Always keep in mind the fact that the Common Type System (CTS) defines a number of
constructs that simply cannot be represented in classic COM. For example, C# class
types can support any number of constructors, overloaded operators, and overloaded
methods and can derive from each other using classical inheritance. None of these
programming atoms can be understood by classic COM. Therefore, as you might imagine,
some under-the-hood voodoo needs to occur when tlbexp.exe builds the COM type
library.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-732 I ♡ Flyheart-

To understand these issues, you need a test case. Assume a C# code library that
contains one base and one derived class. The base class defines some public field data,
a constructor set, and a single virtual method, as shown here:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class BaseClass

{

 // State data.

 private int memberVar;

 public string fieldOne;

 // Constructors.

 public BaseClass(){}

 public BaseClass(int m, string f)

 { memberVar = m; fieldOne = f;}

 // Virtual method.

 public virtual void VirMethod()

 { Console.WriteLine("Base VirMethod impl");}

}

The derived type overrides the virtual member and declares an overloaded method, as
shown here:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DerivedClass : BaseClass

{

 // State data.

 public float fieldTwo;

 // Constructor.

 DerivedClass(int m, string f) :base(m, f) {}

 // Overridden method.

 public override void VirMethod()

 {

 Console.WriteLine("Derived VirMethod impl");

 base.VirMethod();

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-733 I ♡ Flyheart-

 }

 // Overloaded member.

 public void SomeMethod(){}

 public void SomeMethod(int x){}

 public void SomeMethod(int x, object o){}

 public void SomeMethod(int x, float f){}

}

Obviously you don't really care what these methods are doing. At this point, you are only
interested in how the tlbexp.exe utility will map these .NET-centric types to COM
primitives.

Examining the BaseClass Type Information

First, examine the coclass definition for the managed BaseClass type (load your *tlb file
into the OLE/COM Object Viewer to check things out firsthand), shown here:

coclass BaseClass {

 interface IManagedObject;

 [default] interface _BaseClass;

 interface _Object;

};

Not too much to say here, as you already understand the concept of a class interface and
the role of the _Object interface definition. The real meat is contained in the definition of
the class interface itself, as shown here:

interface _BaseClass : IDispatch

{

 // _Object methods...

 [id(0x60020004)] HRESULT VirMethod();

 [id(0x60020005), propget] HRESULT fieldOne([out, retval] BSTR* pRetVal);

 [id(0x60020005), propput] HRESULT fieldOne([in] BSTR pRetVal);

};

Notice that public field data is represented as a COM property. This should make sense,
given that the COM client never has an object-level reference and is forced to work with a
type on an interface-by-interface level. Now take a look at the derived class.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-734 I ♡ Flyheart-

Examining the DerivedClass Type Information

Because classic COM does not support classical inheritance between types, it should be
clear that tlbexp.exe is unable to model the is-a relationship between the base and
derived type. However, you get the next best thing: interface implementation, as shown
here:

coclass DerivedClass {

 interface IManagedObject;

 [default] interface _DerivedClass;

 interface _BaseClass;

 interface _Object;

};

Notice that the derived type implements the class interface of its parent. In this way, the
derived type can remain functionally equivalent to the base class type. The class interface
of the DerivedClass is also of interest. Recall that the managed implementation of this
type supported a single overloaded member. Given that COM does not support this
syntactical construct, the tlbexp.exe tool hacked out the following solution:

interface _DerivedClass : IDispatch

{

 // _Object methods...

 // 'Inherited' methods of base type.

 [id(0x60020004)] HRESULT VirMethod();

 [id(0x60020005), propget] HRESULT fieldOne([out, retval] BSTR* pRetVal);

 [id(0x60020005), propput] HRESULT fieldOne([in] BSTR pRetVal);

 // 'Overloaded' method.

 [id(0x60020007)] HRESULT SomeMethod();

 [id(0x60020008)] HRESULT SomeMethod_2([in] long x);

 [id(0x60020009)] HRESULT SomeMethod_3([in] long x, [in] VARIANT o);

 [id(0x6002000a)] HRESULT SomeMethod_4([in] long x, [in] single f);

 // Field data.

 [id(0x6002000b), propget] HRESULT fieldTwo([out, retval] single* pRetVal);

 [id(0x6002000b), propput] HRESULT fieldTwo([in] single pRetVal);

};

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-735 I ♡ Flyheart-

Here, you can see that a simple numerical suffix is used to signify overloaded methods.
Although some hacking takes place when converting .NET types into COM types, the
process is not all that offensive to our eyes. Other possible mappings that you may
encounter include nested namespaces, abstract base classes, value types (enums and
structs), and so forth. I assume you will take matters into your own hands at this point and
convert some C# code into a COM type library. (One very enlightening task is to send the
CarLibrary.dll assembly you developed in Chapter 6 to the tlbexp.exe utility ... hint, hint.)

SOURCE
CODE

The NetToComIssuesServer project is included under the
Chapter 12 subdirectory.

Controlling the Generated IDL (or Influencing TlbExp.exe)

As you have seen, when you use the tlbimp.exe utility to create a proxy, the generated
metadata is automatically adorned with various attributes. When you build .NET types
that you expect to be used by classic COM clients, you can also make direct use of these
attributes (such as the ClassInterfaceAttribute type) in your managed code. Typically, this
would be done only to override the default mappings produced by the tlbexp.exe utility.

To illustrate the process of gaining some control over the generated COM type
information, here is a new namespace (AttribDotNetObjects) that defines a single
interface (IBasicMath) as well as a single class type (Calc). Notice that you are using
various attributes to control the generated GUID of the types as well as the underlying
definition of the IBasicMath interface and Add() method. Also notice here that the Calc
class defines two static functions that are also adorned with specific attributes (which I'll
mention shortly):

namespace AttribDotNetObjects

{

 using System;

 using System.Runtime.InteropServices;

 using System.Windows.Forms;

 // This .NET interface has been adorned with various attributes

 // that will be used by the tlbimp.exe utility.

 [GuidAttribute("47430E06-718D-42c6-9E45-78A99673C43C"),

 InterfaceTypeAttribute(ComInterfaceType.InterfaceIsDual)]

 public interface IBasicMath

 {

 [DispId(777)] int Add(int x, int y);

 }

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-736 I ♡ Flyheart-

 [GuidAttribute("C08F4261-C0C0-46ac-87F3-EDE306984ACC")]

 public class DotNetCalc : IBasicMath

 {

 public DotNetCalc(){}

 public int Add(int x, int y) { return x + y;}

 // This attribute configures this method

 // to be called during the registration of the assembly.

 [ComRegisterFunctionAttribute]

 public static void AddExtraRegLogic(string regLoc)

 {

 // Do any extra logic when registration occurs.

 MessageBox.Show("Inside AddExtraRegLogic f(x)",

 ".NET assembly says:");

 }

 // This attribute configures this method

 // to be called during the unregistration of the assembly.

 [ComUnregisterFunctionAttribute]

 public static void RemoveExtraRegLogic(string regLoc)

 {

 // Do any extra logic when unregistration occurs.

 MessageBox.Show("Inside RemoveExtraRegLogic f(x)",

 ".NET assembly says:");

 }

 }

}
SOURCE
CODE

The AttribDotNetObjects is included under the Chapter 12
subdirectory.

Examining the Generated COM Type Information

If you run this assembly through the tlbexp.exe utility, you will find that the IID and CLSID
are the same values as listed here and also that your IBasicMath interface has been
configured as a [dual]. Here is the IDL for the IBasicMath interface:

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-737 I ♡ Flyheart-

// In the assembly you wrote the following attributes:

// [GuidAttribute("47430E06-718D-42c6-9E45-78A99673C43C"),

// InterfaceTypeAttribute(ComInterfaceType.InterfaceIsDual)]

// Generated IDL.

[odl, uuid(47430E06-718D-42C6-9E45-78A99673C43C), dual, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"AttribDotNetObjects.IBasicMath")]

interface IBasicMath : IDispatch

{

 [id(0x00000309)] // We wrote: [DispId(777)]

 HRESULT Add([in] long x, [in] long y, [out, retval] long* pRetVal);

};

If you go back to the .NET representation of the IBasicMath interface and update the
InterfaceTypeAttribute() constructor logic as shown here:

// Make it a custom (not dual) interface.

[GuidAttribute("47430E06-718D-42c6-9E45-78A99673C43C"),

 InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown)]

public interface IBasicMath

{

 int Add(int x, int y);

}

you will find the following IDL definition once you rerun the tlbexp.exe utility:

// No longer [dual]!

[

 odl,

 uuid(47430E06-718D-42C6-9E45-78A99673C43C),

 oleautomation,

 custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

 "AttribDotNetObjects.IBasicMath")

]

interface IBasicMath : IUnknown

{

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-738 I ♡ Flyheart-

 // No dispid!

 HRESULT _stdcall Add([in] long x, [in] long y, [out, retval] long* pRetVal);

};

Interacting with Assembly Registration
Next, you need to examine the use of the ComRegisterFunctionAttribute and
ComUnregisterFunctionAttribute types. As you know, classic COM servers export two
functions (DllRegisterServer and DllUnregisterServer), which are called by various
registration utilities to insert (or remove) the required COM registration information. .NET
binaries do not export such functions; however, by declaring static methods with these
attributes, you can simulate the same behavior. To illustrate, if you now register the .NET
assembly using regasm.exe, you will see the message box shown in Figure 12-35.

Figure 12-35: Interacting with COM registration

I am sure you can think of more useful logic to write in the method taking the
ComRegisterFunctionAttribute attribute, but I think you get the general idea. A few final
points on these two registration attributes. First, the name of the method makes no
difference whatsoever. However, it must take a single string argument that holds the
current location of the registry being updated. Also, if you configure a static method that
takes the ComRegisterFunctionAttribute, you should also configure a method that takes
the ComUnregisterFunctionAttribute. In this way, you can simulate a self-registering COM
server.

Interacting with COM+ Services

The final topic of this chapter is an examination of how the base class libraries make it
possible to build .NET types that can be configured to take advantage of the COM+
runtime layer. Before illustrating the general process, I'll begin with a high-level overview
regarding the role of COM+. Again, if you require additional information, I assume you will
check out an appropriate resource.
You may be aware of a product named Microsoft Transaction Server (MTS). MTS is an
application server that provides the ability to host classic COM DLLs in a manner fitting
for an enterprise-level, n-tier environment. For example, assume you have created a
classic COM binary that is in charge of connecting to a data source (perhaps using ADO)
to update a number of related tables. Once this COM server has been installed under
MTS, it inherits a number of core traits, such as support for declarative transactions, JIT
activation, and ASAP deactivation (to increase scalability) as well as a very nice

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-739 I ♡ Flyheart-

role-based security model. The end result is that you can configure how the MTS-aware
type should behave in a declarative manner, rather than with hard-coded logic.

Every MTS-aware COM class has an associated context object used to hold a number of
specific traits about how the MTS object is being used. For example, the context may
contain information about the security credentials of the caller, about this object's
transactional outcome (i.e., the happy bit), and whether the object is ready to be
reclaimed from memory (i.e., the done bit).
By and large, MTS COM types are created to be stateless entities. This simply refers to
the fact that the object can be created and destroyed by the MTS runtime (to reclaim
system resources) without affecting the connected base client (i.e., the entity making calls
to the MTS runtime layer). Thus, MTS types are GUI-less and play the role of traditional
business objects that perform a unit of work for the base client and quietly pass away. If
the base client makes a call on the object it thinks it still has a reference to, the MTS
runtime simply creates a new copy.

While MTS opened the door to building highly scalable and very reliable distributed
systems, it had an ugly side. Specifically, the MTS and COM runtimes were not very well
integrated. For example, each architecture wrote to unique parts of the registry, which
could prevent the COM DLL from functioning as a typical in-proc server. Also, the object
creation mechanism used by COM was not the same model used by MTS. When objects
are installed under MTS, they must create other MTS-hosted COM types using a specific
method supported by their associated context.

COM+ is in many respects a cleaned up version of MTS proper. Under COM+, classic
COM and classic MTS have been unified into a single system to take care of the
registration and object creation inconsistencies. COM+ applications still inherit the same
core MTS traits (declarative transactions, role-based security, and so on) and some
additional traits. Here is a quick rundown of some of these COM+ specific behaviors:

 Support for object pooling. The COM+ runtime layer can maintain a collection
of active coclasses that can be quickly handed off to the base client. This
trait can help decrease the time the base client needs to wait to be returned
an interface reference from the COM+ type. However, this places additional
memory demands on COM+ server machine(s).

 A new event model termed Loosely Coupled Events (LCE). The LCE event
model of COM+ allows clients and COM+ types to communicate in a
disconnected manner. This means that a given COM+ class can send out
an event, without any foreknowledge of who (if anyone) is listening. Also, a
COM+ client can receive events without needing to be connected to the
sender.

 Support for object construction strings. Given that classic COM does not allow
the client to trigger constructor logic, COM+ introduced a standard interface
(IObjectConstruct) that gives the coclass the ability to be sent any startup
parameters in the form of a BSTR (which may be parsed internally by the
type).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-740 I ♡ Flyheart-

 The ability to control the queuing behavior of a COM+ type in a declarative
manner.Microsoft Message Queue (MSMQ) is an enterprise-level
messaging service that entails lots of boilerplate grunge. COM+ introduces
Queued Components (QC), which hide much of this grunge from view.

As you can see, the services provided by COM+ can greatly simplify the development of
distributed applications. The only problem is that these traits were originally intended to
be used by classic COM objects. To allow .NET developers to obtain these same benefits,
the base class libraries provided numerous .NET equivalents defined in the
System.EnterpriseServices namespace.

Understanding the System.EnterpriseServices Namespace

To build managed types that can be configured to function under the COM+ runtime, you
need to equip your .NET entities with numerous attributes defined in the
System.EnterpriseServices namespace. If you already have a background in classic MTS
and/or COM+, you will find most of these items very familiar. Table 12-11 offers a brief
rundown.

Building COM+ Aware Types

To create a .NET assembly that can be hosted by the COM+ runtime, you need to follow
a cookbook approach to build the exposed types. To begin, each .NET class type will
derive from System.ServicedComponent. This base class provides default
implementations of the classic MTS interface, IObjectControl (Activate(), Deactivate(),
and CanBePooled()). If you wish to override these default implementations, you are free
to do so.

Once you add any number of additional COM+ centric attributes to your .NET types, you
need to compile the assembly. However, to place this assembly under control of the
COM+ runtime, you need to use a new .NET utility, regsvcs.exe. As you will see in just a
bit, this tool is responsible for a number of steps beyond installing your type in the COM+
catalog.
Finally, and perhaps most importantly, you should install your assembly into the GAC
(see Chapter 6). The reason is simple. Given that the dllhost.exe (the COM+ surrogate)
needs to locate your assembly to host it in a given activity, it must be able to locate this
binary. As I am sure you would agree, installing your assemblies in the GAC is the most
logical choice for this situation.

Once you have performed each of these steps, you can build any number of base clients.
Now for a complete example.

Building a COM+ Aware C# Type

To illustrate how to build a .NET type that can use the COM+ runtime, build a new
managed code library named DotNetCOMPlusServer. (Remember, the

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-741 I ♡ Flyheart-

Table 12-11: Select Types of the System.EnterpriseServices Namespace

SYSTEM.ENTERPRISESERVICES
TYPE

MEANING IN LIFE

ApplicationActivationAttribute Allows you to specify if the
components contained in the
assembly run in the creator's
process (library application) or in a
system process (server application).

ApplicationIDAttribute Specifies the assembly's application
ID (as a GUID).

ApplicationQueuingAttribute

InterfaceQueuingAttribute

Used to enable QC (Queued
Component) support.

AutoCompleteAttribute Marks the attributed method as
AutoComplete. If the function
terminates properly, SetComplete()
is called automatically. If an
exception is thrown during the
course of the method, SetAbort() is
called automatically.

ComponentAccessControlAttribute Enables security checking on calls
to a given component.

ConstructionEnabledAttribute Enables COM+ object construction
support.

ContextUtil Is the preferred method for obtaining
information about the COM+ 1.0
object context. This type defines a
number of static members that allow
you to obtain COM+ centric
contextual information.

DescriptionAttribute Set this description on an assembly
(application), component, method,
or interface.

EventClassAttribute

EventTrackingEnabledAttribute

Used to interact with the COM+ LCE
event model.

JustInTimeActivationAttribute Turns JIT activation on or off.

SecurityCallContext

SecurityCallers

Used to allow your .NET types to
interact with the role-based security

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-742 I ♡ Flyheart-

Table 12-11: Select Types of the System.EnterpriseServices Namespace

SYSTEM.ENTERPRISESERVICES
TYPE

MEANING IN LIFE

SecurityIdentifier

SecurityIdentity

SecurityRoleAttibute

model used by MTS/COM+.

SharedPropertyGroupManager

SharedPrepertyGroup

SharedProperty

Provide access to the MTS/COM+
shared property manager (SPM).

TransactionAttribute Specifies the type of transaction that
should be available to this object.
Permissible values are members of
the TransactionOption enumeration.

COM+ runtime can only host types contained in DLLs.) Configure the single class
(ComPlusType) with the following COM+ properties:

 The class supports an object constructor string.
 The class is poolable, with an upper pool limit of 100 and an initial pool size of

5.
 The class supports a single method, which may succeed or fail. To inform the

runtime about its current state of affairs, this method supports the
AutoComplete attribute.

Here then, is the complete listing:

// Need to set a reference to System.EnterpriseServices.dll!

using System.EnterpriseServices;

using System.Windows.Forms;

...

// This object is poolable and supports a ctor string.

[ObjectPooling(true, 5, 100)]

[ConstructionEnabledAttribute(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class ComPlusType : ServicedComponent,

 IObjectConstruct

{

 // Impl of IObjectConstruct.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-743 I ♡ Flyheart-

 public void Construct(object o)

 {

 // Get IOCS interface.

 IObjectConstructString ics = (IObjectConstructString)o;

 MessageBox.Show(ics.ConstructString, "Ctor string is");

 }

 // Impl of inherited abstract members.

 public override void Activate()

 { MessageBox.Show("In activate!"); }

 public override void Deactivate()

 { MessageBox.Show("In deactivate!"); }

 public override bool CanBePooled()

 { return true; }

 public ComPlusType(){}

 // The sole method of the COM+ aware .NET type.

 public void DeleteCar(int id)

 {

 MessageBox.Show("Deleting car number " + id.ToString(),

 "Delete car");

 }

}

Of course, this object is rather simplistic, since it really does not perform any
enterprise-level functionality (such as deleting a car from a data store). This is just fine for
your purpose, given that you are currently only studying the basics of .NET/COM+
interaction.
You must take one additional step before installing this assembly in a new COM+
application. Given that this binary will eventually end up in the GAC, you need to build a
strong name for the assembly. As you recall from Chapter 6, the sn.exe utility is used for
this purpose. Once you generate the resulting *.snk file, update the following
assembly-level attribute in your AssemblyInfo.cs file (using your path of course!), as
shown here:

[assembly: AssemblyKeyFile(@"D:\DotNetComPlusServer\bin\Debug\thekey.snk")]

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-744 I ♡ Flyheart-

Also, you may wish to freeze the auto-generated build and revision numbers, as shown
here:

[assembly: AssemblyVersion("1.0.0.0")]

At this point you can compile the project.

Adding COM+ Centric Assembly-Level Attributes

At this point your .NET assembly is ready to be installed into the COM+ Catalog. As you
will see, the regsvcs.exe utility generates an AppID and application name automatically.
However, if you wish to specify certain aspects of the containing COM+ application, you
can add the following assembly-level attributes (simply place them in your
AssemblyInfo.cs file):

[assembly: ApplicationActivation(ActivationOption.Server)]

[assembly: ApplicationID("4fb2d46f-efc8-4643-bcd0-6e5bfa6a174c")]

[assembly: ApplicationName("DotNetComPlusServer")]

[assembly: Description("This app really kicks.")]

The ApplicationID attribute should be self-explanatory. This is the GUID of the resulting
COM+ application. ApplicationName and Description should also make sense. The one
attribute of special interest is ApplicationActivation. Recall that MTS and COM+
applications can be hosted as a library (e.g., activated in the caller's process) or server
(e.g., in a new instance of dllhost.exe). Given that the default setting is to configure your
COM+ application as a library, you will typically want to explicitly specify
ActivationOption.Server.

Configuring the Assembly in the COM+ Catalog

To configure a .NET assembly into the COM+ catalog, you still need to generate a COM
type library (tlbexp.exe) and register the type in the system registry (regasm.exe). You
also need to enter the correct information into the COM+ catalog (RegDB). Rather than
using these utility tools individually, the .NET SDK ships with an additional tool,
regsvcs.exe. This utility simplifies the process by taking care of each necessary detail in a
single step. Specifically, the following operations are performed:

 The assembly is loaded into memory.
 The assembly is registered correctly (e.g., as with regasm.exe).
 A type library is generated and registered (e.g., as with tblexp.exe).
 The type library is installed in a specified COM+ application.
 The components are configured according to the attributes specified in

the type definitions.

While this tool provides a number of optional arguments, the simplest syntax is as follows:

regsvcs /fc DotNetComPlusServer.dll

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-745 I ♡ Flyheart-

Here, you are specifying the /fc (find or create) flag to instruct the regsvcs.exe tool to build
a new COM+ application if one does not currently exist. Optionally, you can specify the
name of the COM+ application as a command-line parameter. If you omit this item (as
shown here), the name is based on the name of the binary assembly. Finally, place the
assembly into the GAC (Figure 12-36).

Figure 12-36: Install COM+ aware assemblies in the GAC

Examining the Component Services Explorer
Once you execute the command, you can open up with Windows 2000 Component
Services Explorer and find that your .NET assembly is now recognized as a valid COM+
type (Figure 12-37).

Figure 12-37: The famed COM+ aspirin icon

If you explore the various property windows for your new type, you will notice that the
various attributes you specified in the C# class have been used to configure your type
correctly in the COM+ catalog. For example, right-click the installed component and
check out the Activation tab (Figure 12-38).

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-746 I ♡ Flyheart-

Figure 12-38: The configured component

These settings have been configured based on the following class-level attribute set:

// This object is poolable and supports a ctor string.

[ObjectPooling(5, 100),

 ConstructionEnabledAttribute(true)]

public class MyCOMPlusType : ServicedComponent,

 IObjectConstruct

{...}
SOURCE
CODE

The DotNetComPlusServer

Summary

.NET is a wonderful thing. Nevertheless, it will be the case that managed and unmanaged
code must learn to work together for some time to come. Given this fact, the .NET
platform provides various techniques that allow you to blend the best of both worlds. This
chapter began by examining the role of PInvoke, which allows managed code to make
low-level Win32 API calls.

A major section of this chapter focused on the details of .NET types using legacy COM
components. As you have seen. the process begins by generating an assembly proxy for
your COM types. The RCW forwards calls to the underlying COM binary and takes care
of the details of mapping COM types to their .NET equivalents.

C# and the .NET Platform Chapter 12: Interacting with Unmanaged Code

-747 I ♡ Flyheart-

The chapter concluded by examining how COM types can call on the services of
newer .NET types. As you have seen, this requires that the creatable types in the .Net
assembly are registered to point to the CLR execution engine. The final task of this
chapter was to introduce you to the types defined in System.EnterpriseServices. Using
this namespace, you can build types that can take advantage of the COM+ runtime layer.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-748 I ♡ Flyheart-

Chapter 13: Data Access with ADO.NET

Overview

Unless you are a video game developer by trade, you are probably interested in database
manipulation. As you would expect, the .NET platform defines a number of types (in a
handful of related namespaces) that allow you to interact with local and remote data
stores. Collectively speaking, these namespaces are known as ADO.NET, which as you
will see is a major overhaul of the classic ADO object model.

This chapter begins by examining some core types defined in the System.Data
namespace—specifically DataColumn, DataRow, and DataTable. These classes allow
you to define and manipulate a local in-memory table of data. Next, you spend a good
deal of time learning about the centerpiece of ADO.NET, the DataSet. As you will see, the
DataSet is an in-memory representation of a collection of interrelated tables. During this
discussion, you will learn how to programmatically model table relationships, create
custom views from a given table, and submit queries against your in-memory DataSet.

After discussing how to manipulate a DataSet in memory, the remainder of this chapter
illustrates how to obtain a populated DataSet from a Database Management System
(DBMS) such as MS SQL Server, Oracle, or MS Access. This entails an examination
of .NET "managed providers" and the OleDbDataAdapter and SqlDataAdapter types.

The Need for ADO.NET
The very first thing you must understand when learning ADO.NET is that it is not simply
the latest and greatest version of classic ADO. While it is true that there is some
symmetry between the two systems (e.g., each has the concept of "connection" and
"command" objects), some familiar types (e.g., the Recordset) no longer exist.
Furthermore, there are a number of new ADO.NET types that have no direct equivalent
under classic ADO (e.g., the DataSet).

In a nutshell, ADO.NET is a new database access technology specifically geared at
facilitating the development of disconnected systems using the .NET platform. N-tier
applications (especially Web-based applications) are fast becoming the norm, rather than
the exception, for most new development efforts.

Unlike classic ADO, which was primarily designed for tightly coupled client/server
systems, ADO.NET greatly extends the notion of the primitive ADO disconnected
recordset with a new creature named the DataSet. This type represents a local copy of
any number of related tables. Using the DataSet, the client is able to manipulate and
update its contents while disconnected from the data source and submit the modified data
back for processing using a related "data adapter."

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-749 I ♡ Flyheart-

Another major difference between classic ADO and ADO.NET is that ADO.NET has full
support for XML data representation. In fact, the data obtained from a data store is
internally represented, and transmitted, as XML. Given that XML is transported between
layers using standard HTTP, ADO.NET is not limited by firewall constraints.

As you might be aware, classic ADO makes use of the COM marshaling protocol to move
data between tiers. While this was appropriate in some situations, COM marshaling
poses a number of limitations. Specifically, most firewalls are configured to reject COM
RPC packets, which makes moving data between machines tricky.

Perhaps the most fundamental difference between classic ADO and ADO.NET is that
ADO.NET is a managed library of code and therefore plays by all the same rules as any
managed library. The types that comprise ADO.NET use the CLR memory management
protocol, adhere to the same programming model, and work with many languages.
Therefore, the types (and their members) are accessed in the same exact manner,
regardless of which .NET-aware language you use.

ADO.NET: The Big Picture

The types that compose ADO.NET work together for a common goal: populate a DataSet,
disconnect from the data store, and return the DataSet to the caller. A DataSet is a very
interesting data type, given that it represents a local collection of tables (as well as the
relationships between these tables) used by the client application. In some respects, this
may remind you of the classic ADO disconnected recordset. The key difference is that a
disconnected recordset represents a single table of data, whereas ADO.NET DataSets
can model a collection of related tables. In fact, it is completely possible to have a
client-side DataSet that represents the entire remote database.

Once you have obtained a DataSet, you can perform queries against the local tables to
obtain specific subsets of information as well as navigate between related tables
programmatically. As you would expect, you can add new rows to a given table in the
DataSet as well as remove, filter, or update existing records. Once the modifications have
been made, the client then submits the modified DataSet back to the data store for
processing.

An obvious question at this point is "How do I get the DataSet?" Under the ADO.NET
model, DataSets are populated through the use of a managed provider, which is a
collection of classes that implement a set of core interfaces defined in the System.Data
namespace; specifically IDbCommand, IDbDataAdapter, IDbConnection, and
IDataReader (see Figure 13-1).

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-750 I ♡ Flyheart-

Figure 13-1: Clients interacting with managed providers

ADO.NET ships with two managed providers out of the box. First is the SQL provider,
which provides highly optimized interactions with data stored in MS SQL Server (7.0 or
higher). If the data you desire is not in an SQL Server data file, you can use the OleDb
provider, which allows access to any data store that supports the OLE DB protocol. Be
aware, however, that the OleDb provider uses native OLE DB (and therefore requires
COM Interop) to enable data access.

As you might suspect, this is always a slower process than talking to a data store in its
native tongue. Other vendors will soon begin shipping custommanaged providers for their
proprietary data stores. Until then, the OleDb provider does the trick.

Understanding ADO.NET Namespaces
Like other aspects of the .NET universe, ADO.NET is defined in a handful of related
namespaces. Table 13-1 gives a quick rundown of each.

Table 13-1: ADO.NET Namespaces

ADO.NET
NAMESPACE

MEANING IN LIFE

System.Data This is the core namespace of ADO.NET. It
defines types that represent tables, rows,
columns, constraints, and DataSets. This
namespace does not define types to connect to a
data source. Rather, it defines the types that
represent the data itself.

System.Data.Common This namespace contains the types shared
between managed providers. Many of these
types function as base classes to the concrete

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-751 I ♡ Flyheart-

Table 13-1: ADO.NET Namespaces

ADO.NET
NAMESPACE

MEANING IN LIFE

types defined by the OleDb and SqlClient
managed providers.

System.Data.OleDb This namespace defines the types that allow you
to connect to an OLE DB-compliant data source,
submit SQL queries, and fill DataSets. The types
in this namespace have a look and feel similar
(but not identical) to that of classic ADO.

System.Data.SqlClient This namespace defines the types that constitute
the SQLmanaged provider. Using these types,
you can talk directly to Microsoft SQL Server and
avoid the level of indirection associated with the
OleDb equivalents.

System.Data.SqlTypes These types represent native data types used in
Microsoft SQL Server. Although you are always
free to use the corresponding CLR data types,
the SqlTypes are optimized to work with SQL
Server.

All of these ADO.NET namespaces are in a single assembly named System.Data.dll
(Figure 13-2). Thus, like in any project referencing external assemblies, you must be sure
to set a reference to this .NET binary.

Figure 13-2: The System.Data.dll assembly

Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You
simply cannot build ADO.NET applications without specifying this namespace in your

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-752 I ♡ Flyheart-

data access applications. In addition, to establish a connection with a data store, you also
need to specify a using directive for the System.Data.OleDb or System.Data.SqlClient
namespaces. The exact reasons for this are discussed soon. For now, get to know some
of the core types defined in System.Data.

The Types of System.Data
As mentioned, this namespace contains types that represent the data you obtain from a
data store, but not the types that make the literal connection. In addition to a number of
database-centric exceptions (NoNullAllowedException, RowNotInTableException,
MissingPrimaryKeyException, and the like), these types are little more than OO
representations of common database primitives (tables, rows, columns, constraints, and
so on). Table 13-2 lists some of the core types, grouped by related functionality.

Table 13-2: Types of the System.Data Namespace

SYSTEM.DATA TYPE MEANING IN LIFE

DataColumnCollection

DataColumn

DataColumnCollection is used to represent all of
the columns used by a given DataTable.
DataColumn represents a specific column in a
DataTable.

ConstraintCollection

Constraint

ConstraintCollection represents all constraints
(foreign key constraints, unique constraints)
assigned to a given DataTable. Constraint
represents an OO wrapper around a single
constraint assigned to one or more
DataColumns.

DataRowCollection

DataRow

These types represent a collection of rows for a
DataTable (DataRowCollection) and a specific
row of data in a DataTable (DataRow).

DataRowView

DataView

DataRowView allows you to carve out a
predefined view from an existing row. DataView
represents a customized view of a DataTable
that can be used for sorting, filtering, searching,
editing, and navigating.

DataSet Represents an in-memory cache of data, which
may consist of multiple related DataTables.

ForeignKeyConstraint

UniqueConstraint

ForeignKeyConstraint represents an action
restriction enforced on a set of columns in a
primary key/foreign key relationship. The
UniqueConstraint type represents a restriction on
a set of columns in which all values must be
unique.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-753 I ♡ Flyheart-

Table 13-2: Types of the System.Data Namespace

SYSTEM.DATA TYPE MEANING IN LIFE

DataRelationCollection

DataRelation

This collection represents all relationships (i.e.,
DataRelation types) between the tables in a
DataSet.

DataTableCollection

DataTable

DataTableCollection represents all the tables
(i.e., DataTable types) for a particular DataSet.

To get the ball rolling, the first half of this chapter discusses how to manipulate these
items in a disconnected mode by hand. Once you understand how to build a DataSet in
the raw, you should have no problem manipulating a DataSet populated by a managed
provider.

Examining the DataColumn Type

The DataColumn type represents a single column maintained by a DataTable.
Collectively speaking, the set of all DataColumn types bound to a given DataTable
represents the table's schema. For example, assume you have a table named Employees
with three columns (EmpID, FirstName, and LastName). Programmatically, you would
use three ADO.NET DataColumn objects to represent them in memory. As you will see in
just a moment, the DataTable type maintains an internal collection (which is accessed
using the Columns property) to maintain its DataColumn types.
If you have a background in relational database theory, you know that a given column in a
data table can be assigned a set of constraints (e.g., configured as a primary key,
assigned a default value, configured to contain read-only information, and so on). Also,
every column in a table must map to an underlying data type (int, varchar, and so forth).
For example, the Employees table's schema may demand that the EmpID column maps
to an integer, while FirstName and LastName map to an array of characters. The
DataColumn class has numerous properties that allow you to configure these very things.
Table 13-3 provides a rundown of some core properties.

Table 13-3: Properties of the DataColumn

DATACOLUMN
PROPERTY

MEANING IN LIFE

AllowDBNull Used to indicate if a row can specify null values in
this column. The default value is true.

AutoIncrement

AutoIncrementSeed

AutoIncrementStep

These properties are used to configure the
autoincrement behavior for a given column. This can
be helpful when you wish to ensure unique values in
a given DataColumn (such as a primary key). By
default, a DataColumn does not support
autoincrementation.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-754 I ♡ Flyheart-

Table 13-3: Properties of the DataColumn

DATACOLUMN
PROPERTY

MEANING IN LIFE

Caption Gets or sets the caption to be displayed for this
column (for example, what the end user sees in a
DataGrid).

ColumnMapping This property determines how a DataColumn is
represented when a DataSet is saved as an XML
document using the DataSet.WriteXml() method.

ColumnName Gets or sets the name of the column in the Columns
collection (meaning how it is represented internally
by the DataTable). If you do not set the
ColumnName explicitly, the default values are
Column with (n+1) numerical suffixes (i.e., Column1,
Column2, Column3, and so forth).

DataType Defines the data type (boolean, string, float, and so
on) stored in the column.

DefaultValue Gets or sets the default value assigned to this
column when inserting new rows. This is used if not
otherwise specified.

Expression Gets or sets the expression used to filter rows,
calculate a column's value, or create an aggregate
column.

Ordinal Gets the numerical position of the column in the
Columns collection maintained by the DataTable.

ReadOnly Determined if this column can be modified once a
row has been added to the table. The default is false.

Table Gets the DataTable that contains this DataColumn.

Unique Gets or sets a value indicating whether the values in
each row of the column must be unique or if
repeating values are permissible. If a column is
assigned a primary key constraint, the Unique
property should be set to true.

Building a DataColumn

To illustrate the basic use of the DataColumn, assume you need to model a column
named FirstName, which internally maps to an array of characters. Furthermore, assume

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-755 I ♡ Flyheart-

this column (for whatever reason) must be read only. Programmatically, you can write the
following logic:

protected void btnColumn_Click (object sender, System.EventArgs e)

{

 // Build the FirstName column.

 DataColumn colFName = new DataColumn();

 // Set a bunch of values.

 colFName.DataType = Type.GetType("System.String");

 colFName.ReadOnly = true;

 colFName.Caption = "First Name";

 colFName.ColumnName = "FirstName";

 // Get a bunch of values.

 string temp = "Column type: " + colFName.DataType + "\n" +

 "Read only? " + colFName.ReadOnly + "\n" +

 "Caption: " + colFName.Caption + "\n" +

 "Column Name: " + colFName.ColumnName + "\n" +

 "Nulls allowed? " + colFName.AllowDBNull;

 MessageBox.Show(temp, "Column properties");

}
This gives the result shown in Figure 13-3.

Figure 13-3: Select properties of the DataColumn

Given that the DataColumn provides several overloaded constructors, you can specify a
number of properties directly at the time of creation, as shown here:

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-756 I ♡ Flyheart-

// Build the FirstName column (take two).

DataColumn colFName = new DataColumn("FirstName",

 Type.GetType("System.String"));

colFName.ReadOnly = true;

colFName.Caption = "First Name";

In addition to the properties already examined, the DataColumn does have a small set of
methods, which I assume you will check out on your own.

Adding a DataColumn to a DataTable

The DataColumn type does not typically exist as a stand-alone entity, but is instead
inserted in a DataTable. To do so, begin by creating a new DataTable type (fully detailed
later in the chapter). Next insert each DataColumn in the
DataTable.DataColumnCollection type using the Columns property. Here is an example:

// Build the FirstName column.

DataColumn myColumn = new DataColumn();

// Create a new DataTable.

DataTable myTable = new DataTable("MyTable");

// The Columns property returns a DataColumnCollection type.

// Use the Add() method to insert the column in the table.

myTable.Columns.Add(myColumn);

Configuring a DataColumn to Function as a Primary Key

One common rule of database development is that a table should have at least one
column that functions as the primary key. A primary key constraint is used to uniquely
identify a record (row) in a given table. In keeping with the current Employees example,
assume you now wish to build a new DataColumn type to represent the EmpID field. This
column will be the primary key of the table and thus should have the AllowDBNull and
Unique properties configured as shown here:

// This column is functioning as a primary key.

DataColumn colEmpID = new DataColumn(EmpID, Type.GetType("System.Int32"));

colEmpID.Caption = "Employee ID";

colEmpID.AllowDBNull = false;

colEmpID.Unique = true;

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-757 I ♡ Flyheart-

Once the DataColumn has been correctly set up to function as a primary key, the next
step is to assign this DataColumn to the DataTable's PrimaryKey property. You will see
how to do in just a bit during the discussion of the DataTable, so put this on the back
burner for the time being.

Enabling Autoincrementing Fields

One aspect of the DataColumn you may choose to configure is its ability to autoincrement.
Simply put, autoincrementing columns are used to ensure that when a new row is added
to a given table, the value of this column is assigned automatically, based on the current
step of the incrementation. This can be helpful when you wish to ensure that a column
has no repeating values (such as a primary key). This behavior is controlled using the
AutoIncrement, AutoIncrementSeed, and AutoIncrementStep properties.

To illustrate, build a DataColumn that supports autoincrementation. The seed value is
used to mark the starting value of the column, where the step value identifies the number
to add to the seed when incrementing, as shown here:

// Create a data column.

DataColumn myColumn = new DataColumn();

myColumn.ColumnName = "Foo";

myColumn.DataType = System.Type.GetType("System.Int32");

// Set the autoincrement behavior.

myColumn.AutoIncrement = true;

myColumn.AutoIncrementSeed = 500;

myColumn.AutoIncrementStep = 12;

Here, the Foo column has been configured to ensure that as rows are added to the
respective table, the value in this field is incremented by 12. Because the seed has been
set at 500, the first five values should be 500, 512, 524, 536, and 548.

To prove the point, insert this DataColumn in a DataTable. Then add a number of new
rows to the table, which of course automatically bumps the value in the Foo column, as
shown here:

protected void btnAutoCol_Click (object sender, System.EventArgs e)

{

 // Make a data column that maps to an int.

 DataColumn myColumn = new DataColumn();

 myColumn.ColumnName = "Foo";

 myColumn.DataType = System.Type.GetType("System.Int32");

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-758 I ♡ Flyheart-

 // Set the autoincrement behavior.

 myColumn.AutoIncrement = true;

 myColumn.AutoIncrementSeed = 500;

 myColumn.AutoIncrementStep = 12;

 // Add this column to a new DataTable.

 DataTable myTable = new DataTable("MyTable");

 myTable.Columns.Add(myColumn);

 // Add 20 new rows.

 DataRow r;

 for(int i =0; i < 20; i++)

 {

 r = myTable.NewRow();

 myTable.Rows.Add(r);

 }

 // Now list the value in each row.

 string temp = "";

 DataRowCollection rows = myTable.Rows;

 for(int i = 0;i < myTable.Rows.Count; i++)

 {

 DataRow currRow = rows[i];

 temp += currRow["Foo"] + " ";

 }

 MessageBox.Show(temp, "These values brought ala auto-increment");

}
If you run the application (and click the corresponding Button), we see the message
shown in Figure 13-4.

Figure 13-4: An autoincremented column

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-759 I ♡ Flyheart-

Configuring a Column's XML Representation

While many of the remaining DataColumn properties are rather self-explanatory (provided
you are comfortable with database terminology), I would like to discuss the
ColumnMapping property. The DataColumn.ColumnMapping property is used to
configure how this column should be represented in XML, if the owning DataSet dumps
its contents using the WriteXml() method. The value of the ColumnMapping property is
configured using the MappingType enumeration (Table 13-4).

Table 13-4: Values of the MappingType enumeration

MAPPINGTYPE
ENUMERATION
VALUE MEANING IN LIFE

Attribute The column is mapped to an XML attribute.

Element The column is mapped to an XML element (the default).

Hidden The column is mapped to an internal structure.

TableElement The column is mapped to a table value.

Text The column is mapped to text.

The default value of the ColumnMapping property is MappingType.Element. Assume that
you have instructed the owning DataSet to write its contents to a new file stream as XML.
Using this default setting, the EmpID column would appear as shown here:

<Employee>

 <EmpID>500</EmpID>

</Employee>

However, if the DataColumn's ColumnMapping property is set to MappingType.Attribute,
you see the following XML representation:

<Employee EmpID = "500"/>

This chapter examines the ADO.NET/XML integration in greater detail when discussing
the DataSet. Nevertheless, at this point, you understand how to create a stand-alone
DataColumn type. Now for an examination of the basic behavior of the DataRow.

SOURCE
CODE

The DataColumn application is included under the Chapter 13
subdirectory.

Examining the DataRow Type

As you have seen, a collection of DataColumn objects represents the schema of a table.
A DataTable maintains its columns using the internal DataColumnCollection type. In

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-760 I ♡ Flyheart-

contrast, a collection of DataRow types represents the actual data in the table. Thus, if
you have 20 listings in a table named Employees, you can represent these entries using
20 DataRow types. Using the members of the DataRow class, you are able to insert,
remove, evaluate, and manipulate the values in the table.

Working with a DataRow is a bit different from working with a DataColumn, because you
do not create a direct instance of this type, but rather obtain a reference from a given
DataTable. For example, assume you wish to insert a new row in the Employees table.
The DataTable.NewRow() method allows you to obtain the next slot in the table, at which
point you can fill each column with new data, as shown here:

// Build a new Table.

DataTable empTable = new DataTable("Employees");

// ...Add EmpID, FirstName and LastName columns to table...

// Build a new Employee record.

DataRow row = empTable.NewRow();

row["EmpID"] = 102;

row["FirstName"] = "Joe";

row["LastName"] = "Blow";

// Add it to the Table's DataRowCollection.

empTable.Rows.Add(row);
Notice how the DataRow class defines an indexer that can be used to gain access to a
given DataColumn by numerical position as well as column name. Also notice that the
DataTable maintains another internal collection (DataRowCollection) to hold each row of
data. The DataRow type defines the following core members, grouped by related
functionality in Table 13-5.

Table 13-5: Members of the DataRow

DATAROW
MEMBER

MEANING IN LIFE

AcceptChanges()

RejectChanges()

Commits or rejects all the changes made to this
row since the last time AcceptChanges was called.

BeginEdit()

EndEdit()

CancelEdit()

Begins, ends, or cancels an edit operation on a
DataRow object.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-761 I ♡ Flyheart-

Table 13-5: Members of the DataRow

DATAROW
MEMBER

MEANING IN LIFE

Delete() Marks a row to be removed when the
AcceptChanges() method is called.

HasErrors

GetColumnsInError()

GetColumnError()

ClearErrors()

RowError

The HasErrors property returns a boolean value
indicating if there are errors in a column's
collection. If so, the GetColumnsInError() method
can be used to obtain the offending members,
GetColumnError() can be used to obtain the error
description, while the ClearErrors() method
removes each error listing for the row. The
RowError property allows you to configure a textual
description of the error for a given row.

IsNull() Gets a value indicating whether the specified
column contains a null value.

ItemArray Gets or sets all of the values for this row using an
array of objects.

RowState Used to pinpoint the current state of the DataRow
using values of the RowState enumeration.

Table Use this property to obtain a reference to the
DataTable containing this DataRow.

Understanding the DataRow.RowState Property

Most of the methods of the DataRow class only make sense in the context of an owning
DataTable. You will see the process of inserting, removing, and updating rows in just a
moment; first, however, you should get to know the RowState property. This property is
useful when you need to programmatically identify the set of all rows in a table that have
changed, have been newly inserted, and so forth. This property may be assigned any
value from the DataRowState enumeration (Table 13-6).

Table 13-6: Values of the DataRowState Enumeration

DATAROWSTATE
ENUMERATION
VALUE MEANING IN LIFE

Deleted The row was deleted using the Delete method of the
DataRow.

Detached The row has been created but is not part of any

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-762 I ♡ Flyheart-

Table 13-6: Values of the DataRowState Enumeration

DATAROWSTATE
ENUMERATION
VALUE MEANING IN LIFE

DataRowCollection. A DataRow is in this state
immediately after it has been created and before it is
added to a collection, or if it has been removed from
a collection.

Modified The row has been modified, and AcceptChanges()
has not been called.

New The row has been added to a DataRowCollection,
and AcceptChanges() has not been called.

Unchanged The row has not changed since AcceptChanges()
was last called.

To illustrate the various states a DataRow may have, the following class documents the
changes to the RowState property as a new DataRow is created, inserted in, and
removed from a DataTable:

public class DRState

{

 public static void Main()

 {

 // Build a single-column DataTable.

 DataTable myTable = new DataTable("Employees");

 DataColumn colID = new DataColumn("EmpID",

 Type.GetType("System.Int32"));

 myTable.Columns.Add(colID);

 // The DataRow.

 DataRow myRow;

 // Create a new (detached) DataRow.

 myRow = myTable.NewRow();

 Console.WriteLine(myRow.RowState.ToString());

 // Now add it to table.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-763 I ♡ Flyheart-

 myTable.Rows.Add(myRow);

 Console.WriteLine(myRow.RowState.ToString());

 // Trigger an 'accept.

 myTable.AcceptChanges();

 Console.WriteLinemyRow.RowState.ToString());

 // Modify it.

 myRow["EmpID"] = 100;

 Console.WriteLine(myRow.RowState.ToString());

 // Now delete it.

 myRow.Delete();

 Console.WriteLine(myRow.RowState.ToString());

 myRow.AcceptChanges();

 }

}
The output should be clear (Figure 13-5).

Figure 13-5: Changes in row states

As you can see, the ADO.NET DataRow is smart enough to remember its current state of
affairs. Given this, the owning DataTable is able to identify which rows have been
modified. This is a key feature of the DataSet, given that when it comes time to send
updated information to the data store, only the modified values are submitted. Clearly this
behavior helps optimize trips between the layers of your system.

The ItemArray Property

Another helpful member of the DataRow is the ItemArray property. This method returns a
complete snapshot of the current row as an array of System.Object types. Also, you can
insert a new row using the ItemArray property, rather than listing each DataColumn
explicitly. Assume the current table now has two DataColumns (EmpID and FirstName).

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-764 I ♡ Flyheart-

The following logic adds some new rows by assigning an array of objects to the ItemArray
property and then promptly prints the results (see Figure 13-6):

Figure 13-6: Using the ItemArray property

// Declare the array variable.

object [] myVals = new object[2];

DataRow dr;

// Create some new rows and add to DataRowCollection.

for(int i = 0; i < 5; i++)

{

 myVals[0] = i;

 myVals[1]= "Name " + i;

 dr = myTable.NewRow();

 dr.ItemArray = myVals;

 myTable.Rows.Add(dr);

}

// Now print each value.

foreach(DataRow r in myTable.Rows)

{

 foreach(DataColumn c in myTable.Columns)

 {

 Console.WriteLine(r[c]);

 }

}
SOURCE
CODE

The DataRowState is included under the Chapter 13
subdirectory.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-765 I ♡ Flyheart-

Details of the DataTable
The DataTable is an in-memory representation of a tabular block of data. While you can
manually compose a DataTable programmatically, you will more commonly obtain a
DataTable dynamically using a DataSet and the types defined in the System.Data.OleDb
or System.Data.SqlClient namespaces. Table 13-7 describes some core properties of the
DataTable.

Table 13-7: Properties of the DataTable

DATATABLE
PROPERTY

MEANING IN LIFE

CaseSensitive Indicates whether string comparisons in the table are
case sensitive (or not). The default value is false.

ChildRelations Returns the collection of child relations
(DataRelationCollection) for this DataTable (if any).

Columns Returns the collection of columns that belong to this
table.

Constraints Gets the collection of constraints maintained by the
table (ConstraintCollection).

DataSet Gets the DataSet that contains this table (if any).

DefaultView Gets a customized view of the table that may include a
filtered view or a cursor position.

MinimumCapacity Gets or sets the initial number of rows in this table.
(The default is 25.)

ParentRelations Gets the collection of parent relations for this
DataTable.

PrimaryKey Gets or sets an array of columns that function as
primary keys for the data table.

Rows Returns the collection of rows that belong to this table.

TableName Gets or sets the name of the table. This same property
may also be specified as a constructor parameter.

To help visualize the key components of a DataTable, consider Figure 13-7. Be aware
that this is not a traditional class hierarchy that illustrates the is-a relations between these
types (e.g., the DataRow does not derive from DataRowCollection). Rather, this diagram
points out the logical has-a relationships between the DataTable's core items (e.g., the
DataRowCollection has a number of DataRow types).

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-766 I ♡ Flyheart-

Figure 13-7: Collections of the DataTable

Building a Complete DataTable
Now that you have been exposed to the basics, let's see a complete example of creating
and manipulating an in-memory data table. Assume you are interested in building a
DataTable representing the current inventory in a database named Cars. The Inventory
table will contain four columns: CarID, Make, Color, and PetName. Also, the CarID
column will function as the table's primary key (PK) and support autoincrementation. The
PetName column will allow null values. (Sadly, not everyone loves their automobiles as
much as we might!) Figure 13-8 shows the overall schema.

Figure 13-8: The Inventory DataTable

The process begins by creating a new DataTable type. When you do so, you specify the
friendly name of the table as a constructor parameter. This friendly name can be used to
reference this table from the containing DataSet, as shown here:

// Create a new DataTable.

DataTable inventoryTable = new DataTable("Inventory");

The next step is to programmatically insert each column using the Add() method of the
DataColumnCollection (accessed using the DataTable.Columns property). The following

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-767 I ♡ Flyheart-

logic adds the CarID, Make, Color, and PetName columns to the current DataTable
(recall that the underlying data type of each column is set using the DataType property):

// DataColumn var.

DataColumn myDataColumn;

// Create CarID column and add to table.

myDataColumn = new DataColumn();

myDataColumn.DataType = Type.GetType("System.Int32");

myDataColumn.ColumnName = "CarID";

myDataColumn.ReadOnly = true;

myDataColumn.AllowDBNull = false;

myDataColumn.Unique = true;

// Set the autoincrement behavior.

myDataColumn.AutoIncrement = true;

myDataColumn.AutoIncrementSeed = 1000;

myDataColumn.AutoIncrementStep = 10;

inventoryTable.Columns.Add(myDataColumn);

// Create Make column and add to table.

myDataColumn = new DataColumn();

myDataColumn.DataType = Type.GetType("System.String");

myDataColumn.ColumnName = "Make";

inventoryTable.Columns.Add(myDataColumn);

// Create Color column and add to table.

myDataColumn = new DataColumn();

myDataColumn.DataType = Type.GetType("System.String");

myDataColumn.ColumnName = "Color";

inventoryTable.Columns.Add(myDataColumn);

// Create PetName column and add to table.

myDataColumn = new DataColumn();

myDataColumn.DataType = Type.GetType("System.String");

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-768 I ♡ Flyheart-

myDataColumn.ColumnName = "PetName";

myDataColumn.AllowDBNull = true;

inventoryTable.Columns.Add(myDataColumn);

Before you add the rows, take the time to set the table's primary key. To do so, set the
DataTable.PrimaryKey property to whichever column necessary. Because more than a
single column can function as a table's primary key, be aware that the PrimaryKey
property requires an array of DataColumn types. For the Inventory table, assume the
CarID column is the only aspect of the primary key, as show here:

// Make the ID column the primary key column.

DataColumn[] PK = new DataColumn[1];

PK[0] = inventoryTable.Columns["CarID"];

inventoryTable.PrimaryKey = PK;

Last but not least, you need to add valid data to the table. Assuming you have an
appropriate ArrayList maintaining Car types, you can fill the table as shown here:

// Iterate over the array list to make rows (remember, the ID is

// autoincremented).

foreach(Car c in arTheCars)

{

 DataRow newRow;

 newRow = inventoryTable.NewRow();

 newRow["Make"] = c.make;

 newRow["Color"] = c.color;

 newRow["PetName"] = c.petName;

 inventoryTable.Rows.Add(newRow);

}
To display your new local in-memory table, assume you have a Windows Forms
application with a main Form displaying a DataGrid. As you saw in Chapter 11, the
DataSource property is used to bind a DataTable to the GUI. The output is shown in
Figure 13-9.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-769 I ♡ Flyheart-

Figure 13-9: Binding the DataTable to a DataGrid

Here, you added rows by specifying the string name of the column to modify. However,
you may also specify the numerical index of the column, which can be very helpful when
you need to iterate over each column. Thus, the previous code could be updated as
shown here (and still achieve the same end result):

foreach(Car c in arTheCars)

{

 // Specify columns by index.

 DataRow newRow;

 newRow = inventoryTable.NewRow();

 newRow[1] = c.make;

 newRow[2] = c.color;

 newRow[3] = c.petName;

 inventoryTable.Rows.Add(newRow);

}

Manipulating a DataTable: Deleting Rows

What if you wish to remove a row from a data table? One approach is to call the Delete()
method of the DataRowCollection type. Simply specify the index (or DataRow)
representing the row to remove. Assume you update your GUI as shown in Figure 13-10.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-770 I ♡ Flyheart-

Figure 13-10: Removing rows from a DataTable

If you look at the previous screen shot, you will notice that you specified the second row in
the DataTable, and therefore CarID 1020 has been blown away. The following logic
behind the new Button's Click event handler removes the specified row from your
in-memory DataTable:

// Remove this row from the DataRowCollection.

protected void btnRemoveRow_Click (object sender, System.EventArgs e)

{

 try

 {

 inventoryTable.Rows[(int.Parse(txtRemove.Text))].Delete();

 inventoryTable.AcceptChanges();

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

}

The Delete() method might have been better named MarkedAsDeletable() given that the
row is typically not removed until the DataTable.AcceptChanges() method has been
called. In effect, the Delete() method simply sets a flag that says "I am ready to die when
my table tells me." Also understand that if a row has been marked for deletion, a
DataTable may reject those changes before calling AcceptChanges(), as shown here:

// Mark a row as deleted, but reject the changes.

protected void btnRemoveRow_Click (object sender, System.EventArgs e)

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-771 I ♡ Flyheart-

{

 inventoryTable.Rows[txtRemove.Text.ToInt32()].Delete();

 // Do more work...

 inventoryTable.RejectChanges(); // Restore RowState.

}

Manipulating a DataTable: Applying Filters and Sort Orders

You may wish to see a small subset of a DataTable's data, as specified by some sort of
filtering criteria. For example, what if you wish to only see a certain make of automobile
from the in-memory Inventory table? The Select() method of the DataTable class provides
this very functionality. Update your GUI once again, this time allowing users to specify a
string that represents the make of the automobile they are interested in viewing (Figure
13-11).

Figure 13-11: Specifying a filter

The Select() method has been overloaded a number of times to provide different
selection semantics. At its most basic level, the parameter sent to Select() is a string that
contains some conditional operation. To begin, observe the following logic for the Click
event handler of your new Button:

protected void btnGetMakes_Click (object sender, System.EventArgs e)

{

 // Build a filter based on user input.

 string filterStr = "Make='" + txtMake.Text + "'";

 // Find all rows matching the filter.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-772 I ♡ Flyheart-

 DataRow[] makes = inventoryTable.Select(filterStr);

 // Show what we got!

 if(makes.Length = = 0)

 MessageBox.Show("Sorry, no cars...", "Selection error!");

 else

 {

 string strMake = null;

 for(int i = 0; i < makes.Length; i++)

 {

 DataRow temp = makes[i];

 strMake += temp["PetName"].ToString() + "\n";

 }

 MessageBox.Show(strMake, txtMake.Text + " type(s):");

 }

}
Here, you first build a simple filter criteria based on the value in the associated TextBox. If
you specify BMW, your filter is Make = 'BMW'. When you send this filter to the Select()
method, you get back an array of DataRow types, which represent each row that matches
the filter criteria (Figure 13-12).

Figure 13-12: Filtered data

A filter string can be composed of any number of relational operators. For example, what
if you wanted to find all cars with an ID greater than 1030? You could write the following
(see Figure 13-13 for output):

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-773 I ♡ Flyheart-

Figure 13-13: Specifying a range of data

// Now show the pet names of all cars with ID greater than 1030.

DataRow[] properIDs;

string newFilterStr = "ID > '1030'";

properIDs = inventoryTable.Select(newFilterStr);

string strIDs = null;

for(int i = 0; i < properIDs.Length; i++)

{

 DataRow temp = properIDs[i];

 strIDs += temp["PetName"].ToString()

 + " is ID " + temp["ID"] + "\n";

}

MessageBox.Show(strIDs, "Pet names of cars where ID > 1030");

Filtering logic is modeled after standard SQL syntax. To prove the point, assume you wish
to obtain the results of the previous Select() command alphabetically based on pet name.
In terms of SQL, this translates into a sort based on the PetName column. Luckily the
Select() method has been overloaded to send in a sort criterion, as shown here:

makes = inventoryTable.Select(filterStr, "PetName");
This returns something like what is shown in Figure 13-14.

Figure 13-14: Ordered data

If you want the results in descending order, call Select(), as shown here:

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-774 I ♡ Flyheart-

// Return results in descending order.

makes = inventoryTable.Select(filterStr, "PetName DESC");

In general, the sort string contains the column name followed by "ASC" (ascending, which
is the default) or "DESC" (descending). If need be, multiple columns can be separated by
commas.

Manipulating a DataTable: Updating Rows

The final aspect of the DataTable you should be aware of is the process of updating an
exiting row with new values. One approach is to first obtain the row(s) that match a given
filter criterion using the Select() method. Once you have the DataRow(s) in question,
modify them accordingly. For example, assume you have a new Button that (when clicked)
searches the DataTable for all rows where Make is equal to BMW. Once you identify
these items, you change the Make from 'BMW' to 'Colt':

// Find the rows you want to edit with a filter.

protected void btnChange_Click (object sender, System.EventArgs e)

{

 // Build a filter.

 string filterStr = "Make='BMW'";

 string strMake = null;

 // Find all rows matching the filter.

 DataRow[] makes = inventoryTable.Select(filterStr);

 // Change all Beemers to Colts!

 for(int i = 0; i < makes.Length; i++)

 {

 DataRow temp = makes[i];

 strMake += temp["Make"] = "Colt";

 makes[i] = temp;

 }

}

The DataRow class also provides the BeginEdit(), EndEdit(), and CancelEdit() methods,
which allow you to edit the content of a row while temporarily suspending any associated
validation rules. In the previous logic, each row was validated with each assignment.
(Also, if you capture any events from the DataRow, they fire with each modification.)
When you call BeginEdit() on a given DataRow, the row is placed in edit mode. At this

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-775 I ♡ Flyheart-

point you can make your changes as necessary and call either EndEdit() to commit these
changes or CancelEdit() to roll back the changes to the original version. For example:

// Assume you have obtained a row to edit.

// Now place this row in edit mode'.

rowToUpdate.BeginEdit();

// Send the row to a helper function, which returns a Boolean.

if(ChangeValuesForThisRow(rowToUpdate))

{

 rowToUpdate.EndEdit(); // OK!

}

else

{

 rowToUpdate.CancelEdit(); // Forget it.

}
Although you are free to manually call these methods on a given DataRow, these
members are automatically called when you edit a DataGrid widget that has been bound
to a DataTable. For example, when you select a row to edit from a DataGrid, that row is
automatically placed in edit mode. When you shift focus to a new row, EndEdit() is called
automatically. To test this behavior, assume you have manually updated each car to be of
a given Make using the DataGrid (Figure 13-15).

Figure 13-15: Editing rows in a DataGrid

If you now request all BMWs, the message box correctly returns all rows, as the
underlying DataTable associated to the DataGrid has been automatically updated (Figure
13-16).

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-776 I ♡ Flyheart-

Figure 13-16: The Inventory DataTable

Understanding the DataView Type
In database nomenclature, a view object is a stylized representation of a table. For
example, using Microsoft SQL Server, you could create a view for your current Inventory
table that returns a new table only containing automobiles of a given color. In ADO.NET,
the DataView type allows you to programmatically extract a subset of data from the
DataTable.

One great advantage of holding multiple views of the same table is that you can bind
these views to various GUI widgets (such as the DataGrid). For example, one DataGrid
might be bound to a DataView showing all autos in the Inventory, while another may be
configured to display only green automobiles. On a related note, the DataTable type
provides the DefaultView property that returns the default DataView for the table.
Here is an example. Your goal is to update the user interface of the current Windows
Forms application to support two additional DataGrid types. One of these grids only
shows the rows from the Inventory that match the filter Make='Colt'. The other grid only
shows red automobiles (i.e., Color='Red'). Figure 13-17 shows the GUI update.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-777 I ♡ Flyheart-

Figure 13-17: Creating multiple views for the Inventory table

To begin, you need to create two member variables of type DataView:

public class mainForm : System.Windows.Forms.Form

{

 // Views of the DataTable.

 DataView redCarsView; // I only show red cars.

 DataView coltsView; // I only show Colts.

...

}

Next, assume you have a new helper function named CreateViews(), which is called
directly after the DataTable has been fully constructed, as shown here:

protected void btnMakeDataTable_Click (object sender, System.EventArgs e)

{

 // Make the data table.

 MakeTable();

 // Make views.

 CreateViews();

 ...

}

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-778 I ♡ Flyheart-

Here is the implementation of this new helper function. Notice that the constructor of each
DataView has been passed the DataTable that will be used to build the custom set of data
rows:

private void CreateViews()

{

 // Set the table that is used to construct these views.

 redCarsView = new DataView(inventoryTable);

 coltsView = new DataView(inventoryTable);

 // Now configure the views using a filter.

 redCarsView.RowFilter = "Color = 'red'";

 coltsView.RowFilter = "Make = 'colt'";

 // Bind to grids.

 RedCarViewGrid.DataSource = redCarsView;

 ColtsViewGrid.DataSource = coltsView;

}

As you can see, the DataView class supports a property named RowFilter, which
contains the string representing the filtering criteria used to extract matching rows. Once
you have your view established, set the grid's DataSource property accordingly. That's it!
Because DataGrids are smart enough to detect changes to their underlying data source,
if you click the Make Beemers Colts button, the ColtsViewGrid is updated automatically.
In addition to the RowFilter property, Table 13-8 describes some additional members of
the DataView class.

Table 13-8: Members of the DataView Type

DATAVIEW MEMBER MEANING IN LIFE

AddNew() Adds a new row to the DataView.

AllowDelete

AllowEdit

AllowNew

Configure whether the DataView allows deleting,
inserting, or updating of its rows.

Delete() Deletes a row at the specified index.

RowFilter Gets or sets the expression used to filter which
rows are viewed in the DataView.

Sort Gets or sets the sort column or columns and sort

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-779 I ♡ Flyheart-

Table 13-8: Members of the DataView Type

DATAVIEW MEMBER MEANING IN LIFE

order for the table.

Table Gets or sets the source DataTable.

SOURCE
CODE

The complete CarDataTable project is included under the
Chapter 13 subdirectory.

Understanding the Role of the DataSet

You have been examining how to build a DataTable to represent a single table of data
held in memory. Although DataTables can be used as stand-alone entities, they are more
typically contained in a DataSet. In fact, most data access types supplied by ADO.NET
only return a populated DataSet, not an individual DataTable.
Simply put, a DataSet is an in-memory representation of any number of tables (which
may be just a single DataTable) as well as any (optional) relationships between these
tables and any (optional) constraints. To gain a better understanding of the relationship
among these core types, consider the logical hierarchy shown in Figure 13-18.

Figure 13-18: Collections of the DataSet

The Tables property of the DataSet allows you to access the DataTableCollection that
contains the individual DataTables. Another important collection used by the DataSet is
the DataRelationCollection. Given that a DataSet is a disconnected version of a database
schema, it can programmatically represent the parent/child relationships between its
tables.

For example, a relation can be created between two tables to model a foreign key
constraint using the DataRelation type. This object can then be added to the
DataRelationCollection through the Relations property. At this point, you can navigate
between the connected tables as you search for data. You will see how this is done a bit
later in the chapter.

The ExtendedProperties property provides access to the PropertyCollection type, which
allows you to associate any extra information to the DataSet as name/value pairs. This
information can literally be anything at all, even if it has no bearing on the data itself. For
example, you can associate your company's name to a DataSet, which can then function
as in-memory metadata, as shown here:

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-780 I ♡ Flyheart-

// Make a DataSet and add some metadata.

DataSet ds = new DataSet("MyDataSet");

ds.ExtendedProperties.Add("CompanyName", "Intertech, Inc");

// Print out the metadata.

Console.WriteLine(ds.ExtendedProperties["CompanyName"].ToString());

Other examples of extended properties might include an internal password that must be
supplied to access the contents of the DataSet, a number representing a data refresh rate,
and so forth. Be aware that the DataTable itself also supports the ExtendedProperties
property.

Members of the DataSet

Before exploring too many other programmatic details, take a look at the public interface
of the DataSet. The properties defined by the DataSet are centered on providing access
to the internal collections, producing XML data representations and providing detailed
error information. Table 13-9 describes some core properties of interest.

Table 13-9: Properties of the Mighty DataSet

DATASET
PROPERTY

MEANING IN LIFE

CaseSensitive Indicates whether string comparisons in DataTable
objects are case-sensitive (or not).

DataSetName Gets or sets the name of this DataSet. Typically
this value is established as a constructor
parameter.

DefaultViewManager Establishes a custom view of the data in the
DataSet.

EnforceConstraints Gets or sets a value indicating whether constraint
rules are followed when attempting any update
operation.

HasErrors Gets a value indicating whether there are errors in
any of the rows in any of the tables of this DataSet.

Relations Get the collection of relations that link tables and
allow navigation from parent tables to child tables.

Tables Provides access to the collection of tables
maintained by the DataSet.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-781 I ♡ Flyheart-

The methods of the DataSet mimic some of the functionality provided by the
aforementioned properties. In addition to interacting with XML streams, other methods
exist to allow you to copy the contents of your DataSet, as well as establish the beginning
and ending points of a batch of updates. Table 13-10 describes some core methods.

Table 13-10: Methods of the Mighty DataSet

DATASET
METHOD

MEANING IN LIFE

AcceptChanges() Commits all the changes made to this DataSet
since it was loaded or the last time
AcceptChanges() was called.

Clear() Completely clears the DataSet data by removing
every row in each table.

Clone() Clones the structure of the DataSet, including all
DataTables, as well as all relations and any
constraints.

Copy() Copies both the structure and data for this DataSet.

GetChanges() Returns a copy of the DataSet containing all
changes made to it since it was last loaded or since
AcceptChanges() was called.

GetChildRelations() Returns the collection of child relations that belong
to a specified table.

GetParentRelations() Gets the collection of parent relations that belong to
a specified table.

HasChanges() Overloaded. Gets a value indicating whether the
DataSet has changes, including new, deleted, or
modified rows.

Merge() Overloaded. Merges this DataSet with a specified
DataSet.

ReadXml()

ReadXmlSchema()

Allow you to read XML data from a valid stream (file
based, memory based, or network based) to the
DataSet.

RejectChanges() Rolls back all the changes made to this DataSet
since it was created or the last time
DataSet.AcceptChanges was called.

WriteXml()

WriteXmlSchema()

Allow you to write the contents of a DataSet to a
valid stream.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-782 I ♡ Flyheart-

Now that you have a better understanding of the role of the DataSet (and some idea what
you can do with one), let's run through some specifics. Once this discussion of the
ADO.NET DataSet is complete, the remainder of this chapter will focus on how to obtain
DataSet types from external sources (such as a relational database) using the types
defined by the System.Data.SqlClient and System.Data.OleDb namespaces.

Building an In-Memory DataSet

To illustrate the use of a DataSet, create a new Windows Forms application that
maintains a single DataSet, containing three DataTable objects named Inventory,
Customers, and Orders. The columns for each table will be minimal but complete, with
one column marking the primary key for each table. Most importantly, you can model the
parent/child relationships between the tables using the DataRelation type. Your goal is to
build the database shown in Figure 13-19 in memory.

Figure 13-19: The In-Memory Automobile database

Here, the Inventory table is the parent table to the Orders table, which maintains a foreign
key (CarID) column. Also, the Customers table is the parent table to the Orders table.
(Again note the foreign key, CustID.) As you will soon see, when you add DataRelation
types to your DataSet, they may be used to navigate between the tables to obtain and
manipulate the related data.

To begin, assume you have added a set of member variables to your main Form,
representing the individual DataTables and containing DataSet, as shown here:

public class mainForm : System.Windows.Forms.Form

{

 // Inventory DataTable.

 private DataTable inventoryTable = new DataTable("Inventory");

 // Customers DataTable.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-783 I ♡ Flyheart-

 private DataTable customersTable = new DataTable("Customers");

 // Orders DataTable.

 private DataTable ordersTable = new DataTable("Orders");

 // Our DataSet!

 private DataSet carsDataSet = new DataSet("CarDataSet");

...

}

Now, to keep things as OO as possible, build some (very) simple wrapper classes to
represent a Car and Customer in the system. Note that the Customer class maintains a
field that identifies the car a customer is interested in buying, as shown here:

public class Car

{

 // Make public for easy access.

 public string petName, make, color;

 public Car(string petName, string make, string color)

 {

 this.petName = petName;

 this.color = color;

 this.make = make;

 }

}

public class Customer

{

 public Customer(string fName, string lName, int currentOrder)

 {

 this.firstName= fName;

 this.lastName = lName;

 this.currCarOrder = currentOrder;

 }

 public string firstName, lastName;

 public int currCarOrder;

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-784 I ♡ Flyheart-

}

The main Form maintains two ArrayList types that hold a set of cars and customers,
which are populated with some sample data in the scope of the Form's constructor. Next,
the constructor calls a number of private helper functions to build the tables and their
relationships. Finally, this method binds the Inventory and Customer DataTables to their
corresponding DataGrid widgets. Notice that the following code binds a given DataTable
in the DataSet using the SetDataBinding() method:

// Your list of Cars and Customers.

private ArrayList arTheCars, arTheCustomers;

public mainForm()

{

 // Fill the car array list with some cars.

 arTheCars = new ArrayList();

 arTheCars.Add(new Car("Chucky", "BMW", "Green"));

 ...

 // Fill the other array list with some customers.

 arTheCustomers = new ArrayList();

 arTheCustomers.Add(new Customer("Dave", "Brenner", 1020));

 ...

 // Make data tables (using the same techniques seen previously).

 MakeInventoryTable();

 MakeCustomerTable();

 MakeOrderTable();

 // Add relation (seen in just a moment).

 BuildTableRelationship();

 // Bind to grids (Param1 = DataSet, Param2 = name of table in DataSet).

 CarDataGrid.SetDataBinding(carsDataSet, "Inventory");

 CustomerDataGrid.SetDataBinding(carsDataSet, "Customers");

}

Each DataTables is constructed using the techniques examined earlier in this chapter. To
keep focused on the DataSet logic, I will not repeat every detail of the table-building logic

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-785 I ♡ Flyheart-

here. However, be aware that each table is assigned a primary key that is
autoincremented. Here is some partial table-building logic (check out same code for
complete details):

private void MakeOrderTable()

{

...

 // Add table to the DataSet.

 carsDataSet.Tables.Add(customersTable);

 // Create OrderID, CustID, CarID columns and add to table...

 // Make the ID column the primary key column...

 // Add some orders.

 for(int i = 0; i < arTheCustomers.Count; i++)

 {

 DataRow newRow;

 newRow = ordersTable.NewRow();

 Customer c = (Customer)arTheCustomers[i];

 newRow["CustID"] = i;

 newRow["CarID"] = c.currCarOrder;

 carsDataSet.Tables["Orders"].Rows.Add(newRow);

 }

}

The MakeInventoryTable() and MakeCustomerTable() helper functions behave almost
identically.

Expressing Relations Using the DataRelation Type
The really interesting work happens in the BuildTableRelationship() helper function. Once
a DataSet has been populated with a number of tables, you can optionally choose to
programmatically model their parent/child relationships. Be aware that this is not
mandatory. You can have a DataSet that does little else than hold a collection of
DataTables in memory (even a single DataTable). However, when you do establish the
interplay between your DataTables, you can navigate between them on the fly and collect
any sort of information you may be interested in obtaining, all while disconnected from the
data source.

The System.Data.DataRelation type is an OO wrapper around a table-to-table
relationship. When you create a new DataRelation type, specify a friendly name, followed
by the parent table (for example, Inventory) and the related child table (Orders). For a

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-786 I ♡ Flyheart-

relationship to be established, each table must have an identically named column (CarID)
of the same data type (Int32 in this case). In this light, a DataRelation is basically bound
by the same rules as a relational database. Here is the complete implementation of the
BuildTableRelationship() helper function:

private void BuildTableRelationship()

{

 // Create a DR obj.

 DataRelation dr = new DataRelation("CustomerOrder",

 carsDataSet.Tables["Customers"].Columns["CustID"], // Parent.

 carsDataSet.Tables["Orders"].Columns["CustID"]); // Child.

 // Add to the DataSet.

 carsDataSet.Relations.Add(dr);

 // Create another DR obj.

 dr = new DataRelation("InventoryOrder",

 carsDataSet.Tables["Inventory"].Columns["CarID"], // Parent.

 carsDataSet.Tables["Orders"].Columns["CarID"]); // Child.

 // Add to the DataSet.

 carsDataSet.Relations.Add(dr);

}
As you can see, a given DataRelation is held in the DataRelationCollection maintained by
the DataSet. The DataRelation type offers a number of properties that allow you to obtain
a reference to the child and/or parent table that is participating in the relationship, specify
the name of the relationship, and so on. (See Table 13-11.)

Table 13-11: Properties of the DataRelation Type

DATARELATION
PROPERTY

MEANING IN LIFE

ChildColumns

ChildKeyConstraint

ChildTable

Obtain information about the child table in this
relationship as well as the table itself.

DataSet Gets the DataSet to which the relations' collection
belongs.

ParentColumns Obtain information about the parent table in this

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-787 I ♡ Flyheart-

Table 13-11: Properties of the DataRelation Type

DATARELATION
PROPERTY

MEANING IN LIFE

ParentKeyConstraint

ParentTable

relationship as well as the table itself.

RelationName Gets or sets the name used to look up this relation
in the parent data set's DataRelationCollection.

Navigating Between Related Tables

To illustrate how a DataRelation allows you to move between related tables, extend your
GUI to include a new Button type and a related TextBox. The end user is able to enter the
ID of a customer and obtain all the information about that customer's order, which is
placed in a simple message box (Figure 13-20).

Figure 13-20: Navigating data relations

The Button's Click event handler is as shown here (error checking removed for clarity):

protected void btnGetInfo_Click (object sender, System.EventArgs e)

{

 string strInfo = "";

 DataRow drCust = null;

 DataRow[] drsOrder = null;

 // Get the specified CustID from the TextBox.

 int theCust = int.Parse(this.txtCustID.Text);

 // Now based on CustID, get the correct row in Customers table.

 drCust = carsDataSet.Tables["Customers"].Rows[theCust];

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-788 I ♡ Flyheart-

 strInfo =+ "Cust #" + drCust["CustID"].ToString() + "\n";

 // Navigate from customer table to order table.

 drsOrder = drCust.GetChildRows(carsDataSet.Relations["CustomerOrder']);

 // Get customer name.

 foreach(DataRow r in drsOrder)

 strInfo += "Order Number: " + r["OrderID"] + "\n";

 // Now navigate from order table to inventory table.

 DataRow[] drsInv =

 drsOrder[0].GetParentRows(carDataSet.Relations["InventoryOrder']);

 // Get Car info.

 foreach(DataRow r in drsInv)

 {

 strInfo += "Make: " + r["Make"] + "\n";

 strInfo += "Color: " + r["Color"] + "\n";

 strInfo += "Pet Name: " + r["PetName"] + "\n";

 }

 MessageBox.Show(strInfo, "Info based on cust ID");

}

As you can see, the key to moving between data tables is to use a handful of methods
defined by the DataRow type. Let's break this code down step by step. First, you obtain
the correct customer ID from the text box and use it to the correct row in the Customers
table (using the Rows property, of course), as shown here:

// Get the specified CustID from the TextBox.

int theCust = int.Parse(this.txtCustID.Text);

// Now based on CustID, get the correct row in Customers table.

DataRow drCust = null;

drCust = carsDataSet.Tables["Customers"].Rows[theCust];

strInfo += "Cust #" + drCust["CustID"].ToString() + "\n";

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-789 I ♡ Flyheart-

Next, you navigate from the Customers table to the Orders table, using the
CustomerOrder data relation. Notice that the DataRow.GetChildRows() method allows
you to grab rows from your child table, and once you do, you can read information out of
the table, as shown here:

// Navigate from customer table to order table.

DataRow[] drsOrder = null;

drsOrder = drCust.GetChildRows(carsDataSet.Relations["CustomerOrder"]);

// Get customer name.

foreach(DataRow r in drsOrder)

strInfo += "Order Number: " + r["OrderID"] + "\n";

Your final step is to navigate from the Orders table to its parent table (Inventory), using
the GetParentRows() method. At this point, you can read information from the Inventory
table using the Make, PetName, and Color columns, as shown here:

// Now navigate from order table to inventory table.

DataRow[] drsInv =

 drsOrder[0].GetParentRows(carsDataSet.Relations["InventoryOrder"]);

foreach(DataRow r in drsInv)

{

 strInfo += "Make: " + r["Make"] + "\n";

 strInfo += "Color: " + r["Color"] + "\n";

 strInfo += "Pet Name: " + r["PetName"] + "\n";

}

As a final example of navigating relations programmatically, the following code prints out
the values in the Orders table that is obtained indirectly using the InventoryOrders
relationship:

protected void btnGetChildRels_Click (object sender, System.EventArgs e)

{

 // Ask the CarsDataSet for the child relations of the inv. table.

 DataRelationCollection relCol;

 DataRow[] arrRows;

 string info = "";

 relCol = carsDataSet.Tables["inventory"].ChildRelations;

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-790 I ♡ Flyheart-

 info += "\tRelation is called: " + relCol[0].RelationName + "\n\n";

 // Now loop over each relation and print out info.

 foreach(DataRelation dr in relCol)

 {

 foreach(DataRow r in inventoryTable.Rows)

 {

 arrRows = r.GetChildRows(dr);

 // Print out the value of each column in the row.

 for (int i = 0; i < arrRows.Length; i++)

 {

 foreach(DataColumn dc in arrRows[i].Table.Columns)

 {

 info += "\t" + arrRows[i][dc];

 }

 info += "\n";

 }

 }

 MessageBox.Show(info,

 "Data in Orders Table obtained by child relations");

 }

}
Figure 13-21 shows the output.

Figure 13-21: Navigating parent/child relations

Hopefully this last example has you convinced of the usefulness of the DataSet type.
Given that a DataSet is completely disconnected from the underlying data source, you
can work with an in-memory copy of data and navigate around each table to make any
necessary updates, deletes, or inserts. Once this is done, you can submit your changes
to the data store for processing. Of course you don't yet know how to get connected!
There is one final item of interest regarding the DataSet before addressing this issue.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-791 I ♡ Flyheart-

Reading and Writing XML-Based DataSets

A major design goal of ADO.NET was to apply a liberal use of XML infrastructure. Using
the DataSet type, you can write an XML representation of the contents of your tables,
relations, and other schematic details to a given stream (such as a file). To do so, simply
call the WriteXml() method, as shown here:

protected void btnToXML_Click (object sender, System.EventArgs e)

{

 // Write your entire DataSet to a file in the app directory.

 carsDataSet.WriteXml("cars.xml");

 MessageBox.Show("Wrote CarDataSet to XML file in app directory");

 btnReadXML.Enabled = true;

}
If you now open your new file in the Visual Studio.NET IDE (Figure 13-22), you will see
that the entire DataSet has been transformed to XML. (If you are not comfortable with
XML syntax, don't sweat it. The DataSet understands XML just fine.)

Figure 13-22: The DataSet as XML

To test the ReadXml() method of the DataSet, perform a little experiment. The
CarDataSet application has a Button that will clear out the current DataSet completely
(including all tables and relations). After the in-memory representation has been gutted,
instruct the DataSet to read in the cars.xml file, which as you would guess restores the
entire DataSet, as shown here:

protected void btnReadXML_Click (object sender, System.EventArgs e)

{

 // Kill current DataSet.

 carsDataSet.Clear();

 carsDataSet.Dispose();

 MessageBox.Show("Just cleared data set. . .");

 carsDataSet = new DataSet("CarDataSet");

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-792 I ♡ Flyheart-

 carsDataSet.ReadXml("cars.xml");

 MessageBox.Show("Reconstructed data set from XML file...");

 btnReadXML.Enabled = false;

 // Bind to grids.

 CarDataGrid.SetDataBinding(carsDataSet, "Inventory");

 CustomerDataGrid.SetDataBinding(carsDataSet, "Customers");

}

Be aware that under the hood, these XML-centric methods are using types defined in the
System.Xml.dll assembly (specifically the XmlReader and XmlWriter classes). Therefore,
in addition to setting a reference to this binary, you also need to make explicit reference to
its types, as shown here:

// Need this namespace to call ReadXml() or WriteXml()!

using System.Xml;
Figure 13-23 shows your final product.

Figure 13-23: The final in-memory DataSet application
SOURCE
CODE

The CarDataSet application is included under the Chapter 13
subdirectory.

Building a Simple Test Database
Now that you understand how to create and manipulate a DataSet in memory, you can
get down to the business of making a data connection and seeing how to obtain a
populated DataSet. In keeping with the automotive theme used throughout this text, I

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-793 I ♡ Flyheart-

have included two versions of a sample Cars database (available for download at
www.apress.com) that models the Inventory, Orders, and Customers tables examined
during the chapter.
The first version is a SQL script that builds the tables (including their relationships) and is
intended for users of SQL Server 7.0 (and greater). To create the Cars database, begin
by opening the Query Analyzer utility that ships with SQL Server. Next, connect to your
machine and open the cars.sql file. Before you run the script, be sure that the path listed
in the SQL file points to your installation of MS SQL Server. Thus, be sure you edit the
following DDL (in bold) as necessary:

CREATE DATABASE [Cars] ON (NAME = N'Cars_Data', FILENAME

=N' D:\MSSQL7\Data \Cars_Data.MDF' ,

SIZE = 2, FILEGROWTH = 10%)

LOG ON (NAME = N'Cars_Log', FILENAME

= N' D:\MSSQL7\Data\Cars_Log.LDF' ,

SIZE = 1, FILEGROWTH = 10%)

GO
Now run your script. Once you do, open up the SQL Server Enterprise Manager (Figure
13-24). You should see the Cars database with all three interrelated tables (with some
sample data to boot).

Figure 13-24: The SQL Server Cars database

The second version of the Cars database is for users of MS Access. Under the Access
DB folder you will find the cars.mdb file, which contains the same information and
underlying structure as the SQL Server version. During the remainder of this chapter, I
will assume that you are connecting to the SQL Server Cars database rather than the
Access equivalent. In just a bit, however, you will see how to configure an ADO.NET
connection string to hook into an *.mdb file.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-794 I ♡ Flyheart-

Building a Simple Test Database
Now that you understand how to create and manipulate a DataSet in memory, you can
get down to the business of making a data connection and seeing how to obtain a
populated DataSet. In keeping with the automotive theme used throughout this text, I
have included two versions of a sample Cars database (available for download at
www.apress.com) that models the Inventory, Orders, and Customers tables examined
during the chapter.
The first version is a SQL script that builds the tables (including their relationships) and is
intended for users of SQL Server 7.0 (and greater). To create the Cars database, begin
by opening the Query Analyzer utility that ships with SQL Server. Next, connect to your
machine and open the cars.sql file. Before you run the script, be sure that the path listed
in the SQL file points to your installation of MS SQL Server. Thus, be sure you edit the
following DDL (in bold) as necessary:

CREATE DATABASE [Cars] ON (NAME = N'Cars_Data', FILENAME

=N' D:\MSSQL7\Data \Cars_Data.MDF' ,

SIZE = 2, FILEGROWTH = 10%)

LOG ON (NAME = N'Cars_Log', FILENAME

= N' D:\MSSQL7\Data\Cars_Log.LDF' ,

SIZE = 1, FILEGROWTH = 10%)

GO
Now run your script. Once you do, open up the SQL Server Enterprise Manager (Figure
13-24). You should see the Cars database with all three interrelated tables (with some
sample data to boot).

Figure 13-24: The SQL Server Cars database

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-795 I ♡ Flyheart-

The second version of the Cars database is for users of MS Access. Under the Access
DB folder you will find the cars.mdb file, which contains the same information and
underlying structure as the SQL Server version. During the remainder of this chapter, I
will assume that you are connecting to the SQL Server Cars database rather than the
Access equivalent. In just a bit, however, you will see how to configure an ADO.NET
connection string to hook into an *.mdb file.

Working with the OleDb Managed Provider
Once you are comfortable with one managed provider, you can easily manipulate other
providers. Begin by examining how to connect using the OleDb managed provider. When
you need to connect to any data source other than MS SQL Server, you will use the types
defined in System.Data.OleDb. Table 13-12 provides a walkthrough of the core types.

Table 13-12: Types of the System.Data.OleDb Namespace

SYSTEM.DATA.OLEDB
TYPE

MEANING IN LIFE

OleDbCommand Represents a SQL query command to be
made to a data source.

OleDbConnection Represents an open connection to a data
source.

OleDbDataAdapter Represents a set of data commands and a
database connection are used to fill the
DataSet and update the data source.

OleDbDataReader Provides a way of reading a forward-only
stream of data records from a data source.

OleDbErrorCollection

OleDbError

OleDbException

OleDbErrorCollection maintains a collection
of warnings or errors returned by the data
source, each of which is represented by an
OleDbError type. When an error is
encountered, an exception of type
OleDbException is thrown.

OleDbParameterCollection

OleDbParameter

Much like classic ADO, the
OleDbParameterCollection collection holds
onto the parameters sent to a stored
procedure in the database. Each parameter is
of type OleDbParameter.

Establishing a Connection Using the OleDbConnection Type

The first step to take when working with the OleDb managed provider is to establish a
session with the data source using the OleDbConnection type. Much like the classic ADO
Connection object, OleDbConnection types are provided with a formatted connection

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-796 I ♡ Flyheart-

string, containing a number of name/value pairs. This information is used to identify the
name of the machine you wish to connect to, required security settings, the name of the
database on that machine, and, most importantly, the name of the OLE DB provider. (See
online help for a full description of each name/value pair.)

The connection string may be set using the OleDbConnection. ConnectionString property
or as a constructor argument. Assume you wish to connect to the Cars database on a
machine named BIGMANU using the SQL OLE DB provider. The following logic does the
trick:

// Build a connection string.

OleDbConnection cn = new OleDbConnection();

cn.ConnectionString = "Provider=SQLOLEDB.1;" + // Which provider?

 "Integrated Security=SSPI;" +

 "Persist Security Info=False;" + // Persist security?

 "Initial Catalog=Cars;" + // Name of database.

 "Data Source=BIGMANU;"; // Name of machine.
As you can infer from the preceding code comments, the Initial Catalog name refers to
the database you are attempting to establish a session with (Pubs, Northwind, Cars, and
so on). The Data Source name identifies the name of the machine that maintains the
database. The final point of interest is the Provider segment, which specifies the name of
the OLE DB provider that will be used to access the data store. Table 13-13 describes
some possible values.

Table 13-13: Core OLE DB providers

PROVIDER SEGMENT
VALUE

MEANING IN LIFE

Microsoft.JET.OLEDB.4.0 You want to use the Jet OLE DB provider to
connect to an Access database.

MSDAORA You want to use the OLE DB provider for
Oracle.

SQLOLEDB You want to use the OLE DB provider for MS
SQL Server.

Once you have configured the connection string, the next step is to open a session with
the data source, do some work, and release your connection to the data source, as
shown here:

// Build a connection string (can specify User ID and Password if needed).

OleDbConnection cn = new OleDbConnection();

cn.ConnectionString = "Provider=SQLOLEDB.1;" + // Which provider?

 "Integrated Security=SSPI;" +

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-797 I ♡ Flyheart-

 "Persist Security Info=False;" + // Persist security?

 "Initial Catalog=Cars;" + // Name of database.

 "Data Source=BIGMANU;"; // Name of machine.

cn.Open();

 // Do some interesting work here.

cn.Close();
In addition to the ConnectionString, Open(), and Close() members, the OleDbConnection
class provides a number of members that let you configure attritional settings regarding
your connection, such as timeout settings and transactional information. Table 13-14
gives a partial rundown.

Table 13-14: Members of the OleDbConnection Type

OLEDBCONNECTION
MEMBER

MEANING IN LIFE

BeginTransaction()

CommitTransaction()

RollbackTransaction()

Used to programmatically commit, abort, or roll
back a current transaction.

Close() Closes the connection to the data source. This is
the preferred method.

ConnectionString Gets or sets the string used to open a session
with a data store.

ConnectionTimeout Gets or sets the time to wait while establishing a
connection before terminating the attempt and
generating an error. The default value is 15
seconds.

Database Gets or sets the name of the current database or
the database to be used once a connection is
open.

DataSource Gets or sets the name of the database to connect
to.

Open() Opens a database connection with the current
property settings.

Provider Gets or sets the name of the provider.

State Gets the current state of the connection.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-798 I ♡ Flyheart-

Building a SQL Command

The OleDbCommand class is an OO representation of a SQL query, which is
manipulated using the CommandText property. Many types in the ADO.NET namespace
require an OleDbCommand as a method parameter to send the request to the data
source. In addition to holding the raw SQL query, the OleDbCommand type defines other
members that allow you to configure various characteristics of the query (Table 13-15).

Table 13-15: Members of the OleDbCommand Type

OLEDBCOMMAND
MEMBER

MEANING IN LIFE

Cancel() Cancels the execution of a command.

CommandText Gets or sets the SQL command text or the
provider-specific syntax to run against the data
source.

CommandTimeout Gets or sets the time to wait while executing the
command before terminating the attempt and
generating an error. The default is 30 seconds.

CommandType Gets or sets how the CommandText property is
interpreted.

Connection Gets or sets the OleDbConnection used by this
instance of the OleDbCommand.

ExecuteReader() Returns an instance of an OleDbDataReader.

Parameters Gets the collection of OleDbParameterCollection.

Prepare() Creates a prepared (or compiled) version of the
command on the data source.

Working with the OleDbCommand type is very simple, and like with the OleDbConnection
object, there are numerous ways to achieve the same end result. As an example, note the
following (semantically identical) ways to configure a SQL query using an active
OleDbConnection object. In each case, assume you already have an OleDbConnection
named cn:

// Specify a SQL command (take one).

string strSQL1 = "Select Make from Inventory where Color='Red'";

OleDbCommand myCommand1 = new OleDbCommand(strSQL1, cn);

// Specify SQL command (take two).

string strSQL2 = "Select Make from Inventory where Color='Red'";

OleDbCommand myCommand2 = new OleDbCommand();

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-799 I ♡ Flyheart-

myCommand.Connection = cn;

myCommand.CommandText = strSQL2;

Working with the OleDbDataReader

Once you have established the active connection and SQL command, the next step is to
submit the query to the data source. There are a number of ways to do so. The
OleDbDataReader type is the simplest, fastest, but least flexible way to obtain information
from a data store. This class represents a read-only, forwardonly stream of data returned
one record at a time as a result of a SQL command.

The OleDbDataReader is useful when you need to iterate over large amounts of data very
quickly and have no need to work an in-memory DataSet representation. For example, if
you request 20,000 records from a table to store in a text file, it would be rather memory
intensive to hold this information in a DataSet. A better approach would be to create a
data reader that spins over each record as rapidly as possible. Be aware however, that
DataReaders (unlike DataSets) maintain a connection to their data source until you
explicitly close the session.

To illustrate, the following class issues a simple SQL query against the Cars database,
using the ExecuteReader() method of the OleDbCommand type. Using the Read()
method of the returned OleDbDataReader, we dump each member to the standard IO
stream:

public class OleDbDR

{

 static void Main(string[] args)

 {

 // Step 1: Make a connection.

 OleDbConnection cn = new OleDbConnection();

 cn.ConnectionString = "Provider=SQLOLEDB.1;" +

 "Integrated Security=SSPI;" +

 "Persist Security Info=False;" +

 "Initial Catalog=Cars;" +

 "Data Source=BIGMANU;";

 cn.Open();

 // Step 2: Create a SQL command.

 string strSQL = "SELECT Make FROM Inventory WHERE Color='Red'";

 OleDbCommand myCommand = new OleDbCommand(strSQL, cn);

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-800 I ♡ Flyheart-

 // Step 3: Obtain a data reader ala ExecuteReader().

 OleDbDataReader myDataReader;

 myDataReader = myCommand.ExecuteReader();

 // Step 4: Loop over the results.

 while (myDataReader.Read())

 {

 Console.WriteLine("Red car: " +

 myDataReader["Make"].ToString());

 }

 myDataReader.Close();

 cn.Close();

 }

}
The result is the listing of all red automobiles in the Cars database (Figure 13-25).

Figure 13-25: The OleDbDataReader in action

Recall that DataReaders are forward-only, read-only streams of data. Therefore, there is
no way to navigate around the contents of the OleDbDataReader. All you can do is read
each record and use it in your application:

// Get the value in the 'Make' column.

Console.WriteLine("Red car: {0}", myDataReader["Make"].ToString());

When you are finished using the DataReader, make sure to terminate the session using
the appropriately named method, Close(). In addition to the Read() and Close() methods,
there are a number of other methods that allow you to obtain a value from a specified
column in a given format (e.g., GetBoolean(), GetByte(), and so forth). Also, the
FieldCount property returns the number of columns in the current record, and so forth.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-801 I ♡ Flyheart-

SOURCE
CODE

The OleDbDataReader application is included under the
Chapter 13 subdirectory.

Connecting to an Access Database

Now that you know how to pull data from SQL Server, let's take a moment to see how to
obtain data from an Access database. To illustrate, let's modify the previous
OleDbDataReader application to read from the cars.mdb file.

Much like classic ADO, the process of connecting to an Access database using ADO.NET
requires little more than retrofitting your construction string. First, set the Provider
segment to the JET engine, rather than SQLOLEDB. Beyond this adjustment, set the
data source segment to point to the path of your *.mdb file, as shown here:

// Be sure to update the data source segment if necessary!

OleDbConnection cn = new OleDbConnection();

cn.ConnectionString = "Provider=Microsoft.JET.OLEDB.4.0;" +

 @"data source = D:\Chapter 13\Access DB\cars.mdb";

cn.Open();

Once the connection has been made, you can read and manipulate the contents of your
data table. The only other point to be aware of is that, given that the use of the JET
engine requires OLEDB, you must use the types defined in the System.Data.OleDb
namespace (e.g., the OleDb managed provider). Remember, the SQL provider only
allows you to access MS SQL Server data stores!

Executing a Stored Procedure

When you are constructing a distributed application, one of the design choices you face is
where to store the business logic. One approach is to build reusable binary code libraries,
which can be managed by a surrogate process such as the Windows 2000 Component
Services manager. Another approach is to place the system's business logic on the data
layer in the form of stored procedures. Yet another approach is to supply a blend of each
technique.

A stored procedure is a named block of SQL code stored at the database. Stored
procedures can be constructed to return a set of rows (or native data types) to the calling
component and may take any number of optional parameters. The end result is a unit of
work that behaves like a typical function, with the obvious differences of being located on
a data store rather than a binary business object.

Let's add a simple stored procedure to the existing Cars database called GetPetName,
which takes an input parameter of type integer. (If you ran the supplied SQL script, this
stored proc is already defined.) This is the numerical ID of the car for which you are

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-802 I ♡ Flyheart-

interested in obtaining the pet name, which is returned as an output parameter of type
char. Here is the syntax:

CREATE PROCEDURE GetPetName

 @carID int,

 @petName char(20) output

AS

SELECT @petName = PetName from Inventory where CarID = @carID

Now that you have a stored procedure in place, let's see the code necessary to execute it.
Begin as always by creating a new OleDbConnection, configure your connection string,
and open the session. Next, create a new OleDbCommand type, making sure to specify
the name of the stored procedure and setting the CommandType property accordingly, as
shown here:

// Open connection to data store.

OleDbConnection cn = new OleDbConnection();

cn.ConnectionString = "Provider=SQLOLEDB.1;" + "Integrated Security=SSPI;" +

 "Persist Security Info=False;" + "Initial Catalog=Cars;" +

 "Data Source=BIGMANU;";

cn.Open();

// Make a command object for the stored proc.

OleDbCommand myCommand = new OleDbCommand("GetPetName", cn);

myCommand.CommandType = CommandType.StoredProcedure;
The CommandType property of the OleDbCommand class can be set using any of the
values specified in the related CommandType enumeration (Table 13-16).

Table 13-16: Values of the CommandType Enumeration

COMMANDTYPE
ENUMERATION
VALUE

MEANING IN LIFE

StoredProcedure Used to configure an OleDbCommand that triggers a
stored procedure.

TableDirect The OleDbCommand represents a table name whose
columns are all returned.

Text The OleDbCommand type contains a standard SQL
text command. This is the default value.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-803 I ♡ Flyheart-

When you issue basic SQL queries (e.g., "SELECT * FROM Inventory") to the data
source, the default CommandType.Text setting is appropriate. However, to issue a
command to hit a stored procedure, specify CommandType. StoredProcedure.

Specifying Parameters Using the OleDbParameter Type
The next task is to establish the parameters used for the call. The OleDbParameter type
is an OO wrapper around a particular parameter passed to (or received from) the stored
procedure. This class maintains a number of properties that allow you to configure the
name, size, and data type of the parameter, as well as its direction of travel. Table 13-17
describes some key properties of the OleDbParameter type.

Table 13-17: Members of the OleDbParameter Type

OLEDBPARAMETER
PROPERTY

MEANING IN LIFE

DataType Establishes the type of the parameter, in terms
of .NET.

DbType Gets or sets the native data type from the data
source, using the OleDbType enumeration.

Direction Gets or sets whether the parameter is input only,
output only, bidirectional, or a return value
parameter.

IsNullable Gets or sets whether the parameter accepts null
values.

ParameterName Gets or sets the name of the OleDbParameter.

Precision Gets or sets the maximum number of digits used
to represent the Value.

Scale Gets or sets the number of decimal places to
which Value is resolved.

Size Gets or sets the maximum parameter size of the
data.

Value Gets or sets the value of the parameter.

Given that you have one input and one output parameter, you can configure your types as
so. Note that you then add these items to the OleDbCommand type's
ParametersCollection (which is, of course, accessed via the Parameters property):

// Create the parameters for the call.

OleDbParameter theParam = new OleDbParameter();

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-804 I ♡ Flyheart-

// Input.

theParam.ParameterName = "@carID";

theParam.DbType = OleDbType.Integer;

theParam.Direction = ParameterDirection.Input;

theParam.Value = 1; // Car ID = 1.

myCommand.Parameters.Add(theParam);

// Output.

theParam = new OleDbParameter();

theParam.ParameterName = "@petName";

theParam.DbType = OleDbType.Char;

theParam.Size = 20;

theParam.Direction = ParameterDirection.Output;

myCommand.Parameters.Add(theParam);

The final step is to execute the command using OleDbCommand.ExecuteNonQuery().
Notice that the Value property of the OleDbParameter type is accessed to obtain the
returned pet name, as shown here:

// Execute the stored procedure!

myCommand.ExecuteNonQuery();

// Display the result.

Console.WriteLine("Stored Proc Info:");

Console.WriteLine("Car ID: " + myCommand.Parameters["@carID"].Value);

Console.WriteLine("PetName: " + myCommand.Parameters["@petName"].Value);
Figure 13-26 shows the output.

Figure 13-26: Triggering the stored procedure

SOURCE
CODE

The OleDbStoredProc project is included under the Chapter 13
subdirectory.

The Role of the OleDbDataAdapter Type

At this point you should understand how to connect to a data source using the
OleDbConnection type, issue a command (using the OleDbCommand and

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-805 I ♡ Flyheart-

OleDbParameter types), and work with the OleDbDataReader. This is just fine when you
want to iterate over a batch of data very quickly or trigger a stored procedure. However,
the most flexible way to obtain a complete DataSet from the data store is through the use
of the OleDbDataAdapter.

In a nutshell, this type pulls information from a data store and populates a DataTable in a
DataSet using the OleDbDataAdapter.Fill() method, which has been overloaded a
number of times. Here are a few possibilities (FYI, the integer return type holds the
number of records returned):

// Fills the data set with records from a given source table.

public int Fill(DataSet yourDS, string tableName);

// Fills the data set with the records located between

// the given bounds from a given source table.

public int Fill(DataSet yourDS, string tableName,

 int startRecord, int maxRecord);

Before you can call this method, you need a valid OleDbDataAdapter object reference.
The constructor has also been overloaded a number of times, but in general you need to
supply the connection information and the SQL SELECT statement used to fill the
DataTable.
The OleDbDataAdapter type not only is the entity that fills the tables of a DataSet on your
behalf, but also is in charge of maintaining a set of core SQL statements used to push
updates back to the data store. Table 13-18 describes some core members of the
OleDbDataAdapter type.

Table 13-18: Core Members of the OleDbDataAdapter

OLEDBDATAADAPTER
MEMBER

MEANING IN LIFE

DeleteCommand

InsertCommand

SelectCommand

UpdateCommand

Used to establish SQL commands that will be
issued to the data store when the Update()
method is called. Each of these properties is
set using an OleDbCommand type.

Fill() Fills a given table in the DataSet with some
number of records.

GetFillParameters() Returns all parameters used when performing
the select command.

Update() Calls the respective INSERT, UPDATE, or
DELETE statements for each inserted,
updated, or deleted row for a given table in the

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-806 I ♡ Flyheart-

Table 13-18: Core Members of the OleDbDataAdapter

OLEDBDATAADAPTER
MEMBER

MEANING IN LIFE

DataSet.

The key properties of the OleDbDataAdapter (as well as the SqlDataAdapter) are
DeleteCommand, InsertCommand, SelectCommand, and UpdateCommand. A data
adapter understands how to submit changes on behalf of a given command. For example,
when you call Update(), the data adapter uses the SQL commands stored in each of
these properties automatically. As you will see, the amount of code required to configure
these properties is a bit on the verbose side. Before you check these properties out
firsthand, let's begin by learning how to use a data adapter to fill a DataSet
programmatically.

Filling a DataSet Using the OleDbDataAdapter Type

The following code populates a DataSet (containing a single table) using an
OleDbDataAdapter:

public class MyOleDbDataAdapter

{

 // Step 1: Open a connection to Cars db.

 OleDbConnection cn = new OleDbConnection();

 cn.ConnectionString = "Provider=SQLOLEDB.1;" +

 "Integrated Security=SSPI;" +

 "Persist Security Info=False;" +

 "Initial Catalog=Cars;" +

 "Data Source=BIGMANU;";

 cn.Open();

 // Step 2: Create data adapter using the following SELECT.

 string sqlSELECT = "SELECT * FROM Inventory";

 OleDbDataAdapter dAdapt = new OleDbDataAdapter(sqlSELECT, cn);

 // Step 3: Create and fill the DataSet, close connection.

 DataSet myDS = new DataSet("CarsDataSet");

 try

 {

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-807 I ♡ Flyheart-

 dAdapt.Fill(myDS, "Inventory");

 }

 catch(Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 cn.Close();

 }

 // Private helper function.

 PrintTable(myDS);

 return 0;

}
Notice that unlike your work during the first half of this chapter, you did not manually direct
a DataTable type and add it to the DataSet. Rather, you specified the Inventory table as
the second parameter to the Fill() method. Internally, Fill() builds the DataTable given the
name of the table in the data store using the SELECT command. In this iteration, the
connection between the given SQL SELECT statement and the OleDbDataAdapter was
established as a constructor parameter:

// Create a SELECT command as string type.

string sqlSELECT = "SELECT * FROM Inventory";

OleDbDataAdapter dAdapt = new OleDbDataAdapter(sqlSELECT, cn);

As a more OO-aware alternative, you can use the OleDbCommand type to hold onto the
SELECT statement. To associate the OleDbCommand to the OleDbDataAdapter, use the
SelectCommand property, as shown here:

// Create a SELECT command object.

OleDbCommand selectCmd = new OleDbCommand("SELECT * FROM Inventory", cn);

// Make a data adapter and associate commands.

OleDbDataAdapter dAdapt = new OleDbDataAdapter();

dAdapt.Selectcommand = selectCmd;
Notice that in this case, you attach the active OleDbConnection as a parameter to the
OleDbCommand. Figure 13-27 shows the end result.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-808 I ♡ Flyheart-

Figure 13-27: The OleDbDataAdpter in action

The PrintTable() method is little more than some formatting razzle-dazzle:

public static void PrintTable(DataSet ds)

{

 // Get Inventory table from Dataset.

 Console.WriteLine("Here is what we have right now:\n");

 DataTable invTable = ds.Tables["Inventory"];

 // Print the Column names.

 for(int curCol= 0; curCol< invTable.Columns.Count; curCol++)

 {

 Console.Write(invTable.Columns[curCol].ColumnName.Trim() + "\t");

 }

 Console.WriteLine();

 // Print each cell.

 for(int curRow = 0; curRow < invTable.Rows.Count; curRow++)

 {

 for(int curCol= 0; curCol< invTable.Columns.Count; curCol++)

 {

 Console.Write(invTable.Rows[curRow][curCol].ToString().Trim()

 + "\t");

 }

 Console.WriteLine();

 }

}

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-809 I ♡ Flyheart-

SOURCE
CODE

The FillSingleDSWithAdapter project is under the Chapter 13
subdirectory.

Working with the SQL Managed Provider

Before you see the details of inserting, updating, and removing records using a data
adapter, I would like to introduce the SQL managed provider. As you recall, the OleDb
provider allows you to access any OLE DB compliant data store, but is less optimized
than the SQL provider.
When you know that the data source you need to manipulate is MS SQL Server, you will
find performance gains if you use the System.Data.SqlClient namespace directly.
Collectively, these classes constitute the functionality of the SQL managed provider,
which should look very familiar given your work with the OleDb provider (Table 13-19).

Table 13-19: Core Types of the System.Data.SqlClient Namespace

SYSTEM.DATA.SQLCLIENT
TYPE

MEANING IN LIFE

SqlCommand Represents a Transact-SQL query to
execute at a SQL Server data source.

SqlConnection Represents an open connection to a SQL
Server data source.

SqlDataAdapter Represents a set of data commands and a
database connection used to fill the
DataSet and update the SQL Server data
source.

SqlDataReader Provides a way of reading a forward-only
stream of data records from a SQL Server
data source.

SqlErrors

SqlError

SqlException

SqlErrors maintains a collection of
warnings or errors returned by SQL
Server, each of which is represented by a
SQLError type. When an error is
encountered, an exception of type
SQLException is thrown.

SqlParameterCollection

SqlParameter

SqlParametersCollection holds onto the
parameters sent to a stored procedure
held in the database. Each parameter is of
type SQLParameter.

Given that working with these types is almost identical to working with the OleDb
managed provider, you should already know what to do with these types, as they have

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-810 I ♡ Flyheart-

the same public interface. To help you get comfortable with this new set of types, the
remainder of the examples use the SQL managed provider.

The System.Data.SqlTypes Namespace

On a quick related note, when you use the SQL managed provider, you also have the
luxury of using a number of managed types that represent native SQL server data types.
Table 13-20 gives a quick rundown.

Table 13-20: Types of the System.Data.SqlTypes Namespace

SYSTEM.DATA.SQLTYPES
WRAPPER

NATIVE SQL SERVER

SqlBinary binary, varbinary, timestamp, image

SqlInt64 bigint

SqlBit bit

SqlDateTime datetime, smalldatetime

SqlNumeric decimal

SqlDouble float

SqlInt32 int

SqlMoney money, smallmoney

SqlString nchar, ntext, nvarchar, sysname, text,
varchar, char

SqlNumeric numeric

SqlSingle real

SqlInt16 smallint

System.Object sql_variant

SqlByte tinyint

SqlGuid uniqueidentifier

Inserting New Records Using the SqlDataAdapter

Now that you have flipped from the OleDb provider to the realm of the SQL provider, you
can return to the task of understanding the role of data adapters. Let's examine how to
insert new records in a given table using the SqlDataAdapter (which would be nearly
identical to using the OleDbDataAdapter). As always, begin by creating an active
connection, as shown here:

public class MySqlDataAdapter

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-811 I ♡ Flyheart-

{

 public static void Main()

 {

 // Step 1: Create a connection and adapter (with select command).

 SqlConnection cn = new

 SqlConnection("server=(local);uid=sa;pwd=;database=Cars");

 SqlDataAdapter dAdapt = new

 SqlDataAdapter("Select * from Inventory", cn);

 // Step 2: Kill record you inserted.

 cn.Open();

 SqlCommand killCmd = new

 SqlCommand("Delete from Inventory where CarID = '1111'", cn);

 killCmd.ExecuteNonQuery();

 cn.Close();

 }

}

You can see that the connection string has cleaned up quite a bit. In particular, notice that
you do not need to define a Provider segment (as the SQL types only talk to a SQL
server!). Next, create a new SqlDataAdapter and specify the value of the
SelectCommand property as a constructor parameter (just like with the
OleDbDataAdapter).

The second step is really more of a good housekeeping chore. Here, you create a new
SqlCommand type that will destroy the record you are about to enter (to avoid a primary
key violation). The next step is a bit more involved. Your goal is to create a new SQL
statement that will function as the SqlDataAdapter's InsertCommand. First, create the
new SqlCommand and specify a standard SQL insert, followed by SqlParameter types
describing each column in the Inventory table, as shown here:

public static void Main()

{

 ...

 // Step 3: Build the insert Command!

 dAdapt.InsertCommand = new SqlCommand("INSERT INTO Inventory" +

 "(CarID, Make, Color, PetName) VALUES" +

 "(@CarID, @Make, @Color, @PetName)", cn)";

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-812 I ♡ Flyheart-

 // Step 4: Build parameters for each column in Inventory table.

 SqlParameter workParam = null;

 // CarID.

 workParam = dAdapt.InsertCommand.Parameters.Add(new

 SqlParameter("@CarID", SqlDbType.Int));

 workParam.SourceColumn = "CarID";

 workParam.SourceVersion = DataRowVersion.Current;

 // Make.

 workParam = dAdapt.InsertCommand.Parameters.Add(new

 SqlParameter("@Make", SqlDbType.VarChar));

 workParam.SourceColumn = "Make";

 workParam.SourceVersion = DataRowVersion.Current;

 // Color.

 workParam = dAdapt.InsertCommand.Parameters.Add(new

 SqlParameter("@Color", SqlDbType.VarChar));

 workParam.SourceColumn = "Color";

 workParam.SourceVersion = DataRowVersion.Current;

// PetName.

 workParam = dAdapt.InsertCommand.Parameters.Add(new

 SqlParameter("@PetName", SqlDbType.VarChar));

 workParam.SourceColumn = "PetName";

 workParam.SourceVersion = DataRowVersion.Current;

}

Now that you have formatted each of the parameters, the final step is to fill the DataSet
and add your new row (note that the PrintTable() helper function has carried over to this
example):

public static void Main()

{

 ...

 // Step 5: Fill data set.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-813 I ♡ Flyheart-

 DataSet myDS = new DataSet();

 dAdapt.Fill(myDS, "Inventory");

 PrintTable(myDS);

 // Step 6: Add new row.

 DataRow newRow = myDS.Tables["Inventory"].NewRow();

 newRow["CarID"] = 1111;

 newRow["Make"] = "SlugBug";

 newRow["Color"] = "Pink";

 newRow["PetName"] = "Cranky";

 myDS.Tables["Inventory"].Rows.Add(newRow);

 // Step 7: Send back to database and reprint.

 try

 {

 dAdapt.Update(myDS, "Inventory");

 myDS.Dispose();

 myDS = new DataSet();

 dAdapt.Fill(myDS, "Inventory");

 PrintTable(myDS);

 }

 catch(Exception e){ Console.Write(e.ToString()); }

}
When you run the application, you see the output shown in Figure 13-28.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-814 I ♡ Flyheart-

Figure 13-28: The InsertCommand Property in action
SOURCE
CODE

The InsertRowsWithSqlAdapter project can be found under the
Chapter 13 subdirectory.

Updating Existing Records Using the SqlDataAdapter

Now that you can insert new rows, look at how you can update existing rows. Again, start
the process by obtaining a connection (using the SqlConnection type) and creating a new
SqlDataAdapter. Next set the value of the UpdateCommand property, using the same
general approach as when setting the value of the InsertCommand. Here is the relevant
code in Main():

public static void Main()

{

 // Step 1: Create a connection and adapter (same as previous code)

 ...

 // Step 2: Establish the UpdateCommand.

 dAdapt.UpdateCommand = new SqlCommand

 ("UPDATE Inventory SET Make = @Make, Color = " +

 "@Color, PetName = @PetName " +

 "WHERE CarID = @CarID" , cn);

 // Step 3: Build parameters for each column in Inventory table.

 // Same as before, but now you are populating the ParameterCollection

 // of the UpdateCommand. For example:

 SqlParameter workParam = null;

 workParam = dAdapt.UpdateCommand.Parameters.Add(new

 SqlParameter("@CarID", SqlDbType.Int));

 workParam.SourceColumn = "CarID";

 workParam.SourceVersion = DataRowVersion.Current;

 // Do the same for PetName, Make, and Color params.

 // Step 4: Fill data set.

 DataSet myDS = new DataSet();

 dAdapt.Fill(myDS, "Inventory");

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-815 I ♡ Flyheart-

 PrintTable(myDS);

 // Step 5: Change columns in second row to 'FooFoo'.

 DataRow changeRow = myDS.Tables["Inventory"].Rows[1];

 changeRow["Make"] = "FooFoo";

 changeRow["Color"] = "FooFoo";

 changeRow["PetName"] = "FooFoo";

 // Step 6: Send back to database and reprint.

 try

 {

 dAdapt.Update(myDS, "Inventory");

 myDS.Dispose();

 myDS = new DataSet();

 dAdapt.Fill(myDS, "Inventory");

 PrintTable(myDS);

 }

 catch(Exception e)

 { Console.Write(e.ToString()); }

}
Figure 13-29 shows the output.

Figure 13-29: Updating existing rows

SOURCE
CODE

The UpdateRowsWithSqlAdapter project is found under the
Chapter 13 subdirectory.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-816 I ♡ Flyheart-

Autogenerated SQL Commands

At this point you can use the data adapter types (OleDbDataAdapter and SqlDataAdapter)
to select, delete, insert, and update records from a given data source. Although the
general process is not rocket science, it is a bit of a bother to build up all the parameter
types and configure the InsertCommand, UpdateCommand, and DeleteCommand
properties by hand. As you would expect, some help is available.

One approach is to use the SqlCommandBuilder type. If you have a DataTable composed
from a single table (not from multiple joined tables), the SqlCommandBuilder
automatically sets the InsertCommand, UpdateCommand, and DeleteCommand
properties based on the initial SelectCommand! In addition to the no-join restriction, the
single table must have been assigned a primary key, and this column must be specified in
the initial SELECT statement. The benefit is that you have no need to build all those
SqlParameter types by hand.

To illustrate, assume you have a new Windows Forms example, which allows the user to
edit the values in a DataGrid. When finished, the user may submit changes back to the
database using a Button type. First, assume the following constructor logic:

public class mainForm : System.Windows.Forms.Form

{

 private SqlConnection cn = new

 SqlConnection("server=(local);uid=sa;pwd=;database=Cars");

 private SqlDataAdapter dAdapt;

 private SqlCommandBuilder invBuilder;

 private DataSet myDS = new DataSet();

 private System.Windows.Forms.DataGrid dataGrid1;

 private System.Windows.Forms.Button btnUpdateData;

 private System.ComponentModel.Container components;

 public mainForm()

 {

 InitializeComponent();

 // Create the initial SELECT SQL statement.

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-817 I ♡ Flyheart-

 dAdapt = new SqlDataAdapter("Select * from Inventory", cn);

 // Autogenerate the INSERT, UPDATE,

 // and DELETE statements.

 invBuilder = new SqlCommandBuilder(dAdapt);

 // Fill and bind.

 dAdapt.Fill(myDS, "Inventory");

 dataGrid1.DataSource = myDS.Tables["Inventory"].DefaultView;

 }

...

}

Beyond closing the connection upon exiting, that's it! At this point the SqlDataAdapter has
all the information it needs to submit changes back to the data store. Now assume that
you have the following logic behind the Button's Click event:

private void btnUpdateData_Click(object sender, System.EventArgs e)

{

 try

 {

 dataGrid1.Refresh();

 dAdapt.Update(myDS, "Inventory");

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

}
As usual, you call Update() and specify the DataSet and table to update. If you take this
out for a test run, you see something like Figure 13-30 (be sure you exit out of edit more
on the DataTable before you submit your results!).

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-818 I ♡ Flyheart-

Figure 13-30: Extending the DataSet with new DataRows

Excellent! I am sure you agree that autogenerated commands are far simpler than
working with the raw parameters. Like all things, of course, there are tradeoffs.
Specifically, if you have a DataTable composed from a joint operation, you cannot use
this technique. Also, as you have seen, when you work with parameters in the raw, you
have a much finer level of granularity.

SOURCE
CODE

The WinFormSqlAdapter project is included under the Chapter
13 subdirectory.

Filling a Multitabled DataSet (and Adding DataRelations)
To wrap things up, let's come full circle and build a final Windows Forms example that
mimics the application you created during the first half of this chapter. The GUI is simple
enough. In Figure 13-31 you can see three DataGrid types that hold the data retrieved
from the Inventory, Orders, and Customers tables of the Cars database. In addition, the
single Button pushes any and all changes back to the data store:

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-819 I ♡ Flyheart-

Figure 13-31: A multitable DataSet on display

To keep things even simpler, we will use autogenerated commands for each of the three
SqlDataAdapters (one for each table). First, here is the Form's state data:

public class mainForm : System.Windows.Forms.Form

{

 private System.Windows.Forms.DataGrid custGrid;

 private System.Windows.Forms.DataGrid inventoryGrid;

 private System.Windows.Forms.Button btnUpdate;

 private System.Windows.Forms.DataGrid OrdersGrid;

 private System.ComponentModel.Container components;

 // Here is the connection.

 private SqlConnection cn = new

 SqlConnection("server=(local);uid=sa;pwd=;database=Cars");

 // Our data adapters (for each table).

 private SqlDataAdapter invTableAdapter;

 private SqlDataAdapter custTableAdapter;

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-820 I ♡ Flyheart-

 private SqlDataAdapter ordersTableAdapter;

 // Command builders (for each table).

 private SqlCommandBuilder invBuilder = new SqlCommandBuilder();

 private SqlCommandBuilder orderBuilder = new SqlCommandBuilder();

 private SqlCommandBuilder custBuilder = new SqlCommandBuilder();

 // The dataset.

 DataSet carsDS = new DataSet();

...

}

The Form's constructor does the grunge work of creating your data-centric member
variables and filling the DataSet. Also note that there is a call to a private helper function,
BuildTableRelationship(), as shown here:

public mainForm()

{

 InitializeComponent();

 // Create adapters.

 invTableAdapter = new SqlDataAdapter("Select * from Inventory", cn);

 custTableAdapter = new SqlDataAdapter("Select * from Customers", cn);

 ordersTableAdapter = new SqlDataAdapter("Select * from Orders", cn);

 // Autogenerate commands.

 invBuilder = new SqlCommandBuilder(invTableAdapter);

 orderBuilder = new SqlCommandBuilder(ordersTableAdapter);

 custBuilder = new SqlCommandBuilder(custTableAdapter);

 // Add tables to DS.

 invTableAdapter.Fill(carsDS, "Inventory");

 custTableAdapter.Fill(carsDS, "Customers");

 ordersTableAdapter.Fill(carsDS, "Orders");

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-821 I ♡ Flyheart-

 // Build relations between tables.

 BuildTableRelationship();

}

The BuildTableRelationship() helper function does just what you would expect. Recall
that the Cars database expresses a number of parent/child relationships. The code looks
identical to the logic seen earlier in this chapter, as shown here:

private void BuildTableRelationship()

{

 // Create a DR obj.

 DataRelation dr = new DataRelation("CustomerOrder",

 carsDS.Tables["Customers"].Columns["CustID"],

 carsDS.Tables["Orders"].Columns["CustID"]);

 // Add relation to the DataSet.

 carsDS.Relations.Add(dr);

 // Create another DR obj.

 dr = new DataRelation("InventoryOrder",

 carsDS.Tables["Inventory"].Columns["CarID"],

 carsDS.Tables["Orders"].Columns["CarID"]);

 // Add relation to the DataSet.

 carsDS.Relations.Add(dr);

 // Fill the grids!

 inventoryGrid.SetDataBinding(carsDS, "Inventory");

 custGrid.SetDataBinding(carsDS, "Customers");

 OrdersGrid.SetDataBinding(carsDS, "Orders");

}

Now that the DataSet has been filled and disconnected from the data source, you can
manipulate each table locally. To do so, simply insert, update, or delete values from any
of the three DataGrids. When you are ready to submit the data back for processing, click
the Form's Update Button. The code behind the Click event should be clear at this point,
as shown here:

private void btnUpdate_Click(object sender, System.EventArgs e)

{

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-822 I ♡ Flyheart-

 try

 {

 invTableAdapter.Update(carsDS, "Inventory");

 custTableAdapter.Update(carsDS, "Customers");

 ordersTableAdapter.Update(carsDS, "Orders");

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

}

Once you update, you can find each table in the Cars database correctly altered.

At this point you should feel comfortable working with both the OleDb and SQL managed
providers and understand how to manipulate and update the resulting DataSet. Obviously
there are many other additional facets of ADO.NET, such as transactional programming,
security issues, and so forth. I assume you will keep exploring as you see fit.

One other aspect of ADO.NET you have not investigated are the numerous VS.NET data
Wizards. Suffice it to say, when you drag a Data widget (from the Toolbox Window) onto a
design time template, you can launch a number of wizards that create connection strings
for SqlConnection and OleDbConnection types; automatically build the SELECT, INSERT,
DELETE, and UPDATE command for a given data adapter; and so forth. After your hard
work in this chapter, learning how to interact with these tools should be a cakewalk.

SOURCE
CODE

The MultiTableDataSet project is included under the Chapter
13 subdirectory.

Summary
ADO.NET is a new data access technology developed with the disconnected n-tier
application firmly in mind. The System.Data namespace contains most of the core types
you need to programmatically interact with rows, columns, tables, and views. As you have
seen, the System.Data.SqlClient and System.Data.OleDb namespaces define the types
you need to establish an active connection.

The centerpiece of ADO.NET is the DataSet. This type represents an inmemory
representation of any number of tables and any number of optional interrelationships,
constraints, and expressions. The beauty of establishing relations on your local tables is
that you are able to programmatically navigate between them while disconnected from
the remote data store.

Finally, this chapter examined the role of the data adapter (OleDbDataAdapter and
SqlDataAdapter). Using this type (and the related SelectCommand, InsertCommand,

C# and the .NET Platform Chapter 13: Data Access with ADO.NET

-823 I ♡ Flyheart-

UpdateCommand, and DeleteCommand properties), the adapter can resolve changes in
the DataSet with the original data store. While there is more to the ADO.NET
namespaces than I had time to cover in this single chapter. you should now have a strong
foundation on which to build.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-824 I ♡ Flyheart-

Chapter 14: Web Development and ASP.NET

Overview

Until now all of your example applications have used Windows Forms or console-based
front ends. In this chapter, you begin to explore how the .NET platform facilitates the
construction of browser-based presentation layers. To begin, you will review some basic
Web atoms, including HTML, HTTP requests (POST and GET), the role of client-side
scripting (using JavaScript), and classic ASP. Of course, if you are already "Web aware,"
feel free to skim or skip this section entirely.
As you will see, ASP.NET supports a far more robust programming model than does
classic ASP. For example, you can now partition your HTML presentation logic and
business logic into discrete locations using a technique called Codebehind. Also, building
Web applications with ASP.NET enables you to use "real" programming languages such
as C# and VB.NET, rather than interpreted scripting languages. As you examine the
architecture of an ASP.NET Web application, you will learn about the almighty Page type
and the classic ASP-like Request, Response, Session, and Application properties.
To wrap up, the chapter shifts focus to examine the role of server-side controls (e.g.,
WebForm Controls), control validation, and server-side events. Once you have absorbed
this material, you will be ready to examine the topic of ASP.NET Web services in Chapter
15.

Chapter 14: Web Development and ASP.NET

Overview

Until now all of your example applications have used Windows Forms or console-based
front ends. In this chapter, you begin to explore how the .NET platform facilitates the
construction of browser-based presentation layers. To begin, you will review some basic
Web atoms, including HTML, HTTP requests (POST and GET), the role of client-side
scripting (using JavaScript), and classic ASP. Of course, if you are already "Web aware,"
feel free to skim or skip this section entirely.
As you will see, ASP.NET supports a far more robust programming model than does
classic ASP. For example, you can now partition your HTML presentation logic and
business logic into discrete locations using a technique called Codebehind. Also, building
Web applications with ASP.NET enables you to use "real" programming languages such
as C# and VB.NET, rather than interpreted scripting languages. As you examine the
architecture of an ASP.NET Web application, you will learn about the almighty Page type
and the classic ASP-like Request, Response, Session, and Application properties.
To wrap up, the chapter shifts focus to examine the role of server-side controls (e.g.,
WebForm Controls), control validation, and server-side events. Once you have absorbed
this material, you will be ready to examine the topic of ASP.NET Web services in Chapter
15.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-825 I ♡ Flyheart-

The Basic Structure of an HTML Document

Now that you have a virtual directory, you need to create the Web application itself. When
you build Web applications, you cannot escape the use of the Hypertext Markup
Language (HTML). As you know, HTML is a standard markup language used to describe
how text, images, links, and various HTML GUI widgets are rendered by the hosting Web
browser. While it is true that modern IDEs (including Visual Studio.NET) have numerous
built-in tools that hide most of the raw HTML from view, you still need to feel comfortable
with HTML as you work with ASP.NET.

A given HTML file consists of a core set of HTML tags, used to specify the fact that it is an
HTML file, general document information (title, file metadata, and so forth), and the body
of the document (i.e., the collection of text, images, tables, links, and so on). Keep in mind
that HTML tags are not case sensitive. Therefore, in the eyes of the hosting browser,
<HTML>, <html>, and <Html> are identical.

To get started, open the Visual Studio.NET IDE and insert an empty HTML file using the
File|Miscellaneous Files|New File... menu selection and save this file under your physical
directory as default.htm. If you examine the new *.htm file created by the IDE, you will find
the following skeleton markup tags:

<HTML>

<HEAD>

<TITLE></TITLE>

<META NAME="GENERATOR" Content="Microsoft Visual Studio">

<META HTTP-EQUIV="Content-Type" content="text/html">

</HEAD>

<BODY>

<!- Insert HTML here ->

</BODY>

</HTML>
A given HTML tag is opened using the <X> notation and closed with a corresponding
</X> (slash) tag. Although the syntax of HTML does allow for a degree of laziness
(closing end tags are not absolutely required in many cases), it is good practice to always
close a tag with the </X> syntax. The <HTML> and </HTML> tags are used to mark the
beginning and end of your document. As you may guess, Web browsers use these tags
to understand where to begin applying the rendering formats specified in the body of the
document.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-826 I ♡ Flyheart-

The <HEAD> tags are used to hold any metadata about the document itself. Here the
HTML header uses some <META> tags that describe the origin of this file (MS Visual
Studio) and file content. Currently our page has no title, so let's modify this HTML file to
look like the following:

<HTML>

<HEAD>

<TITLE>HTML is unavoidable</TITLE>

<META NAME="GENERATOR" Content="Microsoft Visual Studio">

<META HTTP-EQUIV="Content-Type" content="text/html">

</HEAD>

<BODY>

<!- Insert HTML here ->

</BODY>

</HTML>
The <TITLE> tag is used to specify the text string that should be placed in the title bar of
the hosting Web browser. Once you save this file and open it in a browser, you will see
something like Figure 14-4. (Note the caption of the window.)

Figure 14-4: The <TITLE> tag in action

The real action behind an HTML file takes place in the <BODY> tag set. Nestled within
these tags are any number of additional tags used to render and format textual or
graphical information. While an exhaustive examination of every HTML tag is (way)
beyond the scope of this book, the next several pages document some of the core tags
you are bound to run into when working with ASP.NET Web applications.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-827 I ♡ Flyheart-

Basic HTML Text Formatting

One obvious use of an HTML file is to display textual messages. In HTML, text elements
are typically placed within the <BODY> tag set. For example, assume that you are
building a login page for a given Web application (note the HTML comment syntax), as
shown here:

<BODY>

 <!- Prompt for user ->

 The Cars Login Page

</BODY>

Notice that in this case, you did not surround the text block with corresponding tags.
When the browser finds a line of untagged text, it pumps out the textual information
exactly as written. Thus, if you update the <BODY> as shown here:

<BODY>

 <!- Prompt for user ->

 The Cars Login Page

 Please enter your user name and password.

</BODY>
you see that the browser does not add the expected line break (Figure 14-5).

Figure 14-5: Untagged textual information omits line breaks

To flow text over multiple lines, you need to use the <P> and </P> (Paragraph) tags,
which instruct the browser to begin a new paragraph, as shown here:

<BODY>

 <!- Technically, you do not need to close a paragraph with </p> ->

 The Cars Login Page

 <p>Please enter your user name and password.</p>

</BODY>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-828 I ♡ Flyheart-

Figure 14-6 shows the new output.

Figure 14-6: The <P> tag begins a new paragraph
To insert a new blank line (rather than begin a new paragraph), use the
 (BReak)
tags instead. (See Figure 14-7.)

Figure 14-7: The
 tag simply starts a new line

<BODY>

 <!- Insert a break without a blank line ->

 The Cars Login Page

Please enter your user name and password.</br>

</BODY>
Now that you can add multiple lines of text (with carriage returns), you may wish to add
some bold or italic formatting, using the and <I> tags. For example, to apply bold
formatting to the first line of text and italicize specific words in the second line, you could
write the following (see Figure 14-8 for output):

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-829 I ♡ Flyheart-

Figure 14-8: Bold and italic text

<BODY>

 <!- Bold and italic formatting ->

 The Cars Login Page

Please enter your <i>user name</i> and <i>password</i>.

</BODY>

Working with Format Headers

The final textual formatting issue you will examine is the use of the various heading tags.
Using <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> tags, you can alter the size of the
rendered text. The <h1> tag is your largest possible option, while <h6> marks the
smallest format. Here is an example:

<BODY>

 <!- Prompt for user ->

 <h1>The Cars Login Page</h1>

<h3>Please enter your <i>user name</i> and <i>password</i>.</h3>

</BODY>

Finally, you can apply the <center> tag (also as left, right, and justify) to force a block of
text to be centered in the browser's client area, as shown here:

<BODY>

 <!- Prompt for user ->

 <center>

 <h1>The Cars Login Page</h1>

<h3>Please enter your <i>user name</i> and <i>password</i>.</h3>

 </center>

</BODY>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-830 I ♡ Flyheart-

Figure 14-9 shows the end result. (Note as you resize the browser, the text remains
centered.)

Figure 14-9: Working with HTML header tags

Visual Studio.NET HTML Editors

So far, your simple HTML page is rather bland. To help spruce things up, let's take a
moment to check out some of the design time tools supplied by the VS.NET IDE. First
and foremost, you may configure various aspects of the page itself using the Properties
window. To do so, select the DOCUMENT object and hack away (Figure 14-10).

Figure 14-10: Visual editing of an HTML document begins here

For example, if you modify the bgColor property (which sets the background color of the
page), the underlying HTML file is updated automatically (Figure 14-11).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-831 I ♡ Flyheart-

Figure 14-11: Design time modifications are recorded as HTML

The IDE also provides an HTML Formatting toolbar (Figure 14-12), which allows you to
modify the appearance of your text (color, font, header size, bullet points, and so on).

Figure 14-12: The HTML formatting toolbar

Thus, you can build up the verbiage of your page using a word-processor-like approach.
The difference is that raw HTML is generated under the hood. As you build your pages, I
assume you will take the time to play around with various formatting scenarios and
examine the underlying HTML tags.

HTML Form Development
Now that you have had an initial look at the layout of a basic HTML page, you can explore
how to facilitate some user interaction. As you will see later in this chapter, the ASP.NET
framework supplies a number of WebForm controls, which are responsible for generating
HTML tags automatically. The beauty of using the WebForm control set is the fact that
you (as a Web developer) can build the UI of the returned page without concern for the
underlying HTML. The controls you are about to briefly examine are not .NET WebForm
controls but simply a set of built-in widgets used during HTML form development.
An HTML form is simply a named group of related UI elements used to gather user input,
which is then transmitted to the Web application via HTTP. (You will see exactly how in
just a bit.) Do not confuse an HTML form with the literal client area displayed in a browser.
In reality, an HTML form is more of a logical grouping of widgets placed in the <form> and
</form> tag pairs, as shown here:

<form name = MainForm id = MainForm>

 <!-Add UI elements here ->

</form>

Here you have created a form and assigned the ID and friendly name to MainForm. While
this is technically optional, get in the habit of doing so. Later in this chapter, you will find
this useful when working with client-side scripting, where you frequently need to identify
controls by name.
Typically, the opening <form> tag supplies an action attribute, which specifies the URL to
which to submit the form data, as well as the method of transmitting that data itself

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-832 I ♡ Flyheart-

(posting or getting). You will examine this aspect of the <form> tag in just a bit. For the
time being, let's look at the sort of items that can be placed in an HTML form. The Visual
Studio.NET IDE provides an HTML toolbar that allows you to select each HTML-based UI
widget (Figure 14-13).

Figure 14-13: The HTML controls
Table 14-1 gives a rundown of some the more common items.

Table 14-1: Common HTML GUI Types

HTML GUI
WIDGET

MEANING IN LIFE

Button A button that does not support the type attribute used to
trigger a SUBMIT or RESET. This sort of button can be
used to hit a block of client-side script code or any other
logic that does not require a trip to the Web server.

Checkbox

Radio Button

Listbox

Dropdown

Standard UI selection elements.

Image Allows you to specify an image to render onto the form.

Reset Button This button element has its type attribute set to RESET.
This instructs the browser to clear out the values in
each UI element on the page to their default values.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-833 I ♡ Flyheart-

Table 14-1: Common HTML GUI Types

HTML GUI
WIDGET

MEANING IN LIFE

Submit Button This button element has its type attribute set to
SUBMIT, which sends the form data to the recipient of
a request.

Text Field

Text Area

Password Field

These UI elements are used to hold a single line (or
multiple lines) of text. The Password Field renders input
data using an asterisk (*) character mask.

As an interesting side note, be aware that the .NET base class libraries supply a number
of managed types that correspond to these raw HTML widgets. For further information,
check out the System.Web.UI.HtmlControls namespace.

Building the User Interface

The first step in building a user interface using HTML form widgets is to declare a <form>
segment of the HTML document. Thus, add the following markup:

<HTML>

<HEAD>

<TITLE>HTML is unavoidable</TITLE>

<META NAME="GENERATOR" Content="Microsoft Visual Studio">

<META HTTP-EQUIV="Content-Type" content="text/html">

</HEAD>

<BODY BGCOLOR="#66ccff">

<!- Prompt for user ->

<center>

<h1>The Cars Login Page</h1>

<h3>Please enter your <i>user name</i> and <i>password</i>.</h3>

<!- Build a form to get user info ->

<form name=MainForm >

</form>

</center>

</BODY>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-834 I ♡ Flyheart-

</HTML>

At this point, you can either flip back to design mode and drag and drop the HTML
widgets onto the form or add HTML tags by hand. In general, each HTML widget is
described using a name attribute (used to identify the item programmatically) and a type
attribute (used to specify which UI element you are interested in placing in the <form>
declaration). Depending which UI widget you manipulate, you will find additional attributes
specific to that particular item. As you would expect, each UI element and its attributes
can be modified using the Property window.

The UI you will build will contain two text fields (one of which is a Password widget), as
well as two button types (one for submitting the form data and the other to reset the form
data to the default values). Here is the associated HTML (by the way, " " identifies a
single blank space):

<form name=MainForm >

 <p>User Name:

 <input id = txtUserName type = text></p>

 <p>Password:

 <input name = txtPassword type = password></p>

 <input name = btnSubmit type = submit value = Submit>

 <input name = btnReset type = reset value = Reset>

</form>

Notice that you have assigned relevant names to each widget (txtUserName,
txtPassword, btnSubmit, and btnReset). Of greater importance, note that each input
button has an extra attribute named value, which marks these buttons as UI items that
automatically clear all fields to their initial values (value = Reset) or send the form data to
the recipient (value = Submit).
Other UI elements may also take a value attribute. For example, you can set the value of
the txtUserName text box as shown in Figure 14-14.

Figure 14-14: Setting a widget's value

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-835 I ♡ Flyheart-

The string "Chucky" is now the default value of the txtUserName UI widget. To test out
your application thus far, save your changes and open the *htm file. Notice that when you
enter values into the Text Box items and click the Reset button, the UI elements are
reassigned their default values.
Figure 14-15, then, is your creation thus far.

Figure 14-15: An extremely boring Web page

Adding an Image

The final raw HTML UI topic here is how to incorporate images into your HTML
documents. Like other aspects of HTML, images are marked using tags, specifically,
, as shown here:

The alt (alternative) attribute is used to specify a textual equivalent to the graphic image
specified by the src (source) attribute. This text blurb is used as pop-up text when the
cursor is placed over the image or, in browsers that do not support graphical images, as a
textual alternative. The border attribute is optional, but is used here to render an outline
around your image. Be aware that the value assigned to the alt attribute may be a
hard-coded path or (as you have here) without a specified path. This approach assumes
that the images used are in the same folder as the *.htm files using them. Figure 14-16
shows the update.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-836 I ♡ Flyheart-

Figure 14-16: A slightly more interesting Web page

The Role of Client-Side Scripting

Now that you have a better understanding of how to construct an HTML form, the next
issue is to examine the role of client-side scripting. The inherit evil of a Web application is
the need to make frequent calls to the server machine to update the HTML rendered into
the browser. Of course, while round trips are unavoidable, you should always be aware of
ways to minimize travel across the wire. One technique that saves round trips is using
client-side scripting to validate user input before submitting the form data to the recipient.

For example, currently you require the end user to enter a password and user name. If
either field is blank, you do not allow a submission of the form's data to occur. Of course,
HTML cannot help in this endeavor, as HTML is only concerned with the display of
content. To augment the functionality of standard HTML, you must use a given scripting
language (or if necessary any number of scripting languages).
There are many scripting languages. Two of the more popular are VBScript and
JavaScript. VBScript is a subset of the Visual Basic 6.0 programming language. Be aware
that Microsoft Internet Explorer (IE) is the only Web browser that has built-in support for
client-side VBScript support. Thus, if you wish your HTML pages to work correctly in any
commercial Web browser, do not use VBScript for your client-side scripting logic.

The truth is that VBScript is effectively dead as of the release of the .NET platform. The
reason is simple. Unlike classic ASP, ASP.NET does not use scripting languages at all.
Rather, ASP.NET pages use full-fledged programming languages (VB.NET, C#, and so
on) to perform server-side logic.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-837 I ♡ Flyheart-

The other popular scripting language is JavaScript. Be very aware that JavaScript is in no
way, shape, or form a subset of the Java language. While JavaScript and Java have a
somewhat similar syntax, JavaScript is not a full-fledged programming language and thus
is far less powerful than Java itself. The good news is that all Web browsers support
JavaScript, which makes it a natural candidate for client-side validation. (As an interesting
side note, understand that JavaScript is standardized as ECMAScript, whereas JScript is
the Microsoft implementation of JavaScript.)

A Client-Side Scripting Example

To begin understanding client-side scripting, you first need to examine how to intercept
events from HTML GUI widgets. Assume you have a new and very simple HTML page
that looks like Figure 14-17.

Figure 14-17: A new HTML page
Next, you need to assign a valid ID and name to the button using the Properties window
(testBtn will do the trick). To capture the click event for this button, activate the HTML
view and select your button from the left drop-down list. Using the right drop-down list box,
select the onclick event (Figure 14-18).

Figure 14-18: Capturing HTML widget events

Once you do this, you will find two major HTML updates (shown in bold):

<HTML>

<HEAD>

<TITLE></TITLE>

<META NAME="GENERATOR" Content="Microsoft Visual Studio">

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-838 I ♡ Flyheart-

<META HTTP-EQUIV="Content-Type" content="text/html">

<script id=clientEventHandlersJS language=javascript>

<!-

function testBtn_onclick() {

}

//->

</script>

</HEAD>

<BODY>

<p align = center>

Here is a single button which responds to clicks...</p>

<p align = center>

<input id =testBtn type=button value=Button name=testBtn

 language=javascript onclick="return testBtn_onclick()">

</p>

</BODY>

</HTML>

As you can see, a new <script> block has been added to your HTML header, with
JavaScript specified as the language of choice. Note that the scripting block has been
placed with HTML style comments. The reason is simple. If your page ends up on a
browser that does not support JavaScript, the code will be treated as a comment block
and ignored. Of course your page may be less functional, but the up side is that your
page will not blow up when rendered into the browser.

Next, notice that the attribute set for the HTML button has a new member named onclick,
which is assigned the new JavaScript function. Thus, when the button is clicked, this
method is called automatically. By way of a simple test, if you update the function as
shown here:

<script id = clientEventHandlersJS language = javascript>

<!-

function testBtn_onclick()

{

 // JavaScript function call (a message box).

 alert("Hey, stop clicking me...");

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-839 I ♡ Flyheart-

}

//->

</script>
you will see a message box pop up when you click the button (Figure 14-19).

Figure 14-19: IE alert

Validating the default.htm HTML Page

Now, update your current default.htm page to support some client-side validation. The
goal is to ensure that when the user clicks the Submit button, you call a JavaScript
function that checks each text box for empty entries. If this is the case, you pop up an
alert that instructs the user to reenter the required data. First, assign an onclick event for
the Submit button to a JavaScript method named ValidateData(). Within the logic of this
method, click each text box for empty strings, as shown here:

<script language = javascript>

<!- Scope the names of the text boxes with the name of the form!

function ValidateData()

{

 // If they forget either item, popup a message box.

 if((MainForm.txtUserName.value = = "") ||

 (MainForm.txtPassword.value = =""))

 {

 alert("You must supply a user name and password!");

 return false;

 }

 return true;

}

->

</script>

...

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-840 I ♡ Flyheart-

<input id = btnSubmit onclick = "return ValidateData()" type = submit

 value = Submit name = btnSubmit>

While you're at it, add another JavaScript method named GetTheDate(), which will be
called when the page is loaded to display the time and date when the user logs on. To call
this function requires a separate <script> tag, which uses the write() method of the
Internet Explorer Document object to pump out a block of text, as shown here:

<HTML>

<HEAD>

<TITLE>HTML is unavoidable</TITLE>

<script language = javascript>

<!- Here are the JavaScript methods for this form.

function ValidateData()

{

 if((MainForm.txtUserName.value = = "") ||

 (MainForm.txtPassword.value = = ""))

 {

 alert("You must supply a user name and password!");

 return false;

 }

 return true;

}

function GetTheDate() { return Date(); }

->

</script>

</HEAD>

<BODY bgColor=#66ccff>

<!- Prompt for user ->

<center>

<h1>The Cars Login Page</h1>

<h2>Today is: </h2>

<script language=javascript>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-841 I ♡ Flyheart-

 // document.write() is part of the IE object model.

 document.write(GetTheDate());

</script>

<h3>Please enter your <i>user name</i>and <i>password</i>.</h3>

<!- Build a form to get user info ->

<form name=MainForm>

 <p>User Name: <input type=text name=txtUserName></p>

 <p>Password:

 <input type=password name=txtPassword></p>

 <input id=btnSubmit onclick=ValidateData() type=submit

 value=Submit name=btnSubmit>

 <input type=reset value=Reset name=btnReset>

</form>

</center>

</BODY>

</HTML>

Submitting the Form Data (GET and POST)

At this point you have been exposed to a number of Web-centric design techniques. Now
that you have a simple Web front end, you need to examine the very important topic of
submitting this data to a Web application. When you build an HTML form, you typically
supply an action attribute to specify the recipient of the incoming data. Possible receivers
include mail servers, other HTML files, an Active Server Page (classic or .NET), and so
forth. For this example, you use a classic ASP file (which you will build in just a moment).
Update your HTML file by specifying the following attribute in the opening <form> tag, as
shown here:

<form name=MainForm

action="http://localhost/Cars/ClassicASPPage.asp" method = "GET">

 ...

</form>

This extra attribute specifies that when the Submit button for this form is clicked, the form
data should be sent to an ASP page (named ClassicASPPage.asp) located under the
Cars virtual directory located on the current machine (i.e., localhost). When you specify
method = GET as the mode of transmission, the form data is appended to the query string

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-842 I ♡ Flyheart-

as a set of name/value pairs. The other method of transmitting form data to the Web
server is to specify method = POST, as shown here:

<form name=MainForm

action="http://localhost/Cars/ClassicASPPage.asp" method = "POST">

 ...

</form>

In this case, the form data is not appended to the query string, but instead is written to a
separate line sent with the HTTP header. In this way, the form data is not directly visible
to the outside world and is therefore a bit more secure. (More importantly, POST is not
limited by character length.) For the time being, assume you have specified the GET
method of form data transfer.

Parsing a Query String

To understand exactly how the receiving ASP file can extract out the form's data, you
need to examine the query string. When you submit form data using the GET action, you
see a slightly mangled text string appearing in your browser's Address box. Here is an
example:

http://localhost/Cars/ClassicASPPage.asp?

txtUserName=Chucky&txtPassword=somepassword&btnSubmit=Submit

One core feature of this (and any) query string is the question mark delimiter (?). On the
left side of the ? is the address of the recipient (your ASP page). On the right side is a
string composed of any number of name/value pairs (such as txtUserName=Chucky).

As you can see, each name/value pair is separated by an ampersand (&). This particular
query string was quite simple to parse, given that you have not injected any blank spaces
in the process. However, if the user name is changed from Chucky to Chucky Chuckles,
you find the following query string:

http://localhost/Cars/ClassicASPPage.asp?txtUserName=

Chucky+Chuckles&txtPassword=somepasswork&btnSubmit=Submit

Notice how extra spaces are marked with a + marker. Thus, if you have five spaces
between Chucky and Chuckles, you find:

http://localhost/Cars/ClassicASPPage.asp?txtUserName=

Chucky+++++Chuckles&txtPassword=somepassword&btnSubmit=Submit

In addition to handling spaces, query strings represent various oddball characters (e.g.,
nonalphanumeric characters such as ^ and ~) as their hexadecimal ASCII equivalents.
Thus, if you resubmit to the ASP page using Hello^77 as the password, you find this:

http://localhost/Cars/ClassicASPPage.asp?txtUserName=

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-843 I ♡ Flyheart-

Chucky++++Chuckles&txtPassword=Hello%5E77&btnSubmit=Submit

Building a Classic Active Server Page
To receive the form data you need to build the ClassicASPPage.asp file, insert a new
Active Server Page file using Visual Studio.NET (Figure 14-20). Be sure the file name you
assign to this new item is the same name as specified in your form's action attribute (and
also be sure to save this file into the folder to which your virtual directory has been
mapped).

Figure 14-20: Inserting a classic ASP file

An Active Server Page is a hodgepodge of HTML code and server-side script. If you have
never worked with classic ASP, understand that the goal of ASP is to dynamically build
HTML on the fly using server-side scripting. For example, you may have a scripting block
that reads a table from a data source (using ADO) and returns the rows as generic HTML.

For this example, the ASP page uses the intrinsic ASP Request object to read the values
of the incoming query string and render them as HTML (thus just echoing the input). Here
is the relevant script (note the use of <%...%> to mark a block of script):

<%@ Language=VBScript %> <!- VBScript A-OK on the server side ->

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 7.0">

</HEAD>

<BODY>

<!- Send back the info they gave us ->

<center>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-844 I ♡ Flyheart-

 <h1>You said: </h1>

 User Name: <%= Request.QueryString("txtUserName") %>

 Password: <%= Request.QueryString("txtPassword") %>

</center>

</BODY>

</HTML>

The first thing to be aware of is that an *.asp file begins and ends with the standard
<html>, <head>, and <body> tag pairs. Here you use the Request object, which like any
classic COM type supports a number of properties, methods, and events. You call the
QueryString() method to examine the values contained in each HTML widget (submitted
via "method = GET"). Also note that the <%= ...%> notation is a shorthand way of saying
"Insert the following into the HTTP response." To gain a finer level of flexibility, you could
use the ASP Response object directly. Here is an example:

<!- Send back the info they gave us ->

<center>

 <h1>You said:</h1>

 User Name: <%= Request.QueryString("txtUserName") %>

 Password:

 <%

 dim pwd

 pwd = Request.QueryString("txtPassword")

 Response.Write (pwd)

 %>

</center>

The Request and Response objects of classic ASP provide a number of additional
members. Furthermore, class ASP also defines a small number of additional objects
(Session, Server, Application, and ObjectContext) that you can use while constructing
your Web application. You will not examine the functionality of these classic ASP items
here. However, later in this chapter you will find that the same behavior is supplied using
properties of the ASP.NET Page type.
In any case, to trigger the ASP logic, simply launch your default.htm page from a browser
and submit the information. After the script is processed, you are returned a brand new
(dynamically generated) HTML file (Figure 14-21).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-845 I ♡ Flyheart-

Figure 14-21: The dynamically generated HTML

Granted, this current example is not very sexy. Nevertheless, you should be able to
understand the key principle behind ASP (and thus ASP.NET) programming: Given some
data submitted by an HTML form, you can use code to dynamically return content to the
user.

Responding to POST Submissions

Currently, your default.htm file specifies GET as the method of sending your form's data
to the receiving *.asp page. Using this approach, the values contained in the various GUI
widgets are appended to the end of the query string. It is important to note that the ASP
Request.QueryString() method is only able to extract data submitted via the GET method.
If you change your method of data transfer to action = POST and rerun your Web
application, you will be saddened to find an empty response (Figure 14-22).

Figure 14-22: The QueryString() method can only proceess information submitted using HTTP
GET

This is because the form data has now been sent as part of the HTTP header, rather than
as appended textual information. The good news is that this same information can
obtained using the Request.Form collection. To submit your data using the POST
technique, you can update your *.asp file as shown here:

<BODY>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-846 I ♡ Flyheart-

<!- Send back the info they gave us ->

<center>

 <h1>You said:</h1>

 User Name: <%=Request.Form("txtUserName") %>

 Password:

 <%

 dim pwd

 pwd = Request.Form("txtPassword")

 Response.Write (pwd)

 %>

</center>

</BODY>
Once you do, you see that you can read the incoming data once again. This time,
however, the values are not appended to the URL (Figure 14-23).

Figure 14-23: POSTed data can be processed using Request.Form

Figure 14-24 illustrates each technique used to submit form data to a recipient and the
corresponding technique to obtain this data from a classic ASP Web application.

Figure 14-24: Submitting data to an ASP page using HTTP GET and POST

Building Your First Official ASP.NET Application

Before ending this review of Web basics, open the default.htm file and update the
opening <form> tag as shown here (note the aspx file extension):

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-847 I ♡ Flyheart-

<form name=MainForm

action="http://localhost/Cars/ClassicASPPage.aspx"

method=post ID=Form1>
Then change the file extension of your classic ASP file to *.aspx and rerun the application.
You should see no difference at all (Figure 14-25).

Figure 14-25: An ASP.NET application

Congratulations! You have just created your first ASP.NET application (by virtue of the
*.aspx file extension). As you can see, all of the techniques presented thus far are valid in
the world of ASP.NET. At this point you should (hopefully) feel more comfortable working
with Web-based applications and understand how each of these building blocks
interrelate. With this review out of the way, you can now spend the remainder of this
chapter examining the framework of ASP.NET.

SOURCE
CODE

The Cars project is included under the Chapter 14
subdirectory.

Some Problems with Classic ASP

While many successful Web applications have been created using classic ASP, this
architecture is not without its down side. Perhaps the biggest downfall of ASP proper is
the very point that makes it a powerful platform: scripting languages. While it is true that
the ASP scripting parser is sophisticated enough to cache the compiled script after the
first use, scripting languages such as VBScript and JavaScript are interpreted, typeless
entities that do not really lend themselves to robust OO programming techniques.
Another problem with classic ASP is the fact that an *.asp page does not yield very
modularized code. Given that ASP is a blend of HTML and script in a single page, most
ASP Web applications are a confused mix of two very different programming techniques.
While it is true that classic ASP allows you to partition related code into distinct files, the
underlying object model does not support true separation of concerns. In an ideal world, a
Web framework would allow the presentation logic (i.e., HTML code) to remain separate
from the business logic (i.e., functional code).

One final issue is the fact that classic ASP demands a good deal of boilerplate, redundant
script that tends to repeat between projects. Almost all Web applications need to validate

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-848 I ♡ Flyheart-

user input, render rich HTML content, and so on. In classic ASP, you are the one in
charge of adding the appropriate server-side scripting code. Ideally, a Web framework
(rather than a human) is in charge of these details.

Some Benefits of ASP.NET

ASP.NET addresses each of the limitations of classic ASP. First and foremost, ASP.NET
files (*.aspx) do not use scripting languages. As mentioned earlier, ASP.NET allows you
to use real programming languages such as C#, JScript.NET, and Visual Basic.NET.
Because of this, you can apply each technique you have learned throughout this book
directly to your Web development efforts. As you would expect, *.aspx pages can make
programmatic use of the .NET class libraries as well as access the functionality provided
by custom assemblies.

Next, ASP.NET applications provide numerous ways to decrease the amount of code you
need to write to begin with. For example, through the use of server-side Web controls,
you can build a browser-based front end using various GUI widgets that emit raw HTML
under the hood. Other Web controls are used to perform automatic validation of your GUI
items (which decreases the amount of client-side script you are responsible for
authoring).

Beyond the simplification of your coding efforts, ASP.NET offers numerous practical bells
and whistles. For example, all ASP.NET Web applications use the integrated Visual
Studio.NET IDE (a huge improvement from debugging scripting logic using Visual
Interdev). To begin seeing these and other benefits in action, let's begin by examining the
core ASP.NET namespaces.

The ASP.NET Namespaces
The .NET class libraries contain numerous namespaces that represent Web-based
technologies. Generally speaking, these namespaces can be grouped into three major
categories: core Web atoms (e.g., HTTP types, configuration types, and security types),
UI (WebForm controls), and Web services (described in Chapter 15). While a full
examination of each item would require a book on its own, you can certainly come to
terms with the functionality offered by the core namespaces described in Table 14-2.

Table 14-2: ASP.NET Namespaces

WEB CENTRIC NAMESPACE MEANING IN LIFE

System.Web System.Web defines core types that
enable browser/Web server
communication (such as request and
response capabilities, cookie
manipulation, and file transfer).

System.Web.Caching This namespace contains types that

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-849 I ♡ Flyheart-

Table 14-2: ASP.NET Namespaces

WEB CENTRIC NAMESPACE MEANING IN LIFE

facilitate caching support for a Web
application.

System.Web.Configuration This namespace contains types that
allow you to configure your Web
application in conjunction with the
project's Web configuration file.

System.Web.Security Security support for a Web application.

System.Web.Services

System.Web.Services.Description

System.Web.Services.Discovery

System.Web.Services.Protocols

These namespaces provide the types
that allow you to build Web services,
examined in Chapter 15.

System.Web.UI

System.Web.UI.WebControls

System.Web.UI.HtmlControls

These namespaces define a number
of types that allow you to build a GUI
front end for your Web application.

The Core Types of System.Web

The System.Web namespace defines the minimal and complete set of types that allow a
browser-based client to communicate and interact with the Web server. Table 14-3 is a
quick rundown of some items of interest, many of which are examined in greater detail
throughout this chapter.

Table 14-3: Core Types of the System.Web Namespace

SYSTEM.WEB TYPE MEANING IN LIFE

HttpApplication The HttpApplication class defines the members
common to all ASP.NET applications. As you will
see, the global.asax file defines a class derived
from HttpApplication.

HttpApplicationState The HttpApplicationState class enables
developers to share global information across
multiple requests, sessions, and pipelines in an
ASP.NET application.

HttpBrowserCapabilities Enables the server to compile information on the
capabilities of the browser running on the client.

HttpCookie Provides a type-safe way to access multiple
HTTP cookies.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-850 I ♡ Flyheart-

Table 14-3: Core Types of the System.Web Namespace

SYSTEM.WEB TYPE MEANING IN LIFE

HttpRequest Provides an object-oriented way to enable
browser-to-server communication (e.g., used to
gain access to the HTTP request data supplied
by a client).

HttpResponse Provides an object-oriented way to enable
server-to-browser communication (e.g., used to
send output to a client).

Understanding the Application/Session Distinction

One aspect of Web-based programming that may be new to desktop application
developers is the distinction between application and session state. Recall that a Web
application can be understood as a collection of all related files located under a virtual
directory. ASP.NET provides the HttpApplication type to represent the common methods,
properties, and events for a given Web application. As you will see, the globals.asax file
defines a single type (named Global) that derives from the HttpApplication base class.

Closely related to the HttpApplication type is HttpApplicationState type. This class
enables you to share global information across multiple sessions in an ASP.NET
application. A Web session expresses one user's interaction with the Web application.
For example, if 20,000 users are logged onto the Cars site, 20,000 sessions are in
process.
In ASP.NET, each session retains stateful information for a given user, programmatically
represented by the HttpSessionState type. In this way, each user has an allocated block
of memory that represents the user's interaction unique with the Web application. (After
all, if two users have logged onto the Cars site, user A may want a brand new BMW while
user B may want a 1970 Colt.) The relationship between a Web application and Web
sessions is shown in Figure 14-26.

Figure 14-26: Application and session state
Under classic ASP, the notions of application and session state are represented using
distinct object types (Application and Session). Under ASP.NET, a Page-derived type

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-851 I ♡ Flyheart-

defines identically named properties (also named Application and Session), which expose
the underlying HttpApplicationState and HttpSessionState types. You will learn more
details in just a bit.

Creating a Simple C# Web Application
To get the ball rolling, let's build a small test project and examine the overall structure of
the ASP.NET framework. First, create a new C# Web Application project workspace
named FirstWebApplication (Figure 14-27).

Figure 14-27: Creating your initial ASP.NET application

Before you click the OK button, take a minute to notice that the Location text box maps
not to a specific folder on your hard drive, but rather to the URL of the machine hosting
this Web application. The Visual Studio.NET solution files (*.sln and *.suo) are stored
under the "My Documents\Visual Studio Projects" sub-folder.
Once the new project workspace has been created, you will notice that a design time
template has been opened automatically (Figure 14-28).

Figure 14-28: Your design time template

Much like a Windows Forms application, this template represents the visual appearance
of the *.aspx file you are constructing. The difference, of course, is that you are using
HTML-based WebForm controls rather than Win32-based Windows Forms controls. Note
that the default name for this page is WebForm1.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-852 I ♡ Flyheart-

Given that this will be the page requested by the outside world, let's rename it to the more
appropriate default.aspx.
Next, look at your Solution Explorer window (Figure 14-29). You have been given a
number of new files and external assembly references.

Figure 14-29: Initial files of an ASP.NET application
If you open IIS, you see that a new virtual directory (FirstWebApplication) has been
automatically created on your behalf (Figure 14-30).

Figure 14-30: The new (automatically created) virtual directory
As you can see, each file in the workspace has been included in this virtual directory. The
physical folder to which this virtual directory is mapped can be located under a
subdirectory under <drive>:\Inetpub\wwwroot (Figure 14-31).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-853 I ♡ Flyheart-

Figure 14-31: The physical file containing your project files

Examining the Initial *.aspx File

If you examine the HTML behind your *.aspx file, you see that you have been given the
minimal set of tags that establish a basic HTML form. The first point of interest is the runat
attribute appearing in the opening <form> tag. This attribute is the heart and sole of
ASP.NET and is used to mark an item as a candidate for processing by the ASP.NET
runtime to generate HTML to return to the browser, as shown here:

<%@ Page language="c#" Codebehind="default.aspx.cs"

AutoEventWireup="false" Inherits="FirstWebApplication.WebForm1" %>

<HTML>

 <HEAD>

 <meta name=vs_targetSchema content="Internet Explorer 5.0">

 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

 <meta name="CODE_LANGUAGE" Content="C#">

 </HEAD>

 <body MS_POSITIONING="GridLayout">

 <form method="post" runat="server">

 </form>

 </body>

</HTML>

The initial code block establishes a number of traits regarding the current page. First, you
can see the name of the language used behind the scenes to construct your page (C#).
The Codebehind attribute names the C# file that represents the behind the scenes
processing. The Inherits attribute is used to specify the name of the class that represents
the class defined in the file specified by Codebehind. (You will examine these topics
further in just a bit.)

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-854 I ♡ Flyheart-

Examining the Web.config File

The web.config file contains XML data used to control various aspects of your Web
application's configuration. Typically speaking, this file is located in the root of the
associated virtual directory of the Web application and applies to each subdirectory. By
default, this file contains compilation, error, security, debugging, session, and
globalization centric information (Figure 14-32).

Figure 14-32: The web.config file allows you to adjust the core behavior of your Web
application using XML tags

In addition, the web.config file may be extended with various other tags beyond the
default. I leave it to you to check out the remaining variations.

Examining the Global.asax File

Similar to classic ASP, ASP.NET applications define a global file (global.asax) that allows
you to interact with application-level (and session-level) events as well as to share
common state data. If you right-click your application's global.asax file and select View
Code, you see that this information is represented by a class named Global that derives
from the HttpApplication base class, as shown here:

public class Global : System.Web.HttpApplication

{

 protected void Application_Start(Object sender, EventArgs e){}

 protected void Session_Start(Object sender, EventArgs e){}

 protected void Application_BeginRequest(Object sender, EventArgs e){}

 protected void Application_EndRequest(Object sender, EventArgs e){}

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-855 I ♡ Flyheart-

 protected void Session_End(Object sender, EventArgs e){}

 protected void Application_End(Object sender, EventArgs e){}

}

In some respects, the Global class acts as the intermediary between the external client
and your Web Form. If you have a background in classic ASP, some of these events may
already be familiar to you. In general, these events allow you to respond to the
initialization (and termination) of the Web application and the individual sessions.

Adding Some Simple C# Logic

If you specify the Web address of your new Web application at this point, the ASP.NET
engine will return an empty page. To remedy this situation, let's modify the body of your
*.aspx file to return some textual information that specifies various aspects regarding the
incoming HTTP request (the System.Web.UI.Page.Response property will be
investigated in more detail later in this chapter):

<body MS_POSITIONING="GridLayout">

 <h1>

 I am:

 </h1>

 <%=this.ToString() %>

 <h1>

 You are:

 </h1>

 <%= Request.ServerVariables["HTTP_USER_AGENT"] %>

 <form method="post" runat="server" ID="Form1">

 </form>

</body>
Once you are done, compile and run the project. An HTML page is returned (Figure 14-33)
that documents the agent who sent this request, as well as the string name of the entity
receiving the request (the name of your page).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-856 I ♡ Flyheart-

Figure 14-33: Documenting who's who

So far, it looks like ASP.NET is functionally identical to classic ASP. In fact, if you worked
through the sample classic ASP application earlier in this chapter, things should look
quite familiar. The only difference thus far is the fact that what you used to regard as the
Request object is now a property of the Page base class. Also, as you can see, you are
not writing script code in our <%...%> tags, but full-fledged C# code, as shown here:

<h1>I am: <%=this.ToString() %></h1>

The Architecture of an ASP.NET Web Application

Now that you have had a chance to build a simple Web application, you can begin digging
a bit deeper into the architecture itself. The first major point of interest is the mysterious
Codebehind attribute in the initial script block, as shown here:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"

AutoEventWireup="false" Inherits="FirstWebApplication.WebForm1" %>

The major difference between classic ASP and ASP.NET is that the *.aspx page, which is
requested by an external client, is represented by a unique C# class, identified by the
Codebehind attribute. When the client requests a particular *.aspx page, an object of this
class is instantiated (and manipulated) by the ASP.NET runtime. Notice, however, that
this C# file is not shown in the Solution Explorer. To access the Codebehind file, simply
right-click an open *.aspx file and select View Code. Here is the initial code block:

namespace FirstWebApplication

{

 using System;

 using System.Collections;

 using System.ComponentModel;

 using System.Data;

 using System.Drawing;

 using System.Web;

 using System.Web.SessionState;

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-857 I ♡ Flyheart-

 using System.Web.UI;

 using System.Web.UI.WebControls;

 using System.Web.UI.HtmlControls;

 public class WebForm1 : System.Web.UI.Page

 {

 public WebForm1()

 {

 Page.Init += new System.EventHandler)Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 // Put user code to initialize the page here.

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 InitializeComponent();

 }

 private void InitializeComponent()

 {

 this.Load += new System.EventHandler(this.Page_Load);

 }

 }

}

The default skeleton code is not too complicated. The constructor of the Page-derived
class establishes an event handler for the Init event. The implementation of this handler
calls InitializeComponents(), which establishes another event handler for the event.

The System.Web.UI.Page Type

To understand the purpose of this autogenerated class, let's begin by examining the
System.Web.UI.Page base class. The Page class defines the properties, methods, and

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-858 I ♡ Flyheart-

events common to all pages processed on the server by the ASP.NET runtime. Table
14-4 describes some (but by no means all) of the core properties.

Table 14-4: Properties of the Page Type

SYSTEM.WEB.UI.PAGE
PROPERTY MEANING IN LIFE

Application Gets the HttpApplicationState object
provided by the runtime.

Cache Indicates the Cache object in which to
store data for the page's application.

IsPostBack Gets a value indicating whether the page
is being loaded in response to a client
postback, or if it is being loaded and
accessed for the first time.

Request Gets the HttpRequest object that
provides access data from incoming
HTTP requests.

Response Gets the HttpResponse object that allows
you to send HTTP response data back to
a client browser.

Server Gets the HttpServerUtility object supplied
by the HTTP runtime.

Session Gets the
System.Web.SessionState.HttpSessionS
tate object, which provides information
about the current request's session.

As you can see, the Page type defines properties that correlate to the intrinsic object
model of classic ASP. In addition to defining a number of inherited methods (which you
typically do not need to interact with directly), Page also supplies the critical events
described in Table 14-5.

Table 14-5: Events of the Page Type

SYSTEM.WEB.UI.PAGE
EVENT MEANING IN LIFE

Init This event is fired when the page is initialized
and is the first step in the page's life cycle.

Load Once initialized, the Load event is fired. Here,

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-859 I ♡ Flyheart-

Table 14-5: Events of the Page Type

SYSTEM.WEB.UI.PAGE
EVENT MEANING IN LIFE

you can configure any WebForm controls with
an initial look and feel.

Unload Occurs when the control is unloaded from
memory. Controls should perform any final
cleanup before termination.

The event handler for the Load event is a perfect place to connect to a data source (to
populate a given WebForm DataGrid) and perform any necessary prep work. The Unload
handler is a perfect place to clean up any allocated resources.

The *.aspx/Codebehind Connection

In addition to this boilerplate code, the C# class represented by the Codebehind tag can
be extended with any number of custom properties and methods that can be called
(indirectly) by the <%...%> code blocks in your *.aspx file. As you recall, classic ASP
requires you to define your custom functionality directly in the *.asp file. Thus, your pages
were a jumble of HTML tags and VBScript (or JavaScript) code. Because of this the *.asp
files were hard to read and even harder to maintain and reuse.

Furthermore, recall that the whole approach of classic ASP was not terribly object
oriented. ASP.NET has resolved these problems by providing a way for you to truly
separate the logic that dynamically generates the returned HTML (the *.aspx) file from the
implantation of your page's logic (e.g., the *.aspx.cs file).

Now, one slightly odd concept is that when you are writing code in the *.aspx file, you can
reference the custom methods and properties defined in the *.aspx.cs file. Let's see a
simple example.

Assume you wish to build a simple function that obtains the current time and date. You
may do so directly in your Page-derived class as shown here:

public class WebForm1 : System.Web.UI.Page

{

 // Generated code...

 public string GetDateTime()

 {

 return DateTime.Now.ToString();

 }

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-860 I ♡ Flyheart-

}

To reference this method in your *.aspx code, you can simply write:

<body>

 <!- Get the time from the C# class ->

 <% Response.Write(GetDateTime()); %>

...

 <form method="post" runat="server" ID=Form1>

 </form>

</body>

You can also make reference to the inherited Page members directly in your C# class.
Thus, you could also write:

public class WebForm1 : System.Web.UI.Page

{

 // Generated code.

 public void GetDateTime()

 {

 Response.Write("It is now " + DateTime.Now.ToString());

 }

}

And then simply call:

<!- Get the time ->

<% GetDateTime(); %>

Working with the Page.Request Property

As you have seen earlier in this chapter, the basic flow of a Web session begins with a
client logging onto a site, filling in user information, and clicking a Submit button
maintained by an HTML form. In most cases, the opening tag of the form statement
specifies an action and method attribute, which specifies the file on the Web server that
will be sent the data in the various HTML widgets, and the method of sending this data
(GET or POST). Here is an example:

<form name=MainForm action="http://localhost/default.aspx" method=get ID=Form1>
In ASP.NET, the Page.Request property provides access to the data sent by the HTTP
request. Under the hood, this property manipulates an instance of the HttpRequest type.
Table 14-6 lists some core members (which should look strangely familiar to you if you
are coming from a classic ASP background).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-861 I ♡ Flyheart-

Table 14-6: Members of the HttpRequest Type

SYSTEM.WEB.HTTPREQUEST
MEMBER MEANING IN LIFE

ApplicationPath Gets the virtual path to the currently
executing server application.

Browser Provides information about incoming
client's browser capabilities.

ContentType Indicates the MIME content type of an
incoming request. This property is read
only.

Cookies Gets a collection of client's cookie
variables.

FilePath Indicates the virtual path of the current
request. This property is read only.

Files Gets the collection of client-uploaded
files (multipart MIME format).

Filter Gets or sets a filter to use when reading
the current input stream.

Form Gets a collection of Form variables.

Headers Gets a collection of HTTP headers.

HttpMethod Indicates the HTTP data transfer
method used by the client (GET,
POST). This property is read only.

IsSecureConnection Indicates whether the HTTP connection
is secure (that is, HTTPS). This
property is read only.

Params Gets a combined collection of
QueryString + Form+ ServerVariable +
Cookies.

QueryString Gets the collection of QueryString
variables.

RawUrl Gets the current request's raw URL.

RequestType Indicates the HTTP data transfer
method used by the client (GET,
POST).

ServerVariables Gets a collection of Web server

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-862 I ♡ Flyheart-

Table 14-6: Members of the HttpRequest Type

SYSTEM.WEB.HTTPREQUEST
MEMBER MEANING IN LIFE

variables.

UserHostAddress Gets the IP host address of the remote
client.

UserHostName Gets the DNS name of the remote
client.

You saw the members of the HttpRequest type earlier in this chapter. For example, when
you spit out various characteristics of the incoming HTTP request, you used what looked
to be an object named Request, as shown here:

You Are: <%= Request.ServerVariables["HTTP_USER_AGENT"] %>

What you are really doing is accessing a property on the returned HttpRequest type, as
shown here:

You Are:

<%

 HttpRequest r;

 r = this.Request;

 Response.Write(r.ServerVariables["HTTP_USER_AGENT"]);

%>

See the connection? Now, let's check out the Request.Response property (and the
related HttpResponse type).

Working with the Page.Response Property

The Response property of the Page class provides access to an internal HttpResponse
type. This type defines a number of properties that allow you to format the HTTP
response sent back to the client browser. Table 14-7 lists some core properties (which
again should look familiar if you have a classic ASP background).

Table 14-7: Properties of the HttpResponse Type

SYSTEM.WEB.HTTPRESPONSE
PROPERTY MEANING IN LIFE

Cache Returns the caching semantics of the
Web page (e.g., expiration time,
privacy, vary clauses).

ContentEncoding Gets or sets the HTTP character set

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-863 I ♡ Flyheart-

Table 14-7: Properties of the HttpResponse Type

SYSTEM.WEB.HTTPRESPONSE
PROPERTY MEANING IN LIFE

of output.

ContentType Gets or sets the HTTP MIME type of
output.

Cookies Gets the HttpCookie collection sent
by the current request.

Filter Specifies a wrapping filter object to
modify the HTTP entity body before
transmission.

IsClientConnected Gets a value indicating whether the
client is still connected to the server.

Output Enables custom output to the
outgoing HTTP content body.

OutputStream Enables binary output to the outgoing
HTTP content body.

StatusCode Gets or sets the HTTP status code of
output returned to the client.

StatusDescription Gets or sets the HTTP status string of
output returned to the client.

SuppressContent Gets or sets a value indicating that
HTTP content will not be sent to the
client.

Also, consider the methods of the HttpResponse type described in Table 14-8.

Table 14-8: Methods of the HttpResponse Type

SYSTEM.WEB.HTTPREQUEST
METHOD MEANING IN LIFE

AppendHeader() Adds an HTTP header to the output
stream.

AppendToLog() Adds custom log information to the IIS
log file.

Clear() Clears all headers and content output
from the buffer stream.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-864 I ♡ Flyheart-

Table 14-8: Methods of the HttpResponse Type

SYSTEM.WEB.HTTPREQUEST
METHOD MEANING IN LIFE

Close() Closes the socket connection to a
client.

End() Sends all currently buffered output to
the client, then closes the socket
connection.

Flush() Sends all currently buffered output to
the client.

Redirect() Redirects a client to a new URL.

Write() Writes values to an HTTP output
content stream.

WriteFile() Overloaded. Writes a file directly to an
HTTP content output stream.

Perhaps the most important aspect of the HttpResponse type is the ability to write to the
HTTP output stream. As you have seen, you may directly call the Write() method or inline
an output request using the <%=...%> notation(like classic ASP). Thus, you can
manipulate this object from your *.aspx file as shown here:

You are:

<%

 HttpRequest r;

 r = this.Request;

 HttpResponse rs;

 rs = this.Response;

 rs.Write(r.ServerVariables["HTTP_USER_AGENT"]);

%>

The preceding code is exactly equivalent to the following:

<%= Request.ServerVariables["HTTP_USER_AGENT"] %>

Working with the Page.Application Property

The Application property of the Page class provides access to the underlying
HttpApplicationState type. As mentioned earlier, HttpApplicationState enables developers

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-865 I ♡ Flyheart-

to share global information across multiple sessions in an ASP.NET application. Table
14-9 describes some core properties.

Table 14-9: Properties of the HttpApplicationState Type

HTTPAPPLICATIONSTATE
PROPERTY MEANING IN LIFE

AllKeys Enables user to retrieve all application state
object names in a collection.

Count Gets the number of item objects in the
application state collection.

Keys Returns a
NameObjectCollectionBase.KeysCollection
instance containing all the keys in the
NameObjectCollectionBase instance.

StaticObjects Exposes all objects declared via an <x
runat=server></x> tag in the ASP.NET
application file.

When you need to create data members that can be shared among all active sessions,
you need to establish a simple name/value pair (e.g., firstUser = "chuck") and insert it to
the internally maintained KeysCollection. To do so, use the class indexer, as shown here:

public class WebForm1 : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 // Create an application-level data member.

 Application["AppString"] = "Initial App Value";

 }

 }

...

}

Later, when you need to reference this value, simply extract it using the same property,
as shown here:

string appVar = "App: " + Application["AppString"];

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-866 I ♡ Flyheart-

Working with the Page.Session Property

As mentioned earlier, a session is little more than a given user's interaction with a Web
application. To maintain stateful information for a particular end user, use the Session
property (which as luck would have it works just like the Application property). I'll assume
you will check out this property at your leisure.

SOURCE
CODE

The WebForm1.aspx and WebForm1.aspx.cs files can be
found under the Chapter 14 subdirectory.

Debugging and Tracing ASP.NET Applications
If you have worked with Visual Interdev, you understand the pain associated with
debugging classic ASP applications. The good news is that when you are building
ASP.NET Web projects, you can use the same debugging techniques as you would with
any other sort of Visual Studio.NET project type. Thus, you can set breakpoints in script
blocks (as well as any C# class files), start a debug session (press F5), and step through
your code (Figure 14-34).

Figure 14-34: Establishing break points

Also, you can enable tracing support for your *.aspx files by specifying the trace attribute
in your opening script block, as shown here:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"

AutoEventWireup="false" Inherits="FirstWebApplication.WebForm1" trace = "true"

%>
When you do so, the returned HTML contains trace information regarding the previous
HTTP response (Figure 14-35).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-867 I ♡ Flyheart-

Figure 14-35: Enabling trace information

To insert your own trace messages into the mix, you can use the Trace type. Any time
you wish to log a custom message (from a script block or C# source code file), simply call
the Write() method (Figure 14-36), as shown here:

Figure 14-36: Logging custom trace messages

<%

 Trace.Write("App Category", "About to determine agent...");

 HttpRequest r;

 r = this.Request;

 HttpResponse rs;

 rs = this.Response;

 rs.Write(r.ServerVariables["HTTP_USER_AGENT"]);

%>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-868 I ♡ Flyheart-

While working with the HttpRequest and HttpResponse types are a step in the right
direction, your first crack at a feature-rich thin client leaves much to be desired. Next, let's
take a tour of the Web-centric GUI widgets.

Understanding the Benefits of WebForm Controls
One major benefit of ASP.NET is the ability to assemble the user interface of your Web
pages using the GUI types defined in the System.Web.UI.WebControls namespace.
These controls (which go by the name server controls, Web controls, or Web form
controls) are extremely helpful in that they automatically generate the necessary HTML
tags required by the browser.

For example, in classic ASP, if you author a Web page that needs to display a series of
text boxes, you basically needed to type the HTML tags directly into the ASP page.
However, in ASP.NET, you simply design your Web form using the design time template
and intrinsic WebForm controls. Here is an example:

<form method="post" runat="server">

 <asp:TextBox id=TextBox1 style="Z-INDEX: 101; LEFT: 27px; POSITION:

 absolute; TOP: 30px" runat="server">

 </asp:TextBox>

</form>

When the ASP.NET runtime encounters widgets with this attribute, the correct HTML is
inserted into the response stream automatically, as shown here:

<input name="TextBox1" type="text" id="TextBox1" style="Z-INDEX: 101;

LEFT: 27px; POSITION: absolute; TOP: 30px" />

Granted, in this situation, it looks as if the WebForm controls required more markup than
the raw HTML widget definition. However, not all controls are as trivial as a simple
TextBox. For example, some Web controls encapsulate full-blown calendars, ad rotators,
HTML tables, data grids, and so forth. In such a case, the WebForm controls can save
you dozens of lines of raw HTML code.
Another benefit is that each ASP.NET control has a corresponding class in the
System.Web.UI.WebControls namespace and can therefore be programmatically
manipulated from your *.aspx file as well as the associated Page-derived class (e.g., the
C# class marked by the Codebehind attribute). On a related note, Web controls also host
a number of events that can be processed on the server (more later).

The final core benefit of using WebForm controls (rather than raw HTML controls) is the
fact that ASP.NET provides a whole set of controls to validate the user-supplied data.
Therefore, you do not need to generate client-side JavaScript routines to validate the data
(although you are still free to do so).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-869 I ♡ Flyheart-

Working with WebForm Controls
When you build Web Application projects, you will notice that your Toolbox window has
an active tab named Web Forms (Figure 14-37).

Figure 14-37: The Web controls

Understand that each server control can be configured using the Property window of the
Visual Studio.NET IDE. Given your work with Windows Forms earlier, you should have no
problems understanding the build of a given widget's property set. For example, if you
have a textbox control (which I have assigned the ID of txtEMail), you will find the choices
shown in Figure 14-38.

Figure 14-38: Like Windows Forms Controls, Web Form Controls are configured using the
Property window

As you configure a given WebControl using the Property window, your changes are
written directly to the *.aspx file. As an example, if you select the txtEMail text box and

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-870 I ♡ Flyheart-

modify the BorderStyle, BorderWidth, BackColor, BorderColor, and ToolTip properties,
the opening <asp:textbox> tag has a number of new name/value pairs representing your
selections, as shown here:

<asp:textbox id=txtEMail runat="server" BorderStyle="Ridge" BorderWidth="5px"

BackColor="PaleGreen" BorderColor="DarkOliveGreen"

ToolTip="Enter your e-mail here...">

</asp:TextBox>

Again, the result is plain old HTML:

<input name="txtEMail" type="text" value="fdfdf" id="txtEMail"

title="Enter your e-mail here..."

style="background-color:PaleGreen;border-color:DarkOliveGreen;

border-width:5px;border-style:Ridge;" />
Now let's examine exactly how these server controls are represented in the *.aspx file. A
given WebControl is defined using an XML-like syntax in which the opening element tag
is always <asp: controlType runat="server">. The closing tag is simply </asp:
controlType>. Thus, you will find that each control is represented in the *.aspx file using
syntax such as the following:

<asp:TextBox id=TextBox1 style="Z-INDEX: 101; LEFT: 27px;

POSITION: absolute; TOP: 30px" runat="server">

</asp:TextBox>

<asp:Button id=Button1 style="Z-INDEX: 102; LEFT: 26px;

POSITION: absolute; TOP: 66px" runat="server"

 DESIGNTIMEDRAGDROP="21" Text="Button">

</asp:Button>

The runat="server" attribute marks this item as a server-side control and informs the
ASP.NET runtime that this item needs to be processed before returning the response
stream to the browser, to generate the necessary HTML. Now, open the Codebehind
class. You will notice that you now have a number of new member variables that
represent each server control. As you can see, the names of these variables are the
same as those of the ID element defined in the *.aspx file:

public class WebForm1 : System.Web.UI.Page

{

 protected System.Web.UI.WebControls.Button btnSubmit;

 protected System.Web.UI.WebControls.CheckBox ckBoxNewsLetter;

 protected System.Web.UI.WebControls.TextBox txtEMail;

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-871 I ♡ Flyheart-

 protected System.Web.UI.WebControls.TextBox txtLName;

 protected System.Web.UI.WebControls.TextBox txtFName;

...

}

In this way, you can programmatically manipulate your items using C# code in the *.aspx
file or in your custom-defined routines in the Page-derived class.

The Derivation of WebForm Controls

All of the ASP.NET server-side controls ultimately derive from a common base class
named System.Web.UI.WebControls.WebControl. WebContol in turn derives from
System.Web.UI.WebControls.Control, which in turn derives from System.Object. For
example, the derivation of the WebForm Button type would be understood as shown in
Figure 14-39.

Figure 14-39: Base classes of a Web Control

Control and WebControl each define a number of properties common to all server-side
controls. To help gain an understanding of your inherited functionality, consider the partial
set of Control properties described in Table 14-10.

Table 14-10: Properties of the Control Base Class

CONTROL
PROPERTY

MEANING IN LIFE

ID Gets or sets the identifier for the control. Setting the
property on a control allows programmatic access to the
control's properties as well as the chance to respond to
events sent by the control.

MaintainState Gets or sets a value indicating whether the control should
maintain its view state, and the view state of any child
control in contains, when the current page request ends
(more later).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-872 I ♡ Flyheart-

Table 14-10: Properties of the Control Base Class

CONTROL
PROPERTY

MEANING IN LIFE

Page Gets the Page object that contains the current control.

Visible Gets or sets a value that indicates whether a control should
be rendered on the page.

As you can tell, the Control type provides a number of non-GUI-related behaviors.
WebControl also defines some additional properties that allow you to configure the look
and feel of the server-side widget (Table 14-11).

Table 14-11: Properties of the Control Base Class

WEBCONTROL
PROPERTY

MEANING IN LIFE

BackColor Gets or sets the background color of the Web control.

BorderColor Gets or sets the border color of the Web control.

BorderStyle Gets or sets the border style of the Web control.

BorderWidth Gets or sets the border width of the Web control.

Enabled Gets or sets a value indicating whether the Web control
is enabled.

Font Gets font information for the Web control.

ForeColor Gets or sets the foreground color (typically the color of
the text) of the Web control.

Height

Width

Gets or sets the height and width of the Web control.

TabIndex Gets or sets the tab index of the Web control.

ToolTip Gets or sets the tool tip for the Web control to be
displayed when the cursor is over the control.

Categories of WebForm Controls

While all the types in the System.Web.UI.WebControls namespace are GUI related, you
can break down their functionality into four broad categories:

 Intrinsic controls
 Rich controls
 Data-centric controls
 Input validation controls

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-873 I ♡ Flyheart-

Given your work with Windows Forms controls earlier in this book, you should feel right at
home. Just remember that while Windows Forms types encapsulate the raw Win32 API
from view, WebForm controls encapsulate the generation of raw HTML tags.

Working with the Intrinsic WebForm Controls

To begin, let's examine some of the intrinsic controls. These types are basically .NET
components that have a direct HTML widget counterpart. (If there is no direct counterpart,
the WebForm control sends back HTML tags that simulate one.) For example, to display
a list of items for the end user (see Figure 14-40), you can construct a WebForm ListBox
(and the related ListItems), as shown here:

Figure 14-40: Building a ListBox

<asp:ListBox id=ListBox1 runat="server" Width="86" Height="69">

 <asp:ListItem Value="BMW">BMW</asp:ListItem>

 <asp:ListItem Value="Jetta">Jetta</asp:ListItem>

 <asp:ListItem Value="Colt">Colt</asp:ListItem>

 <asp:ListItem Value="Grand Am">Grand Am</asp:ListItem>

</asp:ListBox>

When the controls are processed by the ASP.NET runtime, the resulting HTML (which is
of course displayed in the browser) looks something like this:

<select name="ListBox1" id="ListBox1" size="5" style="height:69px;width:86px;">

 <option value="BMW">BMW</option>

 <option value="Jetta">Jetta</option>

 <option value="Colt">Colt</option>

 <option value="Grand Am">Grand Am</option>

</select>
Table 14-12 describes some of the core intrinsic WebForm controls.

Working with these intrinsic controls is more or less just like working with their Windows
Forms equivalents. Given that the Visual Studio.NET IDE provides the Property window
to configure a selected widget, your task is even simpler. Therefore, rather than walking
through each and every intrinsic control, let's spend time looking at a few common
configurations.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-874 I ♡ Flyheart-

Table 14-12: A Sampling of Intrinsic Web Controls

WEBFORM
INTRINSIC
CONTROL

MEANING IN LIFE

Button

ImageButton

Various button types.

CheckBox

CheckBoxList

A basic check box (CheckBox) or a list box containing a
set of check boxes (CheckBoxList).

DropDownList

ListBox

ListItem

These types allow you to construct standard list box
items.

Image

Panel

Label

These types represent containers for static text and
images (as well as a way to group them).

RadioButton

RadioButtonList

A basic radio button type (RadioButton) or a list box
containing a set of radio buttons (RadioButtonList).

TextBox Text box for user input. May be configured as a
singleline or multiline text box.

Creating a Group of Radio Buttons

Radio button types tend to work as a group in which only one item in the group can be
selected at a given time. For example, if you are interested in the UI shown in Figure
14-41, you can write the following script in the body of your form:

Figure 14-41: Building a set of related radio buttons

<body>

<p>How shall we contact you?</p>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-875 I ♡ Flyheart-

<p><asp:RadioButton id=RadioHome runat="server"

Text="Contact me at home" GroupName="ContactGroup">

</asp:RadioButton></p>

<p><asp:RadioButton id=RadioWork runat="server"

 Text="Contact me at work" GroupName="ContactGroup">

</asp:RadioButton></p>

<p><asp:RadioButton id=RadioDontBother runat="server"

Text="Don't bother me..." GroupName="ContactGroup">

</asp:RadioButton></p>

</body>

Notice that each RadioButton type has a GroupName attribute. Given that each items has
been mapped to the same group (ContactGroup), each is mutually exclusive.

Creating a Scrollable, Multiline TextBox
Another common widget is a multiline text box (Figure 14-42).

Figure 14-42: A multiline TextBox

As you would expect, configuring a text box to function in this way is simply a matter of
adding the correct attribute set to the opening <asp:TextBox> tag. Consider this example:

<p><asp:TextBox id=TextBox1 runat="server" Width="183" Height="96"

TextMode="MultiLine" BorderStyle="Ridge">

</asp:TextBox></p>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-876 I ♡ Flyheart-

When you set the TextMode attribute to MultiLine, the TextBox automatically displays a
vertical scroll bar when the content is larger than the display area. The remaining intrinsic
controls are rather self-explanatory, so take the time to check out their property set.

The Rich Controls

Rich controls are also widgets that emit HTML to the HTTP response stream. The
difference between these types and the set of intrinsic controls is that they have no direct
HTML counterpart. Table 14-13 describes two rich controls.

Table 14-13: Rich WebControl Widgets

WEBFORM RICH
CONTROL

MEANING IN LIFE

AdRotator This control allows you to randomly display
text/images using a corresponding XML
configuration file.

Calendar This control returns HTML that represents a
GUI-based calendar.

Working with the Calendar Control

The Calendar control is a widget for which there is no direct HTML equivalent.
Nevertheless, this type has been designed to return a batch of HTML tags that simulate
such an entity. For example, suppose you place a Calendar control on your WebForm as
shown here:

<asp:Calendar id=Calendar1 runat="server"></asp:Calendar></p>
You find that a huge amount of raw HTML has been generated automatically! To test
things for yourself, place a Calendar type on your design time template, save the *.aspx
file, and navigate to the correct virtual directory. Once you get back the response,
right-click the browser and select View Source (Figure 14-43).

Figure 14-43: The Calendar Web control emits complex HTML

Like its Windows Forms counterpart, the server-side Calendar control is highly
customizable. One member of interest is the SelectionMode property. By default, the
Calendar control only allows the end user to select a single day (e.g., SelectionMode =

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-877 I ♡ Flyheart-

Day). You can change this behavior by assigning this property to any of the following
alternatives:

 None: No selection can be made (e.g., the Calendar is just for display
purposes).

 DayWeek: User may select a single day or an entire week.
 DayWeekMonth: User may select a single day, an entire week, or an

entire month.

For example, if you choose DayWeekMonth, the returned HTML renders an additional
leftmost column (to allow the end user to select a given week) as well as a selector in the
upper left (to allow the end user to select the entire month). Here is the full configuration,
which is shocking until you recall that each attribute was configured using the VS.NET
IDE's Property window:

<asp:Calendar id=Calendar1 runat="server" SelectionMode="DayWeekMonth"

DayNameFormat="FirstLetter" BackColor="White"

SelectorStyle-ForeColor="#336666" SelectorStyle-BackColor="#99CCCC"

NextPrevStyle-Font-Size="8pt" NextPrevStyle-ForeColor="#CCFF99"

TodayDayStyle-BackColor="#99CCCC" DayHeaderStyle-Height="1px"

DayHeaderStyle-ForeColor="#336666" DayHeaderStyle-BackColor="#99CCCC"

Font-Size="8pt" Font-Names="Verdana" Height="200"

OtherMonthDayStyle-ForeColor="#999999" TitleStyle-Font-Size="11pt"

TitleStyle-Font-Bold="True" TitleStyle-ForeColor="#CCFF99"

TitleStyle-BackColor="#003399" ForeColor="#003399" BorderColor="#3366CC"

 Width="221" SelectedDayStyle-ForeColor="#CCFF99"

SelectedDayStyle-BackColor="#009999"

TodayDayStyle-ForeColor="White" BorderWidth="1px"

TitleStyle-BorderStyle="Solid" TitleStyle-BorderWidth="1px"

TitleStyle-BorderColor="#3366CC" WeekendDayStyle-BackColor="#CCCCFF"

SelectedDayStyle-Font-Bold="True" CellPadding="1">

</asp:Calendar>
Figure 14-44 shows output as rendered in Microsoft Internet Explorer.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-878 I ♡ Flyheart-

Figure 14-44: The client-side Calendar UI

Working with the AdRotator

Although classic ASP also provided an AdRotator control, the ASP.NET variation has
been substantially upgraded. The role of this widget is to randomly display a given
advertisement at some position in the browser. When you place a serverside AdRotator
widget on your design time template, the display is a simple placeholder. Functionally,
this control cannot do its magic until you set the AdvertisementFile property to point to the
XML file that describes each ad.

The format of the advertisement file is quite simple. For each ad you wish to show, create
a unique <Ad> element. At minimum, each <Ad> element specifies the image to display
(ImageUrl), the URL to navigate to if the image is selected (TargetUrl), mouseover text
(AlternateText), and the weighing for the ad (Impressions). For example, assume you
have a file (ads.xml) that defines two possible ads, as shown here:

<Advertisements>

 <Ad>

 <ImageUrl>SlugBug.jpg</ImageUrl>

 <TargetUrl>http://www.Cars.com</TargetUrl>

 <AlternateText>Your new Car?</AlternateText>

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-879 I ♡ Flyheart-

 <Impressions>80</Impressions>

 </Ad>

 <Ad>

 <ImageUrl>car.gif</ImageUrl>

 <TargetUrl>http://www.CarSuperSite.com</TargetUrl>

 <AlternateText>Like this Car?</AlternateText>

 <Impressions>80</Impressions>

 </Ad>

</Advertisements>

Once you set the AdvertisementFile property correctly (and insure that the images and
XML file are in the correct virtual directory), one of these two ads is randomly displayed
when users navigate to the site, as shown here:

<asp:AdRotator id=AdRotator1 runat="server" Width="470"

 Height="60" AdvertisementFile="ads.xml">

</asp:AdRotator>
Thus you might find the output as seen in Figure 14-45.

Figure 14-45: One possible ad

Or perhaps you might find something like Figure 14-46.

Figure 14-46: Another possible ad

Be aware that the Height and Width properties of the AdRotator are used to establish the
size of your ads. In this example, each ad is the default 60 by 470 pixels. If your ads are
larger (or smaller) than the AdRotator's size, you will find skewed images.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-880 I ♡ Flyheart-

SOURCE
CODE

The files for the Controls project are included under the
Chapter 14 subdirectory.

Datacentric Controls

WebForm defines a number of widgets that generate HTML based (in part) on a
connection to a data store. As you would expect, these controls can be fed in ADO.NET
DataSets, just like their Windows Forms counterparts. Table 14-14 gives a partial list.

Table 14-14: Web Form Data Controls

WEBFORM
DATA
CONTROL

MEANING IN LIFE

DataGrid A widget that displays ADO.NET DataSets in a grid.

DataList A widget bound to a given data source.

In addition to these core datacentric WebForm types, be aware that most intrinsic controls
can be configured to display information obtained from a data store or UDT (user-defined
type). You will examine how to bind to custom types in just a moment, but first let's check
out the process of binding a DataSet to the Web-centric DataGrid widget.

Filling a DataGrid

Far and away one of the most common tasks in Web development is reading a data
source for information and returning said data in a tabular format. Using classic ASP this
was accomplished by obtaining an ADO Recordset and building an HTML table on the fly
using various HTML tags. The same end result can be achieved using the WebForm
DataGrid with minimal fuss and bother.
To illustrate, let's assume that when a user navigates to a given *.aspx page, you wish to
read the Cars database (developed in Chapter 13) and return the results. Your first task is
to write an event handler for the Load event of the page class. Once you do, you can then
create a DataSet object and bind it directly to the DataGrid. Here is the corresponding C#
code (understand that DataGrid1 is the name of the server-side widget you dropped onto
your design time form):

// Don't forget to specify a using directive for System.Data.SQL!

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

 {

 // Fill the DataGrid with the Inventory table.

 SqlConnection sqlConn = new SqlConnection();

 sqlConn.ConnectionString = "data source=.; initial catalog=Cars;" +

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-881 I ♡ Flyheart-

 "integrated security=sspi;";

 SqlDataAdapter dsc =

 new SqlDataAdapter("Select * from Inventory", sqlConn);

 DataSet ds = new DataSet();

 dsc.Fill(ds, "Inventory");

 DataGrid1.DataSource = ds.Tables["Inventory"].DefaultView;

 DataGrid1.DataBind();

 }

}
The output is very satisfying (Figure 14-47).

Figure 14-47: Filling a Web Forms DataGrid using a data adapter

More on Data Binding

As you have seen, the DataGrid control provides the DataSource and DataBind()
members to allow you to render the contents of a given DataTable. This is obviously a
great boon to the enterprise developer. However, WebForm controls (as well as Windows
Forms controls) also allow you to bind other sources of data to a given widget.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-882 I ♡ Flyheart-

For example, assume that you have a well-known set of values represented by a simple
string array. Using the same technique as for binding to DataGrid types, you can attach
an array to a GUI type. For example, if you place an ASP.NET ListBox control (with the ID
of petNameList) on your *.aspx page, you can update the Page_Load() event handler as
shown here:

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

 {

 // Create an array of data to bind to the list box.

 string[] carPetNames =

 {

 "Viper", "Hank", "Ottis", "Alphonzo", "Cage", "TB"

 };

 petNameList.DataSource = carPetNames;

 petNameList.DataBind();

 }

}
As you would expect, the output is as shown in Figure 14-48.

Figure 14-48: Binding data to common Web Form Controls

Recall that all .NET arrays map to the System.Array type. Also recall that System.Array
implements the IEnumerable interface. The fact is that any type that implements
IEnumerable can be bound to a GUI widget. Therefore, if you update your simple string
array to an instance of the ArrayList type, the output is identical, as shown here:

protected void Page_Load(object sender, EventArgs e)

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-883 I ♡ Flyheart-

{

 if (!IsPostBack)

 {

 // Now use an array list.

 ArrayList carPetNames = new ArrayList();

 carPetNames.Add("Viper");

 carPetNames.Add("Ottis");

 carPetNames.Add("Alphonzo");

 carPetNames.Add("Cage");

 carPetNames.Add("TB");

 petNameList.DataSource = carPetNames;

 petNameList.DataBind();

 }

}
SOURCE
CODE

The files for the ASPData Web application can be found under
the Chapter 14 subdirectory.

Validation Controls

The final conceptual set of WebForm controls are termed validation controls. Like their
Windows Forms equivalents, these types are used to ensure that the data submitted by
the user is well formatted based on your application logic. Table 14-15 gives a rundown of
the core validation controls.

Table 14-15: Validation Controls

WEBFORM VALIDATION
CONTROL

MEANING IN LIFE

CompareValidator Validates that the value of an input control is
equal to a given value of another input
control.

CustomValidator Allows you to build a custom validation
function that validates a given control.

RangeValidator Determines that a given value is in a
predetermined range.

RegularExpressionValidator Checks if the value of the associated input
control matches the pattern of a regular
expression.

RequiredFieldValidator Ensures that a given input control contains a

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-884 I ♡ Flyheart-

Table 14-15: Validation Controls

WEBFORM VALIDATION
CONTROL

MEANING IN LIFE

value (and is thus not empty).

ValidationSummary Displays a summary of all validation errors of
a page in a list, bulleted list, or single
paragraph format. The errors can be
displayed inline and/or in a popup message
box.

To illustrate the basics of working with validation controls, let's create a new C# Web
Application project workspace named ValidateWebApp. Change the name of your *.aspx
file to default.aspx and then open the design time template. Now, create the simple UI
shown in Figure 14-49 using standard drag-and-drop techniques. Be aware that the text
items can be assembled using raw HTML tags and do not need to be represented by a
Label object.

Figure 14-49: A simple Web UI

Next let's examine how to use the WebForm validation controls. To illustrate, assume that
you wish to ensure that the txtEMail text box contains information (before you submit the
form to the Web server). At design time, you can simply place a RequiredFieldValidator
widget on your form.

Using the Properties window, you can set the ErrorMessage property to a given value
(which is displayed when the validation fails), as well as establish the ID of the control this
widget is in charge of validating using the ControlToValidate property (Figure 14-50).

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-885 I ♡ Flyheart-

Figure 14-50: Configuring data validation

Under the hood, the *.aspx logic can be seen as follows:

<asp:RequiredFieldValidator id=RequiredFieldValidator1 style="Z-INDEX: 109;

LEFT: 351px; POSITION: absolute; TOP: 204px"

runat="server"

ErrorMessage="We need your e-mail Address!"

ControlToValidate="txtEMail">

</asp:RequiredFieldValidator>

In addition, you have the Page-derived C# class (as specified by the Codebehind attribute)
as a new (appropriately typed) member variable, as shown here:

public class WebForm1 : System.Web.UI.Page

{

 protected System.Web.UI.WebControls.Button btnSubmit;

 protected System.Web.UI.WebControls.RequiredFieldValidator

 RequiredFieldValidator1;

 protected System.Web.UI.WebControls.TextBox txtEMail;

 protected System.Web.UI.WebControls.TextBox txtLName;

 protected System.Web.UI.WebControls.TextBox txtFName;

...

}

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-886 I ♡ Flyheart-

Now, save your page and refresh your browser. At this point, you should not see any
noticeable changes. However, when you attempt to click the Submit button before you fill
the txtEMail text box, your error message is suddenly visible, as shown in Figure 14-51.

Figure 14-51: The RequiredFieldValidator in action

Once you enter data in the txtEMail text box, the error message is removed. If you look at
the HTML rendered by the browser, you see that the RequiredFieldValidator control
generated a client-side JavaScript function free of charge. However, if the validation
control determines that the browser that submitted the HTTP request is unable to support
such logic, the returned HTML page redirects the error processing back to the Web
server.

SOURCE
CODE

The ValidateWebApp project is included under the Chapter 14
subdirectory.

Handling WebForm Control Events

As you have seen, one common approach to handling events fired by HTML GUI widgets
is through the use of client-side JavaScript. In any case where your event handling
requires any rendering logic, browser alerts (e.g., message boxes), or other direct
interaction with the browser's object model, this is the way to go. However, other times
you have a particular ASP.NET widget that performs non-GUI processing (such as
performing a numerical calculation, editing a data table, and so on).
While you are still free to use client-side scripting for these purposes, ASP.NET does offer
another alternative. Each WebForm control responds to its own set of events, which can
be configured to process event handlers on the server. To configure a control to do so,
simply add an event handler using the Property window.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-887 I ♡ Flyheart-

For example, assume you need to determine which day has been selected on a Calendar
control. You can capture the SelectionChanged event and act accordingly, as shown
here:

protected void Calendar1_SelectionChanged (object sender, System.EventArgs e)

{

 Response.Write("<h5>Your car will be delivered on:" +

 Calendar1.SelectedDate.Date + "</h5>");

}
Now when the user triggers the SelectionChanged event, the browser makes a post back
to the server to call the correct event handler. Figure 14-52 shows the end result.

Figure 14-52: Server-side event handling

Even though ASP.NET provides the ability to handle GUI widget events on the Web
server, you need to be aware of the obvious drawback: This will increase the number of
postbacks to the remote machine and therefore degrade the performance of your Web
application. However, on the up side, when used prudently server-side event handling
leads to more modular and maintainable code.

Summary

Building Web applications requires a different frame of mind than is used to assemble
traditional desktop applications. In this chapter, you began with a quick and painless
review of some core Web atoms, including HTML, HTTP, the role of client-side scripting,
and server-side scripts using classic ASP.

C# and the .NET Platform Chapter 14: Web Development and ASP.NET

-888 I ♡ Flyheart-

The bulk of this chapter was spent examining the architecture of an ASP.NET application.
As you have seen, each *.aspx file in your project has an associated
System.Web.UI.Page derived class. Using this code behind approach, ASP.NET allows
you to build more reusable and OO-aware systems. Furthermore, you have seen that the
core properties defined by the Page type (Session, Application, Request, and Response)
provide access to an underlying object instance. This chapter concluded by examining
the use of WebForm types. These GUI widgets are in charge of emitting HTML tags to the
client side.

C# and the .NET Platform Chapter 15: Building Web services

-889 I ♡ Flyheart-

Chapter 15: Building (and Understanding)

Web Services

Overview

In many ways, this chapter represents the summation of all the topics you have explored
over the course of this book. Here you will examine the construction and consumption of
ASP.NET Web services. Simply put, a Web service is a unit of managed code (typically
installed under IIS) that can be remotely invoked using HTTP.

As you will see, Web services consist of three supporting technologies: the Web Service
Description Language (WSDL), a wire protocol (HTTP GET, HTTP POST, or SOAP), and
a discovery service (*.disco files). You will begin by building a simple Calculator Web
service and from there create an automobile centric Web service that can return
ADO.NET DataSets, ArrayLists, and custom types.

Once you have been exposed to the core building blocks of .NET Web services, the
chapter concludes by showing how to build a proxy class (using VS.NET as well as the
wsdl.exe utility) that can be consumed by Web-based, console-based, and Windows
Forms clients.

Understanding the Role of Web Services

From a high level, one can define a Web service as a unit of code that can be activated
using HTTP requests. Now, let's think this one through a bit. Historically speaking, remote
access to binary units required platform-specific (and sometimes language-specific)
protocols. A classic example of this approach would be DCOM. DCOM clients access
remote COM types using tightly coupled RPC calls. CORBA also requires the use of a
tightly coupled protocol to activate remote types. EJB (Enterprise Java Beans) requires a
specific protocol and (by and large) a specific language (Java). The problem with each of
these remoting architectures is that they are proprietary protocols, which typically require
a tight connection to the remote source.

As you already know, .NET is extremely language agnostic. Using C#, VB.NET, or any
other .NET-aware language, you can build types that can be consumed and extended
across language boundaries. Using Web services, you can access your language-neutral
assemblies using nothing but HTTP. Of all the protocols in existence today, HTTP is the
one specific wire protocol that all platforms tend to agree on.

Thus, using Web services, you (as a Web service developer) can use any language you
wish. You (as a Web service consumer) can use standard HTTP to invoke methods on
the types defined in the Web service. The bottom line is that you suddenly have true
language and platform integration. It is not about COM or Java or CORBA anymore. It is
all about HTTP and your programming language of choice (which is of course C#). As you

C# and the .NET Platform Chapter 15: Building Web services

-890 I ♡ Flyheart-

will see, SOAP (Simple Object Access Protocol) and XML are also two key pieces of the
Web service architecture, which are used in conjunction with standard HTTP.

Like any .NET assembly, a Web service contains some number of classes, interfaces,
enumerations, and structures that provide black box functionality to remote clients. The
only real restriction to be aware of is that because Web services are designed to facilitate
remote invocations, you should avoid the use of any GUI-centric logic. Web services
typically define business objects that execute a unit of work (e.g., perform a calculation,
read a data source, or whatnot) for the consumer and wait for the next request.

One aspect of Web services that might not be readily understood is the fact that the Web
service consumer does not necessarily need to be a browser-based client. As you will see,
console-based and Windows Forms-based clients can consume a Web service just as
easily. In each case the client indirectly interacts with the Web service through an
intervening proxy. The proxy (which will be described in detail later in the chapter) looks
and feels like the real remote type and exposes the same set of members. Under the
hood, however, the proxy code really forwards the request to the Web service using
standard HTTP or optionally, SOAP messages.

The Anatomy of a Web Service

Web services are typically hosted by IIS under a unique virtual directory, much like a
standard ASP.NET Web application. However, in addition to the managed code that
constitutes the exported functionality, a Web service requires some supporting
infrastructure. In a nutshell, a Web service requires the following:

 A wire protocol (e.g., HTTP GET / HTTP POST or SOAP)
 A description service (so that clients know what the Web service can do)
 A discovery service (so that clients know the Web service exists)

You will examine the details behind each requirement in this chapter. However, just to get
into the correct frame of mind, here is a brief overview of each supporting technology.

Previewing the Wire Protocol

Much like an ADO.NET DataSet, information is transmitted between a Web service
consumer and Web service as XML. As mentioned, HTTP is the protocol that transmits
this data. More specifically, you can use HTTP GET, HTTP POST, or SOAP to move
information between consumers and Web services. By and large, SOAP will be your first
choice, for as you will see, SOAP messages can contain XML descriptions of very
complex types (custom classes, ADO.NET DataSets, arrays of objects, and so forth).

C# and the .NET Platform Chapter 15: Building Web services

-891 I ♡ Flyheart-

Previewing Web Service Description Services

For a Web service consumer to use a remote Web service, it must fully understand the
exposed members. For example, the client must know that there is a method named Foo()
that takes three parameters of type {string, bool, int} and returns a type named Bar before
it can invoke it. Again, XML steps up to the plate to offer a generic way to describe the
Web service. Formally, the XML schema used to describe a Web service is termed the
Web Service Description Language, or WSDL.

Previewing Discovery Services

In the previous chapter, you briefly studied *.disco (an abbreviation for DISCOvery of
Web Services) files. These XML based files allow a client to dynamically discover the
Web services exposed from a given URL. Understand that a client in this sense could be
a block of code you are currently authoring or a design time wizard. You

An Overview of the Web Service Namespaces
As you would imagine, each of these requirements is supported by various .NET types,
contained in the namespaces described in Table 15-1.

Table 15-1: Web Service Namespaces

WEB SERVICE CENTRIC
NAMESPACE

MEANING IN LIFE

System.Web.Services This namespace contains the minimal
and complete set of types needed to
build a Web service.

System.Web.Services.Description These types allow you to
programmatically interact with WSDL.

System.Web.Services.Discovery These types (used in conjunction with
a *.disco file) allow a Web consumer to
programmatically discover the Web
services installed on a given machine.

System.Web.Services.Protocols The XML-based data that is
exchanged between a Web consumer
and a Web service may be transmitted
using one of three protocols (HTTP
GET, HTTP POST, and SOAP). This
namespace defines a number of types
that represent these wire protocols.

C# and the .NET Platform Chapter 15: Building Web services

-892 I ♡ Flyheart-

Examining the System.Web.Services Namespace
Despite the rich functionality provided by the .NET Web services namespaces, for most
projects the only types you will need to directly interact with are defined in the
System.Web.Services namespace. As you can see from Table 15-2, the number of types
is quite small.

Table 15-2: Members of the System.Web.Services Namespace

SYSTEM.WEB.SERVICES
TYPE

MEANING IN LIFE

WebMethodAttribute Adding the [WebMethod] attribute to a
method in a Web service makes the method
callable from a remote client using HTTP.

WebService Defines the optional base class for Web
services.

WebServiceAttribute The WebService attribute may be used to add
information to a Web service, such as a string
describing its functionality. The attribute is not
required for a Web service to be published
and executed.

WebServiceBindingAttribute Declares the binding protocol a given Web
service method is implementing.

Building a Simple Web Service
Before diving much further into the details, let's build a simple example. (Don't worry, you
will construct a more exotic Web service later). Fire up Visual Studio.NET and create a
new C# Web service project named CalcWebService (Figure 15-1).

C# and the .NET Platform Chapter 15: Building Web services

-893 I ♡ Flyheart-

Figure 15-1: Creating a Web service project workspace

Like an ASP.NET application, Web service projects automatically create a new virtual
directory under IIS (Figure 15-2) and store your project files under the \My
Documents\Visual Studio Projects subdirectory.

Figure 15-2: Web services are installed under the care of IIS
Because of the configuration of a Web service project, if you wish to use the
downloadable source code during this chapter, begin by creating a new project
workspace and simply import the predefined class. In any case, when you examine the
Solution Explorer (Figure 15-3), you should feel right at home with these new project files,
given the material presented in Chapter 14.

C# and the .NET Platform Chapter 15: Building Web services

-894 I ♡ Flyheart-

Figure 15-3: Initial project files

The Global.asax and Web.config files serve the same purpose as (and look identical to)
an ASP.NET application. As you recall from the Chapter 14, the Global.asax file allows
you to respond to global-level events. Web.config allows you to declaratively configure
your new Web service (again using XML notation). The items of interest to us at this point
are the *.asmx, *.asmx.cs, and *.disco files as described in Table 15-3.

Table 15-3: Core Files of a VS.NET Web Service Project

WEB SERVICE
PROJECT FILE

MEANING IN LIFE

*.asmx

*.asmx.cs

These files define the methods of your Web
service. Like an *.aspx file, each *.asmx file has a
corresponding *.cs file to hold the code behind.

*.disco Again, this file extension is short for "DISCOvery
of Web Services" and contains an XML
description of the Web services at a given URL.

C# and the .NET Platform Chapter 15: Building Web services

-895 I ♡ Flyheart-

The Codebehind File (*.asmx.cs)

A *.asmx file represents a given Web service in your current project workspace. To view
the code behind the design time template, select the View Code option to check out the
corresponding *.asmx.cs class definition, as shown here:

public class Service1 : System.Web.Services.WebService

{

 public Service1(){ InitializeComponent(); }

 private void InitializeComponent() {}

 public override void Dispose() {}

};
As you can see, the only real point of interest is the fact that you derive from a new base
class: WebService. You will examine the members defined by this type in just a moment.
For the time being, just understand that Web services have the option of deriving from
this base class type. In fact, if you comment out the over-ridden Dispose() method and
derive directly from System.Object, the Web service still functions correctly, as shown
here:

// I'm still a Web service!

public class Service1

{

 public Service1() { InitializeComponent(); }

 private void InitializeComponent() {}

 // public override void Dispose() {}

};

Adding Some Simple Functionality

For this initial Web service, let's keep things short and sweet and add four methods that
allow the outside world to add, subtract, multiply, and divide two integers. As you would
expect, methods that you wish to make available via HTTP requests must be declared as
public. In addition to this (obvious) fact, each method must support the [WebMethod]
attribute. Therefore, you can update your initial class as shown here:

public class Service1 : System.Web.Services.WebService

{

C# and the .NET Platform Chapter 15: Building Web services

-896 I ♡ Flyheart-

 public Service1() { InitializeComponent(); }

 private void InitializeComponent(){}

 public override void Dispose(){}

 [WebMethod]

 public int Add(int x, int y){ return x + y; }

 [WebMethod]

 public int Subtract(int x, int y){ return x - y; }

 [WebMethod]

 public int Multiply(int x, int y){ return x * y; }

 [WebMethod]

 public int Divide(int x, int y)

 {

 if(y = = 0)

 {

 throw new DivideByZeroException("Dude, can't divide by zero!");

 }

 return x / y;

 }

}

Testing Your Web Service

Once you compile your Web service, you can execute it using the Visual Studio.NET IDE
(Simply run or debug the application.) By default, your machine's active browser functions
as a makeshift client, showing an HTML view of the methods marked with the
[WebMethod] attribute. See Figure 15-4 for a test run.

C# and the .NET Platform Chapter 15: Building Web services

-897 I ♡ Flyheart-

Figure 15-4: IE provides a quick way to test your Web services

In addition to listing each method defined in a given Web service, you can also invoke
each method directly from within the browser. For example, click the Add link and enter
some text values (Figure 15-5). As you can see, the rendered HTML provides TextBox
types to allow user input.

Figure 15-5: IE allows you to invoke a Web method with specific parameters

When you invoke the method, the result (490) is returned via an XML attribute (Figure
15-6).

C# and the .NET Platform Chapter 15: Building Web services

-898 I ♡ Flyheart-

Figure 15-6: The end result

One point of interest is how the information is sent to the Web service. If you check out
the generated query string, you will find the following:

http://bigmanu/CalcWebService/CalcService.asmx/Add?x=44&y=446

Notice that the URL is composed of the name of the method to be called (Add) followed
by the incoming parameter names (and values).

As you can see, it is relatively simple to build and test a Web service. Later in this chapter
you will build some more exotic Web service clients. Before you do, let's examine some
further details behind the Web service architecture.

The WebMethodAttribute Type

The WebMethod attribute must be applied to each method you wish to expose to the
outside world through HTTP. Like most attributes, the WebMethod type may take a
number of optional constructor parameters. For example, to describe the functionality of a
particular Web method, you can use the following syntax:

[WebMethod(Description = "Yet another way to add numbers!")]

public int Add(int x, int y){ return x + y; }
In some respects, setting the Description aspect of the WebMethod attribute is analogous
to the IDL [helpstring] attribute. If you compile and test once again, you see something
like Figure 15-7.

C# and the .NET Platform Chapter 15: Building Web services

-899 I ♡ Flyheart-

Figure 15-7: The end result of setting the WebMethod.Description property

Under the hood, the WSDL contract has been updated with a new <documentation>
attribute (more on WSDL in just a bit), as shown here:

<operation name="Add">

 <input message="s0:AddSoapIn" />

 <output message="s0:AddSoapOut" />

 <documentation>Yet another way to add numbers!</documentation>

</operation>
In addition to the Description aspect, you can also configure the WebService attribute
type using any of the core properties described in Table 15-4.

Table 15-4: The WebServiceAttribute

WEBSERVICEATTRIBUTE
PROPERTY MEANING IN LIFE

Description Used to add a friendly text description of
your Web method.

EnableSession By default, this property is set to true,
which configures this method to maintain
session state (as discussed in Chapter 14).
You may disable this behavior if you set it
to false.

MessageName This property can be used to configure how
a Web method is represented in WSDL, to
avoid name clashes.

TransactionOption Web methods can function as the root of a
COM+ transaction. This property may be
assigned any value from the

C# and the .NET Platform Chapter 15: Building Web services

-900 I ♡ Flyheart-

Table 15-4: The WebServiceAttribute

WEBSERVICEATTRIBUTE
PROPERTY MEANING IN LIFE

System.EnterpriseServices.TransactionOp
tion enumeration.

One item of special interest is the MessageName property. To illustrate, assume your
Web calculator now defines an additional method that can add two floats, as shown here:

[WebMethod(Description = "Add 2 integers.")]

public int Add(int x, int y){ return x + y; }

[WebMethod(Description = "Add 2 floats.")]

public float Add(float x, float y){ return x + y; }

If you were to compile your updated class, you would be happy to find no generated
errors. However, when you request access to the Web service, you find the following
complaint:

System.Exception: Both Single Add(Single, Single) and Int32 Add(Int32, Int32)

use the message name 'Add'.
One requirement of WSDL is that each < soap:operation soapAction > attribute (used to
define the name of a given Web method) must be uniquely named. However, the default
behavior of the WSDL generator is to generate the < soap:operation soapAction > name
exactly as it appears in the source code definition. (That's why you ended up with two
Web methods named Add().) To resolve the name clash, you can either rename your
method or simply use the MessageName property to establish a unique name, as shown
here:

[WebMethod(Description = "Add 2 integers.")]

public int Add(int x, int y){ return x + y; }

[WebMethod(Description = "Add 2 floats.", MessageName = "AddFloats")]

public float Add(float x, float y){ return x + y; }

With this, you can see that each WSDL description is now unique:

<operation name="Add">

<soap:operation soapAction="http://tempuri.org/AddFloats" style="document" />

 <input name="AddFloats">

 <soap:body use="literal" />

 </input>

C# and the .NET Platform Chapter 15: Building Web services

-901 I ♡ Flyheart-

 <output name=" AddFloats">

 <soap:body use="literal" />

 </output>

</operation>

<operation name="Add">

<soap:operation soapAction="http://tempuri.org/Add" style="document" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

</operation>

On a related note, the WebServiceAttribute also provides a Description property to allow
you to document the overall functionality of the Web service itself, as shown here:

[WebService(Description = "The painfully simple web service")]

public class Service1 : System.Web.Services.WebService

{

...

}
If you rerun the application, you see something like Figure 15-8.

Figure 15-8: The WebServiceAttribute describes the nature of your creation

C# and the .NET Platform Chapter 15: Building Web services

-902 I ♡ Flyheart-

The System.Web.Services.WebService Base Class

As mentioned earlier in this chapter, .NET Web services are free to derive directly from
System.Object. However, by default, Web services developed using Visual Studio.NET
automatically derive from the WebService base class. The functionality provided by this
type equips your Web service to interact with the same types used by the ASP.NET
object model (Table 15-5).

Table 15-5: Core Properties of the WebService Base Type

SYSTEM.WEB.SERVICES.WEBSERVICE
PROPERTY MEANING IN LIFE

Application Gets a reference to the
application object for the
current HTTP request.

Context Gets the ASP.NET Context
object for the current
request, which encapsulates
all HTTP-specific context
used by the HTTP server to
process Web requests.

Server Gets a reference to the
HttpServerUtility for the
current request.

Session Gets a reference to the
SessionState.HttpSessionSt
ate instance for the current
request.

User Gets the ASP.NET server
User object, which can be
used to authenticate a given
user.

As you recall from Chapter 14, the Application and Session properties allow you to
maintain stateful data during the execution of your ASP.NET Web applications. Web
services provide the exact same functionality. For example, assume your
CalcWebService maintains an application-level variable (and is thus available to each
session) that holds the value of PI, as shown here:

public class Service1 : System.Web.Services.WebService

{

 public Service1()

 {

C# and the .NET Platform Chapter 15: Building Web services

-903 I ♡ Flyheart-

 InitializeComponent();

 Application["SimplePI"] = 3.14F;

 }

 [WebMethod]

 public float GetSimplePI()

 { return (float)Application["SimplePI"]; }

 ...

}

Understanding the Web Service Description Language

(WSDL)

Now that you have seen a simple Web service in action, let's talk a bit about how your
Web methods are described under the hood. COM programmers understand that IDL is a
metalanguage used to define each aspect of a COM item. .NET programmers understand
that compilers that produce managed code also emit full and complete metadata that
completely describes all types in the assembly. When a binary image (COM or .NET) is
described in language-neutral terms, you essentially establish a contract that the client
can read to understand method-calling conventions, type names, base types, supported
interfaces, and so on.

In the same spirit of IDL and .NET metadata, Web services are also described using the
metalanguage WSDL. WSDL is a block of XML that fully describes how external clients
can interact with the Web services on a given machine, the methods they support, and
the syntax of the various wire protocols (GET, POST, and SOAP).
When you test your Web services from your browser of choice, you will see a link entitled
Service Description (Figure 15-9).

Figure 15-9: This link allows you to view the underlying WSDL

C# and the .NET Platform Chapter 15: Building Web services

-904 I ♡ Flyheart-

When you select this link, a separate window opens that describes the contract defined
by the current Web service (Figure 15-10).

Figure 15-10: The raw WSDL

Although you can always choose to remain blissfully unaware of the exact WSDL syntax,
let's run through some basics. First of all, a WSDL contract is opened and closed using
the <definitions> tag. After the opening tag comes a set of nodes that define the various
wire protocols, as shown here:

<?xml version="1.0" ?>

<definitions xmlns:s="http://www.w3.org/2000/10/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:urt="http://microsoft.com/urt/wsdl/text/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns

 xmlns:s0="http://tempuri.org/" targetNamespace="http://tempuri.org/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

...
Next you will find the WSDL definition for each Web method defined by the Web service
in terms of the GET, POST, and SOAP wire protocols (Figure 15-11).

C# and the .NET Platform Chapter 15: Building Web services

-905 I ♡ Flyheart-

Figure 15-11: Each Web method has a GET, POST, and SOAP pair

As you can see, each Web method has an In and Out variation. Therefore, the Subtract()
Web method has six unique <message name> tags: one In/Out pair for HTTP POST, one
pair for HTTP GET, and another pair for SOAP. For example, here is the WSDL definition
for Subtract when using the HTTP POST protocol:

<message name="SubtractHttpPostIn">

 <part name="x" type="s:string" />

 <part name="y" type="s:string" />

</message>

<message name="SubtractHttpPostOut">

 <part name="Body" element="s0:int" />

</message>

If you examine the SOAP description of the same method, you find the following:

<message name="SubtractSoapIn">

 <part name="parameters" element="s0:Subtract" />

</message>

<message name="SubtractSoapOut">

C# and the .NET Platform Chapter 15: Building Web services

-906 I ♡ Flyheart-

 <part name="parameters" element="s0:SubtractResponse" />

</message>

Again, much like other metalanguages, WSDL is typically of direct interest only if you are
building something custom parsers or type viewers. If this is your lot in life (or if you are
just interested in playing with some new toys), you should take the time to explore the
System.Web.Services.Description namespace. Here you will find a plethora of types that
allow you to programmatically manipulate WSDL. If you are not interested in this
endeavor, simply understand that WSDL fully describes the calling conventions (and
transport protocols) that enable an external client to call the Web methods defined by a
given Web service.

Web Service Wire Protocols
As you know, the purpose of a Web service is to return XML-based data to a consumer,
using the HTTP protocol. Specifically, a Web server bundles this data into the body of an
HTTP message and transmit it to the consumer using one of three specific techniques
(Table 15-6).

Table 15-6: Web Service Wire Protocols

TRANSMISSION PROTOCOL MEANING IN LIFE

HTTP GET GET submissions append parameters to
the query string of the current URL.

HTTP POST POST transmissions embed the data
points into the header of the HTTP
message rather than appending them to
the query string.

SOAP SOAP is a wire protocol that specifies
how to submit data across the wire using
XML.

While each approach leads to the same end result (calling a remote method using HTTP),
your choice of wire protocol will determine the types of parameters (and return types) that
can be sent between each interested party. The SOAP protocol will offer you the greatest
form of flexibility. However, for completion let's begin by examining the use of standard
GET and POST encoding.

Transmitting Data Using HTTP GET and POST

As described in Chapter 14, HTTP GET transmissions are sent to the recipient by
appending name/value pairs to the end of the receiving URL. Recall that a question mark
(?) is the character that signifies the separation of the page from the named set of
parameters. HTTP POST transmissions also represent incoming data as a set of
name/value pairs, which are placed in the body of the HTTP message. When you use

C# and the .NET Platform Chapter 15: Building Web services

-907 I ♡ Flyheart-

GET or POST transmissions, the end result looks identical. The returned data is
expressed in simple XML notation, taking the form <type>VALUE </type>.
Although GET and POST verbs may be familiar constructs, you must be aware that this
method of transportation is not rich enough to represent such complex items as structures
or object instances. When you use GET and POST verbs, you can only interact with Web
methods using the types listed in Table 15-7.

Table 15-7: Supported POST and GET Data Types

SUPPORTED
GET/POST DATA
TYPES MEANING IN LIFE

Enumerations GET and POST verbs support the transmission of
System.Enum types. These are represented as a
static constant string.

Simple Arrays You can construct arrays of any primitive type.

Strings GET and POST transmit all numerical data as a
string token. String really refers to the string
representation of CLR primitives such as Int16, Int32,
Int64, Boolean, Single, Double, Decimal, DateTime,
and so forth.

To build an HTML form that submits data using GET or POST semantics, you specify the
*.asmx file as the recipient of the form data. As a simple example, assume the following
*.htm file creates a UI that allows the end user to enter two numbers to send to the
Subtract() method of the CalcWebService, using the GET protocol:

<HTML>

<HEAD>

<TITLE></TITLE>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 7.0">

</HEAD>

<BODY>

<form method = 'GET' action =

'http://localhost/CalcWebService/CalcService.asmx/Subtract'>

 <p>First Number:

 <input id=Text1 name = x type=text> </p>

 <p>Second Number

 <input id=Text2 name = y type=text></p>

 <p>

C# and the .NET Platform Chapter 15: Building Web services

-908 I ♡ Flyheart-

 <input id=Submit1 type=submit value=Submit></p>

</form>

</BODY>

</HTML>

A few points of interest. First, the action attribute points to not only the *.asmx file, but
also the name of the method to invoke. Next, notice that the name attribute is used to
identify the name of each parameter. (Recall that Subtract() takes two integers named x
and y.)
Figure 15-12 shows the result of entering 300 and 3 as input data.

Figure 15-12: Subtracting numbers ala HTTP GET

Figure 15-13 shows the result.

Figure 15-13: Note the query string

SOURCE
CODE

The CalcGET HTML page is included under the Chapter 15
subdirectory.

Transmitting Data Using SOAP

A far sexier alternative to moving information between a consumer and Web service is to
use SOAP, which can represent complex types (in XML notation) as shown in Table 15-8.

C# and the .NET Platform Chapter 15: Building Web services

-909 I ♡ Flyheart-

Table 15-8: SOAP Types

ADDITIONAL SOAP
DATA TYPES MEANING IN LIFE

ADO.NET DataSets Although the DataSet is just another class, it is
important to point out that this type is supported.

Complex Arrays You may build arrays of classes, structures, and
XML nodes.

Custom Types Using SOAP, you can build Web methods that
expose custom types.

XML Nodes Your Web methods may expose XML nodes that
are transported as XML!

Although a complete examination of SOAP is outside the scope of this text, understand
that SOAP was designed to be as simple as possible. Given this, SOAP itself does not
define a specific protocol and can thus be used with any number of existing Internet
protocols (HTTP, SMTP, and others).

In a nutshell, the SOAP specification contains two aspects. First is the envelope (which
can conceptually be understood as the box containing the relevant information). Second,
we have the rules that are used to describe the information in that message.

Recall that when you use SOAP to call your Add() method, the SOAP definition looks like
this:

<message name="AddFloatsSoapIn">

 <part name="parameters" element="s0:AddFloats" />

</message>

<message name="AddFloatsSoapOut">

 <part name="parameters" element="s0:AddFloatsResponse" />

</message>
Open the WSDL window for your CalcWebService. Toward the end of the page, you will
find three XML nodes describing the GET, POST and SOAP bindings, as shown in Figure
15-14.

C# and the .NET Platform Chapter 15: Building Web services

-910 I ♡ Flyheart-

Figure 15-14: Bindings

If you expand the SOAP binding for you Web service, you find the following description
for the Add() method (note the input and output tags):

<operation name="Add">

<soap:operation soapAction="http://tempuri.org/AddFloats" style="document" />

 <input name="AddFloats">

 <soap:body use="literal" />

 </input>

 <output name="AddFloats">

 <soap:body use="literal" />

 </output>

</operation>

While it is edifying to understand what is being sent back and forth across the wire, the
good news is that the internals of a SOAP message are hidden from view (as you will
notice during the remainder of this chapter).

SOURCE
CODE

The CalcService.asmx.cs file can be found under the Chapter
15 subdirectory.

WSDL into C# Code (Generating a Proxy)
At this point, you should feel fairly comfortable with the composition of a .NET Web
service. The next step is to understand how to build clients that can consume these
services. As you have seen, WSDL is used to describe Web methods in XML syntax.
However, it would undesirable to construct clients that manually request a WSDL
definition and manually parse each node to establish a connection to the remote service.
A much-preferred approach is to leverage a tool that can generate a proxy to the Web
method.

Proxies can be simply defined as types (classes in this case) that look and feel exactly
like the remote entity they pretend to be. If you have a background in classic COM, this

C# and the .NET Platform Chapter 15: Building Web services

-911 I ♡ Flyheart-

should sound familiar. When you send an IDL file to the MIDL compiler, one of the
generated files (*_p.c) contains C-based stub and proxy code that can be compiled into a
binary DLL. The COM client makes calls on the proxy class, which packages up the
incoming parameters and sends them to the receiving stub (using the ORPC protocol).
The stub in turn unpackages the request and hands off the request to the real COM
object.
The same general behavior takes place when a consumer uses a remote Web service.
The key difference is that accessing a Web service does not depend on a propriety binary
format, specific platform, or given programming language. All that is required is an
understanding of HTTP and XML.

Generating a Web service proxy is quite simple. First, you can use a stand-alone
command-line tool named wsdl.exe. As an attractive alternative, the Visual Studio.NET
IDE allows you to reference a Web service using a friendly wizard. Let's examine each
approach.

Building a Proxy Using wsdl.exe

The wsdl.exe command-line tool generates a code file that represents the proxy to the
remote Web service. At a minimum, you need to specify the name of proxy file to be
generated and the URL where the WSDL can be obtained, as shown here:

wsdl.exe /out:c:\calcproxy.cs

http://localhost/calcwebservice/calcservice.asmx?WSDL
The wsdl.exe utility generates C# code by default. If you choose to have your proxy
written in VB.NET or JScript.NET syntax, you can use the optional /l: (Language) flag.
Table 15-9 lists some of the more interesting command-line options

Table 15-9: Various Flags of the wsdl.exe Utility

WSDL.EXE FLAG MEANING IN LIFE

/l[anguage]: Specifies the language to use for the generated
proxy class. You can specify CS (default), VB, or
JS as the language argument.

/n[amespace]: Specifies the namespace for the generated proxy
or template. The default namespace is the global
namespace.

/out: Specifies the file in which to save the generated
proxy code. The tool derives the default file name
from the service name. The tool saves generated
datasets in different files.

/protocol: Specifies the protocol to implement. (The default
is SOAP.) You can specify SOAP, HttpGet,

C# and the .NET Platform Chapter 15: Building Web services

-912 I ♡ Flyheart-

Table 15-9: Various Flags of the wsdl.exe Utility

WSDL.EXE FLAG MEANING IN LIFE

HttpPost, or a custom protocol specified in the
configuration file.

Examining the Proxy Code

If you have ever examined the underlying stub and proxy code for classic ORPC (DCOM)
request/response, you will be extremely happy to find a simple, readable C# class file.
First comes the class definition (note the use of the WebServiceBinding attribute), as
shown here:

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(Name="Service1Soap",

Namespace="http://tempuri.org/")]

public class Service1 : System.Web.Services.Protocols.SoapHttpClientProtocol

{

 public Service1()

 {

 this.Url = "http://localhost/calcwebservice/calcservice.asmx";

 }

...

}
As you can see, the constructor of this proxy class maintains the URL of the remote Web
service and stores it in the inherited Url property. Also notice that your immediate base
class is of type SoapHttpClientProtocol. This type specifies most of the implementation
for communicating with a SOAP Web service over HTTP. (The remaining functionality
comes from numerous base classes.) Table 15-10 describes some interesting inherited
members.

Table 15-10: Core Inherited Properties

INHERITED MEMBERS MEANING IN LIFE

BeginInvoke() Starts an asynchronous invocation of a method
of a SOAP Web service.

C# and the .NET Platform Chapter 15: Building Web services

-913 I ♡ Flyheart-

Table 15-10: Core Inherited Properties

INHERITED MEMBERS MEANING IN LIFE

EndInvoke() Ends an asynchronous invocation of a method
of a remote SOAP Web service.

Invoke() Synchronously invokes a method of a SOAP
Web service.

Proxy Gets or sets proxy information for making a
Web service request through a firewall.

Timeout Gets or sets the timeout (in milliseconds) used
for synchronous calls.

Url Gets or sets the base URL to the server to use
for requests.

UserAgent Gets or sets the value for the user agent
header sent with each request.

Of course the real meat of the generated proxy is the method implementations
themselves. The generated proxy code defines synchronous and asynchronous
members for each Web method defined in the Web service. As you are aware,
synchronous method invocations are blocked until the call returns. Asynchronous method
inoculations return control to the calling client immediately after receiving the invocation
request. When the processing has finished, the runtime makes a callback to the client.
Here is the synchronous Add() implementation:

[System.Web.Services.Protocols.SoapMethodAttribute("http://tempuri.org/Add",

MessageStyle=

 System.Web.Services.Protocols.SoapMessageStyle.ParametersInDocument)]

public int Add(int x, int y)

{

 object[] results = this.Invoke("Add", new object[] {x, y});

 return ((int)(results[0]));

}

Each Web method is marked with the SoapMethod attribute. Also, notice that the Add()
method has the same signature as the original Web method. As far as clients are
concerned, when they call the Add() method, the logic is executed directly. Of course in
reality the incoming parameters (along with the named method) are sent to
SoapHttpClientProtocol.Invoke(). At this point, the HTTP request is sent to the correct
URL.

C# and the .NET Platform Chapter 15: Building Web services

-914 I ♡ Flyheart-

One update you will want to make for the generated proxy file is to wrap the class in a
namespace definition, as shown here, as this is not done on your behalf unless you
explicitly specify the /n flag:

namespace TheCalcProxy

{

public class Service1 : System.Web.Services.Protocols.SoapHttpClientProtocol

{

 ...

}

}

Building the Assembly

Before you can create clients that use your Web service, you need to build an assembly
to contain the proxy type. You can use the C# compiler directly or select a new C# Code
Library using Visual Studio.NET. Either way, be sure to add references to the
System.Web.Services.dll and System.Xml.dll references, as shown here:

csc /r:system.web.services.dll /r:system.xml.dll /out:C:\CalcProxy.dll

/t:library calcproxy.cs
The end result is a new library that contains your proxy class (Figure 15-15).

Figure 15-15: Your proxy, wrapped in a .NET assembly

Building a Client

At this point, you can create a new Form-based, ASP.NET, or Console-based application;
add a reference to your assembly; and write some code. (In each case you need to
ensure that a reference to System.Web.Services.dll is included.) To keep things simple,
here is a Console-based client:

C# and the .NET Platform Chapter 15: Building Web services

-915 I ♡ Flyheart-

// Don't forget to set a reference to

// System.Web.Services.dll!

namespace WebServiceConsumer

{

 using System;

 using TheCalcProxy; // Specify the namespace.

 public class WebConsumer

 {

 public static int Main(string[] args)

 {

 // Work with the Web service.

 Service1 w = new Service1();

 Console.WriteLine("100 + 100 is {0}",

 w.Add(100 , 100));

 try

 {

 w.Divide(0, 0);

 }

 catch(DivideByZeroException e)

 {

 Console.WriteLine(e.Message);

 }

 return 0;

 }

 }

}
Figure 15-16 shows the output. (Notice that your custom exception message has been
passed along as an inner exception.)

C# and the .NET Platform Chapter 15: Building Web services

-916 I ♡ Flyheart-

Figure 15-16: A console Web service consumer
SOURCE
CODE

The CalcClient project can be found under the Chapter 15
subdirectory.

Generating a Proxy with VS.NET

Working with the wsdl.exe utility and C# compiler is a bit clumsy. The only real benefit of
using the wsdl.exe command-line tool is that it allows you to directly specify a given wire
protocol (GET, POST, or SOAP) using the /protocol flag. In contrast, Visual Studio.NET
only creates proxies that respond to the SOAP protocol (which is typically what you want
anyway).
To illustrate, let's build a Windows Forms client application. Assume you have a simple
user interface that allows the user to define two values passed to the various methods
(Add(), Subtract(), and so on). Once your GUI has been established, you can add a Web
reference to your project (Figure 15-17).

Figure 15-17: Adding a Web reference automatically generates the proxy file

You can then type in the URL that points to a given *.asmx file and view the WSDL
contract as well as the set of Web methods (Figure 15-18).

C# and the .NET Platform Chapter 15: Building Web services

-917 I ♡ Flyheart-

Figure 15-18: The Add Reference dialog box allows you to view Web methods and the raw
WSDL

Now, select View Contract and add the reference. A new Web References node has been
added to your Solution Explorer window (Figure 15-19).

Figure 15-19: The Web References node

At this point, you are ready to specify work with the Service1 type directly (note that the
name of the generated namespace is the name of the machine hosting the Web service),
as shown here:

using localhost;

public class mainForm : System.Windows.Forms.Form

{

 protected void btnAdd_Click (object sender, System.EventArgs e)

 {

 localhost.Service1 w = new localhost.Service1();

 int ans = w.Add(int.Parse(txtNumb1.Text), int.Parse(txtNumb2.Text));

 lblAns.Text = ans.ToString();

 }

C# and the .NET Platform Chapter 15: Building Web services

-918 I ♡ Flyheart-

...

}
SOURCE
CODE

The WinFormsCalcClient can be found under the Chapter 15
subdirectory.

A More Interesting Web Service (and Web Client)

So much for Math 101. The real power of Web services becomes much more evident
when you build Web methods that return complex types, unlike the very simple
CalcWebService example you have been examining. Thus, you need to build a more
interesting Web service that can return ADO.NET DataSets, custom types, and arrays of
types. As you recall, this demands the use of SOAP.

Create a new C# Web service project workspace named CarsWebService. Your first goal
is to create a Web method that returns an ADO.NET DataSet, containing the full set of
records in the Inventory table. Let's call this Web method GetAllCars(). The return value is
(of course) a DataSet. The implementation logic fills the DataSet using an
SqlDataAdapter type, as shown here:

// Return all cars in inventory table.

public DataSet GetAllCars()

{

 // Fill the DataGrid with the Inventory table.

 SqlConnection sqlConn = new SqlConnection();

 sqlConn.ConnectionString = "data source=.; initial catalog=Cars;" +

 "user id=sa; password=";

 SqlDataAdapter dsc =

 new SqlDataAdapter("Select * from Inventory", sqlConn);

 DataSet ds = new DataSet();

 dsc.Fill(ds, "Inventory");

 return ds;

}
If you now create a Windows Forms client (and add a reference to this Web service), you
can call the GetAllCars() method in the Form's Load event and attach the Inventory table
to a DataGrid widget (Figure 15-20), as shown here:

private void mainForm_Load(object sender, System.EventArgs e)

{

 bigmanu.Service1 s = new bigmanu.Service1();

 DataSet ds = s.GetAllCars();

 dataGrid1.DataSource = ds.Tables["Inventory"];

C# and the .NET Platform Chapter 15: Building Web services

-919 I ♡ Flyheart-

}

Figure 15-20: Obtaining a DataSet from the Car Web service

Serializing Custom Types

The SOAP protocol is also able to transport XML representations of custom data types.
To illustrate, let's build the final Car type of the book (thank me later). Insert a new class
named Car in your current CarsWebService application. This iteration is simple: You have
two public fields (to represent the pet name and max speed) and an overloaded
constructor to set the data. Also notice the very important extra detail, the use of the
XmlInclude attribute (defined in the System.Xml.Serialization namespace), as shown
here:

namespace CarsWebService

{

 using System;

 using System.Xml.Serialization;

 [XmlInclude(typeof(Car))]

 public class Car

 {

 public Car(){}

 public Car(string n, int s)

 {petName = n; maxSpeed = s;}

 public string petName;

 public int maxSpeed;

 }

}
Technically speaking, the process of transforming the stateful data of an object into an
XML representation is termed serialization. Given that XML itself has no clue what a car

C# and the .NET Platform Chapter 15: Building Web services

-920 I ♡ Flyheart-

type is, you must mark each custom type to be serialized as XML includable using the
XmlIncludeAttribute type.

Next, define as private an ArrayList data member (carList) and fill it with some initial cars
in the constructor of your Web service, as shown here:

public Service1()

{

 InitializeComponent();

 // Add cars.

 carList.Add(new Car("Zippy", 170));

 carList.Add(new Car("Fred", 80));

 carList.Add(new Car("Sally", 40));

}

Now let's add two additional Web methods. GetCarList() returns the entire array of autos.
GetACarFromList() returns a specific car from the array list based on a numerical index.
The implementation of each method is simple, as shown here:

// Return a given car from the list.

[WebMethod]

public Car GetACarFromList(int carToGet)

{

 if(carToGet <= carList.Count)

 {

 return (Car) carList[carToGet];

 }

 throw new IndexOutOfRangeException();

}

// Return the entire set of cars.

[WebMethod]

public ArrayList GetCarList()

{

 return carList;

}

C# and the .NET Platform Chapter 15: Building Web services

-921 I ♡ Flyheart-

Enhancing Your Windows Forms Client

The next task is exercising the GetACarFromList() and GetCarList() members from our
client application. Given that your Web service is a .NET assembly at heart, understand
that the definition of the car type has been described in the assembly's metadata. (You
may need to refresh the Web reference using the Solution Explorer.) To illustrate, you can
create a given car as shown here:

protected void btnGetCar_Click (object sender, System.EventArgs e)

{

 try

 {

 bigmanu.Car c;

 bigmanu.Service1 cws = new bigmanu.Service1();

 c = cws.GetACarFromList(int.Parse(txtCarToGet.Text));

 MessageBox.Show(c.petName, "Car " + txtCarToGet.Text

 + " is named:");

 cws.Dispose();

 }

 catch

 {

 MessageBox.Show("No car with that number...");

 }

}
Figure 15-21 shows a test run. (Remember that you are referencing the ID of the car in
the ArrayList, not the Inventory table!)

Figure 15-21: Grabbing a car from the ArrayList

C# and the .NET Platform Chapter 15: Building Web services

-922 I ♡ Flyheart-

As far as the ArrayList returned from GetCarList() is concerned, you can hold the entire
set of items in an object array and cast accordingly, as shown here:

private void btnArrayList_Click(object sender, System.EventArgs e)

{

 bigmanu.Service1 cws = new bigmanu.Service1();

 object[] objs = cws.GetCarList();

 string petNames = "";

 // Print out pet name of each item in array.

 for(int i = 0; i< objs.Length; i++)

 {

 // Extract next car!

 bigmanu.Car c = (bigmanu.Car)objs[i];

 petNames += c.petName + "\n";

 }

 MessageBox.Show(petNames, "Pet names for cars in array list:");

 cws.Dispose();

}

Building Serializable Types (Further Details)
When a custom type is serialized into XML, you are essentially storing the stateful data
from the object for later use. Therefore, for the runtime to serialize a given member of a
custom type, it must somehow have access to the underlying value. As you recall, the car
you previously created supported two public fields, as shown here:

[XmlInclude(typeof(Car))]

public class Car

{

 public string petName;

 public int maxSpeed;

}

You can change each of these members to private as shown here:

[XmlInclude(typeof(Car))]

public class Car

{

 public Car(){}

C# and the .NET Platform Chapter 15: Building Web services

-923 I ♡ Flyheart-

 public Car(string n, int s)

 {petName = n; maxSpeed = s;}

 // Serialize me?

 private string petName;

 private int maxSpeed;

}
When you test the GetCarList() method once again, you find an ArrayList with three cars.
However, each item would have no state data expressed in the XML. The reason is
simple enough. The runtime could not access this private data! The short answer is, if you
wish the state of your types to be serialized into an equivalent XML representation, you
must either supply public fields or provide access to private data using a corresponding
property, as shown here:

[XmlInclude(typeof(Car))]

public class Car

{

...

 private string petName;

 private int maxSpeed;

 public string PetName

 {

 get{ return petName;}

 set{ petName = value;}

 }

 public int MaxSpeed

 {

 get{ return maxSpeed;}

 set{ maxSpeed = value;}

 }

}

In summary, building types that are available through a Web service is more or less just
like building any C# data type. The only real points to be aware of are that you need to
mark the type with the [XmlInclude] attribute and only publicly accessible points of data
can be represented in the underlying XML.

C# and the .NET Platform Chapter 15: Building Web services

-924 I ♡ Flyheart-

SOURCE
CODE

The CarsWebService.asmx.cs file and CarClient project can
be found under the Chapter 15 subdirectory.

Understanding the Discovery Service Protocol

The final topic of this chapter is to address the cleverly named *.disco file (which you
recall is an abbreviated form of DISCOvery of Web Services). Whenever a remote (or
local) client is interested in using a Web service, the first step is to determine which Web
services exist on a given machine. While the .NET class library defines the types that
allow you to examine registered Web services programmatically, discovery services are
also required by numerous design time CASE tools (such as the Add Web Reference
Wizard).

The *.disco file is used to describe each Web service in a given virtual directory and any
related subfolders. When you create a new Visual Studio.NET Web project, you
automatically receive a *.disco file that looks like this:

<?xml version="1.0" ?>

<dynamicDiscovery xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">

<exclude path="_vti_cnf" />

<exclude path="_vti_pvt" />

<exclude path="_vti_log" />

<exclude path="_vti_script" />

<exclude path="_vti_txt" />

<exclude path="Web References" />

</dynamicDiscovery>
The <dynamicDiscover> tag signifies that the *.disco file is to be processed on the server
to return an XML description for each Web service in a given virtual directory. In addition
to the <dynamicDiscovery> tags, you can also see that a number of irrelevant paths have
been excluded from this search. To illustrate, launch IE and navigate to the
CarsWebService.disco file (Figure 15-22).

Figure 15-22: The *.disco file provides discovery services

C# and the .NET Platform Chapter 15: Building Web services

-925 I ♡ Flyheart-

Adding a New Web Service

Understand that a single *.disco file describes each and every Web service installed
under a given virtual directory. Assume you have added another Web service to your
current CarWebService project using the Project|Add Web Service... menu selection
named MotorBikes.asmx (Figure 15-23).

Figure 15-23: A single Web service project may contain multiple Web classes

The MotorBikes class defines a single Web method, as shown here:

[WebMethod]

public string GetBikerDesc()

{

 return "Name: Tiny. Weight: 374 pounds.";

}
If you recompile the application and once again specify the *.disco file from IE, you have
Figure 15-24.

Figure 15-24: *.disco files describe all Web services under a given virtual directory

C# and the .NET Platform Chapter 15: Building Web services

-926 I ♡ Flyheart-

As you can see, you now have two <contractRef> nodes, one for automobiles and one for
motorcycles. Granted, viewing the results of a disco query from within IE is not all that
fascinating. Recall however that this same file is used with the Add Web Reference
Wizard. Furthermore, you could also programmatically obtain this same information using
various WSDL-centric.NET types. However, I will leave this task as an exercise for any
interested readers.

Summary

This chapter has exposed you to the core building blocks of.NET Web services. The
chapter began by examining the core namespaces (and core types in these namespaces)
used during Web service development. As you have seen, Web services require three
interrelated technologies: a lookup mechanism (*disco files), a description language
(WSDL), and a wire protocol (GET, POST, or SOAP).

Once you have created any number of [WebMethod]-enabled members, you can interact
with a Web service through an intervening proxy. The wsdl.exe utility generates such a
proxy, which can be used by the client like any other C# type. As you have seen, by
default wsdl.exe generated C# code suing SOAP as the method of transport. This can be
adjusted using various command-line switches. Finally, this chapter (as well as the book
itself!) concluded by exploring how you can expose custom types from a Web service
using the XmlInclude attribute.

C# and the .NET Platform Index

-927 I ♡ Flyheart-

Index

SYMBOLS
& (ampersand)
for Alt key access to menu item, 429
in query string for ASP page, 837
!= operator, overloading, 245–246
#endregion directive, 394
#region directive, 394
* (asterisk), as wildcard for compiler, 38
+ (addition) operator
overloading, 240–241
for string concatenation, 116
+= operator
for listening to incoming events, 267–270
to register custom method, 399–400
:(colon operator) to extend class, 156
< (comparison) operator, overriding, 247
== operator, overloading, 245–246
> (comparison) operator, overriding, 247
@ prefix for strings, 116–117
[] (brackets) for C# attributes, 375
[] (bracket) operator, 237–238
_Object interface, 718–719

A
A property of Color class, 485
abstract classes, 18, 88, 171
Brush class, 509
Stream class, 620–625
in System.Data.Common namespace, 787
TextReader class, 625
abstract members in interface, 203
abstract methods, 171–175
vs. virtual methods, 173
AcceptButton property of Form class, 423
AcceptChanges() method
of DataRow class, 754
of DataSet class, 774
AcceptsReturn property of TextBox class, 554
AcceptsTab property of TextBoxBase class, 553
Access database

C# and the .NET Platform Index

-928 I ♡ Flyheart-

Cars database as, 786
connecting to, 793
accessors
to enforce encapsulation, 146–147
methods, 150
action attribute of HTML <form> tag, 826
Activate event of Form class, 424
Activate() method of Form class, 423
Activator class, 362–365
CreateInstance() method, 362–363
active color, 484–487
Active property of ToolTip class, 587
Active Server pages
building, 837–841
problems with classic, 843–844
ActiveControl property of ContainerControl class, 422
ActiveMDIChild property of Form class, 423
Add() method, 105
of DataColumnCollection class, 759
of MenuItemCollection class, 427
Add New Item dialog box, 388
add_ prefix methods, 264–266
Add Reference dialog box, 45, 295, 389 COM tab, 680
AddArc() method of GraphicsPath class, 528
AddBezier() method of GraphicsPath class, 528
AddBeziers() method of GraphicsPath class, 528
AddClosedCurve() method of GraphicsPath class, 528
AddCurve() method of GraphicsPath class, 528
AddEllipse() method of GraphicsPath class, 528
addition (+) operator for string concatenation, 116
AddLine() method of GraphicsPath class, 528
AddLines() method of GraphicsPath class, 528
AddMessageFilter() method of Application class, 397
AddNew() method of DataView class, 771
AddPath() method of GraphicsPath class, 528
AddPie() method of GraphicPath class, 528
AddPolygon() method of GraphicsPath class, 528
AddRange() method of MenuItemCollection class, 427
AddRectangle() method of GraphicsPath class, 528
AddRectangles() method of GraphicsPath class, 528
AddResource() method of ResXResourcesWriter class, 534
AddString() method of GraphicsPath class, 528
adhoc polymorphism, 144
AdjustableArrowCap class, 500

C# and the .NET Platform Index

-929 I ♡ Flyheart-

administrator configuration file, 328
ADO.NET, 771
building test database, 784–786
DataColumn class, 745–752
adding DataColumn to DataTable, 749
autoincrementing fields, 750–751
building DataColumn, 747–749
configuring column's XML representation, 752
DataColumn configuration as primary key, 749–750
DataRelation class, 746, 776, 778–783
DataRow class, 753–757
ItemArray property, 756–757
methods for navigating data tables, 780
RowState property, 753–756
DataSet, 746, 771–778
collections, 772
filling multitabled, 810–813
in-memory dataset, 773–778
members, 773
methods, 774
OleDbDataAdapter to fill, 798–801
reading and writing XML-based, 783–784
DataTable, 746, 757–768
adding DataColumn, 749
applying filters and sort orders, 763–767
creating new type, 759
deleting rows, 762–763
details, 757–758
properties, 758
updating rows, 766–768
DataView class, 768–771
filling multitabled DataSet, 810–813
managed providers, 786–787
namespaces, 743–4
need for, 741–3
OleDB managed provider, 787–797
connecting to Access database, 793
connection using OleDbConnection, 788–790
executing stored procedure, 794–795
OleDBDataReader, 791–793
specifying parameters using OleDbParameter, 795–797
SQL command, 790–791
OleDbDataAdapter class, 797–801
SQL managed provider, 801–807

C# and the .NET Platform Index

-930 I ♡ Flyheart-

autogenerated SQL commands, 807–809
inserting new records, 802–805
System.Data.SqlTypes namespace, 802
updating existing records, 805–807
System.Data, 744–745
AdRotator control, 873, 875–877
aliases for namespaces, defining, 131
Alignment property of StatusBarClass class, 440
AllKeys property of HttpApplicationState class, 861
AllowDBNull property of DataColumn class, 747
AllowDelete property of DataView class, 771
AllowDrop property of Control class, 417
AllowEdit property of DataView class, 771
AllowNew property of DataView class, 771
Alt property of KeyEventArgs type, 416
ampersand (&), in query string for ASP page, 837
Anchor property of Control class, 417, 592
AppClassExample project, 402
AppDomain, 331–333
Appearance property of Checkbox class, 561
AppendHeader() method of HttpResponse class, 860
AppendText() method of FileInfo class, 616
AppendToLog() method of HttpResponse class, 860
Application class in Windows.Forms, 387, 396–402
core properties, 397
events, 398
methods, 397
preprocessing messages with, 400–402
application configuration file, 326
application directory, 307
application domain, 331–333
application object, 61
Application property
of Page class, 860–861
of System.Web.Services.WebService base class, 901
of System.Web.UI.Page type, 855
application/session distinction, in ASP.NET, 845–846
ApplicationActivationAttribute class of System.EnterpriseServices namespace, 734
ApplicationExit event of Application class, 398
responding to, 399–400
ApplicationIDAttribute class of System.EnterpriseServices namespace, 734
ApplicationPath property of HttpRequest class, 858
ApplicationQueuingAttribute class of System.EnterpriseServices namespace, 734
Application.Run() method, 389

C# and the .NET Platform Index

-931 I ♡ Flyheart-

applications. See also Web applications
deployment using .NET platform, 285
with private assemblies, uninstalling, 308
array of strings, returning COM to .NET-aware client, 691
ArrayList class (System.Collections), 231
arrays in C#, 108–114
declaring, 109
default value, 110
foreach/in loop to iterate through, 90
multidimensional, 110–112
Arrays project, 114
as operator (C#), 96, 207–208
ascending value for font, 491
AsmRef (assembly reference), 312
.asmx file, 893
.asp file extension, 839
ASP.NET
application/session distinction, 845–846
architecture of Web application, 852–862
.aspx/Codebehind connection, 855–857
Page.Application property, 860–861
Page.Request property, 857–858
Page.Response property, 859–860
Page.Session property, 861–862
System.Web.UI.Page class, 854–855
benefits, 843–844
building applications, 842–843
debugging and tracing applications, 862–864
GUI toolkit, 386
initial files in application, 848
namespaces, 844–845
and scripting languages, 831
.aspx file extension, 842
and Codebehind attribute, 855–857
examining file, 848–850
server controls in, 867
assemblies, 8, 9–10, 286–292
attributes, 381, 383
basics, 306–307
binding .resources file to, 537
building basic standalone, 34–40
COM+ aware, 733
COM+ centric attributes, 736–737
configuring in COM+ catalog, 737

C# and the .NET Platform Index

-932 I ♡ Flyheart-

display name, 358
dynamic, 365–373
emitting, 366–371
using, 371–372
enumerating types in referenced, 358–359
ILDasm.exe to explore, 29–30
installing into GAC, 318–319
interacting with registration, 730–731
loading, 356–362
metadata in, 14, 305
.NET to COM interoperability
coclasses conversions, 700–703
COM enumeration conversions, 704
COM interface conversion, 697–698
COM SAFEARRAY, 704–706
handling COM error, 709–710
hooking into COM event, 709–710
IDL parameter attribute conversion, 698–699
intercepting COM events, 706–709
interface hierarchy conversion, 700
type library conversion, 696–697
physical and logical views, 288–289
physical format, 286
private, 307–308
promotion of code reuse by, 289–290
referencing, 677–682
early binding to COM class, 678–679
early binding using VS.NET, 679–680
late binding to coclass, 680–682
referencing external, 27–28, 37–38
security context, 291–292
shared, 313–314
side-by-side execution, 292, 325, 327
single file and multifile, 10, 287–288
single file test, 292–296
static, 365
type boundaries, 290
using types defined in separate, 37–38
version number
anatomy, 321
recording information, 322–324
as versionable and self-describing, 291
[.assembly extern] tag, 301, 303, 311
assembly reference (AsmRef), 312

C# and the .NET Platform Index

-933 I ♡ Flyheart-

assembly resolver, 312
[.assembly] tag, 304
AssemblyBuilder type, 366
AssemblyInfo.cs file, 317
AssemblyVersion attribute, 322
global level attributes, 382
AssemblyKeyFile attribute, 317
AssemblyName class, 369
in System.Reflection namespace, 357
asterisk (*), as wildcard for compiler, 38
ATL Object Wizard, 686
ATL test server, 685–694
exposing internal subobject, 691–693
firing COM event, 688–690
IDL enumeration configuration, 693–694
populating default COM interface, 685–688
throwing COM error, 690
AttReader project, 384
AttribDotNetObjects project, 729
attributed programming, 373–376
attributes, 133, 134
assembly level, 381, 383
building custom, 376–381
COM+ centric assembly-level, 736–737
discovery at runtime, 382–384
of HTML form elements, 828–829
in IDL, 373
restricting usage, 379–380
working with existing, 375–376
Attributes class, instances of class derived from, 376
Attributes property of FileSystemInfo class, 608
FileAttributes enumeration, 610
AttributeTargets enumeration, 379–380
AttributeUsage attribute, 379–380
Autocheck property of Checkbox class, 561
AutoCompleteAttribute class of System.EnterpriseServices namespace, 734
AutoIncrement property of DataColumn class, 747
autoincrementing fields, 750–751
AutoIncrementSeed property of DataColumn class, 747
AutoIncrementStep property of DataColumn class, 747
AutomaticDelay property of ToolTip class, 587
AutoPopDelay property of ToolTip class, 587
AutoScale property of Form class, 423
AutoScroll property of ScrollableControl class, 420

C# and the .NET Platform Index

-934 I ♡ Flyheart-

AutoScrollMinSize property of ScrollableControl class, 420
AutoSize property
of StatusBarClass class, 440
of TextBoxBase class, 553

B
B property of Color class, 485
tag (HTML), 822
BackColor property
of Control class, 417
of TextBoxBase class, 553
of WebControl class, 869
background color of window client area, 454–456
background image for button, 559
BackgroundImage property
of Control class, 417
of StatusBar class, 440
backward compatibility, and COM versions, 284
base class
controlling creation, 157–159
impossibililty of more than one, 159
vs. interface, 204
for interface, 205
intrinsic data types, 21
libraries, 5, 6–7, 16, 23
preventing class from becoming, 160–161
preventing instance, 171
base interface, specifying multiple, 217
BaseClass type, .NET to COM mapping, 726
BaseDirectory property of AppDomain namespace, 332
baseline value of font, 491
BaseStream property
of BinaryReader class, 634
of BinaryWriter class, 634
BasicFileApp project, 619
BasicPaintForm project, 478
BeginEdit() method of DataRow class, 754, 767
BeginInvoke() method of SoapHttpClientProtocol class, 912
BeginTransaction() method of OleDbConnection class, 790
bidirectional communications
delegates, 250–262
event interfaces, 272–274
events, 262–275

C# and the .NET Platform Index

-935 I ♡ Flyheart-

between objects, 237
binary data, 633–637
binary dump, 623
BinaryFormatter class, 642, 644–646
BinaryReader class, 607, 633–637
core members, 634
BinaryReaderWriter application, 637
BinarySearch() method of System.Array class, 112
BinaryWriter class, 607, 633–637
core members, 634
binding
early binding, 362
to COM class, 678–679
using VS.NET, 679–680
early vs. late, 362
late binding, 144, 364
to coclass, 680–682
reflection and, 362–365
to private assemblies, 311–312
binding assemblies, 309
<bindingRedirect> attribute, 326
Bitmap class of System.Drawing namespace, 467
"black box" programming, 146
Blend class, 500
BlinkStyle property of ErrorProvider, 591
<BODY> tag (HTML), 819, 820
BoldedDates property of MonthCalendar control, 579
Boolean system type, 79, 82
BorderColor property of WebControl class, 869
BorderStyle property
of Form class, 423
of StatusBarClass class, 440
of Toolbar class, 446
of WebControl class, 869
BorderWidth property of WebControl class, 869
Bottom property
of Control class, 405
of Rectangle(f) type, 471
boundaries, assemblies to establish for types, 290
Bounds property of Control class, 405, 409–410
boxing, 83–84, 126–127

 tag (HTML), 822
bracket ([]) operator, 237–238
brackets ([]) for C# attributes, 375

C# and the .NET Platform Index

-936 I ♡ Flyheart-

breakpoints for debugging, 46
ASP.NET application, 862
Browser property of HttpRequest class, 858
browser to test Web service, 894–895
Brush class
as abstract, 509
of System.Drawing namespace, 467
Brush property of Pen class, 503
brushes
gradient, 515–517
textured, 513–515
Brushes class of System.Drawing namespace, 467
BrushStyles application, 513
BufferedStream class, 607, 624–625
Build Comment Web Pages option, 279, 280
Button class in Windows.Forms, 387
Button property of MouseEventArgs type, 412, 413–414
ButtonBase class in Windows.Forms, 387
properties, 557
buttons, 557–561
content position, 558
in HTML GUI, 827
Buttons project, 561
Buttons property of Toolbar class, 446
ButtonSize property of Toolbar class, 446
Byte system type, 79

C
C# compiler (csc.exe), 34
compiling multiple source files, 38–40
IL from, 12
output options, 36
C DLLs, PInvoke service for interacting with, 663–668
C programming language, 2
C# programming language
applications, 60–63
input and output with Console class, 62–63
member initialization, 62
arrays, 108–114
building applications
client application, 296–297
with command line compiler, 34–40
with Visual Studio.NET IDE, 40–51

C# and the .NET Platform Index

-937 I ♡ Flyheart-

building COM+ aware type, 733–737
classes, 53–57
command line parameters processing, 55–57
const keyword, 87–88
control flow constructs, 92–95
if/else, 92–93
switch, 94–95
custom class methods, 96–98
delegate for callback, 250–262
building example, 251–252
enumeration types, 119–123
events, 262–275
features, 7–8
inheritance support, 155–159
interface definition, 203–204
intrinsic data types, 21
iteration constructs, 88–91
do/while loop, 90–91
foreach/in loop, 90
for loop, 89
while loop, 90–91
Main() method, 54–55
memory leaks, 59–60
objects, creating, 57–60
operators, 95–96
overloading, 240–249
reference types, 66–70
strings, 114–119
escape characters, 116–117
formatting, 63–66
structures, 124–126
System data type classes, 78–82
System.Object class, 71–78
overriding default behaviors, 74–77
static members, 78
value types, 66–70
Web applications, 846–852
<c> tag (XML), 276
C++ with managed extensions (MC++), 297
Cache property
of HttpResponse class, 859
of System.Web.UI.Page type, 855
CalcClient project, 914
CalcGET HTML page, 907

C# and the .NET Platform Index

-938 I ♡ Flyheart-

CalcService.asmx.cs file, 909
Calendar WebForm control, 873–875
CalendarDimensions property of MonthCalendar control, 579
callback functions
instance methods as, 260–261
in Windows API, 250
callback interfaces, 272
CallingConvention field of DllImportAttribute class, 667–668
Cancel() method of OleDbCommand class, 791
CancelButton property of Form class, 423
CancelEdit() method of DataRow class, 754, 767
CanRead property of Stream class, 621
CanSeek property of Stream class, 621
CanWrite property of Stream class, 621
Capacity property of MemoryStream class, 624
Caption property of DataColumn class, 747
CarClient project, 923
CarConfig project, 575
CarConfigLib project, 603
CarDataSet project, 784
CarDataTable project, 771
CarDelegate project, 262
CarEvents project, 271
CarLibrary namespace, 292–295
types, 305–307
CarLibrary project, 301
CarLogApp project, 651–658
CarReflector project, 361
Cars class, 217–221
events, 262–271, 263–264
indexer method support, 238
retrofitting, 231–234
CarsWebService.asmx.cs file, 923
CarToFile project, 646
CaseSensitive property
of DataSet class, 773
of DataTable class, 758
casting
between class types, 177–179
numerical, 179
catching exceptions, 182–183
from custom class, 185
Category property of EventLogEntry class, 463
CategoryNumber property of EventLogEntry class, 463

C# and the .NET Platform Index

-939 I ♡ Flyheart-

CausesValidation property of Control class, 590, 591
CCW (COM Callable Wrapper), 714
COM interface support, 715
<center> tag (HTML), 823
CenterToScreen() method of Form class, 423, 599
Char system type, 79
character set, specifying in cross-platform interactions, 666–667
CharacterCasing property of TextBox class, 554
CheckAlign property of Checkbox class, 561
CheckBox class in Windows.Forms, 387, 561–562
checkboxes in HTML GUI, 827
Checked property
of Checkbox class, 561
of MenuItem class, 434, 435
CheckedChanged event of RadioButton, 562
CheckedListBox control, 565–567
CheckState property of Checkbox class, 561, 562
child class, 141, 157
in containment/delegation model, 163
member set accessible to, 159
ChildColumns property of DataRelation class, 779
ChildKeyConstraint property of DataRelation class, 779
ChildRelations property of DataTable class, 758
ChildTable property of DataRelation class, 779
class destructor
building ad hoc method, 194–196
syntax, 193
[.class extern] tag, 304
class interface in COM, 714–716
class members, versioning, 175–177
class properties, encapsulation with, 147–149
class types, 18
class variables, as references to objects, 57
class visibility, 138
classes. See also base class
abstract, 18, 88, 171
anatomy, 53–57
casting between types, 177–179
custom methods, defining, 96–98
default public interface to, 137
enumerating members, 359–360
extending, 156
formal definition, 133–137
nested, 166–167

C# and the .NET Platform Index

-940 I ♡ Flyheart-

vs. objects, 57
sealed, 18, 160–161
in System.Collections namespace, 231
classical inheritance, 141, 155–156
classical polymorphism, 143
ClassicATLCOMServer project, 694
ClassInterfaceAttribute class, 663
ClassInterfaceType enumeration, 715
ClassViewer Web application, 33
clean-up after exception, finally block for, 188–189
Clear() method
of DataSet class, 774
in EventLog class, 461
of Graphics class, 479
of HttpResponse class, 860
of MenuItemCollection class, 427
of System.Array class, 112, 113
ClearErrors() method of DataRow class, 754
Clicks property of MouseEventArgs type, 412
client area, invalidating, 475–476
client-side scripting, 831–836
ASP.NET alternative, 885
example, 831–833
to validate HTML page, 834–836
ClientRectangle property of Control class, 405
Clip property of Graphics class, 480
Clipboard class in Windows.Forms, 387
clipboard, methods, 552
ClipBounds property of Graphics class, 480
ClipRectangle property of Control class, 420
Clone() method
of DataSet class, 774
in ICloneable interface, 222
cloneable objects, 222–223
CloneMenu() method of Menu class, 426
Close() method
of BinaryReader class, 634
of BinaryWriter class, 634
in EventLog class, 461
of Form class, 423
of HttpResponse class, 860
of OleDbConnection class, 790
of RegistryKey class, 457
of Stream class, 621

C# and the .NET Platform Index

-941 I ♡ Flyheart-

of TextWriter class, 626
Closed event of Form class, 424
CloseFigure() method, 529
Closing event of Form class, 424
CLR (Common Language Runtime), 6, 16
and "managed code," 661
CLS (Common Language Specification), 6, 21–23
and overloaded operators, 243
Rule 1, 22
system types compliance, 79
CLSCompliant attribute, 375, 381
CoCalc class, 684
coclasses, 284, 668
COM client use of, 285
conversion, 700–703
RCW forwarding calls to, 678–679
reference counting, 669–670
for VB COM server, 674
code reuse, assemblies and, 289–290
<code> tag (XML), 276
Codebehind attribute, 853
.aspx file extension and, 855–857
Codebehind class, 867
Codebehind technique, 815
COFF (Common Object File Format), 286
CoInitialize() method, 285
Collect() method in System.GC class, 196, 197
colon operator (:), to extend class, 156
color
active, 484–487
Control class to configure, 417
Color class, 484–485
of System.Drawing namespace, 467
Color property
of ColorDialog class, 485
of Pen class, 503
ColorBlend class, 500
ColorDialog class, 485–487
in Windows.Forms, 387
ColorDlg project, 487
ColorTranslator class of System.Drawing namespace, 467
ColumnMapping property of DataColumn class, 747, 752
ColumnName property of DataColumn class, 747
Columns property of DataTable class, 758

C# and the .NET Platform Index

-942 I ♡ Flyheart-

COM (Component Object Model), 3
deployment, 285–286
error information, 179
error protocol, 690
handling error, 710
hooking into event from managed code, 709–710
and IDL (Interface Definition Language), 373
and interface-based programming, 203
interface conversion, 697–698
interface types, 698
to .NET interoperability support, 668–671
notation, 206
problems with binaries, 283–286
raising event by coclass, 688
RCW to hide low-level interfaces, 670–671
viewing type library, 717–720
COM Callable Wrapper (CCW), 714
COM interface support, 714
COM+ catalog, assembly configuration, 737
COM client
building, 675–676
examining, 694–696
COM server, 661
function export, 286
registering, 285
Visual Basic, building, 671–675
COM+ services, interacting with, 731–733
Combine() method of System.MulticastDelegate class, 254
ComboBox class in Windows.Forms, 387
ComboBoxes, 567–573
ComboBoxStyle enumeration, 571
command line compiler to build C# applications, 34–40
command line parameters, Main() method structure for, 55–57
command window, removing, 391
CommandText property of OleDbCommand class, 790, 791
CommandTimeout property of OleDbCommand class, 791
CommandType enumeration, 795
CommandType property of OleDbCommand class, 791
comments
in C#, 54
scripting in HTML as, 833
for XML documentation of types, 275
CommitTransaction() method of OleDbConnection class, 790
Common Language Runtime (CLR), 6, 16

C# and the .NET Platform Index

-943 I ♡ Flyheart-

and "managed code," 661
Common Language Specification (CLS), 6, 21–23
and overloaded operators, 243
system types compliance, 79
Common Object File Format (COFF), 286
Common Type System (CTS), 6, 16–21
class types, 18
constructs not in COM, 724
delegate types, 20
enumeration types, 20
interface types, 19–20
intrinsic data types, 21
structure types, 18–19
type members, 20
CommonAppDataRegistry property of Application class, 397
CompanyName property of Application class, 397
comparable objects, building, 224–229
CompareTo() method (System.String), 115
CompareValidator WebForm control, 882
comparison operators, overriding, 247–248
compatibility of assembly versions, 321
compatibility version, 291
compile time errors
from absence of default constructor, 135
from attempt to create instance of abstract class, 171
compiler errors from mapping to get_/set_ pair, 150–151
compilers, manifest creation by, 301
compiling multiple source files, 38–40
Complement() method of Region class, 403–404
Component Object Model (COM). See COM (Component Object Model)
Component Services Explorer, 738–739
ComponentAccessControlAttribute class of System.EnterpriseServices namespace, 734
CompositingMode property of Graphics class, 480
CompositingQuality property of Graphics class, 480
CompoundArray property of Pen class, 503
ComRegisterFunctionAttribute class, 663, 730–731
ComSourceInterfacesAttribute class, 663
ComUnregisterFunctionAttribute class, 663, 730–731
Concat() method (System.String), 115
concatenation of strings, 241
concrete classes, 18
concurrency and thread synchronization, 330
conditional operators in C#, 93
.config file extension, 309–310

C# and the .NET Platform Index

-944 I ♡ Flyheart-

configuration file
administrator, 328
application, 326
Configuration Properties folder, 277
<Configuration> tag, 310
Connection property of OleDbCommand class, 791
ConnectionString property of OleDbConnection class, 790
ConnectionTimeout property of OleDbConnection class, 790
constant values, binding to class, 154
Constants, 87–88
Constants project, 88
Constraint class, 746
ConstraintCollection class, 746
Constraints property of DataTable class, 758
ConstructionEnabledAttribute class of System.EnterpriseServices namespace, 734
ConstructorBuilder type, 366
constructors, 57–60, 134
forwarding calls using this, 136–137
static, 152–153
ContainerControl class, 421–422
containment/delegation model, 142
programming for, 161–165
Containment project, 166
Contains() method
of MenuItemCollection class, 427
of Rectangle(f) type, 471
ContentAlignment enumeration, 468, 559
ContentEncoding property of HttpResponse class, 859
ContentType property
of HttpRequest class, 858
of HttpResponse class, 859
context menus, Control class to support, 417
Context property of System.Web.Services.WebService base class, 901
context-sensitive menus, creating, 431–434
ContextMenu class in Windows.Forms, 387
ContextMenu property of Control class, 417, 434
ContextUtil class of System.EnterpriseServices namespace, 734
Control class, 545
events, 408–415
in Form class derivation, 404–408
hierarchy, 545–546
methods, 406, 418
properties, 405, 417, 868
for input validation, 590

C# and the .NET Platform Index

-945 I ♡ Flyheart-

to set coordinates, 409–410
responding to mouse events, 411–413
control flow constructs in C#, 92–95
if/else, 92–93
switch, 94–95
Control property of KeyEventArgs type, 416
ControlBehaviors project, 417
ControlBox property of Form class, 423
Control$ControlCollection class, 547–549
controls
adding to forms
by hand, 546–549
using VS.NET, 550–552
adding tooltips, 587–589
anchoring behavior, 592–593
buttons, 557–561
checkboxes, 561–562
in custom dialog boxes, 594–602
docking behavior, 593–594
DomainUpDown control, 582–585
ErrorProvider, 590–592
ListBoxes and ComboBoxes, 567–573
MonthCalendar control, 578–581
NumericUpDown control, 582–585
Panel controls, 585–586
RadioButtons and GroupBoxes, 562–567
spin controls, 582–585
tab order configuration, 573–575
TextBox control, 552–557
TrackBar Control, 575–578
Controls collection of Form class, 441
Controls project, 877
ControlsByHand project, 549
ControlStyles enumeration, 405–407
Cookies property
of HttpRequest class, 858
of HttpResponse class, 859
Copy() method
of DataSet class, 774
of System.String class, 115
CopyTo() method
of FileInfo class, 616
of System.Array class, 112
Count property

C# and the .NET Platform Index

-946 I ♡ Flyheart-

of HttpApplicationState class, 861
of MenuItemCollection class, 427
Create() method
of DirectoryInfo class, 609
of FileInfo class, 616, 617
Created property of Control class, 405
CreateDomain() method of AppDomain namespace, 332
CreateEventSource() method in EventLog class, 461
CreateInstance() method
of Activator class, 362–363
of AppDomain namespace, 332
CreateSubdirectory() method of DirectoryInfo class, 609, 612–613
CreateSubKey() method of RegistryKey class, 457
CreateText() method of FileInfo class, 616, 626
CreationTime property of FileSystemInfo class, 608
cross-language inheritance, .NET support of, 283, 299–301
.cs file extension, 7
separating types in files with, 61
csc.exe (C# Compiler), 34
CSharpCalcClient project, 679
CSharpCarClient project, 301
CSharpLateBoundCalcClient project, 682
CTS (Common Type System), 6, 16–21
currency, formatting in C#, 65
current object instance, this to reference, 136
CurrentCulture property of Application class, 397
CurrentInputLanguage property of Application class, 397
CurrentThread property of Thread class, 335
Cursor property of Control class, 417, 420
Cursors class in Windows.Forms, 387
Cursors enumeration, 420
custom attributes, building, 376–381
custom dialog boxes, 594–602
custom namespaces, 127–132
custom types, visibility levels for, 138–140
CustomAtt project, 384
CustomAttributeBuilder type, 366
CustomEndCap property of Pen class, 503
CustomLineCap class, 500
CustomSerialization project, 651
CustomStartCap property of Pen class, 503
CustomValidator WebForm control, 882

C# and the .NET Platform Index

-947 I ♡ Flyheart-

D
DashCap property of Pen class, 503
DashOffset property of Pen class, 503
DashPattern property of Pen class, 504, 506
DashStyle enumeration, 501, 506
DashStyle property of Pen class, 504
data binding in ASP.NET, 880–881
Data property of EventLogEntry class, 463
data stability in thread programming, 342–344
data types
converting between variable and reference types, 83–84
default assignments and variable scope, 85–87
System and C# aliases, 79
value-based or reference-based, 66–70
database. See also ADO.NET
manipulation tools, 48
Database property of OleDbConnection class, 790
datacentric WebForm controls, 878–881
DataColumn class, 744, 745–752, 768, 779
adding to DataTable, 749
autoincrementing fields, 750–751
building DataColumn, 747–749
configuring column's XML representation, 752
DataColumn configuration as primary key, 749–750
properties, 747
DataColumn project, 752
DataColumnCollection class, 746
DataGrid class
binding DataTable to, 761
in Windows.Forms, 387
DataGrid control in ASP.NET, 878–879
DataRelation class, 746, 776, 778–783
properties, 779
DataRelationCollection class, 746, 772
DataRow class, 746, 753–757
ItemArray property, 756–757
methods for navigating data tables, 780
RowState property, 753–756
DataRowCollection class, 746
DataRowState enumeration, 754
DataRowView class, 746
DataSet class, 746, 771–778
collections, 772

C# and the .NET Platform Index

-948 I ♡ Flyheart-

filling multitabled, 810–813
in-memory dataset, 773–778
members, 773
methods, 774
OleDbDataAdapter to fill, 798–801
reading and writing XML-based, 783–784
DataSet property
of DataRelation class, 779
of DataTable class, 758
DataSetName property of DataSet class, 773
DataSets (ADO.NET), 742–743
DataSource property
of DataView class, 771
of OleDbConnection class, 790
DataTable class, 746, 757–768
adding DataColumn, 749
applying filters and sort orders, 763–767
creating new type, 759
deleting rows, 762–763
details, 757–758
properties, 758
updating rows, 766–768
DataTableCollection class, 746, 772
DataType property
of DataColumn class, 747
of OleDbParameter class, 796
DataTypes project, 82
DataView class, 746, 768–771
Date property of DateTime class, 582
DateTime class, 581–582
Day property of DateTime class, 582
DayOfWeek property of DateTime class, 582
DayOfYear property of DateTime class, 582
DbType property of OleDbParameter class, 796
Debug folder, copy of referenced assembly in, 296
debugging
ASP.NET applications, 862–864
with Visual Studio.NET IDE, 46
decimal numbers, formatting in C#, 65
Decimal system type, 79
DecimalPlaces property of NumericUpDown control, 584
deep-copy semantics, object support for, 222
default constructor, 58, 134
silent removal, 135

C# and the .NET Platform Index

-949 I ♡ Flyheart-

default public instance, defining, 137–140
default value for member variables, 83–84
default version policy, 325–326
DefaultItem property of MenuItem class, 434
DefaultValue property of DataColumn class, 747
DefaultValues project, 87
DefaultView property of DataTable class, 758
DefaultViewManager property of DataSet class, 773
DefineDynamicAssembly() method in AppDomain class, 369
DefineType() method of ModuleBuilder class, 369
<definition> tag (WSDL), 902
delegates, 20, 250–262
building example, 251–252
code analysis, 257–258
inner workings, 254–256
multicasting, 258–260
as nested types, 252–253
to respond to KeyUp event, 415–416
to respond to Windows Form event, 411–412
delegation, 164–165
Delete() method
of DataRow class, 754
of DataView class, 771
of DirectoryInfo class, 609
of FileInfo class, 616
DeleteCommand property of OleDbDataAdpater class, 798
DeleteSubKey() method of RegistryKey class, 457
DeleteSubKeyTree() method of RegistryKey class, 457
deleting rows from DataTable, 762–763
Delta property of MouseEventArgs type, 412
<dependentAssembly> attribute, 326
DerivedClass type, .NET to COM mapping, 726–727
descending value for font, 491
Description property of WebServiceAttribute class, 898
DescriptionAttribute class of System.EnterpriseServices namespace, 734
Deserialize() method of BinaryFormatter class, 644, 646
destructor
building ad hoc method, 194–196
Dispose() method and, 396
syntax, 193
dialog boxes
custom, 594–602
grabbing data from, 600–602
DialogResult enumeration, 600

C# and the .NET Platform Index

-950 I ♡ Flyheart-

Direction property of OleDbParameter class, 796
directories for private assemblies, 307
Directory class, 606–607
static members, 614–615
Directory property of FileInfo class, 616
DirectoryInfo class, 606
to create subdirectories, 612–613
enumerating files with, 611–612
DirectoryName property of FileInfo class, 616
"dirty" window, and paint message, 475
.disco files, 889, 923–926
Discovery Service Protocol, 923–926
DISPID, 681
Dispid attribute, 375
DispIdAttribute class, 663
display name of assembly, 358
Dispose() method, 404
defining, 195–196
overriding, 396, 410–411
Disposed event of IDisposable interface, 403
Disposed property of Control class, 405
Distributed iNternet Architecture (DNA), 4
DLL assembly, option to build, 36
DllCanUnloadNow() function, 286
DllGetClassObject() function, 286
DllImport attribute, 375
DllImportAttribute class, 663
ExactSpelling field of, 665
fields, 665
specifying calling conventions and entry points, 667–668
specifying character set, 666–667
DllMain() function, 286
DllRegisterServer() function, 286
DllUnregisterServer() function, 286
DNA (Distributed iNternet
Architecture), 4
do/while loop (C#), 90–91
Dock property of Control class, 417, 593–594
documentation
Visual Studio.NET IDE support for, 279
XML-based, 275–277
DoDragDrop() method of Control class, 418
DoEvents() method of Application class, 397
DomainUpDown control, 584

C# and the .NET Platform Index

-951 I ♡ Flyheart-

DotNetClassLib project, 717
DotNetComPlusServer project, 739
Double system type, 79
DpiX property of Graphics class, 480
DpiY property of Graphics class, 480
drag-and-drop, Control class to configure, 417
DragDrop event of Control class, 418
DragEnter event of Control class, 418
dragging mode of mouse, 520
DraggingImages project, 523
DragLeave event of Control class, 418
DragOver event of Control class, 418
DrawArc() method of Graphics class, 479, 503
DrawBezier() method of Graphics class, 479, 503
DrawBeziers() method of Graphics class, 479, 503
DrawCurve() method of Graphics class, 479, 503
DrawEllipse() method of Graphics class, 479, 503
DrawIcon() method of Graphics class, 479
DrawImage() method of Graphics class, 519
DrawLine() method of Graphics class, 479, 503
DrawLines() method of Graphics class, 479, 503
DrawPath() method of Graphics class, 479, 503
DrawPie() method of Graphics class, 479, 503
DrawPolygon() method of Graphics class, 503
DrawRectangle() method of Graphics class, 479, 503
DrawRectangles() method of Graphics class, 479, 503
DrawString() method
of Graphics class, 479, 488
of System.Drawing namespace, 468–469
DropDownMenu property of ToolBarButton class, 447
DroppedDown property of ComboBox control, 571
dumping
IL instructions to file, 32
namespace information to file, 31–32
dynamic assemblies, 365–373
emitting, 366–371
using, 371–372
<dynamic Discovery> tag, 924
DynAsmBuilder project, 372

E
early binding, 362
to COM class, 678–679

C# and the .NET Platform Index

-952 I ♡ Flyheart-

using VS.NET, 679–680
ECMAScript, 831
else statement, 93
Emit() method of ILGenerator class, 370
Employee class initial class definition, 134–135
Employees project, 136
Enabled property
of Control class, 405
of MenuItem class, 434
of Timer object, 443
of WebControl class, 869
EnableSession property of WebServiceAttribute class, 898
encapsulation, 140, 141
with class properties, 147–149
enforcing using traditional accessors and mutators, 146–147
pseudo-, 153–155
End() method of HttpResponse class, 860
EndCap property of Pen class, 504
EndEdit() method of DataRow class, 754, 767
EndInvoke() method of SoapHttpClientProtocol class, 912
#endregion directive, 394
EnforceConstraints property of DataSet class, 773
Enter() method of Monitor class, 346
Entries property in EventLog class, 461, 463
EntryPoint field of DllImportAttribute class, 667–668
EntryType property of EventLogEntry class, 463
Enum project, 123
EnumBuilder type, 366
enumerating
members of class, 359–360
method parameters, 360–362
types in referenced assembly, 358–359
enumeration types, 20, 119–123
AttributeTargets , 379–380
ClassInterfaceType , 715
ComboBoxStyle , 571
CommandType , 795
ContentAlignment , 468, 559
ControlStyles , 405–407
Cursors , 420
DashStyle , 501, 506
DataRowState , 754
DialogResult , 600
FileAccess , 618

C# and the .NET Platform Index

-953 I ♡ Flyheart-

FileAttributes , 610
FileMode , 618
FileShare , 619
FillMode , 501
FlatStyle , 558
FontStyle, 468
FontStyle , 488
GraphicsUnit, 468, 482
HatchStyle , 501
HorizontalAlignment , 554
InstalledFontCollection, 495
KnownColor, 468
LinearGradientMode, 501
LineCap, 501, 507–509
LineSpacing, 495
MappingType, 752
PenAlignment, 501
PenType, 501
PictureBoxSizeMode, 521
PrivateFontCollection, 495
QualityMode, 501
RenderingHint, 501
SmoothingMode, 500–501
StreamingContextStates, 649
StringAlignment, 468
StringFormatFlags, 468
StringTrimming, 468
StringUnit, 468
System.Enum class, 122–123
TextRenderingHint, 495, 502
enumerator, building custom, 218–221
Environment class, static members, 103
equality operators in C#, 93
overloading, 245–246
for string manipulation, 115
Equals() method, 72, 74
overriding, 76, 246
ErrorProvider, 590–592
escape characters in C# strings, 116–117
event log, reading from, 463–464
event sinks, 264
method representing, 267–268
multiple, 268–269
objects as, 270–271

C# and the .NET Platform Index

-954 I ♡ Flyheart-

Event Viewer, 460–464
EventBuilder type, 366
EventClassAttribute class of System.EnterpriseServices namespace, 734
EventID property of EventLogEntry class, 463
EventInfo in System.Reflection namespace, 357
EventInterface project, 275
EventLog class, 460
members, 461
EventLogEntry class, 460
members, 463
EventLog.EventLogEntryCollection class, 460
EventLogNames class, 460
events, 262–275
of Graphics class, 479
interface design, 272–274
listening to incoming, 267–270
mouse, responding to, 411–413
EventTrackingEnabledAttribute class of System.EnterpriseServices namespace, 734
ExactSpelling field of DllImportAttribute class, 665
<example> tag (XML), 276
exception handling, 179–190
for attempt to access unsupported interface, 207
catching exceptions, 182–183
custom exception building, 183–187
recommended approach, 186–187
determining what is exception, 181
final thoughts about, 189–190
"finally" block, 188–189
multiple exceptions, 187–188
throwing exception, 180–182
unhandled, 190
<exception> tag (XML), 276
Exceptions project, 189
Exclude() method of Region class, 473
EXE console application, option to build, 36
ExecuteAssembly() method of AppDomain namespace, 332
ExecuteReader() method of OleDbCommand class, 791
execution, side-by-side of multiple assembly versions, 292
[.exeloc] tag, 304
Exists property of FileSystemInfo class, 608
Exit() method
of Application class, 397
of Monitor class, 346
ExitThread() method of Application class, 397

C# and the .NET Platform Index

-955 I ♡ Flyheart-

explicit interface method implementation, 211–214
explicit request to load assembly, 311
exponential notation, formatting in C#, 65
Expression property of DataColumn class, 747
ExtendedProperties property, 772
extending classes, 156
Extension property of FileSystemInfo class, 608
external assemblies, referencing, 27–28 37–38
external resources, XML representation, 534–535

F
[.field] tag, 305
FieldBuilder type, 366
FieldInfo in System.Reflection namespace, 357
fields
in database, autoincrementing, 750–751
read-only, 153–155
static read-only, 154–155
file
dumping IL instructions to, 32
dumping namespace information to, 31–32
File class, 606–610
File menu | New | Project, 40
[.file] tag, 304
FileAccess enumeration, 618
FileAttributes enumeration, 610
FileDialog class in Windows.Forms, 387
FileInfo class, 606–608, 615–620
core members, 616
FileMode enumeration, 618
File.OpenText() method, 91
FilePath property of HttpRequest class, 858
Files property of HttpRequest class, 858
FileShare enumeration, 619
FileStream class, 607, 622
FileSystemInfo class, 607, 608
Fill() method of OleDbDataAdpater class, 797, 798
FillClosedCurve() method of Graphics class, 509
FillEllipse() method of Graphics class, 509
FillMode enumeration, 501
FillPath() method of Graphics class, 479, 509, 527
FillPie() method of Graphics class, 479, 509
FillPolygon() method of Graphics class, 479, 509

C# and the .NET Platform Index

-956 I ♡ Flyheart-

FillRectangle() method of Graphics class, 479, 509
FillRectangles() method of Graphics class, 509
FillRegion() method of Graphics class, 509
FillSingleDSWithAdapter project, 801
Filter property
of HttpRequest class, 858
of HttpResponse class, 859
filters for DataTable, 763–766
FinalFormsApp project, 464
Finalize() method of System.Object class, 72
support for, 193
"finally" block in exception handling, 188–189
FindMembers() method of System.Type class, 351
firing event, 263–264
FirstDayOfWeek property of MonthCalendar control, 579
fixed point formatting in C#, 65
FlatStyle enumeration, 558
FlatStyle property of ButtonBase class, 557, 558
flicker, minimizing in redrawing client area, 493
Flush() method
of BinaryWriter class, 634
of HttpResponse class, 860
of Stream class, 621
of TextWriter class, 626
focus of GUI item, ContainerControl class to define support 421–422
Focused property of Control class, 405
Font class of System.Drawing namespace, 467
Font property
of Control class, 417
of StatusBar class, 440
of WebControl class, 869
FontApp project, 497
FontDialog class, 497–499
FontDlgForm project, 499
FontFamily class of System.Drawing namespace, 467, 489–491
FontFamily project, 491
fonts, 488–499
building application, 492–494
Control class to configure, 417
enumerating installed, 494–497
font families, 489–491
FontDialog class, 497–499
manipulating, 488–499
metrics, 491

C# and the .NET Platform Index

-957 I ♡ Flyheart-

FontStyle enumeration, 468, 488
for loop (C#), 89
foreach/in loop, 90, 221
ForeColor property
of Control class, 417
of StatusBar class, 440
of TextBoxBase class, 553
of WebControl class, 869
ForeignKeyConstraint class, 746
Form class in Windows.Forms, 387, 422–425
to build menus, 425–427
derivation, 403
events, 424
functionality, 402–403
methods, 423
properties, 423
using, 424–425
Form object
Controls collection of, 441
to represent window, 389
Form property of HttpRequest class, 858
<form> tag (HTML), 826, 827–828
attributes indicating ASP page, 836
Format() method
of System.Enum, 122
of System.String, 65–66, 115
formatting strings in C#, 63–66
FormBorderStyle property, 592
forms. See also controls
adding controls
by hand, 546–549
using VS.NET, 550–552
anatomy, 402–403
custom dialog boxes as, 594–602
in HTML, 825–830
inheritance, 602–604
resizable, 592
styles for, 405–408
FormStyles project, 408
friendly name of private assembly, 309
FromArgb() method of Color class, 485
FromFile() method of Image class, 518
FromHbitmap() method of Image class, 518
FromHdc() method of Graphics class, 479

C# and the .NET Platform Index

-958 I ♡ Flyheart-

FromHwnd() method of Graphics class, 476, 479
FromImage() method of Graphics class, 479
FromKnownColor() method of Color class, 485
FromName() method of Color class, 485
FromStream() method of Image class, 518
FullName property of FileSystemInfo class, 608
fully qualified name
to resolve name clashes, 130–131
variable declaration using, 27
functions, taking delegate as parameter, 254

G
G property of Color class, 485
GAC (Global Assembly Cache), 283
installing assemblies into, 318–319
problems, 314
shared applications in, 313
version numbers in, 323–324
garbage collector in .NET, 60, 192. See also System.GC class
interaction with, 196–200
GC project, 200
GDI+ namespaces, 465–466
active color, 484–487
automatic resource configuration, 540–543
configuring project workspace, 466
default coordinate system, 480–484
alternative point of origin, 482–484
alternative unit of measurement, 482
dragging, hit testing and PictureBox control, 520–530
fonts, 488–499
building application, 492–494
enumerating installed, 494–497
font families, 489–491
FontDialog class, 497–499
metrics, 491
Graphics class, 478–480
.NET resource format, 531–532
Paint sessions, 474–478
rendering images, 517–520
rendering objects outside paint handlers, 476–478
ResourceManagers, 538–540
ResourceWriters, 537–538
System.Drawing namespace, 466–473

C# and the .NET Platform Index

-959 I ♡ Flyheart-

System.Drawing.Drawing2D namespace, 499–517
gradient brushes, 515–517
hatch style brushes, 511–513
pen caps, 507–509
pens, 502–507
rendering quality, 500–502
solid brushes, 509–511
textured brushes, 513–515
System.Resources namespace, 532–537
binding .resources file to assembly, 537
building.resources file, 536
programmatic creation of .resx file, 533–535
programmatic reading of .resx file, 535
generations, garbage collector and, 199–200
get method, 146–147, 150
GET method for HTML form data, 836, 905–907
GetAssemblies() method of AppDomain namespace, 332
GetBounds() method
of Image class, 518
of Region class, 473
GetBrightness() method of Color class, 485
GetBuffer() method of MemoryStream class, 624
GetCellAscent() method of FontFamily class, 489
GetCellDescent() method of FontFamily class, 489
GetChanges() method of DataSet class, 774
GetChildRelations() method of DataSet class, 774
GetColumnsInError() method of DataRow class, 754
GetConstructors() method of System.Type class, 351
GetCurrentThreadId() method of AppDomain namespace, 332
GetCustomAttributes() method of Type class, 384
GetData() method of Thread class, 335
GetDirectories() method of DirectoryInfo class, 609
GetDomain() method of Thread class, 335
GetDomainID() method of Thread class, 335
GetEmHeight() method of FontFamily class, 489
GetEnumerator() method
in IEnumerable inteface, 219
of System.Array class, 112
GetEventLogs() method in EventLog class, 461
GetEvents() method of System.Type class, 351
GetFields() method of System.Type class, 351
GetFiles() method of DirectoryInfo class, 609
GetFillParameters() method of OleDbDataAdpater class, 798
GetForm() method of MainMenu class, 429

C# and the .NET Platform Index

-960 I ♡ Flyheart-

GetGeneration() method in System.GC class, 196
GetHashCode() method, 72
overriding, 77
GetHue() method of Color class, 485
GetIDsOfNames() method (COM), 681
GetInterfaces() method of System.Type class, 351
GetInvocationList() method, 260
of System.MulticastDelegate class, 254
GetLength() method of System.Array class, 112
GetLineSpacing() method of FontFamily class, 489
GetLowerBound() method of System.Array class, 112
GetMainMenu() method of Menu class, 426
GetMembers() method
of System.Type class, 351
of Type class, 359
GetMethod() method of Type class, 363
GetMethods() method of System.Type class, 351
GetName() method of FontFamily class, 489
GetNestedTypes() method of System.Type class, 351
GetObjectData() method of ISerializable interface, 648
GetParameters() method of MethodInfo class, 361
GetParams() method of MethodInfo class, 361
GetParentRelations() method of DataSet class, 774
GetProperties() method of System.Type class, 351
GetSaturation() method of Color class, 485
GetStringBuilder() method, 630, 632
GetStyle() method of Control class, 405, 406
GetSubKeyNames() method of RegistryKey class, 457
GetToolTip() method of ToolTip class, 587
GetTotalMemory() method in System.GC class, 196
GetType() method
of System.Object class, 72, 350
of System.Type class, 351
GetUnderlyingType() method of System.Enum class, 122
GetUpperBound() method of System.Array class, 112
GetValue() method
of RegistryKey class, 457, 459
of System.Array class, 113
GetValueNames() method of RegistryKey class, 457
GetValues() method of System.Enum, 122
Global Assembly Cache (GAC), 283
installing assemblies into, 318–319
problems, 314
shared applications in, 313

C# and the .NET Platform Index

-961 I ♡ Flyheart-

global methods, 96
Global.asax file in Web application, 850–851
gradient brushes in System.Drawing.Drawing2D namespace, 515–517
GradientBrush application, 517
graphical user interfaces (GUI). See GUI (graphical user interfaces)
graphics
adding to HTML document, 830
adding to toolbar buttons, 449–450
file formats, 520
rendering, 517–520
Graphics class, 478–480
drawing members, 503
fill methods, 509
members, 479
properties, 480
of System.Drawing namespace, 467
Graphics object, extracting from PaintEventsArgs parameter, 474
Graphics property of Control class, 420
GraphicsPath class, 500
methods, 528
GraphicsPathIterator class, 500
GraphicsUnit enumeration in System.Drawing namespace, 468, 482
GroupBox class
vs. Panel control, 585–586
in Windows.Forms, 387, 562–567
GUI (graphical user interfaces)
active color, 484–487
menus, 425–439
namespaces, 385–386
status bars, 439–446
tool bar, 446–450
GuidAttribute class, 663, 683

H
Handle property
of Control class, 405
of Menu class, 426
Handled property of KeyEventArgs type, 416
"has-a" relationship, 4, 141, 142. See also containment/delegation model
HasChanges() method of DataSet class, 774
HasErrors property
of DataRow class, 754
of DataSet class, 773

C# and the .NET Platform Index

-962 I ♡ Flyheart-

hash code, creating, 77
[.hash] tag, 304
Hashtable class (System.Collections), 231
hatch style brushes in System.Drawing.Drawing2D namespace, 511–513
HatchBrush class, 500
HatchStyle enumeration, 501
<HEAD> tag (HTML), 819
Headers property of HttpRequest class, 858
heading tags (HTML), 822–823
Height property
of Control class, 405
of Image class, 518
of Rectangle(f) type, 471
of WebControl class, 869
HelloClass with constructors, 58–59
HelloThere project, 61
help, 49–50, 51
Help class in Windows.Forms, 387
HelpLink property of System.Exception class, 180
hexadecimal formatting in C#, 65
Hexadecimal property of NumericUpDown control, 584
Hide() method of Control class, 406
HideSelection property of TextBoxBase class, 553
hierarchy
of interfaces, 214–216
System namespace, data types, 80
hit testing, 520–524
on geometric shape, 524–527
nonrectangular images, 527–530
HKEY_CLASSES_ROOT, 307
<hn> tags (HTML), 822–823
HorizontalAlignment enumeration, 554
HorizontalResolution property of Image class, 518
Hour property of DateTime class, 582
HTML document
adding images to, 830
basic structure, 818–825
format headers, 822–823
tags, 819
text formatting, 820–822
client-side scripting, 831–836
form development, 825–830
user interface, 827–829
submitting form data, 836–837

C# and the .NET Platform Index

-963 I ♡ Flyheart-

parsing query string, 837
validating page, 834–836
HTML editors in Visual Studio.NET IDE, 823–825
<HTML> tag, 819
HTTP (HyperText Transfer Protocol), 888, 889
transmitting data using GET and POST, 905–907
HttpApplication class of System.Web namespace, 845
HttpApplicationState class of System.Web namespace, 845
properties, 861
HttpBrowserCapabilities class of System.Web namespace, 845
HttpCookie class of System.Web namespace, 845
HttpMethod property of HttpRequest class, 858
HttpRequest class of System.Web namespace, 845
HttpResponse class of System.Web namespace, 845
methods, 860
properties, 859
Hypertext Markup Language (HTML). See HTML document

I
<i> tag (HTML), 822
IBasicMath interface, IDL for, 729–730
IClassFactory interface, 671
ICloneable interface, 222–223
ICollection interface, 230
IComparable interface, 224–229
IComparer interface, 230
specifying multiple sort orders, 227–228
Icon class of System.Drawing namespace, 467
Icon property of StatusBarClass class, 440
IConnectionPoint interface, 671, 714
IConnectionPointContainer interface, 671
IConnectionPointContainer interface (COM), 714
icons, ILDasm.exe tree view, 30
ICreateErrorInfo interface, 671
ID property of Control class, 868
IDataReader interface, 787
IDbCommand interface, 787
IDbConnection interface, 787
IDbDataAdapter interface, 787
IDictionary interface, 230
IDictionaryEnumerator interface, 230
IDispatch interface, 671, 714
IDispatchEx interface, 671, 714

C# and the .NET Platform Index

-964 I ♡ Flyheart-

IDispatchImplAttribute class, 663
IDisposable interface, 195–196, 403
IDL (Interface Definition Language), 13
COM (Component Object Model) and, 373, 674
COM enumeration, 693
controlling generated, 728–730
Idle event of Application class, 398
IEnumerable interface, 230
IEnumerator interface, 230
IEnumVariant interface, 671, 714
IErrorInfo interface, 671, 714
if/else statement (C#), 92–93
IFaceHierarchy project, 218
IFormatter interface, 642
IHashCodeProvider interface, 230
IIS (Internet Information Server), 815–816
virtual directories, 816–817
IL. See also Microsoft Intermediate Language (MSIL)
ILDasm.exe (Intermediate Language Dissasembler utilty), 29–33
custom attributes in, 377
nested delegates in, 253
to view logical layout of assembly, 289
ILDasm.exe, metadata display, 306
ILGenerator type, 366
IList interface, 230
Image class, 517–520
members, 518
of System.Drawing namespace, 467
Image project, 520
Image property of ButtonBase class, 557
ImageAlign property of ButtonBase class, 557
ImageAnimator class of System.Drawing namespace, 467
ImageIndex property
of ButtonBase class, 557
of ToolBarButton class, 447, 450
ImageList property
adding at design time, 451–454
adding images to, 453
of ButtonBase class, 557
of Toolbar class, 446, 450
images. See graphics
in HTML GUI, 827
Images project, 530
ImageSize property of Toolbar class, 446

C# and the .NET Platform Index

-965 I ♡ Flyheart-

IMessageFilter interface, 400–401
 tag (HTML), 830
implicit request to load assembly, 311
ImportedFromTypeLibAttribute attribute, 682
importing Type library, 676–677
imports keyword (VB.NET), 298
InAttribute class, 663
Increment property of NumericUpDown control, 584
Index property of MenuItem class, 434
indexer method (C#), 237–240
Indexer project, 240
Inflate() method of Rectangle(f) type, 471
informational version, 291
inheritance, 140, 141–143
in C#, 155–159
cross-language, .NET support of, 283, 299–301
for forms, 602–604
preventing, 160–161
inherits keyword (VB.NET), 300
Init event of System.Web.UI.Page type, 855
InitialDelay property of ToolTip class, 587
InitializeComponent() method, 394, 395–396, 542, 551
inner class in "has-a" relationship, 142
InnerException property of System.Exception class, 180
input with System.Console class, 62–63
Insert() method (System.String), 115
InsertCommand property of OleDbDataAdapter class, 798
inserting records using SqlDataAdapter, 802–805
InsertRowsWithSqlAdapter project, 805
installed fonts, enumerating, 494–497
InstalledFontCollection enumeration of Text class, 495
installing assemblies into GAC, 318–319
instance methods, 99–103
as callbacks, 260–261
Int16 system type, 79
Int32 system type, 79
integrity of state data, preserving, 146
InterceptArrowKeys property of UpDownBase class, 583
interface-based programming, 203–217
Interface Definition Language (IDL), 13
COM (Component Object Model) and, 373
InterfaceIsDual type, 698
InterfaceIsIDispatch type, 698
InterfaceIsIUnknown type, 698

C# and the .NET Platform Index

-966 I ♡ Flyheart-

InterfaceQueuingAttribute class of System.EnterpriseServices namespace, 734
interfaces, 18
building custom enumerator, 218–221
callback, 272
defining in C#, 203–204
explicit implementation, 211–214
hierarchies, 214–216
ICloneable, 222–223
IComparable, 224–229
IComparer, 227–228
IDisposable, 195–196
implementing, 205–206
obtaining references, 206–208
as parameter, 209–210
specifying multiple base, 217
in System.Collections namespace, 230
term definition, 203
types, 19–20
InterfaceTypeAttribute class, 663
Interlocked type (System.Threading), 334
Intermediate Language Dissasembler utility (ILDasm.exe), 29–33
dumping namespace information to file, 31–32
tree view icons, 30
viewing type metadata, 32–33
Internal keyword, 96–97, 138–139
Internet-aware features in Microsoft operating systems, 4
Internet Information Server (Microsoft), 815–816
virtual directories, 816–817
interoperability support
COM to .NET, 712–713
building .NET type, 716–717
class interface, 714–716
examining registration entries, 721–723
exported type information, 717–720
generating type library and registering .NET types, 717
viewing type using OLE/COM Object Viewer, 720–721
Visual Basic 6.0 test client, 723–724
COM+aware C# types, 733–737
COM+aware types, 733
Component Services Explorer, 738–739
controlling generated IDL, 728–730
interacting with assembly registration, 730–731
interacting with COM+ services, 731–733
.NET to COM

C# and the .NET Platform Index

-967 I ♡ Flyheart-

ATL test server, 685–694
basic issues, 661–662
building assembly, 696–710
C# client, 711–712
COM client, 675–676
examining generated assembly, 682–684
importing type library, 676–677
interaction with C DLLs, 663–668
referencing assembly, 677–682
System.Runtime.InteropServices namespace, 662–663
Visual Basic 6.0 test client, 694–696
Visual Basic COM server, 671–675
.NET to COM mapping issues, 724–727
InterpolationMode property of Graphics class, 480
Interrupt() method of Thread class, 335
Intersect() method
of Rectangle(f) type, 471
of Region class, 473
Interval property of Timer object, 443
intrinsic data types, 21
Invalidate() method of Control class, 406, 425, 475–476
invalidating client area, 475–476
InvalidCastException, 83–84, 207
Invoke() method
of IDispatch interface, 681
of MethodInfo class, 363
of SoapHttpClientProtocol class, 912
InvokeMember() method of System.Type class, 351
IProvideClassInfo interface, 671, 714
IResourceReader class, 532
IResourceWriter class, 532
"is-a" relationship, 141–143, 155–156
and casting, 177–178
is operator (C#), 96
to obtain interface, 208
IsAbstract property of System.Type class, 351
IsAlive property of Thread class, 335
IsArray property of System.Type class, class, 351
IsBackground property of Thread class, 335
IsClass property of System.Type class, 351
IsClientConnected property of HttpResponse class, 859
IsClipEmpty property of Graphics class, 480
IsCOMObject property of System.Type class, 351
IsDefault property of ButtonBase class, 557

C# and the .NET Platform Index

-968 I ♡ Flyheart-

IsDefined property of System.Enum, 123
IsEmpty() method of Region class, 473
IsEmpty property of Point(F) type, 469
IsEnum property of System.Type class, 351
ISerializable interface, 642, 647–650
IsInfinite() method of Region class, 473
IsInterface property of System.Type class, 351
ISite interface, 403–404
IsMDIChild property of Form class, 423
IsMDIContainer property of Form class, 423
IsNamedColor() method of Color class, 485
IsNestedPrivate property of System.Type class, 351
IsNestedPublic property of System.Type class, 351
IsNull() method of DataRow class, 754
IsNullable property of OleDbParameter class, 796
IsParent property of Menu class, 426
IsPostBack property of System.Web.UI.Page type, 855
IsPrimitive property of System.Type class, 351
IsSealed property of System.Type class, 351
IsSecureConnection property of HttpRequest class, 858
IsStyleAvailable() method of FontFamily class, 489
ISupportErrorInfo interface, 671, 714
IsValueType property of System.Type class, 351
IsVisibleClipEmpty property of Graphics class, 480
ItemArray property of DataRow class, 754, 756–757
Items property of DomainUpDown control, 584
iteration constructs in C#, 88–91
do/while loop, 90–91
foreach/in loop, 90
for loop, 89
while loop, 90–91
Iterations project, 92
ITypeInfo interface, 714
IUnknown interface, 671, 714

J
jagged array, 111–112
Java, 3
vs. C# programming language, 7
JavaScript, 831
JET engine, 793
JIT (just-in-time) compiler, 15
"Jitter," 15

C# and the .NET Platform Index

-969 I ♡ Flyheart-

Join() method of Thread class, 335
jovadoc utility, 275
JScript, 831
JScript.NET, 8, 297
Just-In-Time Debugging, 190
just-in-time (JIT) compiler, 15
JustInTimeActivationAttribute class of System.EnterpriseServices namespace, 734

K
key pair for shared name, 315
keyboard events, responding to, 415–416
KeyCode property of KeyEventArgs type, 416
KeyData property of KeyEventArgs type, 416
KeyEventArgs type, properties, 416
Keys property of HttpApplicationState class, 861
KeyUp event, capturing, 415–416
KnownColor enumeration in System.Drawing namespace, 468

L
LargeChange property of TrackBar control, 575
LastAccessTime property of FileSystemInfo class, 608
LastWriteTime property of FileSystemInfo class, 608
late binding, 144, 364
to coclass, 680–682
reflection and, 362–365
LateBinding project, 365
LayoutMDI() method of Form class, 423
leading value for font, 491
Left property
of Control class, 405
of Rectangle(f) type, 471
legacy system, .NET framework interaction with, 661
Length() method of System.Array class, 112
Length property
of FileInfo class, 616
of Stream class, 621
in System.String class, 115
library statement, 719–720
LinearGradientBrush class, 500, 515–517
LinearGradientMode enumeration, 501
LineCap enumeration, 501, 507–509
LineJoin property of Pen class, 504
LineSpacing enumeration of Text class, 495

C# and the .NET Platform Index

-970 I ♡ Flyheart-

LinkLabel class in Windows.Forms, 387
<list> tag (XML), 276
ListAllTypes() method, 358–359
ListBox class in Windows.Forms, 387
ListBoxes, 567–573
in HTML GUI, 827
properties, 569
WebForm controls, 870
listening to incoming events, 267–270
Load event of System.Web.UI.Page type, 855
Load() method
of AppDomain namespace, 332
of Assembly class, 356, 357–358
of System.Reflection.Assembly class, 311–312
LocalBuilder type, 366
lock keyword (C#), 345–346
Log member in EventLog class, 461
logical view of assembly, 288–289
logs
displaying, 462
in Event Viewer, 460
Loosely Coupled Events event model, 732

M
machine.config file, 328
MachineName property
in EventLog class, 461
of EventLogEntry class, 463
"magic numbers," 121
Main() method, 54
variations, 54–55
main window, building by hand, 389–391
MainMenu class in Windows.Forms, 387, 427–428
GetForm() method of, 429
MaintainState property of Control class, 868
MakeEmpty() method of Region class, 473
MakeInfinite() method of Region class, 473
"Managed C++," 8
"managed code," 8, 661
managed heap, retaining object in, 191–192
managed providers for DataSets, 743, 786–787
OleDB, 787–797
connecting to Access database, 793

C# and the .NET Platform Index

-971 I ♡ Flyheart-

connection using OleDbConnection, 788–790
executing stored procedure, 794–795
OleDBDataReader, 791–793
specifying parameters using OleDbParameter, 795–797
SQL command, 790–791
manifest, 10, 14, 286–287
CarLibrary, 301–304
identity of private assembly in, 309
[.manifestres] tag, 304
MappingType enumeration, 752
MarshalByRefObject class in Form class derivation, 403
master constructor, fowarding calls to, 62
MaxDate property of MonthCalendar control, 579
MaxDropDownItems property of ComboBox control, 571
MaxGeneration property in System.GC class, 196
MaximizeBox property of Form class, 423
Maximum property
of NumericUpDown control, 584
of TrackBar control, 575
MaxLength property
of ComboBox control, 571
of TextBoxBase class, 553
MaxSelectionCount property of MonthCalendar control, 579
MaxValue property of DateTime class, 582
MC++ (C++ with managed extensions), 297
MDIChildActive event of Form class, 424
MdiListItem property of Menu class, 426
measurement unit, alternative to default, 482
MeasureString() method of Graphics class, 479
member initialization, 62
MemberInfo in System.Reflection namespace, 357
members, 20
of class, enumerating, 359–360
MemberwiseClone() method in System.Object class, 72, 222
memory leaks, 59–60
memory management, 191–192
MemoryStream class, 607, 622–624
Menu class in Windows.Forms, 387, 425
Menu property of Form class, 423
MenuItem class in Windows.Forms, 387
members, 434
MenuItemCollection class, 426
MenuItems property of Menu class, 426
Menu$MenuItemCollection class, 426–427, 428

C# and the .NET Platform Index

-972 I ♡ Flyheart-

menus
adding top-level item, 430–431
building system, 427–437
details, 434–437
displaying selection prompts in status bar, 444–446
Form class to build, 425–427
pop-up, 431–434
Merge() method of DataSet class, 774
MergedMenu property of Form class, 423
MergeMenu() method of Menu class, 426
MergeOrder property of MenuItem class, 434
MergeType property of MenuItem class, 434
Message property
of EventLogEntry class, 463
of System.Exception class, 180, 185
MessageBox class, 295
Show() method of, 398–399
MessageBox() function (Win32), 664
MessageName property of WebServiceAttribute class, 898
<META> tag (HTML), 819
metadata, 6
in assemblies, 9, 14
ILDasm.exe display of, 306
ILDasm.exe to view, 32–33
in manifest, 305
role of, 13–15
Method property of System.MulticastDelegate class, 254
method visibililty, 138
MethodBuilder type, 366
MethodInfo class in System.Reflection namespace, 357
Invoke() method, 363
methods, 133, 134
abstract, 171–175
defining custom, 96–98
access modifiers, 96–98
hiding, 175–177
parameter modifiers, 104–108
static and instance, 99–103
variable creation within, 85–86
MethodsAndParams project, 108
metrics for fonts, 491
MFC (Microsoft Foundation Classes), 2
Microsoft Intermediate Language (MSIL), 8, 10–13
benefits, 13

C# and the .NET Platform Index

-973 I ♡ Flyheart-

compiling to platform-specific instructions, 15
Microsoft Internet Information Server, 815–816
virtual directories, 816–817
Microsoft Management Console snap-in, Event Viewer, 460–464
Microsoft Message Queue (MSMQ), 732
Microsoft operating systems, Internet-aware features in, 4
Microsoft SQL Server, 768, 801
Microsoft Transaction Server (MTS), 731
Microsoft.Win32 namespace, Registry manipulation types, 456
midl.exe compiler, 13
Millisecond property of DateTime class, 582
MinDate property of MonthCalendar control, 579
MinimizedBox property of Form class, 423
Minimum property
of NumericUpDown control, 584
of TrackBar control, 575
MinimumCapacity property of DataTable class, 758
Minute property of DateTime class, 582
MinValue property of DateTime class, 582
MinWIdth property of StatusBarClass class, 440
modal dialog box, 595
modeless dialog box, 596
Modified property of TextBoxBase class, 553
ModifierKeys property of Control class, 405
Modifiers property of KeyEventArgs type, 416
[.module extern] tag, 304
Module in System.Reflection namespace, 357
[.module] tag, 304
ModuleBuilder type, 366
modules, 10, 287
attributes, 381
option to build, 36
Monitor type (System.Threading), 334
Month property of DateTime class, 582
MonthCalendar control, 578–581
MonthlyBoldedDates property of MonthCalendar control, 579
MoreControlBehaviors project, 420
mouse
determining button click, 413–414
dragging mode, 520
testing for click events, 520
mouse events, responding to, 411–415
MouseButtons property of Control class, 405
MouseDown event, handler for, 522

C# and the .NET Platform Index

-974 I ♡ Flyheart-

MouseEventArgs type, properties, 412
MouseMove event
capturing, 412–413
handler for, 522
MouseUp event, handler for, 523
MoveTo() method
of DirectoryInfo class, 609
of FileInfo class, 616
mscoree.dll, 16, 17
mscorlib.dll, 16
automatic reference to, 37
MSIL (Microsoft Intermediate Language), 8, 10–13
benefits, 13
compiling to platform-specific instructions, 15
MSMQ (Microsoft Message Queue), 732
MTS (Microsoft Transaction Server), 731
multicast delegates, 258–260
multidimensional arrays in C#, 110–112
multifile assemblies, 10, 287–288
Multiline property of TextBoxBase class, 553
multiple inheritance, 159
MultiTableDataSet project, 813
multithreading, 328–330
namespace to provide types enabling, 334
MultiThreadSharedData project, 345
mutators
to enforce encapsulation, 146–147
methods, 150
Mutex type (System.Threading), 334
MyAppDomain project, 333
MyDerivedForm project, 603
MyDirectoryApp project, 615
MyRawWindow project, 391

N
N-tier applications, 741
Name property
of Color class, 485
of FileInfo class, 616
of FileSystemInfo class, 608
of RegistryKey class, 457
of Thread class, 335, 337
name/value pairs in query string for ASP page, 837

C# and the .NET Platform Index

-975 I ♡ Flyheart-

names
avoiding clash from interfaces with identical methods, 213
of configuration files, 311
for threads, 337–338
namespace keyword, 127
namespaces, 23–24. See also ADO.NET
accessing programmatically, 26–27
defining aliases, 131
defining custom, 127–132
dumping information to file, 31–32
GDI+, 465–466
GUI (graphical user interfaces), 385–386
increasing nomenclature, 28–40
nested, 131–132
in .NET, 15, 24–27
referencing, 38
resolving name clashes across, 129–131
System.Collections, 229–234
types defined in, 24
Web services, 889–890
Namespaces project, 132
navigating between related tables, 779–783
nested classes, 166–167
nested delegates, 252–253
nested namespaces, 131–132
Nested project, 167
.NET assemblies, 286–292
.NET-aware programming languages, 8
.NET base class libraries, 6
.NET binaries, 9–10
extending types defined within, 177
investigating contents, 356
.NET framework
binary reuse, 283
building blocks, 6
features, 5–6
interaction with legacy systems, 661
interoperability support, 662
COM, 668–671
object persistence, 637–638
potential, 13
version policies, 321–322
.NET garbage collector, 60
.NET libraries, learning more about, 28

C# and the .NET Platform Index

-976 I ♡ Flyheart-

.NET philosophy, current state of affairs, 1–5

.NET resource format, 531–532

.NET runtime libraries, predefined exceptions, 181–182

.NET SDK
C Sharp compiler inclusion, 34
WinDes.exe, 386–387
.NET to COM mapping issues, 724–727
.NET types
assignment of public or internal visibility, 139–140
registering, 717
NetToComIssuesServer project, 727
new keyword, 57
to hide method, 176–177
for object allocation, 191
and Type class, 350
New Project dialog box, 40, 298
NewLine property of TextWriter class, 626
NewRow() method of DataTable class, 753
NonSerialized attribute, 375
Now property of DateTime class, 582
numbers, formatting in C#, 65
numerical casts, 179
numerical version identifier, 303
NumericUpDown control, properties, 584

O
ObjComp project, 229
ObjCompWithOps project, 248
ObjeClone project, 223
Object Browser utility, 48, 50
Object class, 71–78. See also System.Object class
core members, 72
overriding default behaviors, 74–77
object graphs, 638–639
object instances, static data sharing, 101
_Object interface, 718–719
object-oriented language, 2
object pooling, COM+ support for, 732
Object system type, 79
ObjectIDGenerator class in System.Runtime.Serialization namespace, 643
ObjectManager class in System.Runtime.Serialization namespace, 643
objects
attributes as, 374

C# and the .NET Platform Index

-977 I ♡ Flyheart-

bidirectional communications, 237, 250–262
classes vs., 57
cloneable, 222–223
comparable, 224–229
configuring for serialization, 639–643
creating, 57–60. See also constructors
exceptions as, 179–180
finalizing reference, 192–194
lifetime, 191–192
persistence in .NET framework, 637–638
ObjEnum project, 221
Offset() method of Point(F) type, 469
OLE/COM object viewer, 674
to view type, 720–721
OleDB managed provider, 787–797
connecting to Access database, 793
connection using OleDbConnection, 788–790
executing stored procedure, 794–795
OleDBDataReader, 791–793
specifying parameters using OleDbParameter, 795–797
SQL command, 790–791
OleDbCommand class, 788, 790–791
OleDbConnection class, 788
members, 790
OleDbDataAdapter class, 788, 797–801
core members, 798
OleDbDataReader class, 788, 791–793
OleDbDataReader project, 793
OleDbError class, 788
OleDbErrorCollection class, 788
OleDbException class, 788
OleDbParameter class, 788
to specify parameters, 795–797
OleDbParameterCollection class, 788
OLERequired() method of Application class, 397
Oleview.exe, 33
OnDragDrop() method of Control class, 418
OnDragEnter() method of Control class, 418
OnDragLeave() method of Control class, 418
OnDragOver() method of Control class, 418
OnMouseMove() method overriding, 414–415
OnMouseUp() method, 412
overriding, 414–415
OnPaint() method

C# and the .NET Platform Index

-978 I ♡ Flyheart-

of Control class, 417, 418
overriding, 474
iteration by, 477
OnResize() method of Form class, 423
OnTick() method of Timer object, 443
Opacity property of Control class, 417, 418–419
Open() method
of FileInfo class, 616, 617–619
of OleDbConnection class, 790
OpenRead() method of FileInfo class, 616, 619
OpenRemoteBaseKey() method of RegistryKey class, 457
OpenSubKey() method of RegistryKey class, 457
OpenText() method
of File class, 629
of FileInfo class, 616
OpenWrite() method of FileInfo class, 616, 619
operating system, Environment class to expose details, 103
-= operator, for detaching from incoming events, 267–270
operator keyword, 242
operator+ method, 243
operator- method, 243
operators
comparison, 247–248
equality, 245–246
overloading, 240–249
valid, 249
Ordinal property of DataColumn class, 747
Orientation property of TrackBar control, 575
out parameter modifier, 104, 105
OutAttribute class, 663
outer class in "has-a" relationship, 142
output
specifying file type, 35–36
with System.Console class, 62–63
Output property of HttpResponse class, 859
OutputStream property of HttpResponse class, 859
overloading operators, 240–249
equality, 245–246
OverLoadOps project, 247
override keyword, 168, 169
overrides keyword (VB.NET), 300
OwnerDraw property of MenuItem class, 434

C# and the .NET Platform Index

-979 I ♡ Flyheart-

P
<P> tag (HTML), 821
packages in Java, 3
PadLeft() method (System.String), 115
PadRight() method (System.String), 115
Page class of System.Web.UI namespace, 854–855
Application property, 860–861
Request property, 857–858
Response property, 857–858
Session property, 861–862
Page property of Control class, 868
PageScale property of Graphics class, 480
PageUnit property of Graphics class, 480, 482
Paint event of Control class, 418
basics, 420
paint handlers, rendering GDI+objects outside, 476–478
PaintEventArgs class, 420
extracting Graphics object from parameter, 474
Palette property of Image class, 518
Panel controls, 585–586
Panels property of StatusBar class, 440
<param> tag (XML), 276
ParameterInfo in System.Reflection namespace, 357
ParameterName property of OleDbParameter class, 796
parameters
enumerating for methods, 360–362
interfaces as, 209–210
parameters of methods, modifying, 104–108
Parameters property of OleDbCommand class, 791
<paramref> tag (XML), 276
params parameter modifier, 104, 106–108
Params property of HttpRequest class, 858
parent class, 163
Parent property
of Control class, 405
of DirectoryInfo class, 609
ParentColumns property of DataRelation class, 779
ParentForm property of ContainerControl class, 422
ParentKeyConstraint property of DataRelation class, 779
ParentRelations property of DataTable class, 758
ParentTable property of DataRelation class, 779
parsing query string, 837
password, converting keystrokes for, 556

C# and the .NET Platform Index

-980 I ♡ Flyheart-

Password field in HTML GUI, 827
PasswordChar property of TextBox class, 554
PathData class, 500
PathGradientBrush class, 500
PDC (Professional Developers Conference), 8
PE (portable executable), 286
Peek() method of TextReader class, 628, 629
PeekChar() method of BinaryReader class, 634
pen caps in System.Drawing.Drawing2D namespace, 507–509
Pen class of System.Drawing namespace, 467
PenAlignment enumeration, 501
PenApp project, 507
PenCapApp project, 509
Pens class of System.Drawing namespace, 467
pens in System.Drawing.Drawing2D namespace, 502–507
properties, 503–504
PenType enumeration, 501
PenType property of Pen class, 504
performance, thread programming and, 342
<permission> tag (XML), 276
Physical Dimensions property of Image class, 518
physical view of assembly, 288–289
PictureBox class, 520–530
in Windows.Forms, 387
PictureBoxSizeMode enumeration, 521
"pillars of OOP," 140–145
encapsulation, 140, 141
inheritance, 140, 141–143
polymorphism, 140, 143–145
PInvoke service (Platform Invocation Services), 661
interaction with C DLLs, 663–668
PInvokeExample project, 668
pixel-based rendering, 481
PixelOffsetMode property of Graphics class, 480
placeholders in WriteLine() method, 64
PlatformSpy project, 103
point of origin for coordinate system, alternative to default, 482
Point(F) class of System.Drawing namespace, 467, 469–471
polymorphism, 140, 143–145
in C#, 167–177
PontF class of System.Drawing namespace, 467
pop-up menus, creating, 431–434
PopUp_Clicked() method, 433
updating, 436

C# and the .NET Platform Index

-981 I ♡ Flyheart-

PopUpMenu project, 437
portable executable (PE), 286
Position property of Stream class, 621
POST method for HTML form data, 836, 905–907
responding to, 840–841
Precision property of OleDbParameter class, 796
predefined attributes, 374
preferences of users, saving, 456–459
PreFilterMessage() method, 401
Prepare() method of OleDbCommand class, 791
primary key
configuring DataColumn to function as, 749–750
setting, 760
primary thread
clogging, 338–340
in Win32, 329
PrimaryKey property of DataTable class, 758
PrintAllAssemblies() method, 333
PrintPreviewDialog class in Windows.Forms, 387
PrintTable() method, 800–801
Priority property of Thread class, 335
private assemblies, 289, 307–308
binding to, 311–312
identity, 309
search for, 312–313
and XML configuration files, 309–311
private constructors, 88
private data, manipulating, 146
private keyword, 96–97
PrivateFontCollection enumeration of Text class, 495
probing, 308–312
process in Win32, 328
ProcessTabKey() method of ContainerControl class, 422
ProductName property of Application class, 397
ProductVersion property of Application class, 397
ProgIdAttribute class, 663
programming
"black box," 146
language integration, 5
Project menu
| Add Class, 387
| Add Reference, 44, 295
Project Properties dialog box, 277
properties

C# and the .NET Platform Index

-982 I ♡ Flyheart-

in C#, 151–153
internal representation, 150–151
Properties window in Visual Studio.NET IDE, 43, 44
[.property] tag, 306
PropertyBuilder type, 366
PropertyCollection class, 772
PropertyInfo in System.Reflection namespace, 357
protected keyword, 96–97, 159–165
Provider property of OleDbConnection class, 790
proxy class
building using wsdl.exe, 910–913
to create RCW, 676–677
generating with VS.NET, 915–917
Proxy property of SoapHttpClientProtocol class, 912
pseudo-encapsulation, 153–155
public data, fields as, 153
public instance, defining default, 137–140
public key, and reference to assembly, 320
public keyword, 54, 96–97, 137, 138
public/private key pair, for shared name, 315
[.publickey] tag, 304
[.publickeytoken] directive, 303
[.publickeytoken] tag, 304

Q
QC (Queued Components), 732
QFE (Quick Fix Engineering) number, 322
QualityMode enumeration, 501
query string, parsing, 837
QueryString() method of ASP Request, 840
QueryString property of HttpRequest class, 858
Queue class (System.Collections), 231
Queued Components (QC), 732
Quick Fix Engineering (QFE) number, 322

R
R property of Color class, 485
RadioButtons, 562–567
in ASP.NET, 871–872
in HTML GUI, 827
RadioCheck property of MenuItem class, 434
random numbers, 98
RangeValidator WebForm control, 882

C# and the .NET Platform Index

-983 I ♡ Flyheart-

RawUrl property of HttpRequest class, 858
RCW (Runtime Callable Wrapper), 668
COM type exposure as .NET equivalents, 669
hiding low-level COM interfaces, 670–671
management of coclass reference count, 669–670
re-throwing error, 189–190
Read() method
of BinaryReader class, 634
of Stream class, 621
of TextReader class, 628
read-only fields, 153–155
static, 154–155
read-only property, 151
read/write property, 151
ReadBlock() method of TextReader class, 628
ReadByte() method of Stream class, 621
reading from text file, 628–629
ReadLine() method, 62–63
in StreamReader class, 91
of TextReader class, 628
readonly keyword, 146, 153
ReadOnly property
of DataColumn class, 747
of TextBoxBase class, 553
of UpDownBase class, 583
ReadToEnd() method of TextReader class, 628
ReadXml() method of DataSet class, 774, 784
ReadXmlSchema() method of DataSet class, 774
ReadXXX() method of BinaryReader class, 634
records in database
SqlDataAdapter class to insert, 802–805
SqlDataAdapter class to update, 805–807
Rectangle class of System.Drawing namespace, 467, 469, 471–472
RectangleF class of System.Drawing namespace, 467
rectangular array, 110–111
Redirect() method of HttpResponse class, 860
ref keyword, 347
ref parameter modifier, 104, 106
reference counting, 662
reference types, 66–70
converting between value types, 83–84
references to objects, class variables as, 57
referencing external assemblies, 27–28, 37–38
using VS.NET, 44–45

C# and the .NET Platform Index

-984 I ♡ Flyheart-

reflection, 349–350
Refresh() method of Control class, 406
regasm.exe, 717, 722
Region class of System.Drawing namespace, 468, 469, 472–473
#region directive, 394
Region property of Control class, 417
Registry class in Microsoft.Win32 namespace, 456
RegistryHive class in Microsoft.Win32 namespace, 456
RegistryKey class, 458
in Microsoft.Win32 namespace, 456
properties, 457
RegularExpressionValidator WebForm control, 882
RejectChanges() method
of DataRow class, 754
of DataSet class, 774
relational operators in C#, 93
RelationName property of DataRelation class, 779
Relations property of DataSet class, 772, 773
<remarks> tag (XML), 276
Remove() method
of MenuItemCollection class, 427
of System.MulticastDelegate class, 254, 259
of System.String class, 115
remove_ prefix methods, 264–266
RemoveMessageFilter() method of Application class, 397
rendering quality in System.Drawing.Drawing2D namespace, 500–502
RenderingHint enumeration, 501
Replace() method (System.String), 115
Request object of ASP, 839
Request property
of Page class, 857–858
of System.Web.UI.Page type, 855
RequestType property of HttpRequest class, 858
RequiredFieldValidator WebForm control, 882
ReRegisterForFinalize() method in System.GC class, 196
Reset Button in HTML GUI, 827
ResetBackColor() method of Control class, 418
ResetCursor() method of Control class, 418
ResetFont() method of Control class, 418
ResetForeColor() method of Control class, 418
Resgen.exe utility, 532
ReshowDelay property of ToolTip class, 587
Resize() event of Control class, 407
ResizeRedraw for forms, 407, 408

C# and the .NET Platform Index

-985 I ♡ Flyheart-

ResLoader project, 543
ResourceManager class, 532, 538–540
ResourceReader class, 532
resources, automatic configuration, 540–543
.resources file, 532
binding into assembly, 537
building, 536
ResourceTest project, 540
ResourceWriter class, 532
ResourceWriters, 537–538
Response object of ASP, 839
Response property
of Page class, 859–860
of System.Web.UI.Page type, 855
Resume() method of Thread class, 335
.resx file, 532
creating, 533–535
reading, 535
ResXResourceReader class, 532, 535
ResXResourceWriter class, 532
ResXWriterReader project, 537
return value, Main() method structure for, 55
<returns> tag (XML), 276
Reverse() method of System.Array, 113
rich WebForm controls, 873–877
RichTextBox class, 557
Right property
of Control class, 405
of Rectangle(f) type, 471
RightToLeft property of Control class, 417
RollbackTransaction() method of OleDbConnection class, 790
root, 191
RowError property of DataRow class, 754
RowFilter property of DataView class, 771
rows in DataTable
deleting, 762–763
updating, 766–768
Rows property of DataTable class, 758
RowState property of DataRow class, 753–756
Run() method of Application class, 389, 397
runtime, 16
assembly creation at, 365
attribute discovery at, 382–384
computation of readonly static field, 154

C# and the .NET Platform Index

-986 I ♡ Flyheart-

discovering interface support by items, 208–209
type discovery, 349–350
Runtime Callable Wrapper (RCW), 668
runtime engine, 5
responsibility, 16

S
SAFEARRAYs, 691–693, 704–706
Save() method of Image class, 518
SaveFileDialog, 656–657
saving preferences of users, 456–459
SByte system type, 79
Scale property of OleDbParameter class, 796
SCM (Service Control Manager), 713
Screen class in Windows.Forms, 387
scripting
client-side, 831–836
server-side, 838
ScrollableControl class, 420–421
ScrollAlwaysVisible property of ListBox class, 569
ScrollBar class in Windows.Forms, 387
scrollbars
for Panel control, 586
support for, 420–421
ScrollBars property of TextBox class, 554, 555
ScrollForm project, 421
sealed classes, 18, 160–161
Second property of DateTime class, 582
security context, assemblies to define, 291–292
SecurityCallContext class of System.EnterpriseServices namespace, 734
SecurityCallers class of System.EnterpriseServices namespace, 734
SecurityIdentifier class of System.EnterpriseServices namespace, 734
SecurityIdentity class of System.EnterpriseServices namespace, 734
SecurityRoleAttribute class of System.EnterpriseServices namespace, 734
<see> tag (XML), 276
<seealso> tag (XML), 276
Seek() method
of BinaryWriter class, 634
of Stream class, 621
SEH (Structured Exception Handling), 179
Select() method of DataTable class, 763
SELECT statement (SQL), 799
SelectCommand property of OleDbDataAdpater class, 798

C# and the .NET Platform Index

-987 I ♡ Flyheart-

SelectedIndex property
of ComboBox control, 571
of DomainUpDown control, 584
of ListBox class, 569
SelectedIndices property of ListBox class, 569
SelectedItem property
of ComboBox control, 571
of DomainUpDown control, 584
of ListBox class, 569
SelectedItems property of ListBox class, 569
SelectedText property
of ComboBox control, 571
of TextBoxBase class, 553
SelectionEnd property of MonthCalendar control, 579
SelectionLength property
of ComboBox control, 571
of TextBoxBase class, 553
SelectionMode property
of Calendar control, 874
of ListBox class, 569
SelectionRange property of MonthCalendar control, 579
SelectionStart property
of MonthCalendar control, 579, 580
of TextBoxBase class, 553
self-reference in C#, 136–137. See also this keyword
"separation of concerns," 61
Serializable attribute, 375
serialization, 605, 638, 919
building types, 922–923
custom, 647–650
example, 648–650, 656–658
object configuration for, 639–643
using binary formatter, 644–646
using SOAPFormatter, 646
SerializationBinder class in System.Runtime.Serialization namespace, 643
SerializationInfo class, 648
in System.Runtime.Serialization namespace, 643
Serialize() method of BinaryFormatter class, 644
Server Explorer window, 47
Server property
of System.Web.Services.WebService base class, 901
of System.Web.UI.Page type, 855
server-side scripting to build HTML page, 838
ServerName.ObjectName notation, 672

C# and the .NET Platform Index

-988 I ♡ Flyheart-

ServerVariables property of HttpRequest class, 858
Service Control Manager (SCM), 713
Session property
of Page class, 861–862
of System.Web.Services.WebService base class, 901
of System.Web.UI.Page type, 855
sessions in ASP.NET, 845–846
set method, 146–147, 150
SetBounds() method of Control class, 406
SetClientArea() method of Control class, 406
SetData() method of Thread class, 335
SetDataBinding() method, 776
SetLength() method of Stream class, 621
SetLocation() method of Control class, 406
SetPixel() method, 636
SetStyle() method of Control class, 405, 406
SetToolTip() method of ToolTip class, 587
SetValue() method
of RegistryKey class, 457
of System.Array class, 113
shallow copy, 68, 222
shared assemblies, 313–314
building, 315–318
vs. private, 307
using, 319–320
"shared name," 313, 314–318
shared resources in thread programming, 342–344
SharedAssembly project, 318
building version 2.0, 324–326
freezing current, 322–324
SharedLibUser project, 320
SharedProperty class of System.EnterpriseServices namespace, 734
SharedPropertyGroup class of System.EnterpriseServices namespace, 734
SharedPropertyGroupManager class of System.EnterpriseServices namespace, 734
shfusion.dll COM server, 314
Shift property of KeyEventArgs type, 416
Shortcut property of MenuItem class, 434
Show() method
of Control class, 406
of MessageBox class, 398–399
for modeless dialog box, 596
ShowDialog() method
of ColorDialog class, 485
of Form class, 423

C# and the .NET Platform Index

-989 I ♡ Flyheart-

for modal dialog box, 595
ShowInTaskbar property of Form class, 423
ShowPanels property of StatusBar class, 440
ShowShortcut property of MenuItem class, 434
ShowToday property of MonthCalendar control, 579
ShowTodayCircle property of MonthCalendar control, 579
ShowToolTips property of Toolbar class, 446
ShowWeekNumbers property of MonthCalendar control, 579
side-by-side execution, assemblies, 292, 325, 327
Simple Object Access Protocol (SOAP), 642, 889
SimpleFormApp project, 425
SimpleMenu project, 431
SimpleMultiThreadApp project, 341
SimpleToolBar project, 450
single file assemblies, 10, 287–288
building test, 292–296
Single system type, 79
Size property
of Image class, 518
of OleDbParameter class, 796
Size(F) class of System.Drawing namespace, 467, 469, 472
SizeMode property of PictureBox class, 521
SizingGrip property of StatusBar class, 440
Sleep() method of Thread class, 335, 340–341
SmallChange property of TrackBar control, 575
Smalltalk, 8
SmoothingMode enumeration, 500–501
SmoothingMode property of Graphics class, 480
sn.exe utility, 315–316
.snk file, creating, 316
SOAP (Simple Object Access Protocol), 642, 889
to transmit data, 908–909
SoapFormatter class, 642, 646
SoldBrush class of System.Drawing namespace, 467
solid brushes in System.Drawing.Drawing2D namespace, 509–511
SolidBrushApp project, 511
Solution Explorer window, 41–42
class view, 42
design-time template and C# code, 391, 392, 393
wizards, 42
Sort() method (System.Array), 113, 224
sort order for DataTable, 763–766
Sort property of DataView class, 771
Sorted property

C# and the .NET Platform Index

-990 I ♡ Flyheart-

of DomainUpDown control, 584
of ListBox class, 569
SortedList class (System.Collections), 231
sorting
custom static property for, 228–229
IComparer for specifying multiple orders, 227–228
source files, compiling multiple, 38–40
Source property
in EventLog class, 461
of EventLogEntry class, 463
of System.Exception class, 180
spin controls, 582–585
Splitter class in Windows.Forms, 387
SQL command
autogenerated, 807–809
building, 790–791
stored procedure for block, 794–795
SQL managed provider, 801–807
autogenerated SQL commands, 807–809
inserting new records, 802–805
System.Data.SqlTypes namespace, 802
updating existing records, 805–807
SQL scripts to build database tables, 785
SqlCommand class, 801
SqlCommandBuilder class, 807
SqlConnection class, 801
SqlDataAdapter class, 801
to insert records, 802–805
to update records, 805–807
SqlDataReader class, 801
SqlError class, 801
SqlErrors class, 801
SqlException class, 801
SqlParameter class, 801
SqlParameterCollection class, 801
Stack class (System.Collections), 231
StackTrace property of System.Exception class, 180
Start() method
of Thread class, 335
of Timer object, 443
StartCap property of Pen class, 504
StartFigure() method, 529
StartPosition property of Form class, 423, 599
StartupPath property of Application class, 397

C# and the .NET Platform Index

-991 I ♡ Flyheart-

state data, preserving integrity, 146
State property of OleDbConnection class, 790
static assemblies, 365
static constructors, 152–153
static data, defining, 100–102
static keyword, 54
static member functions, and this, 136
static members
in Environment class, 103
of System.Object class, 78
static methods, 99–103
operator keyword use with, 242
static properties, 152
static read-only fields, 154–155
StaticObjects property of HttpApplicationState class, 861
StaticTypes project, 102
status bars, 439–446
building, 441–442
displaying menu selection prompts, 444–446
StatusBar class in Windows.Forms, 387
properties, 440
StatusBar project, 446
StatusBarPanel class, properties, 440
StatusCode property of HttpResponse class, 859
StatusDescription property of HttpResponse class, 859
Stop() method of Timer object, 443
stored procedure, executing, 794–795
Stream class, 620–625
stream, object serialized to, 638
Streamer project, 625
StreamingContextStates enumeration, 649
StreamReader class, 91, 607, 625–629
StreamWriter class, 607, 625–629
StreamWriterReaderApp project, 629
String class, as sealed class, 161
String system type, 79
StringAlignment enumeration in System.Drawing namespace, 468
StringFormat class of System.Drawing namespace, 468
StringFormatFlags enumeration in System.Drawing namespace, 468
String.IndexOf() method, 90
StringReader class, 607
StringReaders, 632–633
StringReaderWriterApp project, 633
strings, 114–119

C# and the .NET Platform Index

-992 I ♡ Flyheart-

C# formatting, 63–66
C# management, 82
copies vs. changes, 117–118
escape characters, 116–117
System.Text.Stringbuilder class, 117–119
Strings project, 119
StringTrimming enumeration in System.Drawing namespace, 468
StringUnit enumeration in System.Drawing namespace, 468
StringWriter class, 607
StringWriters, 629–632
"strong name," 313, 314–318
StructLayout attribute, 375
Structured Exception Handling (SEH), 179
structures in C#, 18–19, 124–126
converting to object reference, 126–127
Structures project, 127
Style property
of ComboBox control, 571
of StatusBarClass class, 440
of ToolBarButton class, 447
styles for forms, 405–408
subclasses
creating, 157–158
inheritance and, 156
public items accessible from, 159
response to method defined by parent class, 168
subdirectories, creating with DirectoryInfo class, 612–613
SubKeyCount property of RegistryKey class, 457
Submit Button in HTML GUI, 827
<summary> tag (XML), 276
SuppressContent property of HttpResponse class, 859
SuppressFinalize() method in System.GC class, 196, 197
Suspend() method of Thread class, 335
suspending thread, 340–341
switch statement (C#), 94–95
syntax, 21–22
System namespace, 24–27
data types, 78–82
hierarchy, 80
system registry, 285
interaction with, 456–459
System.Activator class, 362–365
System.AppDomain namespace, 331–333
System.Array class, 108, 112–114, 229

C# and the .NET Platform Index

-993 I ♡ Flyheart-

Length property, 56
System.Attributes class, instances of class derived from, 376
System.Boolean data type, 82
SystemBrushes class of System.Drawing namespace, 467
System.Collections namespace, 229–234
classes, 231
interfaces, 230
System.Collections.Specialized namespace, 231
SystemColors class of System.Drawing namespace, 467
System.Console class, basic input and output with, 62–63
System.Data namespace, 744, 744–745
Common class, 744, 787
DataRelation class, 746, 776, 778–783
properties, 779
System.Data.OleDb namespace, 744
classes, 788
System.Data.SqlClient namespace, 744
core types, 801
System.Data.SqlTypes namespace, 744, 802
System.Diagnostics namespace, types, 460
System.Drawing namespace, 466
core members, 467–468
enumerations, 468
Graphics object, 478–480
overview, 466–468
utility types, 468–473
System.Drawing.Drawing2D namespace, 466, 499–517
classes, 500
enumerations, 501
gradient brushes, 515–517
hatch style brushes, 511–513
pen caps, 507–509
pens, 502–507
rendering quality, 500–502
solid brushes, 509–511
textured brushes, 513–515
System.Drawing.Font class, 488
System.Drawing.Image namespace, 517–520
System.Drawing.Imaging namespace, 466, 517
System.Drawing.Printing namespace, 466
System.Drawing.Text namespace, 466, 494–497
System.EnterpriseServices namespace, 733
types, 734
System.Enum class, 122–123

C# and the .NET Platform Index

-994 I ♡ Flyheart-

System.Exception class, 180
custom class, 183–186
System.GC class, 196–200
SystemIcons class of System.Drawing namespace, 467
System.IO namespace, 605–606, 801
binary data, 633–637
BinaryReader class, 633–637
BinaryWriter class, 633–637
core types, 607
Directory class, 606–610
DirectoryInfo class, 606–610
DirectoryNotFoundException, 609
File class, 606–610
FileInfo class, 606–610
Stream class, 620–625
StreamWriters and StreamReaders, 625–629
StringReaders, 632–633
StringWriters, 629–632
System.MulticastDelegate class, 250
members, 253–254
System.Object class, 71–78
core members, 72
Finalize() method, support for, 193
GetType() method, 350
overriding default behaviors, 74–77
static members, 78
SystemPens class of System.Drawing namespace, 467
System.Random type, 98
System.Reflection namespace, 333, 349, 355, 357, 680
Assembly class, 356–362
Load() method of, 311–312
dynamic invocation, 362–365
System.Reflection.Emit namespace, 365–366
System.Resources namespace, 532–537
binding .resources file to assembly, 537
building .resources file, 536
programmatic creation of .resx file, 533–535
programmatic reading of .resx file, 535
System.Runtime.InteropServices namespace, 662–663
members, 663
System.Runtime.Serialization namespace
core types, 643
role of, 642–643
System.Runtime.Serialization.Formatters namespace, 642

C# and the .NET Platform Index

-995 I ♡ Flyheart-

System.ServicedComponent namespace, 733
System.String class, 115
System.Text.Stringbuilder class, 117–119
System.Threading namespace, 330, 334–337
System.Threading.Interlocked namespace, 347–348
System.Threading.Monitor class, 345–346
System.Type class, 350–355
members, 351
System.ValueType, 80–81
System.Web namespace, 844
core types, 845
System.Web.Services.Description namespace, 890
System.Web.Services.Discovery namespace, 890
System.Web.Services.Protocols namespace, 890
System.Web.Services.WebService base class, 900–901
System.Web.UI namespace, 385–386
Page class, 854–855
WebControls, 864–865
WebControls.WebControl class, 868
System.Web.UI.WebControls namespace, 386
System.Windows.Forms namespace, 295, 296, 385
Application class, 396–402. See also Application class
Button class, 557–561
ColorDialog class, 485–487
ContainerControl class, 421–422
Control class, 404–420. See also Control class
first project, 387–389
main window, 389–391
Form class, 422–425
interacting with types, 386–396
Menu class, 425
overview, 386
ScrollableControl class, 420–421

T
tab order, configuration for controls 573–575
TabIndex property
of Control class, 405, 422, 573
of WebControl class, 869
Table property
of DataColumn class, 747
of DataRow class, 754
of DataView class, 771

C# and the .NET Platform Index

-996 I ♡ Flyheart-

TableName property of DataTable class, 758
Tables property of DataSet, 772, 773
TabStop property of Control class, 405, 422, 573
tags in HTML, 819
Target property of System.MulticastDelegate class, 254
Teenager application, 100
TestApp class, 35
Text area in HTML GUI, 827
Text class of System.Drawing namespace, 495
Text field in HTML GUI, 827
text files
reading from, 628–629
writing to, 626–627
text message for status bar based on menu selection, 444–446
Text property
of ComboBox control, 571
of Control class, 405
of MenuItem class, 434
of StatusBarClass class, 440
of ToolBarButton class, 447
of UpDownBase class, 583
TextAlign property
of ButtonBase class, 557, 558
of TextBox class, 554
of UpDownBase class, 583
TextBox control, 552–557
properties, 554
scrollable, multiline, 872–873
TextBoxBase class, 552
properties, 553
TextBoxes application, 557
TextChange event, 552
TextReader class, 625
core members, 628
TextRenderingHint enumeration, 502
of Text class, 495
TextRenderingHint property of Graphics class, 480
TextureBrush class of System.Drawing namespace, 467
textured brushes in System.Drawing.Drawing2D namespace, 513–515
TexturedBrushes project, 515
TextWriter class, members, 626
TheType project, 355
this keyword, 76, 136–137
forwarding constructor calls using, 136–137

C# and the .NET Platform Index

-997 I ♡ Flyheart-

this[] syntax for indexer, 239
ThousandsSeparator property of NumericUpDown control, 584
Thread class, 334–335
Thread Local Storage (TLS), 329
thread programming
clogging primary thread, 338–340
concurrency, 342–345
putting thread to sleep, 340–341
spawning secondary threads, 336–337
synchronization, 345–346
in Win32, 328–330
concurrency and thread synchronization, 330
Thread type (System.Threading), 334
ThreadExist event of Application class, 398
ThreadPool type (System.Threading), 334
threads, naming, 337–338
ThreadStart type (System.Threading), 334, 336
ThreadState property of Thread class, 335
ThreeState property of Checkbox class, 561
throw keyword, 181
throwing exception, 180–182
from custom class, 184
Tick event of Timer object, 443
TickFrequency property of TrackBar control, 575
Ticks property of DateTime class, 582
TickStyle property of TrackBar control, 575
time library importer (tlbimp.exe), 669, 676–677
time-slice, 329
TimeGenerated property of EventLogEntry class, 463
Timeout property of SoapHttpClientProtocol class, 912
Timer class in Windows.Forms, 387
Timer object in Windows.Forms, 443, 492–493
Timer type (System.Threading), 334
TimerCallback type (System.Threading), 334
TimeWritten property of EventLogEntry class, 463
<TITLE> tag (HTML), 819
tlbexp.exe, and COM library statement, 719
tlbimp.exe (time library importer), 669, 676–677
influencing, 728–730
TLS (Thread Local Storage), 329
ToArgb() method of Color class, 485
ToArray() method of MemoryStream class, 624
Today property of DateTime class, 582
TodayDate property of MonthCalendar control, 579

C# and the .NET Platform Index

-998 I ♡ Flyheart-

TodayDateSet property of MonthCalendar control, 579
ToKnownColor() method of Color class, 485
ToLongDateString() method of DateTime class, 582
ToLongTimeString() method of DateTime class, 582
ToLower() method (System.String), 115
tool bar
adding images to buttons, 449–450
associating ImageList with, 453
building, 446–450
building at design time, 451–454
mapping images to buttons, 454
ToolBar class, 387, 446–450
properties, 446
ToolBarButton class properties, 447
ToolBarButton Collection Editor, 452
ToolBar$ToolBarButtonCollection type, 446
Toolbox window (VS.NET), 437
Tools menu | Build Comment Web Pages, 279, 280
ToolTip class
of WebControl class, 869
in Windows.Forms, 387, 587–589
properties, 587
ToolTipText property
of StatusBarClass class, 440
of ToolBarButton class, 447
Top property
of Control class, 405
of Rectangle(f) type, 471
TopIndex property of ListBox class, 569
ToShortDateString() method of DateTime class, 582
ToShortTimeString() method of DateTime class, 582
ToString() method, 72, 74
overriding, 75–76, 630
ToUpper() method (System.String), 115
trace messages to debug ASP.NET application, 863
TrackBar Control, 575–578
Tracker project, 578
TransactionAttribute class of System.EnterpriseServices namespace, 734
TransactionOption property of WebServiceAttribute class, 898
Transform() method of Region class, 473
Transform property of Graphics class, 480
Translate() method of Region class, 473
TranslateTransform() method of Graphics class, 483
try/catch block

C# and the .NET Platform Index

-999 I ♡ Flyheart-

for exceptions, 182–183
for multiple exceptions, 187
Type class, 350–355
GetCustomAttributes() method, 384
GetMethod() method, 363
members, 351
obtaining instance, 350
usefulness of, 352–355
Type library
conversion, 696–697
generating, 717
importing, 676–677
type members, 20
TypeBuilder type, 366
TypeLoad Exception, 312
types in .NET, 15
assemblies to establish boundaries, 290
enumerating in referenced assembly, 358–359
typof() keyword, 350

U
UDTs (user-defined types), 18
classes as, 133
UInt32 system type, 79
UML diagrams, support for, 48
unboxing, 83–84, 126–127
Unicode characters, StreamWriter and StreamReader classes for, 625
Unified Model Language (UML), 48
uninstalling applications with private assemblies, 308
Union() method
of Rectangle(f) type, 471
of Region class, 473
Unique property of DataColumn class, 747
UniqueConstraint class, 746
unit of measurement, alternative to default, 482
Unload event of System.Web.UI.Page type, 855
Unload() method of AppDomain namespace, 332
"unmanaged code," 661
UpAndDown project, 585
Update() method of OleDbDataAdpater class, 798
UpdateColor() method of TrackBar control, 577
UpdateCommand property of OleDbDataAdpater class, 798

C# and the .NET Platform Index

-1000 I ♡ Flyheart-

UpdateRowsWithSqlAdapter project, 807
UpDownAlign property of UpDownBase class, 583
UpDownBase class, 583
Url property of SoapHttpClientProtocol class, 912
user-defined types (UDTs), 18
user input, validating, 590
user interface. See also GUI (graphical user interfaces)
in HTML form development, 827–829
User property of System.Web.Services.WebService base class, 901
UserAgent property of SoapHttpClientProtocol class, 912
UserHostAddress property of HttpRequest class, 858
UserHostName property of HttpRequest class, 858
UserName property of EventLogEntry class, 463
users, saving preferences, 456–459
using keyword (C#), 26, 53
for custom namespaces, 129
UtilTypes project, 473

V
ValAndRef project, 70
Validated property of Control class, 590, 591
ValidateWebApp project, 885
validating default.htm HTML page, 834–836
Validating property of Control class, 590, 591
validation WebForm controls, 881–885
ValidationSummary WebForm control, 882
value-based semantics, overriding Equals() method to work with, 76
value keyword, 148
Value property
of NumericUpDown control, 584
of OleDbParameter class, 796
of TrackBar control, 575
<value> tag (XML), 276
value types, 66–70
converting between reference types, 83–84
ValueCount property of RegistryKey class, 457
variables
creating within method scope, 85–86
declaring using fully qualified name, 27
VB6ATL project, 696
VBCarClient project, 301
VBDotNetClient project, 724
VBScript, 831

C# and the .NET Platform Index

-1001 I ♡ Flyheart-

[.ver] directive, 303, 304
verbatim strings, 116–117
version identifier for assembly, 291
versioning
assemblies, 291
class members, 175–177
in COM, 284–285
custom policies, 326–328
default policy, 325–326
in .NET framework, 321–322
VerticalResolution property of Image class, 518
View menu
| Other Windows | Object Browser, 48
| Tab Order, 573
view object, 768
virtual directories in IIS, 816–817
virtual keyword, 71, 168
virtual methods, abstract methods vs., 173
visibility attribute of classes, 18
visibility levels for custom types, 138–140
Visible property
of Control class, 405, 868
of ToolBarButton class, 447
VisibleClipBounds property of Graphics class, 480
Visual Basic, 2–3
vs. C# programming language, 7
COM client, 675–676, 694–696
COM server, 671–675
observing generated IDL, 674–675
COM to .NET, test client, 723–724
interface reference by, 714
Visual Basic.NET, 8
client application in, 297–299
intrinsic data types, 21
namespace list within project, 298
Visual Modeler utility, 48
Visual Studio.NET IDE, 40–51
for Active Server Page file, 837–841
AssemblyInfo.cs file, global level attributes, 382
automatic resource configuration, 540–543
to build menus, 437–439
to build tool tips, 588–589
to build Web service, 891–896
core files, 893

C# and the .NET Platform Index

-1002 I ♡ Flyheart-

methods, 894
testing, 894–896
to build Windows Forms projects, 386, 391–396
to create empty C# project, 387
database manipulation tools, 48, 50
debugging with, 46
documentation support, 279
generating proxy, 915–917
HTML editors, 823–825
HTML toolbox, 826
integrated help, 49–50, 51
languages shipping with, 8
Object Browser utility, 48, 50
outlining code, 43
project solution creation, 40–41
Properties window, 43, 395
Solution Explorer window, 41–42
Tab Order Wizard, 573–575
XML-related editing tools, 47

W
WaitCallback type (System.Threading), 334
WaitHandle type (System.Threading), 334
Web applications, 815–817. See also HTML document
architecture in ASP.NET, 852–862
.aspx/Codebehind connection, 855–857
Page.Application property, 860–861
Page.Request property, 857–858
Page.Response property, 859–860
Page.Session property, 861–862
System.Web.UI.Page class, 854–855
C#, 846–852
adding C# logic, 852
Global.asax file, 850–851
initial .aspx file, 848–850
Web.config file, 850
debugging and tracing applications, 862–864
Web browser to test Web service, 894–895
Web servers, 815–817
Web Service Description Language (WSDL), 887, 901–905
Web Service Wire protocols, 905–909
transmitting data
using HTTP GET and POST, 905–907

C# and the .NET Platform Index

-1003 I ♡ Flyheart-

using SOAP, 908–909
Web services
anatomy, 888–889
building, 891–896
.asmx.cs file, 893
testing, 894–896
building assembly, 913
building client, 914
building serializable types, 922–923
more interesting example, 917–921
namespaces overview, 889–890
role of, 887–888
System.Web.Services namespace, 890
WebService base class, 900–901
WebMethodAttribute class, 896–901
Web.config file, 850
WebForm controls, 825
benefits, 864–865
categories, 869–885
datacentric controls, 878–881
intrinsic controls, 869–873
rich controls, 873–877
validation controls, 881–885
derivation, 868
handling control events, 885
working with, 865–869
WebMethodAttribute class, 890, 896–901
WebService type, 890
WebServiceAttribute type, 890
WebServiceBindingAttribute type, 890
while loop (C#), 90–91
Width property
of Control class, 405
of Image class, 518
of Pen class, 504
of Rectangle(f) type, 471
of StatusBarClass class, 440
of WebControl class, 869
wildcard for compiler, asterisk (*) as, 38
Win32 thread programming, 328–330
WinCV Desktop application, 33–34
WinDes.exe (Windows Forms Designer), 386–387, 388
Windows API
callback functions, 250

C# and the .NET Platform Index

-1004 I ♡ Flyheart-

error code definition, 179
Windows Form application, 454–456
car logger, 651–658
windows, Form object to represent, 389
Windows Forms Designer (WinDes.exe), 386–387, 388
Windows operating system, 2
Windows.Forms namespace. See System.Windows.Forms namespace
WindowState property of Form class, 423
WinFormsCalcClient project, 917
WinMain() function, 286
WordWrap property of TextBoxBase class, 553
Wrap property of DomainUpDown control, 584
Wrapable property of Toolbar class, 446
Write() method
of BinaryWriter class, 634
of HttpResponse class, 860
of Stream class, 621
of TextWriter class, 626
write-only property, 151
WriteByte() method of Stream class, 621
WriteEntry() method in EventLog class, 461
WriteFile() method of HttpResponse class, 860
WriteLine() method, 54, 62–63, 626
WriteTo() method of MemoryStream class, 624
WriteXml() method of DataSet class, 774
WriteXML() method of DataSet class, 783
WriteXmlSchema() method of DataSet class, 774
writing to text files, 626–627
WSDL (Web Service Description Language), 887, 901–905
generating proxy, 909–913
using wsdl.exe, 910–913
with VS.NET, 915–917

X
X property
of MouseEventArgs type, 412
of Rectangle(f) type, 471
XML
for application configuration file, 326
configuring column representation, 752
editing tools, 47
format characters, 279
processing source code comments into, 36

C# and the .NET Platform Index

-1005 I ♡ Flyheart-

stock tags, 276
viewing generated, 278, 280
for Web service, 889. See also WSDL (Web Service Description Language)
XML-based documentation, 275–277
XML configuration files, private assemblies and, 309–311
XmlDocCar project, 279
XmlInclude attribute in System.Xml.Serialization namespace, 918
Xor() method of Region class, 473

Y
Y property
of MouseEventArgs type, 412
of Rectangle(f) type, 471
Year property of DateTime class, 582

C# and the .NET Platform List Of Figures

-1006 I ♡ Flyheart-

List of Figures
Chapter 1: The Philosophy of .NET

Figure 1-1: A sampling of the functionality provided by the base class libraries
Figure 1-2: All .NET-aware compilers emit IL instructions and metadata.
Figure 1-3: mscoree.dll in action
Figure 1-4: The Base Class Libraries
Figure 1-5: Your new best friend, ILDasm.exe
Figure 1-6: Viewing the underlying IL
Figure 1-7: Dumping namespace information to file
Figure 1-8: Dumping IL to file
Figure 1-9: Viewing type metadata with ILDasm.exe
Figure 1-10: Viewing types using the ClassViewer Web Application
Figure 1-11: Working with WinCV.exe
Figure 1-12: The TestApp class
Figure 1-13: The TestApp in action
Figure 1-14: The updated TestApp.cs file
Figure 1-15: Your first Windows Forms application
Figure 1-16: The HelloMessage class type
Figure 1-17: The updated TestApp.cs file
Figure 1-18: Creating a new VS.NET C# Console Application
Figure 1-19: The Solution Explorer
Figure 1-20: Class View
Figure 1-21: A small sampling of integrated wizards
Figure 1-22: File names may be changed using the Properties Window
Figure 1-23: Class names may also be changed using the Properties Window.
Figure 1-24: Code blocks may be collapsed to conserve screen real estate.
Figure 1-25: The expected IntelliSense
Figure 1-26: Referencing external assemblies using VS.NET
Figure 1-27: Setting breakpoints
Figure 1-28: The Server Explorer Window
Figure 1-29: The integrated XML editor
Figure 1-30: Integrated UML tools
Figure 1-31: The integrated Object Browser
Figure 1-32: Integrated database editors
Figure 1-33: Integrated Help
Figure 1-34: Remember, F1 is your friend.

Chapter 2: C# Language Fundamentals
Figure 2-1: Supplying and processing command line arguments
Figure 2-2: Simple constructor logic
Figure 2-3: Basic IO using System.Console
Figure 2-4: Simple format strings
Figure 2-5: More complex format strings

C# and the .NET Platform List Of Figures

-1007 I ♡ Flyheart-

Figure 2-6: Assigning one value type to another results in a bitwise copy.
Figure 2-7: Assigning reference types to another results in a shallow copy.
Figure 2-8: Working with select Object methods
Figure 2-9: The result of value based equality testing
Figure 2-10: The hierarchy of System types
Figure 2-11: Exercising some system data types
Figure 2-12: Bad boxing
Figure 2-13: All types have a safe default value.
Figure 2-14: Iteration logic
Figure 2-15: They grow up so quickly...
Figure 2-16: Random complaints
Figure 2-17: Static data is shared among all like objects
Figure 2-18: Basic environment variables
Figure 2-19: Params keyword in action
Figure 2-20: A rectangular array
Figure 2-21: A jagged array
Figure 2-22: Fun with System.Array
Figure 2-23: Fun with System.String
Figure 2-24: Fun with System.Enum
Figure 2-25: Fun with structures
Figure 2-26: Ambiguous reference

Chapter 3: Object-Oriented Programming with C#
Figure 3-1: A simple class definition
Figure 3-2: Internal and public types
Figure 3-3: The "is-a" relationship
Figure 3-4: The "has-a" relationship
Figure 3-5: Classical polymorphism
Figure 3-6: Ad hoc polymorphism
Figure 3-7: The value of "value" when EmpID = 81
Figure 3-8: Properties map to hidden get_ and set_ methods
Figure 3-9: The employee hierarchy
Figure 3-10: The extended employee hierarchy
Figure 3-11: Our contained Radio in action
Figure 3-12: The current employee hierarchy does not implement polymorphism
Figure 3-13: A better bonus system (thanks to polymorphism)
Figure 3-14: Our current shapes hierarchy
Figure 3-15: Virtual methods do not have to be overridden
Figure 3-16: Better! Abstract methods must be overridden
Figure 3-17: Versioning the Draw() method
Figure 3-18: Dealing with the error using structured exception handling
Figure 3-19: Catching the custom exception
Figure 3-20: Unhandled exceptions can be a real drag...
Figure 3-21: Valid (i.e., rooted) references point to a location on the managed heap
Figure 3-22: Objects that support a C# destructor are placed onto the finalization queue

C# and the .NET Platform List Of Figures

-1008 I ♡ Flyheart-

Figure 3-23: Interacting with the garbage collector

Chapter 4: Interfaces and Collections
Figure 4-1: The updated Shapes hierarchy
Figure 4-2: Bad cast
Figure 4-3: Discovering behaviors at runtime
Figure 4-4: Discovering all IDraw3D compatible types
Figure 4-5: Simple interface hierarchy
Figure 4-6: Using the SuperImage
Figure 4-7: Sorting Car types by numerical ID
Figure 4-8: Duplicate numerical IDs are listed by order of occurrence
Figure 4-9: Sorting alphabetically by pet name
Figure 4-10: The System.Collections interface hierarchy
Figure 4-11: The updated Cars container

Chapter 5: Advanced C# Class Construction Techniques
Figure 5-1: Accessing cars using an indexer
Figure 5-2: Overloaded operators at work
Figure 5-3: C# delegates represent a class deriving from MulticastDelegate.
Figure 5-4: Nesting the delegate
Figure 5-5: Delegate output, take one
Figure 5-6: Delegate output, take two
Figure 5-7: Delegating to instance methods
Figure 5-8: Events under the hood
Figure 5-9: Handling your Car's event set
Figure 5-10: Working with multiple event handlers
Figure 5-11: Interfaces as an event protocol
Figure 5-12: Activating the Project Properties dialog
Figure 5-13: The Visual Studio.NET XML viewer
Figure 5-14: Configuration of your HTML-based documentation
Figure 5-15: The generated XmlCarDoc online documentation

Chapter 6: Assemblies, Threads, and AppDomains
Figure 6-1: A single file assembly
Figure 6-2: A multifile assembly
Figure 6-3: Physically, an assembly is a collection of modules
Figure 6-4: Logically, an assembly is a collection of types
Figure 6-5: Logical view of the physical System.Drawing.dll assembly
Figure 6-6: Selecting a Class Library project workspace
Figure 6-7: Referencing external assemblies
Figure 6-8: Local copies of referenced assemblies are placed in your Debug folder
Figure 6-9: Selecting a VB.NET Windows Application project
Figure 6-10: A painfully simply UI
Figure 6-11: Cross language inheritance
Figure 6-12: Your car library

C# and the .NET Platform List Of Figures

-1009 I ♡ Flyheart-

Figure 6-13: The CarLibrary manifest
Figure 6-14: IL for the TurboBoost() method
Figure 6-15: IL for the currSpeed field
Figure 6-16: IL for the CurrSpeed property
Figure 6-17: Type metadata
Figure 6-18: Can you say "XCopy installation?"
Figure 6-19: Relocating your assembly
Figure 6-20: *.config files must have the same name as the launching application
Figure 6-21: Searching for a private assembly
Figure 6-22: The Global Assembly Cache (GAC)
Figure 6-23: Key matching
Figure 6-24: Creating a *.snk file
Figure 6-25: The *.snk file, up close and personal
Figure 6-26: The AssemblyInfo.cs file
Figure 6-27: The markings of a shared assembly
Figure 6-28: Installing your assembly into the GAC
Figure 6-29: Manipulating the local copy
Figure 6-30: Strange indeed
Figure 6-31: Anatomy of an assembly version number
Figure 6-32: Preserving version 1.0.0.0
Figure 6-33: Back in the GAC
Figure 6-34: Side-by-side execution
Figure 6-35: Activating version 2.0.0.0
Figure 6-36: Activating version 1.0.0.0
Figure 6-37: A traditional Win32 process
Figure 6-38: A process can contain one or more AppDomains. Each AppDomain can
contain one or more threads
Figure 6-39: Investigating loaded assemblies
Figure 6-40: Thread hash codes
Figure 6-41: Named threads
Figure 6-42: Two active threads
Figure 6-43: Two active threads (one sleeping on the job)
Figure 6-44: Bad output...dueling threads
Figure 6-45: More bad output...dueling threads
Figure 6-46: Even more bad output...dueling threads
Figure 6-47: Harmonious threads

Chapter 7: Type Reflection and Attribute-Based Programming
Figure 7-1: Reflecting on Foo
Figure 7-2: The MiniVan type under the microscope
Figure 7-3: Parameter information
Figure 7-4: Late binding
Figure 7-5: Late binding with parameters
Figure 7-6: Calling members of the dynamically created assembly
Figure 7-7: Hello dynamic assembly

C# and the .NET Platform List Of Figures

-1010 I ♡ Flyheart-

Figure 7-8: COM IDL as seen in Visual Basic 6.0
Figure 7-9: Attributes are represented by metadata
Figure 7-10: Your custom message
Figure 7-11: The internal representation of our custom attribute
Figure 7-12: Restricted attribute usage
Figure 7-13: Non-CLS compliant types result in compiler errors when you set the
CLSCompilant attribute
Figure 7-14: Reflecting on your custom attribute

Chapter 8: Building a Better Window (Introducing Windows

Forms)
Figure 8-1: The WinDes.exe utility
Figure 8-2: Inserting a new C# class
Figure 8-3: You must reference the System.Windows.Forms.dll assembly
Figure 8-4: A basic Form
Figure 8-5: Selecting a Windows Application workspace
Figure 8-6: The design-time template
Figure 8-7: Activating the code behind the form
Figure 8-8: The VS.NET IDE Property window
Figure 8-9: Extracting information using the Application type
Figure 8-10: Filtering messages
Figure 8-11: The derivation of the Form type
Figure 8-12: ResizeRedraw is a bit off
Figure 8-13: ResizeRedraw is correct
Figure 8-14: The Bounds property
Figure 8-15: The Top, Left, Height, and Width properties
Figure 8-16: Capturing MouseUp events
Figure 8-17: Which mouse button was clicked
Figure 8-18: Which key was pressed?
Figure 8-19: Painting with the Opacity property
Figure 8-20: Auto scrolling
Figure 8-21: A simple menu system
Figure 8-22: The Windows.Form's menu hierarchy
Figure 8-23: Extending our menu system
Figure 8-24: Checking menu items
Figure 8-25: Adding menus at design time
Figure 8-26: Building menus at design time
Figure 8-27: Responding to menu events at design time
Figure 8-28: Your simple status bar
Figure 8-29: A very simple ToolBar
Figure 8-30: A more interesting ToolBar
Figure 8-31: Adding ToolBar buttons at design time
Figure 8-32: Configuring Button types at design time
Figure 8-33: Adding an ImageList

C# and the .NET Platform List Of Figures

-1011 I ♡ Flyheart-

Figure 8-34: Adding Images to your ImageList
Figure 8-35: Associating an ImageList to a ToolBar
Figure 8-36: Mapping images to buttons
Figure 8-37: Saving application data to HKCU
Figure 8-38: The Win2000 Event Viewer
Figure 8-39: Our custom application log
Figure 8-40: Our message
Figure 8-41: The final product

Chapter 9: A Better Painting Framework (GDI+)
Figure 9-1: Working with basic utility types
Figure 9-2: A basic GDI+ application
Figure 9-3: The default coordinate system
Figure 9-4: Pixel-based rendering
Figure 9-5: Inch-based rendering
Figure 9-6: The coordinate test application
Figure 9-7: The canned Color dialog
Figure 9-8: Reading ARGB values
Figure 9-9: Font matrix
Figure 9-10: The anatomy of a Font
Figure 9-11: The menu system of the Font App
Figure 9-12: Enumerating all installed fonts
Figure 9-13: Displaying all installed fonts
Figure 9-14: The canned Font Dialog
Figure 9-15: Extracting data from the Font dialog
Figure 9-16: Working with pen types
Figure 9-17: Working with dash styles
Figure 9-18: Pen caps
Figure 9-19: Working with Brush types
Figure 9-20: Hatch Styles
Figure 9-21: Bitmap brushes
Figure 9-22: Gradient brushes
Figure 9-23: Rendering images
Figure 9-24: Dragging, dropping, and hit-testing images
Figure 9-25: A true test of skill
Figure 9-26: Highlighting images
Figure 9-27: Highlighting oddball shapes
Figure 9-28: Standalone external resources
Figure 9-29: The simple UI
Figure 9-30: The XML representation of your external resources
Figure 9-31: Extracting the name/value pair
Figure 9-32: The binary *resources file
Figure 9-33: The updated manifest
Figure 9-34: Extracting resources with the ResourceManager
Figure 9-35: Viewing the freebee *resx file

C# and the .NET Platform List Of Figures

-1012 I ♡ Flyheart-

Figure 9-36: Configuring the Build Action for the *resx file
Figure 9-37: Before loading happy dude
Figure 9-38: After loading happy dude

Chapter 10: Programming with Windows Form Controls
Figure 10-1: The Windows Forms control hierarchy
Figure 10-2: Form Controls
Figure 10-3: Investigating contained Controls
Figure 10-4: Configuring Controls at design time
Figure 10-5: Building event handlers at design time
Figure 10-6: Building event handlers at design time
Figure 10-7: Extracting data from the TextBox
Figure 10-8: Masking capabilities of the TextBox
Figure 10-9: ContentAlignment in action
Figure 10-10: Grouped RadioButtons
Figure 10-11: The CheckedListBox type
Figure 10-12: A multiline CheckedListBox
Figure 10-13: The ListBox type
Figure 10-14: The ComboBox type
Figure 10-15: Configuring tab properties
Figure 10-16: The TabOrder Wizard
Figure 10-17: TrackBars
Figure 10-18: The MonthCalendar Control
Figure 10-19: Multiple date selection
Figure 10-20: Spin Controls
Figure 10-21: The Scrollable Panel type containing other widgets
Figure 10-22: Tool tip
Figure 10-23: Adding ToolTip types at design time
Figure 10-24: Associating a ToolTip with a widget
Figure 10-25: The ErrorProvider
Figure 10-26: Anchoring behaviors
Figure 10-27: Docking and anchoring behaviors
Figure 10-28: Launching your dialog box
Figure 10-29: The simple dialog box
Figure 10-30: Using dialog box data
Figure 10-31: Prepping the dialog box
Figure 10-32: The derived Form supports a topmost menu

Chapter 11: Input, Output, and Object Serialization
Figure 11-1: The System.IO namespace
Figure 11-2: The File- and Directory-centric types
Figure 11-3: D:\WinNT directory information
Figure 11-4: Bitmap file information
Figure 11-5: Creating subdirectories
Figure 11-6: Working with the static members of a directory

C# and the .NET Platform List Of Figures

-1013 I ♡ Flyheart-

Figure 11-7: Programmatically creating a physical file
Figure 11-8: Stream-derived types
Figure 11-9: The binary dump
Figure 11-10: Readers and writers
Figure 11-11: The contents of your *.txt file
Figure 11-12: Reading from a file
Figure 11-13: Dumping the StringWriter
Figure 11-14: Manipulating the StringBuilder
Figure 11-15: Binary readers and writers
Figure 11-16: A binary read/write session
Figure 11-17: The unmodified image
Figure 11-18: The modified image
Figure 11-19: A simple object graph
Figure 11-20: The Serializable and NonSerialized attributes
Figure 11-21: The serialization process
Figure 11-22: JamesBondCar serialized using a BinaryFormatter
Figure 11-23: JamesBondCar serialized using a SoapFormatter
Figure 11-24: Custom serialization
Figure 11-25: The car logger application
Figure 11-26: The Add a Car dialog box
Figure 11-27: The Standard File Save dialog box

Chapter 12: Interacting with Unmanaged Code
Figure 12-1: RCW functions as proxies to the coclass
Figure 12-2: Building a VB COM server
Figure 12-3: The COM type's ProgID
Figure 12-4: Stopping VB GUID generation
Figure 12-5: Hunting down the coclass using the OLE/COM object viewer
Figure 12-6: Setting a reference to the COM server
Figure 12-7: The painfully simple GUI
Figure 12-8: Types in the generated assembly
Figure 12-9: Managed code must reference the generated assembly.
Figure 12-10: Referencing COM types using VS.NET
Figure 12-11: The ImportedFromTypeLib attribute marks the path to the COM server.
Figure 12-12: GuidAttribute contains the GUID for various COM items.
Figure 12-13: Verifying the GUID
Figure 12-14: Interrogating your COM type
Figure 12-15: Naming your new ATL coclass
Figure 12-16: Adding support for COM errors and COM events
Figure 12-17: Defining parameters using IDL attributes
Figure 12-18: Populating the [source] interface
Figure 12-19: The VB 6.0 COM client
Figure 12-20: The managed ATL CoCar
Figure 12-21: The managed IParams interface
Figure 12-22: Derived interfaces support all members of the base interface(s).

C# and the .NET Platform List Of Figures

-1014 I ♡ Flyheart-

Figure 12-23: Managed classes do not directly define interface members
Figure 12-24: The intervening type
Figure 12-25: Iterating over your SAFEARRAY
Figure 12-26: COM events mapped to a pair of functions
Figure 12-27: C# code interacting with ATL code
Figure 12-28: COM types talk to .NET types using a CCW.
Figure 12-29: All registered assemblies gain membership to the .NET category.
Figure 12-30: Interfaces implemented by the CCW
Figure 12-31: The registered ProgID
Figure 12-32: The registered CLSID
Figure 12-33: InprocServer32 points to the .NET execution engine
Figure 12-34: The value of the assembly entry
Figure 12-35: Interacting with COM registration
Figure 12-36: Install COM+ aware assemblies in the GAC
Figure 12-37: The famed COM+ aspirin icon
Figure 12-38: The configured component

Chapter 13: Data Access with ADO.NET
Figure 13-1: Clients interacting with managed providers
Figure 13-2: The System.Data.dll assembly
Figure 13-3: Select properties of the DataColumn
Figure 13-4: An autoincremented column
Figure 13-5: Changes in row states
Figure 13-6: Using the ItemArray property
Figure 13-7: Collections of the DataTable
Figure 13-8: The Inventory DataTable
Figure 13-9: Binding the DataTable to a DataGrid
Figure 13-10: Removing rows from a DataTable
Figure 13-11: Specifying a filter
Figure 13-12: Filtered data
Figure 13-13: Specifying a range of data
Figure 13-14: Ordered data
Figure 13-15: Editing rows in a DataGrid
Figure 13-16: The Inventory DataTable
Figure 13-17: Creating multiple views for the Inventory table
Figure 13-18: Collections of the DataSet
Figure 13-19: The In-Memory Automobile database
Figure 13-20: Navigating data relations
Figure 13-21: Navigating parent/child relations
Figure 13-22: The DataSet as XML
Figure 13-23: The final in-memory DataSet application
Figure 13-24: The SQL Server Cars database
Figure 13-25: The OleDbDataReader in action
Figure 13-26: Triggering the stored procedure
Figure 13-27: The OleDbDataAdpter in action

C# and the .NET Platform List Of Figures

-1015 I ♡ Flyheart-

Figure 13-28: The InsertCommand Property in action
Figure 13-29: Updating existing rows
Figure 13-30: Extending the DataSet with new DataRows
Figure 13-31: A multitable DataSet on display

Chapter 14: Web Development and ASP.NET
Figure 14-1: The IIS applet
Figure 14-2: Creating a virtual directory
Figure 14-3: Your new virtual directory
Figure 14-4: The <TITLE> tag in action
Figure 14-5: Untagged textual information omits line breaks
Figure 14-6: The <P> tag begins a new paragraph
Figure 14-7: The
 tag simply starts a new line
Figure 14-8: Bold and italic text
Figure 14-9: Working with HTML header tags
Figure 14-10: Visual editing of an HTML document begins here
Figure 14-11: Design time modifications are recorded as HTML
Figure 14-12: The HTML formatting toolbar
Figure 14-13: The HTML controls
Figure 14-14: Setting a widget's value
Figure 14-15: An extremely boring Web page
Figure 14-16: A slightly more interesting Web page
Figure 14-17: A new HTML page
Figure 14-18: Capturing HTML widget events
Figure 14-19: IE alert
Figure 14-20: Inserting a classic ASP file
Figure 14-21: The dynamically generated HTML
Figure 14-22: The QueryString() method can only proceess information submitted using
HTTP GET
Figure 14-23: POSTed data can be processed using Request.Form
Figure 14-24: Submitting data to an ASP page using HTTP GET and POST
Figure 14-25: An ASP.NET application
Figure 14-26: Application and session state
Figure 14-27: Creating your initial ASP.NET application
Figure 14-28: Your design time template
Figure 14-29: Initial files of an ASP.NET application
Figure 14-30: The new (automatically created) virtual directory
Figure 14-31: The physical file containing your project files
Figure 14-32: The web.config file allows you to adjust the core behavior of your Web
application using XML tags
Figure 14-33: Documenting who's who
Figure 14-34: Establishing break points
Figure 14-35: Enabling trace information
Figure 14-36: Logging custom trace messages
Figure 14-37: The Web controls

C# and the .NET Platform List Of Figures

-1016 I ♡ Flyheart-

Figure 14-38: Like Windows Forms Controls, Web Form Controls are configured using
the Property window
Figure 14-39: Base classes of a Web Control
Figure 14-40: Building a ListBox
Figure 14-41: Building a set of related radio buttons
Figure 14-42: A multiline TextBox
Figure 14-43: The Calendar Web control emits complex HTML
Figure 14-44: The client-side Calendar UI
Figure 14-45: One possible ad
Figure 14-46: Another possible ad
Figure 14-47: Filling a Web Forms DataGrid using a data adapter
Figure 14-48: Binding data to common Web Form Controls
Figure 14-49: A simple Web UI
Figure 14-50: Configuring data validation
Figure 14-51: The RequiredFieldValidator in action
Figure 14-52: Server-side event handling

Chapter 15: Building (and Understanding) Web Services
Figure 15-1: Creating a Web service project workspace
Figure 15-2: Web services are installed under the care of IIS
Figure 15-3: Initial project files
Figure 15-4: IE provides a quick way to test your Web services
Figure 15-5: IE allows you to invoke a Web method with specific parameters
Figure 15-6: The end result
Figure 15-7: The end result of setting the WebMethod.Description property
Figure 15-8: The WebServiceAttribute describes the nature of your creation
Figure 15-9: This link allows you to view the underlying WSDL
Figure 15-10: The raw WSDL
Figure 15-11: Each Web method has a GET, POST, and SOAP pair
Figure 15-12: Subtracting numbers ala HTTP GET
Figure 15-13: Note the query string
Figure 15-14: Bindings
Figure 15-15: Your proxy, wrapped in a .NET assembly
Figure 15-16: A console Web service consumer
Figure 15-17: Adding a Web reference automatically generates the proxy file
Figure 15-18: The Add Reference dialog box allows you to view Web methods and the
raw WSDL
Figure 15-19: The Web References node
Figure 15-20: Obtaining a DataSet from the Car Web service
Figure 15-21: Grabbing a car from the ArrayList
Figure 15-22: The *.disco file provides discovery services
Figure 15-23: A single Web service project may contain multiple Web classes
Figure 15-24: *.disco files describe all Web services under a given virtual directory

C# and the .NET Platform List Of Tables

-1017 I ♡ Flyheart-

List of Tables
Chapter 1: The Philosophy of .NET

Table 1-1: .NET Class Characteristics
Table 1-2: The Intrinsic CTS Data Types
Table 1-3: A Sampling of .NET Namespaces
Table 1-4: ILDasm.exe Tree View Icons
Table 1-5: Output Options of the C# Compiler

Chapter 2: C# Language Fundamentals
Table 2-1: C# Format Characters
Table 2-2: Value Types and Reference Types Side by Side
Table 2-3: Core Members of System.Object
Table 2-4: System Types and C# Aliases
Table 2-5: C# Relational and Equality Operators
Table 2-6: C# Conditional Operators
Table 2-7: The Full Set of C# Operators
Table 2-8: C# Accessibility Keywords
Table 2-9: C# Parameter Modifiers
Table 2-10: Select Members of System.Array
Table 2-11: Select Members of System.String
Table 2-12: String Escape Characters

Chapter 3: Object-Oriented Programming with C#
Table 3-1: Core Members of the System.Exception Type
Table 3-2: Select Members of the System.GC Type

Chapter 4: Interfaces and Collections
Table 4-1: CompareTo() Return Values
Table 4-2: Interfaces of System.Collections
Table 4-3: Classes of System.Collections

Chapter 5: Advanced C# Class Construction Techniques
Table 5-1: Valid Overloadable Operators
Table 5-2: Select Inherited Members
Table 5-3: Stock XML Tags
Table 5-4: XML Format Characters

Chapter 6: Assemblies, Threads, and AppDomains
Table 6-1: Manifest IL Tags
Table 6-2: Select Members of AppDomain
Table 6-3: Select Types of the System.Treading Namespace
Table 6-4: Static Members of the Thread Type
Table 6-5: Object Methods of the Thread Type

C# and the .NET Platform List Of Tables

-1018 I ♡ Flyheart-

Chapter 7: Type Reflection and Attribute-Based Programming
Table 7-1: Members of the Type Class
Table 7-2: Select Members of System.Reflection
Table 7-3: Select Members of System.Reflection.Emit
Table 7-4: Values of the AssemblyBuilderAccess Enumeration
Table 7-5: A Tiny Sampling of Predefined Attributes
Table 7-6: Select Assembly -Level Attributes

Chapter 8: Building a Better Window (Introducing Windows

Forms)
Table 8-1: Core Windows Form Types
Table 8-2: Core Methods of the Application Type
Table 8-3: Core Properties of the Application Type
Table 8-4: Events of the Application Type
Table 8-5: Core Properties of the Control Type
Table 8-6: Core Methods of the Control Type
Table 8-7: Core Events of the Control Type
Table 8-8: Properties of the MouseEventArgs type
Table 8-9: Properties of the KeyEventArgs Type
Table 8-10: Additional Control Properties
Table 8-11: Additional Control Methods
Table 8-12: Additional Control Properties
Table 8-13: Members of the ContainerControl Type
Table 8-14: Properties of the Form Type
Table 8-15: Methods of the Form Type
Table 8-16: Select Events of the Form Type
Table 8-17: Members of the Menu Type
Table 8-18: The Nested MenuItemCollection Type
Table 8-19: More Details of the MenuItem Type
Table 8-20: Select StatusBar Properties
Table 8-21: Properties of the StatusBarPanel Type
Table 8-22: The Timer Type
Table 8-23: Properties of the ToolBar Type
Table 8-24: Properties of the ToolBarButton Type
Table 8-25: Registry Manipulation Types
Table 8-26: Properties of the RegistryKey Type
Table 8-27: Types of the System.Diagnostics Namespace
Table 8-28: Members of the EventLog Type
Table 8-29: The EventLogEntry Type

Chapter 9: A Better Painting Framework (GDI+)
Table 9-1: The Core GDI+ Namespaces
Table 9-2: Core Members of the System.Drawing Namespace

C# and the .NET Platform List Of Tables

-1019 I ♡ Flyheart-

Table 9-3: Enumerations in the System.Drawing Namespace
Table 9-4: Members of the Point(F) Types
Table 9-5: Members of the Rectangle(F) Types
Table 9-6: Members of the Size(F) Types
Table 9-7: Members of the Region Class
Table 9-8: Members of the Graphics Class
Table 9-9: Stateful Properties of the Graphics Class
Table 9-10: The GraphicsUnit enumeration
Table 9-11: Members of the Color Type
Table 9-12: The FontStyle Enumeration
Table 9-13: Members of the FontFamily Type
Table 9-14: The Text Type
Table 9-15: The Classes of System.Drawing.Drawing2D
Table 9-16: The Enumerations of System.Drawing.Drawing2D
Table 9-17: Possible Smoothing Values
Table 9-18: Drawing Members of the Graphics Class
Table 9-19: Pen Properties
Table 9-20: Dash Styles
Table 9-21: LineCap Values
Table 9-22: Fill Methods of the Graphics Type
Table 9-23: Hatch Styles
Table 9-24: LinearGradientMode Enumeration
Table 9-25: Members of the Image Type
Table 9-26: The PictureBoxSizeMode Enumeration
Table 9-27: Add-Centric Methods of the GraphicsPath Class
Table 9-28: Members of the System.Resources Namespace

Chapter 10: Programming with Windows Form Controls
Table 10-1: Nested ControlCollection Properties
Table 10-2: TextBoxBase Properties
Table 10-3: TextBox Properties
Table 10-4: HorizontalAlignment Values
Table 10-5: ButtonBase Properties
Table 10-6: FlatStyle Values
Table 10-7: ContentAlignment Values
Table 10-8: CheckBox Properties
Table 10-9: CheckState Values
Table 10-10: ListBox Properties
Table 10-11: ComboBox Properties
Table 10-12: ComboBox Styles
Table 10-13: TrackBar Properties
Table 10-14: MonthCalendar properties
Table 10-15: DateTime Members
Table 10-16: UpDownBase Properties
Table 10-17: DomainUpDown Properties

C# and the .NET Platform List Of Tables

-1020 I ♡ Flyheart-

Table 10-18: NumericUpDown Properties
Table 10-19: ToolTip Properties
Table 10-20: Control Properties
Table 10-21: ErrorBlinkStyle Properties
Table 10-22: FormBorderStyle Properties
Table 10-23: AnchorStyles Values
Table 10-24: DockStyle Values
Table 10-25: DialogResult Values

Chapter 11: Input, Output, and Object Serialization
Table 11-1: System.IO Namespace Core Types
Table 11-2: FileSystemInfo Properties
Table 11-3: Directory Members
Table 11-4: Select FileAttributes Values
Table 11-5: FileInfo Core Members
Table 11-6: FileMode Enumeration Values
Table 11-7: FileAccess Enumeration Values
Table 11-8: FileShare Enumeration Values
Table 11-9: Abstract Stream Members
Table 11-10: MemoryStream Core Members
Table 11-11: System.IO Namespace Core Types
Table 11-12: TextReader Core Members
Table 11-13: BinaryWriter Core Members
Table 11-14: BinaryReader Core Members
Table 11-15: System.Runtime.Serialization Namespace Core Types
Table 11-16: BinaryFormatter Members
Table 11-17: StreamingContextStates Enumeration Members
Table 11-18: The CarLogApp Menu System

Chapter 12: Interacting with Unmanaged Code
Table 12-1: Select Members of the System.Runtime.InteropServices Namespace
Table 12-2: Fields of the DllImportAttribute Type
Table 12-3: CharSet Values
Table 12-4: Mapping Intrinsic COM Types to .NET Types
Table 12-5: Hidden COM Interfaces
Table 12-6: COM Interface Types
Table 12-7: Mapping IDL Parameter Attributes to C# Keywords
Table 12-8: COM Event Helper Types
Table 12-9: The CCW supports numerous core COM interfaces.
Table 12-10: Values of the ClassInterfaceType Enumeration
Table 12-11: Select Types of the System.EnterpriseServices Namespace

Chapter 13: Data Access with ADO.NET
Table 13-1: ADO.NET Namespaces
Table 13-2: Types of the System.Data Namespace

C# and the .NET Platform List Of Tables

-1021 I ♡ Flyheart-

Table 13-3: Properties of the DataColumn
Table 13-4: Values of the MappingType enumeration
Table 13-5: Members of the DataRow
Table 13-6: Values of the DataRowState Enumeration
Table 13-7: Properties of the DataTable
Table 13-8: Members of the DataView Type
Table 13-9: Properties of the Mighty DataSet
Table 13-10: Methods of the Mighty DataSet
Table 13-11: Properties of the DataRelation Type
Table 13-12: Types of the System.Data.OleDb Namespace
Table 13-13: Core OLE DB providers
Table 13-14: Members of the OleDbConnection Type
Table 13-15: Members of the OleDbCommand Type
Table 13-16: Values of the CommandType Enumeration
Table 13-17: Members of the OleDbParameter Type
Table 13-18: Core Members of the OleDbDataAdapter
Table 13-19: Core Types of the System.Data.SqlClient Namespace
Table 13-20: Types of the System.Data.SqlTypes Namespace

Chapter 14: Web Development and ASP.NET
Table 14-1: Common HTML GUI Types
Table 14-2: ASP.NET Namespaces
Table 14-3: Core Types of the System.Web Namespace
Table 14-4: Properties of the Page Type
Table 14-5: Events of the Page Type
Table 14-6: Members of the HttpRequest Type
Table 14-7: Properties of the HttpResponse Type
Table 14-8: Methods of the HttpResponse Type
Table 14-9: Properties of the HttpApplicationState Type
Table 14-10: Properties of the Control Base Class
Table 14-11: Properties of the Control Base Class
Table 14-12: A Sampling of Intrinsic Web Controls
Table 14-13: Rich WebControl Widgets
Table 14-14: Web Form Data Controls
Table 14-15: Validation Controls

Chapter 15: Building (and Understanding) Web Services
Table 15-1: Web Service Namespaces
Table 15-2: Members of the System.Web.Services Namespace
Table 15-3: Core Files of a VS.NET Web Service Project
Table 15-4: The WebServiceAttribute
Table 15-5: Core Properties of the WebService Base Type
Table 15-6: Web Service Wire Protocols
Table 15-7: Supported POST and GET Data Types
Table 15-8: SOAP Types

C# and the .NET Platform List Of Tables

-1022 I ♡ Flyheart-

Table 15-9: Various Flags of the wsdl.exe Utility
Table 15-10: Core Inherited Properties

