
for RuBoard

Chapter 1. Introduction: The Need for ASP.NET

IN THIS CHAPTER

•

• Problems with ASP Today
•
•

• Introducing ASP.NET
•

Before delving into the particulars of developing with C#, it will be useful to overview ASP.NET. This chapter
summarizes ASP.NET's features, including some insight into how they represent improvements over ASP.old.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Problems with ASP Today

When Active Server Pages (ASP) was first introduced almost five years ago, it was seen as an answer to the
awkward techniques used at that time for creating dynamic content on the Web. At the time Common Gateway
Interface programs or proprietary server plug-ins were the way that most of the Web's dynamic content was created.
With the release of ASP 1.0, Microsoft changed all that. ASP 1.0 provided a flexible robust scripting architecture
that enabled developers to rapidly create dynamic Web applications. Developers could write in VBScript or JScript
and Microsoft provided a number of services to make development easy. At the time, it was just what developers
needed. As Web development matured several shortcomings of the platform became evident, and persist until today.

Separation of Code and Design

As the Web grew in popularity in the early 90s, developers experienced three distinct waves of development
paradigms. In the first wave, Web developers created static HTML documents and linked them together. This was
the era of the "brochure" Web site and was more about looks than anything else. The second wave brought the
concept of dynamic content to the fore. Developers started creating registration forms and various small pieces of
functionality and adding them into existing Web sites. The third wave was when the first and second waves came
together. Web sites were being designed from the ground up to be interactive; they were treated more like an
application and less like a magazine with a subscription card in it. In most instances this type of interactive page
design created a development paradigm that went like so:

•

• Designers created page mockups in HTML.
•
•

• Developers added code to the pages.
•
•

• When designers needed to change their design, they copied and pasted the existing code into the new page,
butchering it and destroying its functionality.

•

The severity of this problem typically depended on the size of the site, the smarts of the designers, and the techniques
that developers used to guard against this mangling.

With the release of Visual Studio 6 in September 1998, it was clear that Microsoft recognized this burgeoning
problem and attempted to resolve it with a new feature in Visual Basic 6, Web Classes. Web Classes made an
attempt to separate the design of a page from the code that interacted with it. It enabled this separation by using an
HTML template and providing a facility for doing tag replacement in the template. There were a number of problems
with Web Classes. Although a great idea, they suffered from two main issues. First, the Web Classes were
implemented entirely in Visual Basic, which required traditional ASP developers to shift their thinking patterns for
creating applications. Second, Microsoft had scalability issues related to the threading models of ASP and Visual
Basic. Because of the previously stated reasons and many other smaller ones, Web Classes never really gained any

This document is created with the unregistered version of CHM2PDF Pilot

traction among developers.

Scripting Language Based

When ASP 1.0 was first released, the fact that all development was done using scripting languages was a big plus. It
meant that developers didn't have to go through a painful restart/compile process that they might have been
accustomed to with CGI or ISAPI style applications. As applications grew larger, numbers of users increased and
developers were using ASP for increasingly difficult problems. The fact that all code was interpreted became a
potential performance bottleneck. When using VBScript there was limited support for error handling. Many
developers sidestepped this issue by moving code into compiled COM objects. While this move solved some of the
performance problems it created new ones in deployment and scalability.

State Management

One of the most frustrating aspects that new Web developers faced early was dealing with the stateless nature of
Web development. With ASP 1.0, Microsoft introduced the concept of a Session object, which was designed to
make associating state with a particular user easy. This addition was arguably one of the most compelling features of
ASP 1.0. Scalability and reliability started to become important as developers began creating larger applications. To
address this need, developers started deploying their applications to Web farms. Web farms use multiple servers and
spread the request for pages across them somewhat equally. This makes for a great scalability story unless the
developer is using that cool Session object. This object is specific to a particular machine in a Web farm and will not
work if a user gets bounced to another server. So, an application that was deployed to a Web farm could not use the
Session object.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Introducing ASP.NET

ASP.NET is Microsoft's answer to the aforementioned problems and many others that were not explicitly stated. It is
a fundamental rewrite of ASP that has been in process for more than two years. The ASP team took a close look at
the problems facing Web developers and created a brand new platform in the spirit of traditional ASP to solve those
problems. Having used ASP.NET for a considerable amount of time, we can conclusively say they hit a home run
with this release.

Platform Architecture

ASP.old was an Internet Server Application Programming Interface (ISAPI) filter that was written specifically to
interact with Internet Information Server (IIS). It was monolithic in nature and relied very little on external services.

NOTE

Note: In the IIS 5.0 time frame, ASP did use Microsoft Transaction Server (MTS) as an external service.

ASP.NET is still an ISAPI filter. However, unlike ASP.old, ASP.NET relies on a large number of "external"
services—the .NET framework. ASP.NET and the .NET framework are so tightly coupled that it is difficult to
consider the .NET framework as an external service. However, since it is accessible from applications outside the
scope of ASP.NET, it should be considered an "external" service. As it turns out, this is a huge win for the ASP.NET
developer. No longer must the developer write everything from scratch. Instead, the .NET framework provides a
large library of prewritten functionality.

The .NET framework redistributable consists of three main parts: the Common Language Runtime, the .NET
framework base classes, and ASP.NET.

Common Language Runtime

The Common Language Runtime (CLR) is the execution engine for .NET framework applications. However, despite
the common misconception, it is not an interpreter. .NET applications are fully compiled applications that use the
CLR to provide a number of services at execution. These services include:

•

• Code management (loading and execution)
•
•

• Application memory isolation
•

This document is created with the unregistered version of CHM2PDF Pilot

•

• Verification of type safety
•
•

• Conversion of IL to native code
•
•

• Access to metadata
•
•

• Garbage collection
•
•

• Enforcement of code access security
•
•

• Exception handling
•
•

• Interoperability
•
•

• Automation of object layout
•
•

• Support for debugging and profiling
•

The CLR is a platform that abstracts functionality from the operating system. In this sense, code written to target the
CLR is "platform independent" provided that there is an implementation of the CLR on the destination platform.

Managed Execution

The CLR isn't just a library or framework of functions that an executing program can call upon. It interacts with
running code on a number of levels. The loader provided by the CLR performs validation, security checks, and a
number of other tasks each time a piece of code is loaded. Memory allocation and access are also controlled by the
CLR. When you hear about "Managed Execution," this is what folks are speaking about: the interaction between the
CLR and the executing code to produce reliable applications.

Cross-Language Interoperability

This document is created with the unregistered version of CHM2PDF Pilot

One of the most frustrating things with current COM- or API-based development practices are that interfaces are
usually written with a particular language consumer in mind. When writing a component to be consumed by a Visual
Basic program, a developer will typically create the interfaces in a different fashion than if the component were
intended to be consumed by a C++ program. This means that to reach both audiences, the developer must either use
a least common denominator approach to developing the interface or must develop an interface for each consumer.
This is clearly not the most productive way to write components. A second problem that most developers merely
accept as normal today is that most components need to be written in a single language. If you create a component in
C++ that exposes an employee object, you can't then inherit from that object in Visual Basic to create a Developer
object. This means that typically a single language is chosen for most development projects to enable reuse.

.NET changes all this. Cross-language interoperability was built in from the start. All .NET languages must adhere to
the Common Language Specification (CLS) that specifies the base level of functionality that each language must
implement to play well with others. The CLS is written in such a way that each language can keep its unique flavor
but still operate correctly with other languages within the CLR. The CLS includes a number of data types that all
conforming languages must support. This restriction works to eliminate a common problem for developers: creating
an interface that utilizes data types that another language doesn't support. It also supports both Binary as well as
Source code inheritance, enabling the developer to create an Employee object in C# and inherit from it in Visual
Basic.

What this means to you as a developer is that code reuse has become much simpler. As long as the code was written
for .NET, you don't need to worry what language it was written in. In fact, the choice of language becomes more of a
lifestyle choice instead of a capability choice. All languages in .NET are theoretically created equal, so you gain no
performance or functionality benefit by using Visual Basic instead of C#. Use the language in which you are the most
productive.

New Features in ASP.NET

Up to this point all the features mentioned are gained due to the hosting of ASP.NET on top of the .NET framework.
However, these features are just the tip of the iceberg. As I mentioned previously, ASP.NET is a total rewrite, with
significant features aside from the intrinsic .NET ones. We are going to give you an overview of the new features in
ASP.NET while showing how these features address the problems of separation of code and design, scripting
languages, and state management.

Web Forms

Web forms are Microsoft's attempt to solve the problem of the separation of code and design. ASP.NET now offers
a code-behind model reminiscent of the forms designer in Visual Basic. This means that you can now place your
code in a separate file and still interact with the page. This separation is done by providing a new event-driven model
on top of page execution, as well as providing an object model on top of the HTML in the page. Instead of a
top-to-bottom linear execution model, events are raised during the execution of a page. Your code sinks those events
and responds to them by interacting with the object model that sits on top of the HTML.

This quite neatly solves the issue of designers modifying the HTML and breaking code.

In addition to the new execution model, Microsoft has also created a new server-side control model. Unlike the lame
Design Time Controls in Visual Interdev, these new models are incredibly useful encapsulations of common display

This document is created with the unregistered version of CHM2PDF Pilot

paradigms. They do not introduce any browser dependencies and they run on the server, not the client. In the few
cases where they emit browser-dependent code, they sniff the browser and degrade gracefully. More information on
Web forms can be found in Chapter 2, "Page Framework."

Web Services

As we move beyond the first and second generations of Web applications, it has become apparent that the paradigm
of the Web can be extended to solve problems that predate it. In the past, businesses exchanged information using
Electronic Data Interchange (EDI) over Value Added Networks (VANs). This worked well enough, but the cost of
gaining access to a VAN as well as the complexity of implementing various industry-specific EDI protocols excluded
all but the largest companies from participating in the exchange of information.

Web services are a way to transfer the same types of information over the Internet (instead of expensive VANs)
using industry-standard protocols such as HTTP, XML, and TCP/IP. Web services are now so easy to create in
.NET that individuals or businesses of any size should be able to play in this space. Web services aren't limited to
replacing traditional EDI protocols. They open up many opportunities that EDI has never made inroads into. Jump
ahead to Chapter 6, "Web Services," for more information.

Data Access

When ASP 1.0 first shipped, the data access story at Microsoft was in a state of flux. At the time, Remote Data
Objects (RDO) was the technology of choice for Visual Basic developers. ActiveX Data Objects (ADO) was
introduced with the shipment of Visual Basic 5.0 in February 1997. It was intended to be a new data access model
for all types of data and was paired with another new technology, OLE DB.

While ADO was great for what it was designed for—connected data access—it fell short in the disconnected arena.
Features were added in successive versions to allow it to work in a disconnected fashion. ADO 1.0 had no support
for XML. ADO 1.0 could not predict the success of XML as a data description language when it was shipped, and
XML support was cobbled onto later versions. Neither of these features were designed in from the beginning.

ADO.NET is a new data access technology taking advantage of all the things Microsoft learned with ADO, RDO,
OLEDB, ODBC, and other preceding data access implementations. It was designed from the beginning to be
coupled very tightly to XML and work effectively in a disconnected fashion. For more information see Chapter 11,
"Creating Database Applications with ADO.NET."

Deployment

One of the perennial arguments among ASP developers was how much code to migrate into COM objects. Some
writers advocated all code living in COM objects and ASP should only contain a single-method call to invoke the
COM object. While this might have been great in theory, it eliminated one of the biggest strengths of ASP: the
capability to rapidly create an application and make changes on-the-fly. With all the logic and HTML tied up in
COM objects, a simple HTML tag change meant recompiling and redeploying the COM objects. The biggest
problem in our minds lies with using this approach. COM objects are Dynamic Link Libraries (DLL) that are
dynamically loaded by IIS. While loaded they cannot be replaced. To deploy a COM object the developer needed
to shut down IIS, shut down the MTS packages the COM object lived in, replace it, and then restart IIS. This
summary is actually a simplification of the process, but you can see the problems this technique brings to the fore.

This document is created with the unregistered version of CHM2PDF Pilot

Each time a new version is deployed, the Web server must go down! The downtime this technique causes can be
handled by creating Web farms and doing rolling upgrades; however, in a large Web farm this means a simple change
can take literally hours to deploy as the new objects are rolled out.

With the code-behind model inherent in ASP.NET, this situation could have been exacerbated. Instead, Microsoft
vastly simplified the deployment model. Comp-onents, now called assemblies, no longer require registration on a
machine for deployment. Assemblies are the .NET equivalent of a COM object. They are self describing and contain
a manifest which contains metadata about the assembly. The metadata includes things like the version, the assemblies
it depends on, and potentially, its security identity.

Deployment is as easy as copying the assemblies into a /bin directory in the application root. ASP.NET will notice
that a new version has been copied over and unload the old version and load the new version! Deployment becomes
as simple as an XCOPY /S or a recursive FTP to upload the new files to the Web server. For more information see
Chapter 5, "Configuration and Deployment."

Configuration

In the past, all configuration information for ASP was stored as part of the IIS metabase. This was a binary file
analogous to the registry that held all settings for IIS and ASP. The only ways to effect changes were to use the
Internet Services Manager or to write scripts that utilized the Active Directory Services Interfaces (ADSI) to
automate the changes. This process made it very difficult to synchronize the settings of multiple servers in a Web farm.

ASP.NET introduces a new paradigm for all settings. Instead of being stored in the opaque metabase, they are now
stored as a hierarchical set of XML configuration files. These files live in the application root and subdirectories. So,
now as a developer uses XCOPY to deploy source files, the settings are also deployed! No need to write a bunch of
configuration scripts anymore. For more information see Chapter 5.

State Management

State management has been vastly improved in ASP.NET. Now, three options exist for maintaining state on the
server. The classic ASP 3.0 method of in-memory state on a single server still exists. In addition, an out-of-process
state server and a durable state option is stored in SQL Server.

The other limitation of state services in ASP.old was the reliance on cookies for connecting a user back up to their
state. ASP.NET introduces a new option for cookieless state that performs URL munging to connect a user to state
information. For more information see Chapter 4, "State Management and Caching."

Caching

The reason most developers use ASP is to lend a dynamic nature to the Web. This could mean accessing backend
databases for data or perhaps pulling it in from nontraditional backends. The problem with this dynamic content is
that while one can easily scale the Web tier using a scale-out methodology of multiple Web servers, this scaling is not
as easily done in the data tier. Scale-out approaches for databases are just beginning to appear. Until these
approaches are perfected, how can Web developers scale applications?

This document is created with the unregistered version of CHM2PDF Pilot

For data that changes infrequently, caching is a great solution. ASP.NET offers two forms of caching. Output caching
takes an entire page and stores the executed results in memory for later delivery. Data caching takes items that were
expensive to create, such as DataSets, and caches them on the server side. For more information see Chapter 4.

Debugging

Debugging ASP applications has always been difficult. While remote debugging solutions were offered in previous
versions of Visual Studio, precious few developers were able to get them to work consistently. Consequently, most
debugging consisted of Response.Write statements littered throughout code or some type of logging mechanism that
the developer created.

ASP.NET not only improves remote debugging and makes it consistent, it also offers a new Trace facility that is great
for handling the types of things that logging or Response.Write were used for in the past. For more information see
Chapter 3, "Debugging ASP.NET Applications."

Availability

Anybody that currently has a site on the Web knows that availability is key. If your site is down, a visitor can turn to
a million others. Problem is, they might not come back!

ASP.NET has introduced a number of process controls that are aimed directly at improving availability. Now the
ASP.NET process can restart automatically based on things such as memory utilization, time up, or even number of
requests handled, which helps cope with situations where ASP used to get jammed up. For more information see
Chapter 5.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 2. Page Framework

IN THIS CHAPTER

•

• ASP.NET's Control Model
•
•

• Separating Presentation from Code Using Code Behind
•
•

• Programming HTML Controls
•
•

• Attributes of the Page Object
•
•

• Creating User Interfaces with Web Controls
•
•

• Server Controls and Page Object Reference
•

Programming an ASP.NET application is significantly different than programming in ASP.old. The difference can be
likened to the change that occurred when moving from QuickBasic programming to Visual Basic programming.

The changes in ASP.NET can be broken down into three categories: the control model, the event model, and the
separation of code from presentation.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

ASP.NET's Control Model

In QuickBasic, your code dealt with the screen as a long piece of paper to which you sent output. You may have
used screen libraries that encapsulated a lot of this functionality and made it a much higher-level operation with better
positioning.

With the advent of Visual Basic, you moved into a world of reusable controls. You designed your UI by dragging
and dropping controls onto a design surface instead of outputting text to the screen or drawing polygons.

These controls were objects that had methods and properties that were used to customize their display and
functionality. ASP.old was in many ways similar to QuickBasic. The entire page is essentially treated as a long piece
of paper onto which your code placed content. No object model gives you access to the HTML that surrounds your
code—just a way for you to output additional HTML based on the location of your code.

ASP.NET changes this by introducing the concept of server controls. If you used Visual Interdev to create ASP.old
Web applications, you may be thinking, "Great! They just renamed those onerous design-time controls!" This is not
the case. Server controls are not design-time controls in another guise. Nor do server controls require any particular
type of client—in other words, server controls aren't ActiveX Controls or client-side behaviors. Server controls are a
high-level abstraction of functionality utilized during page execution to place user-interface elements onto the page.

Let's take a look at this. Listing 2.1 shows the HTML for a traditional ASP.old form.

Listing 2.1 A Simple ASP.old Page, SimplePage.asp

<html>
<head>
 <title>SimplePage.asp</title>
</head>

<body>
 <form name="WebForm1" method="post">
 <p>
 <table border=0>
 <tr>
 <td>Name:</td>
 <td><input type=text name=txtName></td>
 <td><input type=submit name=Button1 Value="Send"></td>
 </tr>
 <tr>
 <td valign=top>Hobby:</td>
 <td>
 <select name=lbHobbies Multiple>
 <option Value="Ski">Ski</option>
 <option Value="Bike">Bike</option>
 <option Value="Swim">Swim</option>
 </select>
 </td>
 <td> </td>
 </tr>

This document is created with the unregistered version of CHM2PDF Pilot

 </table>
 </p>
 </form>
</body>
</html>

What happens when a user fills in a name, chooses a hobby, and presses the Send button? The page is first posted
back to the server. No code is in the form at this point, so all the selections that the user made in the Select tag
(information that we'll refer to as form state) are lost. The page is then returned back to the browser. In ASP.old, if
you want to preserve the form state, you are forced to write code to do that.

Listing 2.2 contains SimplePage2.asp showing the typical code you would write with ASP.old to make this work.

Listing 2.2 SimplePage2.asp Showing Code to Preserve Form State in ASP.OLD

<html>
<head>
 <title>SimplePage2.asp</title>
</head>

<SCRIPT LANGUAGE="VBScript" RUNAT=SERVER>
 function IsOptionSelected(strControlName, strOption)
 for iCount = 1 to Request(strControlName).Count
 if request(strControlName)(iCount) = strOption then
 response.write " SELECTED "
 end if
 next
 end function

</SCRIPT>

<body>
 <form name="WebForm1" method="post">
 <p>
 <table border=0>
 <tr>
 <td>Name:</td>
 <td><input type=text name=txtName value="<% = Request("txtName")
%>"></td>
 <td><input type=submit name=Button1 Value="Send"></td>
 </tr>
 <tr>
 <td valign=top>Hobby:</td>
 <td>
 <select name=lbHobbies Multiple>
 <option <% IsOptionSelected "lbHobbies", "Ski" %>
Value="Ski">Ski</option>
 <option <% IsOptionSelected "lbHobbies", "Bike" %>
Value="Bike">Bike</option>
 <option <% IsOptionSelected "lbHobbies", "Swim" %>
Value="Swim">Swim</option>
 </select>
 </td>
 <td> </td>
 </tr>
 </table>
 </p>
 </form>
</body>
</html>

This document is created with the unregistered version of CHM2PDF Pilot

With the advent of server controls, ASP.NET adds functionality to HTML's own user-interface controls, making
them do what you would expect them to do; that is, save the data that the user just spent time typing in.

You need to do three things to make ASP.NET server controls work.

1.

1. ASP.NET server controls are identified using the ID attribute instead of (or in addition to) the Name
attribute. You are allowed to use both. You may want to use the Name attribute if you have client-side script
that needs to refer to the control.

1.
2.

2. ASP.NET server controls require you to add the runat=server attribute. This attribute indicates to ASP.NET
that the tag is something more than a built-in HTML tag.

2.
3.

3. ASP.NET server controls require a closing tag. Server controls are implemented using XML namespaces
and, like XML, require every element to have a matching closing element. You can use XML style syntax as
a shortcut creating a tag such as <input type=text runat=server />.

3.

So let's do this to the code that was in Listing 2.1. Listing 2.3 shows simplepage.aspx, an ASP.NET implementation
of simplepage.asp.

Listing 2.3 SimplePage.aspx—A Reworking of Listing 2.1 in ASP.NET

<html>
<head>
 <title>SimplePage.aspx</title>
</head>

<body>
 <form id="WebForm1" method="post" runat="server">
 <p>
 <table border=0>
 <tr>
 <td>Name:</td>
 <td><input type=text id=txtName runat=server /></td>
 <td><input type=submit id=Button1 Value="Send" runat=server /></td>
 </tr>
 <tr>
 <td valign=top>Hobby:</td>
 <td>
 <select id=lbHobbies Multiple runat=server>
 <option Value="Ski">Ski</option>
 <option Value="Bike">Bike</option>
 <option Value="Swim">Swim</option>
 </select>
 </td>
 <td> </td>
 </tr>
 </table>

This document is created with the unregistered version of CHM2PDF Pilot

 </p>
 </form>
</body>
</html>

All that's changed is the addition of the runat=server attribute to the form tag, the input tag, and the select tag. We've
also changed each of the name attributes to ID attributes. That's it. If you run this page, fill in a name, select a hobby,
and then click the Send button. The data that you entered stays there after the page is destroyed and re-created on
its round trip to the server. The server controls realize that the desired default behavior is to maintain input; that is,
they maintain their state, and they do so automatically.

If you don't want a given server control to maintain its state, you can use a new attribute with any server control
called EnableViewState. By setting this to false, you can override the default behavior of maintaining form state across
posts.

Two categories of server controls are HTML controls and Web controls. The HTML controls mirror their HTML
counterparts. HTML controls include the following:

HTML Control Class HTML Tag

HtmlAnchor Anchor

HtmlButton <button />

HtmlContainerControl Any control that requires a closing tag

HtmlControl Any HTML server control

HtmlForm <form></form>

HtmlGenericControl Represents any HTML tag without a specific server
control class (for example, <p>)

HtmlImage

HtmlInputButton <input type=Button />

HtmlInputCheckBox <input type=Checkbox />

HtmlInputControl Any <input type=* /> control

HtmlInputFile <input type=file />

HtmlInputHidden <input type=hidden />

HtmlInputImage <input type=image />

HtmlInputRadioButton <input type=Radio />

HtmlInputText <input type=Text />

HtmlSelect <select> </select>

HtmlTable <table> </table>

HtmlTableCell <td> </td>

HtmlTableCellCollection All <TD> or <TH> tags within <table> </table>

HtmlTableRow <tr> </tr>

HtmlTableRowCollection All <TR> tags within <table> </table>

HtmlTextArea <textarea> </textarea>

NOTE

This document is created with the unregistered version of CHM2PDF Pilot

All these tags require the runat=server attribute to make them HTML controls. If you forget to add this attribute,
these controls will be treated as normal HTML tags. They will be programmable only via client-side code, which may
not be what you want.

These controls wrap the related HTML tag with a complete object model that allows access to all the attributes of
the tag via properties or methods. You see examples of this later on in this chapter.

Web controls don't always map directly to a single HTML tag. In many cases they are composite controls that
represent a large number of HTML tags. Let's take a look at an example. Listing 2.4 shows the Calendar Web
control.

Listing 2.4 Calendar.aspx Showing a Single Web Control

<html>
<head>
 <title>Calendar.aspx</title>
</head>

<body>
 <form id="WebForm1" method="post" runat="server">
 <asp:calendar id=Calendar1 runat=server />
 </form>
</body>
</html>

Save this file as Calendar.aspx, and that's it. But that one HTML tag generates something that looks like Figure 2.1.

Figure 2.1. The output of Calendar.aspx from Listing 2.4

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Separating Presentation from Code Using Code Behind

Code in ASP.old was often difficult to maintain because it was interspersed with HTML markup. Even when using a
visual development tool such as Visual InterDev or Dreamweaver UltraDev, it could be difficult and time consuming
to track down a chunk of ASP code that needed to be debugged.

The solution to this problem is a tactic that developers on many platforms typically use: separating logic (the code that
you write) from presentation (the way the data appears). By separating logic from presentation, you can be assured
that all the code is located in the same place, organized the way you want, and easily accessible. Separating logic
from presentation also minimizes the possibility that you'll generate new bugs in the presentation code as you debug
the core logic of the application.

One tactic for separating code from presentation in ASP.NET is code behind. Code behind is a feature that enables
you to take most of or all the code out of an ASP.NET page and place it in a separate file. The code is processed
normally; the only difference is where the code is located.

Visual Basic actually introduced the concept of code behind. The idea was that the code that dealt with a particular
object was in a different layer "behind" the object. Of course, this was only one way to describe it. In reality, code
behind was just a separate source file for each form that encapsulated the code related to that form. The code in the
file was actually tightly coupled with the form.

ASP.NET has this same concept with a slight twist. If you write a page as shown in Listing 2.7, behind the scenes
ASP.NET parses the code out of the page for you—invisibly in the background. A class is created that inherits from
System.Web.Page and includes a class level object declaration for each runat=server control in your page. This is
done by default to enable you to continue programming using the simple model provided in ASP.old.

Alternatively, you can create this class yourself and derive the page from it. This separates the code from the layout
of the page. This separation is potentially a huge benefit. In my previous life I worked with a company whose
standard development process went something like this: A business process owner would decide that some feature
should be Web enabled. The owner would come to a designer with, at best, a couple of sketches of what the Web
pages needed to implement this feature should look like. The owner would then work with the designer to create a
series of HTML pages that represented the feature. These pages would then be handed off to a developer to
"activate" them. The developer would go through the pages, adding the code to actually make the feature work.
When the developer was done, the feature was then shown to the business process owner. Inevitably, the owner
would realize that several features had been missed and/or additional features were needed So the process would
start over again. The designer would take the completed pages and start moving the HTML around to meet the
needs of the change requests. After the pages were again looking good, the designer would hand off to the
developer. The developer would open up the pages and throw his or her hands up in despair. In the process of
reformatting and rearranging the HTML, the designer inevitably would have scrambled the ASP.old code that had
lived intermixed with the HTML. In many instances, it was easier for the developer to just rip the old code out and
re-add it via copy/paste from the first version. This iterative process could continue for dozens of rounds, depending
on the complexity of the feature.

This document is created with the unregistered version of CHM2PDF Pilot

I suspect my previous company and I were not the only ones frequently faced with this issue. It begs for a new model
that allows the separation of the layout and formatting from the code that operates on it. ASP.NET is not Microsoft's
first attempt at this concept. It was tried, as part of Web Classes in Visual Basic 6.0 but was not very successful. I
predict that ASP.NET will be a much more successful implementation.

The way that code behind in ASP.NET works is that you create a class that inherits from System.Web.UI.Page. This
is the base class for a page.

NOTE

A complete reference to the Page object can be found at the end of this chapter.

The .aspx page then inherits from the class you create. This inheritance is accomplished via the @Page directive that
is discussed in further detail in this chapter. The @Page directive Inherits attribute enables you to indicate from which
class the page should inherit.

The Src attribute enables you to indicate from which file the source code should be dynamically compiled. This last
attribute is not required if the class has already been compiled and is in the Global Assembly Cache. Alternatively,
under the directory the page is in, you can create a special directory called /bin. This directory is one of the first
places ASP.NET looks for already compiled code. If the code has not already been compiled, the file reference by
the Src attribute is compiled and looked at for the class specified in the Inherits attribute. Listing 2.8 shows the aspx
page for the sample we have been looking at. Note that no code is in this page, just HTML markup.

Listing 2.8 SimplePage3.aspx Using Code Behind—This is the .aspx Page

<% @Page src="simplepage3.aspx.cs" Inherits="SimplePage" %>
<html>
<head>
 <title>SimplePage3.aspx</title>
</head>

<body>
 <form id="WebForm1" method="post" runat="server">
 <p>
 <table border=0>
 <tr>
 <td>Name:</td>
 <td><asp:textbox id=txtName runat=server /></td>
 <td><asp:button id=Button1 Text="Send" runat=server /></td>
 </tr>
 <tr>
 <td valign=top>Hobby:</td>
 <td>
 <select id=lbHobbies Multiple runat=server>
 <option Value="Ski">Ski</option>
 <option Value="Bike">Bike</option>
 <option Value="Swim">Swim</option>
 </select>
 </td>
 <td> </td>
 </tr>

This document is created with the unregistered version of CHM2PDF Pilot

 </table>
 </p>
 <asp:label id=lblOutput runat=server />
 </form>
</body>
</html>

Also note the @Page tag that indicates the code for this page is in a file called SimplePage3.aspx.cs. The class that
implements the functionality for this page is called SimplePage. Listing 2.9 shows SimplePage3.aspx.cs.

Listing 2.9 Simplepage3.aspx.cs Is the Code Behind File for SimplePage3.aspx

public class SimplePage : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Button Button1;
 protected System.Web.UI.WebControls.TextBox txtName;
 protected System.Web.UI.WebControls.Label lblOutput;
 protected System.Web.UI.HtmlControls.HtmlSelect lbHobbies;

 private void Page_Init()
 {
 Button1.Click += new System.EventHandler(Button1_Click);
 }
 private void Button1_Click(object sender, System.EventArgs e)
 {
 string strTemp;

 // Build up the output
 strTemp = "Name:" + txtName.Text + "
Hobbies: ";
 for(int iCount = 0; iCount <= lbHobbies.Items.Count - 1; iCount++)
 if(lbHobbies.Items[iCount].Selected)
 strTemp = strTemp + lbHobbies.Items[iCount].Text + ", ";

 // Place it into the label that was waiting for it
 lblOutput.Text = strTemp;
 }
}

This looks very similar to the previous example, except that no code is in the page! It is strictly markup. One cool
feature is that by altering the Inherits attribute, you can tie more than one aspx page to the same code-behind file. If
you type the code in the previous two listings into Notepad and save using the recommended filenames, you will have
a working page.

Code behind gives you an additional way to wire up events. It's best not to make the HTML markup know any more
than it needs to about the code. Using the approach shown earlier to wire up events, you're required to know the
name of the event procedure in the code behind. An alternative is to define the page event handlers in Page_Init(). In
Listing 2.9 the Button1_Click function is defined as a handler for Button1.Click event. This is an alternative way to
wire up the event handlers for ASP.NET with code behind. With this technique, the HTML markup doesn't have to
know anything about the code-behind class.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Programming HTML Controls

In this section we'll take a look, one by one, at the HTML controls provided by ASP.NET and show you examples
of some of the more interesting ones.

HtmlAnchor

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.Dll.

The HtmlAnchor control encapsulates the <a> tag with a server-side control model. You shouldn't use this for every
link, but it makes it easy to dynamically generate links as needed.

Properties

Attributes ClientID Controls

Disabled EnableViewState Href

ID InnerHtml InnerText

Name NamingContainer Page

Parent Site Style

TagName Target TemplateSourceDirectory

Title UniqueID Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerClick

Unload

Listings 2.10 and 2.11 show a page that alters a link based on whether the page containing the link is accessed using
HTTPS. This is a frequent requirement when building secure e-commerce Web sites.

Listing 2.10 The HTML for a Dynamically Generated Anchor Using the HtmlAnchor Control

<%@ Page language="c#" Codebehind="Anchor.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.Anchor" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>

This document is created with the unregistered version of CHM2PDF Pilot

 <title>Dynamically Generated Anchor</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="Anchor" method="post" runat="server">
 Test Anchor
 </form>
 </body>
</HTML>

Listing 2.11 The Code for a Dynamically Generated Anchor Using the HtmlAnchor Control

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HtmlControls
{
 public class Anchor : System.Web.UI.Page
 {
 protected System.Web.UI.HtmlControls.HtmlAnchor AnchorTag;

 private void Page_Load(object sender, System.EventArgs e)
 {
 if(Page.Request.IsSecureConnection)
 {
 AnchorTag.HRef = "https://www.deeptraining.com";
 AnchorTag.InnerText = "Secure Link";
 }
 else
 {
 AnchorTag.HRef = "http://www.deeptraining.com";
 AnchorTag.InnerText = "Unsecure Link";
 }

 }
 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

This document is created with the unregistered version of CHM2PDF Pilot

 }
 #endregion
 }
}

The ServerClick event enables you to optionally process the anchor on the server side instead of the client side. This
adds an extra round trip to the action but allows you to treat text just like buttons that invoke server-side actions. The
InnerText or InnerHtml properties enable you to alter the content between the <a> and tags, as shown in Listing
2.11. The Title property corresponds to the alt text or ToolTip that pops up for an anchor. The code in Listings 2.10
and 2.11 was generated using VS.NET as opposed to Listings 2.8 and 2.9, which used Notepad.

HtmlButton

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlButton class provides a server-side encapsulation of the HTML 4.0 <button> tag. It works only in Internet
Explorer 4.0 and later. If you want to use a button that works in a wider variety of browsers, take a look at
HtmlInputButton later on in this section.

Properties

Attributes CausesValidation ClientID

Controls Disabled EnableViewState

ID InnerHtml InnerText

NamingContainer Page Parent

Site Style TagName

TemplateSourceDirectory UniqueID Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerClick

Unload

This control is primarily used to kick off some server-side processing. This is done through the ServerClick event.
Listings 2.12 and 2.13 show a page with an HtmlButton control that fires off some script in the page to write some
text to the page.

Listing 2.12 The HTML for Button.aspx

This document is created with the unregistered version of CHM2PDF Pilot

<%@ Page language="c#" Codebehind="Button.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.Button" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>HtmlButton Class</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="Button" method="post" runat="server">
 <button id="btnClick" title="" type="button" runat="server">Click
Me</button>
 </form>
 </body>
</HTML>

Listing 2.13 The Code for Button.aspx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HtmlControls
{
 /// <summary>
 /// Summary description for Button.
 /// </summary>
 public class Button : System.Web.UI.Page
 {
 protected System.Web.UI.HtmlControls.HtmlButton btnClick;

 private void Page_Load(object sender, System.EventArgs e)
 {
 btnClick.InnerText = "Click Me!";
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {

This document is created with the unregistered version of CHM2PDF Pilot

 this.btnClick.ServerClick += new
System.EventHandler(this.btnClick_ServerClick);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnClick_ServerClick(object sender, System.EventArgs e)
 {
 Response.Write("You clicked me!");
 }
 }
}

HtmlForm

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlForm class allows you to change the properties of a form on the server side. These properties include the
target you are posting to as well as the method used to send the data to the server.

Properties

Attributes ClientID Controls

Disabled EnableViewState EncType

ID InnerHtml InnerText

Method Name NamingContainer

Page Parent Site

Style TagName Target

TemplateSourceDirectory UniqueID Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

The EncType property controls the encoding of the form. Valid encoding types include "multipart/form-data",
"text/plain", and "image/jpeg". Listing 2.14 and 2.15 alter the Method property to determine how the form data is
posted to the server.

NOTE

This document is created with the unregistered version of CHM2PDF Pilot

Only one <form runat=server> tag is allowed per page. You might initially think this is a limitation; however, the
routing of events by ASP.NET alleviates this problem immensely.

Listing 2.14 The HTML for Form.aspx

<%@ Page language="c#" Codebehind="Form.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.Form1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>Dynamically Altering Form Method</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="Form" method="post" runat="server">
 <asp:RadioButtonList id="RadioButtonList1" runat="server"
AutoPostBack="True">
 <asp:ListItem Selected="True" Value="Post">Post</asp:ListItem>
 <asp:ListItem Value="Get">Get</asp:ListItem>
 </asp:RadioButtonList>
 </form>
 </body>
</HTML>

Listing 2.15 The Code for form.aspx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HtmlControls
{
 /// <summary>
 /// Summary description for Form.
 /// </summary>
 public class Form1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.RadioButtonList RadioButtonList1;
 protected System.Web.UI.HtmlControls.HtmlForm Form;

 private void Page_Load(object sender, System.EventArgs e)
 {
 Response.Write("Form Method used to Send: " + Form.Method);
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {

This document is created with the unregistered version of CHM2PDF Pilot

 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.RadioButtonList1.SelectedIndexChanged += new
System.EventHandler(this.RadioButtonList1_SelectedIndexChanged);
 this.ID = "Form1";
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void RadioButtonList1_SelectedIndexChanged(object sender,
System.EventArgs e)
 {
 Form.Method = RadioButtonList1.SelectedItem.Value;
 }
 }
}

NOTE

In the code example in Listing 2.15, you will have to press the radio button twice to see the results. This is because
the procedure that outputs the form method runs prior to the RadioButtonList1_SelectedIndexChanged event that
actually alters the way the form works.

HtmlImage

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlImage class encapsulates the HTML tag. This can be useful for dynamically pointing to multiple
images on your site. Note that this does not enable you to send the actual image data. You can alter only where the
browser retrieves the image data from.

Properties

Align Alt Attributes

Border ClientID Controls

This document is created with the unregistered version of CHM2PDF Pilot

Disabled EnableViewState Height

ID NamingContainer Page

Parent Site Src

Style TagName TemplateSourceDirectory

UniqueID Visible Width

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

Listings 2.16 and 2.17 use the image-specific properties of this server control to allow you to alter how an image is
displayed on the page.

Listing 2.16 The HTML for image.aspx

<%@ Page language="c#" Codebehind="Image.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.Image" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>Image Properties</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="Image" method="post" runat="server">
 <table>
 <tr>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 Alt: <input type="text" id="txtAlt" runat="server"
value="Deep Logo" NAME="txtAlt">

 <input type="checkbox" id="chkBorder" runat="server"
NAME="chkBorder">Border
 <input type="checkbox" id="chkVisible"
runat="server" Checked NAME="chkVisible">Visible

 Alignment:
 <select id="ddAlignment" runat="server" NAME="ddAlignment">
 <option Value="left" selected>
 Left</option>
 <option Value="center">
 Center</option>
 <option Value="right">
 Right</option>

This document is created with the unregistered version of CHM2PDF Pilot

 <option Value="top">
 Top</option>
 <option Value="middle">
 Middle</option>
 <option Value="bottom">
 Bottom</option>
 </select>

 Size: <input type="text" id="txtWidth" runat="server"
Width="51px" Height="24px" NAME="txtWidth">
 x <input type="text" id="txtHeight" runat="server"
Width="51px" Height="24px" NAME="txtHeight">

 Src: <input type="text" id="txtSrc" runat="server"
value="deeplogo2.jpg" NAME="txtSrc">
 <P></P>
 <P>
 </P>
 <P>
 <input type="submit" id="btnApply" runat="server"
Value="Apply Settings" NAME="btnApply">
 </P>
 </td>
 </tr>
 </table>
 </form>
 </body>
</HTML>

Listing 2.17 The Code for image.aspx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HtmlControls
{
 /// <summary>
 /// Summary description for Image.
 /// </summary>
 public class Image : System.Web.UI.Page
 {
 protected System.Web.UI.HtmlControls.HtmlImage IMG1;
 protected System.Web.UI.HtmlControls.HtmlInputText txtAlt;
 protected System.Web.UI.HtmlControls.HtmlInputCheckBox chkBorder;
 protected System.Web.UI.HtmlControls.HtmlInputCheckBox chkVisible;
 protected System.Web.UI.HtmlControls.HtmlSelect ddAlignment;
 protected System.Web.UI.HtmlControls.HtmlInputText txtWidth;
 protected System.Web.UI.HtmlControls.HtmlInputText txtHeight;
 protected System.Web.UI.HtmlControls.HtmlInputText txtSrc;
 protected System.Web.UI.HtmlControls.HtmlInputButton btnApply;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

This document is created with the unregistered version of CHM2PDF Pilot

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnApply.ServerClick += new
System.EventHandler(this.btnApply_ServerClick);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnApply_ServerClick(object sender, System.EventArgs e)
 {
 // Set the alt text
 IMG1.Alt = txtAlt.Value;
 // If the border is checked set a border width
 if(chkBorder.Checked)
 IMG1.Border = 5;
 else
 IMG1.Border = 0;
 // Set the image alignment
 IMG1.Align = ddAlignment.Items[ddAlignment.SelectedIndex].Value;
 // If a width is entered then set it
 if(txtWidth.Value != "")
 IMG1.Width = int.Parse(txtWidth.Value);

 // If a height is entered then set it
 if(txtHeight.Value != "")
 IMG1.Height = int.Parse(txtHeight.Value);

 // Set the image to show
 IMG1.Src = txtSrc.Value;
 // Set whether it is visible
 IMG1.Visible = chkVisible.Checked;
 }
 }
}

HtmlInputButton

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlInputButton class wraps up several HTML tags, including <input type=button>, <input type=reset>, and
<input type=submit>. This class is supported in all browsers (unlike the HtmlButton class).

This document is created with the unregistered version of CHM2PDF Pilot

Properties

Attributes CausesValidation ClientID

Controls Disabled EnableViewState

ID Name NamingContainer

Page Parent Site

Style TagName TemplateSourceDirectory

Type UniqueID Value

Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerClick

Unload

Listings 2.18 and 2.19 show the difference in behavior between the type=submit and type=reset buttons.

Listing 2.18 The HTML for inputbutton.aspx

<%@ Page language="c#" Codebehind="InputButton.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.InputButton" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>HtmlInputButton Example</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="InputButton" method="post" runat="server">
 <asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
 <input type="submit" id="btnSubmit" runat="server" value="Submit"
NAME="btnSubmit">
 <input type="reset" id="btnReset" runat="server" value="Reset"
NAME="btnReset">
 </form>
 </body>
</HTML>

Listing 2.19 The Code for inputbutton.aspx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;

This document is created with the unregistered version of CHM2PDF Pilot

using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HtmlControls
{
 /// <summary>
 /// Summary description for InputButton.
 /// </summary>
 public class InputButton : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.TextBox TextBox1;
 protected System.Web.UI.HtmlControls.HtmlInputButton btnSubmit;
 protected System.Web.UI.HtmlControls.HtmlInputButton btnReset;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnSubmit.ServerClick += new
System.EventHandler(this.btnSubmit_ServerClick);
 this.btnReset.ServerClick += new
System.EventHandler(this.btnReset_ServerClick);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnSubmit_ServerClick(object sender, System.EventArgs e)
 {
 Response.Write("You clicked submit.");
 }

 private void btnReset_ServerClick(object sender, System.EventArgs e)
 {
 Response.Write("You clicked reset.");
 }
 }
}

HtmlInputCheckBox

Member of System.Web.UI.HtmlControls.

This document is created with the unregistered version of CHM2PDF Pilot

Assembly: System.Web.dll.

HtmlInputCheckBox encapsulates the <input type=checkbox> tag. The Checked property indicates whether the item
was checked. Listing 2.17 uses the HtmlInputCheckbox to indicate the visibility of the image. The ServerChange
event can be used to catch the change in value of the control on the server.

Properties

Attributes Checked ClientID

Controls Disabled EnableViewState

ID Name NamingContainer

Page Parent Site

Style TagName TemplateSourceDirectory

Type UniqueID Value

Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerChange

Unload

HtmlInputFile

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

Provides a way for you to upload files to the server. This control encapsulates the <input type=file> tag on the client
and also provides a way to extract the file information from the posted data. For this control to work, the EncType of
the form must be set to multipart/form-data.

Properties

Accept Attributes ClientID

Controls Disabled EnableViewState

ID MaxLength Name

NamingContainer Page Parent

This document is created with the unregistered version of CHM2PDF Pilot

PostedFile Site Size

Style TagName TemplateSourceDirectory

Type UniqueID Value

Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

Listings 2.20 and 2.21 show a page that collects the name of a file from the user and then uploads it to the server. On
the server side we grab the content of the posted file and place it into a text area. The Accept property is used to
indicate that only files with a MIME type of text are allowed to be uploaded.

Listing 2.20 The HTML for inputfile.aspx

<%@ Page language="c#" Codebehind="InputFile.aspx.cs" AutoEventWireup="false"
Inherits="HtmlControls.InputFile" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>Input File Example</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="InputFile" method="post" runat="server" enctype="multipart/
form-data">
 <input type="file" id="FilePost" runat="server" NAME="FilePost"><input
type="submit" id="btnSubmit" runat="server" value="Send File" NAME="btnSubmit">

 <textarea id="txtOutput" runat="server" style="WIDTH: 733px; HEIGHT:
630px" rows="39" cols="89" NAME="txtOutput"></textarea>
 </form>
 </body>
</HTML>

Listing 2.21 The Code for inputfile.aspx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

This document is created with the unregistered version of CHM2PDF Pilot

namespace HtmlControls
{
 /// <summary>
 /// Summary description for InputFile.
 /// </summary>
 public class InputFile : System.Web.UI.Page
 {
 protected System.Web.UI.HtmlControls.HtmlInputFile FilePost;
 protected System.Web.UI.HtmlControls.HtmlInputButton btnSubmit;
 protected System.Web.UI.HtmlControls.HtmlTextArea txtOutput;

 private void Page_Load(object sender, System.EventArgs e)
 {
 FilePost.Accept = "text/*";
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnSubmit.ServerClick += new
System.EventHandler(this.btnSubmit_ServerClick);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnSubmit_ServerClick(object sender, System.EventArgs e)
 {
 System.IO.StreamReader tr = new System.IO.StreamReader(FilePost.
PostedFile.InputStream);

 txtOutput.Value = tr.ReadToEnd();

 }
 }
}

HtmlInputHidden

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlInputHidden class encapsulates the <input type=hidden> tag. This can be used to put hidden text into the
body of a form.

This document is created with the unregistered version of CHM2PDF Pilot

NOTE

In Web programming, it was common to use a <hidden> control to retain state information from one page reload to
the next. It's not as common to use the HtmlInputHidden control for this purpose in ASP.NET because you have so
many other options for state management. For example, you might want to use the State bag provided by the
ViewState property of the Page object instead.

Properties

Attributes ClientID Controls

Disabled EnableViewState ID

Name NamingContainer Page

Parent Site Style

TagName TemplateSourceDirectory Type

UniqueID Value Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerChange

Unload

Listing 2.22 shows an example of using an HtmlInputHidden object to submit additional information along with the
form. In this example, you want the form to send the date and time the user accessed the page along with the data the
user enters. The hidden control stores and submits this additional information.

Listing 2.22 Using an HtmlInputHidden Control to Submit Additional Information in a Form

<%@ Page language='C#' debug='true' trace='false' %>
<script runat='server'>
 void Page_Load(Object Sender, EventArgs e)
 {
 if(!Page.IsPostBack)
 CreationDate.Value = DateTime.Now.ToString();
 }

 void btnSubmit_Click(Object Sender, EventArgs e)
 {
 spnResult.InnerHtml = "This account was created on " + CreationDate.Value;
 }
</script>
<html>
 <head>
 <title>ASP.NET Page</title>
 </head>

This document is created with the unregistered version of CHM2PDF Pilot

 <body bgcolor="#FFFFFF" text="#000000">
 <form runat='server'>
 Your Name:
 <input type="text" id="txtValue" value="Jeffrey" runat='server'
NAME="txtValue">
 <input type='submit' id="btnSubmit" OnServerClick='btnSubmit_Click'
 value="Create" runat='server' NAME="btnSubmit">

 Your Address: <input type="text" name="txtAddress" value="4905 Brown Valley
Lane">
 <input type="hidden" id="CreationDate" runat='server' NAME="CreationDate">
 </form>

 </body>
</html>

In this code, the current date and time is stored in the hidden control when the page is loaded. When the form is
submitted to the server, the value of the date stored in the hidden field is sent to the server where it can be utilized in
code. In this case, the date is simply displayed, but you could incorporate it into database insertions and so forth.

There are several alternate ways you can hide information on the page the way a hidden control does. For example,
most server controls have a Visible property. Setting this property to false hides the control, enabling you to assign
data to the control without the data displaying on the page.

Note that "hiding" information by assigning it to an HtmlInputHidden control doesn't actually prevent the user from
accessing the information; if you view the page's source in the browser, it's easy to see the value of the hidden
control. It's even conceivable that a user could change the value of the hidden control. For this reason, be careful
when using hidden controls to store certain types of sensitive information in your Web applications.

For other non-visible controls, the information contained within them is not sent to the browser. Instead it is stored in
ViewState. HtmlInputHidden is the one exception to this.

HtmlInputImage

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlInputImage class encapsulates the <input type=image> tag. Use this tag when you want your button to look
like something other than a button. You supply the image. The ServerClick method fires an action on the server.

Properties

Align Alt Attributes

Border CausesValidation ClientID

Controls Disabled EnableViewState

This document is created with the unregistered version of CHM2PDF Pilot

ID Name NamingContainer

Page Parent Site

Src Style TagName

TemplateSourceDirectory Type UniqueID

Value Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerClick

Unload

HtmlInputRadioButton

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlInputRadioButton class encapsulates the <input type=radio> tag. You group radio buttons together to form
a group by assigning the same Name property to each button. The user may select only one member of the group.

Properties

Attributes Checked ClientID

Controls Disabled EnableViewState

ID Name NamingContainer

Page Parent Site

Style TagName TemplateSourceDirectory

Type UniqueID Value

Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

This document is created with the unregistered version of CHM2PDF Pilot

HtmlInputText

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlInputText class encapsulates the <input type=text> tag. See Listings 2.16 and 2.17 for an example of this
class in use.

Properties

Attributes ClientID Controls

Disabled EnableViewState ID

MaxLength Name NamingContainer

Page Parent Site

Size Style TagName

TemplateSourceDirectory Type UniqueID

Value Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerChange

Unload

HtmlSelect

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlSelect class is the ASP.NET HTML control abstraction of the HTML SELECT element. You can set the
Multiple property to true to enable the user to select multiple items in the list. The Items collection contains the items.
Use <controlname>.Items[<controlname>.SelectedIndex].Value to get the selected items value. See Listing 2.9 for
the HtmlSelect class in action.

Properties

This document is created with the unregistered version of CHM2PDF Pilot

Attributes ClientID Controls

DataMember DataSource DataTextField

DataValueField Disabled EnableViewState

ID InnerHtml InnerText

Items Multiple Name

NamingContainer Page Parent

SelectedIndex Site Size

Style TagName TemplateSourceDirectory

UniqueID Value Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerChange

Unload

HtmlTable

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlTable class encapsulates the <table> tag. The Rows property returns a collection of all the <TR> tags in the
table.

Properties

Align Attributes BgColor

Border BorderColor CellPadding

CellSpacing ClientID Controls

Disabled EnableViewState Height

ID InnerHtml InnerText

NamingContainer Page Parent

Rows Site Style

TagName TemplateSourceDirectory UniqueID

Visible Width

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

This document is created with the unregistered version of CHM2PDF Pilot

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

HtmlTableCell

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlTableCell class encapsulates the individual cells in an HtmlTableRow. The ColSpan and RowSpan
properties can be used to span a number of columns or rows, respectively. The NoWrap property can be used to
indicate that a cell shouldn't wrap. The Align and VAlign properties can be used to control alignment.

Properties

Align Attributes BgColor

BorderColor ClientID ColSpan

Controls Disabled EnableViewState

Height ID InnerHtml

InnerText NamingContainer NoWrap

Page Parent RowSpan

Site Style TagName

TemplateSourceDirectory UniqueID VAlign

Visible Width

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

HtmlTableCellCollection

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

This document is created with the unregistered version of CHM2PDF Pilot

This class represents a collection of all HtmlTableCells within an HtmlTable control.

Properties

Count IsReadOnly IsSynchronized

Item SyncRoot

Methods

Add Clear CopyTo

Equals GetEnumerator GetHashCode

GetType Insert Remove

RemoveAt ToString

HtmlTableRow

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlTableRow class encapsulates a <tr> tag.

Properties

Align Attributes BgColor

BorderColor Cells ClientID

Controls Disabled EnableViewSTate

Height ID InnerHtml

InnerText NamingContainer Page

Parent Site Style

TagName TemplateSourceDirectory UniqueID

VAlign Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender Unload

HtmlTableRowCollection

This document is created with the unregistered version of CHM2PDF Pilot

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

A collection of the table rows inside the HtmlTable control.

Properties

Count IsReadOnly IsSynchronized

Item SyncRoot

Methods

Add Clear CopyTo

Equals GetEnumerator GetHashCode

GetType Insert Remove

RemoveAt ToString

HtmlTextArea

Member of System.Web.UI.HtmlControls.

Assembly: System.Web.dll.

The HtmlTextArea class encapsulates the <textarea> tag. The Rows and Cols properties can be used to dynamically
size the control. See Listing 2.20 for an example of the HtmlTextArea control in action.

Properties

Attributes ClientID Cols

Controls Disabled EnableViewState

ID InnerHtml InnerText

Name NamingContainer Page

Parent Rows Site

Style TagName TemplateSourceDirectory

UniqueID Value Visible

Methods

DataBind Dispose Equals

FindControl GetHashCode GetType

HasControls RenderControl ResolveUrl

ToString

Events

DataBinding Disposed Init

Load PreRender ServerChange

This document is created with the unregistered version of CHM2PDF Pilot

Unload
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Attributes of the Page Object

In ASP.old, you wrote the majority of your page-rendering code against five objects (Application, Request,
Response, Server, and Session). All these objects exist in ASP.NET, although their relative utility is diminished
somewhat by the more structured event-driven paradigm provided by ASP.NET.

For example, in ASP.old you typically built applications based on forms that were submitted to the server and
handled in script. The script automatically parsed the elements of the form into members of the Request.Form
collection. You could then send data back to the browser as a combination of templated HTML and calls to the
Write method of the Response object.

In ASP.NET, you don't have to use Request.Form to read the contents of form controls; instead, you can read the
properties of those controls directly. This makes programming much easier, eliminating a conceptual hurdle to
building sophisticated user interfaces and ensuring that data handled by your application is strongly typed from end to
end. You do not need to use Response.Write to send output to the browser, either. Although you may be
accustomed to using this quite frequently in ASP.old, you'll almost never see it in ASP.NET.

The following sections describe elements of the Page object in more depth, including the familiar Request, Response,
Server, and Session objects, and adding some new functionality provided by the Page object that's unique to
ASP.NET.

Page Directives

Page directives are commands, inserted at the top of an ASP.NET page, that represent a mixed bag of settings
pertaining to how the page is rendered and processed.

Table 2.1 shows a complete list of ASP.NET page directives.

Table 2.1. ASP.NET Page Directives

Directive Description

@Page A mixed bag of settings pertaining to how the page is
rendered, buffered, globalized, and so forth.

@Control Settings specific to how user controls are rendered. This
setting is appropriate for user controls only.

@Import Imports a namespace.

@Implements Utilizes an externally defined user control, server control,
or COM interface.

@Register Registers a server control tag prefix and namespace for
use in the page.

@Assembly Links an assembly to the page.

This document is created with the unregistered version of CHM2PDF Pilot

@OutputCache Determines how the page caches output.

@Reference Links a page or user control to the current page.

You insert a page directive at the top of the page. Listing 2.23 shows an example of a typical @Page directive.

Listing 2.23 Typical @Page Directive

<%@ Page language="C#" debug="true" trace="true" %>

This Page directive instructs ASP.NET to interpret code in the page as C#, to activate debugging, and to execute in
Trace mode to assist with debugging and performance analysis.

NOTE

The @Page directive is used when you want to change the default settings for a single page in your ASP.NET Web
application. However, some of the settings in the @Page directive can also be altered for an entire directory (using
the Web.config settings file) or an entire server (using the Machine.config settings file). See Chapter 5, "Configuration
and Deployment," for more information on how to use these files to configure your server.

The next few sections give examples and scenarios that demonstrate and describe when you would use the various
page directives. (The debugging and tracing features of ASP.NET are covered in Chapter 3, "Debugging ASP.NET
Applications.")

Setting Single-Thread Compatibility Using the AspCompat Attribute

COM components built with Visual Basic 6.0 use single-threaded apartment (STA) threading. To use an STA
component with ASP.NET, your ASP.NET page must also use single-threaded apartments.

Setting the AspCompat attribute of the @Page directive to true causes your page to execute on a single thread,
ensuring compatibility with STA components. It also makes objects contained by the Page such as Request and
Response available to any COM objects utilized in script on the page.

This attribute should be used sparingly because it degrades ASP.NET performance. Use it only in cases where you
are unable to port the STA object to .NET.

Controlling Event Handlers Using the AutoEventWireup Attribute

The AutoEventWireup attribute of the @Page directive is used to override the default event procedures used to
handle Page events. This attribute is set to true by default.

In general, most of the time this will have any bearing only on the name of the procedure used to handle the Page
object's Load event. When AutoEventWireup is true, the event procedure is called Page_Load. If AutoEventWireup

This document is created with the unregistered version of CHM2PDF Pilot

is false, you have to create a custom event handler to handle the Page object's events.

This feature is used most often with code behind. In order to make the events fire when AutoEventWireup is set to
false, define delegates for Page_Init in the constructor of the code-behind class. Define delegates for all events in the
Page_Init(). Listing 2.24 shows an example of the scenario.

Listing 2.24 Definition of a Code-Behind Page_Load Event Procedure Without AutoEventWireup

public MyPage()
{
 this.Init += new System.EventHandler(this.Page_Init);
}
private void Page_Init(object Sender, EventArgs e)
{
 this.Load += new System.EventHandler(this.MyPageLoad);
}
private void MyPageLoad(object Sender, EventArgs e)
{
 //Todo: enter your code here
}

You can see that the Page_Init() is explicitly wired to the event Page_Init by the delegate in the constructor. Then the
Page_Init() event handler is used to define delegates for other events. This also allows us to associate a subroutine
with any name with a specified event.

For more information on how code behind works, see the section "Separating Presentation from Code Using Code
Behind" earlier in this chapter.

Deactivating Page Buffering Using the Buffer Attribute

When the Web server is building a page for display in the browser, it can either send the data to the browser a little
at a time, or it can store the entire page and send it to the browser in one fell swoop. Sending the data to the browser
all at once is called buffering. Buffering a page can yield significant performance improvements because it potentially
lowers the number of TCP packets that must be sent to return the page to the user. It can also make for a more
positive perceived user experience because a buffered page renders all at once instead of progressively painting as
data arrives.

In ASP.NET, buffering is turned on by default. Setting the Buffer attribute in the @Page directive to false turns off
buffering.

Denoting the Page's Class Name Using the ClassName Attribute

You use the ClassName attribute to denote the name of the class used by the page when it is compiled. This attribute
is commonly set by Visual Studio .NET in conjunction with the code-behind feature.

For more information on how code-behind works, see the section "Separating Presentation from Code Using Code
Behind" earlier in this chapter.

This document is created with the unregistered version of CHM2PDF Pilot

Specifying the Target Client Using the ClientTarget Attribute

You can use the ClientTarget attribute to specify the user agent (a.k.a. browser type) for which the server controls in
your application should render their content. It makes sense to use this option in a situation where you have a captive
audience that has standardized on a particular browser (as in an intranet), and you are using server controls that
adapt to browser capabilities.

NOTE

The ASP.NET documentation doesn't explicitly state that setting this value produces a performance gain, but
presumably it would because server controls would not have to sniff the browser before rendering themselves.

Every browser is supposed to pass a user agent string identifying the type and version number of the browser each
time it makes an HTTP request. You can programmatically retrieve the user agent string reported by the browser by
inspecting the value of Page.Request.UserAgent.

Note that some browsers try to trick the Web server into thinking that they're a different kind of browser by passing
a bogus user-agent string. For example, by default, Opera 5.0 identifies itself to the browser as Internet Explorer 5.0.
This is done to ensure that the browser will work with Web applications that sniff the browser in brain-dead ways
(for example, by attempting to detect the brand of the browser instead of its underlying capabilities).

Setting the Language Using the CodePage Attribute

A code page is a set of mappings between text characters and numbers.

One common code page in the United States is UTF-8, also known as Unicode, and described in Internet RFC
2279 (see http://www.ietf.org/rfc/rfc2279.txt if you're really interested).

It's necessary only to specify the CodePage attribute when the page you've authored was written using a different
code page than the Web server it's running on. We're hoping you don't do this too often.

Setting Compiler Options Using the CompilerOptions Attribute

You can use the CompilerOptions attribute to pass additional arguments to the compiler when the page is run. To do
this, you'll need to have an excellent handle on how compiler switches work, a page that somehow lacks a capability
found in a compiler switch, and fortitude.

We racked our brains trying to figure out why you would use this feature, but we couldn't come up with much. The
documentation isn't much help, either. Many of the compiler switches are already represented in ASP.NET in various
ways, so it's possible that the CompilerOptions is simply a hook that ASP.NET provides for you, enabling you to

This document is created with the unregistered version of CHM2PDF Pilot

http://www.ietf.org/rfc/rfc2279.txt

take advantage of future compiler options that may become available before ASP.NET officially supports them.

Setting the ContentType Attribute

The ContentType attribute maps to an HTTP setting that tells the browser what kind of data to expect as the
response to a request. Almost always, the data sent from the Web server will be an HTML page. However, you may
want to change this. You can use the ContentType attribute of the Page directive to make this change.

You change the ContentType attribute in situations where your ASP.NET page is designed to send data other than
HTML to the browser; one common, real-world situation would be sending XML directly to the browser. To do
this, set the content type to "text/xml". If the output of the page contains well-formed XML data (and nothing but
XML data), and your browser has the capability to display XML directly (that is, Internet Explorer 5.0 or later), the
XML will render directly in the browser.

Specifying International Culture Using the Culture Attribute

You can use the Culture attribute to specify for which culture the content of your Web page is intended. Culture in
this context means international dialect and language. For example, the culture attribute "en-US" stands for U.S.
English, whereas "en-GB" stands for the kind of English that our good friends in Great Britain speak.

Certain operations in the .NET framework, such as the formatting of strings, are culture dependent. For example,
many European cultures use a comma instead of the decimal point used by Americans and other sensible cultures.
(Just kidding.)

Activating Debugging Using the Debug Attribute

Setting the Debug attribute to true activates ASP.NET Debug mode, which provides rich debugging information in
the browser to remote machines when an error is encountered in an ASP.NET page.

Debugging is covered in Chapter 3.

Setting the Description Attribute

The Description attribute enables you to append a textual description of your choice to your page. This attribute isn't
accessible programmatically; it's presumably just a way for you to insert a comment describing the page in the
@Page directive.

Setting the EnableSessionState Attribute

Session state refers to the capability of a Web application to store information for individual users as the user
navigates from page to page. Session state is turned on by default; you may want to consider setting the
EnableSessionState attribute to false—that deactivates Session state and can increase performance.

This document is created with the unregistered version of CHM2PDF Pilot

See Chapter 4, "State Management and Caching," for a general discussion of how Session state works in ASP.NET.

Activating View State Using the EnableViewState and EnableViewStateMac Attribute

View state is the feature of ASP.NET that causes a control's properties to be retained across round trips to the
server. It is discussed more fully in the section "Taking Advantage of Postback and View State," later in this chapter.

View state is enabled in ASP.NET pages by default. Setting the EnableViewState attribute to false enables you to
turn View state off. Note that it is also possible to turn View state off on a control-by-control basis, for controls that
support it, by setting the control's ViewStateEnabled property to false.

Turning off View state can increase application performance by reducing the amount of data that must be sent to and
from the server.

Setting EnableViewStateMac to true enables an additional check to ensure that View state information was not
altered between the time it was sent to the browser by the server and the time it was resubmitted to the server (Mac
in this context stands for Machine Authentication Check). This is an important security feature that you should employ
whenever sensitive data is stored in View state.

Setting the ErrorPage Attribute

The ErrorPage attribute enables you to redirect to a custom error page of your choosing. The value for the attribute
can be any URL. This attribute is commonly set in applications where it's likely that the user will enter a bogus value
(a long URL, for example, or perhaps a mistyped query string parameter), and you don't want the user to be
confronted with a grungy ASP.NET error page.

Inheriting from a Class Using the Inherits Attribute

Each ASP.NET page is treated as a class. You can cause your ASP.NET page to inherit from another class by
setting the Inherits attribute.

You typically use the Inherits attribute to take advantage of code-behind functionality. Code-behind functionality is
described in more detail in the section "Separating Presentation from Code Using Code Behind" in this chapter.

Setting the Language Attribute

The Language attribute determines the programming language used in the page. By default, you can choose VB, C#,
or JScript, although other .NET languages could be used as well. Note that an ASP.NET page can only have one
language.

Setting the Locale Identifier Using the LCID Attribute

The locale identifier (LCID) is an integer that corresponds to a national language setting. The idea behind an LCID is

This document is created with the unregistered version of CHM2PDF Pilot

to give the client some idea of what national language the application supports. Because the LCID value is a 32-bit
number, the value can be quite granular when describing different dialects of the same language. For example, the
LCID value 1033 denotes United States English; the value 2057 denotes the flavour of English spoken in the United
Kingdom.

By default, ASP.NET uses your Web server's locale (set in operating system configuration) as the locale for each
page. Setting this attribute to a different value overrides the locale setting.

Setting the Src Attribute for Code Behind

The code executed by a particular ASP.NET source file can be located in an external file. You use the Src (source)
attribute to specify the name of the external file.

You typically use the Src attribute to take advantage of code-behind functionality. Code-behind functionality is
described in more detail in the section "Separating Presentation from Code Using Code Behind" in this chapter.

Enabling Internet Explorer Smart Navigation Features

Setting the SmartNavigation attribute to true enables certain usability features specific to Microsoft Internet Explorer
5.0 and later. In particular, Smart Navigation can improve the user experience by preserving the scroll position on the
page and is therefore appropriate in situations where your page contains a long form that is posted back repeatedly.

Setting the Trace Attribute to Activate Tracing

Setting the Trace attribute to true activates tracing for the current page. Tracing helps developers debug an
ASP.NET application. Your trace code might simply indicate that a particular piece of code executed successfully;
trace code can also give you a sense of how control flows as a page executes and how long each operation in the
lifetime of a page takes to accomplish.

Tracing is covered in more detail in Chapter 3.

Setting the TraceMode Attribute to Sort Trace Information

The TraceMode attribute determines how trace information is displayed when tracing is turned on. Setting
TraceMode to SortByTime displays trace entries from earliest to latest. Setting the attribute to SortByCategory
groups trace entries by type.

Tracing is covered in more detail in Chapter 3.

Setting the Transaction Attribute to Support Transactions

You can add support for transactions to your pages by using the Transaction attribute. Transactions are set to
Disabled by default; other settings are NotSupported, Supported, Required, and RequiresNew.

This document is created with the unregistered version of CHM2PDF Pilot

Denoting the Culture with the UICulture Attribute

You can give your ASP.NET page the ability to display culture-specific actions by setting the UICulture attribute.
The UICulture attribute differs from the Culture attribute (described earlier in this section) in the sense that while
Culture has a stand-alone effect on the display of data (such as date formats and decimalization) in the page,
UICulture is simply a marker that enables you to denote a culture or language for later use in your localization code.
How you provide the culture-appropriate string resource based on the value of UICulture is up to you.

Setting the WarningLevel Attribute

You can force the .NET compiler to treat compiler warnings as errors by setting the WarningLevel attribute of the
@Page directive to true.

Five levels of compiler warnings exist, numbered 0 through 4. When the compiler transcends the warning level set by
this attribute, compilation fails. The meaning of each warning level is determined by the programming language and
compiler you're using; consult the reference specification for your compiler to get more information about the warning
levels associated with compiler operations and what triggers compiler warnings.

@Control Directives

You use an @Control directive in place of an @Page directive in a user control (.ASCX) file. User controls are
script files that provide programmable user-interface functionality. The @Control directive has many of the same
attributes as the @Page directive.

User controls are discussed in Chapter 9, "Building User Controls and Server Controls."

@Import Directives

The @Import directive is used to make classes found in that namespace easier to access. When you import a
namespace, you don't have to refer to the full namespace syntax to refer to a class in that namespace; you can, for
example, use the name DataSet instead of System.Data.Dataset.

An Import directive looks like this:

<@ Import namespace="System.Data" %>

You can have as many Import directives in your page as you want; each namespace reference should have its own
Import directive.

Note that you can use classes in any namespace loaded into the Global Assembly Cache (GAC); this includes all
.NET framework classes and anything else you've stuck in the GAC.

This document is created with the unregistered version of CHM2PDF Pilot

Implementing External Interfaces with the @Implements Directive

You use the @Implements directive to implement an interface. To understand why this feature exists, remember that
every ASP.NET page is really a kind of subclass of the Page object. If you want the object to have access to
functionality that requires the implementation of an interface, you must use this directive.

For example, you could use @Implements in user-control development to implement the IPostBackEventHandler
interface as a way of raising events associated with postback.

You can't use the @Implements directive in a code-behind class (specify interfaces by using : in the class declaration).

Registering Controls with the @Register Directive

The @Register directive is used to make your ASP.NET page aware of user controls and server controls. It also
gives custom ASP.NET controls a programmer-defined namespace, ensuring that the name of one control doesn't
conflict with the name of another control.

Custom ASP.NET user interface controls are discussed in Chapter 9.

@Assembly Directives

The @Assembly directive is used to make your ASP.NET page aware of external components. You can use one of
two elements with this directive—Name or Src. Name is the name of a precompiled assembly (without the .DLL
extension). Src represents the name of a source code file (such as myclass.cs).

@OutputCache Directives

You can use @OutputCache directives to control how page caching works. Page caching is a feature that can
improve performance on ASP.NET pages whose content changes infrequently.

Caching is discussed in more detail in Chapter 4.

Events Raised by the Page Object

The Page object raises a set of events that you can respond to in code.

The events raised by the Page object are standard .NET events, which means they receive a minimum of two
arguments: a Sender (a reference to the object that raised the event) and a collection that represents arguments
passed to that event (inherited from System.EventArgs). The contents of this collection differ, depending on the event
procedure.

This document is created with the unregistered version of CHM2PDF Pilot

Table 2.2 shows a list of events supported by the Page object.

Table 2.2. Events Supported by the Page Object

Event Description

AbortTransaction A transaction was aborted.

CommitTransaction A transaction was completed.

DataBinding Data binding was completed.

Disposed The page has been released from memory. This is the last
event.

Error An unhandled exception was thrown on the page.

Init The page was first loaded. This is the first event raised by
the page.

Load The page is loaded.

PreRender The page content is about to be displayed.

Unload The page is about to be unloaded from memory.

As you've seen in the code examples to this point, the most common event handled in the Page object is Load.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Creating User Interfaces with Web Controls

The .NET framework provides a number of user-interface components that you can use.

These components are divided into several categories:

•

• HTML controls—An object-oriented way of creating standard HTML page elements such as text boxes and
buttons.

•
•

• Web forms controls—Objects that can incorporate standard and dynamic HTML into rich user-interface
elements.

•
•

• Validation controls—A type of Web form control specifically geared toward validating user input on a form,
often without causing a round trip to the server. Validation controls are covered in Chapter 11, "Creating
Database Applications with ADO.NET."

•

This section will show you how to use the controls that are included with the .NET framework. You can also create
your own Web forms controls; this is covered in Chapter 9.

Programming Web Forms Controls

The first step to using Web forms controls on a page is to create an ASP.NET Web form. You do this by creating a
conventional HTML FORM tag with the ASP.NET runat="server" attribute, as shown in Listing 2.25.

Listing 2.25 Basic ASP.NET Web Form Declaration

<form id='myform' method='post' runat='server'>

</form>

Control Event Model

Web controls raise events of their own as well as the events of the classes they inherit.

Web controls that inherit from System.Web.UI.WebControl.WebControl raise the events listed in Table 2.3.

Table 2.3. Events Raised by Web Controls

This document is created with the unregistered version of CHM2PDF Pilot

Event Description

DataBinding Occurs when the control binds to a data source. (For
more information on data binding, see Chapter 11.)

Disposed Occurs when the control is destroyed; this is always the
last event raised by the control.

Init Occurs when the control is first created; this is always the
first event raised by the control.

Load Occurs when the control is loaded on the page.

PreRender Occurs when the control is about to be rendered
(displayed on the screen).

Unload Occurs when the control is unloaded from memory.

Taking Advantage of Postback and View State

Postback is the ASP.NET feature that enables you to detect whether a form has been submitted to the server. View
state is a related concept that causes the contents of a posted-back form to be preserved.

The concepts of postback and View state grew out of a frustration with traditional Web server scripting paradigms.
In a Web form, as with most HTTP Web requests, the page is completely destroyed and re-created each time it is
submitted to the server. But in many, if not most cases, you want certain values (such as the contents of a Search box
or the selection you've made in a list of custom preferences) to remain on the page. Without View state, you'd have
to write code to make this happen, and without postback detection, it's tricky to determine whether the existing form
data needs to be displayed.

You can determine whether an ASP.NET Web form is being posted back to the server by inspecting the IsPostBack
property of the Page object. The first time a user accesses the page, IsPostBack will be false. At this time, you
typically perform initialization work in code. This can be as straightforward as setting defaults in controls or as
involved as performing a relational database query to serve as the basis for display on the page.

NOTE

It is possible to manipulate postback directly in code. To do this, you implement the IPostBackEventHandler
interface in your page.

Earlier in this chapter, Listing 2.5 demonstrated the HTML source of an ASP.NET Web page that contains chunks
of encoded View state. Listing 2.26 shows a snippet of that voluminous code listing.

Listing 2.26 HTML Source for an ASP.NET Page Highlighting View State Information

 <form name="WebForm1" method="post" action="calendar.aspx" id="WebForm1">
<input type="hidden" name="__VIEWSTATE" value="dDw1MzYzNjkxODU7Oz4=" />

 <table id="Calendar1" cellspacing="0" cellpadding="2" border="0"
 style="border-width:1px;border-style:solid;border-collapse:collapse;">

This document is created with the unregistered version of CHM2PDF Pilot

 <tr>
 <td colspan="7" style="background-color:Silver;">
 <table cellspacing="0" border="0"
 style="width:100%;border-collapse:collapse;">
 <tr>
 <td style="width:15%;">
 <a href="javascript:__doPostBack('Calendar1','prevMonth')"
 style="color:Black"><

Note that we've mercifully deleted the majority of the source code for brevity. You won't have to write this code
yourself; fortunately, ASP.NET generates it for you from the high-level ASP.NET controls you specify.

You can see that the View state information is embedded in the page as a hidden control with the name
__VIEWSTATE. The value is encoded, but not encrypted.

You should also be able to see that a hyperlink (a tag) toward the end of the code snippet is attached to an
automatically generated JavaScript procedure called __doPostBack. This procedure parses the contents of View
state and submits the form back to the server.

The ultimately cool thing about View state is that you don't have to lift a finger to make it work. You may choose to
turn it off, however; getting rid of View state when you don't need it can provide a bit of a performance gain. To turn
View state off for a particular control, set the control's ViewState property to false. (View state can also be shut off
for a particular page or an entire Web application by using @Page dir-ectives, described earlier in this chapter, and
Web.config settings, described in Chapter 5, "Configuration and Deployment.")

Mobile Controls

The Microsoft.NET framework supports devices with small form factors and limited capabilities, such as mobile
phones and Pocket PCs. These devices have demands on the user-interface developer that are totally different from
the challenges presented by user-interface design on a desktop PC.

An in-depth discussion of mobile Web forms is beyond the scope of this book; however, many of the techniques
discussed in this chapter will give you a good foundation for creating applications for mobile devices. Because the
technical implementation (involving HTML, Dynamic HTML, WAP, and so forth) is abstracted behind the .NET
Base Class Library, you can use similar programming techniques to code for Windows and Windows CE.

Data Binding

It is possible to bind a data source to controls in ASP.NET. This works both for rich Web forms controls and
HTML controls.

For more information on data binding, see Chapter 11.

Determining Browser Capabilities

This document is created with the unregistered version of CHM2PDF Pilot

When you're creating a corporate intranet, you can often specify corporate standards for a Web browser. Although
this tends to limit user choice, this is useful for the developer because it means you can utilize the capabilities of a
specific Web browser.

For Web sites that are intended to be used by the general public, though, you can't know ahead of time what kind of
browser the users will have. In this case, you may find it useful to have a programmatic way of determining things
about the user's browser. For example, does the user's browser support JavaScript (or, perhaps, did the user
deactivate JavaScript support)? How about cookies? Even though most modern browsers support them, users can
choose to turn those off, too.

The HttpBrowserCapabilities class, found in the System.Web namespace, provides these capabilities in ASP.NET.
An instance of an HttpBrowserCapabilities object is contained by the ASP.NET Request object (in this context an
instance of the object, called Browser, is created for you automatically when a page is requested from the server).
Listing 2.27 shows how to use this pre-created object to display information about the browser.

Listing 2.27 Complete Listing of All HttpBrowserCapabilities Contained in the Request Object

<%@ PAGE language='c#' debug='true' trace='false' %>

<HTML>
<HEAD>
<TITLE>ASP.NET Browser Capabilities</TITLE>
</HEAD>

<BODY>
<table width="350" border="0" cellspacing="1" cellpadding="3"
 bgcolor="#000000">
 <tr bgcolor="#FFFFFF">
 <td>Supports ActiveX Controls</td>
 <td><% =Request.Browser.ActiveXControls %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Is an America Online Browser</td>
 <td><% =Request.Browser.AOL %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports background sounds</td>
 <td><% =Request.Browser.BackgroundSounds %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Is a beta version browser</td>
 <td><% =Request.Browser.Beta %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Browser name (user-agent)</td>
 <td><% =Request.Browser.Browser %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports Channel Definition Format</td>
 <td><% =Request.Browser.CDF %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Common Language Runtime version</td>
 <td><% =Request.Browser.ClrVersion %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Cookies available</td>

This document is created with the unregistered version of CHM2PDF Pilot

 <td><% =Request.Browser.Cookies %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Is this a Web search engine ("crawler")?</td>
 <td><% =Request.Browser.Crawler %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Version of JavaScript (ECMAScript) supported</td>
 <td><% =Request.Browser.EcmaScriptVersion %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports frames</td>
 <td><% =Request.Browser.Frames %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports client-side Java</td>
 <td><% =Request.Browser.JavaApplets %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports JavaScript (ECMAScript)</td>
 <td><% =Request.Browser.JavaScript %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Browser version</td>
 <td>
 <% =Request.Browser.MajorVersion + "." +
 Request.Browser.MinorVersion %>
 </td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Microsoft XML Document Object Model version</td>
 <td><%=Request.Browser.MSDomVersion %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Operating system platform</td>
 <td><% =Request.Browser.Platform %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Supports HTML tables</td>
 <td><% =Request.Browser.Tables %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Client browser type</td>
 <td><% =Request.Browser.Type %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Browser supports VBScript</td>
 <td><% =Request.Browser.VBScript %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Version of client browser</td>
 <td><% =Request.Browser.Version %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>W3C HTML Document Object Model version</td>
 <td><% =Request.Browser.W3CDomVersion %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Running 16-bit Windows?</td>
 <td><% =Request.Browser.Win16 %></td>
 </tr>
 <tr bgcolor="#FFFFFF">
 <td>Running 32-bit Windows?</td>
 <td><% =Request.Browser.Win32 %></td>
 </tr>

This document is created with the unregistered version of CHM2PDF Pilot

</table>
</BODY>
</HTML>

I used godless, archaic render blocks to create this page, mainly to make it easier for me to create, but also to make
it simpler to read.

If you have more than one kind of browser installed on your computer, you may find it interesting to navigate to this
page using both of them to see the different capabilities reported by the Browser object. For example, I found it
interesting to learn that JavaScript 1.2 comes with Internet Explorer 6.0 beta, but that Opera 5.0 comes with the
(presumably bigger and badder) JavaScript 1.3. Also, Opera doesn't return operating system platform information to
the server the way Internet Explorer does. It's just as well; with well-designed Web applications, the server shouldn't
need to know what operating system the browser is running on anyway.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Server Controls and Page Object Reference

This section provides a quick reference to the key objects described in this chapter. Space constraints prevent us
from documenting every object in the .NET framework in this book. For the sake of brevity and conciseness, we
include only the most important objects here. For more information on the other objects in the .NET framework,
consult the .NET Framework Reference online help file.

Validation controls are covered in Chapter 11.

This chapter covers the Page framework classes in ASP.NET, including the Page object itself, its children, and
user-interface controls (HTML controls and server controls). The following sections provide a brief reference to the
properties, methods, and events provided by those classes.

AdRotator Class

Member of System.Web.UI.WebControls.

The AdRotator class enables you to display a graphical advertisement on your Web page, changing (or "rotating") the
advertisement from a list of graphical URLs. Because they are stored in the form of URLs, the graphics and the
pages they link to can reside anywhere on the Web.

Properties

AccessKey CssClass Site

AdvertisementFile Enabled Style

BackColor EnableViewState TabIndex

BorderColor Font Target

BorderStyle ForeColor TemplateSourceDirectory

BorderWidth Height ToolTip

BackColor ID UniqueID

ClientID KeywordFilter Visible

Controls NamingContainer Width

ControlStyle Page

ControlStyleCreated Parent

Methods

AddAttributesToRender GetHashCode OnUnload

AddParsedSubObject GetType RaiseBubbleEvent

ApplyStyle HasControls Render

ClearChildViewState IsLiteralContent RenderBeginTag

CopyBaseAttributes LoadViewState RenderChildren

This document is created with the unregistered version of CHM2PDF Pilot

CreateChildControls MapPathSecure RenderContents

CreateControlCollection MemberWiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnAdCreated ResolveUrl

Dispose OnBubbleEvent SaveViewState

EnsureChildControls OnDataBinding ToString

Equals OnInit TrackViewState

Finalize OnLoad

FindControl OnPreRender

Events

AdCreated Init UnLoad

DataBinding Load

Disposed PreRender

The list of advertisements is stored in an XML file. Listing 2.28 shows an example of an XML file.

Listing 2.28 Using the AdRotator Class

<?xml version="1.0" encoding="utf-8" ?>
<Advertisements>
 <Ad>
 <ImageUrl>ad-1.png</ImageUrl>
 <NavigateUrl>http://www.redblazer.com/</NavigateUrl>
 <AlternateText>Advertisement Number One</AlternateText>
 </Ad>
 <Ad>
 <ImageUrl>ad-2.png</ImageUrl>
 <NavigateUrl>http://www.redblazer.com/</NavigateUrl>
 <AlternateText>Advertisement Number Two</AlternateText>
 </Ad>
</Advertisements>

The ImageUrl node denotes which image to display. The NavigateUrl note indicates the page to which the
advertisement is linked. The value of the AlternateText node is displayed if the browser has graphics turned off in the
browser; it's also displayed as a pop-up tool tip for the image.

You can have as many Ad elements as you want; the AdRotator will randomly switch between them. To see this,
reload the page several times. (To avoid viewing a cached version of the page, be sure you press Ctrl+F5 rather than
using the View, Refresh menu command in your browser.)

NOTE

The standard dimensions for a Web advertising banner is 468 pixels wide by 60 pixels high. You can, of course, use
the AdRotator control to display images of any dimensions you want.

You link an XML file with an instance of an AdRotator control by assigning the name of the file to the AdRotator

This document is created with the unregistered version of CHM2PDF Pilot

control's AdvertisementFile property. Listing 2.29 shows an example.

Listing 2.29 Using an AdRotator Control to Display Various Advertising Banners in an ASP.NET Page

<%@ Page Language="c#" debug="False" %>
<HTML>
 <HEAD>
 <title>ASP.NET AdRotator Control</title>
 </HEAD>
 <body>
 <form runat="server">
 <asp:AdRotator id="AdRotator1" runat="server" Width="468px" Height="60px"
AdvertisementFile="ads.xml" />
 </form> </body>
</HTML>

As you can see, no event procedure code is necessary to use the AdRotator control (although the control does
provide an AdCreated event you can use to intercept and reassign the properties of the advertisement before it is
rendered on the page).

Button Class

Member of System.Web.UI.WebControls.

The Button class is the ASP.NET Web control equivalent of the HTML submit and button elements. The class
abstracts both elements, adding a number of additional properties and events as well.

Properties

AccessKey ControlStyle Page

Attributes ControlStyleCreated Parent

BackColor EnableViewState Site

BorderColor CssClass Style

BorderStyle Enabled TabIndex

BorderWidth EnableViewState TemplateSourceDirectory

CausesValidation Font Text

ClientID ForeColor ToolTip

CommandArgument Height UniqueID

CommandName ID Visible

Controls NamingContainer Width

Methods

AddAttributesToRender GetHashCode OnPreRender

AddParsedSubObject GetType OnUnload

ApplyStyle HasControls RaiseBubbleEvent

ClearChildViewState IsLiteralContent Render

CopyBaseAttributes LoadViewState RenderBeginTag

CreateChildControls MapPathSecure RenderContents

This document is created with the unregistered version of CHM2PDF Pilot

CreateControlCollection MemberwiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnBubbleEvent ResolveUrl

Dispose OnClick SaveViewState

EnsureChildControls OnCommand ToString

Equals OnDataBinding TrackViewState

Finalize OnInit

FindControl OnLoad

Events

Click Disposed PreRender

Command Init UnLoad

DataBinding Load

Code examples that use the Button object are given throughout this book. Essentially, only two members of the
Button object are used with any regularity: the Text property, to display text on the button face, and the Click event,
which generates a form submit.

Calendar Class

Member of System.Web.UI.WebControls.

The Calendar class renders a calendar in HTML. In most cases, you'll want to respondto a user selecting a date in
the calendar; do this by handling the control's SelectionChanged event.

Properties

AccessKey Font ShowGridLines

Attributes ForeColor ShowNextPrevMonth

BackColor HasChildViewState ShowTitle

BorderColor Height Site

BorderStyle ID Style

BorderWidth IsTrackingViewState TabIndex

CellPadding NamingContainer TagKey

CellSpacing NextMonthText TagName

ChildControlsCreated NextPrevFormat TemplateSourceDirectory

ClientID NextPrevStyle TitleFormat

Context OtherMonthDayStyle TitleStyle

Controls Page TodayDayStyle

ControlStyle Parent TodaysDate

ControlStyleCreated PrevMonthText ToolTip

CssClass SelectedDate UniqueID

DayHeaderStyle SelectedDates ViewState

DayNameFormat SelectedDayStyle ViewStateIgnoresCase

This document is created with the unregistered version of CHM2PDF Pilot

DayStyle SelectionMode Visible

Enabled SelectMonthText VisibleDate

EnableViewState SelectorStyle WeekendDayStyle

Events SelectWeekText Width

FirstDayOfWeek ShowDayHeader

Methods

AddAttributesToRender FindControl OnSelectionChanged

AddParsedSubObject GetHashCode OnUnload

ApplyStyle GetType OnVisibleMonthChanged

BuildProfileTree HasControls RaiseBubbleEvent

ClearChildViewState IsLiteralContent Render

CopyBaseAttributes LoadViewState RenderBeginTag

CreateChildControls MapPathSecure RenderChildren

CreateControlCollection MemberwiseClone RenderContents

CreateControlStyle MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

Dispose OnDataBinding ResolveUrl

EnsureChildControls OnDayRender SaveViewState

Equals OnInit

Finalize OnLoad ToString

 OnPreRender TrackViewState

Events

DataBinding Init SelectionChanged

DayRender Load Unload

Disposed PreRender VisibleMonthChanged

Listing 2.30 shows an example of a page that displays a Calendar control and a label. When the user selects a date in
the calendar, the label indicates which date the user selected.

Listing 2.30 Responding to a User Selection in the Calendar Server Control

<%@ Page Language="c#" debug="false"%>
<SCRIPT runat='server'>
 void Calendar1_SelectionChanged(System.Object sender, System.EventArgs e)
 {
 Label1.Text = "The date you selected is " + Calendar1.SelectedDate;
 }
</SCRIPT>
<HTML>
 <HEAD>
 <TITLE>ASP.NET Calendar Control</TITLE>
 </HEAD>
 <body>
 <form method="post" runat="server">
 <asp:Calendar id="Calendar1" OnSelectionChanged="Calendar1_SelectionChanged"
runat="server"></asp:Calendar>

 <asp:Label id="Label1" runat="server"></asp:Label>
 </form>
 </body>
</HTML>

This document is created with the unregistered version of CHM2PDF Pilot

CheckBox Class

Member of System.Web.UI.WebControls.

The CheckBox class is the Web control abstraction of the HTML CHECKBOX element, used to enable the user to
select a true/false or yes/no condition.

Properties

AccessKey CssClass Style

Attributes Enabled TabIndex

AutoPostBack EnableViewState TagKey

BackColor Events TagName

BorderColor Font TemplateSourceDirectory

BorderStyle ForeColor Text

BorderWidth HasChildViewState TextAlign

Checked Height ToolTip

ChildControlsCreated ID UniqueID

ClientID IsTrackingViewState ViewState

Context NamingContainer ViewStateIgnoresCase

Controls Page Visible

ControlStyle Parent Width

ControlStyleCreated Site

Methods

AddAttributesToRender GetHashCode OnUnload

AddParsedSubObject GetType RaiseBubbleEvent

ApplyStyles HasControls Render

ClearChildViewState IsLiteralContent RenderBeginTag

CopyBaseAttributes LoadViewState RenderChildren

CreateChildControls MapPathSecure RenderContents

CreateChildCollection MemberwiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnBubbleEvent ResolveUrl

Dispose OnCheckedChanged SaveViewState

Equals OnDataBinding ToString

EnsureChildControls OnInit TrackViewState

Finalize OnLoad

FindControl OnPreRender

Events

CheckedChanged Init Unload

DataBinding Load

Disposed PreRender

This document is created with the unregistered version of CHM2PDF Pilot

You can determine whether the check box is checked by inspecting its Boolean Checked property. Setting its Text
property assigns a text label to the check box; the TextAlign property determines where the accompanying text label
is displayed. Listing 2.31 shows an example.

Listing 2.31 Reading the Checked Value of an ASP.NET CheckBox Server Control

<%@ Page Language="c#" debug="False" %>
<HTML>
 <HEAD>
 <title>ASP.NET CheckBox Control</title>
 <SCRIPT runat='server'>
 void CheckChanged(Object Sender, EventArgs e)
 {
 if(CheckBox1.Checked)
 CheckBox1.Text = "Thank you for checking this.";
 else
 CheckBox1.Text = "Check This!";
 }
 </SCRIPT>
 </HEAD>
 <body>
 <form runat="server">
 <asp:CheckBox id="CheckBox1" runat="server" Text="Check This!"
TextAlign="Left" />

 <asp:button OnClick="CheckChanged" text="Send" runat="server" ID="Button1" />
 </form>
 </body>
</HTML>

Control Class

Member of System.Web.UI.

The Control class serves as the base class for all ASP.NET server controls.

Properties

ChildControlsCreated HasChildViewState Site

ClientID ID TemplateSourceDirectory

Context IsTrackingViewState UniqueID

Controls NamingContainer ViewState

EnableViewState Page ViewStateIgnoresCase

Events Parent Visible

Methods

AddParsedSubObject GetHashCode OnUnload

BuildProfileTree GetType OnUnload

ClearChildViewState HasControls RaiseBubbleEvent

CreateChildControls IsLiteralContent Render

CreateControlCollection LoadViewState RenderChildren

DataBind MemberwiseClone RenderControl

This document is created with the unregistered version of CHM2PDF Pilot

Dispose OnBubbleEvent ResolveUrl

EnsureChildControls OnDataBinding SaveViewState

Equals OnInit

Finalize OnLoad ToString

FindControl OnPreRender TrackViewState

 OnPreRender

Events

DataBinding Init PreRender

Disposed Load Unload

DataGrid Class

Member of System.Web.UI.WebControls.

The DataGrid class enables you to display data in a tabular (row and column) format. Like all data-bound ASP.NET
controls, the DataGrid need not be bound to a traditional relational data source; you can also bind to an array or one
of the many collection objects provided in the .NET framework.

The HTML output of this control is a table, but the DataGrid class adds a number of useful additional accoutrements
such as data paging and formatting.

Properties

AccessKey CurrentPageIndex PageCount

AllowCustomPaging DataKeys PagerStyle

AllowPaging DataMember PageSize

AllowSorting DataSource Parent

AlernatingItemStyle EditItemIndex SelectedIndex

Attributes EditItemStyle SelectedItem

AutoGeneratteColumns Enabled SelectedItemStyle

BackColor EnableViewState ShowFooter

BackImageUrl Events ShowHeader

BorderColor Font Site

BorderStyle FooterStyle Style

BorderWidth ForeColor TabIndex

CellPadding GridLines TagKey

CellSpacing HasChildViewState TagName

ChildControlsCreated HeaderStyle TemplateSourceDirectory

 Height

ClientID HorizontalAlign ToolTip

Columns ID UniqueID

Context IsTrackingViewState ViewState

This document is created with the unregistered version of CHM2PDF Pilot

Controls Items ViewStateIgnoresCase

ControlStyle ItemStyle VirtualItemCount

ControlStyleCreated NamingContainer Visible

CssClass Page Width

Methods

AddAttributesToRender HasControls OnPageIndexChanged

AddParsedSubObject IsLiteralContent OnPreRender

ApplyStyle LoadViewState OnSelectedIndexChanged

ClearChildViewState MapPathSecure OnSortCommand

CopyBaseAttributes MemberwiseClone OnUnload

CreateChildControls MergeStyle OnUpdateCommand

CreateControlCollection OnBubbleEvent Render

CreateControlStyle OnCancelCommand RenderBeginTag

DataBind OnDataBinding RenderChildren

Dispose OnDeleteCommand RenderContents

Equals OnEditCommand RenderControl

EnsureChildControls OnInit RenderEndTag

Finalize OnItemCommand ResolveUrl

FindControl OnItemCreated SaveViewState

GetHashCode OnItemDataBound ToString

GetType OnLoad TrackViewState

Events

CancelCommand ItemCommand SelectedIndexChanged

DataBinding ItemCreated SortCommand

DeleteCommand ItemDataBound Unload

Disposed Load UpdateCommand

EditCommand PageIndexChanged

Init PreRender

You can find a number of code examples that utilize the DataGrid control in Chapter 11.

DataList Class

Member of System.Web.UI.WebControls.

The DataList class enables you to display data in a list. The control is similar to the DataGrid control, but instead of
displaying multiple categories of data in a tabular (row-and-column) format, the DataList displays a single list of data
in a single row. This row can wrap into multiple columns, however.

The various elements of the DataList (header, footer, and items) are divided up into sections and formatted according
to templates. Templates are XML sections embedded in the script declaration of the control.

This document is created with the unregistered version of CHM2PDF Pilot

Properties

AccessKey EditItemTemplate RepeatColumns

AlternatingItemStyle Enabled RepeatDirection

AlternatingItemTemplate EnableViewState RepeatLayout

Attributes ExtractTemplateRows SelectedIndex

BackColor Events SelectedItemStyle

BorderColor Font SelectedItemTemplate

BorderStyle FooterStyle SeparatorStyle

BorderWidth FooterTemplate SeparatorTemplate

CellPadding ForeColor ShowFooter

CellSpacing GridLines ShowHeader

ChildControlsCreated HasChildViewState Site

ClientID HeaderStyle Style

Context HeaderTemplate TabIndex

Controls Height TagKey

ControlStyle HorizontalAlign TagName

ControlStyleCreated ID TemplateSourceDirectory

CssClass IsTrackingViewState ToolTip

DataKeyField Items UniqueID

DataKeys ItemStyle ViewState

DataMember ItemTemplate ViewStateIgnoresCase

DataSource NamingContainer Visible

EditItemIndex Page Width

EditItemStyle Parent

Methods

AddAttributesToRender HasControls OnPreRender

AddParsedSubObject IsLiteralContent OnSelectedIndexChanged

ApplyStyle LoadViewState OnUnload

ClearChildViewState MapPathSecure OnUpdateCommand

CopyBaseAttributes MemberwiseClone RaiseBubbleEvent

CreateChildControls MergeStyle Render

CreateControlCollection OnBubbleEvent RenderBeginTag

CreateControlStyle OnCancelCommand RenderChildren

DataBind OnDataBinding RenderContents

Dispose OnDeleteCommand RenderControl

Equals OnEditCommand RenderEndTag

EnsureChildControls OnInit ResolveUrl

Finalize OnItemCommand SaveViewState

FindControl OnItemCreated ToString

GetHashCode OnItemDataBound TrackViewState

GetType OnLoad

Events

CancelCommand Init PreRender

This document is created with the unregistered version of CHM2PDF Pilot

DataBinding ItemCommand SelectedIndexChanged

DeleteCommand ItemCreated Unload

Disposed ItemDataBound UpdateCommand

EditCommand Load

Listing 2.32 provides an example of a DataList control bound to a Hashtable object.

Listing 2.32 Displaying Data in a Hashtable Object in a DataList Server Control

<% @Page language="C#" debug="true" %>
<html>
 <head>
 <title>ASP.NET DataList Control</title>
 <script runat="server">

 void Page_Load(Object Sender, EventArgs e)
 {
 if(!IsPostBack)
 {
 Hashtable h = new Hashtable();
 h.Add ("SF", "San Francisco");
 h.Add ("AZ", "Arizona");
 h.Add ("CO", "Colorado");
 h.Add ("SD", "San Diego");
 h.Add ("LA", "Los Angeles");

 DataList1.DataSource = h;
 DataList1.DataBind();
 }
 }

 </script>
 </head>
 <body>
 <form runat="server">
 <asp:DataList id="DataList1" runat="server" BorderColor="black"
BorderWidth="1" CellPadding="3" Font-Name="Verdana" Font-Size="8pt">
 <HeaderStyle BackColor="#000000" ForeColor="#FFFF99"></HeaderStyle>
 <AlternatingItemStyle BackColor="#FFFF99"></AlternatingItemStyle>
 <HeaderTemplate>
 National League West
 </HeaderTemplate>
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem, "Value") %>
 [<%# DataBinder.Eval(Container.DataItem, "Key") %>]
 </ItemTemplate>
 </asp:DataList>
 </form>
 </body>
</html>

Note that, as with all data-bindable objects, you can bind the DataList to a wide variety of objects. We used the
Hashtable object in this example for simplicity, but you could bind to an ArrayList, a DataSet, or any other list type.

DropDownList Class

Member of System.Web.UI.WebControls.

This document is created with the unregistered version of CHM2PDF Pilot

The DropDownList class is the server control abstraction of the HTML SELECT. Like most list controls, it can be
bound to data.

Properties

AccessKey DataMember SelectedIndex

Attributes DataSource SelectedItem

AutoPostBack DataTextField Site

BackColor DataTextFormatString Style

BorderColor DataValueField TabIndex

BorderStyle Enabled TagKey

BorderWidth EnabledViewState TagName

ChildControlsCreated Font TemplateSourceDirectory

ClientID ForeColor ToolTip

Context IsTrackingViewState UniqueID

Controls Items ViewState

ControlStyle NamingContainer ViewStateIgnoresCase

ControlStyleCreated Page Visible

CssClass Parent Width

Methods

AddAttributesToRender GetType Render

AddParsedSubObject HasControls RenderBeginTag

ApplyStyle IsLiteralContent RenderChildren

ClearChildViewState LoadViewState RenderContents

CopyBaseAttributes MapPathSecure RenderControl

CreateChildControls MemberwiseClone RenderEndTag

CreateControlCollection MergeStyle ResolveUrl

CreateControlStyle OnBubbleEvent SaveViewState

DataBind OnDataBinding ToString

Dispose OnInit TrackViewState

Equals OnLoad

EnsureChildControls OnPreRender

Finalize OnSelectedIndexChanged

FindControl OnUnload

GetHashCode RaiseBubbleEvent

Events

Init PreRender DataBinding

SelectedIndexChanged Unload Disposed Load

Listing 2.33 shows an example of a DropDownList object that is bound to an ArrayList object.

Listing 2.33 Binding a DropDownList Control to Data Contained in an ArrayList Object

This document is created with the unregistered version of CHM2PDF Pilot

<% @Page language="C#" debug="true" %>
<html>
 <head>
 <title>ASP.NET DropDownList Control</title>
 <script runat="server">

 void Page_Load(Object Sender, EventArgs e)
 {
 if(!IsPostBack)
 {
 ArrayList list = new ArrayList();
 list.Add ("San Francisco");
 list.Add ("Arizona");
 list.Add ("Colorado");
 list.Add ("San Diego");
 list.Add ("Los Angeles");

 DropDownList1.DataSource = list;
 DropDownList1.DataBind();
 }
 }

 void Pick_Click(Object Sender, EventArgs e)
 {
 Label1.Text = "You selected " + DropDownList1.SelectedItem.Text;
 }

 </script>
 </head>
 <body>
 <form runat="server">
 <asp:DropDownList id="DropDownList1" runat="server" BorderColor="black"
BorderWidth="1" Font-Name="Verdana" Font-Size="8pt"></asp:DropDownList>
 <asp:button text="Pick" OnClick="Pick_Click" runat="server" ID="Button1"
/>

 <asp:label id="Label1" runat="server" />
 </form>
 </body>
</html>

Use the SelectedItem object contained by the DropDownList control to return information about the item selected by
the user. The SelectedItem object (an instance of System.Web.UI.WebControls.ListItem) contains a Text property
as well as a Value property, enabling you to retrieve both the displayed value and the key associated with the
selected value.

In addition to binding the DropDownList object to a list object such as ArrayList, you can also hard-code the list
definitions by using <asp:listitem> subelements in the DropDownList definition.

HttpApplication Class

Member of System.Web. This object is typically accessed as the Application object contained in the ASP.NET Page
object.

The HttpApplication class provides a way to store information that has application scope. The Application object
contains instance objects such as Request and Response objects (instances of the HttpRequest and HttpResponse

This document is created with the unregistered version of CHM2PDF Pilot

classes, respectively) that you can use to access the contents of conventional HTML forms.

Properties

Application Request Site

Context Response User

Events Server

Modules Session

Methods

AddOnAcquireRequestStateAsync AddOnReleaseRequestStateAsync GetHashCode

AddOnAuthenticateRequestAsync AddOnResolveRequestCacheAsync GetType

AddOnAuthorizeRequestAsync AddOnUpdateRequestCacheAsync GetVaryByCustomStrin
g

AddOnBeginRequestAsync CompleteRequest Init

AddOnEndRequestAsync Dispose MemberwiseClone

AddOnPostRequestHandlerExecuteAsync Equals ToString

AddOnPreRequestHandlerExecuteAsync Finalize

HttpRequest Class

Member of System.Web.UI.

The HttpRequest class represents a request made by a client. It is typically accessed by programmers through the
Request object contained in the ASP.NET Page object.

You can use the Request object to retrieve the value of cookies, read HTTP header information generated by a Web
request, get information about the browser that made the request, and poll the client for security-related information.

Properties

AcceptTypes Files PhysicalApplicationPath

ApplicationPath Filter PhysicalPath

Browser Form QueryString

ClientCertificate Headers RawUrl

ContentEncoding HttpMethod UrlReferrer

ContentLength InputStream UserAgent

ContentType IsAuthenticated UserHostAddress

Cookies IsSecureConnection UserHostName

CurrentExecutionFilePath Params UserLanguages

FilePath PathInfo

Methods

BinaryRead GetType SaveAs

Equals MapImageCoordinates ToString

This document is created with the unregistered version of CHM2PDF Pilot

Finalize MapPath

GetHashCode MemberwiseClone

HttpResponse Class

Member of System.Web.UI.

The HttpResponse class represents the data sent to a client in reply to a request. This can include the response itself
(handled by the Write method) as well as headers and other configuration data (such as page cache expiry and
HTTP headers).

Properties

Buffer ContentType Output

BufferOutput Cookies OutputStream

Cache Expires Status

CacheControl ExpiresAbsolute StatusCode

Charset Filter StatusDescription

ContentEncoding IsClientConnected SuppressContent

Methods

AddCacheItemDependencies Clear GetType

AddCacheItemDependency ClearContent MemberwiseClone

AddFileDependencies ClearHeaders Pics

AddFileDependency Close Redirect

AddHeader End RemoveOutputCacheItem

AppendHeader Equals ToString

AppendToLog Finalize Write

ApplyAppPathModifier Flush WriteFile

BinaryWrite GetHashCode

HttpServerUtility Class

Member of System.Web.UI.

The HttpServerUtility class provides a variety of utilities for ASP.NET programmers, such as mapping a file request
to the file system of the Web server (the MapPath method) and encoding data for use in a URL (the UrlEncode
method). It is typically accessed by ASP.NET developers as the Server object contained by the ASP.NET Page
object.

Properties

MachineName ScriptTimeout

Methods

This document is created with the unregistered version of CHM2PDF Pilot

ClearError GetHashCode MemberwiseClone

CreateObject GetLastError ToString

CreateObjectFromClsid GetType Transfer

Equals HtmlDecode UrlDecode

Execute HtmlEncode UrlEncode

Finalize MapPath UrlPathEncode

HttpSessionState Class

Member of System.Web.UI.

The HttpSessionState class is used to store and retrieve Session state in an ASP.NET application. It is typically
accessed by ASP.NET developers in the form of the Session object, contained by the ASP.NET Page object.

Properties

CodePage IsReadOnly Mode

Contents IsSyncronized SessionID

Count Item StaticObjects

IsCookieless Keys SyncRoot

IsNewSession LCID Timeout

Methods

Abandon Finalize Remove

Add GetEnumerator RemoveAll

Clear GetHashCode RemoveAt

CopyTo GetType ToString

Equals MemberwiseClone

Hyperlink Class

Member of System.Web.UI.WebControls.

The Hyperlink class is the ASP.NET server control abstraction of the HTML A element.

Properties

AccessKey EnabledViewState Style

Attributes Events TabIndex

BackColor Font TagKey

BorderColor ForeColor TagName

BorderStyle HasChildViewState Target

BorderWidth Height TemplateSourceDirectory

This document is created with the unregistered version of CHM2PDF Pilot

ChildControlsCreated ID Text

ClientID ImageUrl ToolTip

Context IsTrackingViewState UniqueID

Controls NamingContainer ViewState

ControlStyle NavigateUrl ViewStateIgnoresCase

ControlStyleCreated Page Visible

CssClass Parent Width

Enabled Site

Methods

AddAttributesToRender GetHashCode OnPreRender

AddParsedSubObject GetType OnUnload

ApplyStyle HasControls RaiseBubbleEvent

ClearChildViewState IsLiteralContent Render

CopyBaseAttributes LoadViewState RenderBeginTag

CreateChildControls MapPathSecure RenderChildren

CreateControlCollection MemberwiseClone RenderContents

CreateControlStyle MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

Dispose OnDataBinding ResolveUrl

EnsureChildControls OnInit SaveViewState

Equal OnLoad ToString

Finalize OnPreRender TrackViewState

FindControl OnUnload

Use the Text property of the Hyperlink control to specify the text the control should display. Use the NavigateUrl
property to determine which page to navigate to. As with the HTML target attribute, you can specify the target
window to navigate to by assigning a value to the control's Target property; special values such as "_self" and "_new"
are recognized by the control.

Image Class

Member of System.Web.UI.WebControls.

The Image class is the ASP.NET server control abstraction of the HTML IMG element.

Properties

AccessKey EnsureChildControls Page

AddAttributesToRender Events Parent

AddParsedSubObject Finalize RaiseBubbleEvent

AlternateText Font Render

Attributes ForeColor RenderChildren

BackColor HasChildViewState RenderContents

This document is created with the unregistered version of CHM2PDF Pilot

BorderColor Height SaveViewState

BorderStyle ID Site

Borderwidth ImageAlign Style

ChildControlsCreated ImageUrl TabIndex

ClearChildViewState IsLiteralContent TagKey

ClientID IsTrackingViewState TagName

Context LoadViewState TemplateSourceDirectory

Controls MapPathSecure ToolTip

ControlStyle MemberwiseClone TrackViewState

ControlStyleCreated NamingContainer UniqueID

CreateChildControls OnBubbleEvent ViewState

CreateControlCollection OnDataBinding ViewStateIgnoresCase

CreateControlStyle OnInit Visible

CssClass OnLoad Width

Enabled OnPreRender

EnableViewState OnUnload

Methods

ApplyStyle FindControl RenderBeginTag

CopyBaseAttributes GetHashCode RenderControl

DataBind GetType RenderEndTag

Dispose HasControls ResolveUrl

Equals MergeStyle ToString

Events

DataBinding Init PreRender

Disposed Load Unload

Use the ImageUrl property to specify which image to display. To create an image that works like a button, use the
ImageButton control instead.

ImageButton Class

Member of System.Web.UI.WebControls.

The ImageButton class is another ASP.NET server control abstraction of the HTML INPUT type="image" element.

Properties

AccessKey ControlStyleCreated Parent

AlternateText CssClass Site

Attributes Enabled Style

BackColor EnableViewState TabIndex

BorderColor Events TagKey

BorderStyle Font TagName

This document is created with the unregistered version of CHM2PDF Pilot

BorderWidth ForeColor TemplateSourceDirectory

CausesValidation HasChildViewState ToolTip

ChildControlsCreated Height UniqueID

ClientID ID ViewState

CommandArgument ImageAlign ViewStateIgnoresCase

CommandName ImageUrl Visible

Context IsTrackingViewState Width

Controls NamingContainer

ControlStyle Page

Methods

AddAttributesToRender GetHashCode OnPreRender

AddParsedSubObject GetType OnUnload

ApplyStyle HasControls RaiseBubbleEvent

CopyBaseAttributes IsLiteralConent Render

ClearChildViewState LoadViewState RenderBeginTag

CreateChildControls MapPathSecure RenderChildren

CreateControlCollection MemberwiseClone RenderContents

CreateControlStyle MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

Dispose OnClick ResolveUrl

Equals OnCommand SaveViewState

EnsureChildControls OnDataBinding ToString

Finalize OnInit TrackViewState

FindControl OnLoad

Events

Click Disposed PreRender

Command Init Unload

DataBinding Load

Assign a value to the ImageUrl property to specify which graphic to display (just as you would with the Image
control). To execute code in response to a user clicking the image, use the control's Click event, the same as you
would for a Button control.

Label Class

Member of System.Web.UI.WebControls.

The Label class provides a way to programmatically create a read-only text region on the page. This region is
typically rendered in HTML as a SPAN tag.

Properties

AccessKey Enabled Style

This document is created with the unregistered version of CHM2PDF Pilot

Attributes EnableViewState TabIndex

BackColor Events TagKey

BorderColor Font TagName

BorderStyle ForeColor Text

BorderWidth HasChildViewState TemplateSourceDirectory

ChildControlsCreated Height ToolTip

ClientID ID UniqueID

Context IsTrackingViewState ViewState

Controls NamingContainer ViewStateIgnoresCase

ControlStyle Page Visible

ControlStyleCreated Parent Width

CssClass Site

Methods

AddAttributesToRender FindControl OnUnload

AddParsedSubObject Finalize RaiseBubbleEvent

ApplyStyle GetHashCode Render

ClearChildViewState GetType RenderBeginTag

CopyBaseAttributes HasControls RenderChildren

ClearChildViewState IsLiteralContent RenderContents

CreateChildControls MapPathSecure RenderControl

CreateControlCollection MemberwiseClone RenderEndTag

CreateControlStyle MergeStyle ResolveUrl

DataBind OnDataBinding SaveViewState

Dispose OnInit ToString

Equals OnLoad TrackViewState

EnsureChildControls OnPreRender

A number of code examples involving the Label class are provided throughout this book. In nearly every case, the
only member you'll typically need to access is the control's Text property.

LinkButton Class

Member of System.Web.UI.WebControls.

The LinkButton class merges the functionality of a hyperlink with the functionality of the Button control.

Properties

AccessKey ControlStyleCreated Site

Attributes CssClass Style

BackColor Enabled TabIndex

BorderColor EnableViewState TagKey

BorderStyle Events TagName

This document is created with the unregistered version of CHM2PDF Pilot

BorderWidth Font TemplateSourceDirectory

CausesValidation ForeColor Text

ChildControlsCreated HasChildViewState ToolTip

ClientID Height UniqueID

CommandArgument ID ViewState

CommandName IsTrackingViewState ViewStateIgnoresCase

Context NamingContainer Visible

Controls Page Width

ControlStyle Parent

Methods

AddAttributesToRender Finalize OnLoad

AddParsedSubObject GetHashCode OnPreRender

ApplyStyle GetType OnUnload

ClearChildViewState HasControls RaiseBubbleEvent

CopyBaseAttributes IsLiteralContent Render

ClearChildViewState LoadViewState RenderBeginTag

CreateChildControls MapPathSecure RenderChildren

CreateControlCollection MemberwiseClone RenderContents

CreateControlStyle MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

Dispose OnClick ResolveUrl

Equals OnCommand SaveViewState

EnsureChildControls OnDataBinding ToString

FindControl OnInit TrackViewState

Events

Click Disposed PreRender

Command Init Unload

DataBinding Load

Handle the control's Click event to execute code when the user clicks the control. To navigate to another Web page,
use the Hyperlink control instead.

ListBox Class

Member of System.Web.UI.WebControls.

The ListBox class represents the ASP.NET server control abstraction of the HTML SELECT element.

Properties

AccessKey DataTextField SelectedIndex

Attributes DataTextFormatString SelectedItem

AutoPostBack DataValueField SelectionMode

This document is created with the unregistered version of CHM2PDF Pilot

BackColor Enabled Site

BorderColor EnableViewState Style

BorderStyle Events TabIndex

BorderWidth Font TagKey

ChildControlsCreated ForeColor TagName

ClientID HasChildViewState TemplateSourceDirectory

Context Height Text

Controls ID ToolTip

ControlStyle IsTrackingViewState UniqueID

 Items

ControlStyleCreated NamingContainer ViewState

CssClass Page ViewStateIgnoresCase

DataMember Parent Visible

DataSource Rows Width

Methods

AddAttributesToRender Finalize OnSelectedIndexChanged

AddParsedSubObject GetHashCode OnUnload

ApplyStyle GetType RaiseBubbleEvent

ClearChildViewState HasControls Render

CopyBaseAttributes IsLiteralContent RenderBeginTag

ClearChildViewState LoadViewState RenderChildren

CreateChildControls MapPathSecure RenderContents

CreateControlCollection MemberwiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnBubbleEvent ResolveUrl

Dispose OnDataBinding SaveViewState

Equals OnInit ToString

EnsureChildControls OnLoad TrackViewState

FindControl OnPreRender

Page Class

The Page class represents a page request. All controls on a page, as well as utility objects such as Request,
Response, Server, and Application (familiar to ASP.old developers), are members of the Page object in ASP.NET.

The page class is the base class from which all ASP.NET pages derive. If you create a code-behind class, it must
inherit from this object.

Properties

Application Cache ClientID

ClientTarget Controls EnableViewState

ErrorPage ID IsPostBack

This document is created with the unregistered version of CHM2PDF Pilot

IsValid NamingContainer Page

Parent Request Response

Server Session Site

SmartNavigation TemplateSourceDirectory Trace

UniqueID User Validators

Visible

Methods

DataBind DesignerInitialize Dispose

Equals FindControl GetHashCode

GetPostBackClientEvent GetPostBackClientHyperlink GetPostBackEventReference

GetType GetTypeHashCode HasControls

 IsClientScriptBlockRegistered IsStartupScriptRegistered

LoadControl LoadTemplate MapPath

ParseControl RegisterArrayDeclaration RegisterClientScriptBlock

RegisterHiddenField RegisterOnSubmitStatement RegisterRequiresPostBack

RegisterRequiresRaiseEvent RegisterStartupScript RegisterViewStateHandler

RenderControl ResolveUrl VerifyRenderingInServerForm

ToString Validate

Events

AbortTransaction CommitTransaction DataBinding

Disposed Error Init

Load PreRender Unload

It's common for ASP.NET pages to handle the Load event of the Page object as a way to perform initialization when
the page loads.

Panel Class

Member of System.Web.UI.WebControls.

The Panel class enables developers to group Web form controls. You may do this for cosmetic purposes (for
example, to group the controls on a complicated form into subcategories) or to manipulate controls on a form as a
unit.

Properties

AccessKey Enabled Style

Attributes EnableViewState TabIndex

BackColor Events TagKey

BackImageUrl Font TagName

BorderColor ForeColor TemplateSourceDirectory

BorderStyle HasChildViewState ToolTip

BorderWidth Height UniqueID

This document is created with the unregistered version of CHM2PDF Pilot

ChildControlsCreated HorizontalAlign ViewState

ClientID ID ViewStateIgnoresCase

Context IsTrackingViewState Visible

Controls NamingContainer Width

ControlStyle Page Wrap

ControlStyleCreated Parent

CssClass Site

Methods

AddAttributesToRender Finalize OnSelectedIndexChanged

AddParsedSubObject GetHashCode OnUnload

ApplyStyle GetType RaiseBubbleEvent

ClearChildViewState HasControls Render

CopyBaseAttributes IsLiteralContent RenderBeginTag

ClearChildViewState LoadViewState RenderChildren

CreateChildControls MapPathSecure RenderContents

CreateControlCollection MemberwiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnBubbleEvent ResolveUrl

Dispose OnDataBinding SaveViewState

Equals OnInit ToString

EnsureChildControls OnLoad TrackViewState

FindControl OnPreRender

RadioButton Class

Member of System.Web.UI.WebControls.

The RadioButton class represents the ASP.NET server control abstraction of the INPUT type radio. Radio buttons
are grouped together; only one button in a group may be selected at a time.

Properties

AccessKey Enabled Style

Attributes EnableViewState TabIndex

AutoPostBack Events TagKey

BackColor Font TagName

BorderColor ForeColor TemplateSourceDirectory

BorderStyle GroupName Text

BorderWidth TextAlign

Checked HasChildViewState ToolTip

ChildControlsCreated Height UniqueID

ClientID ID ViewState

Context IsTrackingViewState ViewStateIgnoresCase

This document is created with the unregistered version of CHM2PDF Pilot

Controls NamingContainer Visible

ControlStyle Page Width

ControlStyleCreated Parent

CssClass Site

Methods

AddAttributesToRender Finalize OnPreRender

AddParsedSubObject GetHashCode OnUnload

ApplyStyle GetType RaiseBubbleEvent

ClearChildViewState HasControls Render

CopyBaseAttributes IsLiteralContent RenderBeginTag

ClearChildViewState LoadViewState RenderChildren

CreateChildControls MapPathSecure RenderContents

CreateControlCollection MemberwiseClone RenderControl

CreateControlStyle MergeStyle RenderEndTag

DataBind OnBubbleEvent ResolveUrl

Dispose OnCheckedChanged SaveViewState

Equals OnDataBinding ToString

EnsureChildControls OnInit TrackViewState

FindControl OnLoad

Repeater Class

Member of System.Web.UI.WebControls.

You can use the Repeater control to display bound data in a totally customized way. You do this by creating HTML
templates (in a manner similar to the DataList control described earlier in this section).

Properties

AlternatingItemTemplate FooterTemplate Parent

ChildControlsCreated HasChildViewState SeparatorTemplate

ClientID HeaderTemplate Site

Context ID TemplateSourceDirectory

Controls IsTrackingViewState UniqueID

DataMember Items ViewState

DataSource ItemTemplate ViewStategnoresCase

EnableViewState NamingContainer Visible

Events Page

Methods

 FindControl OnItemCreated

AddParsedSubObject Finalize OnItemDataBound

 GetHashCode OnLoad

 GetType OnPreRender

This document is created with the unregistered version of CHM2PDF Pilot

 HasControls OnUnload

ClearChildViewState IsLiteralContent RaiseBubbleEvent

 LoadViewState Render

 MapPathSecure RenderChildren

CreateChildControls MemberwiseClone RenderControl

CreateControlCollection ResolveUrl

DataBind OnBubbleEvent SaveViewState

Dispose OnDataBinding ToString

Equals OnInit TrackViewState

EnsureChildControls OnItemCommand

Listing 2.34 shows an example of a Repeater control used to display the contents of the ever-popular Hashtable
object. Although you could have used another list control such as the DataGrid or DataList to perform the same
work, you can see from the code that the Repeater gives you the capability to embed HTML formatting to have
more granular control over the formatting of each row.

Listing 2.34 Using the Repeater Control to Build Customized Output of a Hashtable

<%@ Page Language="C#" debug="true" %>
<html>
 <head>
 <script runat="server">

 void Page_Load(Object Sender, EventArgs e)
 {
 if(!IsPostBack)
 {
 Hashtable h = new Hashtable();
 h.Add ("SF", "San Francisco");
 h.Add ("AZ", "Arizona");
 h.Add ("CO", "Colorado");
 h.Add ("SD", "San Diego");
 h.Add ("LA", "Los Angeles");

 Repeater1.DataSource = h;
 Repeater1.DataBind();
 }
 }

 </script>
 </head>
 <body>
 <form runat="server">
 <asp:Repeater id="Repeater1" runat="server">
 <HeaderTemplate>
 <table border="0" cellpadding="5" cellspacing="1" bgcolor="#000000">
 <tr>
 <td bgcolor="#FFFF99">Team</td>
 <td bgcolor="#FFFF99">Abbreviation</td>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td bgcolor="#FFFFFF">
 <%# DataBinder.Eval(Container.DataItem, "Value") %>
 </td>
 <td bgcolor="#FFFFFF">
 <%# DataBinder.Eval(Container.DataItem, "Key") %>

This document is created with the unregistered version of CHM2PDF Pilot

 </td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </form>
 </body>
</html>

Remember that the Repeater, like all bound controls, can be bound to any list element, not just the Hashtable.

Note, too, that nothing about the Repeater control necessitates outputting data in an HTML table; you can use the
Repeater to render data as a comma-delimited list or as a single-column list with line break (BR) elements, for
example.

Table Class

Member of System.Web.UI.WebControls.

The Table class is the ASP.NET server control abstraction of the HTML TABLE element.

Properties

AccessKey CssClass Rows

Attributes Enabled Site

BackColor EnableViewState Style

BackImageUrl Events TabIndex

BorderColor Font TagKey

BorderStyle ForeColor TagName

BorderWidth GridLines TemplateSourceDirectory

CellPadding HasChildViewState ToolTip

CellSpacing Height UniqueID

ChildControlsCreated HorizontalAlign ViewState

ClientID ID ViewStateIgnoresCase

Context IsTrackingViewState Visible

Controls NamingContainer Width

ControlStyle Page

ControlStyleCreated Parent

Methods

AddAttributesToRender FindControl OnItemCreated

AddParsedSubObject Finalize OnItemDataBound

ApplyStyle GetHashCode OnLoad

ClearChildViewState GetType OnPreRender

This document is created with the unregistered version of CHM2PDF Pilot

CopyBaseAttributes HasControls OnUnload

ClearChildViewState IsLiteralContent RaiseBubbleEvent

AddParsedSubObject LoadViewState Render

ClearChildViewState MapPathSecure RenderBeginTag

CreateChildControls MemberwiseClone RenderEndTag

CreateControlCollection MergeStyle RenderChildren

DataBind OnBubbleEvent RenderControl

Dispose OnDataBinding ResolveUrl

Equals OnInit SaveViewState

EnsureChildControls OnItemCommand ToString

 TrackViewState

TableCell Class

Member of System.Web.UI.WebControls.

The TableCell class is the ASP.NET server control abstraction of the HTML TD element.

Properties

AccessKey Enabled Site

Attributes EnableViewState Style

BackColor Events TabIndex

BorderColor Font TagKey

BorderStyle ForeColor TagName

BorderWidth HasChildViewState TemplateSourceDirectory

ChildControlsCreated Height Text

ClientID HorizontalAlign ToolTip

ColumnSpan ID UniqueID

Context IsTrackingViewState VerticalAlign

Controls NamingContainer ViewState

ControlStyle Page ViewStateIgnoresCase

ControlStyleCreated Parent Visible

CssClass RowSpan Width

Methods

AddAttributesToRender FindControl OnItemCreated

AddParsedSubObject Finalize OnItemDataBound

ApplyStyle GetHashCode OnLoad

ClearChildViewState GetType OnPreRender

CopyBaseAttributes HasControls OnUnload

ClearChildViewState IsLiteralContent RaiseBubbleEvent

AddParsedSubObject LoadViewState Render

This document is created with the unregistered version of CHM2PDF Pilot

ClearChildViewState MapPathSecure RenderBeginTag

CreateChildControls MemberwiseClone RenderChildren

CreateControlCollection MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

Dispose OnDataBinding ResolveUrl

Equals OnInit SaveViewState

EnsureChildControls OnItemCommand ToString

 TrackViewState

TableRow Class

Member of System.Web.UI.WebControls.

The Table class is the ASP.NET server control abstraction of the HTML TR element.

Properties

AccessKey Enabled Site

Attributes EnableViewState Style

BackColor Events TabIndex

BorderColor Font TagKey

BorderStyle ForeColor TagName

BorderWidth HasChildViewState TemplateSourceDirectory

Cells Height

ChildControlsCreated HorizontalAlign ToolTip

ClientID ID UniqueID

Context IsTrackingViewState VerticalAlign

Controls NamingContainer ViewState

ControlStyle Page ViewStateIgnoresCase

ControlStyleCreated Parent Visible

CssClass Width

Methods

AddAttributesToRender FindControl OnItemCreated

AddParsedSubObject Finalize OnItemDataBound

ApplyStyle GetHashCode OnLoad

ClearChildViewState GetType OnPreRender

CopyBaseAttributes HasControls OnUnload

ClearChildViewState IsLiteralContent RaiseBubbleEvent

AddParsedSubObject LoadViewState Render

ClearChildViewState MapPathSecure RenderBeginTag

CreateChildControls MemberwiseClone RenderChildren

CreateControlCollection MergeStyle RenderControl

This document is created with the unregistered version of CHM2PDF Pilot

DataBind OnBubbleEvent RenderEndTag

Dispose OnDataBinding ResolveUrl

Equals OnInit SaveViewState

EnsureChildControls OnItemCommand ToString

 TrackViewState

TextBox Class

Member of System.Web.UI.WebControls.

The TextBox class is the ASP.NET server control abstraction of both the HTML INPUT type text box as well as
the TEXTAREA element.

Properties

AccessKey EnableViewState Style

Attributes Events TabIndex

AutoPostBack Font TagKey

BackColor ForeColor TagName

BorderColor HasChildViewState TemplateSourceDirectory

BorderStyle Height Text

BorderWidth TextMode

ChildControlsCreated ID ToolTip

ClientID IsTrackingViewState UniqueID

Columns MaxLength

Context NamingContainer ViewState

Controls Page ViewStateIgnoresCase

ControlStyle Parent Visible

ControlStyleCreated ReadOnly Width

CssClass Rows Wrap

Enabled Site

Methods

AddAttributesToRender FindControl OnItemCreated

AddParsedSubObject Finalize OnItemDataBound

ApplyStyle GetHashCode OnLoad

ClearChildViewState GetType OnPreRender

CopyBaseAttributes HasControls OnUnload

ClearChildViewState IsLiteralContent RaiseBubbleEvent

AddParsedSubObject LoadViewState Render

ClearChildViewState MapPathSecure RenderBeginTag

CreateChildControls MemberwiseClone RenderChildren

CreateControlCollection MergeStyle RenderControl

DataBind OnBubbleEvent RenderEndTag

This document is created with the unregistered version of CHM2PDF Pilot

Dispose OnDataBinding ResolveUrl

Equals OnInit SaveViewState

EnsureChildControls OnItemCommand ToString

 TrackViewState

WebControl Class

Member of System.Web.UI.Webcontrol. Abstract class.

The WebControl class serves as the base class for Web controls.

Properties

AccessKey Enabled Style

Attributes EnableViewState TabIndex

BackColor Events TagKey

BorderColor Font TagName

BorderStyle ForeColor TemplateSourceDirectory

BorderWidth HasChildViewState ToolTip

ChildControlsCreated Height UniqueID

ClientID ID ViewState

Context IsTrackingViewState ViewStateIgnoresCase

Controls NamingContainer Visible

ControlStyle Page Width

ControlStyleCreated Parent

CssClass Site

Methods

AddAttributesToRender FindControl OnUnload

AddParsedSubObject RaiseBubbleEvent

ApplyStyle GetHashCode Render

BuildProfileTree GetType RenderBeginTag

ClearChildViewState HasControls RenderChildren

CopyBaseAttributes IsLiteralContent RenderContents

CreateChildControls LoadViewState RenderControl

CreateControlCollection MemberwiseClone RenderEndTag

CreateControlStyle MergeStyle ResolveUrl

DataBind OnBubbleEvent SaveViewState

Dispose OnDataBinding

EnsureChildControls OnInit ToString

Equals OnLoad TrackViewState

Finalize OnPreRender

Events

This document is created with the unregistered version of CHM2PDF Pilot

DataBinding Init PreRender

Disposed Load Unload
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 3. Debugging ASP.NET Applications

IN THIS CHAPTER

•

• Tracing Your Web Application's Activity
•
•

• Debugging ASP.NET Applications
•
•

• Creating Custom Performance Monitors
•
•

• Writing to the Windows Event Log
•
•

• Reference
•

Debugging ASP.old applications was generally only slightly less painful than a trip to the dentist. There was a way to
debug ASP.old applications, but it was poorly documented and essentially required Visual InterDev and a team of
crack technicians, as well as favorable weather conditions and a whole lot of luck to work correctly.

Many ASP.old developers got into the habit of using code like the following as a way of creating breakpoints in their
code:

Response.Write "DEBUG: Maybe this will work now."
Response.End

This is about the least-efficient kind of debugging code you can possibly write. It's the coding equivalent of driving a
car off a cliff just to lift up the hood. At the very least, you should have a way of figuring out what's going on in your
application without having to stop its execution.

It should come as no surprise, then, that ASP.NET recognized the severe shortcomings in debugging Web
applications and came up with a number of compelling solutions. In ASP.NET, you can perform various useful and
detailed inspections into the inner workings of your running applications.

This document is created with the unregistered version of CHM2PDF Pilot

Debugging and tracing in ASP.NET applications doesn't require Visual Studio .NET. (This book doesn't assume you
have Visual Studio, either.)

We'll begin our exploration of debugging ASP.NET applications with a discussion of tracing and then move on to
debugging and other diagnostic services provided by ASP.NET and the .NET framework.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Tracing Your Web Application's Activity

Tracing is a new feature of ASP.NET that enables you to monitor the activity of your application as it runs. Tracing
requires three steps:

1.

1. Equipping a page for tracing
1.
2.

2. Turning tracing on
2.
3.

3. Executing your Web application in Trace mode
3.

When you have gone through these three steps, you'll be able to see the results of the execution of each line of code
on each page of your ASP.NET application.

Equipping a Page for Tracing

Any ASP.NET pagecan can run in Trace mode. In fact, you technically don't have to explicitly equip a page for
tracing to derive benefit from Trace mode. But equipping a page for tracing enables you to insert custom markers in
the trace output, so it's common to include them in all but the most trivial ASP.NET pages. Even better, Trace mode
can be turned on and off on at the page level or the application level, so you never need to remove the code that
equips a page for tracing. Trace code won't affect performance of your application when tracing is turned off, and
you'll never have to worry about your embarrassing ad hoc test output making its way to users because you forgot to
comment something out.

NOTE

The Trace object used in ASP.NET is an instance of the TraceContext class, found in the System.Web namespace.
(This class is different from the Trace class found in the System.Diagnostics namespace; TraceContext is specific to
ASP.NET.)

The properties, methods, and events of the TraceContext class are summarized in the reference section at the end of
this chapter.

To equip a page for Trace mode, you make calls to the Write method of the Trace object anyplace in your code you
want to receive trace notification. For example, you may be debugging a function that does not appear to be called

This document is created with the unregistered version of CHM2PDF Pilot

during the lifetime of the page. By placing a call to Trace.Write somewhere in the body of the function, you can easily
determine whether the function is being called.

NOTE

Because the Trace object is created implicitly by the ASP.NET Page object, you don't need to instantiate it yourself.

Listing 3.1 shows an example of a simple page that is equipped for tracing.

Listing 3.1 A Simple Page Equipped for Tracing with Calls to Trace.Write

<% @Page language="C#" debug="true" trace="true" %>
<html>
<head>
 <title>ASP.NET DataList Control</title>
</head>
<script runat="server">

 public void Page_Load(Object sender, EventArgs e)
 {
 Trace.Write("Page_Load starting.");
 if (!IsPostBack)
 {
 Trace.Write("IsPostBack is false; creating data source.");
 Hashtable h = new Hashtable();
 h.Add ("SF", "San Francisco");
 h.Add ("AZ", "Arizona");
 h.Add ("CO", "Colorado");
 h.Add ("SD", "San Diego");
 h.Add ("LA", "Los Angeles");
 Trace.Write("Data binding.");
 DataList1.DataSource = h;
 DataList1.DataBind();
 }
 Trace.Write("Page_Load ending.");
 }

</script>
<body>
 <form runat="server">
 <asp:DataList id="DataList1" runat="server"
 BorderColor="black" BorderWidth="1" CellPadding="3"
 Font-Name="Verdana" Font-Size="8pt">
 <HeaderStyle BackColor="#000000" ForeColor="#FFFF99"></HeaderStyle>
 <AlternatingItemStyle BackColor="#FFFF99"></AlternatingItemStyle>
 <HeaderTemplate>
 National League West
 </HeaderTemplate>
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem, "Value") %>
 [<%# DataBinder.Eval(Container.DataItem, "Key") %>]
 </ItemTemplate>
 </asp:DataList>
 </form>
</body>
</html>

This document is created with the unregistered version of CHM2PDF Pilot

You may recognize this page as the DataList example from Chapter 2, "Page Framework." (Book authors enjoy
recycling their own code as much as any programmers do.) This version of the code includes calls to Trace.Write to
indicate the status of the Page_Load event procedure.

You can see the output of this trace simply by navigating to this page in a browser. The normal page code executes
and a voluminous amount of trace information is disgorged to the bottom of the page. Under the heading Trace
Information, you should be able to see a number of page-generated trace items (such as Begin Init and End Init) as
well as the page's own custom trace custom trace messages (such as Page_Load starting).

Categorizing Trace Output

You can assign a category to the trace output generated by your code. Categorizing trace output can make it easier
to sort out trace messages; it's particularly useful when you view output in SortByCategory mode (described in the
next section).

You assign a category to a trace message by using an overloaded version of the Trace.Write method. Listing 3.2
shows an example of this.

Listing 3.2 Creating Categorized Trace.Write Output

public void Page_Load(Object sender, EventArgs e)
{
 Trace.Write("My Application", "Page_Load starting.");
 if (!IsPostBack)
 {
 Trace.Write("My Application", "IsPostBack is false;" +
 "creating data source.");
 Hashtable h = new Hashtable();
 h.Add ("SF", "San Francisco");
 h.Add ("AZ", "Arizona");
 h.Add ("CO", "Colorado");
 h.Add ("SD", "San Diego");
 h.Add ("LA", "Los Angeles");
 Trace.Write("Data binding.");
 DataList1.DataSource = h;
 DataList1.DataBind();
 }
 Trace.Write("My Application", "Page_Load ending.");
}

This is a slightly altered version of the Page_Load event procedure from the previous code example. The only
difference is in the pair of strings passed to Trace.Write. When using this form of the method, the first string becomes
the category and the second string is the trace message. You can view the trace category alongside the other trace
information by viewing the page in Trace mode, as described in the next section.

Enabling Tracing for a Page

You can turn tracing on for a particular page by using an @Page directive. To do this, set the Trace attribute in the
@Page directive to true.

This document is created with the unregistered version of CHM2PDF Pilot

<@ Page language='C#' trace="true" %>

Two Trace modes specify how trace output is sorted—by time or by category.

You control the Trace mode by using the TraceMode attribute in the @Page directive. To sort Trace mode
information by category, set the TraceMode attribute to SortByCategory. The default setting, SortByTime, sorts the
trace output by time, oldest to newest.

When tracing is activated at the page level, a wealth of information is displayed at the bottom of the normal page
output. (Depending on what's normally supposed to be displayed on the page, you may have to scroll down to see
the trace information.)

Trace information is divided into the following categories:

•

• Request details—This includes the session ID assigned to the user's session by ASP.NET, the time the
request was made, the encoding used in the request and response, the HTTP type, and the HTTP status
code.

•
•

• Trace information—This includes trace information automatically generated by ASP.NET, as well as custom
trace items generated by calls to Trace.Write from your code. Included in this information is a measurement
of how long each operation took to complete. You can use this information to determine where performance
bottlenecks exist in the execution of your page.

•
•

• A control tree—This is a hierarchical display of all the controls on the page.
•
•

• A list of cookies transferred by the request—Unless you have cookie-based sessions turned off in your
application, typically at least one cookie will be transferred per request (the cookie used to identify the user's
session).

•
•

• HTTP headers—These are sent by the server to the browser.
•
•

• Query string values—Values requested by the browser.
•
•

This document is created with the unregistered version of CHM2PDF Pilot

• HTTP server variables—The list of all HTTP server variables sent by the server to the browser.
•

Page-based tracing is useful for performance and debugging purposes. But if you're interested in seeing aggregated
tracing information—perhaps to determine how multiple users are accessing elements of an entire Web
application—you must use application-level tracing, as described in the next section.

Enabling Tracing in an Application

You can turn tracing on for all the pages in a Web application. To do this, you must make a change in Web.config.
Listing 3.3 shows an example of a Web.config settings file that activates tracing.

Listing 3.3 Using the Web.config File to Activate Tracing for an Entire Web Directory

<configuration>
 <system.web>
 <trace enabled="true"
 requestLimit="15"
 pageOutput="true"
 localOnly="true" />
 <system.web>
</configuration>

In addition to the enabled and pageOutput settings, you can see that the trace configuration settings in Web.config
contain a few options that aren't available in the debug settings found in the @Page directive. Specifically, the
requestLimit attribute enables you to limit the number of trace requests stored on the server. This option is meaningful
when you view aggregate trace information from a remote browser window, as described in the next section.

The localOnly attribute ensures that trace information can be viewed only by users logged on to the Web server
machine directly. This prevents remote users from seeing trace output.

For more information on how Web.config works, see Chapter 5, "Configuration and Deployment."

Using Application Tracing from a Remote Browser Window

When application-level tracing is activated, you can view aggregate trace data from a separate browser window. This
gives you an aggregate view of all trace information generated by your Web application.

To do this, first equip the application for tracing by adjusting the appropriate settings in Web.config (as described in
the previous section).

Next, open two browser windows: one to view a page equipped for tracing in the application; the second to display
trace output. (We'll call this second window the trace window.)

In the trace window, navigate to the HTTP handler trace.axd located in the application directory. For example, if

This document is created with the unregistered version of CHM2PDF Pilot

your application is located at http://localhost/myapp/, the Trace mode URL would be
http://localhost/myapp/trace.axd. You should be able to see a list of application requests. The list may or may not
have any data in it, depending on whether you've refreshed the browser that displays the application page since you
started the trace.

After refreshing the application browser a few times, refresh the trace window. You should be able to see a list of
trace information. If you navigate to another page in the application and then refresh the trace window, you'll be able
to see trace information for that page, too.

You can see that the trace window displays only aggregate information. Further, the number of requests displayed in
the window is limited to the number you specified in the Web.config trace setting for the application. You can drill
down on each row of information by clicking the View Details link; this displays the same detailed information you
see when viewing a single page in Trace mode.

NOTE

Trace.axd isn't a file; instead, it's a link to an ASP.NET feature known as an HTTP handler. You can use the .NET
framework to create your own HTTP handlers; this is discussed in Chapter 8, "HttpHandlers and HttpModules."

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/myapp/,
http://localhost/myapp/trace.axd.

for RuBoard

Debugging ASP.NET Applications

The large number of ASP.old programmers migrating their code to ASP.NET ensures that error messages are one of
the first things an ASP.NET programmer will typically see. Fortunately, not only is the debugging information
provided by ASP.NET much better than ASP.old, but you have much more granular control over how debugging
information is displayed in ASP.NET.

An ASP.NET debug page is displayed when an unhandled error is encountered, as long as the appropriate @Page
or Web.config settings exist. The output of the page is composed of:

•

• The application (or Web directory) where the error took place
•
•

• The type of error and a description of the error
•
•

• Details of the error from the compiler
•
•

• Source code displaying where the error took place in your code
•
•

• The file in which the error took place
•
•

• Links to detailed compiler output and complete source code
•
•

• Version information for the .NET runtime and ASP.NET
•

This rich debugging information isn't turned on by default, however. To access rich debugging information, you must
turn debugging on, either at the page level (using an attribute of the @Page directive) or for the entire application
(using a setting in Web.config).

Enabling Debugging at the Page Level

You can enable debugging at the page level by using an @Page directive.

This document is created with the unregistered version of CHM2PDF Pilot

<@ Page language="C#" debug="True" %>

Don't try testing this by creating an incorrectly coded ASP.NET page and trying to load it on localhost. Errors on the
local machine always create debug information. The debug settings control what users on remote machines see. To
test debug settings, you'll need to access your error page on a machine other than the Web server machine.

In case you haven't created one of your own already, Listing 3.4 contains an ASP.NET page that contains a bona
fide error. You can use this page to test the way ASP.NET generates debug output code.

Listing 3.4 The First Mistake That Most ASP.NET Programmers Generally Make

<% @Page language="C#" debug="false" %>
<HTML>
 <HEAD>
 <TITLE>ASP.NET Error Page</TITLE>
 <SCRIPT runat='server'>
 public void Page_Load(Object Sender, EventArgs e)
 {
 Response.Write "This code will not work."
 }
 </SCRIPT>
 </HEAD>
 <BODY>
 This is my page. There are many others like it, but this one is mine.
 </BODY>
</HTML>

Note that this page has its Debug mode set to false. When you first load it (from a remote machine, remember), you'll
get a message indicating that something is wrong with the code on the page. But the output won't display any
additional information about the error; in particular, the source code display is suppressed. This is an extremely
helpful security feature that ensures that your source code won't be displayed in an error condition unless you
specifically permit it through an @Page attribute setting or a debug setting in Web.config.

Enabling Debugging at the Application Level

Turning debugging on and off at the page level is easy enough when you're making changes to only a few pages. But
early in the development process, when nothing works, you may want to be able to turn Debug mode on for every
page in your application.

You can turn debugging on for all the pages in a given folder by changing a setting in the Web.config file in that folder.
You can activate Debug mode at the application level by setting the Debug attribute of the compilation section in
Web.config.

Listing 3.5 shows an example of a Web.config file that activates debugging for an entire application.

Listing 3.5 A Web.config File That Activates Debugging at the Application Level

<configuration>

This document is created with the unregistered version of CHM2PDF Pilot

 <system.web>
 <customErrors mode="Off" />
 <compilation defaultLanguage="C#"
 debug="true"
 numRecompilesBeforeAppRestart="15">
 </compilation>
 </system.web>
</configuration>

That's it. Remember that when you test this option, it's meaningful only when you're debugging the application from a
remote machine. Debug mode is always on when you're logging in to the Web application from localhost.

Using the Debug Object

The .NET framework provides a Debug object that you can use to assist with debugging your application. The
Debug object is a member of System.Diagnostics.Debug. An instance of this object is created for you automatically,
so you shouldn't ever need to instantiate it yourself. If you used the Debug object in Visual Basic, the .NET
framework Debug object should be familiar to you.

NOTE

A complete reference to the properties and methods of the Debug object appears at the reference section at the end
of this chapter.

The Write method is the most common member of Debug you'll use in your day-to-day programming. By using
Debug.Write, you can send information to the development environment you run your ASP.NET application in. If
you're using Visual Studio, the strings you send to Debug.Write are displayed in the Output window. (You can view
them by running your Web application and then selecting View, Other Windows, Output, or by using the keyboard
shortcut Ctrl+Alt+O.)

Listing 3.6 shows a typical call to Debug.Write, used to indicate that an ASP.NET page has loaded and its
Page_Load event procedure has been entered.

Listing 3.6 Placing a Call to Debug.Write to Display Debug Information in the Development Environment

private void Page_Load(Object Sender , EventArgs e)
{
 Debug.Write("Application initializing. Poot.");
}

If you're not using Visual Studio or another integrated development environment to run and debug your ASP.NET
application, calls to Debug.Write will go nowhere. A development environment must be present for the output
generated by Debug.Write to be meaningful; if you need to send real-time debug information while your application is
running, consider using Trace.Write (described earlier in this chapter) or a custom performance monitor (described in
the next section).

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Creating Custom Performance Monitors

A performance monitor is a feature of the Windows NT/2000 operating system used to determine operating system
resource consumption in real-time. In Windows, performance monitors track such statistics as the amount of
processing time being consumed on the system, how much memory is free, and how many times the hard disk is
accessed. Software subsystems that run on the server can have their own performance monitors, as well: ASP.NET
and SQL Server have their own set of performance monitors that broadcast meaningful information to the operating
system about resources consumed by these services.

Any .NET application can be equipped with performance monitors that you create yourself, called custom
performance monitors. To expose performance information to the operating system, an application must be equipped
to do so.

Running the Windows Performance Monitor Utility

You may have used the Perfmon tool to view the status of various performance monitors on a Windows NT or 2000
server. This tool is found in Windows 2000 under Programs, Administrative Tools, Performance. If you've never
used Perfmon before, you can see how it works by running it and then right-clicking its main window and selecting
Add Counters from the pop-up menu.

After you do this, a Counters dialog box appears, containing lists of every performance monitor–equipped
application installed on your machine. We'll assume you have ASP.NET installed on your computer, so select the
ASP.NET Applications category from the list labeled Performance Object. Then select the Anonymous
Requests/Sec counter from the list of counters. Finally, click Add to add this counter to your view.

You should notice that the chart begins ticking off the number of requests, which should hover close to zero unless
you happen to be performing these experiments on a production Web server (if so—shame, shame). To generate
some activity for this performance monitor, simply launch a browser and navigate to an ASPX page (not an ASP
page) on localhost. Reload the page in the browser a few times by pressing Ctrl+F5, and then flip back to the
Performance window. You should be able to see a modest spike in the number of requests per second.

Creating Performance Monitor Categories

The first step in creating a custom performance monitor is to create your own performance monitor category.
Performance monitor categories appear in Perfmon's Performance Object drop-down list; they exist as a way to
organize the many performance monitors that can exist on a server.

NOTE

The system provides a number of performance monitor categories, such as Memory, Processor, and so forth. You're
not allowed to create performance monitors in these categories. To create a custom performance monitor, you must

This document is created with the unregistered version of CHM2PDF Pilot

create your own performance monitor category first.

To create a new performance monitor category, call the Create method of the PerformanceCounterCategory object.
This object is a member of System.Diagnostics, so you may want to import that namespace into your application to
work with it.

PerformanceCounterCategory.Create is a static method. The method call enables you to create a performance
category and a performance object at the same time. This initializes everything you need to begin performance
monitoring with only a few lines of code.

Listing 3.7 shows a procedure that creates a performance category called My Category and an associated
performance monitor in that category called My Counter.

Listing 3.7 Initializing a New Performance Monitor Category and Performance Monitor Object

public void btnCreateCategory_Click(Object Sender, EventArgs e)
{
 PerformanceCounterCategory.Create ("My Category", "A category just for me",
 "My Counter","A counter just for me");
 Label1.Text = "Performance category created.";
}

This form of the PerformanceCounterCategory.Create method takes the following four strings as parameters:

•

• The name of the new category you want to create
•
•

• A text string that describes the category
•
•

• The name of the new performance monitor you want to create
•
•

• A text string that describes the new performance monitor object
•

After you run this code, your new performance monitor category and performance monitor object are created. Note
that if you attempt to run this code twice, you'll get an exception. Also, if you're running Perfmon in the background
when this code is executed, you'll need to shut down and restart Perfmon to get it to recognize the new category and
performance monitor.

Sending Information to a Performance Monitor from Your Application

This document is created with the unregistered version of CHM2PDF Pilot

To provide information about your application to performance monitors, you first create an instance of the
PerformanceCounter object.

NOTE

The properties, methods, and events of the PerformanceCounter class are summarized in the reference section at the
end of this chapter.

Performance counters always represent some kind of integer count related to the performance of the operation being
monitored. After you've created a PerformanceCounter object, you have a choice about how you want to send
information to it. You can increment and decrement the integer count using the Increment and Decrement methods of
the PerformanceCounter object.

Listing 3.8 shows an example of incrementing the performance counter in response to a button click.

Listing 3.8 Incrementing a Performance Monitor Using a PerformanceCounter Object

void Increment_Click(System.Object Sender, System.EventArgs e)
{
 PerformanceCounter pc = new PerformanceCounter();
 pc.CategoryName = "My Category";
 pc.CounterName = "My Counter";
 pc.ReadOnly = false;
 pc.Increment();
}

Remember that you must create the performance monitor and its category (described in the previous section) before
you can run this code. You can see how this code works by running this code while Perfmon is running in the
background. If you have set up a counter for this performance monitor, you should be able to see the graph increase
each time you click the button.

In addition to incrementing and decrementing the performance counter object, you can also increase or decrease the
value of the counter using the IncrementBy or DecrementBy methods. You can also get or set the raw value of the
performance counter by using the RawValue property of the PerformanceCounter object.

Deleting Performance Monitor Categories

You can delete a performance monitor category by executing the Delete method of the
PerformanceCounterCategory object. Listing 3.9 shows an example.

Listing 3.9 Deleting a Performance Category

public void btnDeleteCategory_Click(Object Sender, EventArgs e)
{
 PerformanceCounterCategory.Delete("My Category");

This document is created with the unregistered version of CHM2PDF Pilot

}

Deleting a performance category deletes all performance monitors associated with that category. If Perfmon is
running when you delete a performance category, it will continue monitoring that category; you must shut down and
restart Perfmon to see the change.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Writing to the Windows Event Log

It's common for server software to persistently record information about what it's doing. This activity is called logging.
It's common for programmers to spend time creating logging features in the applications they write—both as a
debugging tool and as a way for users and system administrators to see what's going on with the software. However,
Windows programmers typically don't create their own logging facilities in the applications they create, because the
operating system provides one for them: the Windows event log.

The Windows event log is a central, system-managed place where any application, service, or device can log
information. It is available on Windows NT and Windows 2000. Logged events usually contain status information or
failure messages. You are free to use the event log from any of your applications, including ASP.NET applications, as
a way of persistently storing information pertaining to your application's behavior in a way that's easy for system
administrators to access.

NOTE

Logging serves a similar function to performance monitoring (discussed earlier in this chapter). But it differs in the
area of how the data is stored. Monitoring is a real-time view of what your application is doing at any given moment.
Monitoring information is stored in memory and does not normally survive a system reboot. Logging, on the other
hand, is persisted to disk and provides a historical record of your server application's behavior over a long period of
time.

In Windows 2000 Server, you can access the event log through the Event Viewer application found in the
Administrative Tools group under the Start menu. Events are divided into three categories: application, security, and
system. Your application can read from any log and write information to the application log, as described in the next
section.

Using the EventLog Class

Any application, including ASP.NET applications, can access the event log. Your applications will write information
to the application log (rather than to the security or system logs).

The .NET framework provides a class for handling the event log. This is the EventLog class, found in
System.Diagnostics.

NOTE

The properties, methods, and events of the EventLog class are summarized in the reference section at the end of this
chapter.

This document is created with the unregistered version of CHM2PDF Pilot

To send information to the application log, you use the EventLog class. This class is created for you automatically, so
you do not need to instantiate it (although you can if you need to).

To perform logging, you first use the EventLog object to create an event source. An event source is a way of
identifying where a log entry came from. Many data sources can write to the same log; for example, many
applications typically write error messages to the application log, and a variety of server processes create entries in
the system log.

Event sources must be registered before you write information to the log. You do this by calling the
CreateEventSource method of the EventLog object.

NOTE

For applications you create, unless you have a really good reason to create your own log, it's probably best to toss
your own logs into the application log with everything else. That's where system administrators will look for it.

Only the first eight characters of a log name are significant. This means you can't create a log named, for instance,
Application Data, because Application is a built-in log created by Windows.

Listing 3.10 shows an example of how to write information to the Windows event log. This code first checks to see if
an event source called MyApp exists; if not, the code creates it. The code then sends information to the event log by
calling the WriteEntry method of the EventLog object.

Listing 3.10 Writing an Event to the Windows Event Log

void Button1_Click(Object Sender, EventArgs e)
{
 if(!EventLog.SourceExists("MyApp"))
 {
 EventLog.CreateEventSource("MyApp", "Application");
 }
 EventLog.WriteEntry("MyApp", "This is just a test.",
 EventLogEntryType.Information);
}

The WriteEntry method is overloaded; the code example shows the most commonly used form. The first parameter is
a string representing the event source. The second parameter is the message to insert in the log. The third parameter
is an event type; this is a member of the enumeration System.Diagnostics.EventLogEntryType.

You can view the output of this code by launching the Event Viewer (found in Programs, Administrative Tools). After
running the code, click Application Log. You should be able to see an Information entry for the MyApp event
source. Double-clicking the event displays a property sheet that shows you the detail for the event (the description

This document is created with the unregistered version of CHM2PDF Pilot

"This is just a test").

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Reference

This section provides a quick reference to the key objects described in this chapter. Space constraints prevent us
from documenting every object in the .NET framework in this book. For the sake of brevity and conciseness, we
include only the most important objects here. For more information on the other objects in the .NET framework,
consult the .NET Framework Reference online help file.

This chapter covers the debugging, performance-monitoring, and event-logging classes in ASP.NET. The following
sections provide a brief reference to the properties, methods, and events provided by those classes.

Debug Class

Member of System.Diagnostics.

The Debug object gives developers access to a number of useful tools to manage the debugging process.

It is not necessary to instantiate a Debug object; an instance of the object is always available in an ASP.NET page.

Properties

AutoFlush IndentSize

IndentLevel Listeners

Methods

Assert Indent WriteLine

Close Unindent WriteLineIf

Fail Write

Flush WriteIf

EventLog Class

Member of System.Diagnostics.

The EventLog class is used to read and write information from the Windows event log. This is used primarily to
record diagnostic information pertaining to an application, particularly failure information.

Properties

Container Events Site

DesignMode Log Source

This document is created with the unregistered version of CHM2PDF Pilot

EnableRaisingEvents LogDisplayName SynchronizingObject

Entries MachineName

Methods

BeginInit EndInit InitializeLifetimeService

Clear Equals LogNameFromSourceName

Close Exists MemberwiseClone

CreateEventSource Finalize SourceExists

CreateObjRef GetEventLogs ToString

Delete GetHashCode WriteEntry

DeleteEventSource GetLifetimeService

Dispose GetService

 GetType

Events

Disposed EntryWritten

PerformanceCounter Class

Member of System.Diagnostics.

You create an instance of this class to expose your application's performance information to performance monitors.

Properties

CategoryName CounterType MachineName

Container DesignMode RawValue

CounterHelp Events ReadOnly

CounterName InstanceName Site

Methods

BeginInit Equals InitializeLifetimeService

Close Finalize MemberwiseClone

CloseSharedResource GetHashCode NextSample

CreateObjRef GetLifetimeService NextValue

Decrement GetService RemoveInstance

Dispose GetType ToString

 Increment

EndInit IncrementBy

Events

Disposed

TraceContext Class

Member of System.Web.

This document is created with the unregistered version of CHM2PDF Pilot

TraceContext provides Trace mode functionality in ASP.NET Web application development. It is typically accessed
as the Trace object contained by the ASP.NET Page object.

Properties

IsEnabled TraceMode

Methods

Equals GetType Warn

Finalize MemberwiseClone Write

GetHashCode ToString
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 4. State Management and Caching

IN THIS CHAPTER

•

• State Management: What's the Big Deal?
•
•

• Caching
•
•

• Class Reference
•

ASP.NET introduces several new options for managing session state and introduces a whole new category of
functionality, caching. This chapter covers all of the new session state options and introduces the new caching options.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

State Management: What's the Big Deal?

HTTP by its very nature is a stateless protocol. This doesn't mean it disregards geographic boundaries; it means that
it is not connection oriented. No request of the Web server can rely on data supplied by some other request. To
understand this concept, let's look at an example of how a browser requests a Web page.

When a user types in the address of a Web site, www.deeptraining.com/default.aspx, for example, the Web browser
performs a number of steps prior to displaying the page. First, the Web browser converts the hostname, in this case
www, to an IP address. It does this by querying a DNS server and asking for the IP address. In our sample, this
brings back 192.168.1.200. Next, the Web browser opens a TCP socket to the Web server using port 80. After the
connection is made, the Web browser sends a GET /default.asp command. The Web server streams the HTML
contents of the page back to the browser. The Web server then closes the TCP socket connection to the Web
browser.

NOTE

HTTP 1.1 allows more than one command to be sent without closing the socket connection. This is called
Keep-Alive. However, each command stands on its own and should not rely on any state from previous commands.

This series of events is visibly demonstrated by using Telnet instead of a Web browser to communicate with a Web
server. Listing 4.1 shows what this would look like.

Listing 4.1 A Sample HTTP Request Using Telnet

GET /DEFAULT.ASPX
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 28 Mar 2001 00:38:29 GMT
Set-Cookie: ASP.NET_SessionId=sfdaa145jb0mdv55nnhgic55; path=/
Cache-Control: private
Content-Type: text/html; charset=iso-8859-1
Content-Length: 130

<html>
<head>
<title>Welcome to ASP.NET</title>
<body>
Welcome to ASP.NET!

</body>
</html>

Connection to host lost.

To replicate this example in Windows 2000, open up a command prompt and type the following:

This document is created with the unregistered version of CHM2PDF Pilot

TELNET localhost 80

This will open up the Telnet connection to your Web server. Now you need to request a page. If you have the default
Internet Information Server installation, you can do a GET /localstart.asp to retrieve the Start page. You must type
the command exactly; while in Telnet, the Backspace key doesn't work to correct mistakes.

The Web browser receives the HTML, parses it, and is then ready to receive additional requests. In this example,
two more requests would need to be made: one for image1.jpg and another for image2.jpg. Each request causes
another TCP socket connection to be made over port 80 and then a GET /image1.jpg command to be sent. The
Web server streams back the image and then closes the port. A diagram of this process is shown in Figure 4.1.

Figure 4.1. Steps in a standard browser request.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Caching

Do you have a page on your Web site that is built from the database, but the data changes only once a day? Perhaps
you have a busy order page that must populate a list of states and countries out of the database several thousand
times a day. How often do you need to add a new state? Clearly, these sorts of updates happen very infrequently.
Are you hitting the limits of how far you can scale your database server? Are you looking for ways to reduce the load
instead of spending $100,000 to upgrade the server? These are the types of scenarios where it makes sense to take
a hard look at caching.

Output Caching: Caching an Entire Page

The simplest type of caching in ASP.NET is called output caching. Output caching takes the results from an
ASP.NET page request and stores it in memory. Future requests for the same page are then served out of memory
instead of being served by re-creating the page from scratch. (See Figure 4.6.) This can yield enormous savings in
processor utilization on both the Web server and the database server, depending on the work the page performs.
Page load times are decreased because after the first request, the page behaves as though it is a static HTML page.

Figure 4.6. Page requests are intercepted and served from cache.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Class Reference

This section provides a quick interface reference to the key objects described in this chapter. Space constraints
prevent us from documenting every object in the .NET framework in this book, so for the sake of brevity and
conciseness, we include only the most important objects here. For more information on the other objects in the .NET
framework, consult the .NET Framework Reference online help file.

HttpSessionState Class

Member of System.Web.SessionState.

Assembly: System.Web.dll.

The HttpSessionState class is instantiated and placed inside the Session property of the Page object.

Properties

CodePage Contents Count

IsCookieless IsNewSession IsReadOnly

IsSynchronized Item Keys

LCID Mode SessionID

StaticObjects SyncRoot TimeOut

Methods

Abandon Add Clear

CopyTo GetEnumerator Remove

RemoveAll RemoveAt

HttpCachePolicy

Member of System.Web.

Assembly: System.Web.dll.

The HttpCachePolicy class allows you to control many of the parameters that the <%@ OutputCache %> directive
controls. It also adds several more methods to give additional control over caching.

Properties

VaryByHeaders VaryByParams

This document is created with the unregistered version of CHM2PDF Pilot

Methods

AddValidationCallback AppendCacheExtension SetCacheability

SetETag
SetETagFromFile

Dependencies

SetExpires

SetLastModified
SetLastModifiedFrom

FileDependencies

SetMaxAge

SetNoServerCaching SetNoStore SetNoTransforms

SetProxyMagAge SetRevalidation
SetSliding

Expiration

SetValidUntilExpires SetVaryByCustom

HttpCacheVaryByHeaders

Member of System.Web.

Assembly: System.Web.dll.

The HttpCacheVaryByHeaders class provides a type-safe way to set the VaryByHeaders property of the
HttpCachePolicy class for a number of well-known headers.

Properties

AcceptTypes Item UserAgent

UserCharSet UserLanguage

Methods

VaryByUnspecifiedParameters

HttpCacheVaryByParams

Member of System.Web.

Assembly: System.Web.dll.

This document is created with the unregistered version of CHM2PDF Pilot

The HttpCacheVaryByParams class provides a type safe way to set the VaryByParams property of the
HttpCachePolicy class.

Properties

IgnoreParams Item

Cache

Member of System.Web.Caching.

Assembly: System.Web.dll.

The cache class is a store for caching frequently used resources on the server.

Fields

NoAbsoluteExpiration NoSlidingExpiration

Properties

Count Item

Methods

Add Get GetEnumerator

Insert Remove

CacheDependency

Member of System.Web.Caching.

Assembly: System.Web.dll.

Keeps track of dependencies for items in the cache. This class cannot be inherited from.

Constructors

public CacheDependency(string);
public CacheDependency(string[]);
public CacheDependency(string, DateTime);
public CacheDependency(string[], DateTime);
public CacheDependency(string[], string[]);
public CacheDependency(string[], string[], CacheDependency);
public CacheDependency(string[], string[], DateTime);
public CacheDependency(string[], string[], CacheDependency, DateTime);

This document is created with the unregistered version of CHM2PDF Pilot

Properties

HasChanged

Methods

Dispose
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 5. Configuration and Deployment

IN THIS CHAPTER

•

• Understanding Configuration Files
•
•

• Global and Local Configuration Files
•
•

• Structure of Configuration Files
•
•

• Accessing Configuration Files Programmatically
•
•

• Editing Web Configuration Files in Visual Studio .NET
•
•

• Initializing Web Applications Using Global.asax
•
•

• Using XCOPY for Deployment
•
•

• Managing the Global Assembly Cache
•

Deploying applications under ASP.old was fairly simple—most of the time. You designated a folder as scriptable
under Internet Services Manager, copied your script files into that folder, and requested the ASP pages through a
Web browser. If something went wrong, you got a 404 Not Found error, which sent you back either to Windows
Explorer to locate the missing file or into Internet Services Manager to change an incorrect setting. On paper, it all
looked pretty simple.

Under this old model, the trouble came when your ASP application depended on external resources to run. For
example, if your application needed to periodically retrieve or store information from the system registry, or (even
worse) if your application depended on one or more COM components, you found yourself in a situation in which
you could not easily and automatically replicate your Web application on another server. This meant that for all but

This document is created with the unregistered version of CHM2PDF Pilot

the most trivial ASP.old applications, it was a pain to move your application from a development server to a
production server. The problems involved in replicating external dependencies got much worse in situations in which
you were required to deploy your application to a series of identical servers (such as a Web farm).

ASP.NET promises to make the process of deploying your Web applications much easier, no matter what kind of
application architecture or server you're working with. It does this by doing away with certain dependencies (such as
the system registry and the IIS metabase) and minimizing the impact of others—most notably, it got rid of the
requirement that a precompiled component be registered, as is the case with COM components.

In addition to making deployment simpler, ASP.NET makes the process of configuration much easier, as well. In the
past, IIS and ASP configuration files were stored in the registry and were accessible only through the registry editor
or (more com-monly) Internet Services Manager. But in many cases, important configuration information would get
lost in the GUI of the management console, which changed from one version of Windows to the next.

Storing IIS and ASP configuration data in the registry also meant that configuration itself became a new kind of
deployment problem, too, because you couldn't easily provide registry settings for your Web applications to suit
multiple machines or multiple customers.

In ASP.NET, many application-level settings are available through XML configuration files that you can view and
change using any text editor. This has advantages and disadvantages, as we'll discuss later in this chapter. But by and
large, the capability to easily distribute your configuration file along with the application itself is a huge boon to
application developers.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Understanding Configuration Files

Most software applications need to maintain bits of information about how the software is supposed to run. Web
applications are no different.

In ASP.old, you had a limited number of ways to manage application configuration data. You could

•

• Embed configuration data in the registry and hope that the person who deploys your application can insert the
necessary registry settings properly.

•
•

• Use script files such as global.asa or constants located in your own script files.
•
•

• Use custom text files that could be read and written to as needed.
•

All three of these techniques have significant drawbacks. Registry-based configuration is difficult to manage.
Changing a script file often requires a programmer, and errors inserted into script files can sabotage an entire
application. Custom text files alleviate this problem, but in many cases using an external file means that a reference to
that file must be explicitly included in every script file that accesses it.

The designers of ASP.NET recognized that application configuration was never as straightforward as it could have
been. In .NET, Web applications have a number of new configuration options and features (which we'll discuss in this
chapter and elsewhere in this book). But more importantly, the manner in which you configure your Web application
is now totally standard and fairly simple to manage. In ASP.NET, applications are configured with just two XML
files—Machine.Config and Web.Config. You can easily make changes to and redistribute these to enforce settings in
your applications, as you'll see in the next section.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Global and Local Configuration Files

Servers that run .NET Web applications will typically have multiple ASP.NET configuration files. One such file,
known as the machinewide or global configuration file, is named Machine.Config; this file is created for you when you
install the .NET framework. The exact location of this file depends on your machine configuration and the version of
the .NET framework you're running, but it should be located in
\Windows\Microsoft.NET\Framework\[version]\CONFIG. (Replace [version] with whichever version you're actually
running.)

Additionally, any Web-accessible folder can optionally contain a Web.Config file that stores settings that are relevant
to the ASP.NET scripts in that folder. These settings override the machinewide settings found in Machine.Config.

ASP.NET Web applications can actually have multiple Web.Config files. This can occur when the application
contains subfolders. Each subfolder can have its own Web.Config; the configuration settings found in folders that are
located deeper in the hierarchy override the settings found at higher levels.

It's not necessary for any of your ASP.NET Web applications to have Web.Config files. If your application has no
configuration file, it inherits the settings found in the global configuration file (Machine.Config). When you make a
change to a configuration file, ASP.NET automatically picks up the change and applies it. You do not have to restart
the server or reboot the machine to get ASP.NET to recognize the changes you made. Also, although the
Web.Config file is by definition located in a Web-accessible directory, client browsers are prohibited from
downloading Web-configuration files (through an IIS security setting that is set at the time the .NET framework is
installed on your system).

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Structure of Configuration Files

As mentioned earlier, ASP.NET configuration files are XML documents. The root node of the document is always
called configuration. Within the configuration node are a variety of nodes and subnodes that contain additional
settings; these are grouped into section handlers.

The next few sections describe the default section handlers in the System.Web section of a Web configuration file.
Because each Web.Config file ultimately inherits its settings from Machine.Config, the descriptions apply to both files.

Authentication Settings

Authentication refers to the process whereby a user is granted or denied access to the page based on security
credentials.

ASP.NET supports three authentication modes:

•

• Windows authentication
•
•

• Cookie-based authentication
•
•

• Microsoft Passport authentication
•

In Windows authentication, the user has an account on the Windows NT/Windows 2000 server on which the Web
application is located; if the user is not located on the same subnet as an authenticating server, the user must supply a
username and password when the browser initially accesses a Web application.

In cookie-based authentication, an encrypted chunk of data is deposited on the user's computer and read by the
server each time the user accesses the site.

Passport authentication is similar to cookie-based authentication. It enables users to use the same security credentials
to access any one of a number of sites. This is accomplished by storing and authenticating user information in a
central location (managed by Microsoft).

NOTE

This document is created with the unregistered version of CHM2PDF Pilot

It is possible to use Passport authentication whether or not your site uses ASP.NET. You can get more information
about implementing Passport authentication on your site at http://www.passport.com/business.

To specify one of these authentication schemes, you make a change to the authentication section of the Web.Config
or Machine.Config files.

Figure 5.1 shows a typical authentication section and describes some of its settings.

Figure 5.1. Description of the authentication section of the Web configuration file.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.passport.com/business

for RuBoard

Accessing Configuration Files Programmatically

Because the Web configuration files are XML documents, you could use the XML-handling objects (discussed in
Chapter 10, "Using XML") to store and retrieve information in Web.Config and Machine.Config. This might be
useful when you want to store application-specific information in Web.Config, such as a database connection string.

However, you don't need to go to the trouble of parsing Web.Config to store and retrieve custom values from the
file—there is an easier way. To store application-specific settings in Web.Config, simply create a section called
appSettings and add the settings you want as key/value pairs in that section.

In the following example, the connection string is given the key "pubsdata"; the value of the setting is the familiar ADO
connection string.

<configuration>
 <system.web>
 <customErrors mode="Off" />
 </system.web>
 <appSettings>
 <add key="pubsdata" value="SERVER=localhost;DATABASE=pubs;UID=sa;PWD=mypass;"
/>
 </appSettings>
</configuration>

Note that you aren't limited to storing database connection strings in appSettings, but appSettings is a reasonable
solution to the common problem of where to store connection string data without sticking it into a constant in your
code or using a conventional include file.

To retrieve the custom application setting, you use the AppSettings collection contained in the ConfigurationSettings
object. This object, a member of the System.Configuration namespace in the .NET framework, enables you to
access the values stored in Web.Config by their key. So, for example, to retrieve the pubsdata value specified in the
previous example, you'd use the expression

Response.Write(ConfigurationSettings.AppSettings["eqguild"]);

Note that it's not necessary to create an instance of the ConfigurationSettings object. As with other objects such as
Page and Response, a single instance of ConfigurationSettings is always available to code that executes in your
ASP.NET page.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Editing Web Configuration Files in Visual Studio .NET

Like any other XML file, you can edit Web configuration files in Visual Studio .NET. In fact, when you create a Web
application project in Visual Studio .NET, the system adds a default Web.Config file to your project automatically.

Several advantages exist to editing Web configuration files in Visual Studio .NET. Among these are color-coded
syntax and the capability to navigate quickly through the configuration file using the outline mode common to all XML
files in the Visual Studio development environment.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Initializing Web Applications Using Global.asax

ASP.old provided a file, global.asa, that provided functionality specific to the ASP application and session. You
would typically put initialization code in global.asa, which provided a set of event-handling procedures for this
purpose.

ASP.NET provides a similar functionality in the file Global.asax. Four categories of entries can appear in a
Global.asax file:

•

• Application directives
•
•

• Code declaration blocks
•
•

• Server-side object tags
•
•

• Server-side includes
•

Each of these four categories of entries is discussed in more detail in the next few sections.

Note that when you make a change to Global.asax, as with all ASP.NET files, the binary representation of the script
will be automatically recompiled. This isn't a big deal in the case of most scripts, but in the case of Global.asax,
making a change and recompiling has the potentially troublesome side effect of wiping out all existing sessions
(including any data stored in session variables). Be aware of this when making changes to Global.asax on a
production system; as with any major change to a production site, you may want to use Windows Scheduler to
upload the updated version of the file to the production server at a time when traffic on your site is at its lowest, such
as the middle of the night or on a weekend. Also, storing session data out-of-process or in SQL Server will prevent
this problem from happening.

Note, too, that the code in Global.asax can't be run directly; nothing happens when a user navigates to Global.asax
using a browser, for example. This prevents users from viewing or running the code contained in this file.

Application Directives in Global.asax

An application directive is a line of code that instructs ASP.NET to take some special action regarding the execution
of the page.

This document is created with the unregistered version of CHM2PDF Pilot

Three application directives are supported in Global.asax:

•

• @Application, which allows you to specify an inheritance relationship between the application object and
another object

•
•

• @Assembly, which links an assembly to the application
•
•

• @Import, which imports a namespace
•

You've seen examples of @Import directives in virtually every code example in this book so far, so we won't go into
them again here.

Using the @Application Directive in Global.asax

The @Application directive supports two attributes: a class name and a description string.

<%@ Application inherits="MyComp.MyApp" [sr]
 description="My Custom Application %>

You use the @Application directive in situations where you want to create a custom Application object that inherits
from another object.

Note that the options available in the @Application directive in Global.asax are different from the attributes of the
@Application directive that are legal in normal ASPX pages.

Using the @Assembly Directive in Global.asax

The @Assembly directive represents a reference to an external assembly (a component) that is not contained in the
application's \bin directory. The advantage of referencing an assembly is that you get the performance and type-safety
benefits of early binding, as well as IntelliSense when working with the assembly's objects in the Visual Studio
development environment.

<%@ Assembly Name="PrattleFreeApp.Customer" %>

ASP.NET assemblies are typically contained in a \bin subdirectory under the application directory. Such assemblies
are automatically referenced by all pages in an ASP.NET application. The @Assembly directive is used in situations
where, for some reason, the assembly is stored in an unexpected place.

This document is created with the unregistered version of CHM2PDF Pilot

The syntax for referencing an external assembly in Global.asax is the same as referencing an external assembly in a
normal ASP.NET page.

Code Declaration Blocks in Global.asax

Code declaration blocks are events associated with Page objects such as Server and Application. You can write
code in event handlers for these objects in Global.asax. The advantage of this is centralized management of
initialization code. Because code in Global.asax is guaranteed to execute no matter which page initially uses to access
the application, you don't have to worry about including it (or copying it) into every file of your application.

The event procedures that can be included in Global.asax (in the order in which the events fire) are

•

• Application_OnStart
•
•

• Session_OnStart
•
•

• Session_OnEnd
•
•

• Application_OnEnd
•

Listing 5.2 shows an example of an event handler for the Session object.

Listing 5.2 Example of an OnStart Event Handler in Global.asax

<SCRIPT runat='server' language='c#'>

 void Session_OnStart()
 {
 Response.Write("Starting a new session!
");
 Session["StartTime"] = DateTime.Now;
 Session.Timeout = 45;
 }

</SCRIPT>

You can test this script by dropping it into a Web-accessible directory and then navigating to an ASPX script file
located in that directory. Don't try to navigate directly to Global.asax; it won't work. Also, the code in Global.asax
isn't accessible from ASP.old scripts, so don't try testing it with an .ASP file.

This code is very straightforward; it sends a message to the browser for debugging purposes, stores the date and
time the session began in a Session variable, and then sets the session timeout to 45 minutes. The code in this event

This document is created with the unregistered version of CHM2PDF Pilot

procedure executes only the first time a user navigates to one of the pages in the Web application; a Web application
is defined as any ASP.NET Web script in a given directory.

Server-Side Object Tags in Global.asax

In many cases, it's useful for a Web application to have access to an object globally. This enables you to share
objects across multiple pages. You can also specify whether the object has application or sessionwide scope. You
use server-side object tags in Global.asax to do this, as shown in Listing 5.3.

Listing 5.3 Declaring an Application-Scoped Object in Global.asax

<object id="users"
 scope="application"
 class="System.Collections.ArrayList"
 runat="server"/>

<SCRIPT runat='server' language='c#'>

 public void Session_OnStart()
 {
 String usr;
 usr = Request.UserHostAddress;

 users.Add(usr);

 Response.Write("Global.asax: New session created.");

 }

</SCRIPT>

In addition to the definition of the application-level object called users, the code includes a Session_OnStart event
handler that adds the user's IP address to the user's ArrayList at the time the session is initiated. (In a real application,
you would need a corresponding Session_OnEnd code to remove the user's IP address from the array when the
session timed out.)

To display the contents of the array, use code similar to that shown in Listing 5.4.

Listing 5.4 Displaying Results of the Active-User Array

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 // NB the variable "users" is defined in global.asax

 Response.Write(users.Count + " users have active sessions.
");

 foreach(String usr in users)
 {
 Response.Write(usr + "
");
 }

 }
</SCRIPT>

This document is created with the unregistered version of CHM2PDF Pilot

This code will work in any script that is contained in the application directory. To test it, you will either have to access
the same page from two computers or launch two separate sessions on the same machine by using a different Web
browser (such as Netscape or Opera) for your second session.

When you access the Web server from your local machine, the IP address will always be 127.0.0.1.

Note that you don't have to use this technique to use an object globally; instead, you can place objects in the Session
object or (better yet) place the object in the ASP.NET cache. For information on this, see Chapter 4, "State
Management and Caching."

Server-Side Includes in Global.asax

Server-side includes (SSIs) are the same in Global.asax as they are in any other server-side script. The SSI directive
tells the Web server to include an external file in the script; it works the same as if you had copied and pasted it into
the script yourself.

The syntax for a server-side include in Global.asax is the same as in any other server-side script in ASP or ASP.NET:

<!-- #include File = "MyFile.inc" -->

It's typical to see server-side includes used as a code-sharing tactic. Unfortunately, maintaining server-side includes
can be unwieldy, particularly in situations where the includes are numerous or contain large amounts of code. Other
disadvantages exist to using includes, notably that you don't have access to IntelliSense in the Visual Studio
development for procedures contained in SSIs.

Rather than using SSIs, you may want to consider defining your global procedures as objects and referencing them as
components instead.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Using XCOPY for Deployment

Microsoft uses a shorthand term for the ease-of-deployment features in ASP.NET—it's called XCOPY deployment.
This refers to a command that was brought into Windows from the DOS world. An evolved version of the DOS
COPY command, XCOPY adds more powerful features, including the capability to create entire folders and
subfolder structures where necessary. In situations in which you use the command to copy a folder and child
subfolders, XCOPY can create identical folder structures on the destination disk.

Additionally, XCOPY has the capability to copy only those files that are newer than files on the destination drive.
This is a big benefit for large sites that don't want to copy all 10,000 files each time they make a few changes, but it's
an even more important feature for developers who frequently make little changes to several files and then forget
which files are newer—the ones on the development machine or the ones on the server. You can painstakingly
compare the dates and times that each file in your application was last modified, but that's grunt work that the
computer should take care of for you. XCOPY deployment performs that grunt work for you.

The ultimate goal of XCOPY deployment is to have an automated way to send changes from your development
machine to your test server and on to your production machine when everything is all ready. With that in mind, we'll
run through a few scenarios that demonstrate how to use XCOPY in real life. (At the end of this section, you'll find a
quick reference to all XCOPY's options in case you ever need to do something more exotic.)

In our scenarios, we'll set up two folders on the same machine, C:\SOURCE and C:\TARGET. The objective in each
case will be to copy some files (and, optionally, a directory structure) from one place to another. Figure 5.10
illustrates the state of the file system when we begin.

Figure 5.10. Initial state of file system before using XCOPY.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Managing the Global Assembly Cache

One of the advantages to working with ASP.NET is that code you write is compiled for you seamlessly and
transparently. This is a useful feature; however, you may find yourself in a situation where you want to reuse the
functionality found in one application in another. You may even want to share software functionality across two
radically different types of applications. A Web application and a thick-client application on the Windows desktop,
for example, might share a common set of code that performs a set of operations specific to your business. You can
accomplish this through the use of components. (Because corporate application developers often use components to
share standard business-specific code functionality across multiple applications, components are sometimes also
referred to as business logic components.)

A component is a piece of software designed to be used by another piece of software. Windows has had
components throughout its history. Initially, components were packaged in the form of procedural dynamic link
libraries (DLLs), but for ease of programming and interoperability, application developers eventually came to
package their DLLs in the form of Component Object Model (COM) libraries. Although these libraries do provide
the capability to reuse code, they also suffer from limitations that .NET attempts to overcome.

As we've mentioned earlier in this book, one of the major problems with COM DLLs is that COM requires you to
register a DLL on a machine before you can use it. This means that with a COM component, you can have only one
version of a component installed on a machine at a time. This is a problem because there's no guarantee that future
versions of a given component will provide the same functionality as the version you deploy your application with.
(This is one aspect of the problem known as "DLL Hell.")

NOTE

Components and assemblies aren't technically the same thing. However, for the purposes of this (and most)
discussions of components in Microsoft.NET, they are pretty close to the same thing. So we'll refer to components
and assemblies more or less interchangeably in this section.

Microsoft.NET attempts to get around DLL Hell problems by encouraging developers to deploy dependent
components in a subdirectory under their application directories. For ASP.NET applications, this means that
components will be installed in a subdirectory called \bin under the application directory. But a problem occurs here.
Component code that is accessible based on its physical location in the file system can't be shared across multiple
applications. You could deploy multiple copies of the component to each application that required it (in fact, in the
.NET world this may be preferable for compatibility reasons), but you may find yourself in a situation where you
develop a tool or library whose functionality is so generically useful that you may want to provide access to that
library in a global fashion.

Microsoft.NET provides a way do to this, called the Global Assembly Cache (GAC). Components that are installed
into the GAC are available from any .NET application running on that computer. (Note that this includes other types
of .NET applications, including Windows Forms applications, not just ASP.NET applications.)

This document is created with the unregistered version of CHM2PDF Pilot

You can install a component into the GAC using a command-line tool called gacutil. To install a component into the
Global Assembly Cache, use the command

gacutil -i mycomp.dll

in which mycomp.dll is the name of your component. Note that this command will only work if the assembly has been
signed; you sign an assembly using the sn.exe utility.

NOTE

You can create .NET components in Visual Studio. To do this, create a project using the "Class Library" project
type.

To uninstall a component from the GAC, use the command

gacutil /u mycomp.dll

Be careful when using this command, because applications that rely on the component will break when it is removed
from the GAC.

To see a list of the components in the GAC, use the command

gacutil /l

You'll see a list of all the components that have been installed on the system. Initially, this list will just be composed of
Microsoft.NET assemblies (which you typically don't want to mess with).

Numerous configuration files and attributes can be configured quite easily and in a prompt manner. The Web.Config
and Machine.Config files are the two most commonly used configuration files, and any changes to these files can be
easily distributed by using the XCOPY functionality.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 6. Web Services

IN THIS CHAPTER

•

• Historical Influences
•
•

• Network Data Representation
•
•

• What Is a Web Service?
•
•

• Why Web Services?
•
•

• ASP.NET Web Services
•
•

• Consuming Web Services
•
•

• Class Reference
•

There is no way you could have existed on the planet earth in the year 2001 and not heard about the latest solution to
all of mankind's problems—XML Web services. Depending on who you listen to, XML Web services will enable
frictionless e-commerce or eliminate world hunger. So what are XML Web services, really? This chapter will tackle
that question, plus look at why and how you should use XML Web services.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Historical Influences

Let's take a look back at the genesis of the Web. How did it start? It was the combination of a document format,
HTML, and a protocol, HTTP, that enabled scientists to share documents in a standard fashion and to link those
documents together. This was nothing new. We had a myriad of document formats: WordPerfect, Word, or even
LATEX. The problem was that none of these document formats was interoperable. The guy who used WordPerfect
couldn't read the LATEX documents, and vice versa. An interoperable document format alone, however, wouldn't
solve the problem. A way also had to exist for scientists to discover papers published by other colleagues. This was
done initially by placing hyperlinks into the document to enable navigation to other documents. Theoretically, given a
starting point, a scientist could read a document and (by utilizing the hyperlinks) navigate to information related to the
subject at hand. This navigation scheme assumed that there was a known starting point. This problem gave rise to the
directory, such as Yahoo!, as a starting point. It was up to the directory to catalog the Web and indicate the
appropriate starting point.

This clearly was a successful paradigm for finding, navigating to, and reading information. As the Internet grew, it
became clear that a need existed for businesses to exchange information and transact business online. Although the
Web was successful for humans to exchange information, it had far too little organization to make it an effective way
for very literal-minded computers to take advantage of it.

What was appropriate (if not ideal) for a human being was far from ideal for a computer. First, computers need a
fairly rigid structure to be applied to the information that they are exchanging. This structure must go beyond the
document format to also encompass the structure and organization of the actual information itself. Second, if
computers are going to trade information, there needs to be a way to agree on the format of information that is being
exchanged. Finally, a need still exists to find partners to trade with. Given a partner, a business can negotiate with
them to determine what services they may expose, but how does it find new partners? It still has a need for a
directory service, but in this case it's one that the computer can query to find appropriate partners.

One answer to this problem is the concept of a Web service. This is in contrast to the ubiquitous Web page that we
all know and love. A Web service is just what it sounds like: a facility that provides a way to do work. That being
said, a Web service is not a Web page. It is not intended to be consumed by human eyes; it is intended to be
consumed by a computer and is optimized for this type of access. If you want to make an analogy to the existing
computer world, you could think of a Web service as a new form of Remote Procedure Call (RPC). Historically, the
problem with RPC has been the lack of an open and widely accepted standard that defines how to represent data on
the network, how to identify endpoint locations, and how to advertise the endpoints. Wait! This sounds very much
like the problems just mentioned that the Web was created to solve! So let's take each of those three problems and
think about how to translate the lessons of the Web to services.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Network Data Representation

One of the two big breakthroughs that enabled the Web was HTML. HTML was an open and standards-based
data-formatting language that could be used to represent the data in a document. It was not a binary format but a
text-based format based on the concept of markup "tags" that were inserted into the content to provide formatting.
This had been done before. The Word file format is a binary form of formatting that holds both the content and the
information required to format it. It, however, is not open nor standards based. Microsoft created it and controls it.

Perhaps more important is that it is binary. The barrier to entry for a binary format is that the user typically must
create a program just to read or write the format. But with a text-based format such as HTML, anything that can
create an ASCII text file can create and/or read the source of the format. The agreed upon format is to use ASCII or
Unicode, which is a common standard, and to build on that by including inline markup tags.

How can this extend to the services model? HTML isn't a good fit because its primary mission is to control the
formatting of content. Machines rarely care that a particular word is displayed in pink or blue. They are more
concerned that the word itself is "pink" and what that might mean in a certain context. The idea, however, of using
ASCII as a standard representation and then adding markup to create structure is a concept that can be
generalized—and indeed has been—for something called eXtensible Markup Language (XML). XML is about the
meaning of the document's content, as opposed to how the content is displayed.

Let's take a look at an example. I am going to express the same thing, an invoice, two ways. First off, let's look at a
screenshot of the invoice. Figure 6.1 shows what the invoice would look like in the browser.

Figure 6.1. An invoice page in Internet Explorer.

This document is created with the unregistered version of CHM2PDF Pilot

This is what I would see as a human being browsing this Web page. What would I see if I were a computer browsing
this page? I would see the underlying HTML markup. The same page in this format is shown in Listing 6.1.

Listing 6.1 The Same Invoice from Figure 6.1 Seen from a Computer's Perspective

<html>
<head>
<title>Deep Training Invoice</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table cellSpacing="0" cellPadding="0" width="640" border="0" align="center">
 <tr>
 <td ALIGN="RIGHT">
 <table cellSpacing="1" cellPadding="1" width=640 border="0"
 align="center">
 <tr>
 <td>Deep Training</td>
 </tr>
 <tr>
 <td>123 Microsoft Way</td>
 </tr>

This document is created with the unregistered version of CHM2PDF Pilot

 <tr>
 <td>Redmond, WA 98052</td>
 </tr>
 <tr>
 <td>1-888-555-1212</td>
 </tr>
 <tr>
 <td></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td ALIGN="center">
 <table cellSpacing="1" cellPadding="1" width="99%" border="0"
 align="center">
 <tr>
 <td ALIGN="RIGHT">
 Invoice: 159297
 </td>
 </tr>
 <tr>
 <td align="right">
 Date : 7/27/2001
 </td>
 </tr>
 <tr>
 <td align="right">
 ACCOUNT : 20440
 </td>
 </tr>
 </table>
 <table cellSpacing="1" cellPadding="1" width="99%" border="0"
 align="center">
 <tr>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 <table cellSpacing="1" cellPadding="1" width="99%" border="0"
 align="center">
 <tr>
 <td align="left">
 VERGENT SOFTWARE
 </td>
 <td>

 </td>
 </tr>
 <tr>
 <td align="left"> BILL TO

 </td>
 <td>
 SHIP TO

 </td>
 </tr>
 <tr>
 <td>234 Microsoft Way

 REDMOND, WA 98053

 </td>

This document is created with the unregistered version of CHM2PDF Pilot

 <td>234 Microsoft Way

 REDMOND, WA 98053

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

 <table cellSpacing="1" cellPadding="1" width="99%" border="1"
 align="center">
 <tr align="center">
 <td>SHIP VIA</td>
 <td>PO</td>
 <td>SALES PERSON</td>
 </tr>
 <tr align="center" BGCOLOR="#c5c5c5">
 <td>
 UPS BLUE (2 days)(23.51)
 </td>
 <td> </td>
 <td> WEB </td>
 </tr>
 </table>

 <table cellSpacing="1" cellPadding="1" width="99%" align="center"
 border="1" bgcolor="#eeeeee">
 <tr>
 <td align="center">COURSE</td>
 <td align="center">DESCRIPTION</td>
 <td align="center">QTY</td>
 <td align="center">PRICE</td>
 <td align="center">TOTAL</td>
 </tr>
 <tr BGCOLOR="#c5c5c5">
 <td align="left">
 DEEPASPNY
 </td>
 <td align="left">
 DeepASP.NET Mini Camp
 </td>
 <td align="middle">
 1
 </td>
 <td align="right">
 399.00
 </td>
 <td align="right">
 399.00
 </td>
 </tr>
 </table>
 <table cellSpacing="1" cellPadding="1" width="99%" align="center"
 border="0">
 <tr>
 <td align="LEFT"> </td>
 <td align="right"> SUB TOTAL :
 </td>
 <td align="right">
 $399.00
 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>

This document is created with the unregistered version of CHM2PDF Pilot

 <td align="right">
 (Non Taxable)OTHER
 CHARGES :
 </td>
 <td align="right"> $0.00 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right"> DISCOUNT :
 </td>
 <td align="right"> $0.00 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right">
 FREIGHT :
 </td>
 <td align="right"> $0.00 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right">
 TAX :
 </td>
 <td align="right"> $0.00 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right">
 TOTAL :
 </td>
 <td align="right">
 $399.00
 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right"> PAYMENTS :
 </td>
 <td align="right">
 $399.00
 </td>
 </tr>
 <tr>
 <td align="LEFT"> </td>
 <td align="right">
 BALANCE :
 </td>
 <td align="right">
 $0.00
 </td>
 </tr>
 <tr>
 <td align="LEFT">
 Notes:

 AUTH#=027731 CC#=41XX-XXXX-XXXX-1302
 </td>
 </tr>
 </table>
 <TABLE cellSpacing=1 cellPadding=2 border=1 width="80%"
 align="left">
 <TR>
 <TD ALIGN=MIDDLE>TYPE PAYMENT</TD>
 <TD align=middle>DATE</TD>
 <TD ALIGN=MIDDLE>CREDIT CARD # / CHECK #</TD>

This document is created with the unregistered version of CHM2PDF Pilot

 <TD ALIGN=MIDDLE>AMOUNT</TD>
 </TR>
 <tr bgcolor="#eeeecc">
 <td> CREDITCARD </td>
 <td> 7/27/2001 </td>
 <td>
 VISA 41XX-XXXX-XXXX-1302
 </td>
 <td align=right> $399.00 </td>
 </tr>
 </TABLE>
 </td>
 </tr>
</TABLE>
<TABLE cellSpacing=1 cellPadding=1 width="75%" align=center border=1
 bgcolor="#eeeeee">
 <TR>
 <TD ALIGN="CENTER">
 TRACKING NUMBER INFORMATION
 / SENT FROM HEADQUARTERS
 </TD>
 </TR>
 <TR>
 <TD ALIGN="CENTER"> UPS <A
HREF=http://wwwapps.ups.com/tracking/tracking.cgi?tracknum=1Z2622413545750957
 target=new>
 1Z2622413545750957
 </TD>
 </TR>
</TABLE>
</body>
</html>

Look at this HTML. Without the visual formatting, it is no longer nearly as easy to pick out the various pieces. How
would you find the total or the authorization code? From a machine's perspective, this is mainly gobbledygook. I
could say that the total is always going to come after a text string "TOTAL : </td><td align="right">
". But what happens when the developer of the page decides that the total should
be shown in Helvetica? The string I am matching no longer works and my code breaks.

How can this be extended to a services model? To create a system whereby computers communicate without human
intervention, HTML isn't going to cut it. It requires something that is more concerned with representing the data in a
meaningful manner instead of making it look pretty. This is where XML comes in. Let's look at a representation of
the same invoice in XML. Listing 6.2 shows one way to do it. XML is explained more thoroughly in Chapter 10,
"Using XML."

Listing 6.2 A Representation of the Invoice in Listing 6.1 in XML

<?xml version="1.0" encoding="utf-8" ?>
<invoice number="159297" date="7272001">
 <account>20440</account>
 <company>Vergent Software</company>
 <billto>
 <address>234 Microsoft Way</address>
 <city>Redmond</city>
 <state>WA</state>
 <zip>98053</zip>
 </billto>
 <shipto>
 <address>234 Microsoft Way</address>

This document is created with the unregistered version of CHM2PDF Pilot

 <city>Redmond</city>
 <state>WA</state>
 <zip>98053</zip>
 </shipto>
 <shipvia>
 <transport>UPS Blue</transport>
 <days>2</days>
 <cost>9.00</cost>
 <tracking>1Z2622413545750957</tracking>
 </shipvia>
 <salesperson>web</salesperson>
 <items>
 <item sku="DEEPASPNY">
 <description>DeepASP.NET Mini Camp</description>
 <qty>1</qty>
 <price>399.00</price>
 </item>
 <item sku="ASPBOOK">
 <description>ASP.NET Book</description>
 <qty>1</qty>
 <price>49.95</price>
 </item>
 </items>
 <subtotal>448.95</subtotal>
 <shipping>9.00</shipping>
 <tax>0.00</tax>
 <total>457.95</total>
 <payments>457.95</payments>
 <balance>0.00</balance>
 <paymenttype>CREDITCARD</paymenttype>
 <creditcard>
 <type>VISA</type>
 <number>43XX-XXXX-XXXX-1302</number>
 <auth>027731</auth>
 <date>07-27-2001</date>
 <amount>457.95</amount>
 </creditcard>
</invoice>

Now is it clear where the total for this invoice is? It is enclosed by the <total> and </total> tags. These are tags
totally unrelated to the display of the information. Their only purpose is to define where to look in the document to find
the total. This makes them great candidates for string matching to pick apart the document in a standard way.

Location

How do I define the location or endpoint of a page on the World Wide Web? The Web popularized the concept of a
URL, or uniform resource locator. You have seen these. They are strings such as
http://www.deeptraining.com/default.aspx. The URL in the preceding example is made up of several parts. A
syntax-style definition of a URL is as follows:

<protocol> "://" <host> [":" <port>] [<path> ["?" <query>]]

The first part identifies the protocol. The HTTP at the beginning of the earlier example means that when accessing this
URL, you should use the Hypertext Transfer Protocol. Another valid protocol identifier for most browsers is FTP, or
File Transfer Protocol. Internet Explorer accepts either

file://c:\temp\invoice.htm

This document is created with the unregistered version of CHM2PDF Pilot

http://www.deeptraining.com/default.aspx.

or

ftp://localhost/temp/invoice.htm

The second part identifies the host that contains the resource. This is permitted to contain an IP address, but in most
cases, it will contain a hostname.domain.network combo such as www.deeptraining.com. The third part is an
optional port designation. If not specified, the default convention is to use port 80 for all HTTP traffic. By specifying a
port, you can potentially host more than one Web server on a single IP address. This is frequently used by network
address translation (NAT)-based firewalls to direct incoming traffic to Web servers behind the firewall. The fourth
part is one of the more important parts. It indicates the path to the resource. This is a standard path of the form
/temp/invoice.htm. Note the forward slashes used in the path. The HTTP protocol was invented in the Unix world in
which path delimiters are forward-slash characters, in contrast to the backslash characters used in the
DOS/Windows world. The last part is optional information that varies for a particular path. You have seen this when
you go to a search page. You type in what you are interested in and a page is displayed with a URL like

http://www.deeptraining.com/searchresults.aspx?Query=ASP.

The ?Query=ASP part on the end is a query parameter used to pass additional information to the search results page.

The combination of all these parts represents a unique endpoint in the scheme of the universe. In addition, it is an
endpoint that even my 8-year-old daughter can attribute some meaning to, given the ubiquity of Web usage in today's
Internet-savvy world.

In a world where I want to make services available, URLs are useful to uniquely identify the location of my service. I
can also potentially use the query parameters portion of the URL to optionally pass information to my service.

Advertisement

How do you find information on the wildly popular Ichiro Suzuki bobblehead doll? If you are like most people today,
you fire up a Web browser and look it up. But how do you find the information? Your first try is probably to go to
www.ichirosuzuki.com or perhaps even www.seattlemariners.com. If that didn't have the information you were
looking for, what is the next step? You can head to a search engine such as www.google.com and type in "Ichiro
Bobblehead." In no time at all, Google will spit back dozens of matches for Web sites that have information on the
latest craze to hit Safeco field.

Let's translate this to the idea of services. I have a great Web site that I built recently to sell some of those Ichiro
bobblehead dolls. When billing the customers an exorbitant amount, I want to make sure that I also charge a
sufficient amount for shipping. It would make sense that given the shipping address I need to send the doll to, I want
to calculate how much it is going to cost to ship it. I want to utilize a Web service to do this in real-time. I know I am
going to be shipping the dolls to eagerly waiting customers using United Parcel Services (UPS) and need to find a
service that calculates UPS 2-day rates.

This document is created with the unregistered version of CHM2PDF Pilot

ftp://localhost/temp/invoice.htm
http://www.deeptraining.com/searchresults.aspx?Query=ASP.

My first guess is to go to www.ups.com, but I quickly determine that they don't yet offer UPS ground rate calculation
as a Web service. How can I find out who else might? This is where a search engine analogous to Google would be
valuable. As it turns out, several vendors are building directories of services that allow a developer to query them and
discover trading partners that offer the services they are interested in. These directories provide a standard
interface—Universal Description, Discovery, and Integration (UDDI)—for the categorization of services, companies,
and the schemas they use. They are accessible via a Web-based interface for you to initially find the services that will
fulfill your needs. The UDDI directories also expose themselves using XML Web services so that your applications
can dynamically use them also.

After I have a reference to a server, I also need to be able to determine what services that particular server exposes
to the outside world. This browsing of services is facilitated by placing an XML file, called a DISCO file, in the root
of the Web server. DISCO stands for Discovery, and this XML file provides links to all the XML Web services
exposed on that server.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

What Is a Web Service?

So what is a Web service? You probably have some ideas based on the parallels I have drawn with the genesis of
the World Wide Web. XML Web services are an open way to perform standards-based remote-procedure calls
over standard Internet protocols. Wow—that's quite a mouthful. I am sure more than one person will argue with that
definition because it is difficult to encapsulate the idea of something as large as XML Web services into a single
sentence.

So let's examine more closely what a Web service is. XML Web services are not Web pages. They are intended to
be created and consumed by applications, not users. Instead of designing the look, you define the schema. The
schema is what is important in a Web service.

Several standards apply to XML Web services today. XML Web services communicate over HTTP/1.1, a standard
protocol defined in RFC 2616 and RFC 2068. The data that is passed back and forth between XML Web services
is encapsulated in XML, which is a W3C recommendation at the present time. Simple Object Access Protocol
(SOAP) is an XML grammar that defines the layout of the requests sent to XML Web services and the response
received back. As of this writing, SOAP is at W3C NOTE status and more information can be found at
http://www.w3.org/TR/SOAP/. Web Services Description Language (WSDL) is another XML grammar for defining
the application-specific content of SOAP requests and responses. Universal Description, Discovery, and Integration
(UDDI) is a standard protocol for quickly and easily finding XML Web services run by trading and business partners.

Whew! Those are quite a few standards. I also said that XML Web services were open. At their very simplest,
XML Web services are a way to take SOAP (XML text) and send it over HTTP. This means that any language that
is capable of performing TCP socket operations and string manipulation can play in this space. Granted, if TCP
sockets and string manipulation were all you had at your fingertips, it would be like deciding to dig a swimming pool
in your backyard with a teaspoon. It would not be trivial, but it would definitely be possible. Fortunately, a number of
development platforms, including .NET, are building a significant amount of the infrastructure to make creating and
consuming XML Web services trivial.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/TR/SOAP/

for RuBoard

Why Web Services?

The concept of RPC is nothing new. In the preceding years we have been proselytized to use DCOM, CORBA, and
a number of other RPC protocols. However, none of these protocols has received enough support to make them
ubiquitous and thus enable any trading between partners. DCOM and CORBA both used their own data
representations that, while similar in many respects, are different enough to prevent any interoperation. They each
define their own protocols that don't work very well in a high-latency WAN such as the Internet. DCOM in
particular is very "chatty," requiring numerous round trips just to negotiate a simple remote procedure call with no
arguments. In addition, with the paranoid mentality of corporations connecting to the Internet through firewalls and
the like, the chances are slim of either an IIOP or DCOM request making it through a firewall. Finally, DCOM is a
connection-oriented protocol. The downside of this is that after a connection has been set up, DCOM expects to
have a long-running conversation with the remote object, making load balancing and load farming a difficult
proposition at best.

On the other hand, the underlying protocol of XML Web services, HTTP, has had untold millions of dollars spent on
it in the last few years to solve the problems of scalability and fault tolerance in support of the boom in the Web
space during the mid 1990s. Well-known best practices exist for scaling HTTP by creating farms of Web servers,
using dynamic location-based DNS, and even performing switching in layers 2–7 of TCP/IP to support quite
intelligent load balancing. All this work can now be applied to XML Web services.

With the creation of SOAP came a standard for an XML grammar that can be used to overcome the differences that
plagued the various RPC implementations in the past. SOAP defines how any data type, for example, an int, should
be encoded, regardless of platform.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

ASP.NET Web Services

All this is great, but as a Web developer, I don't want to have to go out and learn HTTP, XML, SOAP, WSDL, and
DISCO just so that I can trade with my partners. I don't have the time. ASP.NET to the rescue.

The model for creating XML Web services in ASP.NET is very similar to the model for creating programmable
pages. Let's create a very simple Web service and look at what it is composed of. In its simplest form, a Web
service is a file with an extension, ASMX, that is new to ASP.NET. As you would expect, no HTML is in this page,
only code. Listing 6.3 shows the canonical HelloWorld that in some shape or another tends to be every
programmer's first application.

Listing 6.3 A Simple Web Service Saying Hello to the World

<%@ WebService Language="c#" Class="HelloWorldSvc" %>

using System.Web.Services;

public class HelloWorldSvc : System.Web.Services.WebService
{
 [WebMethod]
 public string HelloWorld()
 {
 return "Hello World!";
 }
}

That's it! After all the talk of SOAP, XML, and so on, this looks just like a standard class. The .NET framework
hides the ugly part of creating XML Web services from you, the developer, allowing you to concentrate on what you
need the Web service to do instead of how it does it. Well, the code is cool, but we want to see it do something.
Remember that what we just wrote is intended to be called by a program, not by a user. Having to immediately write
a test harness just to test a simple Web service is kind of a pain. Consequently, the .NET framework provides a
default test harness that will appear if you enter the URL for a Web service endpoint into the browser. If a particular
method in a Web service is not specified, it is assumed that the end user needs some more information about the
Web service. If I enter http://localhost/book/webservices/helloworld/HelloWorld.asmx, the address for the Web
service in Listing 6.3, I get the browser display shown in Figure 6.2.

Figure 6.2. The automatically created documentation page.

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/book/webservices/helloworld/HelloWorld.asmx,

This page gives some general information about the Web service, including the methods in my Web service. If I click
the method name, I get the page shown in Figure 6.3.

Figure 6.3. The automatically created test harness.

This document is created with the unregistered version of CHM2PDF Pilot

This page gives me a way to invoke the method, and it documents the appropriate ways to call my method using
SOAP, HTTP GET, and HTTP POST. If I click the Invoke button, my Web service is called using HTTP GET, and
I receive a response back that is shown in Figure 6.4.

Figure 6.4. The XML returned by calling the Web method via HTTP GET.

This document is created with the unregistered version of CHM2PDF Pilot

One thing shown in Listing 6.3 does look a little unusual, though. The keyword that looks like [WebMethod] is called
an attribute in .NET. Attributes are a way for the programmer to declaratively affect the operation of an application
without having to write code. This particular attribute does a considerable amount of work. The WebMethod()
attribute is somewhat similar to the standard access modifier public. By placing the WebMethod() attribute on my
method, I have indicated that I want to make it publicly callable from the outside world. Only functions with
WebMethod() are accessible by clients of the Web service. This restriction allows me to continue to have internal
methods that I rely on within the class, without having to worry about them being accidentally called by clients.
Specifying WebMethod() also tells .NET that it should include this method in the WSDL that it generates for clients.
WSDL is the way that clients are going to figure out the proper way to call my methods. To see the WSDL that is
automatically generated by .NET, I can call my Web service (shown in Listing 6.3) with this URL:
http://localhost/book/webservices/helloworld/helloworld.asmx?WSDL. The output of this is shown in Figure 6.5.

Figure 6.5. The Web Services Description Language (WSDL) output from the Web service.

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/book/webservices/helloworld/helloworld.asmx?WSDL.

NOTE

This URL points to where I placed the sample code on my system and may vary on your system, depending on
where you save the source code.

You can see the HelloWorld method clearly delineated in the WSDL. We will take a look at what the WSDL is
good for when we show how to consume XML Web services. The WebMethod attribute also provides a way to
configure several optional attributes on a Web service.

This document is created with the unregistered version of CHM2PDF Pilot

WebMethodAttribute

The WebMethodAttribute class is what we are using with the WebMethod() attribute mentioned previously.
WebMethodAttribute is used to set the options for a Web method.

The BufferResponse property controls how data is sent back to the client from the Web service. The most efficient
method for returning data over TCP is to batch it all up and send it in large blocks to the client. This is what is
considered buffered mode and is the default both for Web pages and XML Web services. In the case of a large
database query, however, it might be nice to start streaming the contents back to the client before the query has
finished retrieving all the rows. To do this, set buffer response to false. When buffering is turned off, the results are
sent back to the client in 16KB chunks.

The EnableSession property enables session state for a Web service. By default, this attribute is set to false. Think
hard about whether you need to enable session state on a Web service, because storing state on the server is going
to affect the scalability of your service. However, session state can be utilized with all the attendant options, as
discussed in Chapter 4, "State Management and Caching." This includes the State Server and SQL Server modes
that are new to ASP.NET.

Listings 6.4 and 6.5 include a sample Web service that provides a Web service–based state service. The service
provides two methods, SetValue and GetValue. SetValue enables the user to store some data with a keyname and a
value. GetValue enables the user to retrieve data with a keyname. This example also uses the code-behind model
(discussed in Chapter 2, "Page Framework") for creating XML Web services. As you can see, the activator for the
Web service, the .asmx file, is minimal. In all future examples, I won't even include the .asmx as part of the listing.

Listing 6.4 The Activator .asmx File

<%@ WebService Language="c#" Codebehind="State.asmx.cs" Class="HelloWorld.State" %>

Listing 6.5 The Code-Behind File for the Simple State Service

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace HelloWorld
{
 /// <summary>
 /// Summary description for State.
 /// </summary>
 public class State : System.Web.Services.WebService
 {
 public State()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer
 InitializeComponent();
 }

 #region Component Designer generated code

This document is created with the unregistered version of CHM2PDF Pilot

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }
 #endregion

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 }

 [WebMethod(true)]
 public void SetValue(string Name, string Value)
 {
 Session[Name] = Value;
 }

 [WebMethod(true)]
 public string GetValue(string Name)
 {
 return Session[Name].ToString();
 }
 }
}

The Description property supplies a description, which is shown in the Web service help page that is created as an
automatic test harness. Listing 6.6 shows the code-behind class for the War Games Web service.

Listing 6.6 A Web Service the That Utilizes the Description Property

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace HelloWorld
{
 public class WarGames : System.Web.Services.WebService
 {
 protected override void Dispose(bool disposing)
 {
 }

 [WebMethod(Description="List of games")]
 public string Games()
 {
 return "Tic Tac Toe, Chess, Thermonuclear War";
 }
 }
}

The WebMethodAttribute uses the Description property to indicate what each Web method does. The Description

This document is created with the unregistered version of CHM2PDF Pilot

property is set using the syntax for named properties in an attribute. Figure 6.6 shows how the Description property
conveniently identifies the Games Web method so we know that it returns a list of games we can play with the
WOPR.

Figure 6.6. The test harness page when we hack into War Games.

The CacheDuration property controls how a Web service is cached. The default for cache duration is 0, meaning that
no caching is performed. As mentioned in Chapter 4, "State Management and Caching," huge performance increases
can be realized by utilizing caching. The Cache[] object discussed in Chapter 4 is also available in XML Web
services. The CacheDuration property is analogous to OutputCaching in a Web page. When this is set to some
number of seconds, all output from the Web service is cached for this period of time. Listing 6.7 shows an example
of a time service that only updates its output every 60 seconds.

Listing 6.7 The Code Behind Web Service Class That Implements a Cached Time Service

This document is created with the unregistered version of CHM2PDF Pilot

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace HelloWorld
{
 public class Time : System.Web.Services.WebService
 {
 protected override void Dispose(bool disposing)
 {
 }

 [WebMethod(CacheDuration=60)]
 public string GetTime()
 {
 return DateTime.Now.ToString();
 }
 }
}

NOTE

If this doesn't appear to work, make sure you are using the test harness outside Visual Studio .NET. Visual Studio
.NET performs cache busting that penetrates the cache. The correct behavior will be displayed in Internet Explorer.

The TransactionOption property controls how the Web service interacts with the transaction-processing support
found in the common language runtime. By altering the attribute of the Web method, you can control how the method
participates in transactions. The default setting for the transaction option is Disabled. This means that by default, a
Web method does not participate in any transactions. A Web service is limited to acting as the root in a transaction in
version 1.0 of .NET. This limitation means that several of the transaction options provide the same functionality.
Required and RequiresNew do the same thing because the Web method must be the root. This possibly could
change in future versions. By default, the System.EnterpriseServices assembly is not referenced in VS.NET. To use
the TransactionOption enumeration you will need to add a reference.

Serialization

All our samples so far have utilized relatively simple data types. As it turns out, almost any object in .NET can be
serialized to XML. This includes Collections, Arrays, and even DataSets. One exception to this rule is any object that
is based on System.Collections.Hashtable internally. This includes many of the dictionary-based collections in the
base class library with the exception of ListDictionary. Serialization is the process whereby a running object provides
a static representation of itself that can be used to later reconstitute this object and create a new running object.

Listing 6.8 shows a Web service that returns an ArrayList of shipping methods.

Listing 6.8 A Web Service That Returns an ArrayList

This document is created with the unregistered version of CHM2PDF Pilot

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace NorthwindOrders
{
 public class collections : System.Web.Services.WebService
 {
 protected override void Dispose(bool disposing)
 {
 }

 [WebMethod()]
 public ArrayList GetShippingMethods()
 {
 ArrayList al = new ArrayList();

 al.Add("UPS Ground");
 al.Add("UPS Blue");
 al.Add("UPS Red");
 al.Add("FedEx Ground");
 al.Add("FedEx 2 Day");

 return al;
 }
 }
}

Figure 6.7 shows what the returned XML looks like.

Figure 6.7. The output XML from the Web service that serializes the ArrayList.

The most interesting data type in my mind, however, is the DataSet. The DataSet is a new feature of ADO.NET that
appears to be a perfect data structure for transporting data between XML Web services and client code. A DataSet
has schema, which is just like a database. This schema defines the tables, their columns, and the relationship between
tables within the DataSet. In this chapter, we aren't going to discuss all the features of DataSets. For more in-depth
information on DataSets, see Chapter 11, "Creating Database Applications with ADO.NET."

We are going to look at the ways in which data sets can be used to move data between a Web service and a client.

This document is created with the unregistered version of CHM2PDF Pilot

Let's look at a simple case first. The SimpleDataSet example has a single WebMethod Simple() showing in Listing 6.9
. This method returns a list of orders in a DataSet. It first builds up the orders by creating a DataSet from scratch. It
then creates a DataTable and adds columns to it. Each of these columns is strongly typed. The typeof() operator is
used to get a type class to pass to the constructor for the DataColumn. After the DataTable has been created, we
add rows to it. Calling NewRow() gives us a new row template whose strong typing is based on the DataTable it
came from. Finally, the DataTable is added to the DataSet, and the DataSet is returned to the client. The complete
WebMethod can be seen in Listing 6.9.

Listing 6.9 The Simple() WebMethod of SimpleDataSet. It Returns a DataSet Containing a Strongly
Typed DataTable

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace SimpleDataSet
{
 public class DataSetSample : System.Web.Services.WebService
 {
 protected override void Dispose(bool disposing)
 {
 }

 [WebMethod()]
 public DataSet Simple()
 {
 System.Data.DataSet dsOrders = new System.Data.DataSet();
 DataTable dt;

 // Build a dataset with four columns
 dt = new DataTable("Orders");
 DataColumn dc = new DataColumn("OrderID", typeof(string));
 dt.Columns.Add(dc);
 dc = new DataColumn("Date", typeof(string));
 dt.Columns.Add(dc);
 dc = new DataColumn("Name", typeof(string));
 dt.Columns.Add(dc);
 dc = new DataColumn("Amount", typeof(decimal));
 dt.Columns.Add(dc);

 // Populate the dataset
 DataRow dr;
 dr = dt.NewRow();

 dr["OrderID"] = System.Guid.NewGuid();
 dr["Date"] = DateTime.Now;
 dr["Name"] = "Chris Kinsman";
 dr["Amount"] = 123.45;
 dt.Rows.Add(dr);

 dr = dt.NewRow();
 dr["OrderID"] = System.Guid.NewGuid();
 dr["Date"] = DateTime.Now.AddDays(1);
 dr["Name"] = "Jeffrey McManus";
 dr["Amount"] = "234.45";
 dt.Rows.Add(dr);

 // Add the datatable to the dataset

This document is created with the unregistered version of CHM2PDF Pilot

 dsOrders.Tables.Add(dt);

 return dsOrders;

 }
 }
}

Figure 6.8 shows the output from this Web service. It starts with the Schema information for the dataset that we are
returning. It defines each of the columns along with the data types. After this section, it uses the predefined schema to
represent the data. You can pick out each or the Order rows along with each of the columns data quite easily. It
should be quite evident that it would be simple to consume this data in a rigorous fashion.

Figure 6.8. The XML output from SimpleDataSet.

This document is created with the unregistered version of CHM2PDF Pilot

Let's do a little bit more complex example now. A common data construct is the idea of a Master-Detail relationship.
You saw one of these when we were looking at the XML for the invoice. For an order (the master) I had multiple
items (the detail). This type of relationship is common in databases, and any method of transferring data must take
relationships into account. The example in Listing 6.10 will also return order data; however, this time we will utilize
the Northwind database that ships with SQL Server as the source for our data. Listing 6.10 shows the new Web
method.

Listing 6.10 A Web Method That Returns a Dataset with a Master Detail Relationship

[WebMethod()]
public DataSet GetOrders(DateTime OrderDate)
{

This document is created with the unregistered version of CHM2PDF Pilot

 // Setup the connection
 SqlConnection cn = new SqlConnection(Application["DSN"].ToString());
 // Open the connection
 cn.Open();
 // Create the orders data adapter
 SqlDataAdapter daOrders = new SqlDataAdapter("SELECT * FROM ORDERS WHERE OrderDate
= '" + OrderDate.ToShortDateString() + "'", cn);

 // Create the order item data adapter
 SqlDataAdapter daOrderDetails = new SqlDataAdapter("SELECT * FROM [Order Details]
od, Orders o WHERE o.OrderID = od.OrderID AND o.OrderDate = '" +
OrderDate.ToShortDateString() + "'", cn);

 // Create a data set
 DataSet ds = new DataSet();

 // Get the orders
 daOrders.Fill(ds, "Orders");
 // Get the order details
 daOrderDetails.Fill(ds, "OrderDetails");

 // Relate the two on the order id
 ds.Relations.Add("OrderID", ds.Tables["Orders"].Columns["OrderID"],
ds.Tables["OrderDetails"].Columns["OrderID"]);

 // Return the dataset
 return ds;
}

This code is somewhat similar to the previous example, but a few differences exist. First, we are using the ADO.NET
SqlClient to retrieve the data (for more information on this, see Chapter 11). Second, we are not returning just a
single table containing data. We are retrieving all the order and order details for all orders that were placed on
OrderDate. The database defines a relationship between these two DataTables on the OrderID column that is
present in each of the tables. This yields a DataSet that not only contains the data that matches the criteria from both
tables, but also knows about the relationship between the data. Listing 6.11 shows the output when we call the
GetOrders WebMethod witha date of a date of 7/8/1996.

Listing 6.11 The XML Output from Calling the GetOrders WebMethod with a Date of 7/8/1996

 <?xml version="1.0" encoding="utf-8" ?>
- <DataSet xmlns="http://tempuri.org/">
- <xsd:schema id="NewDataSet" targetNamespace="" xmlns=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
- <xsd:element name="NewDataSet" msdata:IsDataSet="true">
- <xsd:complexType>
- <xsd:choice maxOccurs="unbounded">
- <xsd:element name="Orders">
- <xsd:complexType>
- <xsd:sequence>
 <xsd:element name="OrderID" type="xsd:int" minOccurs="0" />
 <xsd:element name="CustomerID" type="xsd:string" minOccurs="0" />
 <xsd:element name="EmployeeID" type="xsd:int" minOccurs="0" />
 <xsd:element name="OrderDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="RequiredDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="ShippedDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="ShipVia" type="xsd:int" minOccurs="0" />
 <xsd:element name="Freight" type="xsd:decimal" minOccurs="0" />
 <xsd:element name="ShipName" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipAddress" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipCity" type="xsd:string" minOccurs="0" />

This document is created with the unregistered version of CHM2PDF Pilot

 <xsd:element name="ShipRegion" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipPostalCode" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipCountry" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
- <xsd:element name="OrderDetails">
- <xsd:complexType>
- <xsd:sequence>
 <xsd:element name="OrderID" type="xsd:int" minOccurs="0" />
 <xsd:element name="ProductID" type="xsd:int" minOccurs="0" />
 <xsd:element name="UnitPrice" type="xsd:decimal" minOccurs="0" />
 <xsd:element name="Quantity" type="xsd:short" minOccurs="0" />
 <xsd:element name="Discount" type="xsd:float" minOccurs="0" />
 <xsd:element name="OrderID1" type="xsd:int" minOccurs="0" />
 <xsd:element name="CustomerID" type="xsd:string" minOccurs="0" />
 <xsd:element name="EmployeeID" type="xsd:int" minOccurs="0" />
 <xsd:element name="OrderDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="RequiredDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="ShippedDate" type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="ShipVia" type="xsd:int" minOccurs="0" />
 <xsd:element name="Freight" type="xsd:decimal" minOccurs="0" />
 <xsd:element name="ShipName" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipAddress" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipCity" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipRegion" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipPostalCode" type="xsd:string" minOccurs="0" />
 <xsd:element name="ShipCountry" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
- <xsd:unique name="Constraint1">
 <xsd:selector xpath=".//Orders" />
 <xsd:field xpath="OrderID" />
 </xsd:unique>
- <xsd:keyref name="OrderID" refer="Constraint1">
 <xsd:selector xpath=".//OrderDetails" />
 <xsd:field xpath="OrderID" />
 </xsd:keyref>
 </xsd:element>
 </xsd:schema>
- <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
- <NewDataSet xmlns="">
- <Orders diffgr:id="Orders1" msdata:rowOrder="0">
 <OrderID>10250</OrderID>
 <CustomerID>HANAR</CustomerID>
 <EmployeeID>4</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-05T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-12T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>2</ShipVia>
 <Freight>65.83</Freight>
 <ShipName>Hanari Carnes</ShipName>
 <ShipAddress>Rua do Paço, 67</ShipAddress>
 <ShipCity>Rio de Janeiro</ShipCity>
 <ShipRegion>RJ</ShipRegion>
 <ShipPostalCode>05454-876</ShipPostalCode>
 <ShipCountry>Brazil</ShipCountry>
 </Orders>
- <Orders diffgr:id="Orders2" msdata:rowOrder="1">
 <OrderID>10251</OrderID>
 <CustomerID>VICTE</CustomerID>

This document is created with the unregistered version of CHM2PDF Pilot

 <EmployeeID>3</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-22T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-15T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>41.5</Freight>
 <ShipName>Victuailles en stock</ShipName>
 <ShipAddress>2, rue du Commerce</ShipAddress>
 <ShipCity>Lyon</ShipCity>
 <ShipPostalCode>69004</ShipPostalCode>
 <ShipCountry>France</ShipCountry>
 </Orders>
- <OrderDetails diffgr:id="OrderDetails1" msdata:rowOrder="0">
 <OrderID>10250</OrderID>
 <ProductID>41</ProductID>
 <UnitPrice>7.7</UnitPrice>
 <Quantity>10</Quantity>
 <Discount>0</Discount>
 <OrderID1>10250</OrderID1>
 <CustomerID>HANAR</CustomerID>
 <EmployeeID>4</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-05T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-12T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>2</ShipVia>
 <Freight>65.83</Freight>
 <ShipName>Hanari Carnes</ShipName>
 <ShipAddress>Rua do Paço, 67</ShipAddress>
 <ShipCity>Rio de Janeiro</ShipCity>
 <ShipRegion>RJ</ShipRegion>
 <ShipPostalCode>05454-876</ShipPostalCode>
 <ShipCountry>Brazil</ShipCountry>
 </OrderDetails>
- <OrderDetails diffgr:id="OrderDetails2" msdata:rowOrder="1">
 <OrderID>10250</OrderID>
 <ProductID>51</ProductID>
 <UnitPrice>42.4</UnitPrice>
 <Quantity>35</Quantity>
 <Discount>0.15</Discount>
 <OrderID1>10250</OrderID1>
 <CustomerID>HANAR</CustomerID>
 <EmployeeID>4</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-05T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-12T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>2</ShipVia>
 <Freight>65.83</Freight>
 <ShipName>Hanari Carnes</ShipName>
 <ShipAddress>Rua do Paço, 67</ShipAddress>
 <ShipCity>Rio de Janeiro</ShipCity>
 <ShipRegion>RJ</ShipRegion>
 <ShipPostalCode>05454-876</ShipPostalCode>
 <ShipCountry>Brazil</ShipCountry>
 </OrderDetails>
- <OrderDetails diffgr:id="OrderDetails3" msdata:rowOrder="2">
 <OrderID>10250</OrderID>
 <ProductID>65</ProductID>
 <UnitPrice>16.8</UnitPrice>
 <Quantity>15</Quantity>
 <Discount>0.15</Discount>
 <OrderID1>10250</OrderID1>
 <CustomerID>HANAR</CustomerID>
 <EmployeeID>4</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-05T00:00:00.0000000-07:00</RequiredDate>

This document is created with the unregistered version of CHM2PDF Pilot

 <ShippedDate>1996-07-12T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>2</ShipVia>
 <Freight>65.83</Freight>
 <ShipName>Hanari Carnes</ShipName>
 <ShipAddress>Rua do Paço, 67</ShipAddress>
 <ShipCity>Rio de Janeiro</ShipCity>
 <ShipRegion>RJ</ShipRegion>
 <ShipPostalCode>05454-876</ShipPostalCode>
 <ShipCountry>Brazil</ShipCountry>
 </OrderDetails>
- <OrderDetails diffgr:id="OrderDetails4" msdata:rowOrder="3">
 <OrderID>10251</OrderID>
 <ProductID>22</ProductID>
 <UnitPrice>16.8</UnitPrice>
 <Quantity>6</Quantity>
 <Discount>0.05</Discount>
 <OrderID1>10251</OrderID1>
 <CustomerID>VICTE</CustomerID>
 <EmployeeID>3</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-22T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-15T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>41.5</Freight>
 <ShipName>Victuailles en stock</ShipName>
 <ShipAddress>2, rue du Commerce</ShipAddress>
 <ShipCity>Lyon</ShipCity>
 <ShipPostalCode>69004</ShipPostalCode>
 <ShipCountry>France</ShipCountry>
 </OrderDetails>
- <OrderDetails diffgr:id="OrderDetails5" msdata:rowOrder="4">
 <OrderID>10251</OrderID>
 <ProductID>57</ProductID>
 <UnitPrice>15.6</UnitPrice>
 <Quantity>15</Quantity>
 <Discount>0.05</Discount>
 <OrderID1>10251</OrderID1>
 <CustomerID>VICTE</CustomerID>
 <EmployeeID>3</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-22T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-15T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>41.5</Freight>
 <ShipName>Victuailles en stock</ShipName>
 <ShipAddress>2, rue du Commerce</ShipAddress>
 <ShipCity>Lyon</ShipCity>
 <ShipPostalCode>69004</ShipPostalCode>
 <ShipCountry>France</ShipCountry>
 </OrderDetails>
- <OrderDetails diffgr:id="OrderDetails6" msdata:rowOrder="5">
 <OrderID>10251</OrderID>
 <ProductID>65</ProductID>
 <UnitPrice>16.8</UnitPrice>
 <Quantity>20</Quantity>
 <Discount>0</Discount>
 <OrderID1>10251</OrderID1>
 <CustomerID>VICTE</CustomerID>
 <EmployeeID>3</EmployeeID>
 <OrderDate>1996-07-08T00:00:00.0000000-07:00</OrderDate>
 <RequiredDate>1996-08-22T00:00:00.0000000-07:00</RequiredDate>
 <ShippedDate>1996-07-15T00:00:00.0000000-07:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>41.5</Freight>
 <ShipName>Victuailles en stock</ShipName>

This document is created with the unregistered version of CHM2PDF Pilot

 <ShipAddress>2, rue du Commerce</ShipAddress>
 <ShipCity>Lyon</ShipCity>
 <ShipPostalCode>69004</ShipPostalCode>
 <ShipCountry>France</ShipCountry>
 </OrderDetails>
 </NewDataSet>
 </diffgr:diffgram>
 </DataSet>

Dig into the XML and look for the tag "- <xsd:unique name="Constraint1">". This starts the section that defines the
relationship between the tables. It says that a constraint named Constraint1 defines the relationship between the
DataTable named Orders and the DataTable named OrderDetails. The relationship is on a field named OrderID in
each DataTable.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Consuming Web Services

Now that we have created several XML Web services, let's take a look at how to consume them. As mentioned
earlier, XML Web services can be consumed by any client that is capable of making a request over HTTP and
parsing out the returned XML. The .NET framework is capable of working in this fashion, but it also has tools for
creating something called a Web service proxy that greatly simplifies access to a Web service. You can create a
Web service proxy in two ways. If you are using Visual Studio .NET, you can add what is called a Web Reference
by pointing Visual Studio .NET to the URL of the Web service. If you are not using Visual Studio .NET, you can use
a tool called Web Service Description Language Tool (wsdl.exe) to create the Web service proxy.

Let's take a look at wsdl.exe first. At a minimum, the utility requires a path to a Web service or to the WSDL that
describes the Web service—hence the name of the utility. Given this, it will generate the proxy class. This class has
the same method signatures as the Web service and hides the implementation details so that calling the Web service is
transparent. If we run wsdl.exe against the SimpleDataSet example with the following command line:

Wsdl http://localhost/book/webservices/simpledataset/dataset.asmx /language:cs

We get back a new file named after the class contained within the dataset.asmx file, datasetsample.cs. This file is
shown in Listing 6.12.

Listing 6.12 A Proxy Class (datasetsample.cs) for SimpleDataSet Generated with the WSDL Tool

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.2914.16
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by wsdl, Version=1.0.2914.16.
//
using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(Name="DataSetSampleSoap",
Namespace="http://tempuri.org/")]
public class DataSetSample : System.Web.Services.Protocols.SoapHttpClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public DataSetSample() {
 this.Url =
"http://localhost/book/webservices/csharp/simpledataset/dataset.asmx";
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/book/webservices/simpledataset/dataset.asmx

Simple", Use=System.Web.Services.Description.SoapBindingUse.Literal,
Parameter-Style=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public System.Data.DataSet Simple() {
 object[] results = this.Invoke("Simple", new object[0]);
 return ((System.Data.DataSet)(results[0]));
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.IAsyncResult BeginSimple(System.AsyncCallback callback, object
asyncState) {
 return this.BeginInvoke("Simple", new object[0], callback, asyncState);
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.Data.DataSet EndSimple(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((System.Data.DataSet)(results[0]));
 }
}

This new proxy class can then be included in a project to encapsulate access to the Web service. If we want to use it
in a Windows forms project, we can include it in our project. We then use it by creating a new instance of the Web
service object as though it is a local object instead of a remote one. Listing 6.13 shows a Windows form with a data
grid on it, which retrieves the DataSet from SimpleDataSet and binds it to a form.

Listing 6.13 A Form That Is Bound to the SimpleDataSet Web Service

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace SimpleFormsClient
{
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.DataGrid dataGrid1;
 private System.ComponentModel.Container components = null;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

This document is created with the unregistered version of CHM2PDF Pilot

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.dataGrid1 = new System.Windows.Forms.DataGrid();
 ((System.ComponentModel.ISupportInitialize)(this.dataGrid1)) .BeginInit();
 this.SuspendLayout();
 //
 // dataGrid1
 //
 this.dataGrid1.DataMember = "";
 this.dataGrid1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.dataGrid1.Name = "dataGrid1";
 this.dataGrid1.Size = new System.Drawing.Size(504, 389);
 this.dataGrid1.TabIndex = 0;
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(504, 389);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.
dataGrid1});
 this.Name = "Form1";
 this.Text = "Form1";
 this.Load += new System.EventHandler(this.Form1_Load);
 ((System.ComponentModel.ISupportInitialize)(this.dataGrid1)).EndInit();
 this.ResumeLayout(false);

 }
 #endregion

 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 DataSetSample dss = new DataSetSample();
 dataGrid1.DataMember = "Orders";
 dataGrid1.DataSource = dss.Simple();
 }
 }
}

The important stuff is in the last few lines. I have added three lines of code that do all the work to the form load. The
first lines get a new instance of the Web service proxy class. Then, calling the WebMethod on the new class is as
simple as the last line: dss.Simple(). That's it. The .NET framework hides all the hard stuff, making calling remote
Web methods on a Web service as easy as calling methods on local classes. Figure 6.9 shows the resulting form.

Figure 6.9. A Windows form showing the result of calling the SimpleDataSet Web service.

This document is created with the unregistered version of CHM2PDF Pilot

SoapHttpClientProtocol

This is the class from which the Web proxies generated by WSDL and Visual Studio .NET derive.

Of course, you aren't limited to calling XML Web services from Windows forms. It is just as easy to call a Web
service from a Web form. This time around, I am going to include a Web reference in a Visual Studio .NET Web
form project. I do this by pointing the Add Web Reference dialog box to the URL where the XML Web services
resides. The dialog box will automatically find the WSDL and allow me to add the reference. Visual Studio .NET will
then create the proxy class for me, eliminating the need for wsdl.exe. Visual Studio .NET names the proxy slightly
differently than when you create it with wsdl.exe. The biggest difference is that it creates a namespace that is set to
the hostname.domainname combination of the Web service that you created it from. Listing 6.14 shows the proxy
that was created by Visual Studio.NET.

Listing 6.14 The Proxy Created for SimpleDataSet by Visual Studio .NET

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.2914.16
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

namespace SimpleDataSetWebClient.localhost {
 using System.Diagnostics;
 using System.Xml.Serialization;
 using System;
 using System.Web.Services.Protocols;
 using System.Web.Services;
 [System.Web.Services.WebServiceBindingAttribute(Name="DataSetSampleSoap",
Namespace="http://tempuri.org/")]
 public class DataSetSample : System.Web.Services.Protocols. SoapHttpClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]

This document is created with the unregistered version of CHM2PDF Pilot

 public DataSetSample() {
 this.Url =
"http://localhost/book/webservices/csharp/simpledataset/dataset.asmx";
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://
tempuri.org/Simple", Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public System.Data.DataSet Simple() {
 object[] results = this.Invoke("Simple", new object[0]);
 return ((System.Data.DataSet)(results[0]));
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.IAsyncResult BeginSimple(System.AsyncCallback callback,
object asyncState) {
 return this.BeginInvoke("Simple", new object[0], callback, asyncState);
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.Data.DataSet EndSimple(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((System.Data.DataSet)(results[0]));
 }
 }
}

When using a Web form to create this object, we have to use slightly different syntax, which in this case is
localhost.DataSetSample. The namespace is fixed, even if you change the location that you use to access the Web
service. If you right-click the localhost reference in Visual Studio .NET, you can rename the localhost, which will
change the namespace. If you want to change the location that is used to access the Web service, you can use the
URL property of the proxy class. This property expects a fully qualified reference to the .ASMX file that matches the
proxy class. The Web form client for SimpleDataSet shown in Listing 6.15 uses the URL property to change the
location.

Listing 6.15 A Web Form Client for SimpleDataSet

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace SimpleDataSetWebClient
{
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.DataGrid DataGrid1;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)

This document is created with the unregistered version of CHM2PDF Pilot

 {
 localhost.DataSetSample dss = new localhost.DataSetSample();

 dss.Url =
"http://localhost/book/webservices/csharp/SimpleDataSet/DataSet.asmx";

 // Indicate which table in the dataset should be bound to
 DataGrid1.DataMember = "Orders";
 // Get the dataset and set it to the source
 DataGrid1.DataSource = dss.Simple();
 // Force the binding to happen
 DataGrid1.DataBind();
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Again, the interesting lines are the ones in Page_Load. The first line creates a new instance of the proxy class using
the localhost namespace. The next line changes the URL from the initial one used to create the proxy to the one that
will be used in the "production" environment. Then the datagrid binding syntax binds the returned dataset directly to
the grid. The last line calls DataBind() to tell the framework that it is now time to perform the binding.

Asynchronous Clients

XML Web services are a convenient way to access services over the Internet. The Internet itself can introduce some
uncertainties in calling your XML Web services, however. The latencies involved in transiting data from point A to
point B on the Internet change on an hourly basis, if not second to second. You don't want to have your application
block or appear to be sluggish because you are retrieving information from a Web service over the Internet. The
solution is to call the Web service in an asynchronous fashion. This enables you to fire off the request to a Web
service and then continue doing other work. When the Web service request returns, you can retrieve the data and
display it to the user.

Asynchronous access is more useful in a Windows form type of application where you can go ahead and make the
form available to the user immediately. When the data becomes available, just update it in the already displayed form.
The Web service proxy again does the majority of the heavy lifting. In addition to creating mirrors of all the Web
methods for the Web service, it creates a Begin<methodname> and End<methodname> method for each Web
method.

This document is created with the unregistered version of CHM2PDF Pilot

In the proxy for the SimpleDataSet Web service shown in Listing 6.13, you will see, in addition to the Simple()
method, a BeginSimple and EndSimple method. These are already set up to work with the IAsyncResult interface.
When the Begin method is called, it expects to be passed, in addition to any arguments the Web method requires, the
address of a callback method. A callback method is just a method that is called when the operation completes.
Optionally, you can stick any object into the AsyncState parameter and retrieve it later in the callback. This is useful
to get a handle on the Web service so that you don't have to store a reference to it in a global variable. You will need
this reference to call the End method so that you can retrieve the results from the Web service. Listing 6.16 shows a
Web form that calls a new Web service, NorthwindOrder, that utilizes this methodology.

Listing 6.16 A Windows Form That Calls the New NorthwindOrder Web Service Asynchronously

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace NorthwindFormsClient
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 public delegate void SetData(IAsyncResult ar);

 private System.Windows.Forms.DataGrid dataGrid1;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify

This document is created with the unregistered version of CHM2PDF Pilot

 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.dataGrid1 = new System.Windows.Forms.DataGrid();
 ((System.ComponentModel.ISupportInitialize)(this.dataGrid1)).
BeginInit();
 this.SuspendLayout();
 //
 // dataGrid1
 //
 this.dataGrid1.DataMember = "";
 this.dataGrid1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.dataGrid1.HeaderForeColor = System.Drawing.SystemColors.\
ControlText;
 this.dataGrid1.Name = "dataGrid1";
 this.dataGrid1.Size = new System.Drawing.Size(552, 429);
 this.dataGrid1.TabIndex = 0;
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(552, 429);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.
dataGrid1});
 this.Name = "Form1";
 this.Text = "Form1";
 this.Load += new System.EventHandler(this.Form1_Load);
 ((System.ComponentModel.ISupportInitialize)(this.dataGrid1)).EndInit();
 this.ResumeLayout(false);

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 localhost.Orders oOrders = new localhost.Orders();

 // Create the callback to pass to the asynchronous invocation
 AsyncCallback wscb = new AsyncCallback(this.WebServiceCallback);
 // Call the web method asynchronously passing in the callback and the
service itself
 oOrders.BeginGetAllOrders(wscb, oOrders);
 }

 public void WebServiceCallback(IAsyncResult ar)
 {
 // When this callback executes we are on a different thread than the
grid
 // Windows Forms is single threaded so we need to call invoke to cross
threads
 SetData dlg = new SetData(SetDataInGrid);
 dataGrid1.Invoke(dlg, new Object[] {ar});
 }

This document is created with the unregistered version of CHM2PDF Pilot

 public void SetDataInGrid(IAsyncResult ar)
 {

 localhost.Orders oOrders;

 // Grab the web service out of the async result object AsyncState
property
 oOrders = (localhost.Orders)ar.AsyncState;
 // Get the data out of the finished web service
 DataSet ds = oOrders.EndGetAllOrders(ar);

 // Put the data into the grid
 dataGrid1.DataMember = "Orders";
 dataGrid1.DataSource = ds;
 }
 }
}

Don't get confused by the invoke in WebServiceCallback. Windows forms are single threaded by nature. When the
callback from the Web service fires, you are not on the thread that created the control. If you attempt to set the
DataSource property while on the wrong thread, you can cause undesirable results, including your program hanging.
The invoke is used to transfer control to the thread that created the datagrid and then load the data on that thread.

Asynchronous calls are harder in a Web page than in a Windows form. After a Web page has been sent back to the
browser, there is no way to update information in it further. Asynchronous calls are still of limited use in a Web page,
however. If you have several Web service calls to make to create a page, fire them all off in an asynchronous fashion
at the start of page processing and then continue doing other work in the page—perhaps retrieving information from a
database, performing calculations, or doing anything else required to build the page.

This brings us to the other ways of calling a Web service asynchronously. It is possible to call the Web method using
Begin but without specifying a callback method. You can then continue with other processing. When you need the
data from the Web service, you have two options:

1.

1. Loop while looking at the IsCompleted property of the AsyncResult object. If all you are doing in the loop is
checking the IsCompleted property, this is not the most efficient technique. It has the disadvantage of
chewing up CPU cycles that other processes could be using. It has the advantage, however, of letting you do
other work while waiting for the Web service to finish its work.

1.
2.

2. Utilize the AsyncWaitHandle of the AsyncResult object to cause the thread to wait until the Web service
signals completion. This doesn't spin the CPU, wasting needless processing cycles. eeYou can specify a
timeout for the wait and then check the IsCompleted property to see if a timeout has occurred. The
disadvantage of this, however, is that your code can't be off doing other processing while waiting for the call
to return.

2.

Listing 6.17 shows an example of a Web form calling the NorthwindOrders Web service asynchronously.

Listing 6.17 A Web Form That Calls the NorthwindOrders Service Asynchronously and Loads the Orders

This document is created with the unregistered version of CHM2PDF Pilot

into a Grid

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace NorthwindWebClient
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.DataGrid DataGrid1;
 private void Page_Load(object sender, System.EventArgs e)
 {
 IAsyncResult ar;
 localhost.Orders oOrders = new localhost.Orders();

 // Start the web service call
 ar = oOrders.BeginGetAllOrders(null, null);

 // Do other work....

 // All done so wait for the web service to come back
 // This waitone waits for 20 seconds and then continues
 ar.AsyncWaitHandle.WaitOne(20000, false);

 // Check to see if the async call completed.
 // If not write a timeout message
 if(!ar.IsCompleted)
 Response.Write("Timed out");
 else
 {
 // Data is ready so put it into the grid
 DataGrid1.DataMember = "Orders";
 DataGrid1.DataSource = oOrders.EndGetAllOrders(ar);
 DataGrid1.DataBind();
 }
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {

This document is created with the unregistered version of CHM2PDF Pilot

 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

This code fires off the asynchronous Web method right at the beginning of page load. It then continues to do other
processing. Just before rendering the page back to the user, it waits for the results from the WebMethod for 20
seconds. If the Web method completes sooner, WaitOne exits as soon as the method completes. This means that
WaitOne will wait at most 20 seconds but may wait for as few as 0 seconds.

Cookies and Proxies

By default, the proxies created by WSDL or Visual Studio .NET do not interact with cookies. This means that even
though you may turn on Session state in the Web service, unless you take a few extra steps on the client, you will
never get persistent Session state.

SoapHttpClientProtocol has a CookieContainer property, which is intended to hold a reference to the cookie
container class that can be used to maintain cookie information across invocations of Web methods. By default, this
property is empty. It is quite easy, however, to create a new cookie container and put a reference to it into the
property. Either the Web service reference or the cookie container must persist across invocations, most likely as a
member of your top-level class for this to work. Listing 6.18 shows an example of a Windows form that creates a
cookie container and puts it into the Web proxy. It utilizes the state Web service that we created back in Listing 6.5.

Listing 6.18 A Windows Form That Creates a Cookie Container and Utilizes the State Web Service

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
namespace StateClient
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 internal System.Windows.Forms.Button btnGet;
 internal System.Windows.Forms.Label lblGetValueText;
 internal System.Windows.Forms.Label lblGetValue;
 internal System.Windows.Forms.TextBox txtGetKey;
 internal System.Windows.Forms.Label lblGetKey;
 internal System.Windows.Forms.Button btnSet;
 internal System.Windows.Forms.TextBox txtSetValue;
 internal System.Windows.Forms.TextBox txtSetKey;
 internal System.Windows.Forms.Label lblSetValue;
 internal System.Windows.Forms.Label lblSetKey;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 localhost.State ss = new localhost.State();

This document is created with the unregistered version of CHM2PDF Pilot

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 // Initialize the cookie container and set it so we can
 // maintain state
 ss.CookieContainer = new System.Net.CookieContainer();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnGet = new System.Windows.Forms.Button();
 this.lblGetValueText = new System.Windows.Forms.Label();
 this.lblGetValue = new System.Windows.Forms.Label();
 this.txtGetKey = new System.Windows.Forms.TextBox();
 this.lblGetKey = new System.Windows.Forms.Label();
 this.btnSet = new System.Windows.Forms.Button();
 this.txtSetValue = new System.Windows.Forms.TextBox();
 this.txtSetKey = new System.Windows.Forms.TextBox();
 this.lblSetValue = new System.Windows.Forms.Label();
 this.lblSetKey = new System.Windows.Forms.Label();
 this.SuspendLayout();
 //
 // btnGet
 //
 this.btnGet.Location = new System.Drawing.Point(128, 112);
 this.btnGet.Name = "btnGet";
 this.btnGet.TabIndex = 19;
 this.btnGet.Text = "Get";
 this.btnGet.Click += new System.EventHandler(this.btnGet_Click);
 //
 // lblGetValueText
 //
 this.lblGetValueText.Location = new System.Drawing.Point(16, 168);
 this.lblGetValueText.Name = "lblGetValueText";
 this.lblGetValueText.Size = new System.Drawing.Size(100, 16);
 this.lblGetValueText.TabIndex = 18;
 //
 // lblGetValue
 //
 this.lblGetValue.Location = new System.Drawing.Point(16, 152);

This document is created with the unregistered version of CHM2PDF Pilot

 this.lblGetValue.Name = "lblGetValue";
 this.lblGetValue.Size = new System.Drawing.Size(88, 16);
 this.lblGetValue.TabIndex = 17;
 this.lblGetValue.Text = "Value:";
 //
 // txtGetKey
 //
 this.txtGetKey.Location = new System.Drawing.Point(16, 128);
 this.txtGetKey.Name = "txtGetKey";
 this.txtGetKey.TabIndex = 16;
 this.txtGetKey.Text = "Key";
 //
 // lblGetKey
 //
 this.lblGetKey.Location = new System.Drawing.Point(16, 112);
 this.lblGetKey.Name = "lblGetKey";
 this.lblGetKey.Size = new System.Drawing.Size(72, 16);
 this.lblGetKey.TabIndex = 15;
 this.lblGetKey.Text = "Key:";
 //
 // btnSet
 //
 this.btnSet.Location = new System.Drawing.Point(128, 16);
 this.btnSet.Name = "btnSet";
 this.btnSet.TabIndex = 14;
 this.btnSet.Text = "Set";
 this.btnSet.Click += new System.EventHandler(this.btnSet_Click);
 //
 // txtSetValue
 //
 this.txtSetValue.Location = new System.Drawing.Point(16, 72);
 this.txtSetValue.Name = "txtSetValue";
 this.txtSetValue.TabIndex = 13;
 this.txtSetValue.Text = "Value";
 //
 // txtSetKey
 //
 this.txtSetKey.Location = new System.Drawing.Point(16, 32);
 this.txtSetKey.Name = "txtSetKey";
 this.txtSetKey.TabIndex = 11;
 this.txtSetKey.Text = "Key";
 //
 // lblSetValue
 //
 this.lblSetValue.Location = new System.Drawing.Point(16, 56);
 this.lblSetValue.Name = "lblSetValue";
 this.lblSetValue.Size = new System.Drawing.Size(88, 16);
 this.lblSetValue.TabIndex = 12;
 this.lblSetValue.Text = "Value:";
 //
 // lblSetKey
 //
 this.lblSetKey.Location = new System.Drawing.Point(16, 16);
 this.lblSetKey.Name = "lblSetKey";
 this.lblSetKey.Size = new System.Drawing.Size(72, 16);
 this.lblSetKey.TabIndex = 10;
 this.lblSetKey.Text = "Key:";
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(216, 189);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.

This document is created with the unregistered version of CHM2PDF Pilot

btnGet,
 this.
lblGetValueText,
 this.
lblGetValue,
 this.
txtGetKey,
 this.
lblGetKey,
 this.
btnSet,
 this.
txtSetValue,
 this.
txtSetKey,
 this.
lblSetValue,
 this.
lblSetKey});
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private void btnSet_Click(object sender, System.EventArgs e)
 {
 // Set the value
 ss.SetValue(this.txtSetKey.Text, this.txtSetValue.Text);
 }

 private void btnGet_Click(object sender, System.EventArgs e)
 {
 // Get the value
 this.lblGetValueText.Text = ss.GetValue(this.txtGetKey.Text);
 }
 }
}

In this form, the Web service is a member variable of Form1. It persists for the life of the form. On form load, a
cookie container is created and associated with the instance of the Web service. This enables Session state to work
across each of the Web service method calls.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Class Reference

This section provides a quick interface reference to the key objects described in this chapter. Space constraints
prevent us from documenting every object in the .NET framework in this book, so for the sake of brevity and
conciseness, we include only the most important objects here. For more information on the other objects in the .NET
framework, consult the .NET Framework Reference online help file.

WebService

Member of System.Web.Services.

Assembly: System.Web.Services.dll.

The WebService class is what all XML Web services derive from.

Properties

Application Context Server

Session User

WebMethodAttribute

Member of System.Web.Services.

Assembly: System.Web.Services.dll.

The WebMethodAttribute class is used to set the options for a Web method.

Properties

BufferResponse CacheDuration Description

EnableSession MessageName TransactionOption

TypeID

SoapHttpClientProtocol

Member of System.Web.Services.Protocols.HttpWebClientProtocol.

This document is created with the unregistered version of CHM2PDF Pilot

Assembly: System.Web.Services.dll.

This is the class from which the Web proxies generated by WSDL and Visual Studio .NET derive.

Properties

AllowAutoRedirect ClientCertificates ConnectionGroupName

CookieContainer Credentials PreAuthenticate

Proxy RequestEncoding Timeout

Url UserAgent

Methods

Abort Discover
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 7. Security

IN THIS CHAPTER

•

• Identity and Principal
•
•

• Windows Authentication
•
•

• Forms Authentication
•
•

• Passport Authentication
•
•

• File Authorization
•
•

• URL Authorization
•
•

• Custom Roles with Forms Authentication
•
•

• Pulling It All Together
•
•

• Impersonation
•
•

• Class Reference
•

ASP.NET offers a number of ways to secure your Web application. Securing a Web application usually breaks
down to two tasks: authentication and authorization.

This document is created with the unregistered version of CHM2PDF Pilot

Authentication is the process of determining who the user is. This is frequently done by requiring users to first indicate
who they are by providing a name or e-mail address. Second, users are frequently required to provide some shared
secret, which theoretically only they know. The most common example of a shared secret is a password. The
combination of the name and shared secret is then compared against some store containing user information. This
combination of a username and password is fre-quently referred to as a set of credentials. If the provided credentials
match the information in the store, the user is deemed authentic and is allowed access to the application. If the
information does not match, the user is typically given another chance to provide valid credentials. ASP.NET includes
three implementations of authentication schemes: Windows, Forms, and Passport.

The other task, authorization, is the process of determining what resources users should have access to after they
have been authenticated. This process is typically performed by comparing a list of roles applicable to the
authenticated user against a list of roles that are required for access to a particular resource. These resources could
be Web pages, graphics, or pieces of information from a database. ASP.NET includes two implementations of
authorization schemes: file and URL.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Identity and Principal

Two key objects closely associated with security in .NET are identities and principal objects. An identity represents a
user's identity and the method used to authenticate the user. Two identity classes are provided by default in .NET.
The GenericIdentity is a generic implementation of the IIdentity interface that is not specific to any particular type of
authentication. It implements the required interface and no more. The WindowsIdentity is an implementation of
IIdentity that adds more methods and properties particular to Windows-based authentication.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Class Reference

This section provides a quick interface reference to the key objects described in this chapter. Space constraints
prevent us from documenting every object in the .NET framework in this book; for the sake of brevity and
conciseness, we include only the most important objects here. For more information on the other objects in the .NET
framework, consult the .NET Framework Reference online help file.

GenericIdentity Class

Member of System.Security.Principal.

Assembly: mscorlib.dll.

The GenericIdentity class represents the identity of authenticated users and the method used to authenticate them.
Derive from this class to provide additional information to the Identity specific to a custom authentication method.

Properties

AuthenticationType IsAuthenticated Name

WindowsIdentity Class

Member of System.Security.Principal.

Assembly: mscorlib.dll.

The WindowsIdentity class is used when you want to rely on Windows security. This class implements IIdentity and
adds additional properties dealing with Windows security.

Properties

AuthenticationType IsAnonymous IsAuthenticated

IsGuest IsSystem Name

Token

Methods

GetAnonymous GetCurrent Impersonate

The IPrincipal interface represents the security context of a user. The principal contains an Identity for the user as
well as any role-based information about the user. Just as .NET provided two implementations of IIdentity, it also
provides two implementations of IPrincipal. The first, GenericPrincipal, is a generic implementation of IPrincipal with

This document is created with the unregistered version of CHM2PDF Pilot

a simple array of strings representing the roles. The roles are passed in as part of the constructor. It also provides an
implementation of IsInRole() that checks whether a passed-in role is contained within the list of within the list of roles.

GenericPrincipal Class

Member of System.Security.Principal.

Assembly: mscorlib.dll.

The GenericPrincipal class is a minimal implementation of the IPrincipal interface.

Properties

Identity

Methods

IsInRole

WindowsPrincipal Class

Member of System.Security.Principal.

Assembly: mscorlib.dll.

The WindowsPrincipal class is an implementation of IPrincipal intended for use with Windows-based groups. The
implementation of IsInRole() checks the user's membership in a Windows local or domain group.

Properties

Identity

Methods

IsInRole

WindowsBuiltInRole Enumeration

Member of System.Security.Principal.

Assembly: mscorlib.dll.

The WindowsBuiltInRole enumeration provides a language-independent way to check for membership in the built-in
Windows groups.

This document is created with the unregistered version of CHM2PDF Pilot

Values

AccountOperator Administrator BackupOperator

Guest PowerUser PrintOperator

Replicator SystemOperator User

PassportIdentity

Member of System.Web.Security.

Assembly: System.Web.dll.

This class contains functionality for interacting with the passport authentication service.

Properties

AuthenticationType Error GetFromNetworkServer

HasSavedPassword HasTicket IsAuthenticated

Item Name TicketAge

TimeSinceSignIn

Methods

AuthUrl2 GetDomainAttribute GetDomainFromMemberName

GetIsAuthenticated GetProfileObject HasFlag

HasProfile HaveConsent LoginUser

LogoTag2

Static Methods

Compress CryptIsValid CryptPutHost

CryptPutSite Decompress Decrypt

Encrypt SignOut
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Windows Authentication

ASP.NET still requires Internet Information Server (IIS) to handle Web requests. ASP.NET is layered on top of IIS
using an ISAPI filter just like ASP.old. What this means is that ASP.NET participates in the IIS security model.

Before ASP.NET is even called on to execute a page, IIS must be satisfied that the user has permission to request
the page. This permission check is done using any of the standard mechanisms built in to IIS, including Basic
Authentication, Digest Authentication, or Integrated Windows Authentication.

When the user first requests a page that requires authentication, IIS initially returns an HTTP 1.1 401 Access Denied
error to the browser. Included in the response is the WWW-Authenticate header, which indicates that the browser
should collect user credentials and include them with the next request. After Internet Information Server receives the
credentials, they are authenticated against the account database and, if they match, the page is executed.

ASP.NET allows the developer to further interact with these built-in Windows-based authentication mechanisms
through the use of the WindowsPrincipal and WindowsIdentity classes mentioned earlier.

By default, when you create a Web Application using Visual Studio .NET or even using the Internet Services
Manager, anonymous access is enabled by default for the Web site. To force IIS to authenticate all requests aimed at
a directory, you must disable anonymous authentication. This will cause IIS to authenticate the user against the
Windows account database.

To force ASP.NET to do its part, you must change an entry in the application's web.config file. Specifically, the
authentication section must be set to Windows as follows:

<authentication mode="Windows" />

With this setting in place, ASP.NET will create a WindowsPrincipal object for each authenticated request that it
receives and will populate it with a WindowsIdentity. The groups that the user belongs to will also be loaded into the
principal, allowing IsInRole() to test for role membership. The username that is placed into the WindowsIdentity will
be of the form DOMAIN\UserName. The groups that IsInRole() checks for are of the form DOMAIN\Group, with
the exception of built-in groups such as Administrator. Built-in groups are of the form BUILTIN\Administrator, or
alternatively, you can use the WindowsBuiltInRole enumeration.

WindowsBuiltInRole Enumeration

Listings 7.1 and 7.2 show a page that is executed after the user is authenticated. It uses the WindowsPrincipal object
to

•

This document is created with the unregistered version of CHM2PDF Pilot

• Check whether the user is authenticated
•
•

• Get the username
•
•

• Get the authentication method
•
•

• Check whether the user is an administrator
•

Listing 7.1 ASP.NET Page That Utilizes the WindowsPrincipal Object to Obtain Information About the
User

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Security.Principal;

namespace Windows.Administrator
{
 /// <summary>
 /// Summary description for CDefault.
 /// </summary>
 public class CDefault : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label lblIsAuthenticated;
 protected System.Web.UI.WebControls.Label lblAuthenticationType;
 protected System.Web.UI.WebControls.Label lblUserName;
 protected System.Web.UI.WebControls.Label lblAdministrator;
 public CDefault()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 WindowsPrincipal wp = (WindowsPrincipal) HttpContext.Current.User;
 // Check if the user is authenticated
 lblIsAuthenticated.Text = wp.Identity.IsAuthenticated.ToString();
 // Output the authentication type
 lblAuthenticationType.Text = wp.Identity.AuthenticationType.ToString();
 // Output the user name
 lblUserName.Text = wp.Identity.Name;
 // Is the user an administrator?
 lblAdministrator.Text =
wp.IsInRole(WindowsBuiltInRole.Administrator).ToString();
 }

This document is created with the unregistered version of CHM2PDF Pilot

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Listing 7.2 Class File for ASP.NET Page in Listing 7.1

<%@ Page language="c#" Codebehind="Default.aspx.cs" AutoEventWireup="false"
Inherits="Windows.Administrator.CDefault" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="CDefault" method="post" runat="server">
 <P>
 I am an Administrator
 </P>
 <P>
 IsAuthenticated:
 <asp:Label id="lblIsAuthenticated" runat="server"></asp:Label>
 </P>
 <P>
 Authentication Type:
 <asp:Label id="lblAuthenticationType" runat="server"></asp:Label>
 </P>
 <P>
 User Name:
 <asp:Label id="lblUserName" runat="server"></asp:Label>
 </P>
 <P>
 Administrator?
 <asp:Label id="lblAdministrator" runat="server"></asp:Label>
 </P>
 </form>
 </body>
</HTML>

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Forms Authentication

The previous section showed how easy it is to use Windows authentication in ASP.NET. ASP.NET provides
another security mechanism as well: forms authentication. Why would you want to use it? One reason is because
Windows authentication, although easy to use, makes a couple significant assumptions.

Windows Versus Forms Authentication

For one thing, Windows authentication assumes you have a scalable Windows domain implementation already in
place. However, this is not always a safe assumption. Many Web site administrators prefer not to go to the trouble of
designing, implementing, and maintaining the Active Directory implementation on which domain-based security rests.
Others may not have the expertise or budget to figure out how to get Active Directory to scale into the millions of
users. Without an Active Directory implementation, you can authenticate against the account database that every
Windows 2000 server maintains. However, this approach means that this account database must be replicated in
some fashion among servers in a cluster or you are limited to a single server.

Ultimately, what all of this comes down to is that you may want to authenticate users against a credential store other
than a Windows 2000 domain. Forms authentication provides one way to do this.

Windows authentication also assumes you want only minimal control over the user interface presented to the user. By
default, Windows-based authentication uses a standard browser dialog box to collect the user's credentials. If you
want to integrate the form to collect credentials into an existing Web page or provide your own login form, you are
out of luck. Forms authentication provides a way for you, the developer, to determine what interface the user
receives.

All the advantages of forms authentication are not free, however. First, forms authentication requires that the user has
cookies enabled. Although ASP.NET has provided a way to track Session state without cookies, it has not provided
a way to track forms authentication without cookies. Hopefully, this will come in a future version of ASP.NET.
Second, you, the developer, need to create a login page and write some code to make this all work. ASP.NET
provides the infrastructure, but you need to provide the specific implementation.

Other Advantages

Maybe you already do this type of authentication. So what's the big deal with forms authentication? Perhaps the most
common security mechanism in place today among ASP developers provides many of the same advantages. I
provide a customized login page for my users and authenticate them against my credential store. After they are
authenticated, I either write a cookie or save their authentication into a session variable. In every page, I have an
include file that looks for the Session() value or cookie. If it isn't there, I redirect the user back to the login page. This
can be very effective but it has two big problems:

1.

1. What if I forget the include file?

This document is created with the unregistered version of CHM2PDF Pilot

1.
2.

2. How do I protect PDF, ZIP, or JPG files? There is no place to put the code!
2.

Forms authentication enables me to do all this without having to include code in every page to check whether the user
was properly authenticated.

NOTE

ASP.NET authentication and authorization is applied only to files that are mapped to the ASP.NET ISAPI filter. This
means that, by default, it will not be applied to any file that is loaded, other than the built-in ASP.NET file types listed
in Chapter 2, "Page Framework"—for example, a JPG or a ZIP file. If you add these file types to the ISAPI filter,
they can participate in the security model.

Process

When forms authentication is enabled and a request is made for a page, ASP.NET first determines whether
authentication is needed. If it is, ASP.NET then checks for an authentication cookie in the request. If it is not present,
ASP.NET redirects the user to the login page and passes the URL of the original page as a query string parameter,
named ReturnURL, to the login page.

NOTE

The user is sent to the login page using a 302 location-moved redirection. This means that any form data that may
have been included with the request is lost.

The login page collects users' credentials and is responsible for validating them against a credential store. This is
where you as the developer get control. The credential store could consist of an LDAP directory, a database, or
even something as simple as an XML file. When the credentials have been verified, RedirectFromLoginPage() is
called to write an authentication ticket into a cookie and redirect the user to the original content that the user
requested. A diagram of this process is shown in Figure 7.1.

Figure 7.1. A process flow for the forms authentication process.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Passport Authentication

Forms authentication is cool, but it has one potential failing. It requires users to create and maintain a set of
credentials for every Web site that they visit. Wouldn't it be nice to have just one username and password that you
could use at any site? That is the idea behind Microsoft Passport.

The first step to using Microsoft Passport is to request a Site ID. The Site ID identifies your site as a valid Passport
partner and is used as a key by Passport to identify settings related to your site. When you have acquired a Site ID,
you can configure your site to use Passport. Change the mode attribute of <authentication> element to Passport. A
second optional element <passport> enables you to specify the location of the Passport login page via the redirectUrl
attribute. A sample web.config for Passport authentication is shown in Listing 7.6.

Listing 7.6 A web.config Setup for Passport Authentication

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation defaultLanguage="c#" debug="true" />
 <authentication mode="Passport">
 <passport redirectUrl="login.aspx" />
 </authentication>
 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 </authorization>
 </system.web>
 <location path="attendees">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

The rest of the web.config is very similar to what you used before with forms authentication. Now you need to
provide a way for the user to log in. This is typically done with most participating Passport sites using a Passport logo
that indicates whether the user is logged in or out. The PassportIdentity object provides a method LogoTag2() that
returns the HTML necessary to display this logo.

PassportIdentity

This class contains functionality for interacting with the Passport authentication service.

If the user is not logged in, however, no PassportIdentity object is available. If User.Identity.IsAuthenticated returns
false, you need to create a new instance of PassportIdentity and use it to output the login logo. This logo is frequently
placed in a number of locations around a site, so it is a good idea to wrap it up in a Web user control. Listing 7.7
shows an example of this control.

This document is created with the unregistered version of CHM2PDF Pilot

Listing 7.7 A Web User Control That Wraps the Display of the Passport Logo

namespace Passport
{
 using System;
 using System.Data;
 using System.Drawing;
 using System.Web;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;

 /// <summary>
 /// Summary description for passportlogo.
 /// </summary>
 public abstract class passportlogo : System.Web.UI.UserControl
 {

 /// <summary>
 public passportlogo()
 {
 this.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 System.Web.Security.PassportIdentity pi;

 if(HttpContext.Current.User.Identity.IsAuthenticated)
 pi = (System.Web.Security.PassportIdentity)
HttpContext.Current.User.Identity;
 else
 pi = new System.Web.Security.PassportIdentity();

 if(Request["ReturnURL"] == null)
 Response.Write(pi.LogoTag2("http://" +
Request.ServerVariables["SERVER_NAME"].ToString() +
HttpContext.Current.Request.Path, 600, false, "", 1033, false, "", 0, false));
 else
 Response.Write(pi.LogoTag2(Request["ReturnURL"], 600, false, "", 1033,
false, "", 0, false));

 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion
 }
}

This document is created with the unregistered version of CHM2PDF Pilot

The user control first looks to see whether the user has been authenticated. If he is authenticated, the user control
then grabs the PassportIdentity of the user. If he is not authenticated, a new PassportIdentity is created. The
LogoTag2 method of the PassportIdentity object is then used to output the appropriate login or logout logo for
Passport.

This user control can now be placed on the home page to provide a way to log in. When a user attempts to access a
page for which he has insufficient permissions, he is redirected to the URL indicated in the redirectUrl attribute of the
<passport> element. This page should show a message indicating to the user that he attempted to access
authenticated content and provide a way to log in. The easiest way to do this is to include the passportlogo user
control that you created in Listing 7.7. A sample login.aspx page is shown in Listing 7.8.

Listing 7.8 The login.aspx Page That Is Shown When Users Attempt to Access Content When They Are
Not Authenticated

<%@ Page language="c#" Codebehind="login.aspx.cs" AutoEventWireup="false"
Inherits="Passport.login" %>
<%@ Register TagPrefix="uc1" TagName="passportlogo" Src="passportlogo.ascx" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="login" method="post" runat="server">
 <P>
 You must login to access that content... Click on the passport logo
to log in...
 </P>
 <P>

 <uc1:passportlogo id="Passportlogo1" runat="server">
 </uc1:passportlogo>
 </P>
 </form>
 </body>
</HTML>

If you want to use the personalization features of Microsoft Passport, you will also be interested in the Profile
collection. The GetProfileObject method of the PassportIdentity allows you to retrieve attributes from the user's
Passport profile. The valid attributes are listed in Table 7.1.

Table 7.1. Valid Passport Attributes

Attribute Name Description Validation Rules

Accessibility Indicates whether accessibility
features should be enabled on
participant sites for this user. 0=no;
1=yes.

Must be 0 or 1.

This document is created with the unregistered version of CHM2PDF Pilot

BDay_precision Defines the precision of the Birthdate
attribute.

0, 1, 2, 3, or Null.

Birthdate Contains the user's birth year or birth
date.

Only dates since 12/30/1899 are
valid.

City GeoID that maps to the user's city. Must be a valid GeoID.

Country ISO 3166 country code for the user's
country.

Gender Gender of user. Must be Null, M, F, or U.

Lang_Preference LCID of the user's preferred
language.

MemberName A legacy attribute that no longer
contains a sign-in name, but can be
used to determine a user's domain.
Use DomainFromMemberName().

Nickname Friendly name the user would like to
be greeted by.

PreferredEmail The user's e-mail address.

PostalCode Stores the postal code for the United
States and other countries, where
appropriate.

ProfileVersion Represents the version of the user's
core profile.

N/A

Region GeoID that maps to the region within
the user's country.

Must be a valid GeoID.

Wallet Indicates whether the user has
established a Passport wallet.

0=no; 1=yes.

To use the profile data, just pass the name of the core attribute you are interested in to the GetProfileAttribute()
method. Listing 7.9 shows a page that retrieves the e-mail address and member name of a user.

Listing 7.9 A Page That Displays the PUID, E-mail Address, and Member Name of a Logged-in Passport
User

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace Passport
{
 /// <summary>
 /// Summary description for CDefault.
 /// </summary>
 public class CDefault : System.Web.UI.Page
 {
 public CDefault()
 {

This document is created with the unregistered version of CHM2PDF Pilot

 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if(User.Identity.IsAuthenticated)
 {
 System.Web.Security.PassportIdentity pi =
(System.Web.Security.PassportIdentity)User.Identity;
 Response.Write("
");
 Response.Write("User.Identity.Name: " + User.Identity.Name);
 Response.Write("
");
 Response.Write("Preferred Email: " +
pi["preferredemail"].ToString());
 Response.Write("
");
 Response.Write("Member name: " + pi["membername"].ToString());
 Response.Write("
");
 }

 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }
 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion
 }
}

When using Passport authentication, User.Identity.Name does not return the login name of the user; instead, it returns
a Passport User ID (PUID). You should use this as a key to any user-specific data you are storing, rather than using
the member name or e-mail address (which can change) from the profile.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

File Authorization

Now that you know how users are authenticated, you need to control what resources they have access to. File
authorization is the method of authorization that existed in ASP.old and migrates forward in ASP.NET.

NOTE

File authorization is the only method of authorization that IIS supports. If Allow Anonymous is off in IIS, authorization
is handled by IIS. If Allow Anonymous is on, ASP.NET applies File Authorization.

File Authorization utilizes Access Control Lists (ACLs) to specify the roles that a user must be in to access a file.
After the user has been authenticated, the File Authorization module will take each group in the ACL for a file and
call IsInRole() on the passing of the name of the group as a parameter to IsInRole(). If IsInRole() returns true, the
user is permitted to access the resource. If the File Authorization module iterates across each group in the ACL and
never receives a true response from IsInRole(), the user is asked to authenticate again.

File Authorization will work with any type of authentication as long as the principal is populated with the applicable
roles as part of the authentication process.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

URL Authorization

One of the downsides of File Authorization is the maintenance of the ACLs on the resources that you want to
protect. ACLs are frequently lost when using FTP to transfer files to a Web site. ACLs also have a
sometimes-confusing inheritance model that, for a large site, can cause maintenance headaches. ASP.NET provides
URL Authorization as a way to authorize users by attaching role information to URLs within a Web site. This URL to
Role mapping is done in the web.config file. The URL Authorization module uses the <authorization> element to
store this mapping. You saw this earlier in the web.config file used in Listing 7.3. The authorization element can
contain both allow and deny elements. Both allow and deny elements have a users attribute, a roles attribute, and a
verb attribute. Each attribute will accept a comma-separated list of items. The users attribute is used to match
identities. There are two special identities. The "*" identity is used to represent all users. The "?" is used to represent
anonymous users.

Before evaluating the authorization element, a merged authorization list is created by taking the authorization list from
all of the applicable .config files, including the machine.config file. This merged list is then evaluated from the top to
the bottom. Let's look at some examples.

<authorization>
 <deny users="?"/>
</authorization>

This is a fragment from the web.config in Listing 7.3. What this says is that I want to deny all anonymous users—"?"
means anonymous users. But if I am denying all anonymous users, don't I have to allow authenticated users? As it
turns out, no. Remember that the preceding list is merged with machine.config at the very least. Machine.config by
default contains the following fragment:

<authorization>
 <allow users="*"/>
</authorization>
Which means that the merged list during evaluation will look like:
<authorization>
 <deny users="?" />
 <allow users="*" />
</authorization>

The first deny users makes sure that no anonymous users are allowed in. The second allow users says that everyone
is allowed, which means everything other than anonymous users in this case, meaning only authenticated users. Let's
take a look at another fragment.

<authorization>
 <allow roles="BUILTIN\Administrators" />
 <deny users="*" />
</authorization>

What does this do? Can you guess? Remember top to bottom evaluation. The first element says that if the Principal is
a member of the built-in Windows NT group Administrators, I should be allowed access. If I am not a member of
this group, the next element takes effect, denying anyone else. You may wonder why the <allow users="*"/> in
machine.config doesn't still let everyone in. When the list is merged, conflicting rules are ordered based on which one

This document is created with the unregistered version of CHM2PDF Pilot

is contained within a .config file that is "closer" to the page being requested. Because the web.config is "closer" to the
page than the machine.config, the <deny users="*"/> element overrides the <allow users="*"/>. Let's try one more:

<authorization>
 <allow users="sa" roles="BUILTIN\Administrators, KINSMAN\Publishers" />
 <deny users="*" />
</authorization>

In this case, the one allow element is doing a lot of work. It says that if I am logging in with an account called "sa" or
a Principal with the "BUILTIN\Administrators" role or a Principal with the "KINSMAN\Publishers" role, I am
granted access. Anyone else is denied access.

<Location>

The authorization element that we have looked at so far applies to the Web site as a whole. In many cases I might
want to apply different authorization elements to different parts of the URI namespace. The location element provides
a way to do this. The location element allows the developer to specify a different set of settings for a subset of the
URI namespace. The location element has two attributes. The first, path, indicates what part of the namespace the
settings apply to. The second, allowOverride, can be set to false to prevent another web.config lower in the hierarchy
from overriding the settings contained within the location element.

Let's take a Web site that has a need to secure three paths. The http://www.deeptraining.com/attendees path should
be available only to people in the attendee, publisher, or administrator roles. The
http://www.deeptraining.com/publish path should be available only to people in the publisher or administrator roles.
Finally, the path http://www.deeptraining.com/admin should be available only to users in the administrator role. The
web.config in Listing 7.10 shows a way to do this using the location element.

Listing 7.10 A web.config That Uses the Location Element to Specify Different Authorization
Requirements for Different Directories

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name="FORMURL" loginUrl="login.aspx" protection="All"
timeout="30" />
 </authentication>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 <location path="admin">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="publish">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <allow roles="Publisher" />

This document is created with the unregistered version of CHM2PDF Pilot

http://www.deeptraining.com/attendees
http://www.deeptraining.com/publish
http://www.deeptraining.com/admin

 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="attendees">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <allow roles="Publisher" />
 <allow roles="Attendees" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

Note that I allow all users to access the root of the application. At the very least, I must allow all users to access the
login.aspx form, which happens to reside in the root. If you don't want users to be able to access the root in an
unauthenticated fashion, create a location element specifically to allow access to login.aspx, like this:

<location path="login.aspx">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</location>

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Custom Roles with Forms Authentication

We have discussed so far how to authenticate a user with forms authentication. This process gives you an identity to
authorize against. With Windows authentication, you have both an identity and a list of roles to authorize against.
How do you use role mappings with forms authentication to authorize against?

With a little work, you can add roles to the forms authentication model. You will use the web.config in Listing 7.11,
which defines the roles that are required for access to various URLs in the application.

Listing 7.11 Web.config That Uses Location Mapping and URL Authorization to Map Roles to
Application Locations

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name="FORMURL" loginUrl="login.aspx" protection="All"
timeout="30" />
 </authentication>
 <!-- AUTHORIZATION
 This section sets the authorization policies of the application. You can
allow or deny access
 to application resources by user or role. Wildcards: "*" mean everyone,
"?" means anonymous
 (unauthenticated) users.
 -->
 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 <!-- <allow users="[comma separated list of users]"
 roles="[comma separated list of roles]"/>
 <deny users="[comma separated list of users]"
 roles="[comma separated list of roles]"/>
 -->
 </authorization>
 </system.web>
 <location path="Administrator">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="Publisher">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <allow roles="Publisher" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="User">
 <system.web>
 <authorization>
 <allow roles="Administrator" />

This document is created with the unregistered version of CHM2PDF Pilot

 <allow roles="User" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

Next, create another simple login form. It will collect a set of credentials and allow a user with a username of either
"Administrator" or "Chris" into the application. Listings 7.12 and 7.13 show the login page.

Listing 7.12 A Login Page for Gathering Credentials That Will Authenticate Only Two Users: Chris and
Administrator

<%@ Page language="c#" Codebehind="login.aspx.cs" AutoEventWireup="false"
Inherits="FormAuthorizationURL.login" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body ms_positioning="GridLayout">
 <form id="login" method="post" runat="server">
 <asp:Label id="lblUserName" style="Z-INDEX: 101; LEFT: 36px; POSITION:
absolute; TOP: 43px" runat="server">User Name:</asp:Label>
 <asp:Button id="btnLogin" style="Z-INDEX: 105; LEFT: 290px; POSITION:
absolute; TOP: 40px" runat="server" Text="Login" tabIndex="4"></asp:Button>
 <asp:TextBox id="txtPassword" style="Z-INDEX: 104; LEFT: 119px;
POSITION: absolute; TOP: 74px" runat="server" tabIndex="3"
TextMode="Password"></asp:TextBox>
 <asp:TextBox id="txtUserName" style="Z-INDEX: 102; LEFT: 119px;
POSITION: absolute; TOP: 41px" runat="server" tabIndex="1"></asp:TextBox>
 <asp:Label id="lblPassword" style="Z-INDEX: 103; LEFT: 36px; POSITION:
absolute; TOP: 77px" runat="server" tabIndex="2">Password:</asp:Label>
 <asp:RequiredFieldValidator id="RequiredFieldValidator1"
style="Z-INDEX: 106; LEFT: 44px; POSITION: absolute; TOP: 131px" runat="server"
ErrorMessage="User Name is required."
ControlToValidate="txtUserName"></asp:RequiredFieldValidator>
 <asp:RequiredFieldValidator id="RequiredFieldValidator2"
style="Z-INDEX: 107; LEFT: 46px; POSITION: absolute; TOP: 165px" runat="server"
ErrorMessage="Password is required."
ControlToValidate="txtPassword"></asp:RequiredFieldValidator>
 <asp:Label id="lblMessage" style="Z-INDEX: 108; LEFT: 44px; POSITION:
absolute; TOP: 8px" runat="server" Width="285px" Height="19px"
ForeColor="Red"></asp:Label>
 </form>
 </body>
</HTML>

Listing 7.13 The Class File for the Page in Listing 7.12

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;

This document is created with the unregistered version of CHM2PDF Pilot

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace FormAuthorizationURL
{
 /// <summary>
 /// Summary description for login.
 /// </summary>
 public class login : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label lblUserName;
 protected System.Web.UI.WebControls.Button btnLogin;
 protected System.Web.UI.WebControls.TextBox txtPassword;
 protected System.Web.UI.WebControls.TextBox txtUserName;
 protected System.Web.UI.WebControls.Label lblPassword;
 protected System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator1;
 protected System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator2;
 protected System.Web.UI.WebControls.Label lblMessage;

 public login()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnLogin.Click += new System.EventHandler(this.btnLogin_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnLogin_Click(object sender, System.EventArgs e)
 {
 switch(txtUserName.Text)
 {
 case "Chris":
 case "Administrator":
 System.Web.Security.FormsAuthentication.RedirectFromLoginPage
(txtUserName.Text, false);
 break;
 default:
 lblMessage.Text = "Invalid User";
 break;

This document is created with the unregistered version of CHM2PDF Pilot

 }
 }
 }
}

This so far is similar to past examples. Now you need to add one more thing to the mix. Before the authorization
process begins, an application event is raised, AuthorizeRequest. By handling this event, you can do some extra work
before any page is authorized. In this case, you are going to replace the default principal with a new instance of
GenericPrincipal, with one important difference. You are going to fill in the role information. This will allow you to
then perform authorization against the roles. The constructor for GenericPrincipal allows you to pass a list of roles
into it. After creating the new GenericPrincipal, you will replace the default one with the one you have created.

NOTE

The AuthorizeRequest event is fired for every request, including the initial one when the user isn't authenticated, the
one that returns in the login form, and so on. It is a good idea to check whether the user is authenticated prior to
attempting to perform the role mapping. This is easily done using the IsAuthenticated property of the identity.

Application events are typically handled in the global.asax. Listing 7.14 shows a global.asax that handles the
AuthorizeRequest event. The code first checks to make sure the user is authenticated. If she is, it then maps her into
roles based on her identity. A new GenericPrincipal is created with the appropriate role information, and that is it!

Listing 7.14 The global.asax Class That Handles the AuthorizeRequest Application Event

using System;
using System.Collections;
using System.ComponentModel;
using System.Web;
using System.Web.SessionState;

namespace FormAuthorizationURL
{
 /// <summary>
 /// Summary description for Global.
 /// </summary>
 public class Global : System.Web.HttpApplication
 {

 protected void Application_AuthorizeRequest(object sender,
System.EventArgs e)
 {
 // Make sure the user is authenticated
 if(HttpContext.Current.User.Identity.IsAuthenticated)
 {
 // Map the user to a role based on their identity
 switch(HttpContext.Current.User.Identity.Name)
 {
 case "Chris":
 HttpContext.Current.User = new
System.Security.Principal.GenericPrincipal(HttpContext.Current.User.Identity, new
string[] {"Publisher"});
 break;
 case "Administrator":
 HttpContext.Current.User = new

This document is created with the unregistered version of CHM2PDF Pilot

System.Security.Principal.GenericPrincipal(HttpContext.Current.User.Identity, new
string[] {"Administrator", "Publisher"});
 break;
 default:
 HttpContext.Current.User = new
System.Security.Principal.GenericPrincipal(HttpContext.Current.User.Identity, new
string[] {"User"});
 break;
 }
 }
 }
 }
}

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Pulling It All Together

So far we have looked at each feature in isolation. Let's try to pull together a realistic example that you might be able
to use in your work that combines all these concepts. You are going to create a Web site, as mentioned earlier, that
contains three authenticated and authorized subdirectories: attendees, publish, and admin. Forms authentication will
be used to authenticate the users against a Microsoft SQL Server–based credential store. URL authorization will be
used to protect the subdirectories based on role information stored in Microsoft SQL Server. First, you need to
create a web.config file that turns on forms authentication and defines the authorization elements for the appropriate
subdirectories. Listing 7.15 shows the web.config.

Listing 7.15 Web.config File Sets Authentication to Forms and Defines the URL Authorization Settings for
the Three Subdirectories

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="login.aspx" />
 </authentication>
 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 </authorization>
 </system.web>
 <location path="admin">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="publish">
 <system.web>
 <authorization>
 <allow roles="Administrator,Publisher" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="attendee">
 <system.web>
 <authorization>
 <allow roles="Administrator,Publisher,Attendee" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

This sets up the following restrictions:

•

• The admin directory requires the Administrator role

This document is created with the unregistered version of CHM2PDF Pilot

•
•

• The publish directory accepts either the Administrator or Publisher roles
•
•

• The attendee directory accepts the Administrator, Publisher, or Attendee roles
•

After this structure is in place, you need to create a login page as in the previous examples. The HTML for this login
page is similar to the ones we have shown before; however, the code behind it is very different.

In this example, you are storing the roles associated with a user in Microsoft SQL Server. Each time the user comes
back to the site after the initial authentication, you need to add the role information to the Principal as shown in earlier
examples. Hitting the database on every request just to retrieve the role information is clearly inefficient. You could
potentially cache the role information in Session(), but if you are operating in a Web farm, you would have to make
sure you are using some form of shared Session state. Remember, however, that each time you authenticate a user, a
cookie is sent down and used for future authentications. It appears to be an ideal location to store the role
information. As it turns out, the ticket that is stored in the cookie is represented by the FormsAuthenticationTicket
class.

FormsAuthenticationTicket

Member of System.Web.Security.

Assembly: System.Web.dll.

The FormsAuthenticationTicket class represents the data that is encrypted and stored in a cookie for use in forms
authentication.

Properties

CookiePath Expiration Expired

IsPersistent IssueDate Name

UserData Version

This class provides a member, UserData, that can be used to store the role information. This member is a string, not
a name/value collection as you might expect. During the initial request on retrieving the role information from the
database, you will place it into a comma-separated value string and place this string into the UserData member.

NOTE

Remember that the UserData is passed back and forth from the client to the server on potentially every request. You
don't want to store a large amount of data in UserData, because it will slow down performance.

This document is created with the unregistered version of CHM2PDF Pilot

During future requests, you will retrieve the role information from the UserData and use the Split() function to break it
up into a string array suitable for passing to the GenericPrincipal constructor. One downside of doing this is that you
can no longer use the simple RedirectFromLoginPage() function in the Login page. It instead must do all the work to
create the ticket, encrypt it, add it to the Response.Cookies collection, and finally redirect the user to the initial page
that he requested. Listings 7.16 and 7.17 show login.aspx, which implements all this functionality.

Listing 7.16 The HTML for login.aspx

<%@ Page language="c#" Codebehind="login.aspx.cs" AutoEventWireup="false"
Inherits="DBFormURL.login" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="login" method="post" runat="server">
 <asp:Label id="lblEmail" style="Z-INDEX: 101; LEFT: 8px; POSITION:
absolute; TOP: 8px" runat="server">Email:</asp:Label>
 <asp:TextBox id="txtEmail" style="Z-INDEX: 102; LEFT: 78px; POSITION:
absolute; TOP: 5px" runat="server"></asp:TextBox>
 <asp:Label id="lblPassword" style="Z-INDEX: 103; LEFT: 8px; POSITION:
absolute; TOP: 44px" runat="server">Password:</asp:Label>
 <asp:TextBox id="txtPassword" style="Z-INDEX: 104; LEFT: 78px;
POSITION: absolute; TOP: 39px" runat="server" TextMode="Password"></asp:TextBox>
 <asp:Button id="btnLogin" style="Z-INDEX: 105; LEFT: 249px; POSITION:
absolute; TOP: 6px" runat="server" Text="Login"></asp:Button>
 <asp:RequiredFieldValidator id="rfvEmail" style="Z-INDEX: 106; LEFT:
13px; POSITION: absolute; TOP: 78px" runat="server" ErrorMessage="You must enter an
email address." ControlToValidate="txtEmail"></asp:RequiredFieldValidator>
 <asp:RequiredFieldValidator id="rfvPassword" style="Z-INDEX: 107; LEFT:
13px; POSITION: absolute; TOP: 105px" runat="server" ErrorMessage="You must enter a
password." ControlToValidate="txtPassword"></asp:RequiredFieldValidator>
 <asp:Label id="lblInvalidPassword" style="Z-INDEX: 108; LEFT: 13px;
POSITION: absolute; TOP: 135px" runat="server" ForeColor="Red"
Visible="False">Invalid
password.</asp:Label>
 </form>
 </body>
</HTML>

Listing 7.17 The Class for the login.aspx Page in Listing 7.16

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

This document is created with the unregistered version of CHM2PDF Pilot

namespace DBFormURL
{
 /// <summary>
 /// Summary description for login.
 /// </summary>
 public class login : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label lblEmail;
 protected System.Web.UI.WebControls.TextBox txtEmail;
 protected System.Web.UI.WebControls.Label lblPassword;
 protected System.Web.UI.WebControls.TextBox txtPassword;
 protected System.Web.UI.WebControls.Button btnLogin;
 protected System.Web.UI.WebControls.RequiredFieldValidator rfvEmail;
 protected System.Web.UI.WebControls.RequiredFieldValidator rfvPassword;
 protected System.Web.UI.WebControls.Label lblInvalidPassword;

 public login()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnLogin.Click += new System.EventHandler(this.btnLogin_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void btnLogin_Click(object sender, System.EventArgs e)
 {
 SqlDataReader sdr;
 // Create a connection
 SqlConnection sc = new SqlConnection(Application["DSN"].ToString());

 // Open the database connection
 sc.Open();

 // Create a command to get the user
 SqlCommand cmd = new SqlCommand("GetUser '" + txtEmail.Text + "', '" +
txtPassword.Text + "'", sc);

 // Execute the command
 sdr = cmd.ExecuteReader();

 // Attempt to read the first record

This document is created with the unregistered version of CHM2PDF Pilot

 if(sdr.Read())
 {
 // close the datareader
 sdr.Close();
 // Get the list of roles the user is in
 SqlDataReader drRoles;
 SqlCommand cmdRoles = new SqlCommand("GetRoles '" + txtEmail.Text +
"'", sc);
 ArrayList arRoles = new ArrayList();

 // Execute the command
 drRoles = cmdRoles.ExecuteReader();

 // Get a string builder to store the roles in a csv list
 System.Text.StringBuilder bldr = new System.Text.StringBuilder();

 // Loop through the list of roles and get them
 while(drRoles.Read())
 {
 bldr.Append(drRoles["Role"]);
 bldr.Append(",");
 }

 // Strip the last comma
 bldr.Remove(bldr.Length - 1, 1);

 // Create an authentication ticket
 // Place a serialized representation of the roles into the
authentication ticket
 System.Web.Security.FormsAuthenticationTicket ticket = new
System.Web.Security.FormsAuthenticationTicket(1, txtEmail.Text, DateTime.Now,
DateTime.Now.AddMinutes(20), false, bldr.ToString());

 // Get the encrypted version of the ticket
 string strEncrypted =
System.Web.Security.FormsAuthentication.Encrypt(ticket);

 // Put it into a cookie
 HttpCookie hc = new HttpCookie(System.Web.Security.
FormsAuthentication.FormsCookieName, strEncrypted);
 hc.Expires = DateTime.Now.AddMinutes(20);

 // Add it to the cookies collection
 Response.Cookies.Add(hc);

 // Redirect the user to the page they requested
 string strReturnURL = Request.Params["ReturnUrl"].ToString();
 if(strReturnURL != "") Response.Redirect(strReturnURL);
 }
 else
 {
 // Show a message that the credentials are invalid
 lblInvalidPassword.Visible = false;
 }
 }
 End Sub
 }
}

This code relies on three tables in Microsoft SQL Server to store the credentials: Users, Roles, and
UserRoleMappings. Figure 7.2 shows the relationships between these tables. Listing 7.18 is a script that can be used
to create the tables and stored procedures that are used by the login.aspx page.

This document is created with the unregistered version of CHM2PDF Pilot

Figure 7.2. The relationships between the Users, Roles, and UserRoleMappings tables.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Impersonation

Impersonation is the capability for the ASP.NET process to run in the context of a particular user identity. It is said to
"impersonate" the logged-in user and is capable of using the logged-in user's identity to act on the user's behalf.

By default, Impersonation is not enabled in ASP.NET. You might initially doubt this because if you look at the
User.Identity.Name property with Windows authentication enabled, it will be set to the logged-in user. This,
however, is not the identity that the ASP.NET application is using to access resources. The identity that is shown
here is used during URL authorization and file authorization, but will not be used as the identity when calling other
base class functionality.

Determining Identity with WindowsIdentity

To determine the identity under which the ASP.NET process is running, you can use a static method, GetCurrent, of
the WindowsIdentity to return the identity under which the current process is executing. When you examine the name
returned by GetCurrent, you will see that you are really running under the SYSTEM account.

Listings 7.20 and 7.21 show a page that compares the results from User.Identity and WindowsIdentity.GetCurrent().

Listing 7.20 Webform1.aspx

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="DefaultImpersonation.WebForm1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema" content="http://schemas.microsoft.com/
intellisense/ie5">
 </HEAD>
 <body>
 <form id="Form1" method="post" runat="server">
 <P>
 <STRONG style="FONT-FAMILY: Verdana">Windows Impersonation
 </P>
 <TABLE style="FONT-FAMILY: Verdana" cellSpacing="1" cellPadding="1"
width="300" border="1">
 <TR>
 <TD colspan="2">
 User
 </TD>
 </TR>
 <TR>
 <TD>
 IsAuthenticated:
 </TD>
 <TD>
 <asp:Label id="lblUserIsAuthenticated"
runat="server"></asp:Label>

This document is created with the unregistered version of CHM2PDF Pilot

 </TD>
 </TR>
 <TR>
 <TD>
 Authentication Type:
 </TD>
 <TD>
 <asp:Label id="lblUserAuthenticationType"
runat="server"></asp:Label>
 </TD>
 </TR>
 <TR>
 <TD>
 Name:
 </TD>
 <TD>
 <asp:Label id="lblUserName" runat="server"></asp:Label>
 </TD>
 </TR>
 <TR>
 <TD>
 </TD>
 <TD>
 </TD>
 </TR>
 <TR>
 <TD colspan="2">
 WindowsIdentity
 </TD>
 </TR>
 <TR>
 <TD>
 IsAuthenticated
 </TD>
 <TD>
 <asp:Label id="lblWIIsAuthenticated"
runat="server"></asp:Label>
 </TD>
 </TR>
 <TR>
 <TD>
 AuthenticationType
 </TD>
 <TD>
 <asp:Label id="lblWIAuthenticationType"
runat="server"></asp:Label>
 </TD>
 </TR>
 <TR>
 <TD>
 Name:
 </TD>
 <TD>
 <asp:Label id="lblWIName" runat="server"></asp:Label>
 </TD>
 </TR>
 <TR>
 <TD>
 </TD>
 <TD>
 </TD>
 </TR>
 </TABLE>
 </form>
 </body>

This document is created with the unregistered version of CHM2PDF Pilot

</HTML>

Listing 7.21 The Code Behind Class for WebForm1.aspx Showing the Difference Between User.Identity
and WindowsIdentity.GetCurrent() with Impersonation Disabled

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DefaultImpersonation
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label lblUserIsAuthenticated;
 protected System.Web.UI.WebControls.Label lblUserAuthenticationType;
 protected System.Web.UI.WebControls.Label lblUserName;
 protected System.Web.UI.WebControls.Label lblWIIsAuthenticated;
 protected System.Web.UI.WebControls.Label lblWIAuthenticationType;
 protected System.Web.UI.WebControls.Label lblWIName;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 this.lblUserIsAuthenticated.Text =
User.Identity.IsAuthenticated.ToString();
 this.lblUserAuthenticationType.Text = User.Identity.
AuthenticationType.ToString();
 this.lblUserName.Text = User.Identity.Name;

 System.Security.Principal.WindowsIdentity wi = System.Security.
Principal.WindowsIdentity.GetCurrent();
 this.lblWIAuthenticationType.Text = wi.AuthenticationType.ToString();
 this.lblWIIsAuthenticated.Text = wi.IsAuthenticated.ToString();
 this.lblWIName.Text = wi.Name;
 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()

This document is created with the unregistered version of CHM2PDF Pilot

 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Running this page returns the following:

User

IsAuthenticated: True

Authentication Type: NTLM

Name: KINSMAN\ckinsman

WindowsIdentity

IsAuthenticated: True

AuthenticationType: NTLM

Name: NT AUTHORITY\SYSTEM

Now, turn impersonation on. This is done by adding the <identity> element to the web.config and setting the
impersonate attribute to true. The modified web.config is shown in Listing 7.22.

Listing 7.22 Web.config Set Up for Impersonation

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <identity impersonate="true" />
 <compilation defaultLanguage="c#" debug="true" />
 <authentication mode="Windows" />
 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 </authorization>
 </system.web>
</configuration>

If you run the same page shown in Listing 7.21, you will find that the names returned by WindowsIdentity.GetCurrent
and by User.Identity are the same. The output from the page will look like this:

User

IsAuthenticated: True

Authentication Type: NTLM

Name: KINSMAN\ckinsman

WindowsIdentity

IsAuthenticated: True

AuthenticationType: NTLM

Name: KINSMAN\ckinsman

This document is created with the unregistered version of CHM2PDF Pilot

Now calls to access resources will operate as though you were the logged-in user, in my case,
KINSMAN\ckinsman. What happens with an unauthenticated or anonymous user when impersonation is enabled? In
this case, the ASP.NET behavior closely mirrors ASP.old behavior. The user appears to be unauthenticated and
IsAuthenticated returns false. If you check WindowsIdentity.IsAuthenticated, however, you will see that it has
IsAuthenticated set to true. It has to be, because this is the identity that ASP.NET is running under. It is impossible
for the process to be running with no associated identity. So what identity is it using in this case? It is using the
IUSR_<machinename> identity that IIS creates during installation. The same page run in a directory with anonymous
enabled will look like this:

User

IsAuthenticated: False

Authentication Type:

Name:

WindowsIdentity

IsAuthenticated: True

AuthenticationType: NTLM

Name: KINSMAN\IUSR_STEPTOE

The machine I ran this code on was named STEPTOE, and as you would expect, the identity that the ASP.NET
process is running under is shown to be IUSR_STEPTOE.

Hard-Coded Impersonation

ASP.NET provides an additional option for impersonation. It is possible within the <identity> element to hard-code
the account that you would like ASP.NET to run under. If you hard-code the account into the identity element, this
account is used to run the ASP.NET process regardless of whether the user is authenticated or not. Let's take a look
at this. Listing 7.23 shows the modified web.config with a hard-coded user account.

Listing 7.23 Web.config with a Hard-Coded Impersonation Account

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <identity impersonate="true" userName="KINSMAN\ChrisKinsman"
 password="password" />
 <compilation defaultLanguage="c#" debug="true" />
 <authentication mode="Windows" />
 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 </authorization>
 </system.web>
</configuration>

If you modify the web.config as shown in Listing 7.23 and run the same page with anonymous enabled, you will get
the following output:

User

IsAuthenticated: False

This document is created with the unregistered version of CHM2PDF Pilot

Authentication Type:

Name:

WindowsIdentity

IsAuthenticated: True

AuthenticationType: NTLM

Name: KINSMAN\ChrisKinsman

Notice that the name is now set to the account that you specified in web.config. If you disable anonymous, you will
get this output:

User

IsAuthenticated: True

Authentication Type: NTLM

Name: KINSMAN\ckinsman

WindowsIdentity

IsAuthenticated: True

AuthenticationType: NTLM

Name: KINSMAN\ChrisKinsman

Notice in this case that the name differs. Both are domain accounts. The WindowsIdentity.GetCurrent().Name is the
account that I hard-coded in the web.config. The User.Identity.Name is the account that I used to authenticate the
Web request.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 8. HttpHandlers and HttpModules

IN THIS CHAPTER

•

• An Overview of ASP.NET Request Handling
•
•

• HttpModules
•
•

• HttpHandlers
•
•

• Dynamic Handler Assignment
•
•

• Class Reference
•

In ASP.old, you just couldn't do certain things using ASP. If you wanted to create something similar to the output
caching in ASP.NET, you were forced to step outside ASP.old and use Internet Server API (ISAPI) filters. If you
wanted to create a program that handled all files with a certain extension, you had to step outside ASP. If you
wanted to write something that participated in the processing of each and every page, you had to step outside ASP.

One of the goals of ASP.NET was to allow you to do everything you could potentially conceive of related to Web
programming directly in the product. It shouldn't limit you. To that end, Microsoft added two new concepts:
HttpModules and HttpHandlers. These did not exist inside of ASP.old. To find analogous functionality, you had to
step outside into the world of ISAPI programming. HttpModules and HttpHandlers are fairly similar to ISAPI filters,
but they implement slightly different functionality.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

An Overview of ASP.NET Request Handling

To understand how HttpModules and HttpHandlers fit into the scheme of things, you have to understand the way that
ASP.NET handles a request. When a request is received by Internet Information Server (IIS), it looks at the
extension to determine which ISAPI filter should handle the request. For any of the supported file extensions, such as
.aspx or .asmx, the answer is aspnet_isapi.dll. When ASP.NET fires up, it performs almost the same process again.
It looks at the request and compares it to the <httpHandlers> section of the .config file. By default, machine.config
maps .aspx files to the PageHandlerFactory and .asmx files to the WebServiceHandlerFactory. This mapping
determines the HttpHandler (class) that is responsible for handling the request. With the concept of mapping, you can
create a new HttpHandler and map it to a new type of request. In fact, this is exactly what Microsoft did with
Trace.axd. You will find that it is a new HttpHandler that is registered in machine.config for any request path that
ends in trace.axd.

While processing a request received from IIS, ASP.NET raises several events. They are raised in the following order:

1.

1. BeginRequest
1.
2.

2. AuthenticateRequest
2.
3.

3. AuthorizeRequest
3.
4.

4. AcquireRequestState
4.
5.

5. ResolveRequestCache
5.
6.

6. Page Constructor
6.
7.

7. PreRequestHandlerExecute
7.
8.

8. Page.Init
8.
9.

This document is created with the unregistered version of CHM2PDF Pilot

9. Page.Load
9.
10.

10. PostRequestHandlerExecute
10.
11.

11. ReleaseRequestState
11.
12.

12. UpdateRequestCache
12.
13.

13. EndRequest
13.
14.

14. PreSendRequestHeaders
14.
15.

15. PreSendRequestContent
15.

The items in bold represent several of the page-level events that are raised during the execution of a page. Each of
these events can be sunk, providing opportunities to participate in the processing of each page in an application. In
Chapter 7, "Security," we looked at handling the AuthenticateRequest and AuthorizeRequest events.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

HttpModules

Many of these events can be sunk in the Global.asax of an application. By doing this, however, you limit the
functionality to that application. To sink these events in a more reusable fashion, create an HttpModule. By adding a
single line to the machine.config, your HttpModule affects all applications on the machine; by adding instead a single
line to the web.config file, your HttpModule affects just that one application. The line to load an HttpModule looks
like the following:

 <httpModules>
 <add type="SimpleModules.SimpleHttpModule, SimpleModules"
name="SimpleHttpModule" />
 </httpModules>

Let's take a look at a couple of sample HttpModules that handle some of the events on this class.

A Simple BeginRequest and EndRequest Module

BeginRequest is the first event to fire when processing a request. EndRequest is almost the last event to fire. Let's
write an HttpModule that sinks these events and uses them to time stamp the output HTML with the time that the
request began processing and when it finished processing. This information might be useful if you were trying to
profile a group of pages.

We will create this as our first HttpModule. First, we need to create a class. This class will implement the
IHttpModule interface. To implement this interface, we need to supply two members: Init and Dispose. When
ASP.NET loads our HttpModule to participate in processing a request, a reference to the HttpApplication object is
passed to the Init method. We will then save a reference to this in a member variable for use later in our module. We
will also wire up several event handlers off the HttpApplication object.

After we have implemented IHttpModule, we can get into doing the things that are specific to our task. In this
example, we need to create event handlers for BeginRequest and EndRequest. We do this by first creating our
functions like this:

public void BeginRequest(object sender, EventArgs e)

Next we need to wire them up in the Init method that is part of the IhttpModule interface like this:

application.BeginRequest += new System.EventHandler(BeginRequest);

Inside of BeginRequest and EndRequest, we will utilize a saved reference for HttpApplication to write into the output
stream a comment tag containing the date and time. The complete HttpModule is shown in Listing 8.1.

Listing 8.1 Implementation of a Module That Stamps the Begin and End Times into the Page

using System;

This document is created with the unregistered version of CHM2PDF Pilot

using System.Web;

namespace SimpleModules
{
 /// <summary>
 /// Summary description for BeginEnd.
 /// <add type="SimpleModules.BeginEnd, SimpleModules" name="BeginEnd" />
 /// </summary>
 public class BeginEnd : IHttpModule
 {
 private HttpApplication mApplication;

 public void Init(System.Web.HttpApplication application)
 {
 // Wire up beginrequest
 application.BeginRequest += new System.EventHandler(BeginRequest);
 // Wire up endrequest
 application.EndRequest += new System.EventHandler(EndRequest);
 // Save the application
 mApplication = application;
 }

 public void BeginRequest(object sender, EventArgs e)
 {
 mApplication.Response.Write("<!-- Begin Request Time: " +
DateTime.Now.ToString("HH:mm:ss.fffffff") + " -->");
 }

 public void EndRequest(object sender, EventArgs e)
 {
 mApplication.Response.Write("<!-- End Request Time: " +
DateTime.Now.ToString("HH:mm:ss.fffffff") + " -->");
 }

 public void Dispose()
 {
 }

 }
}

To get this module to execute for a single application, we need to place it into the /bin directory and modify the
web.config to include it in the httpModules section. The web.config should look like Listing 8.2.

Listing 8.2 The web.config to Load the BeginEnd HttpModule

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <httpModules>
 <add type="SimpleModules.BeginEnd, SimpleModules" name="BeginEnd" />
 </httpModules>
 </system.web>
</configuration>

Now if we fire off a page in this application root, we will see the time stamps introduced as comments into the
HTML. A sample page output is shown in Listing 8.3.

Listing 8.3 The View Source of a Page That Has Been Affected by the BeginEnd Module

This document is created with the unregistered version of CHM2PDF Pilot

<!-- Begin Request Time: 19:02:04.1024016 -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Begin End</title>
 </head>
 <body MS_POSITIONING="GridLayout">
 <form name="Form1" method="post" action="WebForm1.aspx" id="Form1">
<input type="hidden" name="__VIEWSTATE" value="dDwxNDEzNDIyOTIxOzs+" />

 Time:
 8/23/2001 7:02:04 PM
 </form>
 </body>
</html>
<!-- End Request Time: 19:02:04.4729344 -->

Right now, the module works with a single application. Move it to machine.config and register the assembly in the
global assembly cache, and every ASP.NET page on the entire server would suddenly get these time stamps! This is
clearly an incredibly powerful technique.

Filtering Output

The preceding example showed how to insert content into the output using Response.Write(). What if you want to
filter the content in the page? Perhaps you are writing an advertising system that needs to be able to find certain tags
in a page and replace them with an advertisement. Although this is a common type of task, this task is a bit tougher to
do. No property on the response object allows you to retrieve the contents of a page and modify it in situ. If you
think about how ASP.NET sends pages to the client, however, you can understand why this is so. Depending on the
buffering state and the programmer's use of Response.Flush(), the entire page may never exist on the server. Instead,
it may be streamed to the client in dribs and drabs. However, ASP.NET by default enables buffering, so it certainly
would have been nice to give us access to that buffer. Perhaps in v.Next (the next version) the object model will be
updated to allow this access.

So how do you get the page output? As it turns out, you don't get it—you filter it. It is possible to put a filter in place
that inserts itself between ASP.NET and the client. As ASP.NET streams data back to the user, your "filter" can alter
it. This filtering is done using the base classes in the .NET framework. .NET provides an abstract class called a
Stream. The Stream class is used as a pattern for writing to memory, files, and even sockets. It should come as no
surprise then that ASP.NET gives you access to the stream that is connected to the client via the Response.Filter
property.

To filter the page output, create an object that derives from Stream and pass it the Response.Filter property. Then,
set the Response.Filter property to this object. Now when ASP.NET sends page output to the client, it is actually
sending the page output to your object. You can then modify the content as you see fit, and when done with it, you
write it to the client stream that was passed to your constructor.

This is easier to show than describe, so let's take a look at some code. Listing 8.4 shows the complete source for the
ad insertion filter AdInserter.cs. Like the previous example, we implement IHttpModule. The difference is that in the
BeginRequest event handler, we create an instance of the AdStream object, passing it the Response.Filter, which
contains a stream pointed at the user. We then take the stream object and set the Response.Filter property to it.

This document is created with the unregistered version of CHM2PDF Pilot

Now the interesting work is actually done in AdStream. This is our "filter." Everything up to the Write() method
toward the bottom is just implementing the required stream members. The Write() method is where things get
interesting. ASP.NET calls Write() when it wants to send data to the client. The data is passed into Write() as a byte
array. Byte arrays are great if we want to inspect things character by character, but in this case we are more
interested in dealing in strings so that we can do some pattern matching. To convert the byte array to a string, use the
UTF8Encoding class. This class converts a byte array to a Unicode string using UTF8 encoding. The result string is
placed into a StringBuilder so that we can do simple replacement operations on it.

Strings are immutable, so simple string concatenations behind the scenes are really creating and destroying the
underlying strings, causing a performance drain. The StringBuilder is a much more efficient way to do operations on a
string. In this case, we are looking for the <adinsert></adinsert> tags, but this is a simplified task just for this
example. In real life, you should instead search for <adinsert> only, do a string scan to find the </adinsert>, and
then—based on position—replace what is between them. For simplicity, here we are replacing the exact match in this
sample with a string that's derived by taking a random entry from the astrAds array. In a real ad insertion engine, this
step would also be more complicated, most likely entailing a selection algorithm against a cache of items from a
backing database store. Finally, the resulting string is written to the client stream using a StreamWriter, which
supports writing a string to a stream without first having to convert it to a byte array.

Listing 8.4 A Simple Ad Insertion Engine That Replaces <adinsert> Tags with an Ad

 public class AdInserter : System.Web.IHttpModule
 {
 private System.Web.HttpApplication mApplication;

 public AdInserter()
 {
 }

 public void Init(System.Web.HttpApplication application)
 {
 // Wire up beginrequest
 application.BeginRequest += new System.EventHandler(BeginRequest);
 // Save the application
 mApplication = application;
 }

 public void BeginRequest(Object sender, EventArgs e)
 {
 // Create a new filter
 AdStream mStreamFilter = new AdStream(mApplication.Response.Filter);
 // Insert it onto the page
 mApplication.Response.Filter = mStreamFilter;
 }

 // AdStream filter
 public class AdStream : System.IO.Stream
 {
 // The ads to insert
 string[] astrAds = new string[] {"<adinsert></adinsert>", "<adinsert></adinsert>"};

 // The stream to the client
 private System.IO.Stream moStream;
 // Used to track properties not supported by the client stream
 private long mlLength;
 private long mlPosition;

This document is created with the unregistered version of CHM2PDF Pilot

 // An easy way to write a stream to the client
 private System.IO.StreamWriter mSR;

 public AdStream(System.IO.Stream stream)
 {
 // Save of the stream back to the client
 moStream = stream;
 // Create a streamwriter for later use
 mSR = new System.IO.StreamWriter(moStream);
 }

 public override bool CanRead
 {
 get
 {
 return false;
 }
 }

 public override bool CanSeek
 {
 get
 {
 return true;
 }
 }

 public override bool CanWrite
 {
 get
 {
 return true;
 }
 }

 public override long Length
 {
 get
 {
 return mlLength;
 }
 }

 public override long Position
 {
 get
 {
 return mlPosition;
 }
 set
 {
 mlPosition = value;
 }
 }

 public override int Read(Byte[] buffer, int offset, int count)
 {
 throw new NotSupportedException();
 }

 public override long Seek(long offset, System.IO.SeekOrigin direction)
 {
 return moStream.Seek(offset, direction);
 }

This document is created with the unregistered version of CHM2PDF Pilot

 public override void SetLength(long length)
 {
 mlLength = length;
 }

 public override void Close()
 {
 moStream.Close();
 }

 public override void Flush()
 {
 moStream.Flush();
 }

 public override void Write(byte[] buffer, int offset, int count)
 {
 System.Text.UTF8Encoding utf8 = new System.Text.UTF8Encoding();
 // Get the string into a stringbuilder
 System.Text.StringBuilder strBuff = new
System.Text.StringBuilder(utf8.GetString(buffer));
 // Random number used to grab ads
 Random oRandom = new Random(DateTime.Now.Millisecond);
 int iRandom = oRandom.Next(astrAds.GetLowerBound(0),
astrAds.GetUpperBound(0));
 // Go through and find the <adinsert></adinsert> tags
 strBuff.Replace("<adinsert></adinsert>", astrAds[iRandom]);
 // Write to the stream
 mSR.Write(strBuff.ToString());
 }
 }

 public void Dispose()
 {
 }
 }

The end result is a page that contains text from one of the elements in astrAds. Listing 8.5 shows the resulting HTML.

Listing 8.5 The Output from AdInserter.cs to a Page with <adinsert> Tags

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">
 <adinsert></adinsert>

 <form name="Form1" method="post" action="WebForm1.aspx" id="Form1">
<input type="hidden" name="__VIEWSTATE" value="dDwtMTI3OTMzNDM4NDs7Pg==" />

 Time:
 8/23/2001 8:27:12 PM</form>
 </body>
</html>

This document is created with the unregistered version of CHM2PDF Pilot

Note the tag that was inserted by the filter between the <adinsert> tags.

Forking the Filter

Filters work great if the task at hand calls for modifying the content as it streams to the client. Some tasks, however,
don't fit this model. Suppose that you want to create something similar to the OutputCache in ASP.NET. For this to
work, you need to have the entire contents of the page available after it has been written to the client. You might be
thinking, "No problem, the stream has a read method." As it turns out, HttpResponseStream, which is the stream that
ASP.NET uses to respond to a request, doesn't support the read operation. If you attempt to use it, you will get an
UnsupportedException thrown. To make this idea work, your stream implementation must "Fork" the data written to
it. One copy will be written to the client stream. The other copy will be written to an in-memory buffer that can then
be read from at a later time. This way, when request processing is over, we can still access the content of the page.

The next example implements a very simplistic caching mechanism. It has an internal hash table that it uses to store
pages that are keyed on the request URL. This example also uses two new events: ResolveRequestCache and
UpdateRequestCache. You may wonder why two new events are needed. ResolveRequestCache is the appropriate
event in this case because BeginRequest happens prior to the authentication and authorization stages. If you checked
the cache for a page before those events fired, you could potentially return a cached page to an unauthorized user.
That clearly would be undesirable. UpdateRequestCache is to place an executed page into the cache when it is done
executing. Listing 8.6 contains the implementation of SimpleCache.

Listing 8.6 Implementation of SimpleCache, an Output-Caching Mechanism

using System;
using System.Web;
using System.Collections;

namespace SimpleModules
{
 /// <summary>
 /// Summary description for SimpleCache.
 /// </summary>
 public class SimpleCache : IHttpModule
 {
 // The stored application
 private HttpApplication mApplication;
 // Hash to store cached pages
 Hashtable mHash = new Hashtable();

 public void Init(HttpApplication app)
 {
 // Store off the application object
 mApplication = app;
 // Wire up our event handlers
 mApplication.ResolveRequestCache += new
System.EventHandler(this.ResolveRequestCache);
 mApplication.UpdateRequestCache += new
System.EventHandler(this.UpdateRequestCache);
 }

 public void Dispose()
 {
 }

 private void ResolveRequestCache(object sender, System.EventArgs e)

This document is created with the unregistered version of CHM2PDF Pilot

 {
 // is the url in the cache?
 if(mHash.Contains(mApplication.Request.Url))
 {
 // Write it back from the cache
 mApplication.Response.Write(mHash[mApplication.Request.Url].
ToString());
 // Finish the request
 mApplication.CompleteRequest();
 }
 else
 {
 // Create a new filter
 CacheStream mStreamFilter = new
CacheStream(mApplication.Response.Filter);
 // Insert it onto the page
 mApplication.Response.Filter = mStreamFilter;
 // Save a reference to the filter in the request context so we can
grab it in UpdateRequestCache
 mApplication.Context.Items.Add("mStreamFilter", mStreamFilter);
 }
 }

 private void UpdateRequestCache(object sender, System.EventArgs e)
 {
 if(!mHash.Contains(mApplication.Request.Url))
 {
 // Grab the CacheStream out of the context
 CacheStream mStreamFilter = (CacheStream)
mApplication.Context.Items["mStreamFilter"];
 // Remove the reference to the filter
 mApplication.Context.Items.Remove("mStreamFilter");
 // Create a buffer
 byte[] bBuffer = new byte[mStreamFilter.Length];
 // Rewind the stream
 mStreamFilter.Position = 0;
 // Get the bytes
 mStreamFilter.Read(bBuffer, 0, (int)mStreamFilter.Length);
 // Convert to a string
 System.Text.UTF8Encoding utf8 = new System.Text.UTF8Encoding();
 System.Text.StringBuilder strBuff = new
System.Text.StringBuilder(utf8.GetString(bBuffer));
 // Insert the cached timestamp
 strBuff.Insert(0, "<!-- Cached: " + DateTime.Now.ToString("r") + "
-->");
 // Save it away
 mHash.Add(mApplication.Request.Url, strBuff.ToString());
 }
 }

 public class CacheStream : System.IO.Stream
 {
 private System.IO.MemoryStream moMemoryStream =
new System.IO.MemoryStream();
 private System.IO.Stream moStream;

 public CacheStream(System.IO.Stream stream)
 {
 moStream = stream;
 }

 public override bool CanRead
 {
 get
 {

This document is created with the unregistered version of CHM2PDF Pilot

 return true;
 }
 }

 public override bool CanWrite
 {
 get
 {
 return true;
 }
 }

 public override bool CanSeek
 {
 get
 {
 return true;
 }
 }

 public override long Length
 {
 get
 {
 return moMemoryStream.Length;
 }
 }

 public override long Position
 {
 get
 {
 return moMemoryStream.Position;
 }
 set
 {
 moMemoryStream.Position = value;
 }
 }

 public override int Read(byte[] buffer, int offset, int count)
 {
 return moMemoryStream.Read(buffer, offset, count);
 }

 public override long Seek(long offset, System.IO.SeekOrigin direction)
 {
 return moMemoryStream.Seek(offset, direction);
 }

 public override void SetLength(long length)
 {
 moMemoryStream.SetLength(length);
 }

 public override void Close()
 {
 moStream.Close();
 }

 public override void Flush()
 {
 moStream.Flush();
 }

This document is created with the unregistered version of CHM2PDF Pilot

 public override void Write(byte[] buffer, int offset, int count)
 {
 moStream.Write(buffer, offset, count);
 moMemoryStream.Write(buffer, offset, count);
 }
 }
 }
}

The pattern should be familiar by now. First, implement IHttpModule and save off a copy of the application.
ResolveRequestCache is where things start to diverge from prior examples. In ResolveRequestCache, look in mHash
to see if a cached copy of the page already exists. Call the Contains method, passing the URL of the request to
determine if it is in the cache. If it is, retrieve the string from mHash, Response.Write it to the client, and then call
HttpApplication.CompleteRequest. This call short-circuits execution of the request and causes ASP.NET to bypass
the rest of the steps and stream the result back to the client. If the page is not in the cache, place an instance of
CacheStream into Response.Filter, and also place a reference to CacheStream into HttpContext.Items. This
reference is needed because the Response.Filter property always returns the stream that points to the client, even
after it's set to point to a different stream. That way, multiple filters can be inserted and each can act on the stream. In
this case, however, we need to get access to CacheStream later on during the UpdateRequestCache event.

To facilitate communication between events in HttpModules and/or HttpModules themselves, the HttpContext
provides the items collection that allows data to be associated with the request. In this case, use it to store a
reference to CacheStream. CacheStream inherits Stream and acts as the forking filter. Everything that is written to
CacheStream is also written to an internal MemoryStream. CacheStream, unlike the previous examples, supports the
Read method. When Read is called, information from the internal MemoryStream is returned. When
UpdateRequestCache finally fires, it checks again to see if the current request is already in mHash. If it isn't, grab the
CacheStream from the HttpContext and retrieve the copy of the page data that it contains. Add a comment to the
beginning of the page data that stamps it with the date and time that the page was cached. This page is then placed
into mHash, keyed off the URL. That's it! The OutputCacheModule in real life, of course, does considerably more
than this, including aging of items from the cache and varying by parameters, but this HttpModule effectively
demonstrates how to use the Filter property to get at the content of the page.

An Error Module

One of the coolest new application events in ASP.NET is the Error event. As mentioned before, with an HttpModule
you can sink this event in an application-specific way in Global.asax. You can redirect the user away from the error
page to some other part of the site that is more appropriate than just an error message. It might be interesting to sink
the error event in a module, however, to provide a non–application-specific piece of functionality. A common idea is
to log the error to the event log for later analysis or perhaps even to e-mail it to the Webmaster. This can be done in
an application-independent way, which indicates the need for an HttpModule.

Listing 8.7 shows an HttpModule that logs the error information to an event log and e-mails the Webmaster with the
error information. It first attempts to connect to an event log called "ASP.NET ErrorModule," which is created if it
doesn't already exist. Next, it gathers the error information from the HttpApplication.Context.Error property. This
property returns the exception that was thrown during the processing of this request. Several of the Exception
properties are bundled into a string, which is then logged to the event log. Finally, the error is sent to the Webmaster
using the SmtpMailClass.

Listing 8.7 An HttpModule That Handles Errors in an Application by Writing Them to the Event Log and

This document is created with the unregistered version of CHM2PDF Pilot

E-mailing the Webmaster

public class ErrorModule : IHttpModule
{
 private const string strEVENTLOGNAME = "ASP.NET ErrorModule";

 private HttpApplication mApplication;

 public void Init(HttpApplication application)
 {
 // Save off the application
 mApplication = application;

 // Wire up the error handler
 mApplication.Error += new System.EventHandler(this.ErrorHandler);
 }

 private void ErrorHandler(object sender, EventArgs e)
 {
 // Create the event source if it doesn't exist
 if(!EventLog.SourceExists(strEVENTLOGNAME))
 EventLog.CreateEventSource(strEVENTLOGNAME, strEVENTLOGNAME + " Log");

 // Create an event log instance and point it at the event source
 EventLog el = new EventLog();
 el.Source = strEVENTLOGNAME;

 // Create the error text
 string strErrorMessage = "An uncaught exception was thrown in your
application\r\nUrl: " + mApplication.Request.Url.ToString() + "\r\nMessage:" +
mApplication.Context.Error.Message + "\r\nStack Trace:" +
mApplication.Context.Error.StackTrace;

 // Write the event log entry
 el.WriteEntry(strErrorMessage, EventLogEntryType.Error);

 // Mail the message to the web master
 System.Web.Mail.SmtpMail.Send("webserver@vergentsoftware.com",
"ckinsman@vergentsoftware.com", "Web Site Error", strErrorMessage);
 }

 public void Dispose()
 {
 }
}

This code results in the event log entry shown in Figure 8.1 and the e-mail message shown in Figure 8.2.

Figure 8.1. The resulting event log entry.

This document is created with the unregistered version of CHM2PDF Pilot

Figure 8.2. The resulting e-mail.

Notice that this HttpModule doesn't actually do any redirection. That is expected to be handled in an
application-specific way. The sample shows another event handler defined in Global.asax for the Error event. This
event handler is responsible for redirecting the user to a friendly error page. Both error event handlers fire during the
processing of the request. This fact is important because it points out that multiple HttpModules can each be handling
the same events. Listing 8.8 shows the global.asax.

Listing 8.8 Global.asax Does the Actual Redirection in an Application-Specific Way

public class Global : System.Web.HttpApplication
{
 private void InitializeComponent()

This document is created with the unregistered version of CHM2PDF Pilot

 {
 this.Error += new System.EventHandler(this.Application_Error);
 }

 protected void Application_Error(object sender, EventArgs e)
 {
 Response.Redirect("friendlyerror.htm");
 }
}

Typically you wouldn't just redirect to another page in the event handler. You would normally do something along the
lines of logging the error or notifying the administrator. If you just want to show another page instead of the error,
also check out the <CustomErrors> element of the web.config, which is discussed in Chapter 5, "Configuration and
Deployment."

Raising Events from an HttpModule

As mentioned previously, HttpModules are intended to be generic, containing no application logic. In many cases,
however, you may want the developer of the application to tie application-specific code to your HttpModule. One
way to do this is to raise events as part of your processing that the developer can sink in Global.asax to provide
application-specific processing. Several of the built-in HttpModules raise events of this nature.

The way this is done is a little odd. No explicit event wireup is done. Instead, events are wired based on a naming
convention. If you have a public event delegate in your code of the form:

public event EventHandler MyEvent

You can then put an event handler in the global.asax in the form friendlymodulename_eventname. When ASP.NET
loads your HttpModule, it will dynamically wire up the event in the module to the event handler in the global.asax for
you, based on the matching signatures. Listing 8.9 shows an HttpModule that raises an event in the global.asax of the
application. It defines MyEvent and then raises it as part of the processing of BeginRequest.

Listing 8.9 An HttpHandler That Raises an Event in Global.asax

public class EventRaise : IHttpModule
{
 private HttpApplication mApplication;

 public event EventHandler MyEvent;

 public void Init(HttpApplication application)
 {
 // Save off the application object
 mApplication = application;

 // Wire up begin request
 mApplication.BeginRequest += new System.EventHandler(this.BeginRequest);
 }
 private void BeginRequest(object sender, EventArgs e)
 {
 OnMyEvent(new EventArgs());
 }

This document is created with the unregistered version of CHM2PDF Pilot

 private void OnMyEvent(EventArgs e)
 {
 if(MyEvent!=null)
 MyEvent(this, e);
 }

 public void Dispose()
 {
 }
}

Listing 8.10 shows the global.asax handling the event, based on the friendly name of the HttpModule, EventRaise,
and the name of the event, OnMyEvent.

Listing 8.10 The global.asax That Sinks the OnMyEvent Event from the HttpModule

public class Global : System.Web.HttpApplication
{
 protected void EventRaise_MyEvent(object sender, EventArgs e)
 {
 Response.Write("MyEventFired!");
 }
}

Authentication Modules

In the previous chapter, we wrote an AuthenticateRequest handler that was used to do role mapping based on Forms
authentication with a custom ticket. None of the code in AuthenticateRequest was really application specific. It could
easily be abstracted into an HttpModule that sinks the AuthenticateRequest event and can then be reused in many
other applications. Converting this code to work in an HttpModule is straightforward. Listing 8.11 shows
AuthModule, an implementation of the functionality from the DbFormUrl Listing 7.16 in Chapter 7.

Listing 8.11 AuthenticateRequest in a Web Module for the DbFormUrl Example in Chapter 7

using System;
using System.Collections;
using System.ComponentModel;
using System.Web;
using System.Web.SessionState;

namespace DBFormURL
{
 /// <summary>
 /// Summary description for Global.
 /// </summary>
 public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(Object sender, EventArgs e)
 {
 Application["DSN"] = "SERVER=localhost;UID=sa;PWD=;DATABASE=
SecuritySample";
 }

 protected void Application_AuthenticateRequest(object sender, EventArgs e)
 {
 // Make sure the user has been authenticated
 // This event fires for unauthenticated users also
 if(Request.IsAuthenticated)

This document is created with the unregistered version of CHM2PDF Pilot

 {
 // Get the users identity
 System.Web.Security.FormsIdentity fiUser =
(System.Web.Security.FormsIdentity)User.Identity;
 // Get the ticket
 System.Web.Security.FormsAuthenticationTicket at = fiUser.Ticket;
 // Grab out the roles
 string strRoles = at.UserData;
 // Renew the ticket if need be
 System.Web.Security.FormsAuthenticationTicket ticket =
System.Web.Security.FormsAuthentication.RenewTicketIfOld(at);
 if(ticket!=at)
 {
 // Get the encrypted version of the ticket
 string strEncrypted =
System.Web.Security.FormsAuthentication.Encrypt(ticket);

 // Put it into a cookie
 HttpCookie hc = new HttpCookie(System.Web.Security.
FormsAuthentication.FormsCookieName, strEncrypted);
 hc.Expires = DateTime.Now.AddMinutes(20);

 // Add it to the cookies collection
 Response.Cookies.Add(hc);
 }

 // Create a new principal which includes our role information from
the cookie
 HttpContext.Current.User = new System.Security.Principal.
GenericPrincipal(fiUser, strRoles.Split(','));
 }
 }
 }
}

Rewriting Paths

Occasionally, a technique that you come up with for conveying information in a URL doesn't fit the standard model
for URLs. A great example of this is the cookieless session management that we looked at in Chapter 4, "State
Management and Caching." The URLs used in cookieless session management take on the following form:

http://localhost/sessionid/default.aspx

Where the sessionid part varies on a user-by-user basis. This is an invalid URL in the normal context of ASP.NET,
so how is it handled? Behind the scenes, the cookieless Session state HttpModule uses a method of the
HttpApplication, RewritePath(). RewritePath() allows you to take an incoming URL and change it to point to a
different page. This is not a redirect, which requires a round trip to the client. It is also not a Server.Transfer; it
happens prior to the PageHandlerFactory executing any code in a page.

RewritePath() allows the cookieless Session state HttpModule to change the preceding URL that ASP.NET looks
for to the following:

http://localhost/default.aspx

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/sessionid/default.aspx
http://localhost/default.aspx

The URL in the user's browser remains unchanged—there's no noticeable difference. Let's take a look at an
HttpModule that does something of this sort. The RewritePath module in Listing 8.12 sinks the BeginRequest event.
Inside this event, it rewrites any request that is received by ASP.NET to instead point to the webform1.aspx file that
is in the application root.

Listing 8.12 RewritePath Module That Changes Every Request to Map to webform1.aspx

public class RewritePath : IHttpModule
{
 private HttpApplication mApplication;

 public void Init(HttpApplication application)
 {
 // Save off the application
 mApplication = application;

 // Wire up the begin request
 mApplication.BeginRequest += new EventHandler(this.RewritePathHandler);
 }

 private void RewritePathHandler(object sender, EventArgs e)
 {
 mApplication.Context.RewritePath(mApplication.Request.ApplicationPath +
"/webform1.aspx");
 }

 public void Dispose()
 {
 }
}

It doesn't matter what you type in as a URL, because as long as it ends in .aspx, you will see the content of
webform1.aspx in the browser, even though the typed-in URL is persisted in the address bar of your browser. Figure
8.3 shows an attempt to browse to a fictitious URL and the resulting page that shows WebForm1.aspx.

Figure 8.3. The result of typing in a fictitious URL with the RewritePath module in place.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

HttpHandlers

Whereas HttpModules are designed to participate in the processing of a request, HttpHandlers are designed to be
the endpoint for the processing of a request. As mentioned earlier, an HttpHandler provides a way to define new
page processors that handle new types of programming models. Table 8.1 shows the HttpHandlers provided by
ASP.NET.

Table 8.1. Built In ASP.NET HttpHandlers

HttpHandler Purpose

PageHandlerFactory Processes .aspx pages.

WebServiceHandlerFactory Processes .asmx XML Web services.

HttpForbiddenHandler Yields an error message indicating that a type of page is
not in service. By default, all .asax, .vb, .cs, .ascx,
.config, .csproj, .vbproj, and .webinfo files are mapped
to this in machine.config.

StaticFileHandler Delivers any page that isn't specifically mapped, such as
.html, .htm, and .jpg.

TraceHandler Shows the page containing all of the trace output.

ASP.NET provides different handlers for ASP.NET pages and Web services. Each knows how to handle the files
associated with the extension appropriately. HttpHandlers don't have to be backed by files, however. ASP.NET
allows the HttpHandler to provide the entire response to a request. Listing 8.13 shows a very simple HttpHandler
that displays a Hello World type of page.

Listing 8.13 Hello World from an HttpHandler

using System.Web;

namespace Handlers
 {
 public class SimpleHandler : IHttpHandler
 {

 public void ProcessRequest(HttpContext context)
 {
 context.Response.Write("<HTML><BODY>");
 context.Response.Write("Hello from SimpleHandler");
 context.Response.Write("</BODY></HTML>");
 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }
 }
 }

This document is created with the unregistered version of CHM2PDF Pilot

This code implements the IHttpHandler interface, which describes only one method and one property. The
IsReusable property lets ASP.NET know if it can reuse an instance of an HttpHandler or if it needs to re-create it
from scratch each time. The ProcessRequest() method is called to do the work of the HttpHandler. In our simple
handler, we output a very trivial HTML page that writes a message to the browser.

To get this simple handler to work, you need to do two things. First, you need to add a new application mapping to
map an extension to ASP.NET. This mapping is required to make sure that IIS calls ASP.NET when it receives a
request for a page with that extension. Without the mapping, ASP.NET is never invoked, and unless the HttpHandler
happens to have a matching page, you will receive a 404 Not Found error.

To add a new application mapping, perform these steps in the Internet Services Manager.

1.

1. Select the application root of your application in Internet Services Manager.
1.
2.

2. Open the Property page.
2.
3.

3. Select the Directory tab.
3.
4.

4. Click the Configuration button.
4.
5.

5. Select the App Mappings tab.
5.
6.

6. Click the Add button and create an application mapping to aspnet_isapi.dll for the extension you are
interested in. For this example, define the extension as .hello.

6.

The next step is to modify the web.config or machine.config files to map the extension to the class you have created.
The <httpHandlers> section of web.config defines the handlers that ASP.NET will load. By adding a single line like
the following:

<add verb="GET" path="*.hello" type="handlers.SimpleHandler, handlers" />

ASP.NET will now call your HttpHandler whenever a page with the extension .hello is called. Note the verb
attribute. This indicates for which HTTP/1.1 verbs the action will be performed. Valid verbs include GET, PUT, and
POST. If you want to handle any type of request for that URL, you can use a wildcard of *.

This document is created with the unregistered version of CHM2PDF Pilot

After all these steps are complete, whenever the user types a URL ending in .hello at any path within the application
root, SimpleHandler will get called. If no files exist in the application root, all of the following URLs are valid:

•

• http://localhost/book/handlemod/handlers/junk/asdfa/asdfas/WebForm1.hello
•
•

• http://localhost/book/handlemod/handlers/WebForm1.hello
•
•

• http://localhost/book/handlemod/handlers/.hello
•

The resulting output is the very simple HTML page provided by the handler.

Dynamic Reporting

The next sample is going to do something a little more involved, combining SQL and XML. SQL Server 2000 is able
to output data as XML and XSL, making a powerful combination. Let's write an HttpHandler that handles a new file
extension, .xsql. In this case there will actually be physical .xsql files on disk. These files are just the XSL templates
that should be applied to the XML output from SQL Server. Our handler will expect each request to these files to
include a SQL parameter. This parameter indicates the query that should be run and then merged with the XSL
template. This combination allows us to run any SQL that can be output as XML and dynamically bind it to an XSL
template. It's a pretty powerful concept.

Let's take a look at the code in the HttpHandler first. Listing 8.14 shows the SqlHandler.

Listing 8.14 SqlHandler Transforms XML SQL Queries from SQL Server with XSL Templates

using System;
using System.Data.SqlClient;

namespace Handlers
{
 /// <summary>
 /// Summary description for SqlHandler.
 /// </summary>
 public class SqlHandler : System.Web.IHttpHandler
 {
 public SqlHandler()
 {
 }

 // Call like this
 // http://localhost/csharp/handlers/tableviewer.xsql=select * from authors
for xml auto, elements
 public void ProcessRequest(System.Web.HttpContext context)
 {
 System.IO.FileStream fs = null;
 SqlConnection cn = null;

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/book/handlemod/handlers/junk/asdfa/asdfas/WebForm1.hello
http://localhost/book/handlemod/handlers/WebForm1.hello
http://localhost/book/handlemod/handlers/.hello
http://localhost/csharp/handlers/tableviewer.xsql=select

 try
 {
 // Get the sql
 string strSql = context.Request["SQL"];

 // Setup a DB connection
 cn = new
SqlConnection("SERVER=localhost;UID=sa;PWD=;DATABASE=pubs;");
 // Open the connection
 cn.Open();
 // Create a command
 SqlCommand cmd = new SqlCommand(strSql, cn);
 // Get a data reader reference
 SqlDataReader dr;
 // Execute the sql
 dr = cmd.ExecuteReader();

 // Get a buffer
 System.Text.StringBuilder strBuff = new System.Text.
StringBuilder("<?xml version=\"1.0\" encoding=\"utf-8\" ?>\r\n");
 // Encapsulate with root element
 strBuff.Append("<results>");
 // Get all the rows
 while(dr.Read())
 {
 strBuff.Append(dr.GetString(0));
 }
 // Add the ending element
 strBuff.Append("</results>\r\n");
 // Close the connection
 cn.Close();
 // Load XML into document
 System.Xml.XmlDocument xd = new System.Xml.XmlDocument();
 // Load it up
 xd.LoadXml(strBuff.ToString());

 // Attempt to open the xslt
 fs = new System.IO.FileStream(context.Request.PhysicalPath,
System.IO.FileMode.Open);
 // Load it into a navigator
 System.Xml.XPath.XPathDocument xpn = new System.Xml.XPath.
XPathDocument(new System.Xml.XmlTextReader(fs));

 // Close the file
 fs.Close();

 // Create a transform
 System.Xml.Xsl.XslTransform xslt = new System.Xml.Xsl.
XslTransform();
 // Load it
 xslt.Load(xpn);

 // Transform it to the output stream
 xslt.Transform(xd.CreateNavigator(), null, context.Response.
Output);
 }
 catch(Exception e)
 {
 // Write an error message
 context.Response.Write("<body><html>Invalid xsql query
Message: "
+ e.Message + "</html></body>");
 }
 finally
 {
 // Close the file stream

This document is created with the unregistered version of CHM2PDF Pilot

 if(fs!=null) fs.Close();
 // Close the db connection
 if(cn!=null) cn.Close();
 }

 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }

 }
}

Right at the beginning, wrap this code in a try/catch block. If any part of the code fails, it will write an error message
back to the user indicating that a problem occurred with the query and including the exception text.

Next, grab the SQL parameter from the request object and use it to run a query against SQL Server. The
HttpHandler expects that the SQL query includes the "for xml auto, elements" clause. Next, the HttpHandler
retrieves all the data from the query using a DataReader. The HttpHandler prepends and appends a root element
because SQL Server does not create a unique root element by default. The HttpHandler reads only the first column
because the "for xml" clause causes SQL Server 2000 to return a 1 column by N row result, in which each row
contains a portion of the string 2033 characters or less in length. So, concatenate these fragments using a
StringBuilder. Again, because strings are immutable, concatenation operations are expensive, requiring copying the
string around in memory. For something like this where there could be a large number of concatenations, a
StringBuilder makes more sense—it's very efficient to append text using a StringBuilder.

After all the data is loaded into the StringBuilder, go ahead and load it into an XMLDocument to prepare it for
transforming. The next step is to load the actual XSL template. This was the URL that caused the HttpHandler to fire
in the first place. Get its physical path using the PhysicalPath property of the request object, and then open it with a
FileStream and load it into an XpathDocument via a XMLTextReader. Finally, an XSLTransform object is created,
the XSL is loaded into it, and the transformation is performed. Pass the Response.Output property to the Transform
method. This is a stream, which is one of the possible outputs for the Transform method.

Now we also need an XSL template. Listing 8.15 shows a generic XSL template that takes some XML and formats
it as a table.

Listing 8.15 The XSL Template Used to Format the Output

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" version="1.0">
 <xsl:template match="/">
 <xsl:apply-templates select="/*" />
 </xsl:template>
 <xsl:template match="/*">
 <html><body>
 <Table WIDTH="100%" BORDER="1" topmargin="0" leftmargin="0"
 cellpadding="0" cellspacing="0">

This document is created with the unregistered version of CHM2PDF Pilot

 <xsl:for-each select="./*">
 <tr>
 <xsl:for-each select="./*">
 <td>
 <xsl:value-of select="." />
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </Table>
 </body></html>
 </xsl:template>
</xsl:stylesheet>

This template is generic XSL that could be used for almost any query. Before we can test these two items (Listing
8.14 and Listing 8.15), we have to add the .xsql application mapping in Internet Service Manager. As noted
previously, this routes requests for .xsql files to ASP.NET. We also need to add an entry in web.config to map
requests for .xsql files to SqlHandler. Finally, we can run the code. We need to specify a URL of the following form:

http://localhost/book/handlemod/handlers/tableviewer.xsql?sql=select%20*%20from%20author
s%20for%20xml%20auto,%20elements

This includes the path to our XSL template as well as the URL-encoded SQL that we want it to run. The query
contained in the preceding URL yields the output shown in Figure 8.4.

Figure 8.4. The output from our SqlHandler.

NOTE

This document is created with the unregistered version of CHM2PDF Pilot

http://localhost/book/handlemod/handlers/tableviewer.xsql?sql=select%20*%20from%20author

The preceding example is not incredibly secure since you have given a user a way to execute any arbitrary SQL on
your server. This includes extended stored procedures and DDL.

Page Counter Handler

Graphical page counters were all the rage early on during the evolution of the Web, but it wasn't easy to create the
images dynamically in ASP until now. The next example is an HttpHandler that can be called inside an image tag in
any page, like this:

As long as the HttpHandler is mapped, the path is irrelevant. Upon execution, the HttpHandler looks at the referrer
to determine what page it is being displayed in. The referrer is used as the key of an internal hash table that contains
the current page view count. (If you were to move this structure into production, you would need a more durable
storage location than just a private hash table.) After the page view has been looked up, it is time to go to work. We
get a new 1-pixel bitmap just so we can get a graphics object. Because we are doing this code in an HttpHandler,
there is no "paint" method that comes with a pre-created object for us. By creating a 1-pixel bitmap, we can then
obtain a graphics object for the bitmap. Next, we create a font. In this case, we are using a Verdana 14-point font,
but the font specifics could be passed on the command line to dynamically select a font.

Everything is now in place to measure the page count string. After we know the measurements, it is time to create a
new bitmap of the appropriate size. The bitmap is cleared, anti-aliasing is turned on, and the string is drawn into the
new bitmap. We convert the bitmap to a GIF using the Save method. The final step is to stream it to the
Response.Output stream after setting the ContentType to image/gif. Listing 8.16 shows the HttpHandler.

Listing 8.16 A Page Counter HttpHandler That Dynamically Generates Page Count GIF Files

using System;
using System.Drawing;

namespace SimpleHandler
{
 /// <summary>
 /// Summary description for PageCounter.
 /// </summary>
 public class PageCounter : System.Web.IHttpHandler
 {
 // object to hold our counters
 private System.Collections.Hashtable hPageCounter =
new System.Collections.Hashtable();

 public PageCounter()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 public void ProcessRequest(System.Web.HttpContext context)
 {
 int iPageCount = 1;
 string strUrl = context.Request.UrlReferrer.ToString();

This document is created with the unregistered version of CHM2PDF Pilot

 string strPageCount;

 if(hPageCounter.Contains(strUrl))
 {
 // Get the page count and increment by 1
 iPageCount = (int) hPageCounter[strUrl] + 1;
 // Create a string of the page count
 strPageCount= iPageCount.ToString();
 // Update the page count
 hPageCounter[strUrl] = iPageCount;
 }
 else
 {
 // Init the page count
 hPageCounter.Add(strUrl, 1);
 // Set the page count to 1
 strPageCount = iPageCount.ToString();
 }

 // Create a new bitmap of minimum size
 Bitmap b = new Bitmap(1,1);
 // Get a graphics surface
 Graphics g = Graphics.FromImage(b);
 // Create a font
 Font f = new Font("Verdana", 14);
 // Measure the string so we know how wide to make it
 SizeF s = g.MeasureString(strPageCount, f);

 // Create the proper size bitmap
 b = new Bitmap((int)s.Width, (int)s.Height);
 // Get the graphics surface again
 g = Graphics.FromImage(b);
 // Clear the background to white
 g.Clear(System.Drawing.Color.White);
 // Indicate antialiased text
 g.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAlias;

 // Draw the page count on the bitmap
 g.DrawString(strPageCount, f, new
SolidBrush(System.Drawing.Color.Black), 0, 0);
 g.Flush();

 // Output the graphic
 context.Response.ContentType = "image/gif";
 b.Save(context.Response.OutputStream, System.Drawing.Imaging.
ImageFormat.Gif);
 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }
 }
}

The end result is an image in the page containing the count of how many times the page has been viewed.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Dynamic Handler Assignment

In some cases, you may want to dynamically determine at runtime the appropriate HttpHandler to call for handling a
particular request. .NET provides a Factory design pattern that allows you to create a Factory that is responsible for
creating the appropriate HttpHandler to deal with the request. This gives you some additional flexibility in creating
HttpHandlers. You could look inside an associated file to determine which handler should be called.

The Factory pattern also provides a way for you to potentially pre-create a number of handlers and hand them to
ASP.NET when it requests one, without the overhead of creating one each and every time.

Let's look at an example. Listing 8.17 shows a class that implements IHttpHandlerFactory. This class looks for an
argument passed as part of the URL. If the value of this argument is "Chris", the ChrisHandler is returned to
ASP.NET to handle the request. If the value of the argument is "Jeffrey", the JeffreyHandler is returned.

Listing 8.17 A Sample HttpHandlerFactory That Returns Different Handlers Based on the Name
Parameter

using System;
using System.Web;
using System.Web.UI;

namespace Handlers
{
 /// <summary>
 /// Summary description for HandlerFactory.
 /// </summary>
 public class HandlerFactory : IHttpHandlerFactory
 {
 public IHttpHandler GetHandler(HttpContext context, string requestType,
string url, string pathTranslated)
 {

 // Check the name property
 if(context.Request["Name"] == "Chris")
 // If it's Chris return chris
 return new ChrisHandler();
 else
 // Else return Jeff
 return new JeffHandler();
 }

 // required to implement the interface
 public void ReleaseHandler(IHttpHandler handler)
 {
 }
 }

 /// The ChrisHandler
 ///
 public class ChrisHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 context.Response.Write("<html><body>Chris</body></html>");

This document is created with the unregistered version of CHM2PDF Pilot

 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }

 }

 /// The JeffHandler
 ///
 public class JeffHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 context.Response.Write("<html><body>Jeff</body></html>");
 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }

 }

}

The Chris and Jeffrey handlers just write a simple document with the name Jeffrey or Chris. The HttpHandlerFactory
is hooked up in Web.Config the same way an ordinary HttpHandler is hooked up.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Class Reference

This section provides a quick interface reference to the key objects described in this chapter. Space constraints
prevent us from documenting every object in the .NET framework in this book, so for the sake of brevity and
conciseness, we include only the most important objects here. For more information on the other objects in the .NET
framework, consult the .NET Framework Reference online help file.

HttpApplication

Member of System.Web.

Assembly: System.Web.dll.

Represents the top-level class or root object for ASP.NET. Almost everything to do with processing a request in
ASP.NET hangs off of this class. This class is responsible for raising events during request processing.

Properties

Application Context Modules

Request Response Server

Session Site User

Methods

AddOnAcquireRequest
-StateAsync

AddOnAuthenticate-Re
questAsync

AddOnAuthorizeRequest-Async

AddOnBeginRequestA
sync

AddOnEndRequest-As
ync

AddOnPostRequestHandler-ExecuteAsync

AddOnPreRequestHan
dler-ExecuteAsync

AddOnRelease-Reques
tStateAsync

AddOnResolveRequest-CacheAsync

AddOnUpdateRequest
CacheAsync

CompleteRequest Dispose

Equals GetHashCode GetType

GetVaryByCustomStrin
g

Init ToString

Events

AcquireRequestState AuthenticateRequest AuthorizeRequest

BeginRequest EndRequest PostRequestHandler-Execute

PreRequestHandlerExe
cute

PreSendRequestConten
t

PreSendRequestHeaders

ReleaseRequestState ResolveRequestCache UpdateRequestCache

IHttpModule

This document is created with the unregistered version of CHM2PDF Pilot

Member of System.Web.

Assembly: System.Web.dll.

This is the abstract class that all HttpModules must inherit from for ASP.NET to properly load them.

Methods

Init Dispose

EventLog

Member of System.Diagnostics.

Assembly: System.dll.

This class provides everything needed to interact with the event logs.

Static Methods

CreateEventSource Delete DeleteEventSource

Exists GetEventLogs LogNameFromSourceName

SourceExists WriteEntry

Properties

Container EnableRaisingEvents Entries

Log LogDisplayName MachineName

Site Source SynchronizingObject

Methods

BeginInit Clear Close

CreateObjRef Dispose EndInit

Equals GetHashCode GetLifetimeService

GetType InitializeLifetimeService ToString

WriteEntry

Events

Disposed EntryWritten

SmtpMail

Member of System.Web.Mail.

This document is created with the unregistered version of CHM2PDF Pilot

Assembly: System.Web.dll.

This class is a wrapper for CDONTS, the simple SMTP server that is optionally installed with Windows 2000 and
Windows XP.

Static Properties

SmtpServer

Static Methods

Send

IHttpHandler

Member of System.Web.

Assembly: System.Web.dll.

This is the abstract class that all HttpHandlers must implement.

Properties

IsReusable

Methods

ProcessRequest
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 9. Building User Controls and Server
Controls

IN THIS CHAPTER

•

• Working with User Controls in Web Forms Applications
•
•

• Creating Server Controls
•

Many server-scripting environments, including ASP.old, made it difficult to reuse the code that composes
Web-based user interfaces. The most common option for creating reusable code is the server-side include (SSI).
With SSIs, you create an external file containing HTML and/or server script that can be referenced, or included,
from any other file in your Web application.

SSIs are adequate and are supported on many types of server environments (including both ASP.old and ASP.NET)
across different platforms. But the server-side include is a harsh mistress, quick to anger. One problem is that the SSI
doesn't provide any standard functionality, only a way for including code functionality from an external file. That
means that the way you get access to code in a given SSI may be totally different from the way you access code in
another. Also, code in SSIs typically is not accessible from any language (the language of the SSI must be the
language of your main page), and making a change in an SSI that's referenced from multiple files frequently causes
code in linked files to break.

This paucity of options for code reuse is in stark contrast to development environments such as Visual Basic and
Java, which both have a rich library of user-interface controls that developers can access in the form of reusable
objects. (In general, presenting code in the form of objects ensures that the code is consistent and easy to
understand; it also keeps the developer who uses the code from having to know much of anything about how the
code works internally.)

ASP.NET adds support for several new kinds of reusable user-interface objects (including server controls and
HTML controls), all of which were introduced in earlier chapters. This chapter discusses how to create your own
user-interface objects.

ASP.NET enables you to create two types of custom user-interface objects in Web forms programming:

•

• User control—This control is an evolution of the functionality traditionally provided by server-side includes.
With user controls, you can easily create a bit of user-interface functionality that is based in easily maintained

This document is created with the unregistered version of CHM2PDF Pilot

script. But unlike SSIs, Web forms user controls are fully object oriented, supporting properties, methods,
and events.

•
•

• Custom server control—This control is a type of .NET component that also provides Web forms
user-interface functionality, but in a way that takes advantage of the full spectrum of programmability features
available in the .NET component development model. These features include inheritance of .NET UI
component base classes, a powerful complexity-management tactic that prevents you from having to reinvent
the wheel when creating custom components.

•

We discuss how to create both types of controls in this chapter. Because user controls are far easier to develop and
are probably more commonly encountered, we'll cover those first.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Working with User Controls in Web Forms Applications

When you're interested in reusing a piece of user-interface functionality in an ASP.NET application, but you don't
want to expose yourself to the full brunt of a precompiled server control, you can create a user control. User controls
are simple to build in ASP.NET script and don't require the precompilation that server controls do.

To create a user control, you typically start with a basic HTML representation of the user interface you want. This is
a convenient feature of user controls. It means you can use whatever HTML editing control you're most comfortable
with to do the lion's share of control development.

For example, suppose you're building an information portal application in which search functionality is a key feature.
You want to have a Search dialog box on every page of your application. To implement this, you can create a Search
dialog box user control. The HTML representation of the control is shown in Listing 9.1.

Listing 9.1 Initial HTML Representation of the Search Dialog Box User Control

<table width="250" border="0" cellpadding="3" cellspacing="0">
 <tr>
 <td bgcolor="#000066">Search</td>
 </tr>
 <tr>
 <td align="center" bgcolor="#CCCCCC" height='75px'>
 <table width="98%" border="0">
 <tr>
 <td>Text:</td>
 <td>
 <input type="text" name="textfield">
 </td>
 <td>
 <input type="submit" name="Submit" value="Go">
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

You should notice a few important things about the HTML representation of this user control. First, notice that the
HTML header tags (things such as <HTML>, <HEAD>, and <BODY>) are missing. This is the case because this
control is intended to be the component of an existing page, not a page that stands alone. You should not include
these tags when building a user control.

Next, notice that although this HTML contains form elements such as a text box and button, it does not contain an
actual <FORM> tag. This is because the containing page is where the form tag should reside; form tags don't belong
in user controls themselves.

Finally, user controls are always saved using the .ascx file extension. Giving your controls an .ascx extension easily
identifies the code as a user control and prevents the Web server from serving up the file. You can verify this by

This document is created with the unregistered version of CHM2PDF Pilot

attempting to navigate to a file with an .ascx extension—the server will refuse to send it directly in the browser.
Rather than navigating to them directly, user controls will be rendered only in the context of a hosting page, as we'll
demonstrate later in this chapter.

A Search dialog box such as this one could be useful in many Web applications. If you were to use this bit of HTML
again and again in different places, you would want to have some high-level programmatic control over its behavior.
For example, you would definitely want to be able to specify the text displayed in the title bar and the Search prompt,
as well as specify other cosmetic aspects such as the background color of the title bar and body of the control.

You can provide programmers who use your control the capability to change these values programmatically by
exposing them as user-control properties. We'll describe how that works in the next section.

In addition to saving the control as a file with an .ascx extension, your user control can contain an additional
element—a Control directive. This directive is similar to the Page directive that appears at the start of ASP.NET
pages, but it contains special settings that are relevant to user controls.

The Control directive supports a subset of the attributes supported by the Page directive (described in Chapter 2,
"Page Framework"). The attributes supported by the Control directive are the following:

•

• AutoEventWireup
•
•

• ClassName
•
•

• CompilerOptions
•
•

• Debug
•
•

• Description
•
•

• EnableViewState
•
•

• Explicit
•
•

This document is created with the unregistered version of CHM2PDF Pilot

• Inherits
•
•

• Language
•
•

• Src
•
•

• Strict
•
•

• WarningLevel
•

You use these settings nearly identically to the way you use them for pages; see Chapter 2 for more information on
what they do and how they work.

The Inherits and Src attributes refer to code-behind functionality for the control itself. This enables you to separate
code functionality from a user control the same way you do for a page. Code behind is also discussed in Chapter 2.

You'll notice that the Trace attribute is missing from the list of attributes found on the list of Control directives. The
Trace attribute is not a part of the Control directive because trace mode functionality is controlled by the entire page
and cannot be limited to a specific user control. For more information on tracing, see Chapter 3, "Debugging
ASP.NET Applications."

Adding Properties to a User Control

You can give developers the capability to programmatically change elements of your user control by exposing certain
elements of the control as public properties. By doing this, you enable customization of the control at a high level,
without forcing developers to manually hack the HTML that composes your control.

To do this, you replace hard-coded HTML elements in your control with references to public variables or
(preferably) property procedures. Listing 9.2 shows an example of the Search dialog box created in the previous
section, this time with a property procedure for a TitleBarText property.

Listing 9.2 Search Dialog Box with a TitleBarText Property

<SCRIPT runat='server'>
 private String strTitleBarText;

 public String TitleBarText
 {
 get {

This document is created with the unregistered version of CHM2PDF Pilot

 return strTitleBarText;
 }

 set {
 strTitleBarText = value;
 }
 }

</SCRIPT>
<table width="250" border="0" cellpadding="3" cellspacing="0">
 <tr>
 <td bgcolor="#000066"><% =TitleBarText %></td>
 </tr>
 <tr>
 <td align="center" bgcolor="#CCCCCC" height='75px'>
 <table width="98%" border="0">
 <tr>
 <td>Text:</td>
 <td>
 <input type="text" name="textfield">
 </td>
 <td>
 <input type="submit" name="Submit" value="Go">
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

The three things that changed in this version of the control are the inclusion of a private variable, strTitleBarText, to
store the value of the title bar text, a property accessor function called TitleBarText, and a render block (shaded) in
the middle of the HTML representation of the control.

When you include this code in the control, the HTML representation of the control will be different, depending on
how the programmer of the containing page chooses to set these properties. For an example of the finished product,
see the next section, "Programming a User Control in a Page."

It's common for controls such as this Search control to incorporate other properties to alter the appearance and
behavior of the control. Your controls will probably contain properties for foreground and background color, height
and width, and so on. These properties are very easy to implement in user controls with the techniques demonstrated
here.

Programming a User Control in a Page

To use a user control in an ASP.NET Web forms page, you must first include a Register directive at the top of the
page and then create a tag that represents an instance of that control, as you do with the other intrinsic ASP.NET
Web forms controls.

Listing 9.3 gives an example of a typical Register directive for the Search user control we created in the previous
section.

This document is created with the unregistered version of CHM2PDF Pilot

Listing 9.3 Example of a Minimal Register Directive Referencing a User Control in a Page

<%@ Register TagPrefix="MyControl"
 TagName="Search"
 Src="search.ascx" %>

Three attributes are required in the Register directive. The TagPrefix attribute gives your control a unique namespace
so that its name doesn't collide with other controls that may have similar names. This prefix comes in handy when you
need to use two types of controls, written by different authors but both coincidentally named Search, on the same
page. However, rather than using the generic tag prefix MyControl, you should use a tag prefix that identifies yourself
or your company. That way, a namespace collision between your control and someone else's will be less likely.

The TagName attribute provides a name that identifies your control class. Note that this is different from the name of
the instance of the control you use to manipulate the control programmatically.

Finally, the Src attribute indicates where the source file (.ascx) of your user control is stored. This file does not have
to be in the same directory as the page; it can be in a subdirectory.

After you've registered your control for use in a page, you can create an instance of the control using the same
tag-based syntax you use for any other kind of Web form control in ASP.NET. For example, if the Register directive
for your Search control looks like the previous example (in Listing 9.3), a tag that would create an instance of the
control on an ASP.NET Web form looks like this:

<MyControl:Search id='Search1' runat='server' />

As with all Web form controls, you should ensure that your control tags are placed inside an ASP.NET form (that is,
a FORM tag that contains the runat="server" attribute). If you don't do this, your page won't work. Also, as with
other types of Web forms controls, you can assign default properties to the control two ways: in the tag itself or in the
Page_Load event procedure (or both).

For example, suppose you're using the Search user control in an application that enables users to search an online
personnel database. In this case, you might want to set certain properties of the user control in code to reflect the
purpose of the search. Listing 9.4 provides an example.

Listing 9.4 Example of a Custom User Control Utilized in an ASP.NET Web Form

<%@ PAGE language='C#' debug='true' trace='false' %>
<%@ REGISTER TagPrefix='MyControl' TagName='Search' Src='search.ascx' %>
<html>
 <head>
 <title>ASP.NET Page </title>
 </head>
 <script runat='server'>
 void Page_Load(Object Sender, EventArgs e)
 {
 Search1.TitleBarText = "Personnel Search";
 }
 </script>
 <body>

This document is created with the unregistered version of CHM2PDF Pilot

 <form runat='server'>
 <MyControl:Search id='Search1' runat='server' />
 </form>
 </body>
</html>

In this example, the TitleBarText property is set in the page's Page_Load event procedure. But it could just as well
have been set in the declaration tag for the control itself, like so:

<MyControl:Search id='Search1'
 TitleBarText='PersonnelSearch'
 runat='server' />

There's really no difference between the two techniques. Which one you use depends on your preference and
whether the property setting is known when you author the page. If the property setting isn't known (that is, the
property is derived from a calculation), you'll need to assign it in code.

Adding Methods to Your User Control

You can add methods to your user control the same way you add properties to controls. To add a method, you
simply create a public function or subroutine in the SCRIPT tag contained in your user control.

For example, suppose you want the page programmer to be able to show an Advanced Search dialog box. To
enable this, you might provide a ShowAdvanced method in your Search control. Listing 9.5 shows an example of a
new version of the Search control that provides this functionality.

Listing 9.5 Search Control with ShowAdvanced Method to Provide Extended Features

<SCRIPT runat='server'>
 private String strTitleBarText;

 public String TitleBarText
 {
 get
 {
 return strTitleBarText;
 }

 set
 {
 strTitleBarText = value;
 }
 }

 public void ShowAdvanced()
 {
 // Public (control method)
 Advanced.Visible = true;
 }

</SCRIPT>
<table width="250" border="0" cellpadding="3" cellspacing="0">
 <tr>
 <td bgcolor="#000066">
 <% =TitleBarText %>

This document is created with the unregistered version of CHM2PDF Pilot

 </td>
 </tr>
 <tr>
 <td align="center" bgcolor="#CCCCCC" height='75px'>
 <table width="98%" border="0">
 <tr>
 <td>Text:</td>
 <td>
 <input type="text" name="textfield">
 </td>
 <td align="center">
 <input type="submit" name="Submit" value="Go">
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr id='Advanced' visible='False' runat='server'>
 <td align="center" bgcolor="#CCCCCC" height='40'>
 <asp:checkbox id="ShowContractors" value="1" runat="server" />
 Show contractors</td>
 </tr>
</table>

The Advanced Search functionality is provided through an HTML server control, a table row control called
Advanced. The Visible property of this control is set to false by default, but calling the ShowAdvanced method of the
control sets it to true. In addition to displaying the row, all the controls contained in the row are automatically
displayed as well. You could include code in ShowAdvanced to do other interesting work, such as setting defaults
for the Advanced Search controls and so forth.

To call this method, the page programmer calls the Show method in the hosting page:

<script runat='server'>
 void Page_Load(Object Sender, EventArgs e)
 {
 Search1.TitleBarText = "Personnel Search";
 Search1.ShowAdvanced();
 }
</script>

The simplicity of this code highlights an important benefit of user controls (and componentized code in
general)—adding new functionality to a component does not typically require that programmers who use that
component make significant changes in their code to adapt to the new functionality. If you don't want to use the
Search control's new functionality, simply leave it out of your method call.

Handling Events from a User Control

Your user control can handle events that are generated by controls contained by the user control. For example, you
may choose to encapsulate Search functionality within the Search control itself. To do this, you write a handler for the
event that kicks off the search, inserting any code you want in the event handler.

This version of the Search control demonstrates how to handle internal system events. For this example, when the

This document is created with the unregistered version of CHM2PDF Pilot

user clicks the OK button, the button's Click event is handled by the Search_Click event procedure, which then
kicks off the actual search. We haven't talked about doing database queries yet (we get to that in Chapter 11,
"Creating Database Applications with ADO.NET"), so we'll stub out the "real" search results with a label control.
Listing 9.6 provides an example of the Search control.

Listing 9.6 Version of the Search Control That Handles an Internal Event

<SCRIPT runat='server'>
 private String strTitleBarText;

 public String TitleBarText
 {
 get{
 return strTitleBarText;
 }
 set{
 strTitleBarText = value;
 }
 }

 void Search_Click(Object Sender, EventArgs e)
 {
 SearchResults.Text = "Search results for '" +
 SearchText.Text + "' go here.";
 }

</SCRIPT>
<table width="250" border="0" cellpadding="3" cellspacing="0">
 <tr>
 <td bgcolor="#000066">
 <% =TitleBarText %>

 </td>
 </tr>
 <tr>
 <td align="center" bgcolor="#CCCCCC" height='75px'>
 <table width="98%" border="0">
 <tr>
 <td>Text:</td>
 <td>
 <asp:textbox id='SearchText' runat='server' />
 </td>
 <td align="center">
 <asp:button id="GoSearch" onClick='Search_Click' text="Go"
runat='server' />
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

<asp:label id='SearchResults' runat='server' />

Note that you don't have to handle the Click event of the button if you don't want to. Because the user control exists
on a form in an ASP.NET page, the control will generate a round trip to the server when its Go button is pressed.
You can then handle the Search functionality in the hosting page if you didn't already handle it inside the control.
There's no right way to accomplish this division of labor; encapsulating the Search functionality in the control makes
the control simpler to use, but less flexible, because the programmer of the hosting page would have to change the
control if she wanted to change the Search functionality.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Creating Server Controls

In the previous sections you learned how to create user controls. User controls are a fast and easy way to create
reusable user-interface elements in ASP.NET, and they serve as a more structured and richer alternative to
server-side includes. However, user controls don't take full advantage of the .NET component model. As a result,
they are somewhat limited in terms of functionality.

User controls are compiled automatically in the background, just as ASP.NET pages are. The first time your page is
accessed in the browser, the page and any user controls on that page are compiled. After the first compilation, the
page and user controls are recompiled only if you change their source code.

In contrast, server controls must be compiled and deployed to the Web server ahead of time. Although this may
seem like a bit of a pain, you can actually automate much of the compilation process ahead of time using the
command-line compiler and a Windows batch file. This is the tactic we'll use in this chapter.

NOTE

In Visual Studio .NET, when you create a new project and select Web Server Control, VS.NET creates an actual
server control project for you (in contrast to a user control). To create a user control in the development
environment, you first create an ASP.NET Web Application and then add a user-control file to the project.

Creating a Basic Server Control

You create the most basic kind of compiled server controls by following these steps:

1.

1. Create a class that inherits from System.Web.UI.Control.
1.
2.

2. Override the Render method of the inherited Control class.
2.
3.

3. Optionally, add any properties, methods, or events that are appropriate to your control's functionality.
3.
4.

4. Optionally, give your control the capability to store and retrieve state using the State object.
4.

This document is created with the unregistered version of CHM2PDF Pilot

As an example, we'll start with a control whose content is completely static— literally, a "Hello, world" example.
From there, we'll build more sophisticated and useful controls that have properties, methods, and events you can set
programmatically.

NOTE

The properties, methods, and events of the System.Web.UI.Control class are listed at the end of Chapter 2.

The first step is to create a class contained in a namespace that inherits System.Web.UI.Control and overrides the
Control class's Render method. Listing 9.7 shows an example.

Listing 9.7 "Hello World" Server Control Example

using System.Web.UI; // Contains HtmlTextWriter and Control classes

namespace MyExample
{
 public class HelloWorld : Control
 {
 protected override void Render(HtmlTextWriter Output)
 {
 Output.Write("Hello world!");
 }

 }
}

After writing the code, the next step is to compile this code into a .NET component DLL and deploy it into the Web
application directory. You can compile this code with the command-line compiler. The command is

Csc /t:library /out:helloctrl.dll helloctrl.cs /r:System.dll /r:System.Web.dll

When you compile this control, you must reference the libraries System.dll and System.Web.dll because they contain
.NET framework libraries used in your code. The System.Web.dll library is required by every server control because
it contains the Control base class from which ASP.NET server controls inherit. This namespace also contains the
HtmlTextWriter class that is passed in to the Render method; as you can see from the code listing, this class is used
by your code as a way to send HTML data to the browser.

NOTE

For now, we've intentionally glossed over the details of how command-line compilation works in .NET. You can find
more detailed information on how to use the command-line compiler to create your components in the next section.

Compiling this code produces a binary, helloctrl.dll, which should be copied to a \bin subdirectory under a Web

This document is created with the unregistered version of CHM2PDF Pilot

application directory to be accessible from an ASP.NET application in that directory.

The final step is to create an ASP.NET page that references this control and invokes it. Listing 9.8 shows a minimal
example of such a page.

Listing 9.8 ASP.NET Page That References the Custom "Hello World" Server Control

<%@ PAGE language='C#' debug='true' trace='false' %>
<%@ REGISTER TagPrefix='Jeffrey' Namespace='MyExample' Assembly='helloctrl' %>
<HTML>
 <HEAD>
 <TITLE>Hello World Server Control </TITLE>
 </HEAD>
 <BODY>
 <FORM runat='server'>
 <Jeffrey:HelloWorld id='Hello1' runat='server' />
 </FORM>
 </BODY>
</HTML>

The Register directive is crucial here; it's what makes the page aware of the control contained in the external library.
Like the user controls we discussed earlier in this chapter, the REGISTER tag contains a TagPrefix attribute; this
attribute is an arbitrary text name you give to distinguish your controls from like-named controls on the page. As you
can see in the code example, we used the TagPrefix "Jeffrey"; the same tag prefix is used when referencing the
control on the page.

The Register directive for a precompiled server control also contains two attributes not found in user-control
registrations. The Namespace attribute references the control's namespace; it must be the same as the namespace
you declared when you constructed the server control.

Finally, the Assembly attribute points the page to the name of the assembly in which the component class resides.
This should be the filename of the compiled DLL, without the .DLL filename extension. Remember that for the page
to find the DLL, the DLL must be copied to a \bin subdirectory beneath the Web application directory.

Assuming everything is in place, when you navigate to this page in the browser, you should be able to see the "Hello
World" text emitted by the overridden Render method of the HelloWorld control. You can, of course, replace this
simple HTML with any text you want by altering the output of the Render function and then recompiling and
redeploying the server control.

Before we go into more detail on the more sophisticated features of server controls, we'll take a brief detour and
cover the general steps involved in creating and deploying .NET components. Because server controls are a type of
.NET component, it's important to have a basic understanding of how components are built in .NET.

Compiling Your Control as a .NET Component

Because server controls are a type of .NET component, they must be compiled separately from the ASP.NET page
that hosts them. You can do this in a number of ways. You may choose to build and compile your control in Visual

This document is created with the unregistered version of CHM2PDF Pilot

Studio .NET, which is certainly okay. However, we prefer to compile our .NET components manually, using the
command-line compiler. Although this takes a bit longer to set up, you may find that it's faster in the long run. It
certainly gives you more control over what's going on, at any rate, and will probably prove to be more enlightening in
terms of how your source code gets turned into a .NET component.

You may have created COM components in previous versions of Visual Studio or Visual Basic. The theory behind
components in .NET is similar, although the implementation is different (in our opinion, component-based
development is easier in many ways in .NET than it was in COM). Any .NET code can be packaged as an
independently compiled component as long as the code contains a namespace and at least one public class.

Creating .NET Components Using the Command-Line Compiler

The first step to compiling a component using the command line is to add the location of your compiler to your
computer's PATH variable. In Windows 2000 you do this by opening the System control panel, clicking the
Advanced tab, clicking the Environment Variables button, and altering the PATH variable located in the System
variables panel. A number of semicolon-delimited paths should already be in the PATH variable; you'll need to add
something like

%SystemRoot%\Microsoft.NET\Framework\v1.0.2914

to the end of whatever's there. Ensure that you separate the original path and the Microsoft .NET directory string
with a semicolon. Note that the location and name of the .NET framework compilers will almost certainly be different
on your machine, depending on which version and build of .NET you're using. If you're in doubt as to which PATH
setting to append, use Windows Explorer to do a search for the file csc.exe and use whatever directory that file is
located in. The objective here is simply to provide a way for you to get to csc.exe from a command line without
having to type the path to it every time you compile.

NOTE

You should be able to find compilers for at least three languages in the .NET directory; vbc.exe is the Visual Basic
compiler, csc.exe is the one for C#, and jsc.exe is used for applications created in JScript, Microsoft's implementation
of JavaScript. You can also see a number of DLLs that compose the .NET framework in this directory—files such as
System.dll, System.Web.dll, System.Data.dll, and so forth.

After you've appended the location of the .NET compilers to your PATH setting, you can open a command window
by selecting Start, Run, and then typing cmd into the Run dialog box. After the command window appears, you can
test to make sure everything works by typing csc /help | more into the command window. If everything worked
correctly, the numerous parameters for the C# compiler will appear in the window.

To compile a class to a component using the command-line compiler, you must specify that the compiled output (the
"target") should be a component rather than a conventional executable. When compiling with csc, you do this using
the command-line switch /target:library. The output of a build that uses the switch /target:library is a .NET component
contained in a familiar DLL file.

This document is created with the unregistered version of CHM2PDF Pilot

Listing 9.9 shows an example of one of the smallest possible chunks of code that can be compiled into a .NET
component.

Listing 9.9 Example of a Namespace and Class That Can Be Compiled into a .NET Component

using System;
namespace HelloComponent
{

 public class Hello
 {

 public String SayHello()
 {
 return "Hello, world!!!";
 }

 }

}

Note that this component is contained by a namespace and contains a single public function, SayHello, which returns
a hard-wired text string.

Assuming that this code is contained in a file called hello.cs, you could compile this class to a .NET component called
hello.dll by using the following command line:

csc /target:library /out:hello.dll hello.cs

You can see that compiling components is fairly straightforward, as long as you keep things simple. The tricky part
with command-line compilation of components has to do with ensuring that you've included references to all the
external libraries used by your component. For example, if your code uses classes found in the System.Data
namespace (including subnamespaces such as System.Data.SqlClient), the command you use to build your
component must contain a reference to the component System.Data.dll, or the build will fail because the compiler
won't be able to find the external libraries your code refers to.

Therefore, when compiling, you must include references to external libraries using the /r switch. Your command line
can have as many /r switches as it needs. For example, if your component references the System.Data and
System.Xml namespaces, the command line you use to compile your component might look like this:

csc /out:mycomp.dll /target:library mysrc.cs
/r:System.Data.dll /r:System.XML.dll

More options are available in the command-line compiler, but these are all you'll need to know to get your server
controls to compile.

Sooner or later you'll notice that your command-line compilation statements will become long and unwieldy. This is
particularly the case when your project comprises many source files or when your project contains more than one or
two references to external libraries. In this case, you'll probably want to automate the build process. A common way

This document is created with the unregistered version of CHM2PDF Pilot

to accomplish this is by creating a batch file. Listing 9.10 shows an example of a batch file that compiles a .NET
component project.

Listing 9.10 Batch File That Compiles and Deploys a .NET Component Project Automatically

Csc /out:mycomp.dll /t:library mysrc1.cs mysrc2.cs /r:System.Data.dll
copy mycomp.dll c:\inetpub\wwwroot\myapp\bin
pause

This set of commands, all contained within the text file build.bat, is all that's needed to create and deploy the fictitious
mycomp.dll component. Note that two source files are in this project (mysrc1.cs and mysrc2.cs), and we're using the
/t abbreviation instead of /target in this example. When the compilation is complete, the batch file copies the newly
compiled DLL to c:\inetpub\wwwroot\myapp\bin.

Remember that batch files must end in a .bat or .cmd extension. You can use any text editor (such as the onerous
Notepad or the extremely whizzy shareware TextPad) to create them.

Deploying a Component in ASP.NET

Deploying components is much easier in .NET than it was using COM. In .NET, you need only to deploy the
component to a \bin directory located beneath your application directory. That's it! No REGSVR32, no shutting
down and restarting IIS—none of that jive.

The batch file demonstrated in the previous section also copied the DLL to the Web application's \bin subdirectory
after the compiler ran. Copying the file to a directory where it can be tested immediately after compilation is, of
course, optional, but it's a handy trick that you'll probably want to use often.

No difference exists between a server control and any other kind of component in .NET, so the technique you use to
develop, compile, and deploy server controls is essentially the same that you would use to create middle-tier
business-logic components that have no representation in the user interface.

Creating Composite Controls

In the previous section, you saw a simple example of how to create a simple, HTML-based control by overriding the
Render method of System.Web.UI.Control. This is a straightforward way to emit a chunk of static HTML.

A composite control, on the other hand, is a control that comprises other controls (either HTML controls or server
controls). A Search control comprising a text label, a text box, and a button is an example of a composite control.
This control would be similar to the Search control described in the section on user controls earlier in this chapter.
We will create a new version of this control as a server control in our example.

Composite server controls are a type of ASP.NET server control. You create them essentially the same way as you
create server controls, starting by creating a class that inherits from the System.Web.UI.Control class. The technique
to create a composite control is slightly different from creating normal server controls, however. Instead of overriding

This document is created with the unregistered version of CHM2PDF Pilot

the Render method of System.Web.UI.Control, as you do with normal server controls, you instead override the
CreateChildControls method of the Control class. In this method, you add child controls to your control in two ways:
by adding instances of existing server control objects to the Controls collection contained by the control object
(inherited from the Control base class) and by inserting literal HTML into the control by way of the LiteralControl
object. The LiteralControl object is used by ASP.NET for HTML elements that don't require server processing, so
make sure that you don't plan on programmatically accessing any of the HTML you create using a LiteralControl.

For example, to build a composite server control similar to the Search user control described earlier in this chapter,
you need at least three elements: a text box, a button to submit the search, and a separator to go between the text box
and the button. In the user control examples, we used a table for this; for this example, we'll use an HTML
nonbreaking space.

Listing 9.11 shows an example.

Listing 9.11 Creating a Compositional Control by Overriding the CreateChildControls Method of the
Control Object

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace MyServerControl
{

 public class Search : Control
 {

 protected override void CreateChildControls()
 {
 TextBox txt = new TextBox();
 Button btn = new Button();
 btn.Text = "Search";
 this.Controls.Add(txt);
 this.Controls.Add(new LiteralControl(" "));
 this.Controls.Add(btn);
 }

 }

}

You can compile this code to a file called search.dll by using the following command in a command prompt window:

csc /t:library /out:search.dll search.cs /r:System.dll /r:System.Web.dll

By navigating to the page shown in Listing 9.12, you can test how the control appears in the page.

Listing 9.12 Page Created to Host an Instance of the Composite Search Server Control

<%@ Page Language="C#"%>
<%@ Register TagPrefix="demo" Namespace="MyServerControl" Assembly="search" %>
<HTML>
 <HEAD>
 <TITLE>ASP.NET Page</TITLE>

This document is created with the unregistered version of CHM2PDF Pilot

 </HEAD>
 <BODY>
 <FORM runat='server' ID="Form1">
 <demo:Search id='Search1' runat='server' />
 </FORM>
 </BODY>
</HTML>

If you copy the file search.dll to the Web application's \bin directory and navigate to this page, you should be able to
see an instance of the Search control on the page, with a text box and command button.

Notice that within the control code, you can access the properties and methods of the contained controls. In this
example, we specified a default text property for the Command button (using the assignment statement btn.Text =
"Search").

Adding properties and methods to this control is done in the same way you add properties and methods to any class.
To do this, you create a public variable or property procedure, or (for methods) a public subroutine or function.

In this example, we'll provide access to the Text property of the Search control. In this version of the control, the
public Text property of your Search control just provides access to the Text property contained in the child TextBox
control. The TextBox control does the work of storing and retrieving the text. (In object-oriented programming, the
term for handing off an operation to a related or contained control is delegation.)

Listing 9.13 shows an example of using delegation to store and retrieve the Text property of the Search control within
the Text property of the child TextBox control.

Listing 9.13 Using Delegation to Provide Access to the Text Property of aChild Control

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace MyServerControl
{

 public class Search1:Control
 {
 private TextBox txt;
 private String Text
 {
 get
 {
 EnsureChildControls();
 return txt.Text;
 }
 set
 {
 EnsureChildControls();
 txt.Text = value;
 }

 }

This document is created with the unregistered version of CHM2PDF Pilot

 protected override void CreateChildControls()
 {
 TextBox txt = new TextBox();
 Button btn = new Button();

 btn.Text = "Search";
 txt.Text = "Testing this.";

 this.Controls.Add(txt);
 this.Controls.Add(new LiteralControl(" "));
 this.Controls.Add(btn);
 }

 }

}

In this version of the Search control, the TextBox control is defined at the class level rather than inside the
CreateChildControls subroutine, as in the previous example. This extends the child control's lifetime to that of the
class so we have an opportunity to access its Text property after it's created. You can see in the Text property
procedure that the Text property of the contained TextBox control can be stored and retrieved. But in each case,
there's a call to a function called EnsureChildControls() in there. A call to this function (actually a method of the
Control base class) is required whenever you reference a property of a child control in a composite server control.
This must be done because the page is loaded asynchronously; without an explicit call to EnsureChildControls, it's
possible that your code will attempt to access a property of a child control that has not yet been loaded by the server.

Delegating to child controls is useful when your control is a composite control comprising two or more types of
controls or when the number of properties of a child control you want to expose is limited. But what happens when
you want to create a specialized type of existing server control? You may want your control to have most of or all the
properties and methods of the existing control, plus a few additional members (or overridden members). You
certainly would not want to write custom accessors for the 70+ members of the base TextBox class. In this case,
you'll instead want to use inheritance to create your server control, subclassing an existing control to use its
functionality.

Subclassing Existing Server Controls

In the previous section you saw an example of a composite control built from several existing controls. But we
identified a problem—if you want to expose a large number of properties of a child control, you have to write a large
number of property accessor functions that enable the page to get to the properties of the contained control.

Inheritance provides an alternative to containing an instance of a control and delegating to its members using accessor
functions. A control that inherits from an existing control is said to be subclassed from that control.

You can create customized subclassed versions of existing ASP.NET server controls using inheritance, without
writing tons of code. Through inheritance, you can use the existing control as a base class, adding new members or
overriding existing members to provide enhanced functionality.

The technique for doing this is similar to creating any server control. But instead of inheriting from

This document is created with the unregistered version of CHM2PDF Pilot

System.Web.UI.Control, you instead inherit from whichever control you're interested in subclassing. Because all
server controls ultimately inherit from System.Web.UI.Control, your subclassed control still satisfies the requirement
that all server controls inherit from the abstract Control class.

For example, suppose you want to provide a custom text box that provides a large number of default values. You
don't want to have to code these defaults every time you use the control, and you know you're going to use this kind
of control again and again in the construction of your site, so creating a custom control that inherits from the basic
TextBox control makes sense.

To accomplish this, you create a class that inherits from the System.Web.UI.WebControls.TextBox control,
overriding the property of the text box, supplying your own formatting defaults in the object constructor. Listing 9.14
shows an example.

Listing 9.14 CustomTextBox Control That Contains a Set of Custom Formatting Defaults

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace MyServerControl
{

 public class CustomText : TextBox
 {

 public CustomText()
 {

 this.BackColor = Color.CornflowerBlue;
 this.Text = "Can I get this one in cornflower blue?";
 this.Font.Name = "Verdana";
 this.Font.Size = FontUnit.XSmall;
 this.Width = Unit.Pixel(300);
 }
 }

}

You can compile this control using the command line:

csc /t:library /out:CustomText.dll CustomText.cs /r:System.dll
/r:System.Web.dll /r:System.Drawing.dll

You can see that this code imports a namespace we haven't used before; the System.Drawing namespace is used to
set a background color for the control. As a result, the assembly System.Drawing.dll must also be included in your
compilation command.

The customized default properties for the text box are set in the control's constructor; you can specify any properties
you want by using MyBase to indicate that you want to change a property derived from the base TextBox class. (The
quotations are all from the movie Fight Club; I got sick of using "Hello, world" all the time.)

This document is created with the unregistered version of CHM2PDF Pilot

Because it inherits from the standard Web forms TextBox control, the subclassed CustomText control has all the
properties, methods, and events of the normal TextBox control. In addition to using inherited properties, you could
override properties, as well.

To demonstrate how the inherited Text property works, you can deploy the compiled control assembly to the Web
server's \bin directory and navigate to a page that instantiates the control. Listing 9.15 shows a page that puts the
control through its paces.

Listing 9.15 ASP.NET Page That Uses an Instance of the Subclassed CustomText Control

<%@ Page language='C#' debug='true' trace='false' %>
<%@ Register TagPrefix="demo" Namespace="MyServerControl"
Assembly="CustomText" %>
<SCRIPT runat='server'>

 void Change_Click(Object Sender,EventArgs e)
 {
 CustomText1.Text = "...because waste is a thief.";
 }

</SCRIPT>
<HTML>
 <HEAD>
 <TITLE>ASP.NET Page</TITLE>
 </HEAD>
 <BODY>
 <FORM runat='server' ID="Form1">
 <demo:CustomText id='CustomText1' runat='server' />

 <asp:button runat='server' text='The First Rule of Fight Club'
 id='Change' onClick='Change_Click' />
 </FORM>
 </BODY>
</HTML>

You should be able to see when this page loads that the text box is an unappealing cornflower blue color with the
font and text properties set as specified in the control's constructor code. By clicking the button, the control's Text
property is set to the value specified in the Change_Click event procedure.

Events in the Life of a Server Control

A number of events are fired by every ASP.NET server control. These events are primarily inherited from the server
control's base class, System.Web.UI.Control; you typically handle these events to perform initialization tasks related
to the control and the data it displays.

The sequence of events raised by a server control are listed in Table 9.1.

Table 9.1. Events Raised by System.Web.UI.Control in Custom Server Controls

Phase Description Found In

DataBinding The control has been bound to a data
source.

Control class

This document is created with the unregistered version of CHM2PDF Pilot

Init Instructs the control to set its default
property values. These values are
retained for the life of the HTTP
request.

Control class

LoadViewState View state information is loaded into
the appropriate properties of the
control.

Control class

LoadPostData Process information from the
incoming form.

IPostBackDataHandler interface

Load Triggered when the control is loaded
into the Page object.

Control class

RaisePostDataChangedEvent Informs the page that the control's
state has changed.

IPostBackDataHandler interface

RaisePostBackEvent Enables the control to process
postback events.

IPostBackEventHandler interface

PreRender Triggered just before the control is
sent to the client.

Control class

Unload The server control is unloaded from
memory.

Control class

You will often find it useful to write code to respond to these events in your server control's lifetime. To handle these
events, you override the corresponding "On" method (OnInit, OnLoad, OnDataBinding, and so forth) provided by
the Control base class.

Binding Controls to Data

The ASP.NET controls you create can be bound to data. By enabling data binding, you can make it easy for
application developers to use your control in database applications.

You provide support for data binding in your application by overriding the OnDataBinding method provided by
System.Web.UI.Control, the base class of your control.

You set the data source consumed by your control by assigning a data object to the DataSource property of the
control. If you're working with relational data, the data source can be a DataSet or DataReader object (introduced in
Chapter 11); but you can also bind your control to a .NET array or collection object.

Generating Postback in Server Controls

As we discussed in Chapter 2, postback is the process of sending a form to the Web server for processing. When
this happens, server script can process the contents of the form and perform useful tasks with the form data; this is
the basis of Web applications.

A number of server controls provided with ASP.NET generate postback, including the Button and ImageButton
controls, the LinkButton, HtmlButton, HtmlInputButton, HtmlImageButton, and DropDownList, CheckBoxList, or
RadioButtonList (with AutoPostBack set to true). To generate a postback, your control must emit a chunk of

This document is created with the unregistered version of CHM2PDF Pilot

JavaScript code because the process of submitting a form to the server must always be initiated on the client side; a
client-side JavaScript is used to perform this in ASP.NET.

But when the control you're using is one you've created yourself, you are responsible for programmatically generating
the client-side JavaScript code that kicks off a form postback. To do this, the method that renders your control must
include a reference to the GetPostBackEventReference method of the ASP.NET Page object. This method returns
the name of a function (generated internally by ASP.NET) that is responsible for submitting the form to the page.

Listing 9.16 shows an example of a simple hyperlink server control that generates a client postback function through
a call to GetPostBackEventReference.

Listing 9.16 Hyperlink Control That Can Generate Client-Side Postback of a Form

using System.Web.UI;
using System.Collections;
using System;

namespace CustomControls
{
 public class MyLinkButton : Control, IPostBackEventHandler
 {
 // Defines the Click event.
 public event EventHandler Click;

 // Invokes delegates registered with the Click event.

 protected virtual void OnClick(EventArgs e)
 {
 if (Click != null)
 {
 Click(this, e);
 }

 }

 // Method of IPostBackEventHandler that raises change events.

 public void RaisePostBackEvent(String eventArgument)
 {
 OnClick(new EventArgs());
 }

 protected override void Render(HtmlTextWriter output)
 {
 output.Write(("<a id ='" + this.UniqueID +
 "' href=\"javascript:" +
 Page.GetPostBackEventReference(this) + "\">"));
 output.Write((" " + this.UniqueID + ""));
 }
 }
}

<%@ Register TagPrefix="Custom" Namespace="CustomControls"
Assembly = "CustomControls" %>

<script language="C#" runat="server">
 private void Button_Click(Object sender, EventArgs e)
 {

This document is created with the unregistered version of CHM2PDF Pilot

 TextBox.BackColor = System.Drawing.Color.LightGreen;
 TextBox.Text = "The link button caused postback.";
 }
</script>

<html>
<body>
 <form runat=server>
 Here is the custom link button.

 <Custom:MyLinkButton Id = "Link" OnClick = "Button_Click"
 runat=server/>

 <asp:TextBox id = "TextBox" Text = "Click the link" Width = "200"
 BackColor = "Cyan" runat=server/>

 </form>
</body>
</html>

Persistence Support

Your control has the capability to store state information that is posted back across round trips to the server. In
English, this means that even though the page is destroyed and re-created each time the user submits a form to the
server, your controls can maintain the values that users enter into them.

This is accomplished through the encoded postback data. You see this in ASP.NET Web forms programming all the
time; if you set up a Web form with a bunch of text boxes and a button, and then fill in the text boxes and click the
button to submit the form to the server, you should see that the contents of the text box remain the same, even though
the page has been completely torn down and re-created as a result of its round trip to the server.

If the value of one or more of the properties of your control needs to stay the same, you can store the value of that
property in the ViewState property of the control. Having a generic way to store state is useful because Web forms
controls are created and destroyed each time a page is accessed.

The ViewState property is an object of type StateBag, found in the namespace System.Web.UI. It is a typical
collection type, although it doesn't derive from any of the .NET framework collection types. It does, however,
implement the interfaces IDictionary, ICollection, and IEnumerable, so you can use it as you would many other types
of .NET collection objects.

To demonstrate this property, we'll create a simple counter control that has the capability to store, retrieve, and
display a single numeric value. To provide the capability to store and retrieve the value consistently across page
reloads, the control will store its property in the state bag collection provided by the Control base class.

Listing 9.17 provides the code for this server control.

Listing 9.17 Example of a Basic Server Control That Stores Property State

using System;
using System.Web;
using System.Web.UI;

This document is created with the unregistered version of CHM2PDF Pilot

namespace MyExamples
{
 public class Counter : Control
 {
 public Int32 CurrentValue
 {
 get
 {
 return (Int32)ViewState["CurrentValue"];
 }
 set
 {
 ViewState["CurrentValue"] = value;
 }
 }

 protected override void Render(HtmlTextWriter Output)
 {
 Output.Write("<table border='1' width='200'><tr>" +
 "<td align='center' bgcolor='#FFFF99'>" +
 this.CurrentValue + "</td></tr></table>");
 }

 }

}

Simple, simple, simple. You can see from the code example that the ViewState object is a simple key/value pair; the
key can be whatever you want, although you'll probably want to give it the same name as the property it stores for
simplicity's sake.

To test this control, compile it using the command line:

csc /t:library /out:counter.dll /r:System.dll /r:System.Web.dll counter.cs

After it's compiled and copied to the \bin directory, you can test it in a page similar to that shown in Listing 9.18. This
page adds two ASP.NET Button controls to increment and decrement the value of your counter control.

Listing 9.18 Page to Contain the Counter Control

<%@ REGISTER TagPrefix="demo" Namespace="MyExamples" Assembly="counter" %>
<SCRIPT runat='server'>

 void UpButton_Click(Object Sender, EventArgs e)
 {
 Counter1.CurrentValue++;
 }

 void DownButton_Click(Object Sender, EventArgs e)
 {
 Counter1.CurrentValue--;
 }

</SCRIPT>
<HTML>
 <HEAD>
 <TITLE>ASP.NET Page</TITLE>

This document is created with the unregistered version of CHM2PDF Pilot

 </HEAD>
 <BODY>
 <FORM runat='server'>
 <demo:counter id='Counter1' runat='server' />
 <asp:button id='DownButton' OnClick='DownButton_Click'
 text='Down' runat='server' />
 <asp:button id='UpButton' OnClick='UpButton_Click'
 text='Up' runat='server' />
 </FORM>
 </BODY>
</HTML>

When you load this page, you should be able to see that the Counter control's value is stored each time it's
incremented. More importantly, it's displayed properly even if you hit the Refresh button on the browser—and the
page designer didn't have to write any code to make that state retrieval happen.

You can see that this is the case if you rewrite the CurrentValue property, commenting out the lines of code that
persist data to the state bag and instead storing the data in a private variable, as classes normally would be stored.
Listing 9.19 shows an example of this.

Listing 9.19 Rewritten CurrentValue Property, Demonstrating Lack of State Persistence

private Int32 _CurrentValue;
public Int32 CurrentValue
{
 get
 {
 return _CurrentValue;
 }
 set
 {
 _CurrentValue = value;
 }
}

If you try this, don't forget to recompile counter.dll using the command line shown in the previous example. You
should not have to make any changes to your page to use the new version of this control.

When your page uses this version of the control, the control does not have the capability to increment and decrement
as it did previously. It can increment or decrement only once. This means the control can display only the values of 0
(the first time the page is loaded), 1 (when the Increment button is clicked), or -1 (when the Decrement button is
clicked). This problem occurs because, in the absence of state persistence, the control's CurrentValue property is
reinitialized to 0 every time the page is loaded. So, for example, when you click the Increment button, the form is first
submitted to the server, destroying the page and the control along with it. The side effect is that the control's
CurrentValue property is set to 0. Then the event procedure for the Increment button is run, setting the property to 1.
But in the absence of persistent state, the control's property can never be incremented to 2 again, because when the
page reloads, the control will be destroyed and reinitialized to 0 before the incrementing code has a chance to run.

As you take advantage of persistent property state, remember that a cost is associated with storing and retrieving
state. Every time your control stores state information, that information is encoded and sent over the Internet from the
client to the server and back again. The encoding process makes it easier for ASP.NET to handle your data, but it
also has the side effect of making the postback data itself larger. Hence, postback will slow down your application

This document is created with the unregistered version of CHM2PDF Pilot

significantly if you overuse it.

Also remember that state information that is passed back and forth between client and server isn't encrypted, so it
isn't secure. The information is encoded, but that isn't the same as encryption; it won't keep hackers' grimy mitts off
your data.

NOTE

Ultimately, if your Web application passes sensitive information from client to server in any form, you should consider
transferring the information using a Secure Socket Layer (SSL) connection. This way, it doesn't matter whether the
postback information is encrypted, because under SSL, all the information that passes between client and server is
encrypted. (There is a cost in terms of performance and configuration hassle associated with this, however, so plan
carefully when you want to secure specific forms or pages.)

Building Validation Controls

You can build controls that have the capability to validate user input in Web forms. Such controls, called validators,
are simply a type of ASP.NET server control.

NOTE

ASP.NET comes with a set of validation controls you can use to ensure that user input in Web forms controls is
valid. Among these is a CustomValidator control that enables you to use any validation function you want. Before
embarking on creating a new validation control from scratch, you may want to first determine whether the
CustomValidator control will suit your needs.

Validation controls are discussed in Chapter 11.

Taking Advantage of Rich Clients

ASP.NET server controls have the capability to tailor their output to the capabilities of the client. In the case of
present-day Web applications, this capability enables you to write applications that take advantage of features, such
as Dynamic HTML, that are supported by only the most advanced browsers, without your having to either write your
pages twice or restrict your user base to a particular browser (usually Internet Explorer). This is called
uplevel/downlevel rendering.

Uplevel/downlevel rendering is a nice feature that can result in performance increases in situations such as client-side
data validation (discussed in Chapter 11), and the server controls you design yourself can also take advantage of

This document is created with the unregistered version of CHM2PDF Pilot

uplevel/downlevel rendering functionality in ASP.NET the same way that ASP.NET's own server controls do.

NOTE

When Microsoft documentation refers to a "rich client," it's really talking about Internet Explorer 5.0 running on
Windows. When it talks about an "uplevel browser," it's talking about the same thing. Conversely, when it's talking
about a "downlevel browser," it's talking about every browser except Internet Explorer (including, but not limited to,
Netscape Navigator).

I don't like using Netscape if I don't have to, particularly to test Web sites I'm developing, because it doesn't seem to
run as fast as Internet Explorer. If you want to test uplevel/downlevel functionality but don't want to use Netscape,
you have an alternative. The Opera browser is fast, lightweight, aggressively W3C standards–compliant, and free, if
you don't mind looking at a few advertisements while you browse (you can get an ad-free version of Opera by
paying a registration fee). It's great for testing Web applications when you need an alternative to Internet Explorer.
Download Opera from http://www.opera.com.

One way ASP.NET provides uplevel/downlevel rendering is through HtmlTextWriter object, which is passed as an
argument to the Render method of the Control class. This object normally renders HTML 4.0, but is swapped out by
the Page object in favor of the System.Web.UI.Html32TextWriter class, which automatically renders HTML 3.2
where appropriate.

Supporting Designers in Custom Server Controls

If you want developers to be able to work with your server controls in visual development environments such as
Visual Studio .NET, you should add support for visual designers to your control. A designer is a package of
information that determines how your control interacts with the development environment when a developer is
working with it.

An important distinction exists between the way a control behaves when it's being used by a developer in a tool such
as Visual Studio .NET—known as design time—and the way a control executes in a running application, known as
runtime. This distinction will be familiar to you if you've created ActiveX controls in previous versions of Visual Basic
or Visual C++.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

http://www.opera.com

for RuBoard

Chapter 10. Using XML

IN THIS CHAPTER

•

• What Is XML?
•
•

• Accessing XML Data Using .NET Framework Classes
•
•

• Defining and Validating XML with Schemas
•
•

• Processing XML Documents Using Style Sheets
•
•

• Class Reference
•

In the .NET framework, XML is very important. It serves as the foundation for many of the .NET technologies.
Database access is XML based in ADO.NET. Remote interoperability, known as XML Web services or SOAP, is
also XML based. It is true that many of the implementation details of XML are hidden inside objects or inside the
Visual Studio .NET development environment. But for tasks such as debugging, interoperability with other platforms,
performance analysis, and your own peace of mind, it still makes sense for you as a .NET developer to have a handle
on what XML is, how it works, and how it is implemented in the .NET framework. This chapter will help with that
objective.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

What Is XML?

Here's a problem you've probably faced before. A customer or colleague comes to you asking for help working with
an application that was written five years ago. Nobody who originally worked on the application still works for the
company; the original developer died in a bizarre gardening accident some years back. The customer wants you to
write a Web-based reporting system to handle the data emitted by this dinosaur application.

You now have the unenviable task of figuring out how this thing works, parsing the data it emits, and arranging that
data in some recognizable format—a report.

Let's assume that the developer of the original application attempted to make it easy on you by expressing the data in
some standardized format—maybe one in which elements within rows of data are separated from each other by a
designated character, such as a comma or a tab. This is known as a delimited format. Listing 10.1 demonstrates a
comma-delimited document.

Listing 10.1 A Comma-Delimited Document

Jones,Machine Gun,401.32,New York
Janson,Hand Grenade,79.95,Tuscaloosa
Newton,Artillery Cannon,72.43,Paducah

However, a few problems occur with the delimited format. First, what happens if the data itself contains a comma or
a tab? In this case, you're forced to use a more complicated delimiter—typically a comma with data enclosed in
quotation marks. That different documents can use different delimiters is a problem in itself, though. There's no such
thing as a single universal parse algorithm for delimited documents.

To make it even more difficult, different operating systems have different ideas about what constitutes the end of a
line. Some systems (such as Windows) terminate a line with a carriage return and a line feed (ASCII 13 and 10,
respectively), whereas others (such as Unix) just use a line feed.

Another problem: What is this data? Some of it, such as the customer's name and the item, is obvious. But what does
the number 401.32 represent? Ideally, we want a document that is self-describing—one that tells us at a glance what
all the data represents (or at least gives us a hint).

Another big problem with delimited documents: How can you represent related data? For example, it might be nice
to view all the information about customers and orders in the same document. You can do this with a delimited
document, but it can be awkward. And if you've written a parser that expects the first field to be the customer name
and the fourth field to be the product name, adding any new fields between them breaks the parser.

Internet technology mavens realized that this scenario is frighteningly common in the world of software
development—particularly in Internet development. XML was designed to replace delimited data, as well as other
data formats, with something standard, easy to use and to understand, and powerful.

This document is created with the unregistered version of CHM2PDF Pilot

Advantages of XML

In a networked application, interoperability between various operating systems is crucial; the transfer of data from
point A to point B in a standard, understandable way is what it's all about. For tasks that involve parsing data, then,
using XML means spending less time worrying about the details of the parser itself and more time working on the
application.

Here are some specific advantages of XML over other data formats:

•

• XML documents are easily readable and self-describing—Like HTML, an XML document contains tags
that indicate what each type of data is. With good document design, it should be reasonably simple for a
person to look at an XML document and say, "This contains customers, orders, and prices."

•
•

• XML is interoperable—Nothing about XML ties it to any particular operating system or underlying
technology. You don't have to ask anyone's permission or pay anyone money to use XML. If the computer
you're working on has a text editor, you can use it to create an XML document. Several types of XML
parsers exist for virtually every operating system in use today (even really weird ones).

•
•

• XML documents are hierarchical—It's easy to add related data to a node in an XML document without
making the document unwieldy.

•
•

• You don't have to write the parser—Several types of object-based parser components are available for
XML. XML parsers work the same way on virtually every platform. The .NET platform contains support for
the Internet-standard XML Document Object Model, but Microsoft has also thrown in a few XML parsing
widgets that are easier to use and that perform better than the XML DOM; we'll cover these later in this
chapter.

•
•

• Changes to your document won't break the parser—Assuming that the XML you write is syntactically
correct, you can add elements to your data structures without breaking backward compatibility with earlier
versions of your application.

•

Is XML the panacea to every problem faced by software developers? XML won't wash your car or take out the
garbage for you, but for many tasks that involve data, it's a good choice.

At the same time, Visual Studio .NET hides much of the implementation details from you. Relational data expressed
in XML is abstracted in the form of a DataSet object. XML schemas (a document that defines data types and
relationships in XML) can be created visually, without writing code. In fact, Visual Studio .NET can generate XML

This document is created with the unregistered version of CHM2PDF Pilot

schemas for you automatically by inspecting an existing database structure.

XML Document Structure and Syntax

XML documents must adhere to a standard syntax so that automated parsers can read them. Fortunately, the syntax
is pretty simple to understand, especially if you've developed Web pages in HTML. The XML syntax is a bit more
rigorous than that of HTML, but as you'll see, that's a good thing. There are a million ways to put together a bogus,
sloppy HTML document, but the structure required by XML means that you get a higher level of consistency; no
matter what your document contains, the rules that govern how an XML document can be parsed are the same.

Declaration

The XML declaration is the same for all XML documents. An XML declaration is shown in Listing 10.2.

Listing 10.2 XML 1.0 Declaration

<?xml version="1.0"?>

The declaration says two things: This is an XML document (duh), and this document conforms to the XML 1.0 W3C
recommendation (which you can get straight from the horse's mouth at http://www.w3.org/TR/REC-xml). The
current and only W3C recommendation for XML is version 1.0, so you shouldn't see an XML declaration that's
different from what's in Listing 10.2. But you might in the future, when the specification is revised into new versions.

NOTE

A W3C recommendation isn't quite the same as a bona fide Internet standard, but it's close enough for our purposes.

The XML declaration, when it exists, must exist on the first line of the document. The declaration does not have to
exist, however; it is an optional part of an XML document. The idea behind a declaration is that you may have some
automated tool that trawls document folders looking for XML. If your XML files contain declarations, it'll be much
easier for such an automated process to locate XML documents (as well as to differentiate them from other
marked-up documents, such as HTML Web pages).

Don't sweat it too much if you don't include a declaration line in the XML documents you create. Leaving it out
doesn't affect how data in the document is parsed.

Elements

An element is a part of an XML document that contains data. If you're accustomed to database programming or
working with delimited documents, you can think of an element as a column or a field. XML elements are sometimes
also called nodes.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/TR/REC-xml

XML documents must have at least one top-level element to be parsable. Listing 10.3 shows an XML document
with a declaration and a single top-level element (but no actual data).

Listing 10.3 A Simple XML Document with a Declaration and a Top-Level Element

<?xml version="1.0"?>
<ORDERS>
</ORDERS>

This document can be parsed, even though it contains no data. Note one important thing about the markup of this
document: It contains both an open tag and a close tag for the <ORDERS> element. The closing tag is differentiated
by the slash (/) character in front of the element name. Every XML element must have a closing tag—lack of a
closing tag will cause the document to be unparsable. The XML declaration is the only part of an XML document
that does not require a closing tag.

This is an important difference between XML and HTML. In HTML, some elements require close tags, but many
don't. Even for those elements that don't contain proper closing tags, the browser often attempts to correctly render
the page (sometimes with quirky results).

XML, on the other hand, is the shrewish librarian of the data universe. It's not nearly as forgiving as HTML and will
rap you on the knuckles if you cross it. If your XML document contains an element that's missing a close tag, the
document won't parse. This is a common source of frustration among developers who use XML. Another kicker is
that, unlike HTML, tag names in XML are case sensitive. This means that <ORDERS> and <orders> are
considered to be two different and distinct tags.

Elements That Contain Data

The whole purpose of an XML element is to contain pieces of data. In the previous example, we left out the data.
Listing 10.4 shows an evolved version of this document, this time with data in it.

Listing 10.4 An XML Document with Elements That Contain Data

<?xml version="1.0"?>
<ORDERS>
 <ORDER>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <ID>33849</ID>
 <CUSTOMER>Steve Farben</CUSTOMER>
 <TOTALAMOUNT>3456.92</TOTALAMOUNT>
 </ORDER>
</ORDERS>

If you were to describe this document in English, you'd say that it contains a top-level ORDERS element and a single
ORDER element, or node. The ORDER node is a child of the ORDERS element. The ORDER element itself
contains four child nodes of its own:

DATETIME, ID, CUSTOMER, and TOTALAMOUNT.

This document is created with the unregistered version of CHM2PDF Pilot

Adding a few additional orders to this document might give you something like Listing 10.5.

Listing 10.5 An XML Document with Multiple Child Elements Beneath the Top-Level Element

<?xml version="1.0"?>
<ORDERS>
 <ORDER>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <ID>33849</ID>
 <CUSTOMER>Steve Farben</CUSTOMER>
 <TOTALAMOUNT>3456.92</TOTALAMOUNT>
 </ORDER>
 <ORDER>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <ID>33856</ID>
 <CUSTOMER>Jane Colson</CUSTOMER>
 <TOTALAMOUNT>401.19</TOTALAMOUNT>
 </ORDER>
 <ORDER>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <ID>33872</ID>
 <CUSTOMER>United Disc, Incorporated</CUSTOMER>
 <TOTALAMOUNT>74.28</TOTALAMOUNT>
 </ORDER>
</ORDERS>

Here's where developers sometimes get nervous about XML. With a document like this, you can see that there's far
more markup than data. Does this mean that all those extra bytes will squish your application's performance?

Maybe, but not necessarily. Consider an Internet application that uses XML on the server side. When this application
needs to send data to the client, it first opens and parses the XML document (we'll discuss how XML parsing works
later in this chapter). Then some sort of result—in all likelihood, a tiny subset of the data, stripped of markup—will
be sent to the client Web browser. The fact that there's a bunch of markup there doesn't slow the data transfer down
significantly.

At the same time, there is a way to express data more succinctly in an XML document, without the need for as many
open and closing markup tags. You can do this through the use of attributes.

Attributes

An attribute is another way to enclose a piece of data in an XML document. An attribute is always part of an
element; it typically modifies or is related to the information in the node. In a relational database application that emits
XML, it's common to see foreign key data expressed in the form of attributes.

For example, a document that contains information about a sales transaction might use attributes as shown in Listing
10.6.

Listing 10.6 An XML Document with Elements and Attributes

<?xml version="1.0"?>

This document is created with the unregistered version of CHM2PDF Pilot

<ORDERS>
 <ORDER id="33849" custid="406">
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <TOTALAMOUNT>3456.92</TOTALAMOUNT>
 </ORDER>
</ORDERS>

As you can see from the example, attribute values are always enclosed in quotation marks. Using attributes tends to
reduce the total size of the document (because you don't need to store open and close tags for the element). This has
the effect of reducing the amount of markup at the expense (in some cases) of readability. Note that you are allowed
to use either single or double quotation marks anywhere XML requires quotes.

This element/attribute syntax may look familiar from HTML, which uses attributes to assign values to elements the
same way XML does. But remember that XML is a bit more rigid than HTML; a bracket out of place or a
mismatched close tag will cause the entire document to be unparsable.

Enclosing Character Data

At the beginning of this chapter, we discussed the various dilemmas involved with delimited files. One of the problems
with delimiters is that if the delimiter character exists within the data, it's difficult or impossible for a parser to know
how to parse the data.

This problem is not confined to delimited files; XML has similar problems with containing delimiter characters. The
problem arises because the de facto XML delimiter character (in actuality, the markup character) is the left angle
bracket, also known as the less-than symbol. In XML, the ampersand character (&) can also throw off the parser.

You've got two ways to deal with this problem in XML: Either replace the forbidden characters with character entities
or use a CDATA section as a way to delimit the entire data field.

Using Character Entities

You might be familiar with character entities from working with HTML. The idea is to take a character that might be
interpreted as a part of markup and replace it with an escape sequence to prevent the parser from going haywire.
Listing 10.7 provides an example of this.

Listing 10.7 An XML Document with Escape Sequences

<?xml version="1.0"?>
<ORDERS>
 <ORDER id="33849">
 <NAME>Jones & Williams Certified Public Accountants</NAME>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <TOTALAMOUNT>3456.92</TOTALAMOUNT>
 </ORDER>
</ORDERS>

Take a look at the data in the NAME element in the code example. Instead of an ampersand, the & character
entity is used. (If a data element contains a left bracket, it should be escaped with the < character entity.)

This document is created with the unregistered version of CHM2PDF Pilot

When you use an XML parser to extract data with escape characters, the parser will automatically convert the
escaped characters to their correct representation.

Using CDATA Elements

An alternative to replacing delimiter characters is to use CDATA elements. A CDATA element tells the XML parser
not to interpret or parse characters that appear in the section.

Listing 10.8 demonstrates an example of the same XML document from before, this time delimited with a CDATA
section rather than a character entity.

Listing 10.8 An XML Document with a CDATA Section

<?xml version="1.0"?>
<ORDERS>
 <ORDER id="33849">
 <NAME><![CDATA[Jones & Williams Certified Public Accountants]]></NAME>
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <TOTALAMOUNT>3456.92</TOTALAMOUNT>
 </ORDER>
</ORDERS>

In this example, the original data in the NAME element does not need to be changed, as in the previous example.
Here, the data is wrapped with a CDATA element. The document is parsable, even though it contains an unparsable
character (the ampersand).

Which technique should you use? It's really up to you. You might prefer to use the CDATA method because it
doesn't require altering the original data, but it has the disadvantage of adding a dozen or so bytes to each element.

Abbreviated Close-Tag Syntax

For elements that contain no data, you can use an abbreviated syntax for element tags to reduce the amount of
markup overhead contained in your document. Listing 10.9 demonstrates this.

Listing 10.9 An XML Document with Empty Elements

<?xml version="1.0"?>
<ORDERS>
 <ORDER id="33849" custid="406">
 <DATETIME>1/4/2000 9:32 AM</DATETIME>
 <TOTALAMOUNT />
 </ORDER>
</ORDERS>

You can see from the example that the TOTALAMOUNT element contains no data. As a result, we can express it
as <TOTALAMOUNT /> instead of <TOTALAMOUNT> </TOTALAMOUNT>. It's perfectly legal to use either
syntax in your XML documents; the abbreviated syntax is generally better, though, because it reduces the size of

This document is created with the unregistered version of CHM2PDF Pilot

your XML document.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Accessing XML Data Using .NET Framework Classes

Now that you've seen how to create an XML document, we get to the fun part: how to write code to extract and
manipulate data from an XML document using classes found in the .NET frameworks. There's no one right way to
do this; in fact, before .NET came along, two predominant ways were used to parse an XML document: the XML
Document Object Model (DOM) and Simple API for XML (SAX).

An implementation of the XML DOM exists in the .NET framework. However, in this chapter we'll primarily focus
on .NET's own XML handlers, such as the XmlNodeReader, XmlTextReader, and XmlTextWriter objects. These
objects are the standard .NET way to access XML data; they provide a good combination of high performance,
.NET integration, and ease of programming. But you should know about the other ways to deal with XML,
too—particularly because the specialized .NET reader and writer objects are designed to interact with the
Internet-standard DOM objects. So for the remainder of this chapter, we'll include brief examples of how to work
with the DOM model, as well.

About Simple API for XML (SAX)

Simple API for XML (SAX) was designed to provide a higher level of performance and a simpler programmability
model than XML DOM. It uses a fundamentally different programmability model. Instead of reading in the entire
document at once and exposing the elements of the document as nodes, SAX provides an event-driven model for
parsing XML.

SAX is not supported in .NET—yet. In fact, it's not even an official Internet standard. It's a programming interface
for XML that was created by developers who wanted an XML parser with higher performance and a smaller
memory footprint, especially when parsing very large documents.

If you are currently writing applications using SAX and want to use SAX in your .NET applications today, you can
do so by using the MSXML 3.0 COM library through the COM interoperability features in .NET.

NOTE

Although it is not yet supported in the .NET framework, SAX is supported in Microsoft's COM-based XML parser
implementation. For more information on this tool, see http://msdn.microsoft.com/xml/.

Using the XML Document Object Model

The XML Document Object Model (DOM) is a programming interface used to parse XML documents. It was the
first programming interface provided for XML by Microsoft; XML DOM implementations are available that target
other languages and other operating systems.

This document is created with the unregistered version of CHM2PDF Pilot

http://msdn.microsoft.com/xml/

The original Microsoft XML DOM implementation is COM based, so it is accessible from any COM-compliant
language. The XML parsers in .NET are, naturally, accessible from any .NET-compliant language.

The XML DOM does its magic by taking an XML document and exposing it in the form of a complex object
hierarchy. This kind of hierarchy may be familiar to you if you've done client-side HTML Document Object Model
programming in JavaScript or VBScript. The number of objects in XML DOM is fairly daunting; no fewer than 20
objects are in the base implementation, and then the Microsoft implementation adds a number of additional interfaces
and proprietary extensions.

Fortunately, the number of objects you need to work with on a regular basis in the XML DOM is minimal. In fact,
the XML DOM recommendation segregates the objects in the DOM into two groups: fundamental classes and
extended classes. Fundamental classes are the ones that application developers find most useful; the extended classes
are primarily useful to tools developers and people who like to pummel themselves with detail.

The fundamental classes of the XML DOM as implemented in the .NET framework are XmlNode, XmlNodeList,
and XmlNamedNodeMap. These classes, as well as the parent XmlDocument class, are illustrated in Figure 10.1.

Figure 10.1. Fundamental XML DOM objects.

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Defining and Validating XML with Schemas

Whenever you use or manipulate data, you need to have a way of answering certain questions about that data. Is an
Invoice ID stored as a text value or a numeric value? Is a phone number limited to 10 digits? For that matter, can a
person have more than one phone number? What happens if the person has none?

All these questions have to do with the concepts of data definition and validation. Application developers have
historically embedded validation logic in application code. Sophisticated designs can encapsulate validation logic in
various ways, but in most cases, the data definition and validation logic aren't accessible to processes outside of your
application. This defeats the purpose of XML on a number of levels. Remember that XML is designed to be
interoperable and human readable. When you commit validation logic to code, you've almost inherently made the
validation logic inaccessible to other processes that might come along later. It is, in essence, a black box. The
concept of encapsulating data validation in a class is a good and useful thing, but if other developers can't easily
access your data design from outside sources, it may not be as useful to them.

A way exists to express and validate data designs expressed in XML. This is done through a standard descriptive
format referred to as XML schemas (sometimes abbreviated XSD). Because the various .NET tools provide good
support for XML schemas, we'll devote some time to discussing how schemas work, how to build them, and what
you can do with them in your Internet applications.

About Document Type Definitions (DTDs)

The first technology used for validating XML structures was known as Document Type Definition (DTD). By linking
a DTD document to an XML file, you can ensure that the XML document contains valid data types and structure.

The problem with DTDs is that they have limitations with respect to the things they can do. One glaring limitation is
that DTDs can't define data types of elements that appear in a document.

But the most damning implication of using DTDs to validate XML is that DTDs are written using a syntax that is
completely removed from that of XML itself; if you want to validate your data using the DTD format, you must
ascend a learning curve.

A good example of a DTD is the DTD for XML itself, which resides at
http://www.w3.org/XML/1998/06/xmlspec-v21.dtd. By looking at this DTD, you can get a sense for how different
the syntax of DTD is. Indeed, the response of many developers who had to use DTDs in the early days of XML
was, "Couldn't we use XML syntax to define the structure of an XML document?"

Microsoft chose to use a more evolved document definition technology for XML in the .NET universe—the XML
schema. The most important benefit of XML schemas is that you can write an XML schema using the XML syntax
you presumably already know. For these reasons, this chapter focuses on schemas rather than DTDs.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/XML/1998/06/xmlspec-v21.dtd

NOTE

The Visual Studio .NET development environment gives developers a graphical way to build XML schemas and
contains little or no support for DTDs. You can certainly use DTDs with XML data in the .NET framework; you just
won't get much help from the tools.

Before we proceed, it's worth noting that you're never required to validate the XML documents that you use in your
application development; XML documents can live out their whole lives without ever knowing or using an XML
schema. However, it's a good idea to validate them for the sake of consistency. In addition, certain tools (including
Visual Studio .NET) use XML schemas in various interesting and useful ways. Having a handle on what an XML
schema is and how it works will give you a leg up on using these tools.

NOTE

The official W3C documentation on XML schemas comes in three parts: a primer, which as of this writing runs 73
printed pages, and two sections that document the schema specification in detail. The whole thing starts at
http://www.w3.org/XML/Schema.

About XML Data-Reduced Schemas

The COM-based Microsoft XML implementation that existed before the arrival of the .NET framework used a
syntax known as XML Data-Reduced (XDR) schemas. Confusingly, the Microsoft documentation refers to XDR as
"XML Schemas," even though that's really a different, albeit related, syntax from that provided by the W3C. The
.NET tools support both the XDR and W3C way of expressing schemas, but Visual Studio .NET follows the W3C
schema syntax, so you'll likely see the W3C syntax used in .NET applications more often.

We are including this section on XDR schemas so that you can identify and understand the difference between XDR
and W3C XML schemas, and as a way to make it easier for users of the MSXML library who are moving to the
.NET framework to migrate their applications. Also, because the XML-handling objects in the .NET framework can
process XDR-validated documents, it's possible that you will need to use XDR at some point, even though it's being
superseded by the W3C schema format.

Listing 10.32 shows an example of a complete XDR schema definition.

Listing 10.32 Example of an XDR Schema

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">

 <ElementType name='TITLE' content='textOnly' />

 <AttributeType name='IDType' dt:type='integer' />

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/XML/Schema

 <ElementType name='AUTHOR' content='textOnly'>
 <attribute type='IDType' />
 </ElementType>

 <ElementType name='BOOK' content='mixed'>
 <element type = 'TITLE' />
 <element type = 'AUTHOR' />
 </ElementType>

</Schema>

The example begins with a Schema node, to indicate that this is the start of a schema. The two xmlns attributes refer
to external schema documents; the first one is for XML itself, the second one is for the data types defined by the
Microsoft data types defined for use in XDR schemas.

The ElementType nodes in the schema document form the definition of the nodes that compose the document. In this
example, you can see two types of ElementTypes defined; a simple type (containing no child nodes, such as TITLE)
and a complex type (containing child nodes and/or attributes, such as BOOK). We'll discuss simple and complex
types in more detail in the section "Understanding Simple and Complex Types" later in this chapter.

NOTE

The Microsoft reference on XDR schemas is at http://msdn.microsoft.com/xml/reference/schema/start.asp. Another
useful Microsoft link is the XML Schema Developer's Guide, located at
http://msdn.microsoft.com/xml/xmlguide/schema-overview.asp.

This reference material was created to document the behavior of the MSXML parser found in Internet Explorer 5.0.
It may not have direct applicability to XML applications that you build using the .NET tools (use the W3C
specification for XML schemas you build in .NET). Note, again, that when Microsoft refers to "XML Schema," it
may be referring to either XDR schemas or W3C-style XML schemas. In general, what you get in the .NET tools
are true W3C XML schemas.

This section is intended to give you the briefest example of an XDR schema so you can understand what an XDR
schema looks like. Because the Visual Studio .NET uses the more recent W3C recommendation for XML schemas,
however, we'll spend the rest of this section discussing the W3C syntax for XML document definition and validation.

NOTE

Using a tool that comes with the .NET framework SDK, you can convert existing XDR schemas to the W3C format
described in the next section. Known as the XML Schema Definition Tool (xsd.exe), this command-line tool can also
create basic schemas from existing XML files and build ADO.NET classes in Visual Basic.NET or C# from existing
schemas.

This document is created with the unregistered version of CHM2PDF Pilot

http://msdn.microsoft.com/xml/reference/schema/start.asp
http://msdn.microsoft.com/xml/xmlguide/schema-overview.asp

Creating W3C XML Schemas

A W3C XML schema is conceptually similar to an XDR schema, but has a number of implementation differences.
Because XML schema is on its way to becoming an Internet standard, it's better to use the W3C standard format
because you can expect a better level of interoperability as the standard propagates. Fortunately, the new
XML-handling tools included in the .NET framework and Visual Studio .NET tend to use the newer W3C versions
of technologies such as schemas, so you'll have lots of help when building applications that are designed to be
Internet standard and interoperable.

Our objective in this section is to perform a very simple validation on a simple XML document. Because the W3C
XML schema language is a very complex syntax that could warrant a short book of its own, in this section we'll
cover only the basics of XML schema—particularly, how to create a schema that validates an XML document using
the XML-handling objects in the .NET framework classes.

Listing 10.33 shows the document we'll be validating in this section.

Listing 10.33 Simplified book.xml Document

<BOOK isbn="1234567890">
 <TITLE>Little Red Riding Hood</TITLE>
 <AUTHOR>Dave-Bob Grimm</AUTHOR>
</BOOK>

As you can see, this is a greatly simplified version of the books.xml document we've used in examples throughout this
chapter. Rather than containing an unlimited number of books, this document contains only a single book, so it might
be used in situations where one software process hands off book information to another.

Like XDR schemas, W3C schemas are generally linked to external files that provide the basic definition of what a
schema is. As a result, the W3C-compliant schemas you create will typically begin with a reference to the standard
W3C schema definition (known as the schema of schemas). The W3C schema definition gives your schema access
to basic data types and structures you'll need to construct schemas to define and validate your XML documents. This
basic definition is shown in Listing 10.34.

Listing 10.34 W3C Schema Definition Boilerplate

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Your schema definition goes here -->

</xsd:schema>

This is a boilerplate definition that you'll probably include in most, if not all, of your XML schema documents. (Note
that the XML schema-editing function provided by Visual Studio .NET generates a slightly different boilerplate
schema definition; what you see here is more streamlined.)

This document is created with the unregistered version of CHM2PDF Pilot

This boilerplate provides the same basic function as the initial definition of the XDR schema shown in a previous
example, but it provides a different basic schema type and associates it with the xsd namespace. This means that
you'll often see elements of a W3C schema prefixed with the xsd namespace; this is done to prevent namespace
collisions between elements defined by the xsd schema definition and elements in your documents with the same
name.

The next step to defining your own W3C schema is to define the data types that can appear in your document. To do
this, you must have a handle on simple and complex data types in XML and how the W3C XML schema defines
them.

Understanding Simple and Complex Types

As you know, an XML document is inherently hierarchical. Every XML document is composed of nodes that can
contain child nodes, nested as deeply as necessary to represent a given data structure. When you're authoring an
XML schema, you need to be able to make a distinction between simple and complex types. A complex type is
defined as any node that has children or attributes; a simple type has no children or attributes. For example, in the
book.xml document used as an example in Listing 10.33, BOOK is a complex type because it contains two child
elements, AUTHOR and TITLE, as well as an attribute, isbn. AUTHOR, on the other hand, is a simple type,
because it contains nothing but a text string (the name of the book's author).

The distinction between simple and complex types becomes important when building XML schemas because the two
types are described in different ways in the schema format. In XML schema authoring, it's common to define the
simple types first and the complex types later because the complex types are almost invariably built on the simple
type definitions.

Listing 10.35 shows an example of a schema with a simple type definition.

Listing 10.35 W3C Schema Containing a Definition for a Simple Type

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="ISBNType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpletype>

</xsd:schema>

The first few lines of this schema definition are the same as the previous example; they refer to the external master
schema maintained by the W3C that defines basic data types and so forth.

The xsd:simpleType node contains the definition for a simple type called ISBNType. You can see from the definition
that this type contains a restriction, which provides additional information about the data type and (optionally) the
nature of the data that this data type supports. In this case, ISBNType is declared to be a string that can have a
maximum length of 10 characters. (Note that although ISBN stands for International Standard Book Number, an
ISBN can contain alphabetic characters in addition to numbers, so we declare it to be a string type.)

This document is created with the unregistered version of CHM2PDF Pilot

Be careful typing the names of attributes such as maxLength in your XML schema definitions. As with all XML
elements, the elements of an XML schema are case sensitive.

You don't have to define named types in your XML schemas. The advantage is reusability—after you've defined a
named type, you can reuse it anywhere you like in the schema definition (or refer to the schema from another schema
and reuse it that way). When used in this way, XML schemas behave a bit like class definitions.

After you've created a type definition, you can declare that your document will contain elements of this type. Listing
10.36 shows an example of a schema containing a reference to the ISBNType simple type.

Listing 10.36 W3C Schema Containing an Element Definition That Refers to a Type Definition

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="ISBN" type="ISBNType"></xsd:element>
 <xsd:simpleType name="ISBNType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

The element definition indicates that XML documents based on this schema will contain an element named ISBN.
The type definition for this element is the ISBNType type created in the previous section.

This schema would be sufficient if we were interested only in creating XML documents containing lists of ISBN
numbers. But the book information we're working with contains much more than that—we need to transmit the title
and author of the book as well. To do this, we'll need to modify our schema to include a new complex type, called
BookType, that defines TITLE and AUTHOR elements, as well as an isbn attribute. The isbn attribute is defined as
an ISBNType, which means it takes on the properties of that type definition; it's a string data type with a maximum
length of 10 characters.

Listing 10.37 shows another version of the schema, this time with a more complete definition of the BookType type.
This time, we've added TITLE and AUTHOR types to the BookType.

Listing 10.37 W3C Schema Containing a Complex Type That Refers to a Simple Type

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- Element definition -->
 <xsd:element name="BOOK" type="BookType"></xsd:element>

 <!-- Complex type definition -->
 <xsd:complexType name="BookType">
 <xsd:all>
 <xsd:element name="TITLE" type="xsd:string" />
 <xsd:element name="AUTHOR" type="xsd:string" />
 </xsd:all>
 <xsd:attribute name="isbn" type="ISBNType" />

This document is created with the unregistered version of CHM2PDF Pilot

 </xsd:complexType>

 <!-- Simple type definition with restriction-->
 <xsd:simpleType name="ISBNType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

This version of the schema completes the complex type definition BookType by adding two elements: TITLE and
AUTHOR. Both elements are defined as conventional strings with no special validation logic attached. The <xsd:all>
element indicates that two or more child elements can appear in any order beneath the parent element. If you need to
specify that the child elements should appear in a particular order, use <xsd:sequence> instead of <xsd:all>.

The big change in this final version of the schema is the addition of the BOOK element definition. Because the type of
book was defined previously as a complex type, this section is very straightforward; all we need to do is reference
the BookType complex type.

You'll notice, too, that this version of the schema contains comments; comments in XML are syntactically identical to
comments in HTML. You should include comments in any XML file you create wherever there's a chance that
somebody who comes along later might misunderstand what's going on in your document.

Validating Documents Using W3C Schemas

To validate an XML document using a schema, you first create the schema and then link the schema to an XML
document defined by the schema. When an XML parser processes a document that is linked to a schema, the parser
will first download the schema document(s) associated with that file. If the file fails to conform with any of the rules
specified in the schema, the parser will complain (and in most cases refuse to proceed).

Schemas are often contained in a file separate from the XML data file. This enables you to change the schema
definition without having to slog through the data itself. By placing a schema file in a location accessible through the
Internet, any file anywhere can access and utilize the data structure and validation rules found in the schema.

In addition to linking XML documents to schemas, schemas themselves can be linked to other schemas. This gives
you the capability to build progressively more sophisticated schemas based on more basic schema definitions created
in the past.

After you've created an XML schema and linked it to an associated XML data document that implements the
schema, you should test it to ensure that it does what you want. Because Internet Explorer understands XML and
can render XML in the browser, you can use Internet Explorer 5.0 or later to determine whether your XML
document parses. To do this, simply load the file into Internet Explorer using the URL text box or by using the File,
Open menu command.

As with any XML parser, Internet Explorer automatically downloads the schema definition when it encounters an

This document is created with the unregistered version of CHM2PDF Pilot

XML document that is linked to a schema. After the file and the external schemas are downloaded, the browser then
attempts to parse the document. If parsing is successful, Internet Explorer displays the document. If it's unsuccessful,
it usually gives you an error message in the browser.

Problems with XML rendering and parsing in a validated context usually stem from one of two problems: The
document is not well formed (meaning the document is lacking an end tag for a node, for example), or the document
is invalid (according to the validation rules defined in the schema file).

XML parsers almost invariably reject documents that are not well formed; whether they reject invalid documents
depends on the tool you use to handle the document. For example, an XmlTextReader object will not throw an error
when it reads an invalid XML document, but the XmlValidatingReader object will. The XmlValidatingReader object
is introduced in the next section, "Using .NET Framework Objects to Validate XML Schemas."

NOTE

You should watch out for a couple of things when working with XML document validation with schemas. First, make
sure your computer has a connection to the Internet when you load a validated document, because schemas must
typically access other dependent schemas, and the way that's most commonly done is by downloading them over the
Net.

Next, remember that XML is case sensitive—uppercase and lowercase matter. Spelling an element name BOOK in
one place in the document and then attempting to refer to something called Book or book later on will cause
problems.

Using .NET Framework Objects to Validate XML Schemas

Earlier in this chapter, we discussed how to read a document using the XmlTextReader object provided by the .NET
framework. You can use an XML schema to validate a document when reading a document using the .NET
framework. To do this, you use the XmlValidatingReader object.

NOTE

The XmlValidatingReader class is found in the System.Xml namespace. Like the XmlTextReader object described
earlier in this chapter, XmlValidatingReader inherits from System.Xml.XmlReader. A reference to the classes,
properties, and methods introduced in this chapter is included at the end of this chapter.

Because they both inherit from the same base class, the XmlValidatingReader object works similar to the
XmlTextReader object. To validate a document using the XmlValidatingReader object, set the object's Validation
property to one of the values enumerated in System.Xml.ValidationType. The Validation property can be set to one
of these values:

This document is created with the unregistered version of CHM2PDF Pilot

•

• ValidationType.None (no validation)
•
•

• ValidationType.DTD (use a document type definition for validation)
•
•

• ValidationType.Schema (use an XSD schema)
•
•

• ValidationType.XDR (use an XDR schema)
•
•

• ValidationType.Auto (infer one of the preceding values)
•

The value ValidationType.Auto tells the XmlValidatingReader object to infer which type of schema to use based on
what the document contains. This means that it's possible for no validation to occur when using the Auto type—if the
XML document does not actually contain a link to a schema or DTD and the validation type is set to Auto, no
validation will occur. For this reason, it's a good idea to explicitly set the validation type (if you know what it's going
to be).

If the XML document does not contain a link to a schema, you can add a link to a schema programmatically. Do this
by using the Add method of the Schemas collection contained by the XmlValidatingTextReader object.

After you set the validation type, assign a schema, you must then write code to actually perform the validation. This is
similar to the code you write. Listing 10.38 shows an example of this.

Listing 10.38 XML Validation Subroutine Using the XmlValidatingReader Object

<%@ Import Namespace="System.Xml" %>
<%@ Import Namespace="System.Xml.Schema" %>
<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 XmlTextReader tr = new XmlTextReader(Server.MapPath("book-invalid.xml"));
 XmlValidatingReader vr = new XmlValidatingReader(tr);

 vr.ValidationType = ValidationType.Schema;
 vr.Schemas.Add(null, Server.MapPath("book.xsd"));

 while(vr.Read())
 {
 Response.Write("[" + vr.Name + "]" + vr.Value + "
");
 if(vr.NodeType == XmlNodeType.Element)
 {

This document is created with the unregistered version of CHM2PDF Pilot

 while(vr.MoveToNextAttribute())
 {
 Response.Write("[" + vr.Name + "]" + vr.Value + "
");
 }
 }
 }
 }

</SCRIPT>

This code throws an error when it encounters an element of the document that violates the schema. The code will fail
because it parses a version of book.xml that contains a validation error (an ISBN that is too long).

Raising errors when XML schema validation rules are broken is fine, but you may want a more granular level of
control over how the document is validated, in addition to richer information on where validation errors were
encountered. To do this, you can cause the XmlValidatingReader object to raise events when it encounters validation
problems in the documents it parses.

To handle the events raised by an XmlValidatingReader object, you must create an event-handling procedure in your
code and associate the events raised by the XmlValidatingReader object with your event-handling procedure. Listing
10.39 shows an example of this.

Listing 10.39 Responding to Validation Events Raised by the Validate Subroutine

<%@ Import Namespace="System.Xml" %>
<%@ Import Namespace="System.Xml.Schema" %>
<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 XmlTextReader tr = new XmlTextReader(Server.MapPath("book-invalid.xml"));
 XmlValidatingReader vr = new XmlValidatingReader(tr);

 vr.ValidationType = ValidationType.Schema;
 vr.ValidationEventHandler += new ValidationEventHandler(ValidationHandler);
 vr.Schemas.Add(null, Server.MapPath("book.xsd"));

 while(vr.Read())
 {
 Response.Write("[" + vr.Name + "]" + vr.Value + "
");
 if(vr.NodeType == XmlNodeType.Element)
 {
 while(vr.MoveToNextAttribute())
 Response.Write("[" + vr.Name + "]" + vr.Value + "
");
 }
 }
 }

 public void ValidationHandler(Object sender, ValidationEventArgs args)
 {
 Response.Write("<P>Validation error
");
 Response.Write("Severity: " + args.Severity + "
");
 Response.Write("Message: " + args.Message + "
");
 }

</SCRIPT>

This document is created with the unregistered version of CHM2PDF Pilot

You can see that the validation-handling procedure is a standard event handler assigned to the XmlValidatingReader
with a call to the AddHandler statement. When a validation-handling procedure is assigned to the
XmlValidatingReader in this way, the reader will issue calls to the validation-handling procedure whenever it
encounters a validation error in the document.

NOTE

Because the ValidationEventHandler object is a member of the System.Xml.Schema object, you should import this
namespace at the beginning of any code that uses the XmlValidatingReader object. To do this, use this page directive:

<%@ Import Namespace="System.Xml.Schema" %>

You can test your validation code by changing the XML document that the page parses. Do this by altering the
constructor of the XmlTextReader object in the code: book.xml should be valid, whereas book-invalid.xml will cause
the validation event handler to be triggered. (Remember in our schema definition earlier in this chapter, we defined an
ISBN data type to be an alphanumeric string of no more than 10 characters.)

Creating XSD Schemas in Visual Studio .NET

You can use Visual Studio .NET to create XSD schemas, often without writing code. Visual Studio .NET provides a
visual drag-and-drop interface for creating schemas; it supports IntelliSense and instant syntax checking, as you'd
expect with any other kind of code you would write in Visual Studio.

To create an XSD schema in Visual Studio .NET, begin by creating a Web application project. Next, add an XSD
file to the project by right-clicking the project in the Solution Explorer, and then selecting Add, Add New Item from
the pop-up menu. Finally, from the Add New Item dialog box, choose XSD Schema.

The XSD schema designer looks similar to the other server-side designers in Visual Studio .NET—it's a blank page.
At the bottom of the page are two tabs, labeled Schema and XML. These tabs enable you to easily switch back and
forth between visual and code views of the schema; you can create the schema either by dragging and dropping
schema definition objects onto the page or by editing the code directly.

You can add a definition to the schema visually in one of two ways: by right-clicking the page, selecting Add from the
pop-up menu, and choosing a schema member, or by choosing a schema member from the toolbox. (The Visual
Studio .NET toolbox has a whole section devoted to the elements, attributes, simple and complex types, and other
members of an XML schema definition.)

Editing Schema-Validated XML Files in Visual Studio .NET

Visual Studio .NET enables you to edit XML files with the same color coding and syntax checking you'd expect from
any other kind of code you edit in Visual Studio. If you use Visual Studio .NET to edit an XML file that is defined by
an XSD schema, you gain a bonus benefit—IntelliSense support. This means that for an XML document that is

This document is created with the unregistered version of CHM2PDF Pilot

defined by an XSL schema, Visual Studio .NET will provide drop-down lists of valid elements and attributes as you
edit the XML document.

Creating Schemas from Data Sources Using Visual Studio .NET

Visual Studio .NET has the capability to create XML schemas automatically from a data source. This means that you
can set up a database and Visual Studio will reverse engineer the structure of the database into XML schemas.

Because this function is tightly coupled to VS .NET's data-access features, we'll cover it in Chapter 11, "Creating
Database Applications with ADO.NET."

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Processing XML Documents Using Style Sheets

In the previous sections, you saw how to create a schema to define and validate the structure of an XML document.
One of the reasons to use schemas is to make your applications more flexible and easier to maintain by dissociating
the definition of an XML document from the data found in that document. XML also provides a technology that
enables you to define how a given document should be displayed, in a way that is similarly dissociated from the data
document itself. This technology is known as XML style sheets, or XSL.

Like XML schemas, XSL style sheets are themselves XML documents, so you don't have to learn a whole new set
of data structures to use XSL. However, you will have to ascend a bit of a learning curve as you come to understand
the tags and attribute settings offered by XSL.

In addition to defining rules for how XML documents are displayed and formatted, style sheets also perform another
interesting and useful function. They can define rules for transforming one type of XML document into another. This
process is known as a transformation. The subset of the style sheet language that is responsible for transformations is
known as XSLT.

The capability of style sheets to define the display of an XML document and to perform transformations are
somewhat different, so we'll cover them separately in this section, starting with transformations.

NOTE

Like the other XML technologies covered in this chapter, we won't cover every aspect of XSL here, only the basics
and techniques for integrating XSL into ASP.NET applications using the XML-handling objects found in the .NET
framework. For more information on XSL, see the W3C site for XSL located at http://www.w3.org/Style/XSL/. A
link to the current (as of this writing) recommendation on XSLT is located at http://www.w3.org/TR/xslt.

Transforming XML Documents Using Style Sheets

No matter what kind of data you have, eventually it will need to be converted for use in some other context. This is
the case even with a "universal" data format such as XML. Just because the data is in XML format doesn't mean that
every XML-aware software process will be able to consume that data meaningfully. In many cases the document
you've defined will need to be changed, or transformed, so that it can be consumed by some other program. This is
where the XML Style Sheet Transformations (XSLT) come in.

XSLT is based on the idea that a set of rules (known as a style sheet) can be applied to an XML document (known
as the source tree) and produce another XML document (known as the result tree).

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt

For example, suppose you're a bookseller running a point-of-sale software application that exports information about
books in a form similar to that shown in Listing 10.40.

Listing 10.40 Bookseller's Hypothetical Output

<?xml version="1.0"?>
<STOCK>
 <BOOK isbn="0805062971" ti="Fight Club" au="Chuck Palahniuk" />
 <BOOK isbn="0751320005" ti="Eyewitness Travel Guides: London" />
</STOCK>

This system might export a list of books sold on a daily basis. This list could be sent to one or more publishers'
fulfillment systems, which would then automatically restock your shelves with fresh copies of these books to sell to
your clamoring customers.

The tricky part here lies in getting your point-of-sale system to talk to the publisher's automated order system. The
publisher might expose an XML schema that lets you know exactly what structure an inbound XML document needs
to have to be valid, but how do you get the XML emitted by your point-of-sale system to arrange itself so that it's
acceptable to the publisher's order system?

To answer this question, let's start by illustrating what a book order might look like in the publisher's hypothetical
order system. Listing 10.41 shows such a document.

Listing 10.41 Publisher's Hypothetical Input

<?xml version="1.0"?>
<ORDER custid='10459' date='2001-03-19'>
 <BOOK isbn="0805062971">
 <TITLE>Fight Club</TITLE>
 </BOOK>
 <BOOK isbn="0751320005">
 <TITLE>Eyewitness Travel Guides: London"</TITLE>
 </BOOK>
</ORDER>

As you can see, most of the information provided by the point-of-sale system is used in the publisher's ordering
system, but the structure of the document is different. First, the publisher's system requires that you add your
customer ID and order date as an attribute of the ORDER node. Next, the title of the book is expressed as a child
node of the BOOK node rather than as an attribute. Finally, the author name is discarded (because the publisher can
look up the author name, if needed, given the ISBN number that uniquely identifies all books).

It's true that you could write complicated parsing code (possibly using XML DOM objects or other XML-handling
objects found in the .NET framework) that transforms the structure of your data document to the structure required
by the publisher's system. But such code would likely be inefficient and difficult to maintain. If the publisher's
requirements changed at some point in the future, you'd have to go in and hack your export code so that your
exported data would continue to conform to their requirements. Instead, transforming the data using XSLT means
that you have a much smaller body of code to contend with.

To get you started, we'll include a few minimal examples of XSLT transformations in this chapter and give you

This document is created with the unregistered version of CHM2PDF Pilot

pointers on how to perform XSLT transformations programmatically using the XML-handling objects found in the
.NET framework classes.

First, consider a document called stock.xml that contains output from the hypothetical point-of-sale application we
mentioned earlier. To transform this document into a structure you can use, you first create an XSLT style sheet and
then associate that sheet with the document.

Creating a Style Sheet to Transform Data

You use the XslTransform class to transform an XML document from one format to another. Transformations done
using XSLT can convert XML files from one XML structure to another or convert an XML file to a different format
entirely (such as HTML).

NOTE

The XslTransform class is found in the System.Xml.Xsl namespace. A reference to the classes, properties, and
methods introduced in this chapter is included at the end of this chapter.

To transform an XML document, you first create an XSLT style sheet that determines how the input document will
be transformed. You then associate the style sheet with the input document (typically using the Load method of the
XslTransform object).

Creating an XSLT Style Sheet

An XSLT style sheet is an XML document that specifies how to convert, or transform, another XML document. As
with the other XML applications we've discussed in this chapter, such as XSD schemas and XPath queries, XSLT
has its own syntax but is ultimately built on an XML framework.

XSLT style sheets typically begin with a stylesheet declaration and a matching expression. The matching expression is
an XPath query that determines which elements of the source document you want to convert. If you want to convert
the entire source document, you use the expression match="/".

After you've determined the elements you want to convert, you then create a template to perform the transformation.
This is similar to template-based programming in ASP.NET; you hard-code the way you want your output to appear
and then include XSL expressions that control how the data is merged with the template.

Listing 10.42 shows an example of a simple style sheet that takes the books.xml data file and transforms it into an
HTML table.

Listing 10.42 An XSLT Style Sheet That Converts an XML Document into an HTML Document

<?xml version="1.0" encoding="UTF-8" ?>

This document is created with the unregistered version of CHM2PDF Pilot

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- 'match' attribute is an XPath expression -->
<xsl:template match="/">
 <HTML>
 <BODY>
 <TABLE border="1" cellspacing="0" cellpadding="3">
 <TR>
 <TD bgcolor='#CCCCCC'>Title</TD>
 <TD bgcolor='#CCCCCC'>Author</TD>
 </TR>
 <xsl:for-each select="BOOKS/BOOK">
 <TR>
 <TD>
 <xsl:value-of select="TITLE" />
 </TD>
 <TD>
 <xsl:value-of select="AUTHOR" />
 </TD>
 </TR>
 </xsl:for-each>
 </TABLE>
 </BODY>
 </HTML>
</xsl:template>
</xsl:stylesheet>

You can see the <xsl:stylesheet> heading at the beginning of the style sheet, as well as the <xsl:template> element that
marks the beginning of the template. In the body of the template are HTML markup tags, looping constructs
(for-each), and functions that extract the value from XML nodes and insert them into the output of the transformation
(value-of). There are a number of other operations similar to for-each and value-of in XSLT; however, you can
perform the vast majority of XSLT transformations with these two links.

To see the effect this style sheet has on the XML document, you can create a link from the XML file to the style
sheet (described in the next section) and then view the XML file in Internet Explorer.

Associating a Document with a Style Sheet

To link an XML style sheet to an XML document, you use a processing instruction that is similar in syntax to the
optional XML declaration. Listing 10.43 shows an example of how to link an XML file to an XSL style sheet.

Listing 10.43 Version of the books.xml File Containing a Link to the books.xsl Style Sheet

<?xml version="1.0"?>
<?xml:stylesheet type="text/xsl" href="books.xsl"?>
<BOOKS>
 <BOOK>
 <TITLE>C# Developer's Guide To ASP.NET, XML and ADO.NET</TITLE>
 <AUTHOR id="101" location="San Francisco">Jeffrey P. McManus</AUTHOR>
 <AUTHOR id="107" location="Seattle">Chris Kinsman</AUTHOR>
 </BOOK>
 <BOOK>
 <TITLE>How to Pluck a Purdue Chicken</TITLE>
 <AUTHOR id="107" location="Seattle">Chris Kinsman</AUTHOR>
 </BOOK>
 <BOOK>
 <TITLE>My Life Among the Baboons</TITLE>
 <AUTHOR id="107" location="Seattle">Chris Kinsman</AUTHOR>

This document is created with the unregistered version of CHM2PDF Pilot

 </BOOK>
</BOOKS>

When you view this file in Internet Explorer 5.0 or later, you should be able to see the data formatted as an HTML
table.

Note that if a hard-coded link to the style sheet exists in the XML document, you do not need to write ASP.NET
code to perform the transformation—as long as you're viewing the XML file in Internet Explorer and the style sheet
file is where the link element says it should be, the XML data should be transformed.

Note, too, that it is legal to include multiple xsl-style-sheet instructions in a given XML document. The XSL
specification dictates that when multiple style sheets exist, they're interpreted one at a time, one after the other.

Programmatically transforming the document on the server using .NET code requires a bit more effort, however; this
is discussed in the next section.

Performing XSL Transformations Programmatically

You may find yourself in a situation where you want to apply an XSL transformation to a given XML file, but you
can't or don't want to hard-code a link to the style sheet in the XML document. Perhaps the file is streamed to your
application via HTTP, or it resides in a file system in a read-only state. In this case, you must associate the XSL style
sheet with the XML data programmatically.

After you have the data and the XSL style sheet, programmatically transforming an XML document is quite easy. To
do this, you use the XslTransform object, first loading the XSL style sheet using the Load method and then
transforming the XML data using the Transform method. Listing 10.44 shows an example of how this works.

Listing 10.44 Programmatically Transforming an XML File Using an XSL Style Sheet and the
XslTransform Object

<%@ Page debug="true" ContentType="text/xml" %>
<%@ Import namespace="System.Xml" %>
<%@ Import namespace="System.Xml.XPath" %>
<%@ Import namespace="System.Xml.Xsl" %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 XslTransform xslt = new XslTransform();
 XPathDocument xpd = new XPathDocument(Server.MapPath("books.xml"));

 xslt.Load(Server.MapPath("books.xsl"));
 xslt.Transform(xpd, null, Response.OutputStream);

 }

</SCRIPT>

This document is created with the unregistered version of CHM2PDF Pilot

It just happens that we chose to stream the output of the transformation to the OutputStream of the Response object
(thereby sending the data immediately to the browser). If you choose, you can use one of the many overloaded
versions of the Transform method to stream the output to a file or to an XmlReader object for further processing.

Editing XSLT Files Using Visual Studio .NET

You can use Visual Studio .NET to create and edit XSLT documents. To do this, simply right-click a Web project,
select Add from the pop-up menu, and choose Add New Item from the submenu. Then, from the dialog box, select
XSLT File. Give the file a name and click the Open button, and a blank XSLT document will be created. Visual
Studio .NET will create the boilerplate definition of your XSLT document, including a link to the W3C namespace
for XSLT located at http://www.w3.org/1999/XSL/Transform.

You'll need to be careful with one thing when using Visual Studio .NET to create and edit XSLT style sheets—testing
XSL by loading the XML document into Internet Explorer (as described in the section "Validating Documents Using
W3C Schemas" earlier in this chapter) won't work with the XSLT boilerplate generated by Visual Studio .NET. This
is because Internet Explorer versions 5.0 and 5.5 (the current version as of this writing) support an earlier revision of
the XSL recommendation.

Specifically, Internet Explorer 5.x requires a link to the older version of the W3C namespace for XSL located at
http://www.w3.org/TR/WD-xsl. Internet Explorer 6.0 works fine with the default XSLT schema supplied by Visual
Studio .NET.

Fortunately, however, the XML-handling objects in the .NET framework support the current revision of XSLT, so
you can use the XSLT editor in Visual Studio .NET to perform server-side transformations.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/WD-xsl

for RuBoard

Class Reference

This section provides a quick interface reference to the key objects described in this chapter. Space constraints
prevent us from documenting every object in the .NET framework in this book; for the sake of brevity and
conciseness, we include only the most important objects here. For more information on the other objects in the .NET
framework, consult the .NET Framework Reference online help file.

ValidationEventArgs Class

Member of System.Xml.Schema. Not inheritable.

A ValidationEventArgs object is passed by the ValidationEventHandler delegate used by the XmlValidatingReader
object.

Properties

Exception Message Severity

Methods

Equals GetHashCode MemberwiseClone

Finalize GetType ToString

XmlDocument Class

Member of System.Xml.

The XmlDocument object represents the top-level object in the XML DOM hierarchy. You can use it to read and
write any element of an XML document, as well as to retrieve an XML document through the local file system or
over HTTP.

Properties

Attributes InnerXml NodeType

BaseURI IsReadOnly OuterXml

ChildNodes Item OwnerDocument

DocumentElement LastChild ParentNode

DocumentType LocalName Prefix

FirstChild Name PreserveWhiteSpace

HasChildNodes NamespaceURI PreviousSibling

Implementation NameTable Value

InnerText NextSibling XmlResolver

This document is created with the unregistered version of CHM2PDF Pilot

Methods

AppendChild CreateTextNode LoadXml

Clone CreateWhitespace MemberwiseClone

CloneNode CreateXmlDeclaration Normalize

CreateAttribute Equals PrependChild

CreateCDataSection Finalize ReadNode

CreateComment GetElementById RemoveAll

CreateDefaultAttribute GetElementsByTagName RemoveChild

CreateDocumentFragment GetEnumerator ReplaceChild

CreateDocumentType GetHashCode Save

CreateElement GetNamespaceOfPrefix SelectNodes

CreateEntityReference GetPrefixOfNamespace SelectSingleNode

CreateNavigator
GetType

ImportNode

Supports

ToString

CreateNode InsertAfter WriteContentTo

CreateProcessingInstruction InsertBefore WriteTo

CreateSignificantWhitespace Load

XmlNamedNodeMap Class

Member of System.Xml.

The XmlNodeList object is used to handle a collection of nodes. It is used in the XML DOM parser model.

Properties

Count

Methods

Equals GetNamedItem RemoveNamedItem

Finalize GetType SetNamedItem

GetEnumerator Item ToString

GetHashCode MemberwiseClone

XmlNodeReader Class

Member of System.Xml.

Properties

This document is created with the unregistered version of CHM2PDF Pilot

AttributeCount IsDefault NodeType

BaseURI IsEmptyElement Prefix

CanResolveEntity Item QuoteChar

Depth LocalName ReadState

EOF Name Value

HasAttributes NamespaceURI XmlLang

HasValue NameTable XmlSpace

Methods

Close MoveToAttribute ReadInnerXml

Equals MoveToContent ReadOuterXml

Finalize MoveToElement ReadStartElement

GetAttribute MoveToFirstAttribute ReadString

GetHashCode MoveToNextAttribute ResolveEntity

GetType Read Skip

IsStartElement ReadAttributeValue ToString

LookupNamespace ReadElementString

MemberwiseClone ReadEndElement

XmlNode Class

Member of System.Xml.

The XmlNode object represents a single node in the hierarchy of an XML document. It can contain a number of
subordinate objects that represent attributes, other nodes, and so forth.

Properties

Attributes IsReadOnly NodeType

BaseURI Item OuterXml

ChildNodes LastChild OwnerDocument

FirstChild LocalName ParentNode

HasChildNodes Name Prefix

InnerText NamespaceURI PreviousSibling

InnerXml NextSibling Value

Methods

AppendChild GetPrefixOfNamespace ReplaceChild

Clone GetType SelectNodes

CloneNode InsertAfter SelectSingleNode

CreateNavigator InsertBefore Supports

Equals MemberwiseClone ToString

Finalize Normalize WriteContentTo

GetEnumerator PrependChild WriteTo

GetHashCode RemoveAll

This document is created with the unregistered version of CHM2PDF Pilot

GetNamespaceOfPrefix RemoveChild

XmlNodeList Class

Member of System.Xml.

The XmlNodeList object is a collection that enables you to iterate through a set of child nodes. It is used in the XML
DOM parser model.

Properties

Count ItemOf

Methods

Equals GetHashCode MemberwiseClone

Finalize GetType ToString

GetEnumerator Item

XmlReader Class

Abstract class. Member of System.Xml.

Properties

AttributeCount IsDefault NodeType

BaseURI IsEmptyElement Prefix

CanResolveEntity Item QuoteChar

Depth LocalName ReadState

EOF Name Value

HasAttributes NamespaceURI XmlLang

HasValue NameTable XmlSpace

Methods

Close LookupNamespace ReadElementString

Equals MemberwiseClone ReadEndElement

Finalize MoveToAttribute ReadInnerXml

GetAttribute MoveToContent ReadOuterXml

GetHashCode MoveToElement ReadStartElement

GetType MoveToFirstAttribute ReadString

IsName MoveToNextAttribute ResolveEntity

IsNameToken Read Skip

IsStartElement ReadAttributeValue ToString

XmlNodeReader Class

This document is created with the unregistered version of CHM2PDF Pilot

Member of System.Xml.

The XmlNodeReader object enables you to navigate an XML document using a scrolling cursor model. It inherits
from System.Xml.XmlReader, an abstract class.

Properties

AttributeCount IsDefault NodeType

BaseURI IsEmptyElement Prefix

CanResolveEntity Item QuoteChar

Depth LocalName ReadState

EOF Name Value

HasAttributes NamespaceURI XmlLang

HasValue NameTable XmlSpace

Methods

Close MoveToAttribute ReadInnerXml

Equals MoveToContent ReadOuterXml

Finalize MoveToElement ReadStartElement

GetAttribute MoveToFirstAttribute ReadString

GetHashCode MoveToNextAttribute ResolveEntity

GetType Read Skip

IsStartElement ReadAttributeValue ToString

LookupNamespace ReadElementString

MemberwiseClone ReadEndElement

XmlTextReader Class

Member of System.Xml. Inherits from System.Xml.XmlReader.

The XmlTextReader object provides read-only, forward-only access to an XML document.

Properties

AttributeCount Item Prefix

BaseURI LineNumber QuoteChar

CanResolveEntity LinePosition ReadState

Depth LocalName Value

Encoding Name WhitespaceHandling

EOF Namespaces XmlLang

HasAttributes NamespaceURI XmlResolver

HasValue NameTable XmlSpace

IsDefault NodeType

This document is created with the unregistered version of CHM2PDF Pilot

IsEmptyElement Normalization

Methods

Close MoveToAttribute ReadEndElement

Equals MoveToContent ReadInnerXml

Finalize MoveToElement ReadOuterXml

GetAttribute MoveToFirstAttribute ReadStartElement

GetHashCode MoveToNextAttribute ReadString

GetRemainder Read ResetState

GetType ReadBase64 ResolveEntity

IsStartElement ReadBinHex Skip

LookupNamespace ReadChars ToString

MemberwiseClone ReadElementString

XmlTextWriter Class

Member of System.Xml. Inherits from System.Xml.XmlWriter.

The XmlTextWriter object enables you to write XML to a text stream (typically a text file).

The first constructor takes an instance of the TextWriter class or any object that inherits from it (including another
XmlTextWriter object). The second form takes an instance of a System.IO.Stream object and an encoding value
(one of the members of System.Text.Encoding). The third form takes a string that represents a filename and an
encoding value.

Properties

BaseStream IndentChar WriteState

Formatting Namespaces XmlLang

Indentation QuoteChar XmlSpace

Methods

Close WriteBinHex WriteName

Equals WriteCData WriteNmToken

Finalize WriteCharEntity WriteNode

Flush WriteChars WriteProcessingInstruction

GetHashCode WriteComment WriteQualifiedName

GetType WriteDocType WriteRaw

LookupPrefix WriteElementString WriteStartAttribute

MemberwiseClone WriteEndAttribute WriteStartDocument

ToString WriteEndDocument WriteStartElement

WriteAttributes WriteEndElement WriteString

WriteAttributeString WriteEntityRef WriteSurrogateCharEntity

WriteBase64 WriteFullEndElement WriteWhitespace

This document is created with the unregistered version of CHM2PDF Pilot

XmlValidatingReader Class

Member of System.Xml. Inherits from System.Xml.XmlReader.

The XmlValidatingReader object provides support for reading an XML file using validation. The object supports
validation with the DTD, XDR, or W3C XML schema formats.

Properties

AttributeCount IsEmptyElement Reader

BaseURI Item ReadState

CanResolveEntity LocalName Schemas

Depth Name SchemaType

Encoding Namespaces ValidationType

EntityHandling NamespaceURI Value

EOF NameTable XmlLang

HasAttributes NodeType XmlResolver

HasValue Prefix XmlSpace

IsDefault QuoteChar

Methods

Close MoveToAttribute ReadInnerXml

Equals MoveToContent ReadOuterXml

Finalize MoveToElement ReadStartElement

GetAttribute MoveToFirstAttribute ReadString

GetHashCode MoveToNextAttribute ReadTypedValue

GetType Read ResolveEntity

IsStartElement ReadAttributeValue Skip

LookupNamespace ReadElementString ToString

MemberwiseClone ReadEndElement

Events

ValidationEventHandler

XmlWriter Class

Abstract class. Member of System.Xml.

Properties

WriteState XmlLang XmlSpace

Methods

Close WriteBinHex WriteName

Equals WriteCData WriteNmToken

This document is created with the unregistered version of CHM2PDF Pilot

Finalize WriteCharEntity WriteNode

Flush WriteChars WriteProcessingInstruction

GetHashCode WriteComment WriteQualifiedName

GetType WriteDocType WriteRaw

LookupPrefix WriteElementString WriteStartAttribute

MemberwiseClone WriteEndAttribute WriteStartDocument

ToString WriteEndDocument WriteStartElement

WriteAttributes WriteEndElement WriteString

WriteAttributeString WriteEntityRef WriteSurrogateCharEntity

WriteBase64 WriteFullEndElement WriteWhit espace
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Chapter 11. Creating Database Applications with
ADO.NET

IN THIS CHAPTER

•

• Why a New Object Library for Data Access?
•
•

• New Features in ADO.NET
•
•

• Connecting to a Database
•
•

• Running Queries
•
•

• Using Data Adapters to Retrieve and Manipulate Data
•
•

• Creating Web Forms for Data Entry
•
•

• Handling Errors
•
•

• ADO.NET Framework Reference
•

The advent of .NET has opened an opportunity for Microsoft to revisit the design and architecture of all its core
APIs with an eye toward making them simpler and more logical. This chapter examines how you can use ADO.NET
to perform the common types of database operations that every application needs to perform and how you can take
advantage of the new features of the database API to create more effective data-driven applications.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Why a New Object Library for Data Access?

A database application programming interface (API) is a software library that programmers use to perform useful
work with a database. Prior to Microsoft.NET, many Web developers on the Microsoft platform used a database
API called ActiveX Data Objects (ADO), a COM library that enabled access to data sources.

A notoriously cranky lot, database programmers tend to be irked when the database access API they use is
changed. This is because so much depends on the database layer operating correctly and efficiently. The situation is
exacerbated when the current database API works well and the new API doesn't provide many compelling benefits.

The version of ADO used by application developers prior to Microsoft.NET worked well for building client/server
and traditional Web applications. But the world of application development continues to evolve, and this evolution
demands that the tools we use evolve with it. For example, you can manipulate a resultset in the absence of a
dedicated database connection in both ADO.old and ADO.NET. In contrast, only ADO.NET provides support for
a new type of resultset object (the DataSet), which is relatively easy to create, always disconnected, universally
available across any data provider, and powerful.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

New Features in ADO.NET

Many of the new features in ADO.NET represent gently evolved ways to perform operations that ADO.old
programmers have always done, but some features for accessing and presenting data are fairly abrupt departures
from what you may be accustomed to. Here is a high-level summary of some of the most important data-access
changes to an ASP.NET developer.

Support for Disconnected Access and Remoting

ADO.old provided support for sessionless access through the disconnected recordset. To disconnect from a data
source in ADO.old, you had to remember to set a specific cursor type and perform a series of magic incantations to
make the recordset disconnect from the server. And then, when it was all done, there wasn't any straight-forward
way for the developer to determine whether the operation actually worked—maybe it was disconnected, maybe not.
Disconnected recordsets in ADO.old were both difficult to test and lacked adequately detailed documentation.

ADO.NET, on the other hand, makes it much easier to retrieve and manipulate disconnected data, including both
relational constructs (formed of rows and columns) and hierarchical ones (such as XML documents). It does this
through the use of a dedicated, always-disconnected object, the DataSet object, which we'll discuss at length later in
this chapter.

XML Support

Although it was possible to express data contained in the ADO.old Recordset object as XML, the process wasn't as
straightforward as it might have been. Support for XML was added as an afterthought in ADO.old, and it was
supported in an extremely clunky way; in fact, you could argue that ADO.old's XML support was so convoluted that
it made sense to use it only in the context of data operability with other ADO data sources. This runs totally counter
to the spirit of data interoperability using XML—if the data can't go anywhere, there's really no point in using XML
to begin with!

XML support in ADO.NET is provided through the DataSet object. The DataSet can always be rendered as XML
with a single method call, and the XML that it renders is structured in a way that's easy to work with, whether you're
working within the .NET framework or on some other platform.

Factored Data Access API

Developers liked ADO.old because the number of objects it provided was small and easy to understand. In fact, it
was possible to perform most common data operations with a limited knowledge of only two objects: the Recordset
and Connection objects.

The architects of ADO.NET have attempted to divide its functionality in a more granular fashion. The objective
behind this is to give you more lightweight objects. For example, if you don't need support for advanced features
such as disconnected access and remoting via XML, you can use a DataReader object instead of the DataSet

This document is created with the unregistered version of CHM2PDF Pilot

object. One unfortunate side effect is that there are more objects to learn. But the real advantage of a well-factored
API is better performance and, in the long run, a simpler API. Now you don't have to internalize all the advanced
features of ADO.NET until you're ready to use them.

No Support for Server-Side Cursors

A cursor is a software construct that enables your code to step though rows in a resultset one row at a time. There
are different types of cursors; some cursors enable you to jump around from one record to another in the resultset
with impunity (so-called scrolling cursors). In the Microsoft database cosmology, there are also "forward-only" or
"firehose" cursors, which permit you only to move from the beginning of the recordset to the end without moving
backward; some database programming purists argue that a cursor that does not scroll is not really a cursor at all.

In addition to scrolling or forward-only, cursors can reside in memory on the server or on the client. (For the
purposes of this discussion, a middle-tier machine or a machine that provides access to data via Web services can be
considered a client, too. Basically, any machine that is not the database server can be considered a client in this
respect.) A server-side cursor allows you to perform server processing on the server without marshaling more results
than you need to the client. Because marshaling data over the network can require a lot of time, database
programmers sometimes turn to server cursors to perform processing for certain types of operations on database
platforms (such as Microsoft SQL Server) that support them.

The problem with server-side cursors is that they consume resources on the server and provide only single-row
access; server-side cursors don't support batch cursors.

In the meantime, one workaround is to embed server-side cursor functionality in a stored procedure, and then call
that stored procedure using the normal ADO.NET techniques for calling stored procedures (described later in this
chapter). The drawback of this workaround is that you must write your stored procedure in whatever language your
database server uses. (This language is Transact-SQL if you're using Microsoft SQL Server.)

Scenarios for Using ADO.NET

One of the most common questions developers ask when attacking a new API is how to do the most basic
operations that they are accustomed to performing with the perfectly good API that they already use. Table 11.1
gives an example of some of the most common scenarios for database access and describes the approach you take
to implement them in ADO.NET.

Table 11.1. Common Database-Access Scenarios with ADO.NET

Scenario Steps to Perform

Retrieve read-only data from a database Open a connection; create a command object; create a
DataReader object

Retrieve data from a database in read/write mode Open a connection; create a data adapter; assign
commands for selecting, reading, writing, and updating to
the data adapter; fill the DataSet

This document is created with the unregistered version of CHM2PDF Pilot

Display the results of a query in a Web Forms control Open a connection; create a data adapter; create a
DataSet object; fill the DataSet; bind the control to a
DataView object contained by the DataSet

Manipulate query results as XML Open a connection; create a data adapter; create a
DataSet object; send XML from the DataSet to a
XmlTextReader via a call to the DataSet's ReadXml
method

Retrieve a single (scalar) value from a query or stored
procedure

Open a connection; create a command object; call the
ExecuteScalar method of the command object

Execute a stored procedure that inserts, updates, or
deletes data

Open a connection; create a command object; call the
ExecuteNonQuery method of the command object

The remainder of this chapter describes how to perform these operations in detail.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Connecting to a Database

In ADO.NET, as in many object-based data-access APIs, you use a connection object to establish a connection
with a database. In the ADO.NET SQL Server provider, the object is called SqlConnection; in the OLE DB
provider, it's cleverly called OleDbConnection. Both objects are conceptually identical, although their implementation
details differ slightly. The main difference between the two objects has to do with the syntax of the connection string.
The connection string is required to tell the object how to get to the database that you're interested in.

NOTE

The SqlConnection class is a member of the System.Data.SqlClient namespace. The OleDbConnection class is a
member of System.Data.OleDb namespace. A full list of members of both namespaces can be found in the reference
section at the end of this chapter.

To connect to a SQL Server database using the SqlConnection object, use code like that shown in Listing 11.1.

Listing 11.1 Opening a Connection Using the SQL Server Provider

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 cn.Open();
 Response.Write("Opened connection to " + cn.Database + "
");
 Response.Write("SQL Server version " + cn.ServerVersion);
 }

</SCRIPT>

This code opens the connection and displays information about the connection status. (You may need to change the
server, database, uid, or pwd parameters of the connection string in this code to match the configuration of your
system.)

As in ADO.old, one of the most important steps to establishing a connection is providing adequate and accurate
information in the connection string that you pass to the connection object. For SQL Server, this information almost
invariably includes a server name, database name, user ID, and password; additional settings can appear in the
connection string, depending on your configuration and which database you are using.

ADO.old veterans will note that the syntax of the ADO.NET connection string is identical to that of ADO.old's

This document is created with the unregistered version of CHM2PDF Pilot

Connection object; this is one of the few areas where the techniques you use of ADO.old and ADO.NET intersect.

To do the same thing using the OLE DB provider, use the code shown in Listing 11.2.

Listing 11.2 Opening a Connection Using the OLE DB Provider

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>

<% @Import namespace='System.Data.OleDb' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 OleDbConnection cn;
 cn = new OleDbConnection("provider=SQLOLEDB;server=localhost;" +
 "uid=sa;pwd=;database=pubs;");
 cn.Open();
 Response.Write("Opened connection to " + cn.Database + "
");
 Response.Write("SQL Server version " + cn.ServerVersion);
 }

</SCRIPT>

This should produce the same result that the previous example produced.

This OLE DB version of the code differs only slightly from the SQL Server version of the code. It imports the
System.Data.OleDb namespace instead of System.Data.SqlClient, and it uses an OleDbConnection object instead of
a SqlConnection. The connection string is also different: The OleDbConnection object requires a provider= clause to
specify the type of OLE DB data source you want to use.

The capability to specify different OLE DB providers in the connection string is a powerful feature; it means that you
can use ADO.NET to gain access to OLE DB data sources today, even if the database vendors don't yet support
Microsoft.NET with providers of their own. If you can get to a data source using ADO.old, you can get to it using
the ADO.NET OLE DB provider.

After you're done with your connection object, you should close it using its Close method. This will free up the
computational resources devoted to that connection. In addition, you should handle any exceptions that are thrown
by the Open method whenever you attempt to open a database connection.

Listing 11.3 contains a more complete example of opening a connection to a data source in ADO.NET, including
explicit use of the Open and Close methods and error handling. Note that the structure of the error handler is such
that the Close method is executed only if the Open method is successful.

Listing 11.3 Opening a Database Connection with Error Handling

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

This document is created with the unregistered version of CHM2PDF Pilot

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 try
 {
 cn.Open();
 Response.Write("Opened connection to " + cn.Database + "
");
 Response.Write("SQL Server version " + cn.ServerVersion);
 cn.Close();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }
 }

</SCRIPT>

The easiest way to test this code is to do something to make your connection string invalid, such as change the server
name to a server that doesn't exist, or get rid of the connection string entirely. If the connection works, you'll see the
name of the database and version of the server. (Note that SQL Server 2000 is considered to be SQL Server
version 8.0 for versioning purposes.) If it fails, you'll get the error message contained in the Message property of the
SqlException object.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Running Queries

After you have a connection to a data source, you can retrieve data from it by executing a query. The results of a
query are stored in one of the ADO.NET data objects, typically either a DataReader or a DataSet object. The type
of object can differ, depending on how you intend to work with the data.

This is in contrast to ADO.old, which invariably returned data in the form of a Recordset object. In ADO.NET,
several objects can contain data. Table 11.2 summarizes these objects.

Table 11.2. Summary of Data-Containing Objects in ADO.NET

Object Description

DataSet Read/write; connectionless; contains one or more
DataTable objects with relationships defined in a
collection of DataRelation objects; supports filtering and
sorting; supports automatic serialization to XML;
contains an object (the DataView) that can be bound to
data-aware ASP.NET Web forms controls

DataReader Read-only; connection-based; supports scrolling forward
only

DataTable Contained by the DataSet; contains sets of rows and
columns

DataColumn Contained by the DataSet object; defines the schema
(structure) of a DataTable

DataRow Contained by the DataSet object; stores the data in an
individual row

As you can see, the DataSet object supports far more features than the DataReader. But as with all benefits in
technology, there are trade-offs in terms of programming complexity and performance. The key is to understand
when it's most appropriate to use the various options available to you; these issues will be discussed in the next few
sections of this chapter.

About the SqlDataReader Object

You can use the SqlDataReader object to execute queries and retrieve data from a data source. You typically use
the SqlDataReader object in situations where you want to get a small quantity of data and display it quickly. If you're
interested in retrieving and manipulating larger sets of data or you want to perform actions such as updating and
deleting records, you will need to use a data command object or the DataSet object, discussed later in this chapter.

NOTE

The SqlDataReader class discussed in this section is a member of the System.Data.SqlClient namespace. The OLE
DB provider equivalent of this class is called OleDbDataReader; it is found in the System.Data.OleDb namespace. A

This document is created with the unregistered version of CHM2PDF Pilot

full list of members of the SqlDataReader class can be found in the reference section at the end of this chapter.

The SqlDataReader is the rough equivalent of the read-only, forward-only Recordset object found in ADO.old. To
create a SqlDataReader, you begin by creating a connection to the database and then executing a command that
returns data. Using command objects to execute commands against data sources is discussed in the next section.

Executing Commands Using Command Objects

ADO.old provides the ADO Command object to execute commands against data sources. The ADO Command
object can execute queries that retrieve data; it can also execute commands that insert, update, or delete data (these
commands are referred to as data-manipulation commands). Finally, command objects can also execute stored
procedures, which are bits of data-access code stored on the server.

ADO.NET, in contrast, gives you two ways to execute commands against data sources: the command object and the
data adapter. The ADO.NET Command object is conceptually similar to the ADO.old Command object; it's used
when you want to execute a quick command against a data source. The ADO.NET data adapter, in contrast, is used
when you need to perform more involved operations against the back end—those operations that might have
required a cursor in ADO.old.

Data adapters are also useful when you need to marshal a complex or hierarchical set of data remotely. Because they
are based on XML, you could (in theory) remote the DataSet to another platform (one that does not contain a .NET
implementation), manipulate the data—including making inserts and updates—and then remote the DataSet back to
the .NET server. Putting this to work in practice would pose challenges (it would depend on the quality of tools
available on the non-.NET platform), but the promise of standard XML makes it possible.

Ultimately, think of a command object as a way to manipulate data on the server or to return a data reader. The data
adapter, in contrast, is the way to create a DataSet object, which establishes communication between the DataSet
object and a specific data source.

In this chapter, we'll start simply, using the data reader and command objects first, and then move on to the more
complex and feature-rich data adapter and DataSet objects.

Executing Text-Based Select Commands Using a Data Reader Object

A text-based command is a command that is constructed in your code at runtime. Commands are expressed in a
query language that your data source can understand; this is typically (although not necessarily) Structured Query
Language, or SQL.

Text-based commands are in contrast to stored procedures, which are defined ahead of time and reside on the
server. (We'll discuss how to call stored procedures later in this chapter.) Text-based commands can perform selects
(commands that retrieve data) or data manipulation (commands that insert, update, or delete data).

This document is created with the unregistered version of CHM2PDF Pilot

You can use a text command to retrieve a data reader object. Listing 11.4 shows an example of a text-based
command that executes a select query (using a SqlCommand object) and returns a SqlDataReader object.

Listing 11.4 Executing a Text Command That Returns a SqlDataReader Object

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;
 String strSQL;

 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 strSQL = "SELECT TOP 10 au_fname, au_lname FROM authors";
 cm = new SqlCommand(strSQL, cn);

 // ** Open connection
 try
 {
 cn.Open();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }

 // ** Execute command
 dr = cm.ExecuteReader();

 while(dr.Read())
 {
 Response.Write(dr["au_fname"] + " " + dr["au_lname"] + "
");
 }

 cn.Close();

 }
</SCRIPT>

This code example builds on the ADO.NET connection object examples used in Listing 11.1. It adds a
SqlCommand object that retrieves the first and last names of the first 10 authors in the pubs database. It also includes
a SqlDataReader object that provides access to the information retrieved by the query.

NOTE

The SqlCommand class discussed in this section is a member of the System.Data.SqlClient namespace. The OLE
DB provider equivalent of this class is called OleDbCommand; it is found in the System.Data.OleDb namespace. A
full list of members of the SqlCommand class can be found in the reference section at the end of this chapter.

This document is created with the unregistered version of CHM2PDF Pilot

You can see from the code that the SqlDataReader object is initially created with a call to the ExecuteReader method
of the SqlCommand object. If you're familiar with ADO.old, this pattern may be familiar to you—you can return an
ADO Recordset object through a call to the Execute method of the ADO.old Command object as well.

After you have successfully created the SqlDataReader object, you can traverse the reader by executing its Read
method in a loop. The Read method returns a true or false value depending on whether any data is readable; when
you reach the end of data, the object returns false.

NOTE

The way that data reader objects in ADO.NET retrieve data can be contrasted to the somewhat awkward method
that ADO.old employed to retrieve field values from a Recordset object—in ADO.old, you typically set up a while
loop with a call to the MoveNext method inside the loop. If you forgot to include a call to the MoveNext method,
your loop became infinite, and you kicked yourself for making a silly mistake. (You may have guessed that one of the
authors of this book commits this error more frequently than he would like.)

As you work with data reader objects, remember that the data they store is read-only and forward-only. You can't
make changes to the data returned by the data reader object (at least not through the data reader itself), and you
can't jump around in the resultset like you can with a cursor-based resultset. However, the data reader is among the
best-performing methods of all the data access methods in ADO.NET. As a result, data reader objects are useful in
situations where you want to display or export data quickly without complex code or repeated interaction with the
data source.

Executing Stored Procedures That Return Data

A stored procedure is a small chunk of code that is embedded in a database server. Stored procedures are
commonly used in database applications because they execute more efficiently than database commands constructed
on-the-fly. They also serve to separate data access code from business logic, which can be helpful for managing
change and complexity in a database application.

NOTE

This section describes how to call stored procedures, but does not cover how to create them (that would require
another whole book). Fortunately, such books have already been written. Two good books on writing stored
procedures in SQL Server are Transact-SQL Programming (O'Reilly) and The Guru's Guide to Transact-SQL
(Addison-Wesley). However, note that as of this writing, neither of these books covers recent changes in
Transact-SQL introduced in SQL Server 2000. They're still great for learning both basic and advanced T-SQL
programming and contain examples that demonstrate at least 90% of the operations you're ever likely to perform as a
T-SQL programmer.

You can call stored procedures from ADO.NET using an ADO.NET command object (OleDbCommand in the

This document is created with the unregistered version of CHM2PDF Pilot

OLE DB provider or SqlCommand in the SQL Server provider). You can also specify a stored procedure as one of
the four commands in a data adapter object. The four commands that are possible as data adapter object properties
are SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand.

Most stored procedures take parameters; for example, a stored procedure that performs a reporting and aggregation
function might take a begin date and an end date as parameters. Similarly, a procedure to return information about a
given customer or a given order would typically take a customer ID or order ID as one of its parameters.
Parameterization enables you to limit the amount of data returned by the stored procedure.

We'll discuss stored procedures that take parameters later in this chapter. For now, we'll start simply and call a
parameter-free stored procedure in the Northwind database. The name of this procedure is "Ten Most Expensive
Products" and, not surprisingly, it is a SELECT procedure that should always return 10 rows of data.

In the SQL Server provider, the connection object is called SqlConnection; in the OLE DB provider it is called
OleDbConnection. Both objects work essentially the same way, but for our examples in this section, we'll use the
SQL Server command object. The most common SqlConnection constructor takes two arguments: a command in
the form of a string and a connection object. Executing a command that selects records produces a SqlDataReader
object that you can then use to display information.

Calling a stored procedure that returns data is similar to executing a text command that returns data. To call a stored
procedure, you first create a connection and a command object, and then set the command object's CommandType
property to the enumerated value CommandType.StoredProcedure.

Listing 11.5 shows an example of how to execute a query and retrieve data by calling a stored procedure using a
SqlCommand and SqlDataReader object.

Listing 11.5 Calling a Simple Stored Procedure Using the SqlCommand Object

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;

 cn = new SqlConnection("server=localhost;uid=sa;" +
 "pwd=;database=Northwind;");
 cm = new SqlCommand("Ten Most Expensive Products", cn);
 cm.CommandType = CommandType.StoredProcedure;

 // ** Open connection
 try
 {
 cn.Open();
 }
 catch(SqlException sx)
 {

This document is created with the unregistered version of CHM2PDF Pilot

 Response.Write("Connection failed: " + sx.Message);
 }

 // ** Execute command
 dr = cm.ExecuteReader();

 while(dr.Read())
 {
 Response.Write(dr.GetString(0) + " " + dr.GetDecimal(1) + "
");
 }
 dr.Close();
 cn.Close();

 }

</SCRIPT>

This code again modifies Listing 11.4, which demonstrates executing a text command and retrieving a SqlDataReader
object. In addition to setting the CommandType property of the SqlCommand object to
CommandType.StoredProcedure, we also replace the command text with the name of the stored procedure ("Ten
Most Expensive Products"). This user-defined stored procedure returns two columns of data: the name of the
product and a column called UnitPrice. The data type of the UnitPrice column is of the currency data type (called
"money" in SQL Server parlance) but is expressed as a decimal data type in .NET because that's how .NET deals
with currency data. As a result, we use the GetDecimal method of the SqlDataReader object to extract prices from
each row.

Passing Parameters to Stored Procedures

Just like function calls and subroutines in your code, most stored procedures take parameters. When you call a
stored procedure that has one or more parameters, you must supply values for those parameters in code before you
execute the stored procedure.

In ADO.NET, you can pass parameters to stored procedures in two ways. To pass parameter values, you can either
include the parameter as part of the command itself (this is known as the inline method of passing parameters), or you
can use the Parameters collection of the connection object. (This technique is syntactically closer to the ADO.old
method of passing stored procedure parameters, but requires a bit more code than the inline approach.)

Like the previous examples, calling a command requires a connection object and a command object that are
appropriate to the provider you're using. As we've been doing throughout this chapter, we'll stick with the SQL
Server objects, SqlConnection and SqlCommand.

For our stored procedure, we'll use the SalesByCategory stored procedure in the Northwind database. This is a
fairly simple select procedure that requires a single parameter: a product category (a string value found in the list of
product categories in the Categories table), examples of which include Beverages, Produce, and Seafood.

Listing 11.6 shows how to pass a parameter to a stored procedure using the Parameters collection contained by the
Command object.

Listing 11.6 Calling a Parameterized Stored Procedure Using the Parameters Collection of the

This document is created with the unregistered version of CHM2PDF Pilot

SqlCommand Object

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;
 SqlParameter sp;

 cn = new SqlConnection("server=localhost;uid=sa;" +
 "pwd=;database=Northwind;");
 cm = new SqlCommand();
 cm.Connection = cn;
 cm.CommandType = CommandType.StoredProcedure;
 cm.CommandText = "SalesByCategory";

 // ** Add parameter and parameter value
 sp = cm.Parameters.Add(new SqlParameter("@CategoryName",
 SqlDbType.NVarChar, 15));
 sp.Value = "Condiments";

 // ** Open connection
 try
 {
 cn.Open();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }

 // ** Execute command
 dr = cm.ExecuteReader();

 Response.Write("" + sp.Value + "
");
 while(dr.Read())
 {
 Response.Write(dr.GetString(0) + " " + dr.GetDecimal(1) + "
");
 }
 dr.Close();
 cn.Close();

 }

</SCRIPT>

This version of the code uses the Add method of the Parameters collection contained by the SqlCommand object,
cm. By adding this object to the command object's Parameters collection and then setting its Value property to the
value you want to supply to the parameter, you tell the stored procedure which category of data to retrieve.

Note that the Add method used in the example takes a SqlParameter object as an argument. You can use several
other constructors for the SqlParameter, depending on how much information you want to specify about the
parameter. However, in most cases, the constructor we used (specifying the parameter name, data type, and size)
will be the one you use most frequently. Note that the values for SQL Server data types are found in the enumeration

This document is created with the unregistered version of CHM2PDF Pilot

System.Data.SqlClient.SqlDbType. All the SQL Server 2000 data types are found in this enumeration (including
SqlDbType.BigInt, the 64-bit integer, and the Unicode types NChar, NText, and NVarChar).

With SQL Server, it's actually not necessary to use the Parameters collection to supply a parameter to a stored
procedure. In fact, you can call any SQL Server stored procedure using the EXEC keyword. The syntax of EXEC is

EXEC procname [param1], [param2] ...

where procname is the name of the stored procedure. Parameters, if any, are passed in a comma-delimited list
following the name of the stored procedure.

Listing 11.7 shows an example of using EXEC to call a parameterized stored procedure. As in the previous example,
the resultset of the stored procedure is returned in the form of a SqlDataReader object.

Listing 11.7 Calling a Parameterized Stored Procedure

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;

 cn = new SqlConnection("server=localhost;uid=sa;" +
 "pwd=;database=Northwind;");
 cm = new SqlCommand();
 cm.Connection = cn;
 cm.CommandText = "EXEC SalesByCategory 'Beverages'";

 // ** Open connection
 try
 {
 cn.Open();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }
 // ** Execute command
 dr = cm.ExecuteReader();

 while(dr.Read())
 {
 Response.Write(dr.GetString(0) + " " + dr.GetDecimal(1) + "
");
 }

 cn.Close();
 }

</SCRIPT>

This document is created with the unregistered version of CHM2PDF Pilot

It's important to note here that an EXEC call is technically a text command that calls a stored procedure, rather than
a "pure" stored procedure call (as in the previous code example). Because an EXEC call is a text command, we get
rid of the line of code that specifies that the command is a stored procedure (by setting the CommandType property
of the command object).

Also, when using EXEC to call a stored procedure, parameters must be passed in the order they're declared in the
stored procedure itself (a potential deal-killer if you don't have access to the stored procedure source code). Also,
make sure to delimit non-numeric values (including date/time values) with single quotes; numeric values don't need to
be delimited.

Executing Commands That Do Not Return Data

ADO.NET command objects have a special method for calling commands that do not retrieve data. This is an
ADO.NET concept that does not specifically exist in ADO.old; it presumably exists for performance reasons,
because a procedure that does not return data can be managed slightly more economically than one that does.

Examples of commands that don't return data include most data manipulation commands (including inserting, deleting,
and updating records) as well as certain types of administrative commands in SQL Server.

You call a stored procedure that does not return data using the ExecuteNonQuery method of the connection object.
Listing 11.8 shows an example of this.

Listing 11.8 Executing a Nonquery Command

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;
 String strSQL;

 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 strSQL = "INSERT INTO authors " +
 "(au_id, au_fname, au_lname, contract) " +
 "VALUES ('123-45-6789', 'Chris', 'Kinsman', 0)";
 cm = new SqlCommand(strSQL, cn);

 // ** Open connection
 try
 {
 cn.Open();
 // ** Execute command
 cm.ExecuteNonQuery();

 }
 catch(SqlException sx)
 {
 Response.Write(" Exception occurred: " + sx.Message);

This document is created with the unregistered version of CHM2PDF Pilot

 }
 finally
 {
 if (cn.State == ConnectionState.Open)
 cn.Close();
 }

 }

</SCRIPT>
 try
 {
 // ** Open connection
 cn.Open();
 // ** Execute command
 cm.ExecuteNonQuery();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }
 finally
 {
 if (cn.State == ConnectionState.Open)
 cn.Close();
}

Note that executing this code will not display anything in the browser; you'll need to run a query against the Authors
table to determine whether the insert actually worked. Later in this chapter, we'll construct a user interface that
enables you to easily do this.

This code inserts a new author into the Authors table in the pubs database. It starts by constructing a SQL INSERT
command, storing it in the string variable strSQL. This command contains the minimum amount of information
required to insert a new author (the contract and au_id fields require non-null values). Aside from the syntax of the
SQL command itself and the call to the ExecuteNonQuery method of the SqlCommand object, this code is nearly
identical to the examples of commands we've demonstrated earlier in this chapter.

Executing Stored Procedures That Return Scalar Values

Most queries return resultsets, which are similar to arrays comprising one or more rows and one or more columns. In
ADO.old these were called Recordsets; in ADO.NET, results typically are stored in an object such as a data reader
or DataTable.

It is possible, however, to run a query that returns a single value. Such values are known as scalars, and they can be
retrieved using the ExecuteScalar method of the ADO.NET command object.

As with the ExecuteNonQuery method discussed in the previous section, the idea behind ExecuteScalar is to give
you additional options for executing commands that presumably perform better than returning the results in the form
of a data reader or other object.

This document is created with the unregistered version of CHM2PDF Pilot

NOTE

You'll notice that when describing ADO.NET methods such as ExecuteNonQuery and ExecuteScalar, we use the
word presumably a lot when describing their performance benefits. Doing a scientific performance analysis of the
relative performance benefits of these various methods isn't our intention and isn't really within the scope of this book.
At any rate, you'll want to examine the various methods for retrieving data in real-world scenarios before committing
to a particular technique.

Listing 11.9 shows an example of using the ExecuteScalar method to retrieve a single value from the Northwind
database.

Listing 11.9 Using ExecuteScalar to Retrieve a Single Value from the Database

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>
<SCRIPT runat='server'>

 void Page_Load(Object Sender, EventArgs e)
 {
 SqlConnection cn;
 SqlCommand cm;
 SqlDataReader dr;
 String strSQL;

 cn = new SqlConnection("server=localhost;uid=sa;" +
 "pwd=;database=Northwind;");
 strSQL = "SELECT Count(CustomerID) FROM Customers";
 cm = new SqlCommand(strSQL, cn);

 // ** Open connection
 try
 {
 cn.Open();
 }
 catch(SqlException sx)
 {
 Response.Write("Connection failed: " + sx.Message);
 }

 //** Execute command
 Response.Write("The number of customers is: " + cm.ExecuteScalar());

 cn.Close();

 }

</SCRIPT>

This code prepares a SQL command that returns a single value and submits it to the server using the ExecuteScalar
method of the SqlCommand object. The ExecuteScalar method returns whatever value was returned by the
command.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Using Data Adapters to Retrieve and Manipulate Data

In database programming, it's common to retrieve data and then perform other actions on the data (such as inserting
new data, updating existing data, and deleting data). Often an application will need to take different actions based on
the results of one or more queries or stored procedure calls.

In ADO.old, this can be accomplished through the use of a cursor. A cursor-based approach is expensive, however,
because it implies a persistent connection to the data source. ADO.old does support a batch-update model whereby
the developer can retrieve data, perform updates, and then reconnect to the data source and commit the updates in
one operation (known as a batch).

The .NET vision of scalable, disconnected data access demands a different approach, however. The .NET DataSet
requires a sessionless, cursorless approach. To provide access to retrieving, inserting, updating, and deleting records
in a single object without the use of cursors or persistent connections, ADO.NET provides the data adapter object.

Data adapters

•

• Are similar to command objects, except they can contain four separate commands (one each for select,
insert, update, and delete).

•
•

• Can be used to create always-disconnected DataSet objects. DataSets can be serialized as XML.
•
•

• Decouple data-manipulation code from the data itself, making the data easier to remote and the data
manipulation code easier to maintain and reuse.

•

Each ADO.NET provider has its own data adapter object. In the SQL Server provider, the data adapter is named
SqlDataAdapter; not surprisingly, in the OLE DB provider, the data adapter class is called OleDbAdapter.

The implementation details of the data adapter may vary slightly from one provider to the next, but the basic purpose
of the data adapter is the same across all providers: Data adapters provide a connectionless method to engage in rich
interaction with data sources. By rich interaction, we are talking about operations that go beyond the simple requests
and display of data. Data readers are described in the "About the SqlDataReader Object" section of this chapter.

Although each ADO.NET provider has its own data adapter, DataSet objects created by different adapters are the
same; DataSets are totally interoperable across providers. This is an important aspect of ADO.NET's interoperability
story; it provides a standard way to express relational or hierarchical data that can be manipulated in any language,
on any platform.

This document is created with the unregistered version of CHM2PDF Pilot

The ultimate objective of a Web database application is to present data to the user and permit users to manipulate
data in interesting ways in the browser. The next few sections will introduce data adapters and demonstrate the
various things you can do with them in ASP.NET applications. To demonstrate the power and flexibility of the data
adapter, we'll first need to take a detour and discuss the principles of building a database-driven user interface in
ASP.NET.

Displaying Query Data in the Browser

Earlier code listings in this chapter gave several examples of displaying data in a Web browser using calls to
Response.Write. This is basically the same way you send output data to the browser in ASP.old. However, with
ADO.NET and ASP.NET Web Forms controls, you have new options that provide better structure and
maintainability, as well as more powerful features.

One of these features is data binding. Data binding refers to the process of automatically mapping the fields in a
database to the user interface. Performing data binding automatically is handy because it relieves the developer from
having to write a large amount of tedious code associated with retrieving and displaying data.

The concept of data binding got a bad rap among Visual Basic developers for a number of valid reasons. Data
binding promised the capability to create a rich database user interface with a minimum of coding. Simplicity was the
objective.

But this simplicity came at a price. Thick-client data-bound applications typically ran slowly, consumed a persistent
database connection resource whether they were doing any work or not, and were difficult for programmers to code
against because much of the underlying data-access functionality was encapsulated in the form of an object (the Data
control) that exposed a painfully limited set of properties, methods, and events associated with data operations. If
you were interested in building a certain type of data browser application and performance wasn't an issue, data
binding worked well. But if you needed to build anything more sophisticated than a simple data browser, binding to a
Data control was problematic at best.

Data binding in ASP.NET is different from the data-control-centric, connection-based vision of thick-client VB.old.
The problems involving a "no-code" solution aren't a problem in ASP.NET, because ASP.NET data binding doesn't
use black-box abstractions like the VB.old Data control.

The next few sections discuss the objects and techniques involved in data binding in ASP.NET and give you some
examples describing how to put data binding to work in your applications.

Creating a DataSet Object Using a Data Adapter

You can use a DataSet in conjunction with a data adapter object to retrieve data from a database in a manner similar
to the DataReader example in Listing 11.4. Although you might not use this code to display data in this way in a real
application, dumping the contents of a query into a DataSet and then into the browser is a useful stepping stone on
the way to data binding with Web Forms controls (which we'll discuss next).

This document is created with the unregistered version of CHM2PDF Pilot

Listing 11.10 shows a very simple example of a database select query using the SqlDataAdapter and a DataSet
object.

Listing 11.10 Using the SqlDataAdapter and the DataSet Object to Display Query Results

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 SqlConnection cn;
 SqlDataAdapter da;
 DataSet ds;
 String strSQL;

 strSQL = "SELECT TOP 10 au_fname, au_lname FROM authors";
 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 da = new SqlDataAdapter(strSQL, cn);
 // ** Fill DataSet
 ds = new DataSet();
 da.Fill(ds, "Authors");

 // ** Display data
 foreach(DataRow Author in ds.Tables["Authors"].Rows)
 {
 Response.Write(Author["au_fname"].ToString() + " " +
 Author["au_lname"].ToString() + "
");
 }

 }

</SCRIPT>

You can see in this example, the SqlDataAdapter object is created from a SqlConnection object; this is similar to the
way we created the basic SqlConnection object earlier. To build a DataSet object from the SqlDataAdapter object,
we declare and instantiate the DataSet and then pass the DataSet to the Fill method of the SqlDataAdapter. The
connection to the database is implicitly opened and closed when you fill a DataSet in this way.

Executing the fill method executes the SELECT query; at this point, we can start accessing the data through the Rows
collection contained by the (one and only) table contained by the DataSet.

This example is similar to some of the data reader examples from earlier in this chapter, but with more complexity and
more code. Fear not; this is just the first example and doesn't scratch the surface of what the DataSet can accomplish.

One of the big differences you can see between the behavior of the DataSet and the data reader object is that the
DataSet has a Tables collection that contains DataTable objects. The capability to contain multiple tables in a single
object (potentially containing relationships defined by one or more DataRelation objects) is one of the defining
characteristics of the DataSet objects. We'll take a look at the power of multiple tables in a single DataSet in Listing
11.14.

This document is created with the unregistered version of CHM2PDF Pilot

For now, it might be worthwhile to look at more efficient and structured ways to display data on the page. Outputting
HTML to the browser using a loop containing calls to Response.Write works fine, but if you're interested in doing
anything more complicated than displaying row-by-row data with line breaks, you will want a more powerful display
technique. Fortunately, ASP.NET provides this in the form of data-bound Web Forms controls, which we'll discuss
in the next section.

Binding a DataView Object to Web Forms Controls

You can display data in an ASP.NET Web Forms page by using data binding. To use data binding, you begin by
executing a select command with a data adapter. This produces a DataSet object that contains a collection of
DataTable objects; each DataTable contains a DataView object that can be connected to any Web Forms control
capable of binding to data (including many HTML server controls).

To perform the actual data binding after the DataSet is created, you first set the Web Forms control's DataSource
property to a DataView object contained by the DataSet, and then use the DataBind method of the ASP.NET Page
object to initiate binding. This method, typically called in the Page object's Load event, serves to connect the user
interface control(s) on the page with the DataSet object(s) you've created.

Listing 11.11 takes the code from the previous example and amends it to display its output in a Web Forms
DataGrid control.

Listing 11.11 Displaying Query Data in a Web Forms DataGrid Control

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<HTML>
<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 SqlConnection cn;
 SqlDataAdapter da;
 DataSet ds;
 String strSQL;

 strSQL = "SELECT TOP 10 au_fname, au_lname FROM authors";
 cn = new SqlConnection("server=localhost;uid=sa;" +
 "pwd=;database=pubs;");
 da = new SqlDataAdapter(strSQL, cn);_

 // ** Fill DataSet
 ds = new DataSet();
 da.Fill(ds, "Authors");
 // ** Display data
 DataGrid1.DataSource = ds.Tables["Authors"].DefaultView;
 DataGrid1.DataBind();

 }

</SCRIPT>

This document is created with the unregistered version of CHM2PDF Pilot

<BODY>

 <ASP:datagrid id='DataGrid1' runat='server' />

</BODY>
</HTML>

Nothing is really new here except for the changes in the "display data" section of the code. This time we simply assign
the DefaultView property (a DataView object) of the Authors table (a DataTable object) to the DataSource
property of the DataGrid control, which we named DataGrid1. You should be able to see that the ASP:datagrid
definition in the HTML section of the code doesn't specify any property settings for the DataGrid control other than
its ID, so all the defaults are in place. The result is a plain vanilla HTML table, outputted to the browser.

Binding Other Objects to Web Forms Controls

Web Forms controls can be bound to any object that implements the System.Collections.IEnumerable or
System.Collections.ICollection interfaces. The DataView object supports the IEnumerable interface, which is why it
can be bound to ASP.NET server controls. You can also build your own .NET classes that implement one of these
interfaces if you're interested in binding custom classes to ASP.NET Web Forms controls.

Creating your own classes for data binding is beyond the scope of this book, but it is pretty easy to see how an
existing class can be bound to an ASP.NET control. The ArrayList class (found in System.Collections) is a perfect
candidate to use as a guinea pig to see how this works; ArrayList is simple to work with and implements both
IEnumerable and ICollection.

Listing 11.12 shows an example of how to bind a DataGrid control to an ArrayList object.

Listing 11.12 Binding a DataGrid Control to an ArrayList Object

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Collections' %>

<HTML>
<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 ArrayList al = new ArrayList();
 al.Add("Alaska");
 al.Add("Alabama");
 al.Add("California");
 al.Add("Kentucky");

 // ** Display data
 DataGrid1.DataSource = al;
 DataGrid1.DataBind();
 }

</SCRIPT>

<BODY>

This document is created with the unregistered version of CHM2PDF Pilot

 <ASP:datagrid id='DataGrid1' runat='server' />

</BODY>
</HTML>

The technique to bind the DataGrid control shown here is the same as the methods shown earlier in the chapter to
bind to relational data; as far as the DataGrid control is concerned, no difference exists between different types of
bindable objects. As long as the object supports IEnumerable or ICollection, it can be displayed through binding.

Note that data readers (the SqlDataReader and OleDbDataReader classes) support the IEnumerable interface and
can therefore be bound to Web Forms controls as well.

Expressing a DataSet as XML

One of the advantages of retrieving data with a DataSet is that a DataSet can be accessed at the object level (through
the collection of DataTable and DataRow objects contained by the DataSet) or on a raw XML level. The capability
to process a DataSet as XML means that you can easily transfer a DataSet to other platforms that don't explicitly
support Microsoft.NET or work with the DataSet with XML tools (whether or not they're explicitly built to support
.NET).

You can use the GetXml method of the DataSet object to extract XML data from the result of a query. By setting the
ContentType Page directive to text/xml, it's possible to see the XML output directly in the browser window.

As with many Web-based XML examples, Listing 11.13 works best when you use Internet Explorer 5.0 or later;
Internet Explorer has support for parsing and displaying XML directly in the browser window.

Listing 11.13 shows an example of outputting a query in XML format to the browser window using this technique.

Listing 11.13 Sending Query Results to the Browser Window Using XML

<% @Page ContentType='text/xml' language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 SqlConnection cn;
 SqlDataAdapter da;
 DataSet ds;
 String strSQL;

 strSQL = "SELECT TOP 10 au_fname, au_lname FROM authors";
 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 da = new SqlDataAdapter(strSQL, cn);

 // ** Fill DataSet
 ds = new DataSet();
 da.Fill(ds, "Authors");

This document is created with the unregistered version of CHM2PDF Pilot

 // ** Display data
 Response.Write(ds.GetXml());

 }

</SCRIPT>

Instead of simply dumping XML to the browser window, you can also assign the XML output of a DataSet object to
one of the XML-manipulating objects in the .NET framework. To do this, you pass an XmlDataReader object to the
ReadXml method of the DataSet object. You can then manipulate the XmlDataReader object as you would any
other XML document, including sending it to a file or passing it to another process.

NOTE

The XmlDataReader object is one of the objects that the .NET framework provides for reading XML. For more
information on how the XmlDataReader works, see Chapter 10, "Using XML."

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Creating Web Forms for Data Entry

Now that you have a sense of how to retrieve and manipulate data using ADO.NET, you'll need to have a strategy
for building user interfaces in ASP.NET to access database functionality.

Like other Web-programming paradigms, the process of inserting or updating data through a Web browser typically
involves constructing an HTML form that contains an array of input controls. The user inserts or changes values in the
controls on the form and then submits the form to the Web server. The server passes the form contents to a script
that then forms the actual data operation.

Listing 11.14 shows a simple example of an ASP.NET page that facilitates data entry.

Listing 11.14 Simple Data-Entry Form

<% @Page language='c#' debug='true' trace='false' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<SCRIPT runat='server'>
 void Page_Load(Object Sender,EventArgs e)
 {
 if(Page.IsPostBack)
 {
 SqlConnection cn;
 SqlCommand cm;
 String strSQL;

 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 strSQL = "INSERT INTO authors " +
 "(au_id, au_fname, au_lname, contract) " +
 "VALUES ('" + txtID.Text + "', '" +
 txtFirstName.Text + "', '" +
 txtLastName.Text + "', '" +
 ChkToInt(chkContract) + "')";

 cm = new SqlCommand(strSQL, cn);

 // ** Open connection
 try
 {
 cn.Open();
 // ** Execute command
 cm.ExecuteNonQuery();
 }
 catch(SqlException sx)
 {
 Response.Write("Exception Occurred: " + sx.Message);
 }
 finally
 {
 if (cn.State == ConnectionState.Open)
 cn.Close();
 }

This document is created with the unregistered version of CHM2PDF Pilot

 // ** Execute command
 Trace.Write("Command: " + cm.CommandText);

 // ** Clear form for next item
 txtID.Text = "";
 txtFirstName.Text = "";
 txtLastName.Text = "";
 chkContract.Checked = false;
 }
 }

 int ChkToInt(CheckBox chk)
 {
 if(chk.Checked)
 return 1;
 else
 return 0;
 }

</SCRIPT>

<html>
<head>
<title>ASP.NET Data Entry</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">
<FORM runat='server'>
 <table width="300" border="0">
 <tr>
 <td>ID: </td>
 <td>
 <asp:textbox id="txtID" runat='server' />
 </td>
 </tr>
 <tr>
 <td>First Name: </td>
 <td>
 <asp:textbox id="txtFirstName" runat='server' />
 </td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td>
 <asp:textbox id="txtLastName" runat='server' />
 </td>
 </tr>
 <tr>
 <td>Contract:</td>
 <td>
 <asp:checkbox id="chkContract" runat='server' />
 </td>
 </tr>
 </table>
 <p>
 <asp:button id="btnSave" text="Save" runat='server' />
 </p>
</FORM>
</body>
</html>

This page takes the code used to perform a nonquery command (introduced earlier in this chapter) and attaches a
simple user interface to it. Although it is minimal, the pattern set by this example, in Listing 11.8, forms the basis of a

This document is created with the unregistered version of CHM2PDF Pilot

great deal of Web-based data entry forms in ASP.NET.

The Page_Load event procedure performs the work involved in inserting the data into the database. Note that the
data is sent to the database only if the IsPostBack property of the Page object is true. There's no point sending data
to the database unless there's something to send. Note, too, that we explicitly cleared the contents of the controls on
the form after inserting the data (this circumvents ASP.NET's default view state behavior).

The only other tricky thing on this page is the ChkToInt function. This function takes the Checked value returned by
the CheckBox control and converts it into the 1 or 0 value required by SQL Server.

Two problems occur with this page—both related to validation. If the user enters an author with the same ID as an
existing author, she will get an error. You can get around this problem by catching the SqlException that is thrown
when the ExecuteNonQuery method is reached.

The next problem is less straightforward: how to ensure that the user actually enters valid data for the ID, first name,
and last name fields. It happens that ASP.NET provides some powerful and flexible components for dealing with this
problem. We'll cover them in the next section.

Performing Validation

Every software application should have code that ensures that data entered by users is valid. Web applications are no
different.

In ASP.old, developers typically embedded validation logic in pages that also contained display logic; separating
validation logic from presentation logic was tricky, but it was possible. If you were interested in performing a simple
validation, such as making sure that a given text box contains a value between 1 and 10, the template-based design of
ASP.old practically forced you to embed that validation code on the same page.

Incorporating client-side validation adds a new level of complexity to this problem. Because client-side validation is
commonly done using JavaScript (for cross-browser compatibility), this forced you to embed code written in two
very different languages in a single page. Madness!

ASP.NET solves this problem by creating language-neutral objects for performing validation. These come in the form
of Web Forms server controls—validation objects that accept generic rules pertaining to the most common types of
data validation. These objects are tightly integrated with the Page object so that when a Web form is submitted to the
server, the validation object can communicate to the Page object that the field it validates has not passed the
validation rule.

ASP.NET provides six validation objects:

•

• RequiredFieldValidator

This document is created with the unregistered version of CHM2PDF Pilot

•
•

• CompareValidator
•
•

• RangeValidator
•
•

• RegularExpressionValidator
•
•

• ValidationSummary
•
•

• CustomValidator
•

To perform validation, you create the Web form as you normally would and then attach validation controls to the
input controls in the form. This is done by setting the validation control's ControlToValidate property. You can also
validate a control against a variable or constant value instead by setting the validation's ValueToCompare property.
You then assign validation parameters where appropriate. (Some validation controls, such as
RequiredFieldValidator, don't need extra validation parameters.)

When the page is submitted to the server, the validation rule contained by the validation control is applied. Validation
controls are invisible until their validation rules are violated; if the validation rule fails, an optional error message is
displayed. Your code must provide a way to deal with the situation where a validation rule is violated. You can
programmatically inspect the IsValid property of the Page object to quickly determine whether one or more
validation controls were violated. For complex pages with many validation controls, you can also provide a list of all
validation violations on the page; in fact, ASP.NET provides a special object (the ValidationSummary control) to
perform this function.

Eight controls that can be associated with validation controls, shown next, ship with ASP.NET.

HTML controls:

•

• HtmlInputText
•
•

• HtmlTextArea
•
•

This document is created with the unregistered version of CHM2PDF Pilot

• HtmlSelect
•
•

• HtmlInputFile
•

Server controls:

•

• TextBox
•
•

• ListBox
•
•

• DropDownList
•
•

• RadioButtonList
•

To keep the examples simple, in this section we'll perform validation against the TextBox server control exclusively.
Also, to make these examples briefer and easier to understand, we won't bother including the actual data access
code in the validation examples here; we'll assume that you'll include code similar to that described earlier in this
chapter to perform the actual database operation required to get your data into the database.

Validation controls work by generating DHTML and JavaScript for browsers that support them, and performing
round trips to the server for browsers that do not. This greatly increases the efficiency of validation, ensuring that
forms that contain bad data aren't sent across the network. The best part of this feature is that you don't have to learn
JavaScript to make this client-side validation happen; validation controls can emit the appropriate JavaScript code
automatically.

The next few sections describe how to use each validation control in more detail.

Validating for Required Fields

Required field validation forces the user to enter a value in the validated control. It's one of the easiest validators to
implement because it doesn't require a separate property assignment to determine what the validation rule is. If a
RequiredFieldValidator is attached to a control, the field is required and the page isn't valid unless the user puts
something in the field.

Listing 11.15 shows an example of the RequiredFieldValidator control in action.

This document is created with the unregistered version of CHM2PDF Pilot

Listing 11.15 Requiring a Field Using the RequiredFieldValidator Control

<HTML>
<HEAD>
<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender,EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "Record saved.";
 else
 lblOutput.Text = "";
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server" ID="Form1">

<asp:textbox id=TextBox1 runat=server />

 <asp:RequiredFieldValidator id="RequiredFieldValidator2"
 ControlToValidate="TextBox1"
 Display="Static"
 Width="100%" runat=server>
 Please enter your name.
 </asp:RequiredFieldValidator>

 <asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />
 <asp:label id='lblOutput' runat='server' />
</FORM>
</BODY>
</HTML>

As you can see from the code, this mode of validation is pretty straightforward—just specify the control you want to
validate in the RequiredFieldValidator's ControlToValidate property, and then check to see if the page is valid in an
event procedure attached to a control that submits the form (in this case, the button called Button1).

One of the main objectives of client validation is to catch bad input before your application performs expensive trips
across the network. This example demonstrates how ASP.NET handles this; if you enter bad data, the page will not
be submitted to the server.

You might find it illustrative to see how this validation is performed "under the hood" of the browser. To see the client
code that is generated by the validation control, navigate to this page and create a validation error by clicking the
button without typing anything into the text field. Watch the browser as the error is generated; you should notice that
no progress bar is at the bottom of the window to indicate a jump across the network, and the page displays the
error message instantly, without having to reload.

Next, use the View Source command to take a look at the HTML code generated by the ASP.NET page. As you
scroll through the code, you should be able to see a reference to a JavaScript file called WebUIValidation.js. This file
resides on the server (in a directory called \aspnet_client under the IIS root directory) but is downloaded and
executed on the client side when a validation control is present in a Web form. The JavaScript function named

This document is created with the unregistered version of CHM2PDF Pilot

RequiredFieldValidatorEvaluateIsValid is called when you use a RequiredFieldValidator control (analogous functions
exist for the other types of validators). By viewing the script file WebUIValidation.js, you can see how they work.
The one for required field validation is monumentally trivial—it's listed in Listing 11.16.

Listing 11.16 Client-Side Validation for Required Field Function

function RequiredFieldValidatorEvaluateIsValid(val) {
 return (ValidatorTrim(ValidatorGetValue(val.controltovalidate)) !=
_ValidatorTrim(val.initialvalue))
}

This function uses a lot of verbiage to accomplish a simple task—figuring out whether a value is there. If it's there, the
function returns true; if not, it returns false. Of course, this isn't so complicated that you couldn't have written it
yourself, but it's nice that this kind of code is abstracted behind the validator control so that you don't have to think in
two languages just to perform simple validation.

Comparison Validation Using the CompareValidator Control

Comparison validation examines the value of a control and compares it against the value of another control's
property, a variable, or a constant. To use CompareValidator, you must specify three things: the control to validate,
the control (or value) to compare it to, and an operator (one of the equality or inequality types).

As an example of this, suppose you're building a Web form that gives your employees pay raises. The important
validation rule with a pay raise calculation is: Don't accidentally give your employees a pay cut! You can use a
CompareValidator control with the greater-than operator to ensure that this is the case. Listing 11.17 shows an
example.

Listing 11.17 Performing Comparison Validation in a Data Entry Form

<HTML>
<HEAD>
<TITLE>
Pay Raise Calculator
</TITLE>
<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender,EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "The new pay rate is: " + txtNewRate.Text;
 else
 lblOutput.Text = "";
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server">

Current Rate:<asp:textbox id=txtOldRate text='3000' runat=server />

New Rate:<asp:textbox id=txtNewRate runat=server />
<asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />

 <asp:CompareValidator id="CompareValidator1"

This document is created with the unregistered version of CHM2PDF Pilot

 ControlToValidate="txtNewRate"
 ControlToCompare="txtOldRate"
 Type="Double"
 Operator="GreaterThan"
 runat="server">
 You eeeediot! Do not give your employees a pay cut!
 </asp:CompareValidator>

<asp:label id='lblOutput' runat='server' />
</FORM>
</BODY>
</HTML>

To understand the relationship between ControlToValidate, ControlToCompare, and Operator, think of the three
properties as elements of an expression that looks like this:

ControlToCompare Operator ControlToValidate

Hence, if ControlToCompare is 3000, ControlToValidate is 3500, and Operator is "GreaterThan", the expression is
true and the page is valid. If ControlToValidate is 0, for example, the expression becomes false and the validation
fails.

The legal values for the Operator property for controls that use them are enumerated in
System.Web.UI.WebControls.ValidationCompareOperator and are listed in Table 11.3.

Table 11.3. Members of the ValidationCompareOperator Enumeration Used in Comparison Validation

Member Description

DataTypeCheck Returns true if the two values are the same data type

Equal Returns true if the two values are equal

GreaterThan Returns true if ControlToValidate is greater than
ControlToCompare

GreaterThanEqual Returns true if ControlToValidate is greater than or equal
to ControlToCompare

LessThan Returns true if ControlToValidate is less than
ControlToCompare

LessThanEqual Returns true if ControlToValidate is less than or equal to
ControlToCompare

NotEqual Returns true if the two controls are not equal

The broad range of operators gives you a great deal of flexibility; however, if you need a validation rule that goes
beyond what any of the standard validation controls are capable of, you can always turn to the custom validation
control, as seen in Listing 11.20.

Range Validation Using the RangeValidator Object

Range validation forces the data in a given control to fall within a given range—alphabetic, numeric, or date. You
specify the boundaries of the range using the control's MinimumValue and MaximumValue properties. As with the
CompareValidator control, you can also denote a data type on which to base the comparison (using the control's

This document is created with the unregistered version of CHM2PDF Pilot

Type property).

Listing 11.18 shows an example of the RangeValidator object in action.

Listing 11.18 Performing Range Validation

<HTML>
<HEAD>
<TITLE>
Pay Raise Calculator [Range]
</TITLE>
<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender,EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "The new pay rate is: " + txtNewRate.Text;
 else
 lblOutput.Text = "";
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server">

Current Rate:<asp:textbox id=txtOldRate text='3000' runat=server />

New Rate:<asp:textbox id=txtNewRate runat=server />
<asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />

 <asp:RangeValidator id="RangeValidator1"
 ControlToValidate="txtNewRate"
 MinimumValue='1000'
 MaximumValue='5000'
 Type="Double"
 runat="server">
 Please enter a value between 1000 and 5000.
 </asp:RangeValidator>
<asp:label id='lblOutput' runat='server' />
</FORM>
</BODY>
</HTML>

In this example, we revisit the pay raise calculator. This time, we want to make sure that our human resources
executives aren't too generous or too stingy with our employees. To test this code, navigate to the page and attempt
to enter a value less than 1000 or greater than 5000 as a new pay rate. The control will render the page invalid,
preventing the data from being processed until you enter a valid amount.

You'll want to make sure that you always provide an error message that clearly informs the user what the valid range
is when using a RangeValidator control. If you can, it's even better to let the user know what the valid range is
initially, before the user has a chance to make an error.

Validation Using Regular Expressions

This document is created with the unregistered version of CHM2PDF Pilot

Regular expressions are a symbolic minilanguage used for text processing. You can use the
RegularExpressionValidator control to apply a regular expression comparison to a value in your form. To do this, you
assign the regular expression pattern to the ValidationExpression property of the RegularExpressionValidator control.

For example, suppose you're creating an application that requires users to establish a PIN number when they initially
create their account. The rules for your application are that PINs must be composed of a single non-numeric
character followed by three numbers. Determining whether a given string is four characters in length is easy in code,
but determining whether those digits are numbers or letters may take a bit of doing. Fortunately, it's easy using a
regular expression—the expression "\D\d\d\d" matches a string comprising a non-digit character followed by three
digits. A comparison based on this expression will reject anything larger or smaller than four characters in length.

Listing 11.19 shows an example of how to perform regular expression validation in ASP.NET using this validation
rule.

Listing 11.19 Performing Validation Based on a Regular Expression Comparison

<HTML>
<HEAD>
<TITLE>
Account Creation [RegExp]
</TITLE>
<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender,EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "Account created!";
 else
 lblOutput.Text = "";
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server" ID="Form1">

User ID:<asp:textbox id=txtUserID text='newuser' runat=server />

PIN:<asp:textbox id=txtPIN runat=server />
<asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />

 <asp:RegularExpressionValidator id="RegularExpressionValidator1"
 ControlToValidate="txtPIN"
 ValidationExpression="\D\d\d\d"
 runat="server">
 Please enter PIN comprising a non-number followed by three numbers.
 </asp:RegularExpressionValidator>

<asp:label id='lblOutput' runat='server' />
</FORM>
</BODY>
</HTML>

To test this code, navigate to the page in a browser and attempt to enter an invalid PIN (such as XXXX) into the
PIN field. You should be able to see that any combination of characters that does not match the regular expression
will cause the validation rule to fail; a valid entry is a string similar to "A599."

This document is created with the unregistered version of CHM2PDF Pilot

NOTE

A full exploration of the syntax of regular expressions is beyond the scope of this book, but they're covered
adequately in the .NET framework SDK documentation. The seminal book on regular expressions is Jeffrey E. F.
Friedl's Mastering Regular Expressions (O'Reilly). The book is geared toward developers writing scripts using the
Perl programming language in Unix, but don't let that scare you away—the amount of actual Perl code in the book is
very small.

Custom Validation Using the CustomValidator Object

You can use custom validation in situations where your validation is too complicated or irregular for the standard
validation controls described in this section.

To implement a custom validation rule using the CustomValidator control, you must write a custom validator function.
The cool thing about CustomValidator is that your validation function can reside and execute on either the server side
or the client side, or both. (Of course, if cross-browser compatibility is important to you, you will want to write your
client-side validation function in JavaScript.) To assign a server-side validation function to a CustomValidator, you
write a function and assign the name of the function to the ControlValidator's OnServerValidate property. To assign a
client-side function, write a client function and assign it to the ControlValidator's ClientValidationFunction property.

To demonstrate this function, we'll return to the PIN example introduced in the previous example. This time, we'll
assume that the user created an account and is ready to log in. We want to provide custom validation on the client
and server side for the PIN field. On the client side, we want to make sure that the PIN is composed of a letter and
three numbers; we will use a regular expression in JavaScript to do this. But you wouldn't want to verify the
password using client-side JavaScript, because this technique isn't secure (JavaScript is executed on the client and is
visible to the client). So we'll perform the actual verification of the PIN on the server.

Listing 11.20 shows an example of custom validation using server-side validation.

Listing 11.20 Performing Custom Validation on the Server Side

<HTML>
<HEAD>
<TITLE>
Login with PIN [Custom Validation]
</TITLE>

<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender,EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "Login successful!";
 else
 lblOutput.Text = "";
 }

This document is created with the unregistered version of CHM2PDF Pilot

 void ServerVerify(Object Sender, ServerValidateEventArgs Value)
 {
 // In a real application, this code would do
 // a database call or use Active Directory or
 // something interesting. For this example, no.
 if(txtPIN.Text == "A999")
 Value.IsValid = true;
 else
 Value.IsValid = false;
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server">

User ID:<asp:textbox id=txtUserID text='myusername' runat=server />

PIN:<asp:textbox id=txtPIN runat=server />
<asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />

 <asp:CustomValidator id="CustomValidator1"
 ControlToValidate="txtPIN"
 OnServerValidate="ServerVerify"
 runat="server">
 Invalid PIN number!
 </asp:CustomValidator>

<asp:label id='lblOutput' runat='server' />

</FORM>
</BODY>
</HTML>

You can see that the CustomValidator is pretty straightforward—to make it work, you set its OnServerValidate
property to the name of the function you want to use to perform the validation. Your code then sets the IsValid
property of the ServerValidateEventArgs object passed into the function to either true or false, depending on whether
the validation logic contained in the function has validated the data.

To create a client-side validation function, you create a validation function and assign its name to the
ClientValidationFunction property of the CustomValidator control. Your function should take two parameters: source
and arguments (this is similar to an event procedure declaration). Within the client validation function, you set the
value of arguments.IsValid to true or false, depending on the outcome of the validation code.

Also, you can write your client-side validation code in VBScript if cross-browser compatibility isn't important to you
(that is, you know that every user who uses your Web application will be using some version of Microsoft Internet
Explorer).

Note that if you don't want to perform client-side validation for some reason, you can simply omit it, as our code
example has done in Listing 11.20.

Providing a Summary of Validation Rule Violations

This document is created with the unregistered version of CHM2PDF Pilot

Summary validation takes the error messages generated by any number of validation controls and displays them in a
summary format. The ValidationSummary control can display its output inline on the page or in a pop-up message
box. Because it has the capability to give the user multiple error messages at once, it's very effective in situations
where you have many validation controls on a form.

Listing 11.21 shows an example of how summary validation works.

Listing 11.21 Displaying a Summary of Validation Errors

<HTML>
<HEAD>
<TITLE>
Pay Raise Calculator [Summary]
</TITLE>
<SCRIPT language="C#" runat="server">

 void SaveBtn_Click(Object Sender, EventArgs e)
 {
 if(Page.IsValid)
 lblOutput.Text = "The new pay rate is: " + txtNewRate.Text;
 else
 lblOutput.Text = "";
 }

</SCRIPT>
</HEAD>

<BODY>
<FORM runat="server" ID="Form1">

 <asp:RequiredFieldValidator id="RequiredFieldValidator1"
 ControlToValidate="txtName"
 ErrorMessage="Please enter an employee name."
 runat=server>
 *
 </asp:RequiredFieldValidator>

Employee Name:<asp:textbox id=txtName runat=server />

Current Rate:<asp:textbox id=txtOldRate text='3000' runat=server />

 <asp:RangeValidator id="RangeValidator1"
 ControlToValidate="txtNewRate"
 ErrorMessage="Please enter a value between 1000 and 5000."
 MinimumValue='1000'
 MaximumValue='5000'
 Type="Double"
 runat="server">*</asp:RangeValidator>

New Rate:<asp:textbox id=txtNewRate text='12.98' runat=server />

<asp:Button id=Button1 text="Save" OnClick="SaveBtn_Click" runat=server />

<asp:label id='lblOutput' runat='server' />

<asp:ValidationSummary id='ValidationSummary1' runat='server'
 DisplayMode='BulletList'
 HeaderText='You Committed Serious Data Validation Crimes:'
 ShowSummary='true'
 ShowMessageBox='true' />

</FORM>

This document is created with the unregistered version of CHM2PDF Pilot

</BODY>
</HTML>

Here we've returned to our pleasant pay raise calculator scenario. This time, we require that the user enter an
employee name and a new pay rate (the current pay rate is filled in automatically with a hard-coded value). Two
validation controls are on this page: a RequiredFieldValidator attached to the Employee Name field, and a
RangeValidator connected to the New Rate field. It would be obnoxious to give users an error message if they failed
to enter the employee's name, only to zap them with another error message when they neglect to enter a new pay
rate; the validation summary gives them all the applicable error messages at once. To test this, navigate to the page
and click the Save button without changing any of the values on the page.

The combination of red asterisks, warning messages on the page, and the message box alert probably makes this the
most annoying data entry form in the history of Web programming, but it's really all in the name of science. Certainly
your production Web forms will be more tasteful.

Using Multiple Validators

It often makes sense to have multiple validators attached to the same control. For example, if a field is required to be
present and to fall within a certain range of values, you might attach both a RequiredFieldValidator and a
RangeValidator to the control. There's no trick to this; simply assign as many validators as you need to implement the
validation logic you want.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Handling Errors

Errors in ADO.NET are handled the same way as elsewhere in the .NET framework—you can catch exceptions that
are thrown by objects involved in connecting to and interacting with the database.

The tricky thing about dealing with errors in data-access programming is that so many things can go wrong at various
stages in each request. The programmer can phrase the command in a syntactically incorrect way; the network
connection can be bad; the database server can be on vacation. So it's useful in database programming to have a rich
collection of error messages from every element in every database call.

ADO.old provided this in the form of an Errors collection associated with the database connection object. In
ADO.NET, you are given a provider-specific exception object that contains a collection of error messages. Again,
the functionality is similar to ADO.old; the only difference is in the implementation details.

In the SQL Server provider, a SqlException object is thrown whenever a data-access operation fails. This object
contains a collection of SqlError objects that you can examine in code to determine the full extent of what went
wrong with your database call.

If you're interested only in determining whether a particular data-access operation succeeded or failed, you need only
catch the top-level error. To get a brief error message pertaining to the error, use the Message property of the
SqlException object. On the other hand, if you want complete and detailed information about what went wrong, you
must iterate through the SqlError objects contained in the SqlException object (these are exposed through the
SqlException object's Errors collection).

Listing 11.22 shows an example of the simple method of displaying a SQL error.

Listing 11.22 Displaying a Data-Access Error

<% @Page language='c#' debug='true' %>
<% @Import namespace='System.Data' %>
<% @Import namespace='System.Data.SqlClient' %>

<HTML>
<SCRIPT runat='server'>

 void Page_Load(Object Sender,EventArgs e)
 {
 SqlConnection cn;
 SqlDataAdapter da;
 DataSet ds;
 String strSQL;

 strSQL = "SELECT TOP 10 au_fname FROM authors" ;
 cn = new SqlConnection("server=localhost;uid=sa;pwd=;database=pubs;");
 da = new SqlDataAdapter(strSQL, cn);

 // ** Fill DataSet

This document is created with the unregistered version of CHM2PDF Pilot

 ds = new DataSet();
 da.Fill(ds, "Authors");

 // ** Display data
 DataGrid1.DataSource = ds.Tables["Authors"].DefaultView;
 DataGrid1.DataBind();
 }

</SCRIPT>

<BODY>
 <ASP:datagrid id='DataGrid1' runat='server' />

</BODY>
</HTML>

This code intentionally contains an error (the SQL command contains a reference to a field that doesn't exist). To
show how the code runs without the error condition, fix the SQL command (the string "SELECT * from authors" will
work).

Listing 11.23 provides an example of the more complete way of iterating through the Errors collection to display
complete error information.

Listing 11.23 Using the Errors Collection to Display Rich Error Information

try
{

 // ** Fill DataSet
 ds = new DataSet();
 da.Fill(ds, "Authors");

 // ** Display data
 DataGrid1.DataSource = ds.Tables["Authors"].DefaultView;
 DataGrid1.DataBind();
 }
catch(SqlException sx)
{
 foreach(SqlError se in sx.Errors)
 {
 Response.Write("SQL Error: " + se.Message + "
");
 }
}

See the reference at the end of this chapter for more information on the properties and methods supported by the
SqlError object. Also remember that SqlError is unique to the SQL Server–managed provider in ADO.NET (if
you're using the OLE DB–managed provider, the analogous class is System.Data.OleDb.OleDbError).

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

ADO.NET Framework Reference

This section contains a brief reference to the ADO.NET objects mentioned in this chapter. It is not designed to be an
exhaustive reference. For complete descriptions, including information on the objects not discussed in this chapter,
refer to the .NET framework SDK documentation.

DataAdapter Class

Member of System.Data.Common. Abstract class. Inherits from System.ComponentModel.Component.

The DataAdapter class serves as the base class for data adapter implementations in the SQL Server, OLE DB (and
potentially other) data providers in ADO.NET.

Note that this is not the class you instantiate when you want to access data in ADO.NET; to write data-access code
using a data adapter in your applications, use the OleDbDataAdapter, SqlDataAdapter, or other provider-specific
data adapter class.

Properties

AcceptChangesDuringFill DesignMode MissingSchemaAction

Container Events Site

ContinueUpdateOnError MissingMappingAction TableMappings

Methods

CloneInternals FillSchema GetType

CreateObjRef Finalize InitializeLifetimeService

CreateTableMappings GetFillParameters MemberwiseClone

Dispose GetHashCode ShouldSerializeTableMappings

Equals GetLifetimeService ToString

Fill GetService Update

Events

Disposed

DataSet Class

Member of System.Data. Inherits from System.ComponentModel.MarshalByValueComponent.

Note that the DataSet class is not owned by any particular provider; any ADO.NET data provider is capable of
creating a DataSet object, and DataSet objects should interoperate across providers.

This document is created with the unregistered version of CHM2PDF Pilot

Properties

CaseSensitive EnforceConstraints Namespace

Container Events Prefix

DataSetName ExtendedProperties Relations

DefaultViewManager HasErrors Site

DesignMode Locale Tables

Methods

AcceptChanges GetXml ReadXmlSchema

Clear GetXmlSchema RejectChanges

Clone HasChanges Reset

Copy InferXmlSchema ResetTables

Dispose MemberwiseClone ShouldSerializeRelations

Equals Merge ShouldSerializeTables

Finalize OnPropertyChanging ToString

GetChanges OnRemoveRelation WriteXml

GetHashCode OnRemoveTable WriteXmlSchema

GetService RaisePropertyChanging

GetType ReadXml

Events

Disposed MergeFailed

DataColumn Class

Member of System.Data. Inherits System.ComponentModel.MarshalByValueComponent.

The DataColumn object represents the structure, or schema, of data in a DataTable object. You use the DataColumn
object to determine information about the structure of the field (not the data it contains).

This object is contained by the DataSet object and is therefore not provider specific.

Properties

AllowDBNull DataType Ordinal

AutoIncrememt DefaultValue Prefix

AutoIncrementSeed DesignMode ReadOnly

AutoIncrementStep Events Site

Caption Expression Table

ColumnMapping ExtendedProperties Unique

ColumnName MaxLength

Container Namespace

Methods

Dispose GetHashCode OnPropertyChanging

This document is created with the unregistered version of CHM2PDF Pilot

Dispose GetService RaisePropertyChanging

Equals GetType ToString

Finalize MemberwiseClone

Events

Disposed

DataRelation Class

Member of System.Data.

The DataRelation object is used to denote the relationship between two DataTable objects.

Properties

AllowDBNull DataType Ordinal

ChildColumns ExtendedProperties ParentTable

ChildKeyConstraint Nested RelationName

ChildTable ParentColumns

DataSet ParentKeyConstraint

Methods

CheckStateForProperty GetHashCode ToString

Equals GetType

Finalize MemberwiseClone

DataTable Class

Member of System.Data.

The DataTable object represents a unit of data arranged as collections of rows and columns. It is contained by the
DataSet object and is not provider specific.

Properties

CaseSensitive DesignMode Namespace

ChildRelations DisplayExpression ParentRelations

Columns Events Prefix

Constraints ExtendedProperties PrimaryKey

Container HasErrors Rows

DataSet Locale Site

DefaultView MinimumCapacity TableName

Methods

AcceptChanges Finalize OnColumnChanged

This document is created with the unregistered version of CHM2PDF Pilot

BeginInit GetChanges OnColumnChanging

BeginLoadData GetErrors OnPropertyChanging

Clear GetHashCode OnRemoveColumn

Clone OnRowChanged

Compute GetService OnRowChanging

Copy GetType OnRowDeleted

Dispose ImportRow OnRowDeleting

Dispose LoadDataRow RejectChanges

EndInit MemberwiseClone Reset

EndLoadData NewRow Select

Equals NewRowFromBuilder ToString

Events

ColumnChanged RowChanged RowDeleting

ColumnChanging RowChanging

Disposed RowDeleted

OleDbCommand Class

Member of System.Data.OleDb. Inherits from System.Component.Component.

The OleDbCommand object is used to execute commands (including queries and such operations as data
manipulation commands) against a data source.

Properties

CommandText Container Parameters

CommandTimeout DesignMode Site

CommandType DesignTimeVisible Transaction

Connection Events UpdatedRowSource

Methods

Cancel ExecuteScalar InitializeLifetimeService

CreateobjRef Finalize MemberwiseClone

CreateParameter GetHashCode Prepare

Dispose GetLifetimeService ResetCommandTimeout

Equals GetService ToString

ExecuteNonQuery GetType

ExecuteReader

Events

Disposed

SqlDataAdapter Class

This document is created with the unregistered version of CHM2PDF Pilot

Member of System.Data.SqlClient. Inherits from System.Data.DataAdapter.

The SqlDataAdapter object is used primarily to create DataSet objects in the SQL Server–managed provider. In
thick client context, the data adapter can also be used to provide cursorless navigation, filtering, creation, deletion,
and updating of data. The OLE DB equivalent is System.Data.OleDb.OleDbDataAdapter.

Properties

AcceptChangesDuringFill Events Site

Container InsertCommand TableMappings

ContinueUpdateOnError MissingMappingAction UpdateCommand

DeleteCommand MissingSchemaAction

DesignMode SelectCommand

Methods

CloneInternals InitializeLifetimeService

CreateObjRef MemberwiseClone

CreateRowUpdatedEvent FillSchema OnFillError

CreateRowUpdatingEvent Finalize OnRowUpdated

CreateTableMappings GetFillParameters OnRowUpdating

Dispose GetHashCode ShouldSerializeTableMappings

 GetLifetimeService ToString

Equals GetService

Fill GetType Update

Events

AllowDBNull DataType Ordinal

Disposed RowUpdated

FillError RowUpdating

SqlDataReader Class

Member of System.Data.SqlClient. Inherits System.MarshalByRefObject.

The SqlDataReader object enables connection-based, fast access to data in the SQL Server–managed provider. The
OLE DB equivalent to this object is System.Data.OleDb.OleDbDataReader.

Properties

Depth IsClosed RecordsAffected

FieldCount Item

Methods

Close GetInt16 GetSqlInt64

CreateObjRef GetInt32 GetSqlMoney

Equals GetInt64 GetSqlSingle

This document is created with the unregistered version of CHM2PDF Pilot

Finalize GetLifetimeService GetSqlString

GetBoolean GetName GetSqlValue

GetByte GetOrdinal GetSqlValues

GetBytes GetSchemaTable GetString

GetChar GetSqlBinary GetType

GetChars GetValue

GetDataTypeName GetSqlBoolean GetValues

GetDateTime GetSqlByte IntializeLifetimeService

GetDecimal GetSqlDateTime IsDBNull

GetDouble GetSqlDecimal MemberwiseClone

GetFieldType GetSqlDouble NextResult

GetFloat GetSqlGuid Read

GetGuid GetSqlInt16 ToString

GetHashCode GetSqlInt32

SqlConnection Class

Member of System.Data.SqlClient.

The SqlConnection object is used to create and maintain a connection to a data source in the SQL Server–managed
provider. Its OLE DB provider equivalent is System.Data.OleDb.OleDbConnection.

Properties

ConnectionString DataSource ServerVersion

ConnectionTimeout DesignMode Site

Container Events State

Database PacketSize WorkstationId

Methods

BeginTransaction Equals InitializeLifetimeService

ChangeDatabase Finalize MemberwiseClone

Close GetHashCode Open

CreateCommand GetLifetimeService ToString

CreateObjRef GetService

Dispose GetType

Events

Disposed InfoMessage StateChange

SqlError Class

Member of System.Data.SqlClient.

This document is created with the unregistered version of CHM2PDF Pilot

The SqlError object is found in the Errors collection contained by the SqlException object. It is designed to provide
SQL Server–specific error information. Its OLE DB provider equivalent is the OleDbError class.

Note that this object (and the SqlException object that contains it) is available only when you use the SQL
Server–managed provider.

Properties

Class Number Source

LineNumber Procedure State

Message Server

Methods

Equals GetHashCode MemberwiseClone

Finalize GetType ToString

SqlException Class

Member of System.Data.SqlClient. Inherits from System.Exception.

The SqlException object is the object thrown when an error occurs in the ADO.NET SQL Server–managed
provider. This object contains a collection of SqlError objects that you can use to get detailed information on exactly
what caused the data-access error.

The equivalent to this class in the OLE DB provider is the OleDbException class.

This object is typically caught in an exception handler rather than constructed.

Properties

Class LineNumber Source

Errors Message StackTrace

HelpLink Number State

Hresult Procedure TargetSite

InnerException Server

Methods

Equals GetHashCode MemberwiseClone

Finalize GetObjectData ToString

GetBaseException GetType
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wesley were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.

For more information, please contact:

Pearson Education Corporate Sales Division

201 W. 103rd Street

Indianapolis, IN 46290

(800) 428-5331

corpsales@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Copyright 2002 by Pearson Education

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously in Canada.

05 04 03 02 DOC 4 3 2 1

First printing April 2002

This document is created with the unregistered version of CHM2PDF Pilot

Credits

Associate Publisher

Linda Engelman

Acquisitions Editor

Sondra Scott

Development Editors

Angela Allen

Laurie McGuire

Managing Editor

Charlotte Clapp

Project Editor

Carol Bowers

Copy Editor

Barbara Hacha

Indexer

Tim Tate

Proofreader

This document is created with the unregistered version of CHM2PDF Pilot

Jessica McCarty

Contributor

Anjani Chittajallu

Technical Editor

Joel Mueller

Team Coordinator

Lynne Williams

Media Developer

Dan Scherf

Interior Designer

Gary Adair

Cover Designer

Gary Adair

Page Layout

Ayanna Lacey

Dedication

For Celeste

This document is created with the unregistered version of CHM2PDF Pilot

Jeffrey P. McManus

This book is dedicated to my dad, who supported and encouraged me in everything I did.

Chris Kinsman

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Web directories
 activating tracing for entire Web directories with Web.config 2nd
 tracing 2nd
Web.config
 activating tracing entire Web directories 2nd
!= (inequality operator), XPath queries
& (ampersand) character
 XML
* (asterisk)
 authorization settings (Web.Config/Machine.Config files)
* (asterisk) wildcard
 HttpHandlers
-Y switch (XCOPY)
. (dot) operator
 XPath queries
.FirstChild() property (XML) 2nd
.Load() method (XML) 2nd 3rd 4th 5th 6th
 listings
 10.11, loading a local XML file
 10.12, loading an XML file residing on a Web server
 10.13, loading a local XML file 2nd
.NET framework 2nd
 Common Language Runtime (CLR) 2nd 3rd
/ (slash)
 path attribute, forms authentication 2nd
/ (slash) character
 XML closing tags
/* shortcut (XPath)
? (question mark)
 authorization settings (Web.Config/Machine.Config files)
 URL authorization
@ symbol
 XPath queries (XML)
@Application directive (Global.aspx file) 2nd
@Assembly directive (Global.aspx file) 2nd 3rd
@Assembly directive (Page object)
@Control directive (Page object)
@Implements directive (Page object) 2nd
@Import directive (Page object) 2nd
@OutputCache directive (Page object)
@Page directive 2nd 3rd 4th 5th 6th
 (Page object)
 . [See also Page object, attributes]
 listing 2.23, typical @Page directive 2nd
@Register directive (Page object)
~ (tilde) character
 server side control HREFs

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A switch (XCOPY)
AbortTransaction event
 Page object
AbsoluteExpiration argument (Cache class) 2nd 3rd
Access Control Lists (ACLs)
 file authorization 2nd
Accessibility attribute (PassportIdentity class)
accessing data 2nd
ACLs (Access Control Lists)
 file authorization 2nd
Activator .asmx file listing 2nd
Active Server Pages (ASP) 2nd 3rd 4th
 disadvantages 2nd 3rd 4th 5th 6th
Active-User array, displaying results in Global.asax files 2nd 3rd
ActiveX Data Objects. [See ADO]2nd [See ADO]
Add argument (Cache class)
AddDisplay.aspx code listing 2nd 3rd
ADO
 (ActiveX Data Objects) 2nd
ADO.NET 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 classes
 DataAdapter 2nd 3rd
 DataColumn 2nd 3rd 4th 5th
 DataRelation 2nd
 DataSet 2nd
 DataTable 2nd
 OleDbCommand 2nd
 SqlConnection 2nd
 SqlDataAdapter 2nd
 SqlDataReader 2nd 3rd
 SqlError 2nd
 SqlException 2nd
 common database access scenarios 2nd 3rd
 connecting to databases 2nd 3rd 4th 5th 6th 7th 8th 9th
 error handling 2nd 3rd 4th
 OLE DB provider 2nd 3rd 4th
 Open/Close methods 2nd 3rd
 SQL Server provider 2nd
 creating Web Forms for data entry 2nd 3rd 4th
 comparison validation 2nd 3rd 4th 5th
 custom validation 2nd 3rd 4th 5th
 range validation 2nd 3rd 4th
 regular expression validation 2nd 3rd
 required field validation 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
 using multiple validators
 validation 2nd 3rd 4th
 data access 2nd
 data adapters 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

 . [See also data adapters]
 binding DataView object to Web Forms controls 2nd 3rd 4th
 binding objects to Web Forms controls 2nd 3rd 4th
 displaying query data in browsers 2nd
 expressing DataSets as XML 2nd 3rd 4th 5th
 data-containing objects 2nd
 disconnected access support 2nd 3rd
 error handling 2nd 3rd 4th 5th 6th
 new features 2nd 3rd 4th 5th 6th 7th
 queries 2nd 3rd 4th
 (begin)
 (end)
 command object 2nd
 displaying query data in Web browsers 2nd 3rd 4th 5th
 displaying query data in Web Forms DataGrid control 2nd
 displaying query results using SqlDataAdapter and DataSet 2nd 3rd
 executing stored procedures that return scalar values 2nd 3rd
 passing parameters to stored procedures 2nd 3rd 4th 5th 6th
 retrieving data reader objects via text commands 2nd 3rd 4th 5th 6th 7th
 retrieving data via stored procedures 2nd 3rd 4th 5th
 SqlDataReader object 2nd 3rd 4th 5th 6th 7th 8th
 remoting support 2nd
 server-side cursors 2nd
 stored procedures
 executing stored procedures that return data 2nd 3rd 4th 5th
 passing parameters 2nd 3rd 4th 5th 6th
 returning scalar values 2nd 3rd
 versus text-based commands
 XML support 2nd
AdRotator class 2nd 3rd 4th 5th 6th
 AdvertisementFile property 2nd
 banner dimensions
 listing 2.29 2nd 3rd
 listing 2.30 2nd
ads
 ad insertion engine that replaces <adinsert tags with ads 2nd 3rd 4th
 output from AdInserter.vb 2nd 3rd
advertisements
 rotating (AdRotator class) 2nd 3rd 4th 5th 6th
 banner dimensions
 listing 2.29 2nd 3rd
 listing 2.30 2nd
allowOverride attribute (Web.Config) 2nd
ampersand character (&)
 XML
AND keyword
 XPath queries
anonymous users, denying 2nd
AppendChild method (XML) 2nd
application directives (Global.asax file) 2nd 3rd 4th
application programming interface (API)
 databases

This document is created with the unregistered version of CHM2PDF Pilot

 databases. [See also ADO.NET]
Application-Scoped objects, declaring in Global.asax files 2nd 3rd
Application_AuthenticateRequest (global.asax) 2nd 3rd 4th
applications
 databases. [See databases]
 debugging 2nd 3rd
 . [See also debugging]
 initializing using Global.asax files 2nd
 (begin)
 (end)
 application directives 2nd 3rd 4th
 code declaration blocks 2nd 3rd
 server-side includes 2nd
 server-side object tags 2nd 3rd 4th 5th
 tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 categorizing output 2nd 3rd 4th 5th 6th 7th
 enabling application tracing 2nd 3rd 4th
 enabling page tracing 2nd 3rd 4th
 equipping pages for Trace mode 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 trace information categories 2nd
 viewing application trace data from remote browser windows 2nd 3rd
 Web.Config/Machine.Config Trace settings 2nd 3rd 4th
AppSettings method (ConfigurationSettings object)
ArrayList
 Web services returning array lists 2nd 3rd 4th 5th
ArrayList object
 binding DataGrid control 2nd
 listing 2.34, binding DropDownList control to data in ArrayList object 2nd 3rd
arrays
 Active-User array, displaying results in Global.asax files 2nd 3rd
ASMX file extension
ASP (Active Server Pages) 2nd 3rd 4th
 disadvantages 2nd 3rd 4th 5th 6th
ASP.NET 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 advantages 2nd 3rd 4th 5th
 control model 2nd 3rd
 (begin)
 (end)
 event handling 2nd 3rd 4th 5th 6th 7th
 event handling. [See also event handling]
 form state 2nd 3rd
 HTML controls 2nd
 HTML controls. [See also HTML controls]
 server controls 2nd 3rd 4th 5th
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 events 2nd 3rd 4th 5th
 . [See also events, event handling]
 new features 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 State Server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Web services. [See Web services]
AspCompat attribute, Page object 2nd
assemblies

This document is created with the unregistered version of CHM2PDF Pilot

 @Assembly directive (Global.aspx file) 2nd 3rd
asterisk (*)
 authorization settings (Web.Config/Machine.Config files)
asterisk (*) wildcard
 HttpHandlers
asynchronous clients, Web services 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
attributes
 form authentication settings 2nd 3rd 4th 5th
 Page object 2nd 3rd
 AspCompat 2nd
 AutoEventWireup 2nd
 Buffer 2nd
 ClassName
 ClientTarget 2nd
 CodePage 2nd
 CompilerOptions 2nd
 ContentType 2nd
 Culture 2nd
 Debug
 Description
 EnableSessionState
 EnableViewState 2nd
 EnableViewStateMac 2nd
 ErrorPage
 Inherits
 Language
 LCID 2nd
 SmartNavigation
 Src 2nd
 Trace
 TraceMode
 Transaction
 UICulture
 WarningLevel 2nd
 Passport authentication 2nd
 WebMethod() 2nd 3rd 4th
 calling via HTTP GET
 Simple() WebMethod of SimpleDataSet 2nd 3rd 4th 5th
 viewing WSDL output
 WebMethodAttribute class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 WebMethodAttribute class;BufferResponse property 2nd
 WebMethodAttribute class;CacheDuration property 2nd 3rd 4th
 WebMethodAttribute class;Description property 2nd 3rd 4th 5th 6th 7th
 WebMethodAttribute class;EnableSession property 2nd 3rd 4th 5th
 WebMethodAttribute class;TransactionOption property 2nd
 XML 2nd 3rd
 creating 2nd
 displaying attribute values using GetAttribute method 2nd 3rd
 using attributes in queries 2nd 3rd 4th
authentication
 cookie-based authentication
 file authorization 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 forms authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 advantages 2nd
 process flow 2nd 3rd 4th 5th
 roles 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 settings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 versus Windows authentication 2nd 3rd
 HttpModules 2nd 3rd 4th
 Passport authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th
 Passport Web site
 PassportIdentity class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Site IDs
 web.config setup 2nd
 URL authorization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 location element 2nd 3rd 4th 5th
 using forms authentication with URL authorization 2nd 3rd 4th
 FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 Web.Config/Machine.Config settings 2nd 3rd 4th
 Windows authentication 2nd 3rd
 versus forms authentication 2nd 3rd
 WindowsBuiltInRole enumeration 2nd 3rd 4th 5th 6th 7th
authorization
 groups
 Web.Config/Machine.Config settings 2nd
AuthorizeRequest event
AutoEventWireup attribute, Page object 2nd
availability 2nd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

banners
 rotating advertisements (AdRotator class) 2nd 3rd 4th 5th 6th 7th 8th 9th
 banner dimensions
 listing 2.29 2nd 3rd
 listing 2.30 2nd 3rd
BDay_precision attribute (PassportIdentity class)
BeginRequest HttpModule 2nd 3rd 4th 5th
 (time stamping output HTML)
binding data
 Repeater control 2nd 3rd 4th 5th 6th 7th
 Web forms
binding data. [See data binding]
binding date
 DataBinding event
 Page object
binding objects to Web Forms controls via data adapters 2nd 3rd 4th
 DataView object 2nd 3rd 4th
binding server controls to data 2nd
binding Web services to forms 2nd 3rd 4th 5th
Birthdate attribute (PassportIdentity class)
book.xls file
 listing 10.43, books.xml File Containing a Link to the books.xsl Style Sheet 2nd
book.xml document
 listings
 10.33, simplified book.xml document 2nd
books.xml document
 inserting new books using the XmlNode InsertAfter method 2nd 3rd
books.xml file
 creating file with XmlTextWriter object 2nd 3rd 4th 5th
 querying
 combining multiple criteria with AND and OR 2nd
 excluding nodes based on attribute values 2nd
 retrieving a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 retrieving a specific TITLE node by querying on its text 2nd
 retrieving author information based on author ID 2nd
 retrieving multiple instances of same author 2nd 3rd
 running a simple query 2nd
 XPath query page used to test XPath queries against books.xml 2nd
books.xml listing 2nd 3rd
BreadCrumbSearch.aspx code listing 2nd 3rd 4th
breakpoints 2nd
browers
 ContentType attribute (Page object) 2nd
browsers
 capabilities settings
 Web.Config/Machine.Config settings 2nd
 determining browser capabilities 2nd 3rd 4th 5th 6th 7th
 HttpBrowserCapabilities class
 caching 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

 page requests 2nd 3rd 4th 5th 6th
 specifying browser type via ClientTarget attribute 2nd
Buffer attribute, Page object 2nd
buffering 2nd
BufferResponse property (WebMethodAttribute class) 2nd
business logic componenets
 Global Assembly Cache (GAC) 2nd 3rd 4th
Button class 2nd 3rd 4th
Button.aspx listing 2nd 3rd 4th 5th 6th
buttons
 HtmlButton control 2nd 3rd 4th 5th
 HtmlInputButton control 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputRadioButton control 2nd
 ImageButton control 2nd 3rd 4th
 LinkButton control 2nd 3rd
 RadioButton control 2nd 3rd 4th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C switch (XCOPY)
Cache class 2nd 3rd 4th 5th
 . [See also caching]
 AbsoluteExpiration argument 2nd 3rd
 Add argument
 caching database queries 2nd 3rd 4th 5th 6th 7th
 Count argument 2nd
 Insert argument
 ItemPriority argument
 MaxItems argument 2nd
 SlidingExpiration argument 2nd 3rd 4th 5th
Cache5.aspx code listing 2nd
CacheCallback.aspx code listing 2nd 3rd 4th
CachedBrowser.aspx code listing
CacheDependency class 2nd 3rd 4th 5th 6th 7th 8th 9th
CacheDependency.aspx code listing 2nd 3rd
CachedHost.aspx code listing 2nd
CachedSearchBroken.aspx code listing 2nd 3rd 4th
CachedSearchFixed.aspx code listing 2nd 3rd 4th
CacheDuration property
 WebMethodAttribute class 2nd 3rd 4th
CacheExpiration.aspx code listing 2nd 3rd 4th 5th 6th
caches
 Global Assembly Cache (GAC) 2nd 3rd 4th 5th
 gacutil utility 2nd 3rd
CacheTerritories code listing 2nd 3rd
caching 2nd 3rd 4th
 @OutputCache directive (Page object)
 browser differences 2nd 3rd 4th
 database queries 2nd 3rd 4th 5th 6th 7th
 dependencies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 expiring items 2nd 3rd 4th 5th
 form results 2nd 3rd 4th 5th 6th
 HttpCachePolicy class 2nd
 HttpCacheVaryByHeaders class 2nd
 HttpCacheVaryByParams class 2nd
 listings
 5.11, directive for 5-minute cache 2nd
 5.12, browser capabilities 2nd
 5.13, form using RequiredFieldValidator 2nd
 5.14, form creating copies for different browsers 2nd 3rd
 5.15, creating cached page for each header 2nd
 5.16, incorrect form output caching 2nd 3rd 4th
 5.17, correct form output caching 2nd 3rd 4th
 5.18, partial page caching user control (SalesPeople.ascx) 2nd 3rd
 5.19, partial page caching user control (SalesByEmployee.ascx) 2nd 3rd 4th 5th
 5.20, partial page caching of previous search terms (LastFiveSearchTerms) 2nd 3rd
 5.21, search page containing term caching (BreadCrumbSearch.aspx) 2nd 3rd 4th
 5.22, containing page defining cache directive 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 5.22, containing page without cache directive
 5.23, containing page without cache directive
 5.24, query that places output into drop-downlist 2nd 3rd
 5.25, query that stores output in cache 2nd 3rd 4th
 5.26, expiring items 2nd 3rd
 5.27, re-adding dropped out cache items 2nd 3rd 4th
 5.28, refreshing cached items via dependencies 2nd 3rd
 5.29, removing/inserting items from cache with expirations 2nd 3rd 4th 5th
 output caching (entire pages) 2nd 3rd 4th 5th 6th 7th
 partial pages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 allowed user control/ output caching combinations 2nd 3rd 4th 5th
 generating crumb trails of previous search terms 2nd 3rd 4th 5th
 generating phone lists 2nd 3rd 4th 5th 6th
 re-adding dropped out items via callback routine 2nd 3rd 4th 5th
 removing expired items 2nd
 VaryByCustom/VaryByHeader 2nd 3rd
caching output (HttpModules) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Calendar class 2nd 3rd 4th 5th
Calendar Web control 2nd 3rd 4th 5th 6th 7th 8th
 output
 rendered HTML source 2nd 3rd 4th 5th 6th 7th
callback routines
 re-adding dropped out cache items 2nd 3rd 4th 5th
categorizing Trace output 2nd 3rd 4th 5th 6th 7th
cells
 HtmlTableCell control 2nd
 HtmlTableCellCollection control 2nd
 HtmlTextArea control 2nd
cells. [See tables]
characters
 XML
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
 enclosing character data 2nd 3rd 4th 5th
check boxes
 HtmlInputCheckbox control 2nd
CheckBox class 2nd 3rd 4th
ChildNodes class (XML) 2nd 3rd 4th 5th
City attribute (PassportIdentity class)
classes
 . [See also objects]
 AdRotator 2nd 3rd 4th 5th 6th
 AdvertisementFile property 2nd
 banner dimensions
 listing 2.29 2nd 3rd
 listing 2.30 2nd
 Button 2nd 3rd 4th
 Cache 2nd 3rd 4th 5th
 . [See also caching]
 AbsoluteExpiration argument 2nd 3rd
 Add argument
 caching database queries 2nd 3rd 4th 5th 6th 7th

This document is created with the unregistered version of CHM2PDF Pilot

 Count argument 2nd
 Insert argument
 ItemPriority argument
 MaxItems argument 2nd
 SlidingExpirationargument 2nd 3rd 4th 5th
 CacheDependency 2nd 3rd 4th 5th 6th 7th 8th 9th
 Calendar 2nd 3rd 4th 5th
 CheckBox 2nd 3rd 4th
 ChildNodes (XML) 2nd 3rd 4th 5th
 compiling into .NET components 2nd
 ConfigurationSettings
 AppSettings method
 Control 2nd 3rd
 DataAdapter (ADO.NET) 2nd 3rd
 DataColumn (ADO.NET) 2nd 3rd 4th 5th
 DataGrid 2nd 3rd
 DataList 2nd 3rd 4th 5th 6th
 DataRelation (ADO.NET) 2nd
 DataSet (ADO.NET) 2nd
 DataTable (ADO.NET) 2nd
 Debug 2nd 3rd
 DropDownList 2nd 3rd 4th 5th 6th 7th 8th
 EventLog 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 FormsAuthenticationTicket 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 GenericIdentity 2nd 3rd
 GenericPrincipal 2nd
 HtmlAnchor 2nd 3rd 4th 5th
 HtmlButton 2nd 3rd 4th 5th
 HtmlForm 2nd 3rd 4th 5th 6th 7th 8th 9th
 HtmlImage 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 HtmlInputButton 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputCheckbox 2nd
 HtmlInputFile 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputHidden 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputImage 2nd
 HtmlInputRadioButton 2nd
 HtmlInputText 2nd
 HtmlSelect 2nd
 HtmlTable 2nd
 HtmlTableCell 2nd
 HtmlTableCellCollection 2nd
 HtmlTableRow 2nd
 HtmlTableRowCollection 2nd
 HtmlTextArea 2nd
 HttpApplication 2nd 3rd 4th 5th 6th 7th 8th
 HttpBrowserCapabilities 2nd 3rd 4th 5th 6th 7th
 caching 2nd 3rd 4th
 HttpCachePolicy 2nd
 HttpCacheVaryByHeaders 2nd
 HttpCacheVaryByParams 2nd
 HttpRequest 2nd
 HttpResponse 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 HttpServerUtility 2nd
 HttpSessionState 2nd 3rd 4th 5th
 . [See also state management]
 TimeOut property 2nd
 Hyperlink 2nd 3rd
 IHttpHandler 2nd
 . [See also HttpHandlers]2nd [See also HttpHandlers]
 IHttpModule 2nd
 IhttpModule
 . [See also HttpModules]
 Image 2nd 3rd
 ImageButton 2nd 3rd 4th
 inheritance
 Inherits attribute (Page object)
 Label 2nd 3rd
 LinkButton 2nd 3rd 4th 5th 6th 7th
 ListBox 2nd 3rd
 OleDbCommand 2nd 3rd
 OleDbCommand (ADO.NET) 2nd
 OleDbConnection 2nd 3rd 4th 5th 6th
 OleDbDataReader
 Page 2nd 3rd
 Panel 2nd 3rd
 PassportIdentity 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 attributes 2nd
 PerformanceCounter 2nd
 Repeater 2nd 3rd 4th 5th 6th 7th
 SmtpMail 2nd 3rd
 SoapHttpClientProtocol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 CookieContainer property 2nd 3rd 4th 5th 6th 7th 8th 9th
 SqlCommand
 SQLCommand
 ExecuteScalar method 2nd 3rd
 SqlCommand
 Parameters collection 2nd
 SqlConnection 2nd 3rd 4th 5th 6th 7th
 SqlConnection (ADO.NET) 2nd
 SqlDataAdapter
 . [See also data adapters (ADO.NET)]
 SqlDataAdapter (ADO.NET) 2nd
 SqlDataReader 2nd 3rd 4th 5th 6th 7th 8th
 calling stored procedures 2nd 3rd 4th
 returning SqlDataReader objects via text commands 2nd 3rd 4th 5th 6th 7th
 SqlDataReader(ADO.NET) 2nd 3rd
 SqlError (ADO.NET) 2nd
 SqlException (ADO.NET) 2nd
 Table 2nd
 TableCell 2nd 3rd
 TableRow 2nd 3rd
 TextBox 2nd
 TraceContext 2nd
 ValidationEventArgs 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 WebControl 2nd 3rd
 WebMethodAttribute class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 BufferResponse property 2nd
 CacheDuration property 2nd 3rd 4th
 Description property 2nd 3rd 4th 5th 6th 7th
 EnableSession property 2nd 3rd 4th 5th
 TransactionOption property 2nd
 WebService 2nd 3rd
 WindowsIdentity 2nd
 WindowsPrincipal 2nd 3rd
 XML Document Object Model (DOM) 2nd 3rd 4th 5th 6th 7th 8th 9th
 extended classes 2nd
 fundamental classes 2nd 3rd
 XmlDataReader 2nd 3rd 4th 5th 6th 7th
 XmlDocument 2nd 3rd 4th 5th 6th 7th 8th
 XMLDocument class
 creating XmlNodeReader objects from XmlDocument objects
 XmlNamedNodeMap 2nd
 XmlNode 2nd 3rd 4th
 InsertAfter method 2nd 3rd
 viewing document data 2nd 3rd 4th 5th 6th 7th 8th
 XmlNodeList 2nd
 XmlNodeReader 2nd 3rd 4th
 navigating/updating documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 XmlReader 2nd
 XmlTextReader 2nd 3rd
 XmlTextWriter 2nd
 writing data 2nd 3rd 4th 5th 6th 7th
 XmlValidatingReader 2nd 3rd
 validating schemas 2nd 3rd 4th 5th 6th 7th 8th
 XmlWriter 2nd 3rd
ClassName attribute, Page object
clients
 asynchronous clients, Web services 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
ClientTarget attribute, Page object 2nd
Close method
 database connections 2nd 3rd
CLR (Common Language Runtime) 2nd 3rd
CLS (Common Language Specification) 2nd 3rd
code
 breakpoints 2nd
 debugging. [See debugging]
 Global.asax declaration blocks 2nd 3rd
 reusing 2nd 3rd
 custom user-interface objects. [See controls]
 server-side includes (SSIs) 2nd
 reusing code. [See components]
code behind 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 denoting code-behind class used by a page (ClassName attribute)
 inheriting from a class using Inherits attribute (Page object)
 listing 2.24, definition of a code-behind Page_Load event procedure without AutoEventWireup 2nd
 listing 2.8, SamplePage3.aspx, using code behind 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 listing 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd
 Src (source) attribute (Page object) 2nd
 src attribute (Page object)
Code Behind Web Service Class That Implements a Cached Time Service 2nd
code listings. [See listings]
code, separating from presentation using code behind 2nd 3rd 4th 5th 6th 7th 8th 9th
 . [See also code behind]
 listing 2.8, SamplePage3.aspx, using code behind 2nd 3rd
 listing 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd
CodePage attribute, Page object 2nd
COM (Component Object Model) libraries 2nd
COM objects 2nd
 . [See also assemblies]
comma-delimited data (XML) 2nd 3rd
 enclosing character data 2nd 3rd 4th 5th
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
command line
 creating .NET components with command-line compiler 2nd 3rd 4th 5th 6th
 gacutil tool 2nd 3rd
commands
 ADO.NET command objects 2nd
 calling stored procedures using SqlCommand 2nd 3rd 4th 5th 6th 7th
 executing commands that donÕt return data (nonquery commands) 2nd 3rd 4th
 executing text-based commands to retrieve data reader objects 2nd 3rd 4th 5th 6th 7th
 COPY
 Windows 2000 changes
 data-manipulation commands
 MOVE
 Windows 2000 changes
 SqlCommand class
 Parameters collection 2nd
 SQLCommand object
 ExecuteScalar method 2nd 3rd
 XCOPY. [See XCOPY deployment]
CommitTransaction event
 Page object
Common Language Runtime (CLR) 2nd 3rd
Common Language Specification (CLS) 2nd 3rd
CompareValidator control 2nd 3rd 4th 5th
 properties
 ValidationCompareOperator enumeration 2nd 3rd
compilation settings (Web.Config/Machine.Config files) 2nd 3rd
compiler warnings (WarningLevel attribute, Page object) 2nd
CompilerOptions attribute, Page object 2nd
compiling controls as .NET components 2nd 3rd 4th 5th 6th
 creating components with command-line compiler 2nd 3rd 4th 5th 6th
 deploying components 2nd
complex types (XML) 2nd 3rd 4th 5th 6th 7th
componenets
 Global Assembly Cache (GAC) 2nd 3rd 4th
Component Object Model (COM) libraries 2nd

This document is created with the unregistered version of CHM2PDF Pilot

components
 creating .NET components with Visual Studio
composite server controls 2nd 3rd 4th 5th 6th 7th 8th
Config.Web files
 reading with AppSettings method (ConfigurationSettings object)
configuration 2nd 3rd 4th 5th 6th
 . [See also Web.Config files]
 accessing configuration files programmatically 2nd 3rd 4th
 AppSettings method (ConfigurationSettings object)
 ASP.old versus ASP.NET 2nd 3rd
 editing Web configuration files in Visual Studio.NET 2nd
 global/local configuration files 2nd
 locking down Web configuration settings 2nd
 Machine.Config file 2nd
 multiple locations 2nd 3rd 4th 5th 6th
 section handlers
 authentication 2nd 3rd 4th
 authorization 2nd
 browser capabilities 2nd
 compilation 2nd 3rd
 custom errors 2nd 3rd
 execution timeout 2nd
 globalization 2nd 3rd
 HTTP handlers
 HTTP modules 2nd
 pages 2nd 3rd
 process model 2nd 3rd
 session state 2nd 3rd
 trace 2nd 3rd 4th
 Web services 2nd 3rd
 section handlers (Web.Config/Machine.Config files)
 Web.Config files 2nd
 . [See also Web.Config files]
ConfigurationSettings object
 AppSettings method
confirmations, file deletion (XCOPY) 2nd 3rd
connecting to databases 2nd 3rd 4th 5th 6th 7th 8th 9th
 error handling 2nd 3rd 4th
 OLE DB provider 2nd 3rd 4th
 Open/Close methods 2nd 3rd
 SQL Server provider 2nd
constructors
 CacheDependency class
consuming Web services 2nd 3rd 4th 5th 6th 7th 8th 9th
 asynchronous clients 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 SoapHttpClientProtocol class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 CookieContainer property 2nd 3rd 4th 5th 6th 7th 8th 9th
ContainerPage.aspx code listing 2nd
ContentType attribute, Page object 2nd
control
 registering
 @Register directive (Page object)

This document is created with the unregistered version of CHM2PDF Pilot

Control class 2nd 3rd
Control directive
 user controls 2nd
controls
 @Control directive (Page object)
 ASP.NET control model 2nd 3rd
 (begin)
 (end)
 event handling 2nd 3rd 4th 5th 6th 7th
 event handling. [See also event handling]
 form state 2nd 3rd
 HTML controls 2nd
 HTML controls. [See also HTML controls]
 server controls 2nd 3rd 4th 5th
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 composite controls 2nd 3rd 4th 5th 6th 7th
 creating basic server controls
 Register directive 2nd
 delegation 2nd 3rd 4th
 HTML controls 2nd 3rd
 equivalent HTML tags 2nd 3rd
 HtmlAnchor 2nd 3rd 4th 5th
 HtmlButton 2nd 3rd 4th 5th
 HtmlForm 2nd 3rd 4th 5th 6th 7th 8th 9th
 HtmlImage 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 HtmlInputButton 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputCheckbox 2nd
 HtmlInputFile 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputHidden 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputImage 2nd
 HtmlInputRadioButton 2nd
 HtmlInputText 2nd
 HtmlSelect 2nd
 HtmlTable 2nd
 HtmlTableCell 2nd
 HtmlTableCellCollection 2nd
 HtmlTableRow 2nd
 HtmlTableRowCollection 2nd
 HtmlTextArea 2nd
 server controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 binding controls to data 2nd
 Calendar class 2nd 3rd 4th 5th
 CheckBox class 2nd 3rd 4th
 compiling controls as .NET components 2nd 3rd 4th 5th 6th
 Control class 2nd 3rd
 creating basic server controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 creating composite controls 2nd 3rd 4th 5th 6th 7th 8th
 DataGrid class 2nd 3rd
 DataList class 2nd 3rd 4th 5th 6th
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 events 2nd 3rd 4th
 generating postback 2nd 3rd 4th 5th

This document is created with the unregistered version of CHM2PDF Pilot

 HTML controls 2nd
 HTML controls. [See also HTML controls]
 Hyperlink class 2nd 3rd
 Image class 2nd 3rd
 ImageButton class 2nd 3rd 4th
 LinkButton class 2nd 3rd
 ListBox class 2nd 3rd
 Panel class 2nd 3rd
 persistence support 2nd 3rd 4th 5th 6th 7th
 RadioButton class 2nd 3rd 4th
 Repeater class 2nd 3rd 4th 5th 6th 7th
 rich clients 2nd 3rd 4th
 subclassing existing controls 2nd 3rd 4th 5th
 supporting designers 2nd
 Table class 2nd
 TableCell class 2nd 3rd
 TableRow class 2nd 3rd
 TextBox class 2nd
 validation controls 2nd
 validation controls. [See also validation controls]
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 subclassing 2nd 3rd 4th 5th
 user controls 2nd 3rd 4th 5th 6th 7th 8th 9th
 adding methods 2nd 3rd 4th 5th
 adding properties 2nd 3rd 4th
 Control directive 2nd
 handling events 2nd 3rd
 programming controls in pages 2nd 3rd 4th
 Register directive 2nd 3rd
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
 21st 22nd 23rd 24th 25th 26th
 AdRotator class 2nd 3rd 4th 5th 6th
 Button class 2nd 3rd 4th
 Calendar class 2nd 3rd 4th 5th
 CheckBox class 2nd 3rd 4th
 data binding
 data binding. [See also data binding]
 DataGrid class 2nd 3rd
 DataList class 2nd 3rd 4th 5th 6th
 determining browser capabilities 2nd 3rd 4th 5th 6th 7th
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 equivalent HTML tags 2nd 3rd
 event model 2nd 3rd
 HttpApplication class 2nd 3rd
 HttpBrowserCapabilities class 2nd 3rd 4th 5th 6th 7th
 HttpRequest class 2nd
 HttpResponse class 2nd 3rd
 HttpServerUtility class 2nd
 HttpSessionState class 2nd 3rd
 Hyperlink class 2nd 3rd
 Image class 2nd 3rd
 ImageButton class 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

 Label class 2nd 3rd
 LinkButton class 2nd 3rd
 ListBox class 2nd 3rd
 mobile controls 2nd
 Panel class 2nd 3rd
 postback 2nd 3rd 4th
 programming (creating an ASP.NET Web form) 2nd
 RadioButton class 2nd 3rd 4th
 Repeater class 2nd 3rd 4th 5th 6th 7th
 Table class 2nd
 TableCell class 2nd 3rd
 TableRow class 2nd 3rd
 TextBox class 2nd
 View State 2nd 3rd 4th
 WebControl class 2nd 3rd
cookie-based authentication
cookieless session management
 rewriting paths via HttpModule 2nd 3rd 4th 5th 6th
cookies
 FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 RFC 2109
 state management 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 cookie-based session identity 2nd 3rd
 cookieless session identity 2nd 3rd 4th 5th 6th
 Web services 2nd 3rd 4th 5th 6th 7th 8th 9th
COPY command
 Windows 2000 changes
copying files
 XCOPY. [See XCOPY deploymnet]
Count argument (Cache class) 2nd
counters
 server controls
 page that contains counter control 2nd 3rd
counters (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th
Country attribute (PassportIdentity class)
culture
 UICulture attribute, Page object
Culture attribute, Page object 2nd
cursors
 ADO.NET support for server-side cursors 2nd
custom performance monitors 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 creating monitor categories 2nd 3rd 4th 5th 6th
 deleting monitor categories 2nd 3rd
 sending application information to monitors via PerformanceCounter object 2nd 3rd 4th 5th
 Windows Performance Monitor utility 2nd
custom server controls 2nd 3rd 4th
 binding controls to data 2nd
 compiling controls as .NET components 2nd 3rd 4th 5th 6th
 creating components with command-line compiler 2nd 3rd 4th 5th 6th
 deploying components 2nd
 creating basic server controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 creating composite controls 2nd 3rd 4th 5th 6th 7th 8th

This document is created with the unregistered version of CHM2PDF Pilot

 events 2nd 3rd 4th
 generating postback 2nd 3rd 4th 5th
 persistence support 2nd 3rd 4th 5th 6th 7th
 registering controls with @Register directive 2nd
 rich clients 2nd 3rd 4th
 subclassing existing controls 2nd 3rd 4th 5th
 supporting designers 2nd
 validation controls 2nd 3rd 4th 5th 6th
 CompareValidator 2nd 3rd 4th 5th
 CustomValidator 2nd 3rd 4th 5th
 multiple validators
 RangeValidator 2nd 3rd 4th
 RegularExpressionValidator 2nd 3rd
 RequiredFieldValidator 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
customErrors section (Web.Config/Machine.Config files) 2nd 3rd
CustomTextBox control 2nd
 ASP.NET Page that uses an instance of subclassed CustomText control 2nd 3rd
CustomValidator control 2nd 3rd 4th 5th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D switch (XCOPY) 2nd 3rd
data
 XML
 abbreviated close-tag syntax 2nd 3rd
 accessing data. [See XML, data access]2nd [See XML, data access]
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
 delimited format 2nd 3rd
 elements that contain data 2nd 3rd 4th 5th
 enclosing character data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 navigating/updating documents with XmlNodeReader object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 querying. [See XML, XPath queries]
 using XmlDataReader object 2nd 3rd 4th 5th 6th 7th
 viewing document data with XmlNode object 2nd 3rd 4th 5th 6th
 writing with XmlTextWriter object 2nd 3rd 4th 5th 6th 7th
data access 2nd
data adapters (ADO.NET) 2nd 3rd 4th 5th 6th
 binding objects to Web Forms controls 2nd 3rd 4th
 DataView object 2nd 3rd 4th
 expressing DataSets as XML 2nd 3rd
 creating DataSet object 2nd 3rd 4th
 expressing DataSets as XML 2nd 3rd 4th 5th
data binding 2nd 3rd 4th
 ASP.NET 2nd
 binding objects to Web Forms controls 2nd 3rd 4th 5th 6th 7th 8th
 Repeater control 2nd 3rd 4th 5th 6th 7th
 Web forms
data reader objects
 SqlDataReader 2nd
 calling stored procedures 2nd 3rd 4th
 returning via text commands 2nd 3rd 4th 5th 6th 7th
data representation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 advertisement 2nd
 HTML versus XML
 HTML 2nd 3rd 4th 5th 6th 7th 8th 9th
 XML 2nd 3rd
 location information 2nd 3rd
data-manipulation commands
DataAdapter class (ADO.NET) 2nd 3rd
databases
 ADO.NET 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 common database access scenarios 2nd 3rd
 data access 2nd
 disconnected access support 2nd 3rd 4th
 new features in ADO.NET 2nd 3rd 4th 5th 6th 7th
 remoting support 2nd
 server-side cursors 2nd
 XML support 2nd
 connecting to databases 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with the unregistered version of CHM2PDF Pilot

 error handling 2nd 3rd 4th
 OLE DB provider 2nd 3rd 4th
 Open/Close methods 2nd 3rd
 SQL Server provider 2nd
 creating Web Forms for data entry 2nd 3rd 4th
 comparison validation 2nd 3rd 4th 5th
 custom validation 2nd 3rd 4th 5th
 range validation 2nd 3rd 4th
 regular expression validation 2nd 3rd
 required field validation 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
 using multiple validators
 validation 2nd 3rd 4th
 data adapters 2nd 3rd 4th
 binding DataView object to Web Forms controls 2nd 3rd 4th
 binding objects to Web Forms controls 2nd 3rd 4th
 creating DataSet object 2nd 3rd 4th
 displaying query data in browsers 2nd
 expressing DataSets as XML 2nd 3rd 4th 5th 6th 7th 8th
 error handling 2nd 3rd 4th 5th 6th
 listings
 11.14, data-entry form 2nd 3rd 4th
 11.15, required field validation 2nd 3rd
 11.16, required field funcion, client-side validation 2nd
 11.17, comparison validation 2nd 3rd
 11.18, range validation 2nd 3rd
 11.19, regular expression validation 2nd 3rd
 11.20, custom validation 2nd 3rd
 11.21, displaying validation error summary 2nd 3rd 4th
 11.22, displaying data access errors 2nd 3rd
 11.23, using Errors collection to display rich error information 2nd
 12.1, opening a connection using SQL Server provider 2nd 3rd
 12.10, displaying query results using SqlDataAdapter and DataSet 2nd 3rd
 12.11, displaying query data in Web Forms DataGrid control 2nd 3rd
 12.12, binding DataGrid control to ArrayList object 2nd
 12.13, displaying query data in Web browsers 2nd 3rd
 12.2, opening a connection using OLE DB provider 2nd
 12.3, opening a connection with error handling 2nd 3rd
 12.4, executing a text command that returns a SqlDataReader object 2nd 3rd
 12.5, calling a simple stored procedure using SqlCommand 2nd 3rd
 12.6, calling a parameterized stored procedure using SqlCommand Parameters collection 2nd 3rd
 12.7, calling a parameterized stored procedure 2nd 3rd 4th
 12.8, executing nonquery commands 2nd 3rd
 12.9, ExecuteScalar method 2nd
 queries 2nd 3rd 4th
 (begin)
 (end)
 caching 2nd 3rd 4th 5th 6th 7th
 command objects 2nd
 displaying query data in Web browsers 2nd 3rd 4th 5th
 displaying query data in Web Forms DataGrid control 2nd
 displaying query results using SqlDataAdapter and DataSet 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 executing stored procedures that return scalar values 2nd 3rd
 passing parameters to stored procedures 2nd 3rd 4th 5th 6th
 retrieving data reader objects via text commands 2nd 3rd 4th 5th 6th 7th
 retrieving data via stored procedures 2nd 3rd 4th 5th
 SqlDataReader object 2nd 3rd 4th 5th 6th 7th 8th
 stored procedures
 executing stored procedures that return data 2nd 3rd 4th 5th
 passing parameters 2nd 3rd 4th 5th 6th
 returning scalar values 2nd 3rd
 versus text-based commands
DataBinding event
 Page object
 Web controls 2nd
DataBinding event (custom server controls)
DataColumn class (ADO.NET) 2nd 3rd 4th 5th
DataColumn object
 ADO.NET
DataGrid class 2nd 3rd
DataGrid control
 displaying query data 2nd 3rd 4th
DataList class 2nd 3rd 4th 5th 6th
 listing 2.33, DataList server control bound to a Hashtable object 2nd 3rd
DataReader object
 ADO.NET
DataRelation class (ADO.NET) 2nd
DataRow object
 ADO.NET
DataSet
 Web services 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 . [See also SimpleDataSet]
 WebMethod returning a DataTable 2nd 3rd 4th 5th
 WebMethod returning a Master-Detail relationship 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
DataSet class (ADO.NET) 2nd
DataSet object
 ADO.NET 2nd
 creating via data adapters 2nd 3rd 4th
 expressing as XML 2nd 3rd 4th 5th 6th 7th 8th
DataTable class (ADO.NET) 2nd
DataView object
 binding to Web Forms 2nd 3rd 4th
Debug class 2nd 3rd
Debug object 2nd 3rd
debugging 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 activating via Debug attribute (Page object)
 breakpoints 2nd
 custom performance monitors 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 creating monitor categories 2nd 3rd 4th 5th 6th
 deleting monitor categories 2nd 3rd
 sending application information to monitors via PerformanceCounter object 2nd 3rd 4th 5th
 Windows Performance Monitor utility 2nd
 debug page output 2nd
 enabling

This document is created with the unregistered version of CHM2PDF Pilot

 application level 2nd 3rd
 Debug object 2nd 3rd 4th
 page level 2nd 3rd 4th
 ErrorPage attribute (Page object)
 listings
 3.4, test page for debugging 2nd 3rd
 3.5, Web.config file that activates application-level debugging 2nd
 3.6, calling Debug.Write to display debug information in development environment 2nd
 tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 categorizing output 2nd 3rd 4th 5th 6th 7th
 enabling application tracing 2nd 3rd 4th
 enabling page tracing 2nd 3rd 4th
 equipping pages for Trace mode 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 trace information categories 2nd
 viewing application trace data from remote browser windows 2nd 3rd
 Web.Config/Machine.Config Trace settings 2nd 3rd 4th
 Windows event log 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
declaration
 XML 2nd 3rd
delegation (controls) 2nd 3rd 4th
deleting
 performance monitor categories 2nd 3rd
deleting files (XCOPY) 2nd 3rd
delimited data (XML) 2nd 3rd
 enclosing character data 2nd 3rd 4th 5th
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
dependencies (cached items) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
deploying components 2nd
deployment 2nd 3rd 4th 5th
 XCOPY 2nd 3rd
 (begin)
 (end)
 confirmations/overwriting files 2nd 3rd
 deploying directory trees 2nd 3rd 4th 5th
 deploying only modified files 2nd 3rd
 deploying single directories 2nd
 excluding files 2nd 3rd 4th
 switches 2nd 3rd 4th 5th 6th 7th 8th
Description attribute, Page object
Description property (WebMethodAttribute class) 2nd 3rd 4th 5th 6th 7th
directives, Page object 2nd 3rd 4th 5th
 @Assembly
 @Control
 @Implements 2nd
 @Import 2nd
 @OutputCache
 @Page 2nd 3rd 4th 5th 6th
 @Register
directories
 deployment
 directory trees 2nd 3rd 4th 5th

This document is created with the unregistered version of CHM2PDF Pilot

 excluding files 2nd 3rd 4th
 single directories 2nd
DISCO files (XML)
Disposed event
 Page object
 Web controls
DLLs (dynamic link libraries) 2nd
Document Object Model (DOM)
 XML DOM 2nd 3rd 4th 5th 6th 7th 8th 9th
 extended classes 2nd
 fundamental classes 2nd 3rd
Document Type Definitions (DTDs), XML 2nd 3rd 4th
documents
 XML. [See XML]2nd [See XML]
DOM (Document Object Model)
 XML DOM 2nd 3rd 4th 5th 6th 7th 8th 9th
 extended classes 2nd
 fundamental classes 2nd 3rd
dot (.) operator
 XPath queries
DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
DTDs (Document Type Definitions), XML 2nd 3rd 4th
Duration attribute (OutputCache directive) 2nd
dynamic link libraries (DLLs) 2nd
dynamic reporting (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SqlHandler 2nd 3rd 4th 5th 6th 7th
 SqlHandler output
 XSL template used to format output 2nd 3rd 4th 5th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E switch (XCOPY) 2nd
e-mail
 PreferredEmail attribute (PassportIdentity class)
 sending errors logs to Web masters 2nd 3rd 4th 5th 6th
 SmtpMail class 2nd 3rd
elements (XML) 2nd 3rd
 . [See also nodes (XML)]
 abbreviated close-tag syntax 2nd 3rd
 case sensitivity 2nd
 elements that contain data 2nd 3rd 4th
 enclosing character data 2nd 3rd 4th 5th
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
 listings
 10.3, XML document with a declaration and a top-level element 2nd
 10.4, XML document with elements that contain data 2nd
 10.5, XML document with multiple child elements beneath the top-level element 2nd 3rd
 10.6, XML document with elements and attributes 2nd
 10.7, XML document with escape sequences 2nd
 10.8, XML document with a CDATA section 2nd
 10.9, XML document with a empty elements 2nd
 slash (/) character
EnableSession property (WebMethodAttribute class) 2nd 3rd 4th 5th
EnableSessionState attribute, Page object
EnableViewState attribute, Page object 2nd
EnableViewStateMac attribute, Page object 2nd
EndRequest HttpModule 2nd 3rd 4th 5th
 (time stamping output HTML)
enumerable classes 2nd 3rd
 ChildNodes 2nd 3rd 4th 5th
Error event
 Page object
error handling
 ADO.NET 2nd 3rd 4th 5th 6th
 customErrors settings (Web.Config/Machine.Config files) 2nd 3rd
 database connections 2nd 3rd
ErrorPage attribute, Page object
errors
 ADO.NET
 handling errors 2nd 3rd 4th 5th 6th
 SqlError class 2nd
 validation error summaries 2nd 3rd 4th
 customErrors settings (Web.Config/Machine.Config files) 2nd 3rd
 debugging. [See debugging]
 handling
 HttpModule error module 2nd 3rd 4th 5th 6th 7th 8th 9th
 sending errors logs to Web masters 2nd 3rd 4th 5th 6th
event handlers
 Global.asax files 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

event handling 2nd 3rd 4th 5th
 AutoEventWireup attribute, Page object 2nd
 IPostBackEventHandler
 user controls 2nd 3rd
 XML validation events 2nd 3rd
EventLog class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
events 2nd 3rd 4th 5th
 . [See also classes]
 Global.asax files 2nd 3rd 4th
 Page object 2nd 3rd 4th 5th
 raising via HttpModules 2nd 3rd 4th 5th 6th
 server controls 2nd 3rd 4th
 Web controls 2nd 3rd
 Windows event log 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 XML validation 2nd 3rd
exceptions
 ADO.NET SqlException class 2nd
EXCLUDE
 switch (XCOPY)
exclude files 2nd 3rd
 (XCOPY deployment)
EXCLUDE switch (XCOPY) 2nd
ExecuteScalar method 2nd 3rd 4th
 (SQLCommand object) 2nd 3rd
executionTimeout section (Web.Config/Machine.Config files) 2nd
expiring cached items 2nd 3rd 4th 5th
 removing expired items 2nd
extended XML objects 2nd
eXtensible Markup Language. [See XML]

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F switch (XCOPY)
files
 authorization 2nd
 configuration files
 accessing configuration files programmatically 2nd 3rd 4th
 ASP.old versus ASP.NET 2nd
 authentication settings 2nd 3rd 4th
 authorization settings 2nd
 browser capabilities settings 2nd
 compilation settings 2nd 3rd
 custom error settings 2nd 3rd
 editing Web configuration files in Visual Studio.NET 2nd
 execution timeout settings 2nd
 global/local files 2nd
 globalization settings 2nd 3rd
 HTTP handler settings 2nd
 HTTP module settings 2nd
 locking down Web configuration settings 2nd
 Machine.Config 2nd
 multiple locations 2nd 3rd 4th 5th 6th
 page settings 2nd 3rd
 process model settings 2nd 3rd
 section handlers
 section handlers (Web.Config/Machine.Config files)
 session state settings 2nd 3rd
 trace settings
 Trace settings
 trace settings 2nd
 Web services settings 2nd
 Web.Config 2nd
 Web.Config. [See also Web.Config files]
 copying
 XCOPY. [See XCOPY deploymnet]
 deleting (XCOPY) 2nd 3rd
 directories
 . [See also directories]
 overwriting (XCOPY) 2nd 3rd
 uploading
 HtmlInputFile control 2nd 3rd 4th 5th 6th 7th 8th
filtering output with HttpModules 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 forking filters 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
FirstChild() property (XML) 2nd
folders
 . [See also directories]
forking output filters (HttpModules) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
form state 2nd 3rd
forms
 . [See also Web Forms]
 binding Web services 2nd 3rd 4th 5th

This document is created with the unregistered version of CHM2PDF Pilot

 caching
 creating copies for different browers
 RequiredFieldValidation control 2nd 3rd
 caching form results 2nd 3rd 4th 5th 6th
 calling Web services from Web forms 2nd 3rd 4th 5th 6th 7th 8th 9th
 calling Web services from Windows forms 2nd 3rd 4th 5th 6th 7th
 grouping controls (Panel class) 2nd 3rd
 HtmlForm control 2nd 3rd 4th 5th 6th 7th 8th 9th
 Web Forms. [See Web Forms]
 Windows Forms
 Web services;creating cookie containers/utilizing State Web service 2nd 3rd 4th 5th 6th 7th 8th
forms authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 advantages 2nd
 process flow 2nd 3rd 4th 5th
 roles 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 settings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 using forms authentication with URL authorization 2nd 3rd 4th
 FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 versus Windows authentication 2nd 3rd
FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 handling the Application_AuthenticateRequest in global.asax 2nd 3rd 4th 5th
 login.aspx HTML 2nd 3rd
 class file 2nd 3rd 4th
 properties
 Transact SQL to create tables and stored procedures used by login.aspx 2nd 3rd 4th 5th 6th 7th
 UserData member 2nd 3rd
 UserRoleMappings table relationships 2nd
forward slash (/) character
 XML closing tags
fundamental XML objects 2nd 3rd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GAC (Global Assembly Cache) 2nd 3rd 4th 5th
 gacutil command-line utility 2nd 3rd
Gender attribute (PassportIdentity class)
GenericIdentity class 2nd 3rd
GenericPrincipal class 2nd
GenericPrincipal object 2nd 3rd 4th 5th 6th 7th 8th 9th
GetProfileObject method (PassportIdentity class) 2nd
Global Assembly Cache (GAC) 2nd 3rd 4th 5th
 gacutil utility 2nd 3rd
global.asax
 Application_AuthenticateRequest handler 2nd 3rd 4th
Global.asax
 raising events via HttpModules 2nd 3rd 4th
global.asax
 redirecting users from error pages via HttpModules 2nd 3rd
global.asax class
 forms authentication 2nd 3rd
Global.asax files 2nd
 (begin)
 (end)
 application directives 2nd 3rd 4th
 code declaration blocks 2nd 3rd
 listings
 6.2, OnStart event handler in Global.asax 2nd 3rd
 6.3, declaring Application-Scoped objects 2nd 3rd
 6.4, displaying results of Active-User array 2nd 3rd
 server-side includes 2nd
 server-side object tags 2nd 3rd 4th 5th
globalization section (Web.Config/Machine.Config files) 2nd 3rd
graphics
 Image control 2nd 3rd
 ImageButton control 2nd 3rd 4th
grouping Web forms controls (Panel class) 2nd 3rd
groups

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H switch (XCOPY)
handling errors
 ADO.NET 2nd 3rd 4th 5th 6th
 customErrors settings (Web.Config/Machine.Config files) 2nd 3rd
 database connections 2nd 3rd
 HttpModule error module 2nd 3rd 4th 5th 6th 7th 8th 9th
handling events 2nd 3rd 4th 5th
 AutoEventWireup attribute, Page object 2nd
 Global.asax files 2nd 3rd 4th
 IPostBackEventHandler
 raising events via HttpModules 2nd 3rd 4th 5th 6th
 user controls 2nd 3rd
 XML validation 2nd 3rd
handling exceptions
 ADO.NET SqlException class 2nd
hard-coded impersonation 2nd 3rd 4th 5th 6th 7th
hash tables
 using Repeater control to build customized hashtable output 2nd 3rd
hashtables
 listing 2.33, DataList server control bound to a Hashtable object 2nd 3rd
headers
 HttpCacheVaryByHeaders class 2nd
 Set-Cookie 2nd 3rd
 VaryByHeader caching 2nd 3rd
Headers attribute (OutputCache directive) 2nd
Hello World
 HttpHandlers 2nd 3rd 4th 5th 6th 7th
 code listing 2nd 3rd
 creating 2nd 3rd
Hello World server control 2nd 3rd
 ASP.NET page that references custom Hello World server control 2nd 3rd 4th
 batch file that compiles and deploys a .NET component project automatically 2nd
 compiling namespaces/classes into .NET components
HelloWorld Web service 2nd 3rd 4th
hidden text
 HtmlInputHidden control 2nd 3rd 4th 5th 6th 7th 8th
hit counters (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th
HTML
 HTML data representation versus XML
 HTML 2nd 3rd 4th 5th 6th 7th 8th 9th
 XML 2nd 3rd
 tags
 HTML control equivalents 2nd 3rd
 Web control equivalents 2nd 3rd
 time stamping output HTML
 (BeginRequest-EndRequest module) 2nd 3rd 4th 5th
 View Source of a Page That Has Been Affected by the BeginEnd Module
HTML controls 2nd
 equivalent HTML tags 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 HtmlAnchor 2nd 3rd 4th 5th
 HtmlButton 2nd 3rd 4th 5th
 HtmlForm 2nd 3rd 4th 5th 6th 7th 8th 9th
 HtmlImage 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 HtmlInputButton 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputCheckbox 2nd
 HtmlInputFile 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputHidden 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputImage 2nd
 HtmlInputRadioButton 2nd
 HtmlInputText 2nd
 HtmlSelect 2nd
 HtmlTable 2nd
 HtmlTableCell 2nd
 HtmlTableCellCollection 2nd
 HtmlTableRow 2nd
 HtmlTableRowCollection 2nd
 HtmlTextArea 2nd
HtmlAnchor control 2nd 3rd 4th 5th
HtmlButton control 2nd 3rd 4th 5th
HtmlForm control 2nd 3rd 4th 5th 6th 7th 8th 9th
HtmlImage control 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
HtmlInputButton control 2nd 3rd 4th 5th 6th 7th 8th
HtmlInputCheckbox control 2nd
HtmlInputFile control 2nd 3rd 4th 5th 6th 7th 8th
HtmlInputHidden control 2nd 3rd 4th 5th 6th 7th 8th
HtmlInputImage control 2nd
HtmlInputRadioButton control 2nd
HtmlInputText control 2nd
HtmlSelect control 2nd
HtmlTable control 2nd
HtmlTableCell control 2nd
HtmlTableCellCollection control 2nd
HtmlTableRow control 2nd
HtmlTableRowCollection control 2nd
HtmlTextArea control 2nd
HTTP
 Telnet requests 2nd 3rd 4th 5th
HTTP GET
 calling Web method (Web services) 2nd
HTTP handlers
 trace.axd 2nd 3rd
HttpApplication class 2nd 3rd 4th 5th 6th 7th 8th
HttpBrowserCapabilities class 2nd 3rd 4th 5th 6th 7th
 caching 2nd 3rd 4th
HttpCachePolicy class 2nd
HttpCacheVaryByHeaders class 2nd
HttpCacheVaryByParams class 2nd
HttpForbiddenHandler HttpHandler
 . [See also HttpHandlers]
HttpHandler
 listings

This document is created with the unregistered version of CHM2PDF Pilot

 8.17, HttpHandlerFactory that returns different handlers based on the name parameter 2nd 3rd
HttpHandlers 2nd 3rd 4th 5th 6th 7th 8th 9th
 (begin)
 (end)
 ASP.NET request handling 2nd 3rd
 built-in ASP.NET HttpHandlers 2nd
 combining XML/SQL 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SqlHandler 2nd 3rd 4th 5th 6th 7th
 SqlHandler output
 XSL template used to format output 2nd 3rd 4th 5th
 dynamic handler assignment 2nd 3rd 4th 5th 6th
 Hello World 2nd 3rd 4th 5th 6th 7th
 code listing 2nd 3rd
 creating 2nd 3rd
 IHttpHandler class 2nd
 listings
 8.10, global.asax that sinks the OnMyEvent event from the HttpModule 2nd
 8.13, Hello World 2nd 3rd
 8.14, SqlHandler transforms XML SQL queries from SQL Server with XSL templates 2nd 3rd 4th 5th
 8.15, XSL template used to format output 2nd 3rd
 8.16, page counter 2nd 3rd 4th
 8.9, Handler That Raises an Event in Global.asax 2nd 3rd
 page counters 2nd 3rd 4th 5th 6th 7th 8th
 Web.Config/Machine.Config httpHandlers settings
HttpModules 2nd 3rd
 (begin)
 (end) 2nd
 ASP.NET request handling 2nd 3rd
 authentication modules 2nd 3rd 4th
 BeginRequest-EndRequest module 2nd 3rd 4th 5th
 (time stamping output HTML)
 error modules 2nd 3rd 4th 5th 6th 7th 8th 9th
 filtering output 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 forking filters 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 IhttpModule class
 listings
 8.1, Module That Stamps the Begin and End Times into the Page 2nd 3rd 4th
 8.11, authenticateRequest in a Web module 2nd 3rd
 8.12, RewritePath module that changes every request to map to webform1.aspx 2nd 3rd
 8.2, web.config to Load the BeginEnd HttpModule 2nd
 8.3, View Source of a Page That Has Been Affected by the BeginEnd Module 2nd 3rd
 8.4, simple ad insertion engine that replaces <adinsert tags with an ad 2nd 3rd 4th
 8.5, output from AdInserter.vb 2nd 3rd
 8.6, SimpleCache, an Output-Caching Mechanism 2nd 3rd 4th 5th 6th 7th
 8.7, module that handles errors in an application by writing them to the event log and e-mailing the 2nd 3rd 4th

 8.8, Global.asax redirection of users from error pages 2nd 3rd
 raising events 2nd 3rd 4th 5th 6th
 rewriting paths 2nd 3rd 4th 5th 6th
 Web.Config/Machine.Config httpModules settings 2nd
HttpRequest class 2nd
HttpResponse class 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

HttpServerUtility class 2nd
HttpSessionState class 2nd 3rd 4th 5th
 . [See also state management]
 TimeOut property 2nd
Hyperlink class 2nd 3rd
hyperlinks
 hyperlink control that can generate client-side postback of a form 2nd 3rd
 LinkButton control 2nd 3rd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I switch (XCOPY)
identities 2nd
 GenericIdentity class 2nd 3rd
 impersonation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 determining identity with WindowsIdentity 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 hard-coded impersonation 2nd 3rd 4th 5th 6th 7th
 PassportIdentity class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 attributes 2nd
 WindowsIdentity class 2nd
IEnumerable interface 2nd 3rd
 ChildNodes 2nd 3rd 4th 5th
IHttpHandler class 2nd
 . [See also HttpHandlers]2nd [See also HttpHandlers]
IhttpModule class 2nd
 . [See also HttpModules]
IIS
 authorization
Image class 2nd 3rd
image.aspx listing 2nd 3rd 4th
ImageButton class 2nd 3rd 4th
images
 HtmlImage control 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 HtmlInputImage control 2nd
impersonation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 determining identity with WindowsIdentity 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 hard-coded impersonation 2nd 3rd 4th 5th 6th 7th
implementing interfaces
 @Implements directive (Page object) 2nd
importing namespaces
 @Import directive (Page object) 2nd
in process session state 2nd 3rd 4th
 advantages/disadvantages 2nd 3rd 4th 5th 6th 7th 8th 9th
inequality operator (!=), XPath queries
Inherits attribute, Page object
Init event
 Page object
 Web controls
Init event (custom server controls)
initializing applications using Global.asax files 2nd
 (begin)
 (end)
 application directives 2nd 3rd 4th
 code declaration blocks 2nd 3rd
 server-side includes 2nd
 server-side object tags 2nd 3rd 4th 5th
initializing user states 2nd
 . [See also state management]
inline method of passing parameters
input

This document is created with the unregistered version of CHM2PDF Pilot

 buttons. [See buttons]
 check boxes
 HtmlInputCheckbox control 2nd
 HtmlInputFile control 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputHidden control 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputImage control 2nd
 text
 . [See also text]2nd [See also text]
 HtmlInputText control 2nd
inputbutton.aspx listing 2nd 3rd 4th 5th 6th
inputfile.aspx listing 2nd 3rd 4th 5th 6th
Insert argument (Cache class)
InsertAfter method (XmlNode object) 2nd 3rd
Inside.aspx code listing 2nd
intercases
 Web controls. [See Web controls]
interfaces
 implementing
 @Implements directive (Page object) 2nd
Internet Explorer
 rich clients 2nd
 Smart Navigation features
IPostBackEventHandler
IPrincipal interface 2nd
ISAPI filter
 security
ItemPriority argument (Cache class)

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

K switch (XCOPY)
Keep-Alive (HTTP 1.1)

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L switch (XCOPY)
Label class 2nd 3rd
langagues
 globalization section (Web.Config/Machine.Config files) 2nd 3rd
language
 Lang_Preference attribute (PassportIdentity class)
Language attribute, Page object
languages
 CodePage attribute 2nd
 Common Language Specification (CLS) 2nd
 Language attribute (Page object)
LastFiveSearchTerms code listing 2nd 3rd
LCID attribute, Page object 2nd
LinkButton class 2nd 3rd
links
 . [See also hyperlinks]
ListBox class 2nd 3rd
listing
 pages
 View State 2nd 3rd
listing components in GAC 2nd 3rd 4th
listings
 AdRotator class 2nd 3rd 4th
 caching
 browser capabilities 2nd
 containing page defining cache directive 2nd
 containing page without cache directive 2nd
 correct form output caching 2nd 3rd 4th
 creating cached page for each header 2nd
 directive for 5-minute cache 2nd
 expiring items 2nd 3rd
 form creating copies for different browsers 2nd 3rd
 form using RequiredFieldValidator 2nd
 incorrect form output caching 2nd 3rd 4th
 partial page caching of previous search terms (LastFiveSearchTerms) 2nd 3rd
 partial page caching user control (SalesByEmployee.ascx) 2nd 3rd 4th 5th
 partial page caching user control (SalesPeople.ascx) 2nd 3rd
 query that places output into drop-downlist 2nd 3rd
 query that stores output in cache 2nd 3rd 4th
 re-adding dropped out cache items 2nd 3rd 4th
 refreshing cached items via dependencies 2nd 3rd
 removing/inserting items from cache with expirations 2nd 3rd 4th 5th
 search page containing term caching (BreadCrumbSearch.aspx) 2nd 3rd 4th
 Calendar server control 2nd
 CheckBox server control 2nd 3rd
 databases
 binding DataGrid control to ArrayList object 2nd
 calling a parameterized stored procedure 2nd 3rd 4th
 calling a parameterized stored procedure using SqlCommand Parameters collection 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 calling a simple stored procedure using SqlCommand 2nd 3rd
 comparison validation 2nd 3rd
 custom validation 2nd 3rd
 data-entry form 2nd 3rd 4th
 displaying data access errors 2nd 3rd
 displaying query data in Web browsers 2nd 3rd
 displaying query data in Web Forms DataGrid control 2nd 3rd
 displaying query results using SqlDataAdapter and DataSet 2nd 3rd
 displaying validation error summary 2nd 3rd 4th
 ExecuteScalar method 2nd
 executing a text command that returns a SqlDataReader object 2nd 3rd
 executing nonquery commands 2nd 3rd
 opening a connection using OLE DB provider 2nd
 opening a connection using SQL Server provider 2nd 3rd
 opening a connection with error handling 2nd 3rd
 range validation 2nd 3rd
 regular expression validation 2nd 3rd
 required field funcion, client-side validation 2nd
 required field validation 2nd 3rd
 using Errors collection to display rich error information 2nd
 DataList server control
 DataList server control bound to a Hashtable object 2nd 3rd
 debugging
 calling Debug.Write to display debug information in development environment 2nd
 test page for debugging 2nd 3rd
 Web.config file that activates application-level debugging 2nd
 DropDownList control, binding to data in ArrayList object 2nd 3rd
 Global.asax files
 declaring Application-Scoped objects 2nd 3rd
 displaying results of Active-User array 2nd 3rd
 Global.asax OnStart event handler 2nd 3rd
 HttpHandler
 HttpHandlerFactory that returns different handlers based on the name parameter 2nd 3rd
 HttpHandlers
 global.asax that sinks the OnMyEvent event from the HttpModule 2nd
 Handler That Raises an Event in Global.asax 2nd 3rd
 Hello World 2nd 3rd
 page counter 2nd 3rd 4th
 SqlHandler transforms XML SQL queries from SQL Server with XSL templates 2nd 3rd 4th 5th
 XSL template used to format output 2nd 3rd
 HttpModules
 authenticateRequest in a Web module 2nd 3rd
 Global.asax redirection of users from error pages 2nd 3rd
 module that handles errors in an application by writing them to the event log and e-mailing the Webm 2nd 3rd
 Module That Stamps the Begin and End Times into the Page 2nd 3rd 4th
 RewritePath module that changes every request to map to webform1.aspx 2nd 3rd
 simple ad insertion engine that replaces <adinsert tags with an ad 2nd 3rd 4th
 SimpleCache, an Output-Caching Mechanism 2nd 3rd 4th 5th 6th 7th
 View Source of a Page That Has Been Affected by the BeginEnd Module 2nd 3rd
 web.config to Load the BeginEnd HttpModule 2nd
 logging
 writing events to Windows event log 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 pages
 @Page directive 2nd
 2.10, HtmlAnchor control HTML 2nd 3rd
 2.24, code-behind Page_Load event procedure without AutoEventWireup 2nd
 Button.aspx code 2nd 3rd 4th
 Button.aspx HTML 2nd
 Calendar.aspx 2nd
 Calendar.aspx rendered HTML source 2nd 3rd 4th
 Form.aspx code 2nd 3rd 4th
 Form.aspx HTML 2nd
 HtmlAnchor control code 2nd
 HtmlInputHidden control 2nd 3rd
 HttpBrowserCapabilities in Request object 2nd 3rd
 image.aspx code 2nd 3rd 4th
 image.aspx HTML 2nd 3rd 4th
 inputbutton.aspx code 2nd 3rd 4th
 inputbutton.aspx HTML 2nd 3rd
 inputfile.aspx code 2nd 3rd 4th
 inputfile.aspx HTML 2nd
 SamplePage2.aspx, event handler for a button 2nd
 SamplePage3.aspx, using code behind 2nd 3rd
 SimplePage.asp 2nd 3rd
 SimplePage.aspx, a reworking of SimplePage.asp in ASP.NET 2nd 3rd
 SimplePage2.asp, showing code to preserve form state in ASP.OLD 2nd 3rd
 SimplePage3.asp, reaction to user interaction in ASP.old 2nd 3rd
 SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd 3rd
 performance monitors
 deleting a performance category 2nd
 incrementing performance monitor using PerformanceCounter object 2nd 3rd 4th
 initializing new monitor category and monitor object 2nd
 Repeater control, building customized hashtable output 2nd 3rd
 security
 global.asax class that handles the AuthorizeRequest application event 2nd 3rd
 global.asax containing the Application_AuthenticateRequest handler 2nd 3rd
 HTML for login.aspx 2nd 3rd
 HTML for login.aspx, class file 2nd 3rd 4th 5th
 login page that authenticates only two users 2nd 3rd 4th
 login page that authenticates only two users, class file 2nd 3rd 4th
 login.aspx page shown when users attempt to access content when they are not authenticated 2nd 3rd
 page that displays the PUID, e-mail address, and member name of a logged-in Passport user 2nd 3rd
 simple login page 2nd 3rd 4th 5th
 simple login page, class file 2nd 3rd 4th 5th 6th
 Transact SQL to create tables and stored procedures used by login.aspx 2nd 3rd 4th 5th
 user authentication with WindowsPrincipal 2nd 3rd 4th
 user authentication with WindowsPrincipal, class file 2nd
 Web User Control That Wraps the Display of the Passport Logo 2nd 3rd 4th
 web.config file setting authentication to forms and defining URL authorization 2nd
 web.config file that uses URL authorization Location element 2nd 3rd 4th
 Web.config for simple forms authentication 2nd 3rd
 Web.config set up for impersonation 2nd 3rd
 web.config setup for Passport authentication 2nd
 Web.config that maps roles to application locations 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 Web.config with a hard-coded impersonation account 2nd 3rd
 Webform1.aspx 2nd 3rd 4th 5th
 Webform1.aspx, code behind class 2nd 3rd 4th 5th
 server controls
 ASP.NET page that references custom Hello World server control 2nd 3rd
 ASP.NET Page that uses an instance of subclassed CustomText control 2nd 3rd
 basic control that stores property state 2nd
 batch file that compiles and deploys a .NET component project automatically 2nd
 composite control 2nd 3rd
 CustomTextBox control that contains set of custom formatting defaults 2nd
 Hello World server control example 2nd 3rd
 hyperlink control that can generate client-side postback of a form 2nd 3rd
 namespace and class that can be compiled into a .NET component 2nd
 page created to host an instance of composite Search server control 2nd
 page to contain counter control 2nd 3rd
 rewritten CurrentValue property, demonstrating lack of state persistence 2nd
 using delegation to provide access to Text property of child control 2nd 3rd
 state management
 adding/displaying session values 2nd 3rd
 getting a session value 2nd
 HTTP request using Telnet 2nd 3rd
 out of process session state 2nd
 relative and absolute references 2nd 3rd
 Session Start event 2nd
 Set-Cookie header 2nd
 setting a session value 2nd
 starting State Server 2nd
 timing read/write operations on session state 2nd 3rd 4th
 tracing
 using Web.config to activate tracing for entire Web directories 2nd
 categorized Trace.Write output 2nd 3rd
 simple page equipped for tracing with calls to Trace.Write 2nd 3rd 4th
 user controls
 custom control utilized in an ASP.NET Web Form 2nd
 handling events 2nd 3rd
 Register directive referencing a user control 2nd
 Search control with ShowAdvanced method 2nd 3rd
 Search dialog box user control 2nd 3rd
 Search dialog box with TitleBarText property 2nd 3rd
 Web controls
 Web form declaration
 Web services
 Activator .asmx file 2nd
 Code Behind Web Service Class That Implements a Cached Time Service 2nd
 code-behind file for simple state service 2nd
 Description property 2nd
 Form That Is Bound to the SimpleDataSet Web Service 2nd 3rd 4th 5th
 HelloWorld 2nd
 Proxy Class (datasetsample.vb) for SimpleDataSet Generated with the WSDL Tool 2nd 3rd
 Proxy Created for SimpleDataSet by Visual Studio .NET 2nd 3rd 4th
 sample invoice in HTML 2nd 3rd 4th 5th 6th
 sample invoice in XML 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 service that returns ArrayList 2nd 3rd
 Simple() WebMethod of SimpleDataSet 2nd 3rd 4th
 Web Form Client for SimpleDataSet 2nd
 Web Form That Calls the NorthwindOrder Web Service Asynchronously 2nd 3rd 4th 5th
 Web Form That Calls the NorthwindOrders Service Asynchronously and Loads the Orders into a Grid 2nd
3rd 4th
 Web Method That Returns a Dataset with a Master Detail Relationship 2nd 3rd
 Windows Form That Creates a Cookie Container and Utilizes the State Web Service 2nd 3rd 4th 5th 6th
 XML Output from Calling the GetOrders WebMethod with a Date of 7/8/1996 2nd 3rd 4th 5th 6th 7th
 Web.Config file with Location section to handle subdirectory settings 2nd 3rd
 XCOPY exclude file 2nd
 XML
 W3C schema containing a complex type that refers to a simple type 2nd
 books.xml document 2nd 3rd
 books.xml File Containing a Link to the books.xsl Style Sheet 2nd
 booksellerÕs hypothetical output 2nd
 ChildNodes class 2nd 3rd 4th
 comma-delimited document 2nd
 inserting new child nodes using AppendChild method 2nd
 loading a local XML file using XmlDocument .Load() method 2nd
 loading an XML file residing on a Web server 2nd
 programmatically transforming an XML file using an XSL style sheet and the XslTransform object 2nd
 publisherÕ
 publisherÕs hypothetical input
 responding to events raised by Validate subroutine 2nd 3rd
 simplified book.xml document 2nd
 Validation subroutine using XmlValidatingReader object 2nd 3rd
 W3C schema containing a definition for a simple type 2nd
 W3C schema containing an element definition that refers to a type definition 2nd
 W3C schema definition boilerplate 2nd
 XDR Schema 2nd
 XML 1.0 declaration
 XML document with a CDATA section 2nd
 XML document with a declaration and top-level element 2nd
 XML document with a empty elements
 XML document with elements and attributes 2nd
 XML document with elements that contain data 2nd
 XML document with escape sequences 2nd
 XML document with multiple child elements beneath the top-level element 2nd 3rd
 XmlNode object InsertAfter method 2nd 3rd
 XmlNodeReader object, creating from XmlDocument object 2nd
 XmlNodeReader object, traversing a document 2nd
 XmlTextReader object 2nd 3rd
 XmlTextWriter object 2nd 3rd
 XmlTextWriter object, document produced by XmlTextWriter object 2nd
 XPath query combining multiple criteria with AND and OR 2nd
 XPath query page used to test XPath queries against books.xml 2nd
 XPath query results 2nd
 XPath query that excludes nodes based on attribute values 2nd
 XPath query that retrieves a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 XPath query that retrieves a specific TITLE node by querying on its text 2nd
 XPath query to retrieve author information based on author ID 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 XPath query to retrieve multiple instances of same author 2nd 3rd
 XPathNavigator object Select method 2nd
 XpathNodeIterator Current property 2nd 3rd
 XSLT Style Sheet That Converts an XML Document into an HTML Document 2nd 3rd
lists
 DataList class 2nd 3rd 4th 5th 6th
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 ListBox control 2nd 3rd
Load event
 Page object
 Web controls
Load event (custom server controls)
Load() method (XML) 2nd 3rd 4th 5th 6th
 listings
 10.11, loading a local XML file
 10.12, loading an XML file residing on a Web server
 10.13, loading a local XML file 2nd
LoadPostData event (custom server controls)
LoadViewState event (custom server controls)
locale identifier (LCID)
 LCID attribute (Page object) 2nd
Location attribute (OutputCache directive) 2nd 3rd 4th
location element, URL authorization; 2nd 3rd 4th 5th
location section (Web.Config) 2nd 3rd 4th 5th 6th
locking down Web configuration settings 2nd
logging
 listings
 3.10, writing events to Windows event log 2nd 3rd
 Windows event log 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
logic
 business logic componenets
 Global Assembly Cache (GAC) 2nd 3rd 4th
logic, separating code from presentation using code behind 2nd 3rd 4th 5th 6th 7th 8th
 . [See also code behind]
 listing 2.8, SamplePage3.aspx, using code behind 2nd 3rd
 listing 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd
login page
 forms authentication 2nd 3rd 4th 5th 6th 7th
login pages
 authenticating only two users 2nd 3rd 4th
 class file 2nd 3rd 4th
 HTML for login.aspx 2nd 3rd
 class file 2nd 3rd 4th 5th
 Passport authentication 2nd 3rd
 Transact SQL to create tables and stored procedures used by login.aspx 2nd 3rd 4th 5th
loginurl attribute
 forms authentication
LogoTag2() method (Passport authentication)
logs
 EventLog class 2nd 3rd 4th
 HttpModule That Handles Errors in an Application by Writing Them to the Event Log and E-mailing the
 HttpModule that handles errors in an application by writing them to the event log and e-mailing the 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

 HttpModule That Handles Errors in an Application by Writing Them to the Event Log and E-mailing the 2nd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M switch (XCOPY)
Machine.Config file 2nd
 accessing configuration files programmatically 2nd 3rd 4th
 editing Web configuration files in Visual Studio.NET 2nd
 locking down Web configuration settings 2nd
 section handlers 2nd
 authentication 2nd 3rd 4th
 authorization 2nd
 browser capabilities 2nd
 compilation 2nd 3rd
 custom errors 2nd 3rd
 execution timeout 2nd
 globalization 2nd 3rd
 HTTP handlers
 HTTP modules 2nd
 pages 2nd 3rd
 process model 2nd 3rd
 session state 2nd 3rd
 trace 2nd 3rd 4th
 Web services 2nd 3rd
Master-Detail relationships
 Web service DataSets 2nd 3rd 4th 5th 6th 7th 8th 9th
 Web service DataSets (should be serialization) 2nd
 Web service serialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
MaxItems argument (Cache class) 2nd
MemberName attribute (PassportIdentity class)
methods
 . [See also classes]
 AdRotator class
 Button class
 Cache class
 CacheDependency class
 Calendar class 2nd
 CheckBox class
 Control class
 DataAdapter class (ADO.NET)
 DataColumn class (ADO.NET)
 DataGrid class 2nd
 DataList class 2nd
 DataRelation class (ADO.NET)
 DataSet class (ADO.NET)
 DataTable class (ADO.NET)
 Debug class
 DropDownList class
 EventLog class
 HtmlAnchor control
 HtmlButton control
 HtmlForm control
 HtmlImage control

This document is created with the unregistered version of CHM2PDF Pilot

 HtmlInputButton control
 HtmlInputCheckBox control
 HtmlInputFile control
 HtmlInputHidden control
 HtmlInputImage control
 HtmlInputRadioButton control
 HtmlInputText control
 HtmlSelect control
 HtmlTable control
 HtmlTableCell control
 HtmlTableCellCollection control
 HtmlTableRow control
 HtmlTableRowCollection control
 HtmlTextArea control
 HttpApplication class
 HttpCachePolicy class 2nd
 HttpCacheVaryByHeaders class
 HttpRequest class
 HttpResponse class
 HttpServerUtility class
 HttpSessionState class 2nd
 Hyperlink class 2nd
 Image class 2nd
 ImageButton class
 Label class 2nd
 LinkButton class 2nd
 ListBox class
 OleDbCommand class (ADO.NET)
 Page class
 Panel class 2nd
 PerformanceCounter class
 RadioButton class 2nd
 Repeater class
 SqlConnectionclass (ADO.NET)
 SqlDataAdapter class (ADO.NET)
 SqlDataReader class (ADO.NET)
 SqlError (ADO.NET)
 SqlException (ADO.NET)
 Table class 2nd
 TableCell class 2nd
 TableRow class
 TextBox class
 TraceContext class
 user controls 2nd 3rd 4th 5th
 ValidationEventArgs class
 WebControl class 2nd
 XmlDocument class
 XmlNamedNodeMap class
 XmlNode class
 XmlNodeList class
 XmlNodeReader class 2nd
 XmlReader class

This document is created with the unregistered version of CHM2PDF Pilot

 XmlTextReader class
 XmlTextWriter class
 XmlValidatingReader class
 XmlWriter class
Microsoft
 XML Web site
Microsoft Knowledge Base Web site
 Windows 2000 command changes
Microsoft Passport. [See Passport authentication]
Microsoft Web site
 XDR schemas
mobile Web forms 2nd
monitoring applications
 performance monitors. [See performance monitors]2nd [See performance monitors]3rd [See performance
monitors]4th [See performance monitors]5th [See performance monitors]6th [See performance monitors]7th [See
performance monitors]8th [See performance monitors]9th [See performance monitors]10th [See performance
monitors]11th [See performance monitors]12th [See performance monitors]13th [See performance monitors]14th
[See performance monitors]15th [See performance monitors]
 tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 categorizing output 2nd 3rd 4th 5th 6th 7th
 enabling application tracing 2nd 3rd 4th
 enabling page tracing 2nd 3rd 4th
 equipping pages for Trace mode 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 trace information categories 2nd
 viewing application trace data from remote browser windows 2nd 3rd
 Web.Config/Machine.Config Trace settings 2nd 3rd 4th
 Windows event log 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
MOVE command
 Windows 2000 changes

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

N switch (XCOPY)
name attribute
 forms authentication
namespaces
 compiling into .NET components 2nd
 importing
 @Import directive (Page object) 2nd
navigating XML documents 2nd 3rd
networks
 data representation. [See data representation]
Nickname attribute (PassportIdentity class)
nodes
 XML
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
nodes (XML) 2nd
 abbreviated close-tag syntax 2nd 3rd
 case sensitivity 2nd
 ChildNodes class 2nd 3rd 4th 5th
 complex/simple types 2nd 3rd 4th 5th 6th 7th
 creating attributes 2nd
 elements that contain data 2nd 3rd 4th
 enclosing character data 2nd 3rd 4th 5th
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
 inserting new child nodes using AppendChild method 2nd
 listings
 10.3, XML document with a declaration and a top-level element 2nd
 10.4, XML document with elements that contain data 2nd
 10.5, XML document with multiple child elements beneath the top-level element 2nd 3rd
 10.6, XML document with elements and attributes 2nd
 10.7, XML document with escape sequences 2nd
 10.8, XML document with a CDATA section 2nd
 10.9, XML document with empty elements 2nd
 slash (/) character
 XmlNode class 2nd 3rd 4th
 InsertAfter method 2nd 3rd
 viewing document data 2nd 3rd 4th 5th 6th 7th 8th
 XmlNodeList class 2nd
 XmlNodeReader class 2nd 3rd 4th
 navigating/updating documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
nonquery commands (ADO.NET) 2nd 3rd 4th
Northwind database
 calling NorthwindOrders Web service asynchronously via Web Form 2nd 3rd 4th 5th
Northwind Database
 SalesByCategory stored procedure
 passing parameters to stored procedures 2nd 3rd 4th 5th
Northwind database
 Web service serialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O switch (XCOPY)
objects
 . [See also classes]2nd [See also classes]3rd [See also classes]
 command objects (ADO.NET) 2nd
 data-containing objects in ADO.NET 2nd
 database connections 2nd 3rd 4th 5th 6th 7th
 Debug 2nd 3rd 4th
 . [See also debugging]2nd [See also debugging]3rd [See also debugging]
 identities 2nd 3rd 4th
 PerformanceCounter 2nd 3rd 4th 5th
 . [See also performance counters]
 principal objects 2nd 3rd 4th
 serialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 DataSet 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 server-side object tags
 Global.asax files 2nd 3rd 4th 5th
 Trace. [See tracing]
 XML Document Object Model (DOM) 2nd 3rd 4th 5th 6th 7th 8th 9th
 extended classes 2nd
 fundamental classes 2nd 3rd
objectsApplication-Scoped objects, declaring in Global.asax files 2nd 3rd
OLE DB
 connecting to databases 2nd 3rd 4th
OleDbAdapter object
 . [See also data adapters (ADO.NET)]
OleDbCommand class 2nd 3rd
OleDbCommand class (ADO.NET) 2nd
OleDbConnection class 2nd 3rd 4th 5th 6th
OleDbConnection object 2nd 3rd 4th
OleDbDataReader class
OnStart event handler in Global.asax 2nd 3rd
Open method
 database connections 2nd 3rd
 . [See also connecting to databases]
Opera Web browser
operators
 ValidationCompareOperator 2nd 3rd
OR keyword
 XPath queries 2nd
out of process session state (State Server) 2nd 3rd 4th 5th 6th 7th
 advantages/disadvantages 2nd 3rd 4th 5th 6th 7th 8th 9th
output
 ad insertion engine that replaces <adinsert tags with ads 2nd 3rd
 filtering with HttpModules 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 forking filters 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 form results
 caching 2nd 3rd 4th 5th 6th
 time stamping with HttpModules 2nd 3rd 4th 5th 6th 7th 8th
 WSDL, Web services

This document is created with the unregistered version of CHM2PDF Pilot

output caching
 . [See also caching]
output caching (entire pages) 2nd 3rd 4th 5th 6th 7th
OutputCache directive 2nd
 . [See also caching]
 caching partial pages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 generating crumb trails of previous search terms 2nd 3rd 4th 5th
 generating phone lists 2nd 3rd 4th 5th 6th
 Duration attribute 2nd
 Headers attribute 2nd
 Location attribute 2nd 3rd 4th
 partial pages
 allowed user control/ output caching combinations 2nd 3rd 4th 5th
 VaryByCustom attribute 2nd 3rd 4th 5th 6th
 VaryByHeader attribute 2nd 3rd 4th
 VaryByParam attribute 2nd 3rd 4th 5th 6th 7th
 VaryByParams attribute 2nd
overwriting files (XCOPY) 2nd 3rd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

P switch (XCOPY)
Page class 2nd 3rd
page counters (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th
Page object
 attributes 2nd 3rd
 AspCompat 2nd
 AutoEventWireup 2nd
 Buffer 2nd
 ClassName
 ClientTarget 2nd
 CodePage 2nd
 CompilerOptions 2nd
 ContentType 2nd
 Culture 2nd
 Debug
 Description
 EnableSessionState
 EnableViewState 2nd
 EnableViewStateMac 2nd
 ErrorPage
 Inherits
 Language
 LCID 2nd
 SmartNavigation
 Src 2nd
 Trace
 TraceMode
 Transaction
 UICulture
 WarningLevel 2nd
 directives 2nd 3rd 4th 5th
 . [See also Page object, attributes]
 @Assembly
 @Control
 @Implements 2nd
 @Import 2nd
 @OutputCache
 @Page 2nd 3rd 4th 5th 6th
 @Register
 events 2nd 3rd 4th 5th
 Page class 2nd 3rd
PageHandlerFactory HttpHandler
 . [See also HttpHandlers]
pages
 advertisements
 rotating (AdRotator class) 2nd 3rd 4th 5th 6th
 ASP.NET control model 2nd 3rd
 (begin)
 (end)

This document is created with the unregistered version of CHM2PDF Pilot

 event handling 2nd 3rd 4th 5th 6th 7th
 event handling. [See also event handling]
 form state 2nd 3rd
 HTML controls 2nd
 HTML controls. [See also HTML controls]
 server controls 2nd 3rd 4th 5th
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 buffering
 deactivating via Buffer attribute 2nd
 buttons
 HtmlButton control 2nd 3rd 4th 5th
 HtmlInputButton control 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputRadioButton control 2nd
 RadioButton control 2nd 3rd 4th
 caching 2nd 3rd 4th 5th 6th 7th
 . [See also caching]
 @OutputCache directive (Page object)
 browser differences 2nd 3rd 4th
 partial pages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 refreshing cached items via dependencies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 VaryByCustom/VaryByHeader 2nd 3rd
 check boxes 2nd 3rd 4th
 CheckBox control 2nd 3rd
 debugging 2nd 3rd 4th
 . [See also debugging]
 determining browser capabilities 2nd 3rd 4th 5th 6th 7th
 event handling 2nd 3rd 4th 5th
 headers
 HttpCacheVaryByHeaders class 2nd
 Set-Cookie 2nd
 VaryByHeader caching 2nd 3rd
 HTML controls. [See HTML controls]2nd [See HTML controls]
 HttpApplication class 2nd 3rd
 HttpBrowserCapabilities class 2nd 3rd 4th 5th 6th 7th
 HttpRequest class 2nd
 HttpResponse class 2nd 3rd
 HttpServerUtility class 2nd
 HttpSessionState class 2nd 3rd
 Hyperlink class 2nd 3rd
 Image control 2nd 3rd
 ImageButton control 2nd 3rd 4th
 LinkButton control 2nd 3rd
 ListBox control 2nd 3rd
 listings
 2.1, SimplePage.asp 2nd 3rd
 2.11, HtmlAnchor control code 2nd
 2.12, Button.aspx HTML 2nd
 2.13, Button.aspx code 2nd 3rd 4th
 2.14, Form.aspx HTML 2nd
 2.15, Form.aspx code 2nd 3rd 4th
 2.16, image.aspx HTML 2nd 3rd 4th
 2.17, image.aspx code 2nd 3rd 4th

This document is created with the unregistered version of CHM2PDF Pilot

 2.18, inputbutton.aspx HTML 2nd 3rd
 2.19, inputbutton.aspx code 2nd 3rd 4th
 2.2, SimplePage2.asp, showing code to preserve form state in ASP.OLD 2nd 3rd
 2.20, inputfile.aspx HTML 2nd
 2.21, inputfile.aspx code 2nd 3rd 4th
 2.22, HtmlInputHidden control 2nd 3rd
 2.23, @Page directive 2nd
 2.26, View State 2nd 3rd
 2.27, HttpBrowserCapabilities in Request object 2nd 3rd
 2.3, SimplePage.aspx, a reworking of SimplePage.asp in ASP.NET 2nd 3rd
 2.4, Calendar.aspx 2nd
 2.5, Calendar.aspx rendered HTML source 2nd 3rd 4th
 2.6, SimplePage3.asp, reaction to user interaction in ASP.old 2nd 3rd
 2.7, SamplePage2.aspx, event handler for a button 2nd
 2.8, SamplePage3.aspx, using code behind 2nd 3rd
 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd 3rd
 code-behind Page_Load event procedure without AutoEventWireup 2nd
 HtmlAnchor control HTML 2nd 3rd
 lists
 DataList class 2nd 3rd 4th 5th 6th
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 Page class 2nd 3rd
 Panel control 2nd 3rd
 postback 2nd 3rd 4th
 tables
 DataGrid class 2nd 3rd
 HtmlTable control 2nd
 HtmlTableCell control 2nd
 HtmlTableCellCollection control 2nd
 HtmlTableRow control 2nd
 HtmlTableRowCollection control 2nd
 Table control 2nd
 TableCell control 2nd 3rd
 TableRow control 2nd 3rd
 text
 Label control 2nd 3rd
 TextBox class 2nd
 text. [See text]2nd [See text]
 tracing
 categorizing output 2nd 3rd 4th 5th 6th 7th
 enabling tracing 2nd 3rd 4th 5th 6th 7th 8th
 equipping pages for Trace mode 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 trace information categories 2nd
 View State 2nd 3rd 4th
 EnableViewState/EnableViewStateMac attributes (Page object) 2nd
 Web controls. [See Web controls]
 Web.Config/Machine.Config page settings 2nd 3rd
Panel class 2nd 3rd
parameters
 passing parameters to stored procedures (ADO.NET) 2nd 3rd 4th 5th 6th
Passport authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 Passport Web site

This document is created with the unregistered version of CHM2PDF Pilot

 PassportIdentity class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 attributes 2nd
 Site IDs
 web.config setup 2nd
Passport User ID (PUID) 2nd 3rd 4th
PassportIdentity class 2nd
path attribute
 forms authentication
paths
 rewriting paths via HttpModule 2nd 3rd 4th 5th 6th
Perfmon tool. [See performance monitors]
performance monitors
 creating custom monitors 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 creating monitor categories 2nd 3rd 4th 5th 6th
 deleting monitor categories 2nd 3rd
 sending application information to monitors via PerformanceCounter object 2nd 3rd 4th 5th
 Windows Performance Monitor utility 2nd
 listings
 3.7, initializing new monitor category and monitor object 2nd
 3.8, incrementing performance monitor using PerformanceCounter object 2nd 3rd 4th
 3.9, deleting a performance category 2nd
PerformanceCounter class 2nd
persistence
 server controls 2nd 3rd 4th 5th 6th 7th
PostalCode attribute (PassportIdentity class)
postback
 encryption/SSL
 IPostBackEventHandler
 server controls 2nd 3rd 4th 5th
 Web controls 2nd 3rd 4th
PreferredEmail attribute (PassportIdentity class)
PreRender event
 Page object
 Web controls
PreRender event (custom server controls)
presentation, separating from code using code behind 2nd 3rd 4th 5th 6th 7th 8th 9th
 . [See also code behind]
 listing 2.8, SamplePage3.aspx, using code behind 2nd 3rd
 listing 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd
principals 2nd
 . [See also security]
 GenericPrincipal class 2nd
 GenericPrincipal object 2nd 3rd 4th 5th 6th 7th 8th 9th
 IPrincipal interface 2nd
 WindowsPrincipal class 2nd 3rd
 WindowsPrincipal object 2nd 3rd 4th 5th 6th
processModel settings (Web.Config/Machine.Config files) 2nd 3rd
proerties
 ValidationEventArgs class
ProfileVersion attribute (PassportIdentity class)
programming controls
 HTML controls

This document is created with the unregistered version of CHM2PDF Pilot

 HtmlAnchor 2nd 3rd 4th 5th
 HtmlButton 2nd 3rd 4th 5th
 HtmlForm 2nd 3rd 4th 5th 6th 7th 8th 9th
 HtmlImage 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 HtmlInputButton 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputCheckbox 2nd
 HtmlInputFile 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputHidden 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputImage 2nd
 HtmlInputRadioButton 2nd
 HtmlInputText 2nd
 HtmlSelect 2nd
 HtmlTable 2nd
 HtmlTableCell 2nd
 HtmlTableCellCollection 2nd
 HtmlTableRow 2nd
 HtmlTableRowCollection 2nd
 HtmlTextArea 2nd
 Web forms controls 2nd
properties
 . [See also classes]
 AdRotator class
 Button class
 Cache class
 CacheDependency class
 Calendar class
 CheckBox class
 Control class
 DataAdapter class (ADO.NET)
 DataColumn class (ADO.NET)
 DataGrid class 2nd
 DataList class 2nd
 DataRelation class (ADO.NET)
 DataSet class (ADO.NET)
 DataTable class (ADO.NET)
 Debug class
 DropDownList class
 EventLog class
 HtmlAnchor control
 HtmlButton control
 HtmlForm control
 HtmlImage control
 HtmlInputButton control
 HtmlInputCheckBox control
 HtmlInputFile control
 HtmlInputHidden control
 HtmlInputImage control
 HtmlInputRadioButton control
 HtmlInputText control
 HtmlSelect control
 HtmlTable control
 HtmlTableCell control

This document is created with the unregistered version of CHM2PDF Pilot

 HtmlTableCellCollection control
 HtmlTableRow control
 HtmlTableRowCollection control
 HtmlTextArea control
 HttpApplication class
 HttpCachePolicy class
 HttpCacheVaryByHeaders class
 HttpCacheVaryByParams class
 HttpRequest class
 HttpResponse class
 HttpServerUtility class
 HttpSessionState class 2nd
 Hyperlink class 2nd
 ImageButton class
 Label class
 LinkButton class
 ListBox class
 OleDbCommand class (ADO.NET)
 PerformanceCounter class
 RadioButton class
 Repeater class
 server controls
 basic server control that stores property state 2nd
 SqlConnectionclass (ADO.NET)
 SqlDataAdapter class (ADO.NET)
 SqlDataReader class (ADO.NET)
 SqlError (ADO.NET)
 SqlException (ADO.NET)
 Table class
 TableCell class
 TableRow class
 TextBox class
 TraceContext class
 user controls 2nd 3rd 4th
 WebControl class
 XmlDocument class
 XmlNamedNodeMap class
 XmlNode class
 XmlNodeList class
 XmlNodeReader class 2nd
 XmlReader class
 XmlTextReader class
 XmlTextWriter class
 XmlValidatingReader class
 XmlWriter class
propeties
 Page class
 Panel class
protection attribute
 forms authentication 2nd
proxies
 Web services 2nd 3rd 4th 5th

This document is created with the unregistered version of CHM2PDF Pilot

 creating with Visual Studio .NET Web References 2nd 3rd 4th 5th 6th 7th 8th
 creating with wsdl.exe 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SoapHttpClientProtocol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SoapHttpClientProtocol CookieContainer property 2nd 3rd 4th 5th 6th 7th 8th 9th
PUID (Passport User ID) 2nd 3rd 4th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Q switch (XCOPY)
queries
 caching 2nd 3rd 4th 5th 6th 7th
querying databases 2nd 3rd 4th
 (begin)
 (end)
 command objects 2nd
 executing commands that donÕt return data (nonquery commands) 2nd 3rd 4th
 executing text-based commands to retrieve data reader objects 2nd 3rd 4th 5th 6th
 displaying query data in Web browsers 2nd 3rd 4th 5th
 displaying query data in Web Forms DataGrid control 2nd
 displaying query results using SqlDataAdapter and DataSet 2nd 3rd
 executing stored procedures that return scalar values 2nd 3rd
 passing parameters to stored procedures 2nd 3rd 4th 5th 6th
 retrieving data reader objects via text commands 2nd 3rd 4th 5th 6th 7th
 retrieving data via stored procedures 2nd 3rd 4th 5th
 SqlDataReader object 2nd
 returning via text commands 2nd 3rd 4th 5th 6th
querying XML data (XPath expressions) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
16th 17th 18th 19th
 common XPath scenarios
 dot (.) operator
 inequality operator (!=)
 listings
 10.24, XPath query page used to test XPath queries against books.xml 2nd 3rd
 10.25, running a simple query 2nd
 10.26, retrieving author information based on author ID 2nd
 10.27, retrieving multiple instances of same author 2nd 3rd
 10.28, combining multiple criteria with AND and OR 2nd
 10.29, excluding nodes based on attribute values 2nd
 10.30, retrieving a specific TITLE node by querying on its text 2nd
 10.31, retrieving a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
 retrievig the root node of a document
 W3C XPath Web site
question mark (?)
 authorization settings (Web.Config/Machine.Config files)
 URL authorization

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R switch (XCOPY)
radio buttons
 HtmlInputRadioButton control 2nd
RadioButton class 2nd 3rd 4th
RaisePostBackEvent (custom server controls)
RaisePostDataChangedEvent (custom server controls)
raising events via HttpModules 2nd 3rd 4th 5th 6th
RangeValidator control 2nd 3rd 4th
reading XML data
 XmlDataReader object 2nd 3rd 4th 5th 6th 7th
 XmlNode object 2nd 3rd 4th 5th
 XmlNodeReader object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th
 changing values 2nd 3rd 4th 5th 6th 7th
 navigating documents 2nd 3rd
 XPath queries. [See XML, XPath queries]
 XPath queries 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 common XPath scenarios
 dot (.) operator
 inequality operator (!=)
 listing 10.24, XPath query page used to test XPath queries against books.xml 2nd 3rd
 listing 10.25, running a simple query 2nd
 listing 10.26, retrieving author information based on author ID 2nd
 listing 10.27, retrieving multiple instances of same author 2nd 3rd
 listing 10.28, combining multiple criteria with AND and OR 2nd
 listing 10.29, excluding nodes based on attribute values 2nd
 listing 10.30, retrieving a specific TITLE node by querying on its text 2nd
 listing 10.31, retrieving a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
 retrievig the root node of a document
 W3C XPath Web site
refreshing
 cached items via dependencies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Region attribute (PassportIdentity class)
Register directive
 server controls 2nd
 user controls 2nd 3rd
registering controls
 @Register directive (Page object)
RegularExpressionValidator control 2nd 3rd
RelAbsolute.aspx code listing 2nd 3rd
remote
 tracing
 viewing application trace data from remote browser windows 2nd 3rd
Repeater class 2nd 3rd 4th 5th 6th 7th
Request object
 HttpBrowserCapabilities class 2nd 3rd 4th 5th 6th 7th
 HttpRequest class 2nd
RequiredFieldValidation control 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

RequiredFieldValidator control 2nd 3rd 4th
reusable code 2nd 3rd
 custom user-interface objects. [See controls]
 server-side includes (SSIs) 2nd
reusing code. [See components]
rewriting paths via HttpModule 2nd 3rd 4th 5th 6th
rich clients 2nd
roles
 forms authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 UserRoleMappings table relationships
Roles tables
rotating advertisements (AdRotator class) 2nd 3rd 4th 5th 6th
 banner dimensions
 listing 2.29 2nd 3rd 4th
 listing 2.30 2nd
rows
 HtmlTableRow control 2nd
 HtmlTableRowCollection control 2nd
 HtmlTextArea control 2nd
rows. [See tables]
running database queries 2nd 3rd 4th
 (begin)
 (end)
 command objects 2nd
 executing commands that donÕt return data (nonquery commands) 2nd 3rd 4th
 executing text-based commands to retrieve data reader objects 2nd 3rd 4th 5th 6th
 displaying query data in Web browsers 2nd 3rd 4th 5th
 displaying query data in Web Forms DataGrid control 2nd
 displaying query results using SqlDataAdapter and DataSet 2nd 3rd
 executing stored procedures that return scalar values 2nd 3rd
 passing parameters to stored procedures 2nd 3rd 4th 5th 6th
 retrieving data reader objects via text commands 2nd 3rd 4th 5th 6th 7th
 retrieving data via stored procedures 2nd 3rd 4th 5th
 SqlDataReader object 2nd
 returning via text commands 2nd 3rd 4th 5th 6th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S switch (XCOPY) 2nd
SalesByCategory stored procedure (Northwind Database)
 passing parameters to stored procedures 2nd 3rd 4th 5th
SalesByEmployee.aspx code listing 2nd 3rd
SalesPeople.ascx code listing 2nd 3rd
SamplePage2.aspx listing, event handler for a button 2nd
SamplePage3.aspx listing, using code behind 2nd 3rd
SAX (Simple API for XML) 2nd 3rd
scalar vaules
 executing stored procedures that return scalar values (ADO.NET) 2nd 3rd
scavenging
schemas
 SQL Server state
schemas (XML) 2nd
 case sensitivity
 complex types 2nd 3rd 4th 5th 6th 7th
 creating
 W3C XML schemas 2nd 3rd 4th 5th 6th 7th 8th
 XSD schemas 2nd 3rd
 Document Type Definitions (DTDs) 2nd 3rd 4th
 listings
 10.34, W3C schema definition boilerplate 2nd
 10.35, W3C schema containing a definition for a simple type 2nd
 10.36, W3C schema containing an element definition that refers to a type definition 2nd
 10.37, W3C schema containing a complex type that refers to a simple type 2nd
 simple types 2nd 3rd 4th 5th 6th 7th
 validating documents using W3C schemas 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 XML Data-Reduced (XDR) schemas 2nd 3rd 4th 5th
Search dialog box server control
 creating composite Search server control by overriding the CreateChildControls method of the Control 2nd 3rd
 page created to host an instance of composite Search server control 2nd
 using delegation to provide access to Text property of child control 2nd 3rd
Search dialog box user control 2nd 3rd 4th
 . [See also user controls]
 customizing 2nd 3rd 4th
 handling events 2nd 3rd 4th
 Register directive 2nd 3rd 4th 5th
 TitleBarText property 2nd 3rd 4th
Search dialog box user controlShowAdvanced method 2nd 3rd 4th
section handlers (Web.Config/Machine.Config) 2nd
 authentication 2nd 3rd 4th
 authorization 2nd
 browser capabilities 2nd
 compilation 2nd 3rd
 custom errors 2nd 3rd
 execution timeout 2nd
 globalization 2nd 3rd
 HTTP handlers
 HTTP modules 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 pages 2nd 3rd
 process model 2nd 3rd
 session state 2nd 3rd
 trace 2nd 3rd 4th
 Web services 2nd 3rd
Secure Socket Layer (SSL)
 postback information
security 2nd
 authentication
 cookie-based authentication
 HttpModules 2nd 3rd 4th
 Passport authentication 2nd 3rd
 Web.Config/Machine.Config settings 2nd 3rd
 Windows authentication
 authorization
 Web.Config/Machine.Config settings 2nd
 file authorization 2nd
 forms authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 advantages 2nd
 process flow 2nd 3rd 4th 5th
 roles 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 settings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 versus Windows authentication 2nd 3rd
 identities 2nd
 GenericIdentity class 2nd 3rd
 PassportIdentity class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 WindowsIdentity class 2nd
 impersonation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 determining identity with WindowsIdentity 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 hard-coded impersonation 2nd 3rd 4th 5th 6th 7th
 ISAPI filter
 listings
 7.1, user authentication with WindowsPrincipal 2nd 3rd 4th
 7.10, web.config file that uses URL authorization Location element 2nd 3rd 4th
 7.11, Web.config that maps roles to application locations 2nd 3rd
 7.12, login page that authenticates only two users 2nd 3rd 4th
 7.13, login page that authenticates only two users, class file 2nd 3rd 4th
 7.14, global.asax class that handles the AuthorizeRequest application event 2nd 3rd
 7.15, web.config file setting authentication to forms and defining URL authorization 2nd
 7.16, HTML for login.aspx 2nd 3rd
 7.17, HTML for login.aspx, class file 2nd 3rd 4th 5th
 7.18, Transact SQL to create tables and stored procedures used by login.aspx 2nd 3rd 4th 5th
 7.19, global.asax containing the Application_AuthenticateRequest handler 2nd 3rd
 7.2, user authentication with WindowsPrincipal, class file 2nd
 7.20, Webform1.aspx 2nd 3rd 4th 5th
 7.21, Webform1.aspx, code behind class 2nd 3rd 4th 5th
 7.22, Web.config set up for impersonation 2nd 3rd
 7.23, Web.config with a hard-coded impersonation account 2nd 3rd
 7.3, Web.config for simple forms authentication 2nd 3rd
 7.4, simple login page 2nd 3rd 4th 5th
 7.5, simple login page, class file 2nd 3rd 4th 5th 6th
 7.6, security;web.config setup for Passport authentication 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 7.7, Web User Control That Wraps the Display of the Passport Logo 2nd 3rd 4th
 7.8, login.aspx page shown when users attempt to access content when they are not authenticated 2nd 3rd
 7.9, page that displays the PUID, e-mail address, and member name of a logged-in Passport user 2nd 3rd
 locking down Web configuration settings 2nd
 Passport authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 PassportIdentity class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Site IDs
 web.config setup 2nd
 principals 2nd
 GenericPrincipal class 2nd
 GenericPrincipal object 2nd 3rd 4th 5th 6th 7th 8th 9th
 IPrincipal interface 2nd
 WindowsPrincipal class 2nd 3rd
 WindowsPrincipal object 2nd 3rd 4th 5th 6th
 URL authorization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 location element 2nd 3rd 4th 5th
 using forms authentication with URL authorization 2nd 3rd 4th
 FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 validation
 validating documents using W3C schemas 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 Windows authentication 2nd
 versus forms authentication 2nd 3rd
 WindowsBuiltInRole enumeration 2nd 3rd 4th 5th 6th 7th
selecting
 HtmlSelect control 2nd
separating code from presentation using code behind 2nd 3rd 4th 5th 6th 7th 8th 9th
 . [See also code behind]
 listing 2.8, SamplePage3.aspx, using code behind 2nd 3rd
 listing 2.9, SimplePage3.aspx.vb, code behind file for SimplePage3.aspx 2nd
serialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 (Web services)
 DataSet 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 WebMethod returning a DataTable 2nd 3rd 4th 5th
 WebMethod returning a Master-Detail relationship 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
server controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 binding controls to data 2nd
 Calendar class 2nd 3rd 4th 5th
 CheckBox class 2nd 3rd 4th
 compiling controls as .NET components 2nd 3rd 4th 5th 6th
 creating components with command-line compiler 2nd 3rd 4th 5th 6th
 deploying components 2nd
 Control class 2nd 3rd
 creating basic server controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 creating composite controls 2nd 3rd 4th 5th 6th 7th 8th
 DataGrid class 2nd 3rd
 DataList class 2nd 3rd 4th 5th 6th
 listing 2.33, DataList server control bound to a Hashtable object 2nd 3rd
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 events 2nd 3rd 4th
 generating postback 2nd 3rd 4th 5th
 HTML controls 2nd
 . [See also HTML controls]

This document is created with the unregistered version of CHM2PDF Pilot

 Hyperlink class 2nd 3rd
 Image class 2nd 3rd
 ImageButton class 2nd 3rd 4th
 LinkButton class 2nd 3rd
 ListBox class 2nd 3rd
 listings
 9.10, batch file that compiles and deploys a .NET component project automatically 2nd
 9.11, composite control 2nd 3rd
 9.12, page created to host an instance of composite Search server control 2nd
 9.13, using delegation to provide access to Text property of child control 2nd 3rd
 9.14, CustomTextBox control that contains set of custom formatting defaults 2nd
 9.15, ASP.NET Page that uses an instance of subclassed CustomText control 2nd 3rd
 9.16, hyperlink control that can generate client-side postback of a form 2nd 3rd
 9.17, basic control that stores property state 2nd
 9.18, page to contain counter control 2nd 3rd
 9.19, rewritten CurrentValue property, demonstrating lack of state persistence 2nd
 9.7, Hello World server control example 2nd 3rd
 9.8, ASP.NET page that references custom Hello World server control 2nd 3rd
 9.9, namespace and class that can be compiled into a .NET component 2nd
 Panel class 2nd 3rd
 persistence support 2nd 3rd 4th 5th 6th 7th
 RadioButton class 2nd 3rd 4th
 Register directive 2nd
 Repeater class 2nd 3rd 4th 5th 6th 7th
 rich clients 2nd 3rd 4th
 subclassing existing controls 2nd 3rd 4th 5th
 supporting designers 2nd
 Table class 2nd
 TableCell class 2nd 3rd
 TableRow class 2nd 3rd
 TextBox class 2nd
 validation controls 2nd 3rd 4th 5th 6th
 CompareValidator 2nd 3rd 4th 5th
 CustomValidator 2nd 3rd 4th 5th
 multiple validators
 RangeValidator 2nd 3rd 4th
 RegularExpressionValidator 2nd 3rd
 RequiredFieldValidator 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
 Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
server-side control 2nd
server-side cursors 2nd
server-side includes (SSIs)
 disadvantages 2nd
 Global.asax files 2nd
server-side object tags
 Global.asax files 2nd 3rd 4th 5th
servers
 HttpServerUtility class 2nd
services. [See Web services]
Session object
 Global.asax event handler 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

session state
 cookieless session management
 rewriting paths via HttpModule 2nd 3rd 4th 5th 6th
 EnableSessionState attribute (Page object)
 HttpSessionState class 2nd 3rd
 Web services 2nd 3rd 4th
 Web.Config/Machine.Config sessionState settings 2nd 3rd
sessions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 . [See also state management]
 choosing between session states 2nd 3rd 4th 5th 6th
 HttpSessionState class 2nd
 identity
 cookie-based 2nd 3rd
 cookieless 2nd 3rd 4th 5th 6th
 in process session state 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 out of process session state (State Server) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 storing state information in SQL Server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 using session state 2nd 3rd
 adding values 2nd 3rd 4th
 cleaning up after session state 2nd
 initializing user states 2nd
 retrieving values 2nd
 setting values 2nd 3rd
 Web farms 2nd 3rd 4th 5th 6th 7th 8th
Simple API for XML (SAX) 2nd 3rd
Simple Object Access Protocol (SOAP) 2nd 3rd
simple types (XML) 2nd 3rd 4th 5th 6th 7th
SimpleDataSet
 binding to forms 2nd 3rd 4th 5th
 running wsdl.exe 2nd 3rd 4th
 Web Form client 2nd 3rd 4th
SimpleDataSet (Web services) 2nd 3rd 4th 5th 6th
SimplePage.asp listing 2nd 3rd
SimplePage.aspx listing, a reworking of Listing 2.1 in ASP.NET 2nd 3rd
SimplePage2.asp listing, showing code to preserve form state in ASP.OLD 2nd 3rd
SimplePage3.asp listing, reaction to user interaction in ASP.old 2nd 3rd
SimplePage3.aspx.vb listing, code behind file for SimplePage3.aspx 2nd 3rd
single-threaded apartment (STA) threading 2nd
slash (/)
 path attribute, forms authentication 2nd
slash (/) character
 XML closing tags
SlidingExpiration argument (Cache class) 2nd 3rd 4th 5th
SmartNavigation attribute, Page object
SmtpMailclass 2nd 3rd
SOAP (Simple Object Access Protocol) 2nd 3rd
SoapHttpClientProtocol class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 CookieContainer property 2nd 3rd 4th 5th 6th 7th 8th 9th
Split() function (forms authentication)
SQL
 combining with XML (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SqlHandler 2nd 3rd 4th 5th 6th 7th

This document is created with the unregistered version of CHM2PDF Pilot

 SqlHandler output
 XSL template used to format output 2nd 3rd 4th 5th
SQL Server
 connecting to databases 2nd
 storing state information 2nd 3rd 4th 5th
 advantages/disadvantages 2nd 3rd 4th 5th 6th 7th 8th 9th
 tempdb
SqlCommand class
SqlCommand object
 calling stored procedures 2nd 3rd 4th
SQLCommand object
 ExecuteScalar method 2nd 3rd
SqlCommand object
 Parameters collection 2nd
SqlConnection class 2nd 3rd 4th 5th 6th 7th
SqlConnection class (ADO.NET) 2nd
SqlConnection object 2nd 3rd 4th
SqlDataAdapter
 . [See also data adapters (ADO.NET)]
SqlDataAdapter class (ADO.NET) 2nd
SqlDataAdapter object
 . [See also data adapters (ADO.NET)]
SqlDataReader class (ADO.NET) 2nd 3rd
SqlDataReader object 2nd 3rd 4th 5th 6th
 calling stored procedures 2nd 3rd 4th
 returning via text commands 2nd 3rd 4th 5th 6th 7th
SqlError class (ADO.NET) 2nd
SqlException class (ADO.NET) 2nd
Src attribute, Page object 2nd
SSIs (server-side includes)
 disadvantages 2nd
 Global.asax files 2nd
SSL (Secure Socket Layer)
 postback information
STA (single-threaded apartment) threading 2nd
standards
 Web services 2nd
state
 form state 2nd 3rd
 persistence
 server controls 2nd 3rd 4th 5th 6th
 session state
 EnableSessionState attribute (Page object)
 HttpSessionState class 2nd 3rd
 Web.Config/Machine.Config sessionState settings 2nd 3rd
 View State
 EnableViewState attribute (Page object) 2nd
 EnableViewStateMac attribute (Page object) 2nd
 Web controls 2nd 3rd 4th
 Web service-based state service 2nd 3rd 4th
state management 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 ASP 1.0 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 browser requests 2nd 3rd 4th 5th 6th
 Choosing Between Session States 2nd 3rd 4th 5th 6th
 cookies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 cookie-based session identity 2nd 3rd
 cookieless session identity 2nd 3rd 4th 5th 6th
 in process session state 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 listings
 5.1, HTTP request using Telnet 2nd 3rd
 5.10, timing read/write operations on session state 2nd 3rd 4th
 5.2, Set-Cookie header 2nd
 5.3, relative and absolute references 2nd 3rd
 5.4, setting a session value 2nd
 5.5, getting a session value 2nd
 5.6, Session Start event 2nd
 5.7, adding/displaying session values 2nd 3rd
 5.8, out of process session state 2nd
 5.9, starting State Server 2nd
 out of process session state (State Server) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 storing state information in SQL Server 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 using session state 2nd 3rd
 adding values 2nd 3rd 4th
 cleaning up after session state 2nd
 initializing user states 2nd
 retrieving values 2nd
 setting values 2nd 3rd
 Web farms 2nd 3rd 4th 5th 6th 7th 8th
State Server 2nd 3rd 4th 5th 6th 7th 8th 9th
 advantages/disadvantages 2nd 3rd 4th 5th
StaticFileHandler HttpHandler
 . [See also HttpHandlers]
stored procedures
 executing stored procedures that return data 2nd 3rd 4th 5th
 passing parameters 2nd 3rd 4th 5th 6th
 returning scalar values 2nd 3rd
 versus text-based commands
style sheets
 transforming XML documents 2nd 3rd 4th 5th 6th 7th
 associating documents with style sheets 2nd 3rd
 creating style sheets 2nd
 creating XSLT style sheets 2nd 3rd 4th
 editing XSLT files with Visual Studio .NET
 programmatically performing XSL transformations 2nd 3rd
subclassing existing server controls 2nd 3rd 4th 5th
subdirectories
 . [See also directories]
summarizing validation errors 2nd 3rd 4th
switches
 XCOPY deployment 2nd 3rd 4th 5th
 /-Y
 /A
 /C
 /D 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 /E 2nd
 /EXCLUDE 2nd
 /EXCLUDE;
 /F
 /H
 /I
 /K
 /L
 /M
 /N
 /O
 /P
 /Q
 /R
 /S 2nd
 /T
 /U
 /V
 /W
 /X
 /Y 2nd 3rd
 /Z
System.Diagnostics
 Debug class 2nd 3rd
 EventLog class 2nd 3rd 4th 5th 6th 7th 8th 9th
 PerformanceCounter 2nd
System.Web
 TraceContext 2nd
System.Web section (Web.Config files)
 authentication settings 2nd 3rd 4th
 authorization settings 2nd
 browser capabilities settings 2nd
 compilation settings 2nd 3rd
 custom error settings 2nd 3rd
 execution timeout settings 2nd
 globalization settings 2nd 3rd
 HTTP handler settings
 HTTP module settings 2nd
 page settings 2nd 3rd
 process model settings 2nd 3rd
 session state settings 2nd 3rd
 Trace settings 2nd 3rd 4th
 Web services settings 2nd 3rd
System.Web.UI.Control
 events 2nd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T switch (XCOPY)
Table class 2nd
TableCell class 2nd 3rd
TableRow class 2nd 3rd
tables
 DataGrid class 2nd 3rd
 hash tables. [See hash tables]
 HtmlTable control 2nd
 HtmlTableCell control 2nd
 HtmlTableCellCollection control 2nd
 HtmlTableRow control 2nd
 HtmlTableRowCollection control 2nd
 HtmlTextArea control 2nd
 Table control 2nd
 TableCell control 2nd 3rd
 TableRow control 2nd 3rd
tags
 XML. [See elements (XML)]
Telnet
 HTTP requests 2nd 3rd 4th 5th
tempdb (SQL Server)
text
 hiding
 HtmlInputHidden control 2nd 3rd 4th 5th 6th 7th 8th
 HtmlInputText control 2nd
 HtmlTextArea control 2nd
 Label control 2nd 3rd
 TextBox class 2nd
 XmlTextReader class 2nd 3rd
 XmlTextWriter class 2nd
 writing data 2nd 3rd 4th 5th 6th 7th
text-based commands
 retrieving data reader objects 2nd 3rd 4th 5th 6th 7th
 versus stored procedures
TextBox class 2nd
TextPad text editor
tilde (~) character
 server side control HREFs
time stamping output HTML (BeginRequest-EndRequest module) 2nd 3rd 4th 5th
timeout attribute
 forms authentication 2nd 3rd 4th
TimeOut property (HttpSessionState class) 2nd
Timing.aspx code listing 2nd 3rd
Trace attribute, Page object
TraceContext class 2nd
TraceHandler HttpHandler
 . [See also HttpHandlers]
TraceMode attribute, Page object
tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

This document is created with the unregistered version of CHM2PDF Pilot

 activating tracing via Trace attribute (Page object)
 enabling application tracing 2nd 3rd 4th
 enabling page tracing 2nd 3rd 4th
 equipping pages for Trace mode 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 assigning output categories 2nd 3rd 4th
 listings
 3.1, simple page equipped for tracing with calls to Trace.Write 2nd 3rd 4th
 3.2, categorized Trace.Write output 2nd 3rd
 3.3, using Web.config to activate tracing for entire Web directories 2nd
 sorting trace entries via TraceMode attribute (Page object)
 trace information categories 2nd
 viewing application trace data from remote browser windows 2nd 3rd
 Web.Config/Machine.Config Trace settings 2nd 3rd 4th
Transaction attribute, Page object
TransactionOption property (WebMethodAttribute class) 2nd
transforming XML documents using style sheets 2nd 3rd 4th 5th 6th 7th
 associating documents with style sheets 2nd 3rd
 creating style sheets 2nd
 creating XSLT style sheets 2nd 3rd 4th
 editing XSLT files with Visual Studio .NET
 programmatically performing XSL transformations 2nd 3rd

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U switch (XCOPY)
UDDI (Universal Description, Discovery, and Integration) 2nd
UICulture attribute, Page object
uninstalling components from GAC 2nd
Universal Description, Discovery, and Integration (UDDI) 2nd
Unload event
 Page object
 Web controls
Unload event (custom server controls)
updating XML documents using XmlNodeReader class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 changing values 2nd 3rd 4th 5th 6th 7th
 navigating documents 2nd 3rd
 XPath queries. [See XML, XPath queries]
uplevel/downlevel rendering 2nd
uploading files
 HtmlInputFile control 2nd 3rd 4th 5th 6th 7th 8th
URL authorization 2nd 3rd 4th 5th
URL authorization
URL authorization 2nd 3rd 4th
URL authorization
 location element 2nd 3rd 4th 5th
 using forms authentication with URL authorization 2nd 3rd 4th
 FormsAuthenticationTicket class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
URLs
 location representation 2nd 3rd 4th
 loginurl attribute
 forms authentication
 rewriting paths via HttpModule 2nd 3rd 4th 5th 6th
URLs (uniform resource locators) 2nd 3rd 4th
user controls 2nd 3rd 4th 5th 6th 7th 8th 9th
 adding methods 2nd 3rd 4th 5th
 adding properties 2nd 3rd 4th
 Control directive 2nd
 handling events 2nd 3rd
 listings
 9.1, Search dialog box 2nd 3rd
 9.2, Search dialog box with TitleBarText property 2nd 3rd
 9.3, Register directive referencing a user control 2nd
 9.4, custom control utilized in an ASP.NET Web Form 2nd
 9.5, Search control with ShowAdvanced method 2nd 3rd
 9.6, handling events 2nd 3rd
 programming controls in pages 2nd 3rd 4th
 Register directive 2nd 3rd
user intercases
 Web controls. [See Web controls]
User tables
UserData member (FormsAuthenticationTicket class) 2nd 3rd
UserRoleMappings tables
users

This document is created with the unregistered version of CHM2PDF Pilot

 initializing user states 2nd
 . [See also state management]

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

V switch (XCOPY)
validation
 validating documents using W3C schemas 2nd 3rd 4th 5th 6th
 validating XML documents using W3C schemas 2nd 3rd 4th 5th 6th 7th 8th
 XmlValidatingReader class 2nd 3rd
 validating schemas 2nd 3rd 4th 5th 6th 7th 8th
validation controls (validators) 2nd 3rd 4th 5th 6th
 CompareValidator 2nd 3rd 4th 5th
 properties
 ValidationCompareOperator enumeration 2nd 3rd
 CustomValidator 2nd 3rd 4th 5th
 multiple validators
 RangeValidator 2nd 3rd 4th
 RegularExpressionValidator 2nd 3rd
 RequiredFieldValidator 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
ValidationCompareOperator enumeration 2nd 3rd
ValidationCompareOperator operators 2nd 3rd
ValidationEventArgs class 2nd 3rd
VaryBrowserBroken.aspx code listing
VaryBrowserFixed.aspx code listing 2nd
VaryByCustom attribute (OutputCache directive) 2nd 3rd 4th 5th
VaryByCustom caching 2nd 3rd
VaryByHeader attribute (OutputCache directive) 2nd 3rd
VaryByHeader caching 2nd 3rd
VaryByParam attribute (OutputCache directive) 2nd 3rd 4th 5th
VaryByParam caching 2nd 3rd 4th 5th 6th 7th
VaryByParams attribute (OutputCache directive) 2nd
View State
 EnableViewState attribute (Page object) 2nd
 EnableViewStateMac attribute (Page object) 2nd
 Web controls 2nd 3rd 4th
Visual Studio
 creating .NET components
Visual Studio .NET
 creating XSD schemas 2nd 3rd
 editing XSLT files
 Web References 2nd 3rd 4th 5th 6th 7th 8th
Visual Studio.NET
 editing Web configuration files 2nd
 Web Server Controls
 . [See also server controls]

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W switch (XCOPY)
W#C (World Wide Web Consortium)
 XPath Web site
W3C
 Web pages
 SOAP (Simple Object Access Protocol) 2nd
 XML DTD Web site
 XML schemas Web site
W3C XML schemas
 case sensitivity
 creating 2nd 3rd 4th 5th 6th 7th 8th
 listings
 10.34, W3C schema definition boilerplate 2nd
 10.35, W3C schema containing a definition for a simple type 2nd
 10.36, W3C schema containing an element definition that refers to a type definition 2nd
 10.37, W3C schema containing a complex type that refers to a simple type 2nd
 validating documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
W3C XSL Web site
W3C XSLT Web site
Wallet attribute (PassportIdentity class)
WarningLevel attribute, Page object 2nd
Web browsers
 page requests 2nd 3rd 4th 5th 6th
Web controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd 23rd 24th 25th 26th
 AdRotator class 2nd 3rd 4th 5th 6th
 AdvertisementFile property 2nd
 banner dimensions
 listing 2.29 2nd 3rd
 listing 2.30 2nd
 Button class 2nd 3rd 4th
 Calendar class 2nd 3rd 4th 5th
 Calendar.aspx 2nd 3rd 4th 5th 6th 7th 8th
 output
 rendered HTML source 2nd 3rd 4th 5th 6th 7th
 CheckBox class 2nd 3rd 4th
 data binding
 . [See also data binding]
 DataGrid class 2nd 3rd
 DataList class 2nd 3rd 4th 5th 6th
 listing 2.33, DataList server control bound to a Hashtable object 2nd 3rd
 determining browser capabilities 2nd 3rd 4th 5th 6th 7th
 DropDownList class 2nd 3rd 4th 5th 6th 7th 8th
 equivalent HTML tags 2nd 3rd
 event model 2nd 3rd
 HttpApplication class 2nd 3rd
 HttpBrowserCapabilities class 2nd 3rd 4th 5th 6th 7th
 HttpRequest class 2nd
 HttpResponse class 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 HttpServerUtility class 2nd
 HttpSessionState class 2nd 3rd
 Hyperlink class 2nd 3rd
 Image class 2nd 3rd
 ImageButton class 2nd 3rd 4th
 Label class 2nd 3rd
 LinkButton class 2nd 3rd
 ListBox class 2nd 3rd
 mobile controls 2nd
 Panel class 2nd 3rd
 postback 2nd 3rd 4th
 programming (creating an ASP.NET Web form) 2nd
 RadioButton class 2nd 3rd 4th
 Repeater class 2nd 3rd 4th 5th 6th 7th
 Table class 2nd
 TableCell class 2nd 3rd
 TableRow class 2nd 3rd
 TextBox class 2nd
 View State 2nd 3rd 4th
 WebControl class 2nd 3rd
Web farms 2nd
 state management 2nd 3rd 4th 5th 6th 7th 8th
 . [See also state management]
Web Forms
 binding objects via data adapters 2nd 3rd 4th
 DataView object 2nd 3rd 4th
 calling NorthwindOrders Web service asynchronously 2nd 3rd 4th 5th
Web forms
 calling Web services 2nd 3rd 4th 5th 6th 7th 8th 9th
Web Forms
 data binding
 . [See also data binding]
 data entry 2nd 3rd 4th
 comparison validation 2nd 3rd 4th 5th
 custom validation 2nd 3rd 4th 5th
 range validation 2nd 3rd 4th
 regular expression validation 2nd 3rd
 required field validation 2nd 3rd 4th
 summarizing validation errors 2nd 3rd 4th
 using multiple validators
 validation 2nd 3rd 4th
Web forms
 grouping controls (Panel class) 2nd 3rd
Web Forms
 listings
 2.25, Web form declaration
 mobile controls 2nd
 postback 2nd 3rd 4th
 user controls 2nd 3rd 4th 5th 6th 7th
 adding methods 2nd 3rd 4th 5th
 adding properties 2nd 3rd 4th
 handling events 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 programming controls in pages 2nd 3rd 4th
 View State 2nd 3rd 4th
Web forms controls. [See Web controls]
Web pages
 caching 2nd 3rd 4th 5th 6th 7th
 . [See also caching]
 browser differences 2nd 3rd 4th
 partial pages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 refreshing cached items via dependencies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 VaryByCustom/VaryByHeader 2nd 3rd
 data representation
 advertisement 2nd
 HTML 2nd 3rd 4th 5th 6th 7th 8th 9th
 location information 2nd 3rd
 XML 2nd 3rd 4th 5th 6th 7th
 headers
 HttpCacheVaryByHeaders class 2nd
 Set-Cookie 2nd
 VaryByHeader caching 2nd 3rd
Web References (Visual Studio .NET) 2nd 3rd 4th 5th 6th 7th 8th
Web Service Description Language Tool (wsdl.exe) 2nd 3rd 4th
Web Service Description Language Tool (wsdl.exe), creating Web service proxies 2nd 3rd 4th 5th 6th 7th 8th
9th 10th
Web services 2nd 3rd 4th 5th 6th 7th
 advantages 2nd
 ASP.NET Web services 2nd 3rd 4th 5th 6th
 calling Web method via HTTP Get 2nd
 documentation pages 2nd 3rd
 Hello World 2nd 3rd
 serialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 viewing WSDL output
 WebMethod() attribute 2nd 3rd 4th
 WebMethodAttribute class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 calling from Web forms 2nd 3rd 4th 5th 6th 7th 8th 9th
 calling from Windows forms 2nd 3rd 4th 5th 6th 7th
 consuming 2nd 3rd 4th 5th 6th 7th 8th 9th
 asynchronous clients 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 cookies 2nd 3rd 4th 5th 6th 7th 8th 9th
 SoapHttpClientProtocol class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 data representation
 advertisement 2nd
 HTML 2nd 3rd 4th 5th 6th 7th
 location information 2nd 3rd
 XML 2nd 3rd 4th 5th
 DataSets 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 WebMethod returning a DataTable 2nd 3rd 4th 5th
 WebMethod returning a Master-Detail relationship 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 listings
 6.1, sample invoice in HTML 2nd 3rd 4th 5th 6th
 6.10, Web Method That Returns a Dataset with a Master Detail Relationship 2nd 3rd
 6.11, XML Output from Calling the GetOrders WebMethod with a Date of 7/8/1996 2nd 3rd 4th 5th 6th
7th

This document is created with the unregistered version of CHM2PDF Pilot

 6.12, Proxy Class (datasetsample.vb) for SimpleDataSet Generated with the WSDL Tool 2nd 3rd
 6.13, Form That Is Bound to the SimpleDataSet Web Service 2nd 3rd 4th 5th
 6.14, Proxy Created for SimpleDataSet by Visual Studio .NET 2nd 3rd 4th
 6.15, Web Form Client for SimpleDataSet 2nd
 6.16, Web Form That Calls the NorthwindOrder Web Service Asynchronously 2nd 3rd 4th 5th
 6.17, Web Form That Calls the NorthwindOrders Service Asynchronously and Loads the Orders into a Gri
2nd 3rd 4th
 6.18, Windows Form That Creates a Cookie Container and Utilizes the State Web Service 2nd 3rd 4th 5th
6th
 6.2, sample invoice in XML 2nd 3rd
 6.3, HelloWorld 2nd
 6.4, Activator .asmx file 2nd
 6.5, code-behind file for simple state service 2nd
 6.6, Description property 2nd
 6.7, Code Behind Web Service Class That Implements a Cached Time Service 2nd
 6.8, service that returns ArrayList 2nd 3rd
 6.9, Simple() WebMethod of SimpleDataSet 2nd 3rd 4th
 proxies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 . [See also Web services, consuming]
 creating with Visual Studio .NET Web References 2nd 3rd 4th 5th 6th 7th 8th
 creating with wsdl.exe 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 session state 2nd 3rd 4th
 standards 2nd
 Web.Config/Machine.Config webServices settings 2nd 3rd
 WebService class 2nd 3rd
Web Services Description Language (WSDL) 2nd
Web site URLs
 Microsoft
 XDR schemas
 XML
 Microsoft Knowledge Base
 Windows 2000 command changes
 Opera
 Passport authentication
 TextPad text editor
 W3C
 RFC 2109 - cookies
 SOAP (Simple Object Access Protocol) 2nd
 W3C XML DTD
 W3C XML schemas
 W3C XPath Web site
 W3C XSL site
 W3C XSLT site
Web.config
 application-level debugging 2nd
 hard-coded impersonation accounts 2nd 3rd
web.config
 impersonation 2nd 3rd
 loading BeginEnd HttpModule 2nd
Web.config
 mapping roles to application locations 2nd 3rd
Web.Config

This document is created with the unregistered version of CHM2PDF Pilot

 out of process session state 2nd
web.config
 URL authorization Location element 2nd 3rd 4th
Web.config file
 forms authentication 2nd 3rd
Web.config file setting authentication to forms and defining URL authorization 2nd
Web.Config files 2nd
 accessing configuration files programmatically 2nd 3rd 4th
 editing Web configuration files in Visual Studio.NET 2nd
 listings
 6. should be 5.
 6.1, Location section to handle subdirectory settings 2nd 3rd
 location section (configuring multiple locations) 2nd 3rd 4th 5th 6th
 locking down settings 2nd
 section handlers 2nd
 authentication 2nd 3rd 4th
 authorization 2nd
 browser capabilities 2nd
 compilation 2nd 3rd
 custom errors 2nd 3rd
 execution timeout 2nd
 globalization 2nd 3rd
 HTTP handlers
 HTTP modules 2nd
 pages 2nd 3rd
 process model 2nd 3rd
 session state 2nd 3rd
 trace 2nd 3rd 4th
 Web services 2nd 3rd
web.config Setup for Passport Authentication 2nd
WebControl class 2nd 3rd
WebMethod() attribute 2nd 3rd 4th
 calling via HTTP GET
 Simple() WebMethod of SimpleDataSet 2nd 3rd 4th 5th
 viewing WSDL output
WebMethodAttribute class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 BufferResponse property 2nd
 CacheDuration property 2nd 3rd 4th
 Description property 2nd 3rd 4th 5th 6th 7th
 EnableSession property 2nd 3rd 4th 5th
 TransactionOption property 2nd
WebServiceHandlerFactory HttpHandler
 . [See also HttpHandlers]
wildcards
 *
 HttpHandlers
Windows
 rich clients 2nd
Windows 2000
 state management 2nd
 . [See also state management]
Windows authentication 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 versus forms authentication 2nd 3rd
 WindowsBuiltInRole enumeration 2nd 3rd 4th 5th 6th 7th
Windows event log 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Windows forms
 calling Web services 2nd 3rd 4th 5th 6th 7th
Windows Forms
 Web services
 creating cookie containers/utilizing State Web service 2nd 3rd 4th 5th 6th 7th 8th
Windows Performance Monitor utility 2nd
 .
 creating custom monitors [See also performance monitors]
WindowsBuiltInRole enumeration 2nd 3rd 4th 5th 6th 7th 8th 9th
WindowsIdentity class 2nd
WindowsPrincipal class 2nd 3rd
WindowsPrincipal object 2nd 3rd 4th 5th 6th
WorkingWithCache.aspx code listing 2nd 3rd 4th 5th
World Wide Web Consortium (W3C)
 XPath Web site
writing XML data
 XmlTextWriter object 2nd 3rd 4th 5th 6th 7th
WSDL (Web Services Description Language) 2nd
WSDL output, Web services
wsdl.exe (Web Service Description Language Tool) 2nd 3rd 4th
wsdl.exe (Web Service Description Language Tool), creating Web service proxies 2nd 3rd 4th 5th 6th 7th 8th
9th 10th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X switch (XCOPY)
XCOPY
 listings
 6.5, sample exclude file 2nd
 using XCOPY for deployment 2nd 3rd
 (begin)
 (end)
 (XCOPY deployment)
 confirmations/overwriting files 2nd 3rd
 deploying directory trees 2nd 3rd 4th 5th
 deploying only modified files 2nd 3rd
 deploying single directories 2nd
 excluding files 2nd 3rd 4th
 switches 2nd 3rd 4th 5th 6th 7th 8th
XDR (XML Data-Reduced) schemas 2nd 3rd 4th 5th
XML 2nd 3rd 4th 5th 6th
 (begin)
 (end)
 (eXtensible Markup Language)
 ADO.NET support 2nd
 AdRotator control
 advantages 2nd 3rd
 AppendChild method 2nd
 attributes
 displaying attribute values using GetAttribute method 2nd 3rd
 using attributes in queries 2nd 3rd 4th
 classes
 ChildNodes 2nd 3rd 4th 5th
 ValidationEventArgs 2nd 3rd
 XmlDocument 2nd 3rd 4th 5th 6th 7th 8th
 XmlNamedNodeMap 2nd
 XmlNode 2nd 3rd 4th
 XmlNode, InsertAfter method 2nd 3rd
 XmlNode, viewing document data 2nd 3rd 4th 5th 6th 7th 8th
 XmlNodeList 2nd
 XmlNodeReader 2nd 3rd 4th
 XmlNodeReader, navigating/updating documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 XmlReader 2nd
 XmlTextReader 2nd 3rd
 XmlTextWriter 2nd 3rd 4th 5th 6th 7th 8th 9th
 XmlValidatingReader 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 XmlWriter 2nd 3rd
 combining with SQL (HttpHandlers) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 SqlHandler 2nd 3rd 4th 5th 6th 7th
 SqlHandler output
 XSL template used to format output 2nd 3rd 4th 5th
 data
 abbreviated close-tag syntax 2nd 3rd
 CDATA elements 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

 character entities 2nd 3rd 4th
 elements that contain data 2nd 3rd 4th 5th
 enclosing character data 2nd 3rd 4th 5th
 navigating/updating documents with XmlNodeReader object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 querying. [See XML, XPath queries]
 using XmlDataReader object 2nd 3rd 4th 5th 6th 7th
 viewing document data with XmlNode object 2nd 3rd 4th 5th 6th
 writing with XmlTextWriter object 2nd 3rd 4th 5th 6th 7th
 data access 2nd
 Simple API for XML (SAX) 2nd 3rd
 XML Document Object Model (DOM) 2nd 3rd 4th 5th 6th 7th 8th 9th
 delimited data 2nd 3rd
 enclosing character data 2nd 3rd 4th 5th
 DISCO files
 Document Object Model (DOM) 2nd 3rd 4th 5th 6th 7th 8th 9th
 extended classes 2nd
 fundamental classes 2nd 3rd
 document structure/syntax
 (begin)
 (end)
 abbreviated close-tag syntax 2nd 3rd
 attributes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 CDATA elements 2nd 3rd
 character entities 2nd 3rd 4th
 declaration 2nd 3rd
 elements (nodes) 2nd 3rd
 elements containing data 2nd 3rd 4th
 enclosing character data 2nd 3rd 4th 5th
 Document Type Definitions (DTDs) 2nd 3rd 4th
 elements (nodes)
 ChildNodes class 2nd 3rd 4th 5th
 complex/simple types 2nd 3rd 4th 5th 6th 7th
 creating attributes 2nd
 InsertAfter method 2nd 3rd
 inserting new child nodes using AppendChild method 2nd
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
 navigating/updating documents with XmlNodeReader object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 viewing document data with XmlNode object 2nd 3rd 4th 5th 6th 7th 8th
 expressing DataSet objects as XML 2nd 3rd 4th 5th
 FirstChild() property 2nd
 listings
 10.1, comma-delimited document 2nd
 10.10, books.xml document 2nd 3rd
 10.11, loading a local XML file using XmlDocument .Load() method
 10.12, loading an XML file residing on a Web server 2nd
 10.13, loading a local XML file using XmlDocument .Load() method 2nd
 10.14, ChildNodes class 2nd 3rd 4th
 10.15, XmlTextReader object 2nd 3rd
 10.16, XmlTextWriter object 2nd 3rd
 10.17, XmlTextWriter object, document produced by XmlTextWriter object 2nd
 10.18, XmlNodeReader object, creating from XmlDocument object 2nd
 10.19, XmlNodeReader object, traversing a document 2nd

This document is created with the unregistered version of CHM2PDF Pilot

 10.2 XML 1.0 declaration
 10.20, XPathNavigator object Select method 2nd
 10.21, XpathNodeIterator Current property 2nd 3rd
 10.22, XmlNode object InsertAfter method 2nd 3rd
 10.23, inserting new child nodes using AppendChild method 2nd
 10.24, XPath query page used to test XPath queries against books.xml 2nd
 10.25, XPath query results 2nd
 10.26, XPath query to retrieve author information based on author ID 2nd
 10.27, XPath query to retrieve multiple instances of same author 2nd 3rd
 10.28, XPath query combining multiple criteria with AND and OR 2nd
 10.29, XPath query that excludes nodes based on attribute values 2nd
 10.3 XML document with a declaration and top-level element
 10.3, XML document with a declaration and a top-level element
 10.30, XPath query that retrieves a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 10.30, XPath query that retrieves a specific TITLE node by querying on its text 2nd
 10.32, XDR Schema 2nd
 10.33, simplified book.xml document 2nd
 10.34, W3C schema definition boilerplate 2nd
 10.35, W3C schema containing a definition for a simple type 2nd
 10.36, W3C schema containing an element definition that refers to a type definition 2nd
 10.37, W3C schema containing a complex type that refers to a simple type 2nd
 10.38, Validation subroutine using XmlValidatingReader object 2nd 3rd
 10.39, responding to events raised by Validate subroutine 2nd 3rd
 10.4, XML document with elements that contain data 2nd
 10.40, booksellerÕs hypothetical output
 10.40, booksellerÕs hypothetical output
 10.41, publisherÕs hypothetical input 2nd
 10.42, XSLT Style Sheet That Converts an XML Document into an HTML Document 2nd 3rd
 10.43, books.xml File Containing a Link to the books.xsl Style Sheet 2nd
 10.44, programmatically transforming an XML file using an XSL style sheet and the XslTransform objec 2nd
 10.5, XML document with multiple child elements beneath the top-level element 2nd 3rd
 10.6, XML document with elements and attributes 2nd
 10.7, XML document with a CDATA section 2nd
 10.7, XML document with escape sequences 2nd
 10.9, XML document with a empty elements 2nd
 Load() method 2nd 3rd 4th 5th 6th
 loading a local XML file 2nd 3rd
 loading an XML file residing on a Web server
 Microsoft XML Web site
 navigating documents 2nd 3rd
 schemas 2nd
 case sensitivity
 complex types 2nd 3rd 4th 5th 6th 7th
 creating W3C XML schemas 2nd 3rd 4th 5th 6th 7th 8th
 creating XSD schemas with Visual Studio .NET 2nd 3rd
 Document Type Definitions (DTDs) 2nd 3rd 4th
 listing 10.34, W3C schema definition boilerplate 2nd
 listing 10.35, W3C schema containing a definition for a simple type 2nd
 listing 10.36, W3C schema containing an element definition that refers to a type definition 2nd
 listing 10.37, W3C schema containing a complex type that refers to a simple type 2nd
 simple types 2nd 3rd 4th 5th 6th 7th
 validating documents using W3C schemas 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

This document is created with the unregistered version of CHM2PDF Pilot

 XML Data-Reduced (XDR) schemas 2nd 3rd 4th 5th
 SOAP (Simple Object Access Protocol) 2nd
 style sheets, transforming documents 2nd 3rd 4th 5th 6th 7th
 associating documents with style sheets 2nd 3rd
 creating style sheets 2nd
 creating XSLT style sheets 2nd 3rd 4th
 editing XSLT files with Visual Studio .NET
 programmatically performing XSL transformations 2nd 3rd
 transforming documents using style sheets 2nd 3rd 4th 5th 6th 7th
 associating documents with style sheets 2nd 3rd
 creating style sheets 2nd
 creating XSLT style sheets 2nd 3rd 4th
 editing XSLT files with Visual Studio .NET
 programmatically performing XSL transformations 2nd 3rd
 updating documents using XmlNodeReader 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 changing values 2nd 3rd 4th 5th 6th 7th
 navigating documents 2nd 3rd
 XPath queries. [See XML, XPath queries]
 Web services. [See Web services]2nd [See Web services]
 XML data representation versus HTML
 HTML 2nd 3rd 4th 5th 6th 7th 8th 9th
 XML 2nd 3rd
 XPath queries 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 combining multiple criteria with AND and OR 2nd
 common XPath scenarios
 dot (.) operator
 excluding nodes based on attribute values 2nd
 inequality operator (!=)
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
 retrievig the root node of a document
 retrieving a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 retrieving a specific TITLE node by querying on its text 2nd
 retrieving author information based on author ID 2nd
 retrieving multiple instances of same author 2nd 3rd
 running a simple query 2nd
 W3C XPath Web site
 XPath query page used to test XPath queries against books.xml 2nd 3rd
XML Data-Reduced (XDR) schemas 2nd 3rd 4th 5th
XML Schema Definition Tool (xsd.exe)
XmlDataReader object 2nd 3rd 4th 5th 6th 7th
XmlDocument class 2nd 3rd 4th 5th 6th 7th 8th
XMLDocument class
 creating XmlNodeReader objects from XmlDocument objects
XmlNamedNodeMap class 2nd
XmlNode class 2nd 3rd 4th
 InsertAfter method 2nd 3rd
 viewing document data 2nd 3rd 4th 5th 6th 7th 8th
XmlNodeList class 2nd
XmlNodeReader class 2nd 3rd 4th
 navigating/updating documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 18th 19th 20th
 changing values 2nd 3rd 4th 5th 6th 7th

This document is created with the unregistered version of CHM2PDF Pilot

 navigating documents 2nd 3rd
 XPath queries. [See XML, XPath queries]
XmlReader class 2nd
XmlTextReader class 2nd 3rd
XmlTextWriter class 2nd
 writing data 2nd 3rd 4th 5th 6th 7th
XmlValidatingReader class 2nd 3rd
 validating schemas 2nd 3rd 4th 5th 6th 7th 8th
XmlWriter class 2nd 3rd
XPath queries (XML) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

 common XPath scenarios
 dot (.) operator
 inequality operator (!=)
 listings
 10.24, XPath query page used to test XPath queries against books.xml 2nd 3rd
 10.25, running a simple query 2nd
 10.26, retrieving author information based on author ID 2nd
 10.27, retrieving multiple instances of same author 2nd 3rd
 10.28, combining multiple criteria with AND and OR 2nd
 10.29, excluding nodes based on attribute values 2nd
 10.30, retrieving a specific TITLE node by querying on its text 2nd
 10.31, retrieving a specific BOOK node by querying on text in BookÕs TITLE node 2nd
 manipulating current nodes using XPathNodeIterator Current property 2nd 3rd
 retrievig the root node of a document
 W3C XPath Web site
XSD schemas
 creating with Visual Studio .NET 2nd 3rd
xsd.exe (XML Schema Definition Tool)
xsdall element (W3C XML schemas) 2nd
xsdsequence element (W3C XML schemas)
xsdsimpleType node (W3C XML schemas)
XSLT files
 editing with Visual Studio .NET
XSLT style sheets 2nd 3rd 4th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Y switch (XCOPY) 2nd 3rd
Yes mode (XCOPY deployment 2nd 3rd 4th

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z switch (XCOPY)

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

C# Developer's Guide to ASP.NET, XML, and ADO.NET
By Jeffrey P. McManus, Chris Kinsman

Publisher : Addison Wesley
Pub Date : March 29, 2002
ISBN : 0-672-32155-6
Pages : 608
Slots : 1

The book every Internet application developer working with Microsoft development tools needs to retool their
knowledge of the new .NET techniques used to build Windows applications.

•
•

• Unbiased, in-depth commentary on the efficacy of the various technologies that comprise .NET as they
pertain to Internet database developers.

•

• Technical know-how without crushing the reader with pointless detail.
•

• Implementation details that replace and extend the existing Active Server Pages (ASP), XML, and ActiveX
Data Object (ADO) functionality currently supported by Microsoft.

Topics covered in this book include: the .NET Foundation Classes that are most used by developers--ASP.NET,
XML, and ADO.NET, and details about the construction of Web Services and how they programmatically
communicate with each other.
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

About the Authors

Jeffrey P. McManus is a developer and speaker specializing in Microsoft tools. As a developer, he has specialized in
online application development using Internet and client/server technologies. He is the author of four books on
database and component technologies, including the bestselling Database Access with Visual Basic 6 (Sams
Publishing). Jeffrey regularly speaks at the VBITS/VSLive, European DevWeek, and VBConnections conferences.

Chris Kinsman is a developer and speaker specializing in Microsoft tools. As a developer, he has been responsible
for several high-traffic sites based entirely on Microsoft tools, including serving as Vice President of Technology at
DevX.com. In addition, Chris spent 10 years consulting with Fortune 500 companies throughout the world to solve
their needs by utilizing a variety of Microsoft Visual Studio and Back Office technologies. Chris regularly speaks at
the VBITS/VSLive, Web Builder, and SQL2TheMax conferences.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

About the Contributor

Anjani Chittajallu obtained a masters degree from Indian Institute of Technology (I.I.T-Madras) with a major in
Control Systems Engineering. She specializes in designing and developing enterprise systems with Microsoft
Technology. Anjani currently holds MCSD certification. She can be reached at srianjani@hotmail.com.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

About the Technical Editor

Joel Mueller is a senior software engineer at DeLani Technologies (www.delani.com), a leading Web development
software company, where he has been spearheading the company's Microsoft .NET development effort since July
2000. Prior to the advent of ASP.NET, Joel did extensive work with Microsoft Active Server Pages and
Macromedia ColdFusion. He has written for several books and articles on the topics of Macromedia ColdFusion
and XML. Joel's current interests include the .NET framework, C#, and sleeping.

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

Acknowledgments

Jeffrey and Chris would like to extend a special thank you to Anjani Chittajallu, who came through in a pinch and did
a bang-up job working on the code examples for this edition of the book. We're grateful to you for your help!

for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

for RuBoard

C# Developer's Guide to ASP.NET, XML, and ADO.NET
By Jeffrey P. McManus, Chris Kinsman

Publisher : Addison Wesley
Pub Date : March 29, 2002
ISBN : 0-672-32155-6
Pages : 608
Slots : 1

 Copyright
 About the Authors
 About the Contributor
 About the Technical Editor
 Acknowledgments
 Chapter 1. Introduction: The Need for ASP.NET
 Problems with ASP Today
 Introducing ASP.NET

 Chapter 2. Page Framework
 ASP.NET's Control Model
 Separating Presentation from Code Using Code Behind
 Programming HTML Controls
 Attributes of the Page Object
 Creating User Interfaces with Web Controls
 Server Controls and Page Object Reference

 Chapter 3. Debugging ASP.NET Applications
 Tracing Your Web Application's Activity
 Debugging ASP.NET Applications
 Creating Custom Performance Monitors
 Writing to the Windows Event Log
 Reference

 Chapter 4. State Management and Caching
 State Management: What's the Big Deal?
 Caching
 Class Reference

 Chapter 5. Configuration and Deployment
 Understanding Configuration Files
 Global and Local Configuration Files
 Structure of Configuration Files
 Accessing Configuration Files Programmatically
 Editing Web Configuration Files in Visual Studio .NET
 Initializing Web Applications Using Global.asax

This document is created with the unregistered version of CHM2PDF Pilot

 Using XCOPY for Deployment
 Managing the Global Assembly Cache

 Chapter 6. Web Services
 Historical Influences
 Network Data Representation
 What Is a Web Service?
 Why Web Services?
 ASP.NET Web Services
 Consuming Web Services
 Class Reference

 Chapter 7. Security
 Identity and Principal
 Windows Authentication
 Forms Authentication
 Passport Authentication
 File Authorization
 URL Authorization
 Custom Roles with Forms Authentication
 Pulling It All Together
 Impersonation
 Class Reference

 Chapter 8. HttpHandlers and HttpModules
 An Overview of ASP.NET Request Handling
 HttpModules
 HttpHandlers
 Dynamic Handler Assignment
 Class Reference

 Chapter 9. Building User Controls and Server Controls
 Working with User Controls in Web Forms Applications
 Creating Server Controls

 Chapter 10. Using XML
 What Is XML?
 Accessing XML Data Using .NET Framework Classes
 Defining and Validating XML with Schemas
 Processing XML Documents Using Style Sheets
 Class Reference

 Chapter 11. Creating Database Applications with ADO.NET
 Why a New Object Library for Data Access?
 New Features in ADO.NET
 Connecting to a Database
 Running Queries
 Using Data Adapters to Retrieve and Manipulate Data
 Creating Web Forms for Data Entry
 Handling Errors
 ADO.NET Framework Reference

This document is created with the unregistered version of CHM2PDF Pilot

 Index
for RuBoard

This document is created with the unregistered version of CHM2PDF Pilot

