
© 2004 ... Your company

Standard print
manual template

Title page 1
Use this page to introduce the product

by <AUTHOR>

This is "Title Page 1" - you may use this page to introduce
your product, show title, author, copyright, company logos,
etc.

This page intentionally starts on an odd page, so that it is on
the right half of an open book from the readers point of
view. This is the reason why the previous page was blank
(the previous page is the back side of the cover)

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: September 2004 in (whereever you are located)

Mastering C# Database Programming
@Team LiB
© 2004 ... Your company

Publisher
Special thanks to:

All the people who contributed to this document, to mum and dad
and grandpa, to my sisters and brothers and mothers in law, to our
secretary Kathrin, to the graphic artist who created this great
product logo on the cover page (sorry, don't remember your name
at the moment but you did a great work), to the pizza service down
the street (your daily Capricciosas saved our lives), to the copy
shop where this document will be duplicated, and and and...

Last not least, we want to thank EC Software who wrote this great
help tool called HELP & MANUAL which printed this document.

Managing Editor

Technical Editors

Cover Designer

...enter name...

...enter name...

...enter name...

...enter name...

...enter name...

Production

...enter name...

Team Coordinator

...enter name...

Table of Contents

Foreword 1

Part I Table of Contents 3

Part II BackCover 5

Part III Mastering C# Database Programming 7

Part IV Introduction 9

... 91 How to Use This Book

... 112 Downloading the Example Programs

Part V Part 1: Introduction to ADO.NET and
Databases 13

... 131 Chapter 1: Introduction to Database Programming with ADO.NET

.. 13Obtaining the Required Software

.. 14Developing Your First ADO.NET Program

.. 17Connecting to Access and Oracle Databases

.. 19Introducing Visual Studio .NET

.. 23Using the .NET Documentation

.. 25Using the SQL Server Documentation

.. 26Summary

... 262 Chapter 2: Introduction to Databases

.. 27Introducing Databases

.. 28Using SQL Server

.. 34Exploring the Northwind Database

.. 43Building Queries Using Enterprise Manager

.. 45Creating a Table

.. 50Summary

... 513 Chapter 3: Introduction to Structured Query Language (SQL)

.. 51Using SQL

.. 70Accessing a Database Using Visual Studio .NET

.. 73Summary

... 734 Chapter 4: Introduction to Transact-SQL Programming

.. 74Fundamentals of Transact-SQL

.. 77Using Cursors

.. 78Using Functions

.. 86Creating User-Defined Functions

.. 89Introducing Stored Procedures

.. 91Introducing Triggers

.. 94Summary

... 945 Chapter 5: Overview of the ADO.NET Classes

.. 95The Managed Provider and Generic Data Set Classes

.. 98Performing a SQL SELECT Statement and Storing the Rows Locally

.. 102Summary

Mastering C# Database Programming @Team LiBI

© 2004 ... Your company

... 1026 Chapter 6: Introducing Windows Applications and ADO.NET

.. 103Developing a Simple Windows Application

.. 109Using Windows Controls

.. 110Using a DataGrid Control to Access a Database

.. 116Using the Data Form Wizard to Create a Windows Form

.. 124Summary

Part VI Part 2: Fundamental Database Programming
with ADO.NET 126

... 1261 Chapter 7: Connecting to a Database

.. 126Understanding the SqlConnection Class

.. 128Using a SqlConnection Object to Connect to a SQL Server Database

.. 132Creating a Connection Object Using Visual Studio .NET

.. 137Summary

... 1382 Chapter 8: Executing Database Commands

.. 138The SqlCommand Class

.. 140Creating a SqlCommand Object

.. 141Executing SELECT Statements and TableDirect Commands

.. 149Executing Commands that Modify Information in the Database

.. 151Introducing Transactions

.. 152Supplying Parameters to Commands

.. 156Executing SQL Server Stored Procedures

.. 160Creating a Command Object Using Visual Studio .NET

.. 161Summary

... 1623 Chapter 9: Using DataReader Objects to Read Results

.. 162The SqlDataReader Class

.. 165Creating a SqlDataReader Object

.. 165Reading Rows from a SqlDataReader Object

.. 167Returning Strongly Typed Column Values

.. 168Using the Get* Methods to Read Column Values

.. 170An Example of Using the Get* Methods

.. 177Reading Null Values

.. 177Executing Multiple SQL Statements

.. 179Using a DataReader Object in Visual Studio .NET

.. 181Summary

... 1824 Chapter 10: Using Dataset Objects to Store Data

.. 182The SqlDataAdapter Class

.. 185The DataSet Class

.. 195Writing and Reading XML Using a DataSet Object

.. 198Mapping Tables and Columns

.. 199Reading a Column Value Using Strongly Typed DataSet Classes

.. 203Creating a DataAdapter Object Using Visual Studio .NET

.. 207Creating a DataSet Object Using Visual Studio .NET

.. 208Summary

... 2085 Chapter 11: Using DataSet Objects to Modify Data

.. 209The DataTable Class

.. 211The DataRow Class

.. 212The DataColumn Class

.. 213Adding Restrictions to DataTable and DataColumn Objects

.. 221Finding, Filtering, and Sorting Rows in a DataTable

.. 223Modifying Rows in a DataTable

IIContents

II

© 2004 ... Your company

.. 228Retrieving New Identity Column Values

.. 230Using Stored Procedures to Add, Modify, and Remove Rows from the Database

.. 235Automatically Generating SQL Statements

.. 236Exploring the DataAdapter and DataTable Events

.. 240Dealing with Update Failures

.. 242Using Transactions with a DataSet (SQL)

.. 243Modifying Data Using a Strongly Typed DataSet

.. 244Summary

... 2456 Chapter 12: Navigating and Modifying Related Data

.. 245The UniqueConstraint Class

.. 246Creating a UniqueConstraint Object

.. 247The ForeignKeyConstraint Class

.. 248Creating a ForeignKeyConstraint Object

.. 249The DataRelation Class

.. 250Creating and Using a DataRelation Object

.. 252Adding, Updating, and Deleting Related Rows

.. 256Issues Involved When Updating the Primary Key of a Parent Row

.. 259Nested XML

.. 261Defining a Relationship Using Visual Studio .NET

.. 264Summary

... 2647 Chapter 13: Using DataView Objects

.. 265The DataView Class

.. 267Creating and Using a DataView Object

.. 268Using the Default Sort Algorithm

.. 269Performing Advanced Filtering

.. 269The DataRowView Class

.. 270Finding DataRowView Objects in a DataView

.. 271Adding, Modifying, and Removing DataRowView Objects from a DataView

.. 273Creating Child DataView Objects

.. 274The DataViewManager Class

.. 274Creating and Using a DataViewManager Object

.. 275Creating a DataView Using Visual Studio .NET

.. 277Summary

Part VII Part 3: Advanced Database Programming with
ADO.NET 279

... 2791 Chapter 14: Advanced Transaction Control

.. 279The SqlTransaction Class

.. 280Setting a Savepoint

.. 282Setting the Transaction Isolation Level

.. 286Understanding SQL Server Locks

.. 293Summary

... 2932 Chapter 15: Introducing Web Applications-ASP.NET

.. 294Creating a Simple ASP.NET Web Application Using VS .NET

.. 297The Web Form Controls

.. 299Building a More Complex Application

.. 302Using a DataGrid Control to Access a Database

.. 310Using a DataList Control to Access a Database

.. 315Maintaining State in a Web Application

.. 318Creating a Simple Shopping Cart Application

.. 322Summary

... 3223 Chapter 16: Using SQL Server's XML Support

Mastering C# Database Programming @Team LiBIII

© 2004 ... Your company

.. 322Using the SQL Server FOR XML Clause

.. 327Introducing XPath

.. 329Introducing XSLT

.. 331Accessing SQL Server Using HTTP

.. 339Using the SQL Server OPENXML() Function

.. 341Using an XmlDocument Object to Store an XML Document

.. 346Using an XmlDataDocument Object to Store an XML Document

.. 348Summary

... 3494 Chapter 17: Web Services

.. 349Creating a Web Service

.. 351Viewing a WSDL File and Testing a Web Service

.. 354Using a Web Service

.. 356Registering a Web Service

.. 359Summary

Part VIII Index 362

... 3621 Index_B

... 3622 Index_C

... 3623 Index_D

... 3624 Index_E

... 3625 Index_F

... 3626 Index_G

... 3627 Index_H

... 3628 Index_I

... 3629 Index_J

... 36210 Index_K

... 36211 Index_L

... 36312 Index_M

... 36313 Index_N

... 36314 Index_O

... 36315 Index_P

... 36316 Index_Q

... 36317 Index_R

... 36318 Index_S

... 36319 Index_T

... 36320 Index_U

... 36321 Index_V

... 36322 Index_W

... 36323 Index_X

... 36324 Index_Y

Part IX List of Figures 365

IVContents

IV

© 2004 ... Your company

Part X List of Tables 369

Part XI List of Listings 372

Part XII List of Sidebars 375

Index 0

Mastering C# Database Programming @Team LiBV

© 2004 ... Your company

Foreword

This is just another title page
placed between table of contents

and topics

1Foreword

© 2004 ... Your company

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

I

Table of Contents 3

© 2004 ... Your company

1 Table of Contents

Mastering C# Database Programmingby Jason Price
ISBN:0782141838

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

II

BackCover 5

© 2004 ... Your company

2 BackCover

Back Cover
C# and ADO.NET facilitate the development of a new generation of database applications, including
remote applications that run on the Web. Mastering C# Database Programming is the resource you
need to thrive in this new world. Assuming no prior experience with database programming, this book
teaches you every aspect of the craft, from GUI design to server development to middle-tier
implementation. If youre familiar with earlier versions of ADO, youll master the many new features of
ADO.NET all the more quickly. Youll also learn the importance of XML within the new .NET
paradigm.
Coverage IncludesAccessing a database using C# and ADO.NETUsing SQL to access a
databaseUsing Visual Studio .NET to build applicationsCreating and modifying database
tablesUnderstanding ADO.NET classesDesigning, building, and deploying Web applications that
access a databaseDesigning, building, and deploying effective Web servicesUsing SQL Servers built-
in XML capabilitiesWorking with a database in a disconnected mannerUsing advanced transaction
controlsUsing Transact-SQL to create stored procedures and functions in a SQL Server database
 About the Author
Jason Price is an independent consultant and writer, and is both a Microsoft Certified Professional
and an Oracle Certified Professional. Jason has more than 10 years of experience in the software
industry, and he has extensive experience with C#, .NET, and Java. He is the author of Mastering
Visual C# .NET, Oracle9i JDBC Programming , and Java Programming with Oracle SQLJ.

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

III

Mastering C# Database Programming 7

© 2004 ... Your company

3 Mastering C# Database Programming

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

IV

Introduction 9

© 2004 ... Your company

4 Introduction

Introduction
Welcome to Mastering C# .NET Database Programming ! As you might already know, .NET is poised
to become the hot platform for the next wave of technology deployment. .NET's strength is that it is
built from the ground up to be used in a distributed environment-in other words, an environment that
consists of computers and devices connected via a network.Note
The focus of this book is how you write C# programs that interact with a database. C# uses ADO.NET
to interact with a database; ADO.NET is the successor to ADO. In this book, you'll learn the details of
interacting with a SQL Server database. SQL Server is Microsoft's premier database software.
Microsoft has pledged its commitment and resources to making .NET a pervasive component of life in
our technological society-ignore .NET at your own peril. The bottom line is you need to learn .NET if
you want to remain competitive in today's-and tomorrow's-marketplace.
In a nutshell, .NET is a completely new framework for writing many types of applications. The
applications you can write using .NET include Windows applications and Web-based applications.
You can use .NET to develop systems composed of interconnected services that communicate with
each other over the Internet.
In addition, you can use .NET to create applications that run on devices such as handheld computers
and cellular phones. Although other languages allow you to develop such applications, .NET was
designed with the interconnected network in mind.
The .NET Framework consists of three primary components:
Development Languages and Tools The development languages that enable you to write .NET
programs include C#, Visual Basic .NET (VB .NET), and Managed C++. Microsoft also has a Rapid
Application Development (RAD) tool called Visual Studio .NET (VS .NET) that allows you to develop
programs in an integrated development environment (IDE). You'll use C# and VS .NET in this book.
Common Language Runtime (CLR) CLR manages your running code and provides services such
as memory management, thread management (which allows you to perform multiple tasks in parallel),
and remoting (which allows objects in one application to communicate with objects in another
application). The CLR also enforces strict safety and accuracy of your executable code to ensure that
no tampering occurs.
Framework Base Class Library The Framework Base Class Library is an extensive collection of
code written by Microsoft that you can use in your own programs. For example, among many other
functions, the Framework Base Class Library contains code that allows you to develop Windows
applications, access directories and files on disk, interact with databases, and send and receive data
across a network. Who Should Read This Book?
This book was written for programmers who already know C#. It contains everything you need to
know to master database programming with C#. No prior experience of databases is assumed, but if
you already have some knowledge of database software such as SQL Server or Oracle, you'll be off
to a running start.Note
If you don't know C#, I recommend the book Mastering Visual C# .NET from Sybex (2002).

4.1 How to Use This Book

How to Use This Book
This book is divided into three parts. In Part 1, "Introduction to ADO.NET and Databases," you'll learn
everything you need to know about databases. You'll also be introduced to ADO.NET, which enables
your C# programs to interact with a database. In Part 2, "Fundamental Database Programming with
ADO.NET," you'll learn the C# programming with ADO.NET from the ground up. In Part 3, "Advanced
Database Programming with ADO.NET," you'll go beyond the basics to learn programming techniques
needed by professional database developers.
The following sections describe the chapters in detail. Part 1: "Introduction to ADO.NET and
Databases"
In Chapter 1, "Introduction to Database Programming with ADO.NET," you'll see how to use

Mastering C# Database Programming @Team LiB10

© 2004 ... Your company

ADO.NET in a C# program to interact with a database. You also learn about Microsoft's RAD tool,
Visual Studio .NET. Finally, you'll see how to use the extensive documentation from Microsoft that
comes with .NET and SQL Server.
In Chapter 2, "Introduction to Databases," you'll learn the details of what databases are and how they
are used to store information. You'll see the use of a SQL Server database named Northwind. This
database contains the information for the fictitious Northwind Company, which sells food products.
This database is one of the example databases that is typically installed with SQL Server.
In Chapter 3, "Introduction to the Structured Query Language," you'll learn how to use the Structured
Query Language (SQL) to access a database. You'll see how you use SQL to interact with the
Northwind database, and how to retrieve and modify information stored in that database.
In Chapter 4, "Introduction to Transact-SQL Programming," you'll be introduced to programming with
Microsoft's Transact-SQL. Transact-SQL enables you to write programs that contain SQL statements,
along with standard programming constructs such as variables, conditional logic, loops, procedures,
and functions.
In Chapter 5, "Overview of the ADO.NET Classes," you'll get an overview of the ADO.NET classes.
You'll also see a C# program that connects to a database, stores the rows locally, disconnects from
the database, and then reads the contents of those local rows while disconnected from the database.
This ability to store a local copy of rows retrieved from the database is one of the main strengths of
ADO.NET.
In Chapter 6, "Introducing Windows Applications and ADO.NET," you'll be introduced to Windows
applications. A Windows application takes advantage of displaying and using the mouse and
keyboard for input. Windows provides graphical items such as menus, text boxes, and radio buttons
so you can build a visual interface that will be easy to use. You'll see how to build Windows
applications that interact with the Northwind database. Part 2: "Fundamental Database Programming
with ADO.NET"
In Chapter 7, "Connecting to a Database," you'll learn the details on connecting to a database. There
are three Connection classes: SqlConnection, OleDbConnection, and OdbcConnection. You use an
object of the SqlConnection class to connect to a SQL Server database. You use an object of the
OleDbConnection class to connect to any database that supports OLE DB (Object Linking and
Embedding for Databases), such as Oracle or Access. You use an object of the OdbcConnection
class to connect to any database that supports ODBC (Open Database Connectivity). Ultimately, all
communication with a database is done through a Connection object.
In Chapter 8, "Executing Database Commands," you'll learn the details on executing database
commands. You use a Command object to execute a SQL SELECT, INSERT, UPDATE, or DELETE
statement. You can also use a Command object to call a stored procedure, or retrieve all the rows
and columns from a specific table.
In Chapter 9, "Using DataReader Objects to Read Results," you'll see how to use a DataReader
object to read results returned from the database. You use a DataReader object to read rows
retrieved from the database using a Command object.
In Chapter 10, "Using DataSet Objects to Store Data," you'll learn how to use a DataSet object to
store results returned from the database. DataSet objects allow you to store a copy of the tables and
rows from the database, and you can work with that local copy while disconnected from the database.
In Chapter 11, "Using DataSet Objects to Modify Data," you'll examine how to modify the rows in a
DataSet and then push those changes to the database via a DataAdapter.
In Chapter 12, "Navigating and Modifying Related Data," you'll delve into the details of how you
navigate related data in tables, make changes in that data in memory, and finally push those changes
to the database.
In Chapter 13, "Using DataView Objects," you'll see how to use DataView objects to filter and sort
rows. The advantage of a DataView is that you can bind it to a visual component in a Windows or
ASP.NET application. Part 3: "Advanced Database Programming with ADO.NET"
In Chapter 14, "Advanced Transaction Control," you'll delve into advanced transaction control using
SQL Server and ADO.NET.
In Chapter 15, "Introducing Web Applications: ASP.NET," you'll learn the basics of ASP.NET, and
you'll see how to use Visual Studio .NET to create ASP.NET applications.
In Chapter 16, "Using SQL Server's XML Support," you'll learn about SQL Server's extensive support
for XML. You'll also see how to store XML in a C# program using XmlDocument and

Introduction 11

© 2004 ... Your company

XmlDataDocument objects.
In Chapter 17, "Web Services," you'll learn how to build a simple web service, which is a software
component that may be used across the Web. For example, you could build a eb service that allows
one company to send another company an order across the Web using XML.

4.2 Downloading the Example Programs

Downloading the Example Programs
Throughout this book, you'll see many example programs that illustrate the concepts described in the
text. These are marked with a listing number and title, such as the one shown here:
LISTING 1.1: FIRSTEXAMPLE.CS
The filenames will correspond to the listing name: FirstExample.cs is the filename for Listing 1.1. You
can download a Zip file containing the programs from the Sybex Web site at www.sybex.com. You
can use a program such as WinZip to extract the contents of the Zip file.
When you unzip this file, one directory for each chapter will be created. Each directory will contain the
following sub-directories as required:
programs Contains the C# programs.
sql Contains SQL scripts.
VS. NET projects Contains the Visual Studio .NET projects.
xml Contains the XML files.Note
Not all chapters reference programs, sql scripts, etc., and therefore may not contain all the previous
sub-directories.

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

V

Part 1: Introduction to ADO.NET and Databases 13

© 2004 ... Your company

5 Part 1: Introduction to ADO.NET and Databases

Part 1: Introduction to ADO.NET and DatabasesChapter List Chapter 1:
Introduction to Database Programming with ADO.NETChapter 2: Introduction to DatabasesChapter 3:
Introduction to Structured Query Language (SQL)Chapter 4: Introduction to Transact-SQL
ProgrammingChapter 5: Overview of the ADO.NET ClassesChapter 6: Introducing Windows
Applications and ADO.NET

5.1 Chapter 1: Introduction to Database Programming with ADO.NET

Chapter 1: Introduction to Database Programming with
ADO.NETOverview
A Database is an organized collection of information that is divided into tables . Each table is further
divided into rows and columns; these columns store the actual information. You access a database
using Structured Query Language (SQL), which is a standard language supported by most database
software including SQL Server, Access, and Oracle.
In this chapter, you'll see a C# program that connects to a SQL Server database, retrieves and
displays the contents stored in the columns of a row from a table, and then disconnects from the
database. You'll also see programs that connect to Access and Oracle databases.
You'll also learn about Microsoft's rapid application development (RAD) tool, Visual Studio .NET (VS
.NET). VS .NET enables you to develop, run, and debug programs in an integrated development
environment. This environment uses all the great features of Windows, such as the mouse and
intuitive menus, and increases your productivity as a programmer.
In the final sections of this chapter, you'll see how to use the extensive Microsoft documentation that
comes with the .NET Software Development Kit (SDK) and VS .NET. You'll find this documentation
invaluable as you become an expert with ADO.NET and C#. You'll also learn how to use the SQL
Server documentation.
Featured in this chapter:
Obtaining the required software
Developing your first ADO.NET program
Connecting to Access and Oracle databases
Introducing Visual Studio .NET
Using the .NET documentation
Using the SQL Server documentation

5.1.1 Obtaining the Required Software

Obtaining the Required Software
Before you can develop C# programs, you'll need to install either the .NET Software Development Kit
(SDK) or VS .NET. You can download the .NET SDK at http://msdn.microsoft.com/downloads (search
for the Microsoft .NET Framework Software Development Kit). You can purchase a trial or full copy of
VS .NET from Microsoft at http://msdn.microsoft.com/vstudio.
To install the .NET SDK, run the executable file you downloaded and follow the instructions on the
screen to install it on your computer. To install VS .NET, run the setup.exe file on the disk and follow
the instructions on the screen.
You'll also need a copy of the SQL Server database software. At time of writing, you can download a
trial version of SQL Server from Microsoft at http://www.microsoft.com/sql. You can also purchase a
trial or full copy of SQL Server from Microsoft's Web site.
This book uses the Developer Edition of the SQL Server 2000 software and uses a database named
Northwind. This database contains the information for the fictitious Northwind Company, which sells
food products to customers. Northwind is one of the example databases that you can install with SQL
Server. Customer information in the Northwind database is stored in a table named Customers; you'll

Mastering C# Database Programming @Team LiB14

© 2004 ... Your company

see the use of this table in the example program later in this chapter.
If you don't want to download or purchase a trial version of SQL Server, the .NET SDK (and VS .NET)
comes with a stand-alone desktop database server known as the Microsoft SQL Server 2000 Desktop
Engine (MSDE 2000). MSDE 2000 has a version of the Northwind database that you can use instead
of the SQL Server Northwind database-although you won't get all of the graphical administration tools
that come with SQL Server. If you're using the .NET SDK and want to install MSDE 2000, select Start
£ Microsoft .NET Framework SDK £ Samples and QuickStart Tutorials. If you're using VS .NET and
want to install MSDE 2000, run the setup.exe program that you use to install VS .NET and select
MSDE 2000 as a new feature to install.Note
You can learn more about MSDE 2000 at
http://www.microsoft.com/sql/techinfo/development/2000/msde2000.asp .

5.1.2 Developing Your First ADO.NET Program

Developing Your First ADO.NET Program
In this section you'll plunge into ADO.NET programming and see a C# program that performs the
following tasks:
Connects to the SQL Server Northwind database
Retrieves a row from the Customers table
Displays the columns from the row
Closes the database connection
You'll be introduced to many concepts in this section that are fully explored in later chapters. Don't be
too concerned about all the details of the concepts at this stage; you'll learn those details in the later
chapters.
Listing 1.1 shows the example program, which is contained in the file FirstExample.cs.Listing 1.1:
FIRSTEXAMPLE.CS /* FirstExample.cs illustrates how to: 1. Connect to the SQL Server
Northwind database. 2. Retrieve a row from the Customers table using a SQL SELECT
statement. 3. Display the columns from the row. 4. Close the database connection. */ using
System; using System.Data.SqlClient; class FirstExample { public static void Main() { try {
// step 1: create a SqlConnection object to connect to the // SQL Server Northwind database
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // step 2: create a SqlCommand
object SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); // step 3: set
the CommandText property of the SqlCommand object to // a SQL SELECT statement that
retrieves a row from the Customers table mySqlCommand.CommandText = "SELECT
CustomerID, CompanyName, ContactName, Address "+ "FROM Customers "+ "WHERE
CustomerID = 'ALFKI'"; // step 4: open the database connection using the // Open() method of
the SqlConnection object mySqlConnection.Open(); // step 5: create a SqlDataReader object
and call the ExecuteReader() // method of the SqlCommand object to run the SELECT statement
SqlDataReader mySqlDataReader = mySqlCommand.ExecuteReader(); // step 6: read the row
from the SqlDataReader object using // the Read() method mySqlDataReader.Read(); //
step 7: display the column values Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+
mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\" CompanyName\"] =
"+ mySqlDataReader["CompanyName"]); Console.WriteLine("mySqlDataReader[\"
ContactName\"] = "+ mySqlDataReader["ContactName"]);
Console.WriteLine("mySqlDataReader[\" Address\"] = "+ mySqlDataReader["Address"]); //
step 8: close the SqlDataReader object using the Close() method mySqlDataReader.Close();
// step 9: close the SqlConnection object using the Close() method mySqlConnection.Close(); }
catch (SqlException e) { Console.WriteLine("A SqlException was thrown");
Console.WriteLine("Number = "+ e.Number); Console.WriteLine("Message = "+ e.Message);
Console.WriteLine("StackTrace:\n" + e.StackTrace); } } } Note
You can download all the source files for the programs featured in this book from the Sybex Web site
at www.sybex.com . You'll find instructions on downloading these files in the introduction of this book.
Once you've downloaded the files, you can follow along with the examples without having to type in
the program listings.

Part 1: Introduction to ADO.NET and Databases 15

© 2004 ... Your company

Let's go through the lines in FirstExample.cs. The first set of lines is a comment that indicates what
the program does: /* FirstExample.cs illustrates how to: 1. Connect to the SQL Server Northwind
database. 2. Retrieve a row from the Customers table using a SQL SELECT statement. 3.
Display the columns from the row. 4. Close the database connection. */
The next two lines indicate the namespaces being referenced in the program with the using
statement: using System; using System.Data.SqlClient;
The System namespace is the root namespace and is referenced so that we can simply use
Console.WriteLine() calls in the program, rather than the fully qualified System.Console.WriteLine()
call. The System.Data.SqlClient namespace contains the ADO.NET classes for use with SQL Server,
including the SqlConnection, SqlCommand, and SqlDataReader classes that are used later in the
program. You'll be introduced to these classes shortly, and you'll learn the full details of the ADO.NET
classes as you progress through this book.
You handle exceptions that might be thrown in your code by placing the code within a try/catch block.
You'll notice that the nine steps are placed within a try/catch block in the Main() method, with the
catch block handling a SqlException object that might be thrown by the code in the try block. You'll
learn more about this later in the section "Handling Exceptions" after I've discussed the nine steps in
the following sections. Step 1: Create a SqlConnection Object to Connect to the Database
You use an object of the SqlConnection class to connect to a SQL Server database. Step 1 in the
Main() method creates a SqlConnection object named mySqlConnection to connect to the SQL Server
Northwind database: SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa");
The string passed to the SqlConnection constructor is known as the connection string and contains
the following elements:
server Specifies the name of the computer on which SQL Server is running-localhost in this example;
localhost is a common name that refers to the computer on which your program runs. If your database
is running on a computer other than the one your program is running on, then you'll need to replace
localhost with the name of that computer.
database Specifies the name of the database-Northwind in this example.
uid Specifies the name of the database user account-sa in this example; sa is a common database
user account used by the database administrator (DBA). You can use any database user account as
long as it has access to the Northwind database.
pwd Specifies the password for the user. The password for the sa user in my database is also sa.
You'll need to change pwd to the password for your sa account, or whichever account you specified in
uid.
You'll need to change the settings of some or all of the previous elements in your connection string.
You might need to speak with your DBA to get the various elements that make up your connection
string. Once you have the correct values, you should make the changes to the connection string in
your copy of FirstExample.cs.Note
A database administrator (DBA) is responsible for performing tasks such as installing the database
software, backing up the databases, and so on. Step 2: Create a SqlCommand Object
Step 2 creates a SqlCommand object named mySqlCommand that is used later to send a SELECT
statement to the database for execution. SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); Step 3: Set the CommandText Property of the SqlCommand
Object
You use SQL to work with the information stored in a database. SQL is an industry standard language
supported by SQL Server, Access, and Oracle. You use the SQL SELECT statement for retrieving
information from a database. You'll learn the basics of SQL in Chapter 3, "Introduction to the
Structured Query Language."
Step 3 sets the CommandText property of mySqlCommand created in the previous step to a SELECT
statement. This statement will retrieve the CustomerID, CompanyName, ContactName, and Address
columns from the row in the Customers table whose CustomerID is ALFKI:
mySqlCommand.CommandText = "SELECT CustomerID, CompanyName, ContactName, Address "+
"FROM Customers "+ "WHERE CustomerID = 'ALFKI'"; Step 4: Open the SqlConnection Object
Step 4 opens the database connection using the Open() method of the SqlConnection object created
in step 1: mySqlConnection.Open();
Once the connection to the database is open, you can send commands to the database for

Mastering C# Database Programming @Team LiB16

© 2004 ... Your company

execution. Step 5: Run the SELECT Statement
You run the SELECT statement previously set in mySqlCommand by calling the ExecuteReader()
method. This method returns a SqlDataReader object that you then use to read the row data returned
by the SELECT statement.
Step 5 creates a SqlDataReader object and calls the ExecuteReader() method of mySqlCommand
object to run the SELECT statement: SqlDataReader mySqlDataReader =
mySqlCommand.ExecuteReader(); Step 6: Read the Row Using the SqlDataReader Object
Step 6 reads the row in mySqlDataReader using the Read() method: mySqlDataReader.Read(); Step
7: Display the Column Values from the SqlDataReader Object
You can read the value for a column from mySqlDataReader by passing the name of the column in
square brackets. For example, mySqlDataReader["CustomerID"] returns the value of the CustomerID
column.
Step 7 displays the column values for the CustomerID, CompanyName, ContactName, and Address
column values: Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+
mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\" CompanyName\"] = "+
mySqlDataReader["CompanyName"]); Console.WriteLine("mySqlDataReader[\" ContactName\"] = "+
mySqlDataReader["ContactName"]); Console.WriteLine("mySqlDataReader[\" Address\"] = "+
mySqlDataReader["Address"]); Step 8: Close the SqlDataReader Object
When you're finished reading rows from a SqlDataReader object, close it using the Close() method.
Step 8 calls the Close() method for mySqlDataReader: mySqlDataReader.Close(); Step 9: Close the
SqlConnection Object
When you're finished accessing the database, close your SqlConnection object using the Close()
method. Step 9 calls the Close() method for mySqlConnection: mySqlConnection.Close(); Handling
Exceptions
You handle exceptions that might be thrown in your code by placing the code within a try/catch block.
You'll notice that the nine steps are placed within a try/catch block, with the catch block handling a
SqlException object that might be thrown by the code in the try block. The SqlException class is
specifically for use with code that accesses a SQL Server database.
The following example shows how to structure a try/catch block: try { /* code that might throw a
SqlException */ } catch (SqlException e) { Console.WriteLine("A SqlException was thrown");
Console.WriteLine("Number = "+ e.Number); Console.WriteLine("Message = "+ e.Message);
Console.WriteLine("StackTrace:\n" + e.StackTrace); }
The properties displayed in the catch block are as follows:
Number The error number
Message A string containing a description of the error
StackTrace A string containing the name of the class and the method from which the exception was
thrown
The two most common examples of when a SqlException object is thrown are as follows:
Your SqlConnection object is unable to connect to the database. If this happens, you should check
the connection string that specifies how to connect to your database.
Your SELECT statement contains a mistake in the spelling of a table or column.
The following example output shows what happens when the SqlConnection object in FirstExample.cs
is unable to connect to the database because the database is currently down: A SqlException was
thrown Number = -2 Message = Timeout expired. Possible reasons: the timeout period elapsed prior
to completion of the operation, the server is not responding, or the maximum pool size was
exceeded. Please see the documentation for further details. StackTrace: at
System.Data.SqlClient.SqlConnection.Open() at FirstExample.Main()
You can use the output from your catch block to determine the problem. If the database is down,
contact your DBA.Note
For brevity, the only program to use a try /catch block in this book is FirstExample.cs . You should
use try /catch blocks in your own programs to catch exceptions. For more details on handling
exceptions, I recommend the book Mastering Visual C# .NET from Sybex (2002).
In the next section you'll see how to compile FirstExample.cs and run it. Compiling and Running
FirstExample.cs
You can compile the FirstExample.cs program using either the command-line tool that comes with the
.NET SDK or VS .NET. In this section, you'll see how to use the command-line version of the compiler

Part 1: Introduction to ADO.NET and Databases 17

© 2004 ... Your company

for FirstExample.cs program. Later in this chapter, in the section "Introducing Visual Studio .NET,"
you'll see how to use VS .NET to compile and run a program.
You run the command-line version of the compiler by entering csc in the Command Prompt tool,
followed by the name of your program source file. For example, to compile FirstExample.cs, you
would enter the following command in the Command Prompt tool: csc FirstExample.cs
If you want to follow along with the examples, start the Command Prompt tool by selecting Start £
Programs £ Accessories £ Command Prompt.Note
If you're using Windows XP rather than Windows 2000, start the Command Prompt tool by selecting
Start £ All Programs £ Accessories £ Command Prompt.
Next, you need to change directories to where you copied the FirstExample.cs file. To do this, you
first enter the partition on your hard disk where you saved the file. For example, let's say you saved
the file in the ADO.NET\book\ch01\programs directory of the C partition of your hard disk. To access
the C partition, you enter the following line into the Command Prompt tool and then you press the
Enter key: C:
Next, to move to the ADO.NET\book\ch01\programs directory, you enter cd followed by
ADO.NET\book\ch01\programs: cd ADO.NET\book\ch01\programs
To compile FirstExample.cs using csc, you enter the following command: csc FirstExample.cs
Notice that the name of the program source file follows csc; in this case, it's FirstExample.cs.
If you get an error when running csc, you'll need to add the directory where you installed the SDK to
your Path environment variable. The Path environment variable specifies a list of directories that
contain executable programs. Whenever you run a program from the command prompt, the
directories in the Path variable are searched for the program you want to run. Your current directory is
also searched. To set your Path environment variable, do the following:
Select Start £ Settings £ Control Panel. Then double-click System and select the Advanced tab.
Click the Environment Variables button and double-click Path from the system variables area at the
bottom.
Add the directory where you installed the SDK to your Path environment variable.
Click OK to save your change, and then click OK again on the next dialog.
Restart Command Prompt so that your change is picked up. You should then be able to run csc
successfully.
The compiler takes the FirstExample.cs file and compiles it into an executable file named
FirstExample.exe. The .exe file contains instructions that a computer can run, and the .exe file
extension indicates the file is an executable file.
You run an executable file using the Command Prompt tool by entering the name of that executable
file. For example, to run the FirstExample.exe file, you enter the following line in the Command
Prompt tool and then you press the Enter key: FirstExample
When you run the program, you should see the following text displayed in your Command Prompt
window: mySqlDataReader["CustomerID"] = ALFKI mySqlDataReader["CompanyName"] = Alfreds
Futterkiste mySqlDataReader["ContactName"] = Maria Anders mySqlDataReader["Address"] = Obere
Str. 57
If you encounter an exception-such as your program can't connect to the database-you should check
the connection string set in step 1 of FirstExample.cs, and speak with your DBA if necessary.

5.1.3 Connecting to Access and Oracle Databases

Connecting to Access and Oracle Databases
In this section you'll see examples of connecting to both an Access and an Oracle database. To
interact with either of these databases in your program, you use classes from the System.Data.OleDb
namespace. This namespace contains classes for use with databases that support object linking and
embedding for databases (OLE DB) such as Access or Oracle. You'll learn more about the
System.Data.OleDb namespace in Chapter 5, "Overview of the ADO.NET Classes." Connecting to an
Access Database
You connect to an Access database using an OleDbConnection object-rather than a SqlConnection
object-with a connection string of the following format: provider=Microsoft.Jet.OLEDB.4.0;data
source=databaseFile

Mastering C# Database Programming @Team LiB18

© 2004 ... Your company

where databaseFile is the directory and filename of your Access database. Notice that you specify
the provider in the connection string, which is set to Microsoft.Jet.OLEDB.4.0.
The following example creates a string named connectionString with the appropriate format to
connect to the Access Northwind database stored in the Northwind.mdb file: string connectionString =
"provider=Microsoft.Jet.OLEDB.4.0;" + "data source=F:\\Program Files\\Microsoft
Office\\Office\\Samples\\Northwind.mdb"; Note
Notice the use of two backslash characters in the data source part of the connection string. The first
backslash is used to specify that the second backslash is to be treated literally; therefore \\ is treated
as \ in the connection string. You'll need to locate the Northwind.mdb file on your hard disk and set
your connection string appropriately.
Assuming the System.Data.OleDb namespace has been imported, the following example creates an
OleDbConnection object, passing connectionString (set in the previous line of code) to the
constructor: OleDbConnection myOleDbConnection = new 01eDbConnection(connectionString);
Listing 1.2 illustrates how to connect to the Northwind Access database using an OleDbConnection
object and retrieve a row from the Customers table. Notice that you use an OleDbCommand and
OleDbDataReader object to run a SQL statement and read the returned results from an Access
database.Listing 1.2: OLEDBCONNECTIONACCESS.CS /* OleDbConnectionAccess.cs illustrates
how to use an OleDbConnection object to connect to an Access database */ using System; using
System.Data; using System.Data.OleDb; class OleDbConnectionAccess { public static void Main()
{ // formulate a string containing the details of the // database connection string
connectionString = "provider=Microsoft.Jet.OLEDB.4.0;" + "data source=F:\\Program
Files\\Microsoft Office\\Office\\Samples\\Northwind.mdb"; // create an OleDbConnection object to
connect to the // database, passing the connection string to the constructor OleDbConnection
myOleDbConnection = new OleDbConnection(connectionString); // create an OleDbCommand
object OleDbCommand myOleDbCommand = myOleDbConnection.CreateCommand(); // set the
CommandText property of the OleDbCommand object to // a SQL SELECT statement that retrieves
a row from the Customers table myOleDbCommand.CommandText = "SELECT CustomerID,
CompanyName, ContactName, Address "+ "FROM Customers "+ "WHERE CustomerID =
'ALFKI'"; // open the database connection using the // Open() method of the OleDbConnection
object myOleDbConnection.Open(); // create an OleDbDataReader object and call the
ExecuteReader() // method of the OleDbCommand object to run the SELECT statement
OleDbDataReader myOleDbDataReader = myOleDbCommand.ExecuteReader(); // read the row
from the OleDbDataReader object using // the Read() method myOleDbDataReader.Read(); //
display the column values Console.WriteLine("myOleDbDataReader[\" CustomerID\"] = "+
myOleDbDataReader["CustomerID"]); Console.WriteLine("myOleDbDataReader[\"
CompanyName\"] = "+ myOleDbDataReader["CompanyName"]);
Console.WriteLine("myOleDbDataReader[\" ContactName\"] = "+
myOleDbDataReader["ContactName"]); Console.WriteLine("myOleDbDataReader[\" Address\"] =
"+ myOleDbDataReader["Address"]); // close the OleDbDataReader object using the Close()
method myOleDbDataReader.Close(); // close the OleDbConnection object using the Close()
method myOleDbConnection.Close(); } }
The output from this program is as follows: myOleDbDataReader["CustomerID"] = ALFKI
myOleDbDataReader["CompanyName"] = Alfreds Futterkiste myOleDbDataReader["ContactName"] =
Maria Anders myOleDbDataReader["Address"] = Obere Str. 57 Connecting to an Oracle Database
You connect to an Oracle database using an OleDbConnection object with a connection string of the
following format: provider=MSDAORA;data source=OracleNetServiceName ;user id=username
;password=password
where
OracleNetServiceName Specifies the Oracle Net service name for the database. Oracle Net is a
software component that allows you to connect to a database over a network. You'll need to speak
with your DBA to get the Oracle Net service name.
username Specifies the name of the database user you want to connect to the database as.
password Specifies the password for the database user.
The following example creates a connection string named connectionString with the correct format to
connect to an Oracle database: string connectionString = "provider=MSDAORA;data
source=ORCL;user id=SCOTT;password=TIGER"; Note

Part 1: Introduction to ADO.NET and Databases 19

© 2004 ... Your company

The user ID of SCOTT with a password of TIGER is the default for accessing one of the example
databases that comes with Oracle. This database contains a table called emp that contains sample
employee data.
Assuming the System.Data.OleDb namespace has been imported, the following example creates an
OleDbConnection object, passing connectionString to the constructor: OleDbConnection
myOleDbConnection = new OleDbConnection(connectionString);
Listing 1.3 illustrates how to connect to an Oracle database using an OleDbConnection object and
retrieve a row from the emp table. Notice that you use an OleDbCommand and OleDbDataReader
object to run a SQL statement and read the returned results from an Oracle database.Listing 1.3:
OLEDBCONNECTIONORACLE.CS /* OleDbConnectionOracle.cs illustrates how to use an
OleDbConnection object to connect to an Oracle database */ using System; using System.Data;
using System.Data.OleDb; class OleDbConnectionOracle { public static void Main() { //
formulate a string containing the details of the // database connection string connectionString =
"provider=MSDAORA;data source=ORCL;user id=SCOTT;password=TIGER"; // create an
OleDbConnection object to connect to the // database, passing the connection string to the
constructor OleDbConnection myOleDbConnection = new OleDbConnection(connectionString);
// create an OleDbCommand object OleDbCommand myOleDbCommand =
myOleDbConnection.CreateCommand(); // set the CommandText property of the OleDbCommand
object to // a SQL SELECT statement that retrieves a row from the emp table
myOleDbCommand.CommandText = "SELECT empno, ename, sal "+ "FROM emp "+
"WHERE empno = 7369"; // open the database connection using the // Open() method of the
SqlConnection object myOleDbConnection.Open(); // create an OleDbDataReader object and
call the ExecuteReader() // method of the OleDbCommand object to run the SELECT statement
OleDbDataReader myOleDbDataReader = myOleDbCommand.ExecuteReader(); // read the row
from the OleDbDataReader object using // the Read() method myOleDbDataReader.Read(); //
display the column values Console.WriteLine("myOleDbDataReader[\" empno\"] = "+
myOleDbDataReader["empno"]); Console.WriteLine("myOleDbDataReader[\" ename\"] = "+
myOleDbDataReader["ename"]); Console.WriteLine("myOleDbDataReader[\" sal\"] = "+
myOleDbDataReader["sal"]); // close the OleDbDataReader object using the Close() method
myOleDbDataReader.Close(); // close the OleDbConnection object using the Close() method
myOleDbConnection.Close(); } }
The output from this program is as follows: myOleDbDataReader["empno"] = 7369
myOleDbDataReader["ename"] = SMITH myOleDbDataReader["sal"] = 800

5.1.4 Introducing Visual Studio .NET

Introducing Visual Studio .NET
In the previous sections, you saw programs that connect to various databases, retrieve a row from a
table, and display the column values for that row on your computer screen. This type of program is
known as a console application because it displays output directly on the screen on which the
program is running.
You can use Visual Studio .NET (VS .NET) to create console applications, as well as the following
types of applications:
Windows Applications These take advantage of the visual controls offered by the Windows
operating system, such as menus, buttons, and editable text boxes. Windows Explorer, which you use
to navigate the file system of your computer, is one example. You'll learn about Windows
programming in Chapter 6, "Introducing Windows Applications and ADO.NET."
ASP.NET Applications These run over the Internet. You access an ASP.NET application using a
Web browser, such as Internet Explorer. Examples of ASP.NET applications would be online banking,
stock trading, or auction systems. You'll learn about ASP.NET programming in Chapter 15,
"Introducing Web Applications: ASP.NET."
ASP.NET Web Services These also run over the Internet. Also known as XML Web services, the
difference is that you can use them to offer a service that could be used in a distributed system of
interconnected services. For example, Microsoft's Passport Web service offers identification and
authentication of Web users you could then use in your own Web application. You'll learn about Web

Mastering C# Database Programming @Team LiB20

© 2004 ... Your company

services in Chapter 17, "Web Services."
This is not an exhaustive list of the types of applications you can develop with VS .NET, but it does
give you flavor for the broad range of VS .NET's capabilities.
In the rest of this section, you'll see how to develop and run a console application using VS .NET. If
you've installed VS .NET on your computer, you'll be able to follow along with the example. If you
don't have VS .NET, don't worry; you'll still be able to see what's going on from the figures
provided. Starting Visual Studio .NET and Creating a Project
All of your work in VS .NET is organized into projects . Projects contain the source and executable
files for your program, among other items. If you have VS .NET installed, start it by selecting Start £
Programs £ Microsoft Visual Studio .NET £ Microsoft Visual Studio .NET. Once VS .NET has started,

you'll see the Start page (see Figure 1.1).
Figure 1.1: The Start page
From the Start page, you can see any existing projects you've created. You can open and create
projects using the Open Project and New Project buttons, respectively. You'll create a new project
shortly.Using the VS .NET Links
As you can see from Figure 1.1, VS .NET contains a number of links on the left of the Start page.
Some of these links provide access to useful information on the Internet about .NET; the links are as
follows:
Get Started Open the Start page.
What's New View any updates for VS .NET or Windows. You can also view upcoming training
events and conferences.
Online Community Get in touch with other members of the .NET community. Includes links to Web
sites and newsgroups.
Headlines View the latest news on .NET.
Search Online Search the MSDN Online Library for technical material such as published articles on
.NET.
Downloads Download trial applications and example programs from the Web sites featured here.
XML Web Services Find registered XML Web services that you can then use in your own programs.
XML Web services are also known as ASP.NET Web services. You'll learn more about Web services
in Chapter 17.
Web Hosting A Web hosting company can take your program and run it for you. It takes care of the
computers on which your program runs. Use the Web Hosting link to view companies that provide
these services.
My Profile Set items such as your required keyboard scheme and window layout.
Click these links and explore the information provided. As you'll see, there's a lot of information about
.NET on the Internet.Creating a New Project
When you're finished examining the information in the previous links, create a new project by clicking
the New Project button on the Get Started page.Note
You can also create a new project by selecting File £ New £ Project, or by pressing Ctrl+Shift+N on
your keyboard.

Part 1: Introduction to ADO.NET and Databases 21

© 2004 ... Your company

When you create a new project, VS .NET displays the New Project dialog box, which you use to
select the type of project you want to create. You also enter the name and location of your new
project; the location is the directory where you want to store the files for your project.
Because you're going to be creating a C# console application, select Visual C# Projects from the
Project Types section on the left of the New Project dialog box, and select Console Application from
the Templates section on the right. Enter MyConsoleApplication in the Name field, and keep the
default directory in the Location field. Figure 1.2 shows the completed New Project dialog box with

these settings.
Figure 1.2: The New Project dialog box with the appropriate settings for a C# console application
Click the OK button to create the new project. Working in the VS .NET Environment
Once you've created a new project, the main development screen is displayed (see Figure 1.3). This
screen is the environment in which you'll develop your project. As you can see, VS .NET has already
created some starting code for you. This code is a skeleton for your program; you'll see how to modify
it shortly. In this section, I'll give you a brief description of the different parts of the VS .NET

environment.
Figure 1.3: The VS .NET environmentNote
Depending on your settings for VS .NET, your screen might look slightly different from that shown in
Figure 1.3.
The VS .NET menu contains the following items:
File Open, close, and save project files.
Edit Cut, copy, and paste text from the Clipboard. The Clipboard is a temporary storage area.
View Hide and show different windows such as the Solution Explorer (which lets you see the files
that make up your project), Class View (which lets you see the classes and objects in your project),
Server Explorer (which lets you explore items such as databases), and the Properties window (which
lets you set the properties of objects, such as the size of a button). You can also use the View menu
to select the toolbars you want to display.
Project Add class files to your project and add Windows forms and controls.

Mastering C# Database Programming @Team LiB22

© 2004 ... Your company

Build Compile the source files in your project.
Debug Start your program with or without debugging. Debugging lets you step through your program
line by line, looking for errors.
Tools Connect to a database and customize your settings for VS .NET. For example, set the colors
used for different parts of your program lines or set the initial page displayed by VS .NET when you
start it.
Window Switch between files you've opened and hide windows.
Help Open the documentation on .NET. You'll learn how to use this documentation later in this
chapter in the section "Using the .NET Documentation."
The VS .NET toolbar contains a series of buttons that act as shortcuts to some of the menu options.
For example, you can save a file or all files, cut and paste text from the Clipboard, and start a
program using the debugger. You'll learn how to use some of these features later in this chapter.
The code shown in the window (below the toolbar) with the title Class1.cs is code that is automatically
generated by VS .NET, and in the next section you'll modify this code. Modifying the VS .NET-
Generated Code
Once VS .NET has created your project, it will display some starting code for the console application
with a class name of Class1.cs. You can use this code as the beginning for your own program. Figure
1.3, shown earlier, shows the starting code created by VS .NET.
The Main() method created by VS .NET is as follows: static void Main(string[] args) { // // TODO:
Add code to start application here // }
As you can see, this code contains comments that indicate where you add your own code. Replace
the Main() method with the following code taken from the Main() method in FirstExample.cs, shown
earlier in Listing 1.1: public static void Main() { try { // step 1: create a SqlConnection object to
connect to the // SQL Server Northwind database SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); // step 2: create
a SqlCommand object SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); //
step 3: set the CommandText property of the SqlCommand object to // a SQL SELECT statement
that retrieves a row from the Customers table mySqlCommand.CommandText = "SELECT
CustomerID, CompanyName, ContactName, Address "+ "FROM Customers "+ "WHERE
CustomerID = 'ALFKI'"; // step 4: open the database connection using the // Open() method of
the SqlConnection object mySqlConnection.Open(); // step 5: create a SqlDataReader object
and call the ExecuteReader() // method of the SqlCommand object to run the SELECT statement
SqlDataReader mySqlDataReader = mySqlCommand.ExecuteReader(); // step 6: read the row
from the SqlDataReader object using // the Read() method mySqlDataReader.Read(); // step
7: display the column values Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+
mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\" CompanyName\"] = "+
mySqlDataReader["CompanyName"]); Console.WriteLine("mySqlDataReader[\" ContactName\"] =
"+ mySqlDataReader["ContactName"]); Console.WriteLine("mySqlDataReader[\" Address\"] =
"+ mySqlDataReader["Address"]); // step 8: close the SqlDataReader object using the Close()
method mySqlDataReader.Close(); // step 9: close the SqlConnection object using the Close()
method mySqlConnection.Close(); } catch (SqlException e) { Console.WriteLine("A
SqlException was thrown"); Console.WriteLine("Number = "+ e.Number);
Console.WriteLine("Message = "+ e.Message); Console.WriteLine("StackTrace:\n" +
e.StackTrace); } } Note
You'll also need to add the following line near the start of your class: using System.Data.SqlClient;
Once you've added the previous code, your next steps are to compile and run your
program. Compiling and Running the Program Using VS .NET
As always, you must first compile your program before you can run it. Because programs in VS .NET
are organized into projects, you must compile the project; this is also known as building the project.
To build your project, select Build £ Build Solution. This compiles the Class1.cs source file into an
executable file.Tip
You can also press Ctrl+Shift+B on your keyboard to build your project.
Finally, you can now run your program. Select Debug £ Start Without Debugging. When you select
Start Without Debugging, the program will pause at the end, allowing you to view the output.Tip
You can also press Ctrl+F5 on your keyboard to run your program.
When you run your program, VS .NET will run the program in a new Command Prompt window, as

Part 1: Introduction to ADO.NET and Databases 23

© 2004 ... Your company

shown in Figure 1.4. Your program is run in this window because it is a console

application.
Figure 1.4: The running program
To end the program, press any key. This will also close the Command Prompt window.
You've barely scratched the surface of VS .NET in this section. You'll explore some of the other
features of VS .NET later in this book. In the next section, you'll learn how to use the extensive
documentation that comes with .NET.

5.1.5 Using the .NET Documentation

Using the .NET Documentation
Both the .NET SDK and VS .NET come with extensive documentation, including the full reference to
all the classes in .NET. As you become proficient with C#, you'll find this reference documentation
invaluable.
In the following sections, you'll see how to access and search the .NET documentation, and view
some of the contents of the documentation. Depending on whether you're using the .NET SDK or VS
.NET, you access the documentation in a slightly different way. You'll see how to use both ways to
access the documentation in this section.Note
The documentation that comes with the .NET SDK is a subset of the documentation that comes with
VS .NET. Accessing the Documentation Using the .NET SDK
If you're using the .NET SDK, you access the documentation by selecting Start £ Programs £
Microsoft .NET Framework SDK £ Documentation. Figure 1.5 shows the .NET Framework SDK
document home page; this is the starting page for the

documentation.
Figure 1.5: The documentation home page
On the left of the page, you can see the various sections that make up the contents of the
documentation. You can view the index of the documentation by selecting the Index tab at the bottom
of the page.Tip
You can also view the Index window by selecting Help £ Index, or by pressing Ctrl+Alt+F2 on your
keyboard.
You can search the index by entering a word in the Look For field of the Index tab. Figure 1.6 shows
the results of searching for Console . Figure 1.6 also shows the text for the details on building
console applications on the top right of the screen. I opened this overview by double-clicking the
Building Console Applications link in the Index Results on the bottom right of the

Mastering C# Database Programming @Team LiB24

© 2004 ... Your company

screen.
Figure 1.6: Searching the index for the word console
You can also search all pages in the documentation using the Search tab. You display the Search tab
by selecting it from the bottom of the screen.Tip
You can also view the Search window by selecting Help £ Search, or by pressing Ctrl+Alt+F3 on your
keyboard.
You enter the words you want to search for in the Look For field of the Search window. Figure 1.7
shows the search page and the search results returned by a search for WriteLine . When you run the
search, the names of the pages that contain your required words are displayed in the Search Results
window that appears at the bottom of the screen (you can see this window in Figure

1.7).
Figure 1.7: Searching all of the documentation for the word WriteLineTip
You can also view the Search Results window by selecting Help £ Search results, or by pressing
Shift+Alt+F3 on your keyboard.
You view the contents of a particular page shown in the Search Results window by double-clicking
the appropriate line. For example, in Figure 1.7, we double-clicked the second line in the Search
Results window. This line contained the page with the title "Console.WriteLine Method," and as you
can see, this page is displayed in the window above the Search Results in Figure 1.7.
In the next section, you'll see how to access the documentation using VS .NET. Accessing the
Documentation Using VS .NET
If you're using VS .NET, you access the documentation using the Help menu. To access the contents
of the documentation, you select Help £ Contents. Figure 1.8 shows the contents displayed in VS
.NET. Notice that the documentation is displayed directly in VS .NET, rather than in a separate
window, as is done when viewing documentation with the .NET

Part 1: Introduction to ADO.NET and Databases 25

© 2004 ... Your company

SDK.
Figure 1.8: The documentation contents viewed in VS .NET Note
The same keyboard shortcuts shown in the previous section also apply to VS .NET.
The Help menu also provides access to similar Index and Search windows as you saw in the previous
section.

5.1.6 Using the SQL Server Documentation

Using the SQL Server Documentation
SQL Server also comes with extensive electronic documentation. To access this documentation, you
select Start £ Programs £ Microsoft SQL Server £ Books Online. Figure 1.9 shows the SQL Server

documentation home page.
Figure 1.9: SQL Server documentation home page
You can browse the online books using the Contents tab, and you can search for specific information
using the Index and Search tabs. Figure 1.10 shows some of the information for the SELECT
statement, which is located in the Transact-SQL reference

Mastering C# Database Programming @Team LiB26

© 2004 ... Your company

book.
Figure 1.10: SELECT examples documentationNote
Transact-SQL is Microsoft's implementation of SQL and contains programming extensions. You'll
learn about Transact-SQL programming in Chapter 4.
You can see the information shown in Figure 1.10 yourself by opening Contents £ Transact-SQL
Reference £ SELECT £ SELECT Examples.

5.1.7 Summary

Summary
A database is an organized collection of information that is divided into tables . Each table is further
divided into rows and columns; these columns store the actual information. You access a database
using the Structured Query Language (SQL), which is a standard language supported by most
database software including SQL Server, Access, and Oracle.
You saw a C# program that connected to a SQL Server database, retrieved and displayed the
contents stored in the columns of a row from a table, and then disconnected from the database. You
also saw programs that connected to an Access and an Oracle database.
Microsoft's Rapid Application Development (RAD) tool is Visual Studio .NET (VS .NET). VS .NET
enables you to develop and run programs in an integrated development environment. This
environment uses all the great features of Windows, such as the mouse and intuitive menus, and
increases your productivity as a programmer.
In the final sections of this chapter, you saw how to use the extensive documentation from Microsoft
that comes with the .NET Software Development Kit (SDK) and VS .NET. You also saw how to use
the SQL Server documentation.
In the next chapter, you'll learn more about databases.

5.2 Chapter 2: Introduction to Databases

Chapter 2: Introduction to DatabasesOverview
In this chapter, you'll learn the basics of databases: how databases are constructed, how to create
and relate tables, and how to build queries to retrieve information. This chapter also shows you how
to use a SQL Server database named Northwind. This database contains the information for the
fictitious Northwind Company, which sells food products. This database is one of the example
databases that is typically installed with SQL Server. You can obtain a trial version of SQL Server
from Microsoft's website at www.microsoft.com.Note
At time of writing, you can download the trial version of SQL Server from Microsoft's website. If your
Internet connection is too slow, you can also order a CD-ROM containing the trial version.
I used the Developer edition of SQL Server when preparing this book. When running a production

Part 1: Introduction to ADO.NET and Databases 27

© 2004 ... Your company

system, you should typically use the Enterprise edition of SQL Server. You can view the differences
between the various types of SQL Server at Microsoft's website.
Featured in this chapter:
Introducing databases
Using SQL Server
Exploring the Northwind database
Building queries using Enterprise Manager
Creating a table

5.2.1 Introducing Databases

Introducing Databases
A database is an organized collection of information. A relational database is a collection of related
information that has been organized into structures known as tables . Each table contains rows that
are further organized into columns . You should already be familiar with information being
represented in the form of a table with columns. For example, Table 2.1 shows the details of some
products sold by the Northwind Company. Table 2.1 lists the product ID, name, quantity per unit, and
unit price for the first 10 products; this information comes from the Products table of the Northwind
database. Table 2.1: SOME ROWS FROM THE PRODUCTS TABLE
PRODUCT ID
NAME
QUANTITY PER UNIT
Unit Price
1
Chai
10 boxes x 20 bags
$18
2
Chang
24-12oz bottles
$19
3
Aniseed Syrup
12-550ml bottles
$10
4
Chef Anton's Cajun Seasoning
48-6oz jars
$22
5
Chef Anton's Gumbo Mix
36 boxes
$21.35
6
Grandma's Boysenberry Spread
12-8oz jars
$25
7
Uncle Bob's Organic Dried Pears
12-1lb pkgs.
$30
8
Northwoods Cranberry Sauce
12-12oz jars
$40

Mastering C# Database Programming @Team LiB28

© 2004 ... Your company

9
Mishi Kobe Niku
18-500g pkgs.
$97
10
Ikura
12-200ml jars
$31
You can store the information in a database on paper in a filing cabinet or in electronic format stored
in the memory and file system of a computer. The system used to manage the information in the
database is the database management system . In the case of an electronic database, the database
management system is the software that manages the information in the computer's memory and files.
One example of such software is SQL Server (this is the relational database management system, or
RDBMS , used in this book). Other examples of RDBMS software include Oracle and DB2.Note
You must be careful to differentiate between a database and a database management system. A
database is an organized collection of information, and a database management system is the
software that stores and provides the tools to manipulate the stored information. This distinction is
blurred these days, so the term database is often used to refer to the software.
Another term you need to be familiar with is a database schema, which is a representation of the
structure of data, and includes the definition of the tables and columns that make up the database.
In the next section, you'll explore SQL Server.

5.2.2 Using SQL Server

Using SQL Server
In this section, you'll explore some of the tools you use to manage SQL Server. Specifically, you'll
learn how to start and stop SQL Server using the Service Manager and use the Enterprise Manager
to administer SQL Server. Starting and Stopping SQL Server
To start and stop SQL Server, you use the Service Manager tool. To open the Service Manager, you
select Start £ Programs £ Microsoft SQL Server £ Service Manager. The Service Manager is shown in

Figure 2.1.
Figure 2.1: The Service Manager
You select the name of the server computer on which SQL Server is running in the Server drop-down
list box. To start SQL Server, you click the Start/Continue button. To stop SQL Server, you click the
Stop button. You can also use the Service Manager to pause SQL Server, and select whether you
want to automatically start SQL Server when the operating system (OS) starts.
Once you've started SQL Server, other programs can access the databases managed by that SQL
Server installation. Using Enterprise Manager
To administer a database, you use the Enterprise Manager tool. You can create databases, create

Part 1: Introduction to ADO.NET and Databases 29

© 2004 ... Your company

and edit tables, create and edit users, and so on, using Enterprise Manager. To open the Enterprise
Manager, you select Start £ Programs £ Microsoft SQL Server £ Enterprise Manager. The Enterprise

Manager is shown in Figure 2.2.
Figure 2.2: The Enterprise Manager
On the left pane of Enterprise Manager, you'll see a tree that shows the accessible SQL Server
installations. The contents of the right pane of Enterprise Manager display different information based
on what you select in the left pane. For example, I selected the Databases folder and the North-wind
database in the left pane when preparing Figure 2.2. As you can see, the right pane displays icons
that allow you to edit the items stored in that database.
Each SQL Server installation contains the following seven folders shown in the left pane:
Databases Contains tools that allow you to access the databases managed by SQL Server.
Data Transformation Services Provides access to tools that allow you to move data from one
database to another. You can also programmatically modify the data as it is moved. For example, you
might want to move data from SQL Server database to an Oracle database, or vice versa.
Management Contains tools that allow you to back up your databases, monitor current database
activity, and other tasks.
Replication Provides access tools that allow you to copy information from one database to another
in near real time using a process known as replication . For example, you might want to move data
from a database running at a branch office of a company to a database at headquarters.
Security Contains tools that allow you to manage logins and built-in roles that contain permissions.
You can also manage linked servers and remote servers. Linked servers are databases that you can
access over a network. These databases don't have to be SQL Server databases; they could also be
Oracle databases, for example. The only limitation is that there must be an OLE DB (Object Linking
and Embedding for Databases) provider for that database. Remote servers are SQL Server
databases that you can access over a network and run stored procedures on.
Support Services Provides access to tools that allow you to manage the Distributed Transaction
Coordinator, Full-Text Search, and SQL Mail services. The Distributed Transaction Coordinator
service allows you to manage transactions that use more than one database. The Full Text Search
service allows you to perform searches for phrases through large amounts of text. The SQL Mail
service allows you to send electronic mail from SQL Server.
Meta Data Services Contains tools that allow you to manage the information stored in the local
repository. This information contains details about databases, users, tables, columns, views, stored
procedures, and so on. This information is primarily used by data-warehousing applications.Note
Since this is a book on database programming, I won't cover too many details on database
administration; I'll just focus on the Databases folder. Typically, your organization will have a
database administrator, or DBA, who takes care of administering your databases and will use the
other folders to perform their tasks. If you need more details on administering SQL Server, I
recommend the book Mastering SQL Server 2000 by Mike Gunderloy and Joseph L. Jorden (Sybex,
2000).
Let's take a closer look at the Databases folder, which contains the databases that are managed by a

Mastering C# Database Programming @Team LiB30

© 2004 ... Your company

particular SQL Server installation. For example, my SQL Server installation manages six databases
named master, model, msdb, Northwind, pubs, and tempdb. When you expand the Databases folder
for a database, you'll see the following nodes:
Diagrams You use a diagram to store a visual representation of the tables in a database. For
example, the Northwind database contains many tables, four of which are named Customers, Orders,
Order Details, and Products. Figure 2.3 illustrates how these tables are related. The columns for each
table are shown within each box in the diagram. For example, the Customers table contains 11
columns: CustomerID, CompanyName, ContactName, ContactTitle, Address, City, Region,
PostalCode, Country, Phone, and Fax. As you'll learn in the "Table Relationships and Foreign Keys"
section, the lines that connect the tables show the relationships between the various tables.

Figure 2.3: The Customers, Orders, Order Details, and Products tables
Tables You use a table to store rows that are divided into columns. Figure 2.4 shows a list of the
tables stored in the Northwind database.

Figure 2.4: The tables of the Northwind database
You can create new tables, view the properties of a table, and query the rows stored in a table. You'll
learn how to create a new table later in the "Creating a Table" section. To view the properties of a
table, you select the table from the list in the right pane, click the right mouse button, and select
Properties from the context-sensitive pop-up menu. You can also double-click the table to display the
properties, and Figure 2.5 shows the properties of the Customers table. You'll learn the meaning of
these properties as this chapter progresses.

Part 1: Introduction to ADO.NET and Databases 31

© 2004 ... Your company

Figure 2.5: The Customers table properties
Views You use a view to retrieve a set of columns from one or more tables. You can think of a view
as a more flexible way of examining the rows stored in the tables. For example, one of the views of
the Northwind database retrieves an alphabetical list of products, and retrieves the product name and
the category name, among other columns. This information comes from both the Products and
Categories tables. You can create new views, examine the properties of a view, and query the rows
through a view. To examine the properties of a view, you select the view, click the right mouse button,
and select Properties. You can also double-click the view to examine the Properties. Figure 2.6
shows the properties for the alphabetical list of products view. The text of the view is written in SQL,
which you'll learn more about in Chapter 3, along with how to use the view in that chapter.

Figure 2.6: The alphabetical list of products view properties
Stored Procedures You use a stored procedure to run a sequence of statements in the database. In
SQL Server, stored procedures are written in Transact-SQL, which you'll learn about in Chapter 4.
Stored procedures are saved in the database, and are typically used when you need to perform a
task that intensively uses the database, or you want to centralize a function in the database that any
user can call rather than have each user write their own program to perform the same task. For
example, one of the stored procedures in the Northwind database is named CustOrdHist, which
returns the product name and the sum of the quantity of products ordered by a particular customer,
who is passed as a parameter to the procedure. Figure 2.7 shows the properties for the CustOrdHist
stored procedure.

Mastering C# Database Programming @Team LiB32

© 2004 ... Your company

Figure 2.7: The CustOrdHist stored procedure properties
Users Every time you access the database, you connect to a particular user account in the database.
Every SQL Server database comes with two default users named dbo and guest. The dbo user owns
the database and has the permissions to do anything in the database, such as create new tables, edit
tables, and so on. The guest user has more limited permissions that allow access to the contents of
the tables, but not the ability to create or edit tables, and so on. Figure 2.8 shows the properties of the
dbo user. You'll notice that the dbo user has been granted two roles, public and db_owner. You'll
learn about roles next. You can view all the permissions assigned to the dbo user by clicking the
Permissions button.

Figure 2.8: The dbo user properties
Roles A role is a named set of permissions that you can assign to a user. It is useful when you need
to assign the same set of permissions to more than one user. That way, if you need to change the set
of permissions, you need to change only the permissions assigned to the role, rather than the
permissions assigned to each user. For example, you saw in the previous figure that the dbo user has
been granted the public and db_owner roles. Figure 2.9 shows the properties of the public role. You'll
notice that the public role has also been granted to the guest user. If no public role was used, then
the set of permissions would have to be added by hand to both the dbo and guest users.

Part 1: Introduction to ADO.NET and Databases 33

© 2004 ... Your company

Figure 2.9: The public role properties
You can view the permissions assigned to a role by clicking the Permissions button. Figure 2.10
shows the properties assigned to the public role, and Table 2.2 lists the meaning of the available
permissions. Table 2.2: MEANING OF THE AVAILABLE PERMISSIONS
PERMISSION
MEANING
SELECT
Allows retrieval of rows from a table or view.
INSERT
Allows addition of rows into a table or view.
UPDATE
Allows modification of rows in a table or view.
DELETE
Allows removal of rows from a table or view.
EXEC
Allows execution of a stored procedure.
DRI
Allows the addition or removal of declarative referential integrity (DRI) constraints to a table. The
constraints ensure that proper actions are taken when adding, modifying, or removing foreign key
values. Foreign keys specify that a column in one table is related to a column in another table. You'll
learn more about foreign keys later in the "Table Relationships and Foreign Keys" section.

Figure 2.10: The public role permissions
Rules A rule is an expression that evaluates to either true or false and determines whether you are
able to assign a particular value to a column. For example, you might define a rule that specifies a

Mastering C# Database Programming @Team LiB34

© 2004 ... Your company

range of values, and if a supplied value is beyond that range, then you cannot assign that value to the
column. Rules are provided for compatibility with older versions of SQL Server and are now replaced
by constraints. You'll learn more about constrains in the "Creating a Constraint" section later.
Defaults A default value is an initial value that is set when you add a new row to a table. Defaults
are provided for compatibility with older versions of SQL Server and are now replaced by the default
value of a column. You'll learn more about default values in the "Creating a Table" section later.
User-Defined Data Types User-defined data types allow you to create your own types based on the
existing SQL Server types. For example, say you wanted to store a United States ZIP code in several
tables of your database; you could create a type that stores a string of five characters. If you then
wanted to increase the length from five to eight to store an extended ZIP code, then all you need to
do is modify your type and the change will be reflected in all the tables where you used that type.
User-Defined Functions User-defined functions allow you to create your own functions. For
example, say you wanted to compute the distance traveled by an object, then you could create a
function to do that.
Full-Text Catalogs Full-text catalogs allow you to create a full-text index, which enables you to
perform searches for phrases through large amounts of text.
In the next chapter, you'll see that Visual Studio .NET's Server Explorer also allows you to use many
of the same features contained in the Databases folder of Enterprise Manager. Specifically, Server
Explorer allows you to view, create, and edit the following items: database diagrams, tables, views,
stored procedures, and user-defined functions.
In the following section, you'll learn what is meant by the term relational in the context of a relational
database, and you'll explore some of the tables in the Northwind database.

5.2.3 Exploring the Northwind Database

Exploring the Northwind Database
A database may have many tables, some of which are related to each other. For example, the North-
wind database contains many tables, four of which are named Customers, Orders, Order Details, and
Products. Figure 2.11 is a repeat of the diagram shown earlier that illustrates how these tables are

related.
Figure 2.11: Relationships between the Customers, Orders, Order Details, and Products tables
The columns for each table are shown within each box. For example, the Customers table contains 11
columns:
CustomerID
CompanyName
ContactName
ContactTitle
Address
City

Part 1: Introduction to ADO.NET and Databases 35

© 2004 ... Your company

Region
PostalCode
Country
Phone
Fax
In the next few sections, you'll learn some database theory, and then you'll learn how each of the
previous columns is defined in the Customers table. You'll also explore the Orders, Order Details, and
Products tables. Primary Keys
Typically, each table in a database has one or more columns that uniquely identify each row in the
table. This column is known as the primary key for the table. A primary key can be composed of more
than one column. In such cases, it is known as a composite key.Note
The value for the primary key in each row of a table must be unique.
In the case of the Customers table, the primary key is the CustomerID column. The key icon shown to
the left of the CustomerID column in Figure 2.11 indicates that this column is the primary key for the
Customers table. Similarly, the primary key for the Orders table is OrderID. The primary key for the
Order Details table is composed of two columns: OrderID and ProductID. The primary key for the
Products table is ProductID. Table Relationships and Foreign Keys
The lines that connect the tables in Figure 2.11, shown earlier, display the relationships between the
tables. The infinity sign (∞) at the end of each line indicates a one-to-many relationship between
two tables, meaning that a row in one table can be related to one or more rows in the other table.
For example, the Customers table has a one-to-many relationship with the Orders table. Each
customer can place many orders. Similarly, the one-to-many relationship between the Orders and
OrderDetails table means that each order can be made up of many order details (you can think of an
order detail as a line in a purchase order list, with each line referring to a specific product that is
ordered). Finally, the one-to-many relationship between the Products and Order Details table means
that each product can appear in many order details.
One-to-many relationships are modeled using foreign keys . For example, the Orders table has a
column named CustomerID. This column is related to the CustomerID column in the Customers table
through a foreign key. This means that every row in the Orders table must have a corresponding row
in the Customers table with a matching value for the CustomerID column. For example, if a row in the
Orders table has a CustomerID of ALFKI, then there must also be a row in the Customers table with a
CustomerID of ALFKI. Since the relationship between the Customers and Orders table is one-to-
many, this means that there can be many rows in the Orders table with the same CustomerID column.
Conceptually, you can think of the foreign key as a pointer from the Orders table to the Customers
table.
Often, the table containing the foreign key is known as the child table, and the table with the column
referenced by the foreign key is known as the parent table . For example, the Orders table is the child
table, and the Customers table is the parent table. Foreign key relationships are often known as
parent-child relationships .Note
The relational term from "relational database" comes from the fact that tables can be related to each
other through foreign keys.
You can manage the relationships for a table from Enterprise Manager by selecting the table from the
Tables node, clicking the right mouse button, and selecting Design Table. You then click the Manage
Relationships button on the toolbar of the table designer. For example, Figure 2.12 shows the

Mastering C# Database Programming @Team LiB36

© 2004 ... Your company

relationship between the Customers and Orders tables.
Figure 2.12: Relationship between the Customers and Orders table
The Customers and Orders tables are related through the CustomerID column. The CustomerID
column in the Orders table is the foreign key. The relationship between the two tables is named
FK_Orders_Customers. Null Values
Databases must also provide the ability to handle values that are not set, or are otherwise unknown.
Unknown values are called null values, and a column is defined as allowing or disallowing null
values. When a column allows null values, that column is defined as null; otherwise it is defined as
not-null. A not-null column in a row must always have value stored in it. If you tried to add a row but
didn't supply a value to a not-null column, then the database would display an error and wouldn't add
your new row. Indexes
When looking for a particular topic in a book, you can either scan the whole book looking for your
topic, or you can use the book's index to find the exact location of the topic directly. An index for a
database table is similar in concept to a book index, except that database indexes are used to find
specific rows in a table. The downside of indexes is that when a row is added to the table, additional
time is required to update the index for the new row.
Generally, you should only create an index on a column when you find that you are retrieving a small
number of rows from a table containing many rows. A good rule of thumb is that an index is useful
when you expect any single query to retrieve 10 percent or less of the total rows in a table. This
means that the candidate column for an index should be used to store a wide range of values. A good
candidate for indexing would be a column containing a unique number for each record, while a poor
candidate for indexing would be a column that contains only a small range of numeric codes such as
1, 2, 3, or 4. This consideration applies to all database types, not just numbers.Note
SQL Server automatically creates an index for the primary key column of a table.
Normally, the DBA is responsible for creating indexes, but as an application developer, you probably
know more about your application than the DBA and will be able to recommend which columns are
good candidates for indexing.
You can manage the indexes for a table from Enterprise Manager by selecting the table from the
Tables node, clicking the right mouse button, and selecting All Tasks £ Manage Indexes. For
example, Figure 2.13 shows the indexes for the Customers table. You can also manage indexes from
the table designer by clicking the Manage Indexes/Keys

Part 1: Introduction to ADO.NET and Databases 37

© 2004 ... Your company

button.
Figure 2.13: Indexes for the Customers table
The Customers table has five indexes: one each on the CustomerID, City, CompanyName,
PostalCode, and Region columns.
You'll learn how to add an index to a table in the "Creating an Index" section later. Column Types
Each column in a table has a specific database type. This type is similar to the type of a variable in
C#, except that a database type applies to the kind of value you can store in a table column. Table
2.3 lists the SQL Server database types. Table 2.3: SQL SERVER DATABASE TYPES
TYPE
DESCRIPTION
bigint
Integer value from -263 (-9,223,372,036,854,775,808) to 263-1 (9,223,372,036,854,775,807).
int
Integer value from -231 (-2,147,483,648) to 231-1 (2,147,483,647).
smallint
Integer value from 215 (-32,768) to 215-1 (32,767).
tinyint
Integer value from 0 to 255.
bit
Integer value with either a 1 or 0 value.
decimal
Fixed precision and scale numeric value from -1038+1 to 1038-1.
numeric
Same as decimal.
money
Monetary data value from -263 (-922,337,203,685,477.5808) to 263-1 (922,337,203,685,477.5807),
with an accuracy to one ten-thousandth of a monetary unit.
smallmoney
Monetary data value from -214,748.3648 to 214,748.3647, with an accuracy to one ten-thousandth of
a monetary unit.
float
Floating-point value from -1.79E+308 to 1.79E+308.
real
Floating-point value from -3.40E + 38 to 3.40E + 38.
datetime
Date and time value from January 1, 1753, to December 31, 9999, with an accuracy of three-
hundredths of a second (3.33 milliseconds).
smalldatetime
Date and time value from January 1, 1900 to June 6, 2079 with an accuracy of one minute.
char
Fixed-length non-Unicode characters with a maximum length of 8,000 characters.

Mastering C# Database Programming @Team LiB38

© 2004 ... Your company

varchar
Variable-length non-Unicode characters with a maximum of 8,000 characters.
text
Variable-length non-Unicode characters with a maximum length of 231-1 (2,147,483,647) characters.
nchar
Fixed-length Unicode characters with a maximum length of 4,000 characters.
nvarchar
Variable-length Unicode characters with a maximum length of 4,000 characters.
ntext
Variable-length Unicode characters with a maximum length of 230-1 (1,073,741,823) characters.
binary
Fixed-length binary data with a maximum length of 8,000 bytes.
varbinary
Variable-length binary data with a maximum length of 8,000 bytes.
image
Variable-length binary data with a maximum length of 231-1 (2,147,483,647) bytes.
cursor
Reference to a cursor, which is a set of rows.
sql_variant
Can store values of various SQL Server types except text, ntext, timestamp, and sql_variant.
table
Stores a set of rows.
timestamp
Unique binary number that is updated every time you modify a row. You can only define one
timestamp column in a table.
uniqueidentifier
Globally unique identifier (GUID).
Okay, enough theory! Let's take a closer look at the Customers, Orders, Order Details, and Products
tables. The Customers Table
The Customers table contains rows that store the details of a company that might place orders with
the Northwind Company. Figure 2.14 shows some of the rows and columns stored in the Customers

table.
Figure 2.14: Rows from the Customers table
As you can see, the first row displayed is for a customer with the name Alfreds Futterkiste; this name
is stored in the CompanyName column of the Customers table.
The CustomerID for the first row is ALFKI, and as you can see, the CustomerID is unique for each
row. As mentioned earlier, the primary key for the Customers table is the CustomerID column. If you
tried to add a row with a primary key already used by a row, then the database would reject your new
row. For example, if you tried to add a row to the Customers table with a CompanyID of ALFKI, then
that row would be rejected because ALFKI is already used by the first row in the table.Tip

Part 1: Introduction to ADO.NET and Databases 39

© 2004 ... Your company

You can view the rows from a table yourself by selecting the table in Enterprise Manager, clicking the
right mouse button, and selecting Open Table £ Return all rows. You'll learn more about viewing rows
from tables later in the "Building Queries" section.Definition of the Customers Table
Table 2.4 shows the definition for the columns of the Customers table. This table shows the column
name, database type, length, and whether the column allows null values. Table 2.4: DEFINITION
FOR THE COLUMNS OF THE Customers TABLE
COLUMN NAME
DATABASE TYPE
LENGTH
ALLOWS NULL VALUES?
CustomerID
nchar
5
No
CompanyName
nvarchar
40
No
ContactName
nvarchar
30
Yes
ContactTitle
nvarchar
30
Yes
Address
nvarchar
60
Yes
City
nvarchar
15
Yes
Region
nvarchar
15
Yes
PostalCode
nvarchar
10
Yes
Country
nvarchar
15
Yes
Phone
nvarchar
24
Yes
Fax
nvarchar
24
Yes
In the next section, you'll learn about the Orders table. The Orders Table
The Orders table contains rows that store the orders placed by customer. Figure 2.15 shows some of

Mastering C# Database Programming @Team LiB40

© 2004 ... Your company

the rows and columns stored in the Orders

table.
Figure 2.15: Rows from the Orders table
The primary key for the Orders table is the OrderID column, meaning that the value for this column
must be unique for each row. If you look closely at the first six rows in the Orders table, you'll see that
the CustomerID column is equal to ALFKI, which is the same as the CustomerID column for the first
row in the Customers table shown earlier in Figure 2.12.
You can now see how foreign keys relate information. The CustomerID column of the Orders table is
a foreign key that references the CustomerID column of the Customers table. In this example, the
Orders table is the child table, and the Customers table is the parent table. You can think of the
foreign key as a pointer from the Orders table to the Customers table. Table 2.5 shows the definition
for the columns of the Orders table. Table 2.5: DEFINITION FOR THE COLUMNS OF THE Orders
TABLE
COLUMN NAME
DATABASE TYPE
LENGTH
ALLOWS NULL VALUES?
OrderID
int
4
No
CustomerID
nchar
5
Yes
EmployeeID
int
4
Yes
OrderDate
datetime
8
Yes
RequiredDate
datetime
8
Yes
ShippedDate
datetime
8

Part 1: Introduction to ADO.NET and Databases 41

© 2004 ... Your company

Yes
ShipVia
int
4
Yes
Freight
money
8
Yes
ShipName
nvarchar
40
Yes
ShipAddress
nvarchar
60
Yes
ShipCity
nvarchar
15
Yes
ShipRegion
nvarchar
15
Yes
ShipPostalCode
nvarchar
10
Yes
ShipCountry
nvarchar
15
Yes
In the next section, you'll learn about the Order Details table. The Order Details Table
The Order Details table contains rows that store the details of each order. In Figure 2.16, I've
restricted the rows retrieved from the Order Details table to those where the OrderID column is equal
to 10643 (this is the same as the OrderID column for the first row in the Orders table shown earlier in

Figure 2.15).
Figure 2.16: Restricted rows from the Order Details table
The primary key for the Order Details table is the combination of the OrderID and CustomerID
columns, meaning that the combination of the values in these two columns must be unique for each
row.
Also, the OrderID column of the Order Details table is a foreign key that references the OrderID
column of the Orders table. The ProductID column of the Order Details table is a foreign key that
references the ProductID column of the Products table. Table 2.6 shows the definition for the columns
of the Order Details table. You'll learn about the Products table next. Table 2.6: DEFINITION FOR
THE COLUMNS OF THE Order Details TABLE
COLUMN NAME
DATABASE TYPE
LENGTH

Mastering C# Database Programming @Team LiB42

© 2004 ... Your company

ALLOWS NULL VALUES?
OrderID
int
4
Yes
ProductID
int
4
Yes
UnitPrice
money
8
Yes
Quantity
smallint
2
Yes
Discount
real
4
Yes The Products Table
The Products table contains rows that store the details of each product sold by the Northwind
Company. In Figure 2.17, I've restricted the rows retrieved from the Products table to those where the
ProductID column is equal to 22, 39, and 46 (these are the same as the values for the ProductID
column for the rows in the Order Details table shown earlier in Figure

2.16).
Figure 2.17: Restricted rows from the Products table
The primary key for the Products table is the ProductID column. The CategoryID column of the
Products table is a foreign key that references the CategoryID column of the Categories table. The
Categories table contains the various categories of products.
The SupplierID column of the Products table is a foreign key that references the SupplierID column of
the Suppliers table. The Suppliers table contains the suppliers of products to the Northwind
Company. Table 2.7 shows the definition for the columns of the Products table. Table 2.7:
DEFINITION FOR THE COLUMNS OF THE Products TABLE
COLUMN NAME
DATABASE TYPE
LENGTH
ALLOWS NULL VALUES?
ProductID
int
4
No
ProductName
nvarchar
40
No
SupplierID
int
4
Yes
CategoryID

Part 1: Introduction to ADO.NET and Databases 43

© 2004 ... Your company

int
4
Yes
QuantityPerUnit
nvarchar
20
Yes
UnitPrice
money
8
Yes
UnitsInStock
smallint
2
Yes
UnitsOnOrder
smallint
2
Yes
ReorderLevel
smallint
2
Yes
Discontinued
bit
1
Yes
In the next section, you'll learn how to build queries to retrieve rows from tables.

5.2.4 Building Queries Using Enterprise Manager

Building Queries Using Enterprise Manager
You can build your own queries to examine rows in tables using Enterprise Manager. In this section,
you'll learn how to build and run a query to view the orders placed by the customer with a
CustomerID of ALFKI, along with the order details and products for the order with an OrderID of
10643. Specifically, you'll be selecting the following columns:
The CustomerID and CompanyName columns from the Customers table
The OrderID and OrderDate columns from the Orders table
The ProductID and Quantity columns from the Order Details table
To start building the query, select the Customers table in Enterprise Manager from the Tables node of
the Databases folder for the Northwind database. Click the right mouse button and select Open Table
£ Query. This opens the query builder, as shown in Figure

Mastering C# Database Programming @Team LiB44

© 2004 ... Your company

2.18.
Figure 2.18: The query builder
The upper pane is called the Diagram Pane, and it shows the tables that are used in the query. As
you can see, the Customers table is initially shown in the Diagram Pane. The pane below is called the
Grid Pane, and it shows the details for the columns and rows to be retrieved from the tables. Initially,
all rows are to be retrieved from the Customers table, as indicated by the asterisk (*) in the Grid Pane.
Below the Grid Pane is the SQL Pane, and it shows the SQL statement for the query.Note
SQL is a text-based language for accessing a database, and you'll learn all about SQL in the
next chapter. For now, you can click the SQL button on the toolbar to hide the SQL Pane-unless you
want to view the SQL statement that is constructed by the query builder.
Below the SQL Pane is the Results Pane, which shows any rows retrieved by the query. This is
initially empty because no query has yet been run. Use the following steps to build the query:
Remove the asterisk (*) from the Grid Pane by clicking the right mouse button on the box on the left of
the row containing the asterisk and selecting Delete. This stops all columns from being retrieved from
the Customers table.
Click the right mouse button in the Diagram Pane, and select Add Table. Add the Orders and Order
Details tables so that you can query these tables. You can also click the Add table button on the
toolbar to add tables. You'll notice that after you add the tables, they appear in the Diagram Pane
along with lines that connect the parent and child tables through the foreign key. For example, the
Customers and Orders tables are connected through the CustomerID column. Similarly, the Orders
and Order Details tables are connected through the OrderID column.
Select the CustomerID and CompanyName columns from the Customers table by selecting the check
boxes to the left of the column names in the Diagram Pane.
Select the OrderID and OrderDate columns from the Orders table.
Select the ProductID and Quantity columns from the Order Details table.
In the Grid Pane, set the Criteria for the CustomerID column to ='ALFKI'. This causes the query to
retrieve only the rows from the Customers table where the CustomerID column is equal to ALFKI.
In the Grid Pane, set the Criteria for the OrderID column to =10643. This causes the query to retrieve
only the rows from the Orders table where the OrderID column is equal to 10643.
Run the query by clicking the Run button on the toolbar.
Figure 2.19 shows the final result of building and running the

Part 1: Introduction to ADO.NET and Databases 45

© 2004 ... Your company

query.
Figure 2.19: Building and running a query
As you'll see in the next chapter, you can also build and run queries using Visual Studio .NET. In the
next section, you'll learn how to create a table using Enterprise Manager.

5.2.5 Creating a Table

Creating a Table
You can use Enterprise Manager to add a table to a database. In this section, you'll add a table to the
Northwind database to store the details of a person. This table will be called Persons, and will contain
the columns shown in Table 2.8. Table 2.8: DEFINITION FOR THE COLUMNS OF THE Persons
TABLE
COLUMN NAME
DATABASE TYPE
LENGTH
ALLOWS NULL VALUES?
PersonID
int
4
No
FirstName
nvarchar
15
No
LastName
nvarchar
15
No
DateOfBirth
datetime
8
Yes
Address
nvarchar
50
Yes
EmployerID
nchar
5

Mastering C# Database Programming @Team LiB46

© 2004 ... Your company

No
To create a table in the Northwind database, you select the Tables node of the Northwind database in
Enterprise Manager and select Action £ New Table. You'll then see the table designer. Add the
columns as shown in Table 2.8 to the table, as shown in Figure

2.20.
Figure 2.20: Adding a new tableNote
The length of some of the data types is fixed. For example, the int type always uses 4 bytes of
storage space, so you can't change the length of an int column from 4. Similarly, the datetime type
always uses 8 bytes of storage space. You can change the length of nchar and nvarchar columns
because those types are designed to store variable-length data.
Click the Save button on the toolbar to save the table. In the Choose Name dialog, enter Persons as
the name, and click OK to save your table, as shown in Figure

2.21.
Figure 2.21: Entering the name of the tableNote
Once you've saved your table, you can return to the table designer at any time by selecting the table
in the Tables node of Enterprise Manager, right-clicking the table, and selecting Design Table.
In the rest of this chapter, you'll learn how to:
Get additional information about the columns in a table using the Columns tab.
Set the primary key of a table.
Set the permissions that allow access to the contents of a table.
Create a relationship between tables.
Create an index to allow faster access to the information in a table.
Create a constraint to restrict values that may be stored in a column. The Columns Tab
In the area beneath the grid, you'll notice a tab named Columns. The Columns tab contains additional
information about the currently selected column in the grid, and Figure 2.20, shown earlier, shows the
information on the PersonID column. As you change your selected column, the information in the
Columns tab will change.
You can enter an optional description for a column in the Description field of the Columns tab. The
Default Value field allows you to supply an initial value when a new row is added to the table; you can
of course supply your own value to a column that will override the default value.
The Precision field shows the maximum number of digits that may be used to store a number,
including those that might be stored to the right of a decimal point. The Scale field shows the
maximum number of digits to the right of a decimal point. For example, the precision and scale of an

Part 1: Introduction to ADO.NET and Databases 47

© 2004 ... Your company

int column are 10 and 0, meaning that an int column can store up to 10 digits, with no digits to the
right of a decimal point-no digits to the right because an int is an integral number. The precision and
scale for a money column are 19 and 4, meaning that a money column can store up to 19 digits, with
up to four of those digits to the right of a decimal point.
The Identity field allows you specify whether SQL Server should automatically assign a value to a
field. If you set the Identity field to Yes, then you can also specify values for the Identity Seed and
Identity Increment fields. You use the Identity Seed field to set the initial value for the column, and
you use the Identity Increment field to specify the increment for value. For example, if you set the
Identity Seed to 1 and the Identity Increment to 1, then the first value for the column would be 1, the
next would be 2, and so on. The ProductID column of the Products table is an example of a column
that uses an identity to set its value.
The IsRowGuid field specifies whether a uniqueidentifier column is a globally unique identifier known
as a GUID.Tip
SQL Server doesn't automatically supply a value for a GUID. If you want SQL Server to generate a
GUID, you can use the SQL Server NEWID() function. The NEWID() function always returns a
different value. You can then use the output from this function as the Default Value for your
uniqueidentifier column. For example, you would set the Default Value field to [NEWID()] . You'll learn
more about SQL Server functions in the next chapter.
The Formula field allows you to set a formula that is used to assign a value to a column.
The Collation field specifies the rules that are used to sort and compare characters. You might need
to set this when working with foreign languages. For further details, consult the SQL Server Books
Online documentation. Setting the Primary Key
Next, you'll set the primary key for the Persons table to PersonID. To do this, click on the first row in
the grid containing the PersonID column, and click the Set primary key button on the toolbar. Once
you've done this, you'll see a small key icon to the left of PersonID. Setting the Permissions
To set the permissions for your table, click the Show permissions button on the toolbar of the table
designer. Grant SELECT, INSERT, UPDATE, and DELETE permissions to the public role, as shown
in Figure 2.22. These permissions allow public users to retrieve, add, modify, and remove rows from

the Persons table.
Figure 2.22: Setting the permissions
Click OK to continue. Creating the Relationship
You'll be creating a relationship between your Persons table and the Customers table. To view the
relationships screen, click the Manage Relationships button on the toolbar of the table designer. Click
New to start creating the relationship. Pick the Customers table as the primary key table and pick the
CustomerID column from this table. Make sure Persons is selected as the foreign key table, and pick
the EmployerID column from this table. Figure 2.23 shows this. You'll notice that the relationship

Mastering C# Database Programming @Team LiB48

© 2004 ... Your company

name is automatically set to FK_Persons_Customers.
Figure 2.23: Creating the relationship
The check boxes at the bottom the page are as follows:
Check existing data on creation This applies your constraint to data that might already exist in the
database when you add your relationship to the foreign key table.
Enforce relationship for replication Replication allows you to copy information to a different
database. When you enable Enforce relationship for replication, your constraint is applied to the
foreign key table when that table is copied to a different database during replication.
Enforce relationship for INSERTs and UPDATEs This applies your constraint to rows that are
added, modified, or removed from the foreign key table. It also prevents a row in the primary key table
from being deleted when there is a matching row in your foreign key table.
Cascade Update Related Fields This causes SQL Server to automatically update the foreign key
values of your relationship when the primary key value is modified.
Cascade Delete Related Fields This causes SQL Server to automatically remove rows from the
foreign key table whenever the referenced row in the primary key table is removed. Click Close to
continue. Creating an Index
An index allows the database to quickly locate a row when you request retrieval of that row based on
a particular column value. In this section, you'll create an index on the LastName column of your
Persons table.
To view the indexes for your Persons table, click the Manage Indexes/Keys button on the toolbar of
the table designer. Click New to start creating a new index. Set the index name as
IX_LastName_Persons, pick the LastName column, and set the order as ascending. Figure 2.24

Part 1: Introduction to ADO.NET and Databases 49

© 2004 ... Your company

shows this.
Figure 2.24: Creating an index
You won't change any of the other fields and check boxes when creating your index, but just so you
know what they are, this is what the fields mean:
Index Filegroup The index filegroup is the filegroup in which you want to store your index. A
filegroup is made up of one or more physical files on a computer's hard disk. SQL Server uses
filegroups to store the actual information that makes up a database.
Create UNIQUE The Create UNIQUE option allows you to create a unique constraint or index for the
selected database table. You indicate whether you are creating a unique constraint or index by
selecting either the Constraint or Index radio button.
Ignore duplicate key If you create a unique index, you can select this option to ignore duplicate key
values.
Fill factor Unless you are an advanced SQL Server user, you should leave the fill factor in the
default setting. The smallest unit of storage in a SQL Server database is a page, which can hold up
to 8,096 bytes of data. The data for tables and indexes are stored in pages. You can specify how full
each index page can be by setting the fill factor. For example, if you set the fill factor to 60 percent,
then the page will contain up to 60 percent data and 40 percent empty space. The amount of empty
space on an index page is important because when an index page fills up, SQL Server must split the
page to make room for new index data. By reducing the fill factor, therefore, you can increase the
performance of your database because SQL Server won't have to split pages so often. Reducing the
fill factor, however, also causes the index to take up more hard disk space because there will be more
empty space in each page. If you don't specify a fill factor, then the database's default fill factor is
used.
Pad Index Unless you are an advanced SQL Server user, you shouldn't enable the Pad Index
option. If you specify a fill factor of more than zero percent and you're creating a unique index through
the Create UNIQUE option, then you can enable the Pad Index option. This informs SQL Server that it
is to use the same percentage you specified in the fill factor field as the space to leave open on each
leaf node of the binary tree that makes up the index. You can learn more about this option in the SQL
Server Books Online documentation.
Create as CLUSTERED You use the Create as CLUSTERED option to indicate that your index is
clustered. A clustered index is one that contains the actual table rows, rather than pointers to the
table rows. Clustered indexes allow faster retrieval of rows, but require more time when inserting new
rows. You can learn more about this option in the SQL Server Books Online documentation.
Do not automatically recompute statistics You typically shouldn't use this option as it might
reduce performance. When you create an index, SQL Server automatically stores statistical
information regarding the distribution of values in your indexed columns. SQL Server uses these
statistics to estimate the cost of using the index for a query. You use the Do Not Automatically
Recompute Statistics option to indicate that SQL Server should use previously created statistics,
which means that the statistics are not necessarily up to date and could reduce performance. You can

Mastering C# Database Programming @Team LiB50

© 2004 ... Your company

learn more about this option in the SQL Server Books Online documentation.
Click Close to continue. Creating a Constraint
A constraint allows you to define a limit on the value that may be stored in a column. In this section,
you'll be creating a constraint on the DateOfBirth column of your Persons table. This constraint will
ensure that you can place only dates between January 1, 1950, and December 31, 2050, in the
DateOfBirth column.
To view the constraints for your Persons table, click the Manage Constraints button on the toolbar of
the table designer. Click New to start creating a new constraint. Set the constraint expression as
follows: ([DateOfBirth] >= '1/1/1950' and [DateOfBirth] <= '12/31/2050')
Set the constraint name as CK_DateOfBirth_Persons. Figure 2.25 shows

this.
Figure 2.25: Creating a constraint
You won't change any of the check boxes when creating your constraint, but just so you know what
they are, this is what the fields mean:
Check existing data on creation Use this option to ensure that data that currently exists in the table
satisfies your constraint.
Enforce constraint for replication Use this option to enforce your constraint when the table is
copied to another database through replication.
Enforce constraint for INSERTs and UPDATEs Use this option to enforce your constraint when
rows are added or modified in the table.
Click Close to continue. Save the table and close the table designer.

5.2.6 Summary

Summary
In this chapter, you learned the basics of databases and SQL Server. A database is an organized
collection of information. A relational database is a collection of related information that has been
organized into structures known as tables . Each table contains rows that are further organized into
columns .
The system used to manage the information in the database is known as the database management
system . In the case of an electronic database in a computer, the database management system is
the software that manages the information in the computer's memory and files. One example of such
software is SQL Server. You saw how to start a SQL Server database, and how to use Enterprise
Manager to explore the Northwind database.
Typically, each table in a database has one or more columns that uniquely identify each row in the
table. This column is known as the primary key for the table. Tables can be related to each other
through foreign keys .You saw how to query the rows in a table and create a new table using
Enterprise Manager.

Part 1: Introduction to ADO.NET and Databases 51

© 2004 ... Your company

In the next chapter, you'll learn how to use the Structured Query Language.

5.3 Chapter 3: Introduction to Structured Query Language (SQL)

Chapter 3: Introduction to Structured Query Language (SQL)Overview
In this chapter, you'll learn how to use Structured Query Language (SQL) to access a database, using
two tools to enter and run queries: the Query Analyzer and Visual Studio .NET. This chapter shows
you how to use the SQL Server Northwind database, which contains the information for the fictitious
Northwind Company. You'll see how you use SQL to interact with the Northwind database to retrieve
and manipulate information and to create, modify, and delete tables in that database.
Featured in this chapter:
Using SQL
Accessing a database using Visual Studio .NET

5.3.1 Using SQL

Using SQL
SQL (pronounced sequel) is the standard language for accessing relational databases. As you'll see
in this chapter, SQL is easy to learn and use. With SQL, you tell the database what data you want to
access, and the database software figures out exactly how to get that data.
There are many types of SQL statements, but the most commonly used types of SQL statements are
these:
Data Manipulation Language (DML) statements
Data Definition Language (DDL) statements
DML statements allow you to retrieve, add, modify, and delete rows stored in the database. DDL
statements allow you to create database structures such as tables.
Before you learn the basics of DML statements, you need to know how you can enter and run SQL
statements. You can enter and run SQL statements against a SQL Server database using the Query
Analyzer tool, and you'll learn about this next. Note
As you'll see later in the "Accessing a Database Using Visual Studio .NET" section, you can also use
Visual Studio .NET to create SQL statements. Visual Studio .NET enables you to create SQL
statements visually, as well as entering them manually. Using Query Analyzer
You use Query Analyzer to enter and run SQL statements. You start Query Analyzer by selecting
Start £ Microsoft SQL Server £ Query Analyzer. In the following sections, you'll learn how to connect
to a SQL server instance, enter and run a SQL statement, save a SQL statement, and load
one.Connecting to a SQL Server Instance
When you start Query Analyzer, the first thing it displays is the Connect to SQL Server dialog box, as
shown in Figure 3.1. In the SQL Server field, you enter the name of the SQL Server instance to which
you want to connect. You can click the drop-down list and select an instance of SQL Server, or you
can click the ellipsis button (three dots ...) to the right of the drop-down list to display a list of SQL

Mastering C# Database Programming @Team LiB52

© 2004 ... Your company

Server instances running on your network.
Figure 3.1: Connecting to a SQL Server database
If you select the Windows authentication radio button, then SQL Server will use the Windows
2000/NT user information to validate your request to connect to SQL Server. If you select the SQL
Server authentication radio button, then you will need to enter a login name and password.
In Figure 3.1, I've entered localhost in the SQL Server field; this corresponds to the instance of SQL
Server installed on the local computer. I've also selected the SQL Server authentication radio button,
and entered sa in the Login Name field and sa in the Password field (this is the password I used
when installing SQL Server). These details are then used to connect to SQL Server. If you have an
instance of SQL Server running on your local computer or on your network, you may enter the
relevant details and click the OK button to connect to SQL Server.
Now that you've seen how to connect to the database, let's take a look at how you enter and run a
SQL statement.Entering and Running a SQL Statement
Once you've connected to SQL Server using Query Analyzer, you can use the Object Browser to view
the parts of a database, and you enter and run SQL statements using a Query window. Figure
3.2 shows the Object Browser and an example Query window, along with the results of retrieving the
CustomerID and CompanyName columns from the Customers

table.
Figure 3.2: Viewing database items using the Object Browser and executing a SELECT statement
using the Query window
As you can see from Figure 3.2, you enter SQL statements into the top part of the Query window, and
the results retrieved from the database are displayed in the bottom part. You specify the database to
access with the USE statement, and you retrieve rows from the database using the SELECT
statement.Tip
You can also specify the database to access by using the drop-down list on the toolbar.
If you want to follow along with this example, go ahead and enter the following USE statement into
your Query window: USE Northwind

Part 1: Introduction to ADO.NET and Databases 53

© 2004 ... Your company

This USE statement indicates that you want to use the Northwind database. Next, on a separate line,
enter the following SELECT statement: SELECT CustomerID, CompanyName FROM Customers;
This SELECT statement indicates that you want to retrieve the CustomerID and CompanyName
columns from the Customers table.Note
SELECT and FROM are SQL keywords. Although SQL isn't case sensitive, I use uppercase when
specifying SQL keywords and mixed case when specifying column and table names. You may
terminate a SQL statement using a semicolon (;), although this isn't mandatory.
You can run the SQL statement entered in the Query window in five ways:
Selecting Execute from the Query menu
Clicking the Execute Query button (green triangle) on the toolbar
Pressing the F5 key on the keyboard
Pressing Ctrl+E on the keyboard
Pressing Alt+X on the keyboard
Once you run the SQL statement, your statement is sent to the database for execution. The database
runs your statement and sends results back. These results are then displayed in the bottom of your
Query window.Saving and Loading a SQL Statement
You can save a SQL statement previously entered into Query Analyzer as a text file. Later, you can
load and run the SQL statement saved in that file. You can save a SQL statement by
Selecting Save or Save As from the File menu
Clicking the Save Query/Result button (disk) on the toolbar
Pressing Ctrl+S on the keyboard
When you do any of these, the Query Analyzer opens the Save Query dialog box. Let's say you save
the file as CustomerSelect.sql. Once you've saved the file, you can open it by
Selecting Open from the File menu
Clicking the Load SQL Script button (open folder) on the toolbar
Pressing Ctrl+Shift+P on the keyboard
When you do any of these, the Query Analyzer opens the Open Query File dialog box. Let's say you
open CustomerSelect.sql. Once you've opened a query file, you can run it using one of the
techniques described earlier. Understanding Data Manipulation Language (DML) Statements
As mentioned earlier, DML statements enable you to retrieve, add, modify, and delete rows stored in
database tables. There are four types of DML statements:
SELECT Retrieves rows from one or more tables.
INSERT Adds one or more new rows to a table.
UPDATE Modifies one or more rows in a table.
DELETE Removes one or more rows from a table.
You'll learn how to use these four statements in the following sections. Retrieving Rows From a Single
Table
You use the SELECT statement to retrieve rows from tables. The SELECT statement has many forms,
and the simplest version allows you to specify a list of columns and the table name. For example, the
following SELECT statement retrieves the CustomerID, CompanyName, ContactName, and Address
columns from the Customers table: SELECT CustomerID, CompanyName, ContactName, Address
FROM Customers;
The columns to retrieve are specified after the SELECT keyword, and the table is specified after the
FROM keyword.
If you want to retrieve all columns from a table, specify the asterisk character (*) immediately after the
SELECT keyword.Tip
To avoid retrieving more information than you need, rather than use * , list only the columns you
actually want.
For example, the following SELECT statement retrieves all the columns from the Customers table
using *: SELECT * FROM Customers;
Figure 3.3 shows the results of this SELECT

Mastering C# Database Programming @Team LiB54

© 2004 ... Your company

statement.
Figure 3.3: Using a SELECT statement to retrieve rows from the Customers table
To retrieve rows from a table containing a space in its name, you place that table name in square
brackets. For example, the following SELECT statement retrieves rows from the Order Details table:
SELECT * FROM [Order Details]; Note
You can also use square brackets when you have a column with a name that contains a
space.Restricting Retrieved Rows
You use the WHERE clause to restrict the rows retrieved by a SELECT statement. For example, the
following SELECT statement uses a WHERE clause to restrict the rows retrieved from the Customers
table to those where the Country column is equal to 'UK': SELECT CustomerID, CompanyName, City
FROM Customers WHERE Country = 'UK';
Figure 3.4 shows the results of this SELECT

statement.
Figure 3.4: Using a WHERE clause to restrict rows from the Customers table to those where Country
is equal to 'UK'
The next SELECT statement uses a WHERE clause to restrict the row retrieved from the Products
table to the one where ProductID is equal to 10: SELECT ProductID, ProductName, QuantityPerUnit,
UnitPrice FROM Products WHERE ProductID = 10;
The equal operator (=) is not the only operator you can use in a WHERE clause. Table 3.1 shows
other mathematical operators you can use. Table 3.1: SQL MATHEMATICAL OPERATORS
OPERATOR
DESCRIPTION
=
Equal
<> or !=

Part 1: Introduction to ADO.NET and Databases 55

© 2004 ... Your company

Not equal
<
Less than
>
Greater than
<=
Less than or equal
>=
Greater than or equal
The following SELECT statement uses the less-than-or-equal operator (<=) to retrieve the rows from
the Products table where the ProductID column is less than or equal to 10: SELECT ProductID,
ProductName, QuantityPerUnit, UnitPrice FROM Products WHERE ProductID <= 10;
The next SELECT statement uses the not-equal operator (<>) to retrieve the rows from the Products
table where the ProductID column is not equal to 10: SELECT ProductID, ProductName,
QuantityPerUnit, UnitPrice FROM Products WHERE ProductID <> 10; Performing Pattern Matching
You use the LIKE operator in a WHERE clause to perform pattern matching. You specify one or more
wildcard characters to use in your pattern matching string. Table 3.2 lists the wildcard
characters. Table 3.2: WILDCARD CHARACTERS
CHARACTERS
DESCRIPTION
_
Matches any one character. For example, J_y matches Joy and Jay.
%
Matches any number of characters. For example, %wind matches Northwind and Southwind; %fire%
matches starfire, firestarter, and fireman.
[]
Matches any one character in the brackets. For example, [sm]ay matches say and may.
[^]
Matches any one character not in the brackets. For example, [^a] matches any character except a.
[-]
Matches a range of characters. For example, [a-c]bc matches abc, bbc, and cbc.
#
Matches any one number. For example, A# matches A1 through A9.
Let's take a look at some examples that use some of the wildcard characters shown in Table 3.2. The
following SELECT statement uses the LIKE operator to retrieve products where the ProductName
column is like 'Cha_': SELECT ProductID, ProductName FROM Products WHERE ProductName LIKE
'Cha_';
Figure 3.5 shows the results of this SELECT statement. LIKE 'Cha_' matches products with names
that start with Cha and end with any one

character.

Mastering C# Database Programming @Team LiB56

© 2004 ... Your company

Figure 3.5: Products where ProductName is like 'Cha_'
The next SELECT statement uses the LIKE operator to retrieve products where the ProductName
column is like 'Cha%': SELECT ProductID, ProductName FROM Products WHERE ProductName
LIKE 'Cha%';
Figure 3.6 shows the results of this SELECT statement. LIKE 'Cha%' matches products with names
that start with Cha and end with any number of

characters.
Figure 3.6: Products where ProductName is like 'Cha%'
The next SELECT statement uses the LIKE operator to retrieve products where the ProductName
column is like '[ABC]%': SELECT ProductID, ProductName FROM Products WHERE ProductName
LIKE '[ABC]%';
Figure 3.7 shows the results of this SELECT statement. LIKE '[ABC]%' matches products with a name
that starts with any of the letters A, B, or C, and ends with any number of

characters.
Figure 3.7: Products where ProductName is like '[ABC]%'
The next SELECT statement uses the LIKE operator to retrieve products where the ProductName
column is like '[^ABC]%': SELECT ProductID, ProductName FROM Products WHERE ProductName
LIKE '[^ABC]%';
Figure 3.8 shows the results of this SELECT statement. LIKE '[^ABC]%' matches products with names
that don't start with any of the letters A, B, or C, and end with any number of

Part 1: Introduction to ADO.NET and Databases 57

© 2004 ... Your company

characters.
Figure 3.8: Products where ProductName is like '[^ABC]%'
The next SELECT statement uses the LIKE operator to retrieve products where the ProductName
column is like '[A-E]%': SELECT ProductID, ProductName FROM Products WHERE ProductName
LIKE '[A-E]%';
Figure 3.9 shows the results of this SELECT statement. LIKE '[A-E]%' matches products with names
that start with any of the letters A through E, and end with any number of

characters.
Figure 3.9: Products where ProductName is like '[A-E]%'Specifying a List of Values
You use the IN operator in a WHERE clause to retrieve rows with columns that contain values in a
specified list. For example, the following SELECT statement uses the IN operator to retrieve products
with a ProductID of 1, 2, 5, 15, 20, 45, or 50: SELECT ProductID, ProductName, QuantityPerUnit,
UnitPrice FROM Products WHERE ProductID IN (1, 2, 5, 15, 20, 45, 50);
Here's another example that displays the OrderID column from the Orders table for the rows where
the CustomerID column is in the list retrieved by a subquery ; the subquery retrieves the CustomerID
column from the Customers table where the CompanyName is like 'Fu%': SELECT OrderID FROM
Orders WHERE CustomerID IN (SELECT CustomerID FROM Customers WHERE
CompanyName LIKE 'Fu%');
The results of the subquery are used in the outer query.Specifying a Range of Values
You use the BETWEEN operator in a WHERE clause to retrieve rows with columns that contain
values in a specified range. For example, the following SELECT statement uses the BETWEEN
operator to retrieve products with a ProductID between 1 and 12: SELECT ProductID, ProductName,
QuantityPerUnit, UnitPrice FROM Products WHERE ProductID BETWEEN 1 AND 12;
Here's another example that displays the OrderID column for the rows from the Orders table where
the OrderDate is between '1996-07-04' and '1996-07-08': SELECT OrderID FROM Orders WHERE

Mastering C# Database Programming @Team LiB58

© 2004 ... Your company

OrderDate BETWEEN '1996-07-04' AND '1996-07-08'; Reversing the Meaning of an Operator
You use the NOT keyword with an operator in a WHERE clause to reverse the meaning of that
operator. For example, the following SELECT statement uses the NOT keyword to reverse the
meaning of the BETWEEN operator: SELECT ProductID, ProductName, QuantityPerUnit, UnitPrice
FROM Products WHERE ProductID NOT BETWEEN 1 AND 12; Note
You can use the NOT keyword to reverse other operators, for example, NOT LIKE , NOT IN
.Retrieving Rows with Columns Set to Null
Earlier, I mentioned that columns can contain null values. A null value is different from a blank string
or zero: A null value represents a value that hasn't been set, or is unknown. You can use the IS NULL
operator in a WHERE clause to determine if a column contains a null value. For example, the
following SELECT statement uses the IS NULL operator to retrieve customers where the Fax column
contains a null value: SELECT CustomerID, CompanyName, Fax FROM Customers WHERE Fax IS
NULL;
Figure 3.10 shows the results of this SELECT

statement.
Figure 3.10: Using the IS NULL operator to retrieve customers where Fax contains a null value
As you can see, null values are displayed as NULL in the Query Analyzer. Specifying Multiple
Conditions
You can use the logical operators shown in Table 3.3 to specify multiple conditions in a WHERE
clause. Table 3.3: LOGICAL OPERATORS
OPERATOR
DESCRIPTION
a AND b
Evaluates to true when a and b are both true
a OR b
Evaluates to true when either a or b are true
NOT a
Evaluates to true if a is false, and false if a is true
For example, the following SELECT statement uses the AND operator to retrieve products where the
UnitsInStock column is less than 10 and the ReorderLevel column is less than or equal to 20:
SELECT ProductID, ProductName, UnitsInStock, ReorderLevel FROM Products WHERE
UnitsInStock < 10 AND ReorderLevel <= 20;
Figure 3.11 shows the results of this SELECT

Part 1: Introduction to ADO.NET and Databases 59

© 2004 ... Your company

statement.
Figure 3.11: Using the AND operator to retrieve products where UnitsInStock is less than 10 and
ReorderLevel is less than or equal to 20
In the next example, the SELECT statement uses the OR operator to retrieve products where either
the UnitsInStock column is less than 10 or the ReorderLevel column is less than or equal to 20:
SELECT ProductID, ProductName, UnitsInStock, ReorderLevel FROM Products WHERE
UnitsInStock < 10 OR ReorderLevel <= 20;
Figure 3.12 shows the results of this SELECT

statement.
Figure 3.12: Using the OR operator to retrieve products where either UnitsInStock is less than 10 or
ReorderLevel is less than or equal to 20
The next SELECT statement uses the NOT operator to retrieve products where the UnitsInStock
column is not less than 10: SELECT ProductID, ProductName, UnitsInStock, ReorderLevel FROM
Products WHERE NOT (UnitsInStock < 10); Sorting Rows
You can use the ORDER BY clause to sort rows retrieved from the database. You specify the column
(or columns) to sort in the ORDER BY clause. By default, rows are sorted in ascending order. For
example, the following SELECT statement orders the rows using the ProductName column: SELECT
ProductID, ProductName, UnitsInStock, ReorderLevel FROM Products ORDER BY ProductName;
Figure 3.13 shows the results of this SELECT statement. As you can see, the rows are ordered in
ascending order using the ProductName

Mastering C# Database Programming @Team LiB60

© 2004 ... Your company

column.
Figure 3.13: Using the ORDER BY clause to order products by ascending ProductName
You can explicitly state the order for a column using the ASC or DESC keyword. ASC orders the
columns in ascending order (smallest item first), and DESC orders the columns in descending order
(largest item first). For example, the following SELECT statement orders the products in descending
order using the ProductName column: SELECT ProductID, ProductName, UnitsInStock, ReorderLevel
FROM Products ORDER BY ProductName DESC;
You can specify multiple columns in an ORDER BY clause. For example, the following SELECT
statement orders the rows using both the UnitsInStock and ReorderLevel columns: SELECT
ProductID, ProductName, UnitsInStock, ReorderLevel FROM Products ORDER BY UnitsInStock
DESC, ReorderLevel ASC;
Figure 3.14 shows the results of this SELECT statement. As you can see, the rows are ordered by the
UnitsInStock column first (in descending order), and then by the ReorderLevel column (in ascending

order).
Figure 3.14: Using the DESC and ASC keywords to order products by descending UnitsInStock and
ascending ReorderLevel Retrieving the Top N Rows
You use the TOP keyword to just retrieve the top N rows from a SELECT statement. For example, the
following SELECT statement uses the TOP keyword to retrieve the top 10 rows from the Products
table, ordered by the ProductID column: SELECT TOP 10 ProductID, ProductName, UnitsInStock,
ReorderLevel FROM Products ORDER BY ProductID; Note
I've also used the optional ORDER BY clause in this example SELECT statement to order the rows
by the ProductID column.

Part 1: Introduction to ADO.NET and Databases 61

© 2004 ... Your company

Figure 3.15 shows the results of this SELECT statement.
Figure 3.15: Using the TOP keyword to retrieve the top 10 products by ProductIDEliminating
Duplicate Rows
You use the DISTINCT keyword to eliminate duplicate rows retrieved by a SELECT statement. For
example, the following SELECT statement uses the DISTINCT keyword to retrieve the distinct
Country column values from the Customers table: SELECT DISTINCT Country FROM Customers;

Figure 3.16 shows the results of this SELECT statement.
Figure 3.16: Using the DISTINCT keyword to retrieve distinct Country column values
As you can see, the SELECT statement only displays Country column values that are unique:
duplicate values are eliminated. If you didn't include the DISTINCT keyword, then all the Country
column values would be displayed. Combining Retrieved Rows From SELECT Statements
You use the UNION operator to combine retrieved rows from SELECT statements into one set of
rows. For example, the following SELECT statement uses the UNION operator to combine the
retrieved rows from two SELECT statements that retrieve rows from the Products table; the first

Mastering C# Database Programming @Team LiB62

© 2004 ... Your company

retrieves rows where the ProductID is less than or equal to 5, and the second retrieves rows where
the ProductName starts with Queso: (SELECT ProductID, ProductName, QuantityPerUnit, UnitPrice
FROM Products WHERE ProductID <= 5) UNION (SELECT ProductID, ProductName,
QuantityPerUnit, UnitPrice FROM Products WHERE ProductName LIKE 'Queso%');

Figure 3.17 shows the results of this statement.
Figure 3.17: Using the UNION operator to combine retrieved rows from two SELECT
statementsDividing Retrieved Rows into Blocks
You use the GROUP BY clause to divide retrieved rows into blocks . You can think of a block as a
group of rows that have been condensed into one row. For example, let's say you grouped the
SupplierID column of the rows from the Products table. You would get one row for every row that had
the same SupplierID column value. The following SELECT statement uses the GROUP BY clause to
divide the SupplierID column values into blocks: SELECT SupplierID FROM Products GROUP BY
SupplierID;
This SELECT statement displays one row for each group of rows that have the same SupplierID
column value. You can get the number of rows in each block using the COUNT() function. COUNT()
is one of the functions that come built into SQL Server, and is known as an aggregate function
because it can operate on more than one row at a time. You use COUNT(*) to get the number of
rows, as shown in the following example that retrieves the SupplierID and number of rows for each
group of SupplierID column values: SELECT SupplierID, COUNT(*) FROM Products GROUP BY
SupplierID;

Part 1: Introduction to ADO.NET and Databases 63

© 2004 ... Your company

Figure 3.18 shows the results of this SELECT statement.
Figure 3.18: Using the GROUP BY clause to divide rows into blocks
You'll learn more about the various SQL Server functions in the next chapter.Restricting Retrieved
Groups of Rows
You use the HAVING clause to restrict the groups of rows retrieved by the GROUP BY clause. For
example, the following SELECT statement uses the HAVING clause to restrict the group of rows
returned to those that have more than 4 rows in each group: SELECT SupplierID, COUNT(*) FROM
Products GROUP BY SupplierID HAVING COUNT(*) > 4;

Figure 3.19 shows the results of this SELECT statement.
Figure 3.19: Using the HAVING clause to restrict retrieved groups of rows Specifying the Display

Mastering C# Database Programming @Team LiB64

© 2004 ... Your company

Name for a Column and Aliasing a Table
You can use the AS clause to specify the name of a column when it is displayed in the output from a
SELECT statement. You might want to do this when you need to display more friendly names or
descriptive names for columns. For example, the following SELECT statement uses the AS clause to
set the display name of the ProductName column to Product, and the UnitPrice column to Price for
each unit: SELECT ProductName AS Product, UnitPrice AS 'Price for each unit' FROM products;
Figure 3.20 shows the results of this SELECT

statement.
Figure 3.20: Using the AS clause to specify the display name for columns
You can also use the AS clause to alias a table. You might want to do this if your table names are
long. The following example uses the AS clause to alias the Customers and Orders tables as Cust
and Ord respectively: SELECT Cust.CustomerID, CompanyName, Address, OrderID, ShipAddress
FROM Customers AS Cust, Orders AS Ord WHERE Cust.CustomerID = Ord.CustomerID AND
Cust.CustomerID = 'ALFKI'; Performing Computations Based on Column Values
You typically use calculated fields to perform computations based on column values. For example,
you might want to use a calculated field to compute the effect of increasing the UnitPrice column of
the Products table by 20 percent. The following SELECT statement shows this: SELECT UnitPrice *
1.20 FROM Products WHERE ProductID = 1;
This example returns 21.600000. The new unit price is calculated using UnitPrice * 1.20. This is an
increase of 20 percent over the current unit price.
The next example concatenates the ContactName and ContactTitle columns from the Customers
table for the row where the CustomerID equals ALFKI: SELECT ContactName + ', ' + ContactTitle
FROM Customers WHERE CustomerID = 'ALFKI';
This example returns Maria Anders, Sales Representative.Retrieving Rows From Multiple Tables
So far, you've seen SELECT statements that retrieve rows from only one table at a time. You'll often
need to retrieve rows from multiple tables using the same SELECT statement.
For example, you might want to see all the orders placed by a customer. To do this, you must specify
both the Customers and the Orders tables after the FROM keyword in the SELECT statement and use
a table join in the WHERE clause. You must also specify the name of the table when referencing
columns of the same name in both tables. The following SELECT statement shows this and retrieves
the orders placed by the customer with a CustomerID of ALFKI: SELECT Customers.CustomerID,
CompanyName, Address, OrderID, ShipAddress FROM Customers, Orders WHERE
Customers.CustomerID = Orders.CustomerID AND Customers.CustomerID = 'ALFKI';
Notice that the Customers and Orders tables are specified after the FROM keyword, and because
both tables contain a column named CustomerID, the table name is placed before each reference to
the respective column in each table. The table join is done on the CustomerID column of each table
(Customers.CustomerID = Orders.CustomerID).
Figure 3.21 shows the results of this SELECT

Part 1: Introduction to ADO.NET and Databases 65

© 2004 ... Your company

statement.
Figure 3.21: Using a multitable SELECT statement to retrieve orders placed by a specific customer
The previous SELECT statement used the SQL standard format for joining tables. With SQL Server,
you can also use the JOIN keyword for joining tables. The advantage of the JOIN keyword is you can
use it to perform outer joins, which you'll learn about shortly. Here's an example that rewrites the
previous SELECT statement using the JOIN keyword: SELECT Customers.CustomerID,
CompanyName, Address, OrderID, ShipAddress FROM Customers JOIN Orders ON
Customers.CustomerID = Orders.CustomerID AND Customers.CustomerID = 'ALFKI';
This SELECT statement returns the same results as the previous example.
The disadvantage of the previous two SELECT statements is that they return rows only where the join
columns both contain a value, that is, neither column contains a null. This can be a problem if you
have rows that have a null value in either of the columns used in the join and you need to actually
retrieve those rows. Outer joins solve this problem. There are three types of outer joins:
LEFT OUTER JOIN The LEFT OUTER JOIN (usually shortened to LEFT JOIN) returns all the rows
from the table on the left of the join, including those with a column that contains a null value.
RIGHT OUTER JOIN The RIGHT OUTER JOIN (usually shortened to RIGHT JOIN) returns all the
rows from the table on the right of the join, including those with a column that contains a null value.
FULL OUTER JOIN The FULL OUTER JOIN (usually shortened to FULL JOIN) returns all the rows
from the tables on the left and right of the join, including those with a column that contains a null
value.
Let's take a look at a couple of examples. First, perform the following INSERT to add a row to the
Products table: INSERT INTO Products (ProductName, SupplierID) VALUES ('DVD Player', NULL);
Note
You'll learn the details of the INSERT statement later in this chapter.
You don't need to specify the ProductID column because SQL Server will automatically supply a
value using an identity. This identity was established when the Products table was created, and the
identity generates a series of values that start with 1 and are incremented by 1 each time it is used.
For example, the ProductID column initially contains a series of values from 1 to 77, therefore the
next INSERT statement that adds a row to the Products table will set the ProductID column to 78 for
that row-the next identity value.
You'll notice that the SupplierID column in the INSERT statement is null. If you now perform the
following SELECT statement, you won't see the new row because the SupplierID column of the new
row is null and the JOIN won't return that row: SELECT ProductID FROM Products JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID;
To see the new row, you use LEFT JOIN in the SELECT statement to retrieve all rows from the table
on the left of the join (in this case, the table on the left is the Products table): SELECT ProductID
FROM Products LEFT JOIN Suppliers ON Products.SupplierID = Suppliers.SupplierID;
You can also use LEFT JOIN with IS NULL in the same SELECT statement to retrieve just the new
row: SELECT ProductID FROM Products LEFT JOIN Suppliers ON Products.SupplierID =
Suppliers.SupplierID WHERE Products.SupplierID IS NULL; Retrieving Rows From a View

Mastering C# Database Programming @Team LiB66

© 2004 ... Your company

You use a view to retrieve a set of columns from one or more tables. You can think of a view as a
more flexible way of examining the rows stored in the tables. For example, one of the views of the
Northwind database retrieves an alphabetical list of products, and retrieves the product name and
category name, among other columns. This information comes from both the Products and Categories
tables. This view is named Alphabetical list of products and the SELECT statement that makes up
this view is as follows: SELECT Products.*, Categories.CategoryName FROM Categories INNER
JOIN Products ON Categories.CategoryID = Products.CategoryID WHERE
(((Products.Discontinued)=0));
You can retrieve all columns and rows from the underlying tables referenced by this view using the
following SELECT statement: SELECT * FROM [Alphabetical list of products];
You can also retrieve individual columns from a view. For example, the following SELECT statement
retrieves just the ProductName and CategoryName columns from the view: SELECT ProductName,
CategoryName FROM [Alphabetical list of products]; Adding a New Row to a Table
You use the INSERT statement to add a new row to a table. When adding a new row, you specify the
name of the table, the optional column names, and the values for those columns. For example, the
following INSERT statement adds a new row to the Customers table: INSERT INTO Customers (
CustomerID, CompanyName, ContactName, ContactTitle, Address, City, Region, PostalCode,
Country, Phone, Fax) VALUES ('JPCOM', 'Jason Price Company', 'Jason Price', 'Owner', '1 Main
Street', 'New York', NULL, '12345', 'USA', '(800)-555-1212', NULL);
The CustomerID column is the primary key of the Customers table, therefore the new row must
contain a unique value for this column. You'll notice that the INSERT statement specifies a null value
for the Region and Fax columns (this is specified using the NULL keyword).
You can use the Query Analyzer to enter INSERT statements. Figure 3.22 shows the previous
INSERT, along with a SELECT statement that retrieves the new

row.
Figure 3.22: Using an INSERT statement to add a new row to the Customers tableNote
You must supply values for all columns that are defined as NOT NULL in a table. Also, the number of
columns in the INSERT and VALUES lists must match, and the data type of each column in the
INSERT and VALUES lists must also match.
When supplying values to all columns in a row, you may omit the column names and just supply the
values for each column. For example: INSERT INTO Customers VALUES ('CRCOM', 'Cynthia Red
Company', 'Cynthia Red', 'Owner', '2 South Street', 'New York', NULL, '12345', 'USA', '(800)-555-
1212', NULL); Modifying Rows in a Table
You use the UPDATE statement to update rows in a table. When updating a row, you specify the
name of the table, the columns to update, and the new values for the columns.Warning
Typically, you should also use a WHERE clause to restrict the rows being updated. If you don't
supply a WHERE clause, then all the rows in the specified table will be updated. In many cases,
you'll specify the value for the primary key in your WHERE clause.
The following UPDATE statement modifies the Address column for the row in the Customers table
with a CustomerID of JPCOM: UPDATE Customers SET Address = '3 North Street' WHERE
CustomerID = 'JPCOM';

Part 1: Introduction to ADO.NET and Databases 67

© 2004 ... Your company

Figure 3.23 shows this UPDATE statement, along with a SELECT statement that retrieves the

modified row.
Figure 3.23: Using an UPDATE statement to modify the Address column of a row in the Customers
table
You can use an UPDATE statement to modify multiple columns. For example, the following UPDATE
statement modifies the Address and ContactTitle columns: UPDATE Customers SET Address = '5
Liberty Street', ContactTitle = 'CEO' WHERE CustomerID = 'JPCOM'; Removing Rows From a Table
You use the DELETE statement to remove rows from a table. When removing a row, you specify the
name of the table and the rows to delete using a WHERE clause.Warning
If you omit the WHERE clause in a DELETE statement, all rows from the table will be deleted. Make
sure you provide a WHERE clause if you don't want to remove all the rows from the table. Typically,
you'll specify the value for the primary key in your WHERE clause.
The following DELETE statement removes the row from the Customers table where the CustomerID is
CRCOM: DELETE FROM Customers WHERE CustomerID = 'CRCOM';
Figure 3.24 shows this DELETE statement, along with a SELECT statement that demonstrates that

the row has been removed.
Figure 3.24: Using an UPDATE statement to remove a row from the Customers table
In the next section, you'll learn how the database software maintains the integrity of the information
stored in the database. Maintaining Database Integrity
The database software ensures that the information stored in the tables is consistent. In technical
terms, it maintains the integrity of the information. Two examples of this are the following:
The primary key of a row always contains a unique value.
The foreign key of a row in the child table always references a value that exists in the parent table.
Let's take a look at what happens when you try to insert a row into a table with a primary key that
already exists. The following INSERT statement attempts to add a row to the Customers table with a

Mastering C# Database Programming @Team LiB68

© 2004 ... Your company

CustomerID of ALFKI (a row with this primary key already exists in the Customers table): INSERT
INTO Customers (CustomerID, CompanyName, ContactName, ContactTitle, Address, City,
Region, PostalCode, Country, Phone, Fax) VALUES ('ALFKI', 'Jason Price Company', 'Jason
Price', 'Owner', '1 Main Street', 'New York', NULL, '12345', 'USA', '(800)-555-1212', NULL);
If you attempt to run this INSERT statement, you'll get the following error message from the database:
Violation of PRIMARY KEY constraint 'PK_Customers'. Cannot insert duplicate key in object
'Customers'. The statement has been terminated.
This INSERT statement fails because an existing row in Customers table already contains the primary
key value ALFKI. The message tells you that the primary key specified in the INSERT statement
already exists in the Customers table. The constraint name PK_Customers is the name of the table
constraint assigned to the primary key when the Customers table was originally created. At the end,
the message indicates that the statement has been terminated, meaning that the INSERT statement
has not been performed.
Let's take a look at what happens when you try to modify a primary key in a parent table with a value
that is referenced in a foreign key in a child table. The following UPDATE statement attempts to
modify the CustomerID from ALFKI to ALFKZ in the parent Customers table (this row is referenced by
rows in the child Orders table): UPDATE Customers SET CustomerID = 'ALFKZ' WHERE CustomerID
= 'ALFKI';
If you attempt to run this UPDATE statement, you'll get the following error message: UPDATE
statement conflicted with COLUMN REFERENCE constraint 'FK_Orders_Customers'. The conflict
occurred in database 'Northwind', table 'Orders', column 'CustomerID'. The statement has been
terminated.
This UPDATE statement fails because the row containing the primary key value ALFKI is referenced
by rows in the Orders table. The message tells you that the new value for the CustomerID column
violates the foreign key constraint on the CustomerID column of the Orders table. This constraint is
named FK_Orders_Customers.
Also, you can't remove a row from a parent table that is referenced by a row in a child table. For
example, the following DELETE statement attempts to remove the row from the Customers table
where the CustomerID column equals ALFKI (this row is referenced by rows in the Orders table):
DELETE FROM Customers WHERE CustomerID = 'ALFKI';
If you attempt to run this DELETE statement, you'll get the same error message that was shown for
the previous UPDATE statement. This DELETE statement fails because the Orders table contains
rows that reference the row in the Customers table, and removing this row would make the database
inconsistent because the rows in the Orders table wouldn't reference a valid row. Grouping SQL
Statements
By default, when you run an INSERT, UPDATE, or DELETE statement, SQL Server permanently
records the results of the statement in the database. This might not always be your desired result. For
example, in the case of a banking transaction, you might want to withdraw money from one account
and deposit it into another. If you had two separate UPDATE statements that performed the
withdrawal and deposit, then you would want to make the results of each UPDATE statement
permanent only as one unit. If either UPDATE failed for some reason, then you would want to undo
the results of both UPDATE statements.Note
Permanently recording the results of SQL statements is known as a commit, or committing the SQL
statements. Undoing the results of SQL statements is known as a rollback , or rolling back the SQL
statements.
You can group SQL statements into a transaction . You can then commit or roll back the SQL
statements in that transaction as one unit. For example, the two UPDATE statements in the previous
banking example could be placed into a transaction, and then you could commit or roll back that
transaction as one unit, depending on whether both of the UPDATE statements succeeded.
You start a transaction using the BEGIN TRANSACTION statement or the shorthand version,
BEGINTRANS. You then perform your SQL statements that make up the transaction. To commit the
transaction, you perform a COMMIT TRANSACTION statement or one of the shorthand versions,
COMMIT TRANS or COMMIT. To roll back the transaction, you perform a ROLLBACK
TRANSACTION statement or one of the shorthand versions, ROLLBACK TRANS or ROLLBACK.Note
By default, transactions are rolled back. You should always explicitly commit or roll back a transaction
to indicate what you want to do.

Part 1: Introduction to ADO.NET and Databases 69

© 2004 ... Your company

Let's take a look at an example. The following transaction consists of two INSERT statements: the
first adds a row to the Customers table, and the second adds a row to the Orders table. At the end,
the transaction is committed using a COMMIT statement: BEGIN TRANSACTION; INSERT INTO
Customers (CustomerID, CompanyName) VALUES ('SOCOM', 'Steve Orange Company');
INSERT INTO Orders (CustomerID) VALUES ('SOCOM'); COMMIT;
Figure 3.25 shows this transaction, along with two SELECT statements that show the two new

rows.
Figure 3.25: Using a transaction
The next transaction consists of similar INSERT statements, except this time the transaction is rolled
back using a ROLLBACK statement. BEGIN TRANSACTION; INSERT INTO Customers (
CustomerID, CompanyName) VALUES ('SYCOM', 'Steve Yellow Company'); INSERT INTO Orders
(CustomerID) VALUES ('SYCOM'); ROLLBACK;
Because the transaction is rolled back, the two rows added by the INSERT statements are undone.
You should check for errors in a transaction before deciding to perform a COMMIT or ROLLBACK
because errors do not always stop the next line from processing. To do this in SQL Server, you use
the @@ERROR function. This function returns zero whenever a statement is executed and doesn't
cause an error. If @@ERROR returns a nonzero value, you know an error occurred. If @@ERROR
returns 0, you perform a COMMIT, otherwise you perform a ROLLBACK.
You can also assign a name to your transaction in the BEGIN TRANSACTION statement. This is
useful as it shows which transaction you are working on.
The following example shows the naming of a transaction, along with the use of the @@ERROR
function to determine whether to perform a COMMIT or ROLLBACK: BEGIN TRANSACTION
MyTransaction; INSERT INTO Customers (CustomerID, CompanyName) VALUES ('SYCOM',
'Steve Yellow Company'); INSERT INTO Orders (CustomerID) VALUES ('SYCOM'); IF @@Error
= 0 COMMIT TRANSACTION MyTransaction; ELSE ROLLBACK TRANSACTION MyTransaction;
Notice that the name of the transaction is MyTransaction, and that this name is used in the COMMIT
and ROLLBACK statements.Note
You use the IF statement to conditionally execute a statement. You'll learn more about this in
Chapter 4, "Introduction to Transact-SQL Programming." Introducing Data Definition Language (DDL)
Statements
As mentioned earlier, DDL statements allow you to create database structures such as tables and
indexes. In this section, you'll learn how to create, alter, and drop a table, and create and drop an
index.Creating a Table
You create a table using the CREATE TABLE statement. For example, let's say you wanted to store
the details for a number of persons in the database. Assume you want to store a person's first name,
last name, and date of birth. Let's call this table Persons. You also want to uniquely identify each row
in the Persons table using a numeric ID, which acts as the primary key for the table. The following
CREATE TABLE statement creates the Persons table: CREATE TABLE Persons (PersonID int
CONSTRAINT PK_Persons PRIMARY KEY, FirstName nvarchar(15) NOT NULL, LastName
nvarchar(15) NOT NULL, DateOfBirth datetime);

Mastering C# Database Programming @Team LiB70

© 2004 ... Your company

You use the CONSTRAINT clause to restrict the values stored in a table or column. You'll notice that
the CONSTRAINT clause is used to specify the primary key for the table using the keywords
PRIMARYKEY. The primary key is the PersonID column, and this constraint is named PK_Persons.
The ID column is an int, meaning that it stores integers. Every row in the Persons table must have a
unique number for the PersonID column.
The FirstName and LastName columns are nvarchar columns that may store up to 15 characters.
Both of these columns are defined using the NOT NULL constraint. NOT NULL indicates that you
must supply a value to the column. The default is NULL, meaning that you don't have to supply a
value to the column.Note
Primary keys always require a value, and are therefore implicitly NOT NULL .
The DateOfBirth column is a datetime, meaning that it can store a date and time. This column doesn't
have a NOT NULL constraint and therefore uses the default of NULL.Altering a Table
You alter an existing table using the ALTER TABLE statement. You can add or drop a column, and
add or drop a constraint using the ALTER TABLE statement. For example, the following ALTER
TABLE statement adds a column named Address to the Persons table: ALTER TABLE Persons ADD
Address nvarchar(50);
The Address column is an nvarchar that can store up to 50 characters.
The next example drops the Address column from the Persons table: ALTER TABLE Persons DROP
COLUMN Address;
The next example adds a column named EmployerID to the Persons table, which records the
company that a person works for: ALTER TABLE Persons ADD EmployerID nchar(5) CONSTRAINT
FK_Persons_Customers REFERENCES Customers(CustomerID);
The EmployerID column is a foreign key to the CustomerID column of the Customers table. The
constraint is named FK_Persons_Customers.Dropping a Table
You drop a table from the database using the DROP TABLE statement. For example, the following
statement drops the Persons table: DROP TABLE Persons; Creating an Index
You add an index to a table using the CREATE INDEX statement. An index allows you to potentially
find a row more rapidly when you use the column with the index in a WHERE clause. For example,
the following CREATE INDEX statement adds an index to the LastName column of the Persons table:
CREATE INDEX LastNameIndex ON Persons(LastName); Tip
If you frequently use a column in a WHERE clause, you should consider adding an index to that
column.
Generally, you should create an index on a column only when you find that you are retrieving a small
number of rows from a table containing many rows. A good rule of thumb is that an index is useful
when you expect any single query to retrieve 10 percent or less of the total rows in a table. This
means that the candidate column for an index should be used to store a wide range of values. A good
candidate for indexing would be a column containing a unique number for each record, while a poor
candidate for indexing would be a column that contains only a small range of numeric codes, such as
1, 2, 3, or 4. This consideration applies to all database types, not just numbers.
Normally, the DBA is responsible for creating indexes, but as an application developer, you might
know more about the application than the DBA and be able to recommend which columns are good
candidates for indexing.Dropping an Index
You drop an index from a table using the DROP INDEX statement. For example, the following
DROPINDEX statement drops LastNameIndex from the Persons table: DROP INDEX
Persons.LastNameIndex;

5.3.2 Accessing a Database Using Visual Studio .NET

Accessing a Database Using Visual Studio .NET
Visual Studio .NET's Server Explorer allows you to use a subset of the features contained in the
Databases folder of Enterprise Manager. Specifically, Server Explorer allows you to view, create, and
edit databases, database diagrams, tables, views, stored procedures, and user-defined functions. In
this section, you'll be introduced to Server Explorer and some of its functionality. As you'll see, Server
Explorer operates in a similar way to Enterprise Manager, which was covered in Chapter 2. Because
of the similarity between Server Explorer and Enterprise Manager, I'll only briefly cover Server

Part 1: Introduction to ADO.NET and Databases 71

© 2004 ... Your company

Explorer here. You should feel free to experiment with Server Explorer yourself.
Your first step is to connect to a database. To do this, you select Tools £ Connect To Database. This
displays the Data Link Properties dialog box. Figure 3.26 shows this dialog box with appropriate
entries to connect to the Northwind database running on the computer JMPRICE-

LAP.
Figure 3.26: Entering database details using the Data Link Properties dialog box
Once you've entered your database details, your second step is to click the Test Connection button to
verify the database connection details. Click the OK button once your test succeeds.
Once you've connected to the database, you can view things such as the tables. You can also
retrieve and modify rows in the tables. You can drill down to the tables in the database by clicking the
Add icon in the tree in Server Explorer, and you can retrieve the rows from a table by clicking the right
mouse button on the table in the tree and selecting Retrieve Data From Table in the pop-up window.
Figure 3.27 shows the rows from the Customers

table.
Figure 3.27: Viewing the rows in the Customers table using the Server Explorer
You can enter SQL statements by clicking the Show SQL Pane button in the toolbar, as shown in

Mastering C# Database Programming @Team LiB72

© 2004 ... Your company

Figure 3.28.
Figure 3.28: Entering a SQL statement
You can build SQL statements visually by clicking the Show Diagram button in the toolbar and
selecting columns from the table, as shown in Figure 3.29. As you can see, I've selected the
ContactName, CompanyName, and CustomerID columns from the Customers

table.
Figure 3.29: Building a SQL statement visually
You can view the properties of a column in a table by clicking the right mouse button over the column
and selecting Properties from the pop-up window. Figure 3.30 shows the properties of the
CustomerID column of the Customers

Part 1: Introduction to ADO.NET and Databases 73

© 2004 ... Your company

table.
Figure 3.30: Properties of the CustomerID columns
You've only scratched the surface of the Server Explorer in this section. If you have VS .NET, you
should feel free to experiment with the Server Explorer-that's the best way to learn.

5.3.3 Summary

Summary
In this chapter, you learned how to use SQL (pronounced sequel) to access a database. SQL is the
standard language for accessing relational databases. With SQL, you tell the database what data you
want to access, and the database software figures out exactly how to get that data. You can enter and
run SQL statements against a SQL Server database using the Query Analyzer tool.
There are two main types of SQL statements: Data Manipulation Language (DML) statements, and
Data Definition Language (DDL) statements. DML statements allow you to retrieve, add, modify, and
delete rows stored in the database. DDL statements allow you to create database structures such as
tables and indexes.
You use a SQL SELECT statement to retrieve rows, an INSERT statement to add rows, an UPDATE
statement to modify rows, and a DELETE statement to remove rows.
You examined Visual Studio .NET's Server Explorer tool that allows you to connect to a database.
Server Explorer contains a subset of the functionality offered by Enterprise Manager.
In the next chapter, you'll be introduced to Transact-SQL programming.

5.4 Chapter 4: Introduction to Transact-SQL Programming

Chapter 4: Introduction to Transact-SQL ProgrammingOverview
Transact-SQL is Microsoft's implementation of SQL, and it contains additional programming
constructs. (It's often shortened to T-SQL , a convention you'll see in this chapter.) T-SQL enables
you to write programs that contain SQL statements, along with standard programming constructs such
as variables, conditional logic, loops, procedures, and functions.
Featured in this chapter:
Fundamentals of Transact-SQL
Using functions
Creating user-defined functions
Introducing stored procedures
Introducing triggers

Mastering C# Database Programming @Team LiB74

© 2004 ... Your company

5.4.1 Fundamentals of Transact-SQL

Fundamentals of Transact-SQL
In this section, you'll learn some of the essential programming constructs available in T-SQL.
Specifically, you'll see how to use variables, comments, and conditional logic. You'll also see how to
use a number of statements that allow you to perform jumps and loops. Finally, you'll examine
cursors, which allow you to process rows returned from the database one at a time.
Let's start by looking at variables. Using Variables
A variable allows you to store a value in the memory of a computer. Each variable has a type that
indicates the kind of value that will be stored in that variable. You can use any of the types shown
earlier in Table 2.3 of Chapter 2, "Introduction to Databases."
You declare a variable using the DECLARE statement, followed by the variable name and the type.
You place an at character (@) before the start of the variable name. The following syntax illustrates
the use of the DECLARE statement: DECLARE @name type
Where name is the name of your variable, and type is the variable type.
For example, the following statements declare two variables named MyProductName and
MyProductID: DECLARE @MyProductName nvarchar(40) DECLARE @MyProductID int
As you can see, MyProductName is of the nvarchar type, and MyProductID is of the int type.
You can place more than one variable declaration on the same line. For example: DECLARE
@MyProductName nvarchar(40), @MyProductID int
Variables are initially set to null. You set a variable's value using the SET statement. For example, the
following statements set MyProductName to Chai and MyProductID to 7: SET @MyProductName =
'Chai' SET @MyProductID = 7
The following SELECT statement then uses these variables in the WHERE clause: SELECT
ProductID, ProductName, UnitPrice FROM Products WHERE ProductID = @MyProductID OR
ProductName = @MyProductName;
You can execute T-SQL using Query Analyzer, and Figure 4.1 shows the output from the examples

shown in this section.
Figure 4.1: Executing T-SQL using Query Analyzer Using Comments
You add comments to describe your code, making it more understandable for both yourself and other
programmers. You might think you understand your own code inside out, but when you return to it for
maintenance six months later, you might have forgotten the intricacies of your own creation! The point
is that you should add comments to your code to aid understanding, but don't think you have to
comment every line. Use comments judiciously.
You need to mark your comments with specific characters so SQL Server ignores them and doesn't
try to process them as code. There are two types of comments: single-line and multi-line. A single-line
comment uses two negative signs (--) and may span only one line, as shown here: -- A single-line
comment may only span one line.
The -- tells SQL Server to ignore everything up to the end of that line.
A multi-line comment begins with an open comment mark (/*) and ends with a close comment mark
(*/): /* A multi-line comment may span more than one line. */
The /* tells SQL Server to ignore everything up to the next */ mark, no matter how many lines forward
it is. If you were to use single-line comments in this example, you would have to add -- characters at
the beginning of every line that made up the comment.

Part 1: Introduction to ADO.NET and Databases 75

© 2004 ... Your company

Multi-line comments can of course also span only one line: /* Another comment */ Using Conditional
Logic
Conditional logic allows you to execute different branches of code based on the Boolean true or false
value of a given expression. For example, you might want to check if an error condition is true and
display a message. You use the IF and optional ELSE keywords to perform conditional logic. The
following syntax illustrates the use of conditional logic: IF condition statement1 [ELSE statement2]
Where condition is a Boolean expression that evaluates to true or false. If condition is true, then
statement1 is executed, otherwise statement2 is executed.Note
You can replace a single statement with multiple statements by placing those statements within
BEGIN and END statements. This rule applies to all T-SQL programming constructs.
The following syntax shows the replacement of single statements with a block of statements placed
within BEGIN and END: IF condition BEGIN statements1 END ELSE BEGIN statements2 END
Where statements1 and statements2 are multiple statements. You can also use an optional ELSE
statement to execute a different branch of code if the condition is false.Note
You can nest IF statements to any level.
The following example displays the ProductID, ProductName, and UnitPrice columns for any rows
from the Products table that have a UnitPrice of less than $5. You'll notice the use of the PRINT
statement to output a line in this example. IF (SELECT COUNT(*) FROM Products WHERE UnitPrice
< 5) > 0 BEGIN PRINT 'The following products have a UnitPrice of less than $5:' SELECT
ProductID, ProductName, UnitPrice FROM Products WHERE UnitPrice < 5 END ELSE BEGIN
PRINT 'There are no products that have a UnitPrice of less than $5' END Using CASE Statements
You use the CASE statement to compare a value against a list of values and execute one or more
statements when a match is found. For example, the following CASE statement returns
Massachusetts: CASE 'MA' WHEN 'CA' THEN 'California' WHEN 'MA' THEN 'Massachusetts'
WHEN 'NY' THEN 'New York' END
The next example uses a SELECT statement to retrieve the value Massachusetts returned by the
CASE statement: DECLARE @State nchar(2) SET @State = 'MA' DECLARE @StateName
nvarchar(15) SELECT CASE @State WHEN 'CA' THEN 'California' WHEN 'MA' THEN
'Massachusetts' WHEN 'NY' THEN 'New York' END
You can store the value retrieved by the SELECT statement in a variable, as shown in the next
example: DECLARE @State nchar(2) SET @State = 'MA' DECLARE @StateName nvarchar(15)
SELECT @StateName = CASE @State WHEN 'CA' THEN 'California' WHEN 'MA' THEN
'Massachusetts' WHEN 'NY' THEN 'New York' END PRINT @StateName
The output from this example is as follows: Massachusetts
You can also compare a column value in a CASE statement. For example: SELECT Price = CASE
WHEN UnitPrice IS NULL THEN 'Unknown' WHEN UnitPrice < 10 THEN 'Less than $10' WHEN
UnitPrice = 10 THEN '$10' ELSE 'Greater than $10' END FROM Products
You'll notice from this example that you can also supply a catchall ELSE condition in a CASE
statement. Using WHILE Loops
You use a WHILE loop to run one or more statements multiple times. A WHILE loop runs until a
specified condition evaluates to false. The syntax for a WHILE loop is as follows: WHILE condition
statement
The following example shows a WHILE loop: DECLARE @count int SET @count = 5 WHILE (@count
> 0) BEGIN PRINT 'count = ' + CONVERT(nvarchar, @count) SET @count = @count -1 END
This loop runs until the count variable reaches 0, and the output from this code is as follows: count =
5 count = 4 count = 3 count = 2 count = 1
The CONVERT() function is used to convert a value from one type to another. For example,
CONVERT(nvarchar, @count) converts the count variable to the nvarchar type, which can then be
used with the PRINT statement.CONTINUE Statement
You use the CONTINUE statement to start the next iteration of a WHILE loop immediately, skipping
over any remaining code in the loop. The CONTINUE statement causes execution to jump back to the
start of the loop.
The following example shows a WHILE loop that uses the CONTINUE statement to start the next
iteration of the loop if the count variable is equal to 2: DECLARE @count int SET @count = 5 WHILE
(@count > 0) BEGIN PRINT 'count = ' + CONVERT(nvarchar, @count) SET @count = @count -1
IF (@count = 2) BEGIN SET @count = @count 1 CONTINUE END END

Mastering C# Database Programming @Team LiB76

© 2004 ... Your company

The output from this code is as follows: count = 5 count = 4 count = 3 count = 1
You'll notice that the display of count = 2 is missing. This is because the CONTINUE statement skips
that iteration.BREAK Statement
You use the BREAK statement to end a WHILE loop immediately. The BREAK statement causes
execution to jump out of the loop and continue executing any statements after the loop.
The following example shows a WHILE loop that uses the BREAK statement to end the loop if the
count variable is equal to 2: DECLARE @count int SET @count = 5 WHILE (@count > 0) BEGIN
PRINT 'count = ' + CONVERT(nvarchar, @count) SET @count = @count -1 IF (@count = 2)
BEGIN BREAK END END
The output from this code is as follows: count = 5 count = 4 count = 3 Using Labels and the GOTO
Statement
You use the GOTO statement to jump to a specified label in your code; you use a label to identify a
statement in your code. You must define the label before issuing the GOTO to that label. Before I
show you the details of the GOTO statement, you should be aware that its use is considered poor
programming practice, and you should avoid it if at all possible. It is usually possible to structure code
so that you don't need to use the GOTO statement. Having said that, I've included it in this chapter for
completeness.
As mentioned, the GOTO statement requires that you create a label in your program. You do this by
placing an identifier containing the label name in your code, followed by a colon (:). The following
example creates a label named myLabel: myLabel:
You may then use the GOTO statement to jump to that label, for example: GOTO myLabel
The following example shows the use of a label and the GOTO statement: DECLARE @count int SET
@count = 5 myLabel: PRINT 'count = ' + CONVERT(nvarchar, @count) SET @count = @count -1 IF
(@count > 0) BEGIN GOTO myLabel END
The output from this code is as follows: count = 5 count = 4 count = 3 count = 2 count = 1 Using
RETURN Statements
You use the RETURN statement to exit from a stored procedure or group of statements. Any
statements that follow your return are not executed. You can also return a value using the RETURN
statement.
The syntax for the RETURN statement is as follows: RETURN [int_expression]
Where int_expression is any expression that evaluates to an int value.Note
You can return a value only when using the RETURN statement with a stored procedure. You'll see
an example of that later in the "Introducing Stored Procedures" section.
The following example shows the use of the RETURN statement: DECLARE @count int SET @count
= 5 WHILE (@count > 0) BEGIN PRINT 'count = ' + CONVERT(nvarchar, @count) SET @count =
@count -1 IF (@count = 2) BEGIN RETURN END END
The output from this code is as follows: count = 5 count = 4 count = 3 Using WAITFOR Statements
There are times when you want your program to pause before running some code to perform a
specific action, such as running a batch program at night to update customer records. You use the
WAITFOR statement to specify a time interval or time to wait until continuing execution of code.
The syntax for the WAITFOR statement is as follows: WAITFOR {DELAY 'time interval ' | TIME 'actual
time '}
You can specify the time interval to wait using the DELAY keyword, or you can specify the actual time
to wait until using the TIME keyword. You can specify a time interval or an actual time in the format
HH:MM:SS, where HH is the hour (in 24-hour format), MM is the minute, and SS is the second.
Here are some examples:
WAITFOR DELAY '00:00:05' waits for a time interval of 5 seconds.
WAITFOR DELAY '23:10:25' waits for a time interval of 23 hours, 10 minutes, and 25 seconds.
WAITFOR TIME '20:15:10' waits until 10 seconds after 10:15 PM.
The following example prints a message after 5 seconds have elapsed: BEGIN WAITFOR DELAY
'00:00:05' PRINT '5 seconds have elapsed' END Using RAISERROR Statements
You use the RAISERROR statement to generate an error message. You'll typically want to do this if
an error occurs in one of your stored procedures, which you'll see how to use later in the section
"Creating Stored Procedures."
The simplified syntax for the RAISERROR statement is as follows: RAISERROR ({number |
description }{, severity , state })

Part 1: Introduction to ADO.NET and Databases 77

© 2004 ... Your company

Where number is the error number, which must be between 50,001 and 2,147,483,648. The
description is a message that cannot exceed 400 characters. The severity is the degree of the error
and must be between 0 and 18 (18 is the most severe error). The state is an arbitrary value that must
be between 1 and 127, and represents information about the invocation state of the error.
The following examples show the use of the RAISERROR statement: RAISERROR (50001, 15, 1)
RAISERROR ('No row with that ProductID was found', 10, 1)

5.4.2 Using Cursors

Using Cursors
When you execute a SELECT statement, all the rows are returned in one go. This might not always
be appropriate. For example, you might want to take some action based on the column values
retrieved for a particular row. To do this, you can use a cursor to process rows retrieved from the
database one row at a time. A cursor allows you to step through the rows returned by a particular
SELECT statement.
You follow these steps when using a cursor:
Declare variables to store the column values from the SELECT statement.
Declare the cursor, specifying your SELECT statement.
Open your cursor.
Fetch the rows from your cursor.
Close your cursor.
You'll learn the details of these steps in the following sections. Step 1: Declare Variables to Store the
Column Values from the SELECT Statement
These variables must be compatible with the column types for the retrieved rows. For example, you'll
want to use an int variable to store the value from an int column, and so on.
The following example declares three variables to store the ProductID, ProductName, and UnitPrice
columns from the Products table: DECLARE @MyProductID int DECLARE @MyProductName
nvarchar(40) DECLARE @MyUnitPrice money Step 2: Declare the Cursor
A cursor declaration consists of a name that you assign to the cursor and the SELECT statement that
you want to execute. This SELECT statement is not actually run until you open the cursor. You
declare your cursor using the DECLARE statement.
The following example declares a cursor named ProductCursor with a SELECT statement that
retrieves the ProductID, ProductName, and UnitPrice columns for the first 10 products from the
Products table: DECLARE ProductCursor CURSOR FOR SELECT ProductID, ProductName,
UnitPrice FROM Products WHERE ProductID <= 10 Step 3: Open the Cursor
Now it's time to open your cursor, which runs the SELECT statement previously defined in the
DECLARE statement. You open a cursor using the OPEN statement. The following example opens
ProductCursor, and therefore also runs the SELECT statement that retrieves the rows from the
Products table: OPEN ProductCursor Step 4: Fetch the Rows from the Cursor
Now you must read each row from your cursor. To do this, you use the FETCH statement. Your cursor
may contain many rows, and therefore a WHILE loop is required is to read each row in turn. To
determine when the loop is to end, you can use the @@FETCH_STATUS function. This function
returns one of the possible values shown in Table 4.1. Table 4.1: RETURN VALUES FROM THE
@@FETCH_STATUS FUNCTION
VALUE
DESCRIPTION
0
FETCH statement successfully returned a row.
-1
FETCH statement failed or the requested row was outside the result set.
-2
Row fetched was missing.
The following example shows a loop that reads each row from ProductCursor: FETCH NEXT FROM
ProductCursor INTO @MyProductID, @MyProductname, @MyUnitPrice PRINT '@MyProductID = ' +
CONVERT(nvarchar, @MyProductID) PRINT '@MyProductName = ' + CONVERT(nvarchar,

Mastering C# Database Programming @Team LiB78

© 2004 ... Your company

@MyProductName) PRINT '@MyUnitPrice = ' + CONVERT(nvarchar, @MyUnitPrice) WHILE
@@FETCH_STATUS = 0 BEGIN FETCH NEXT FROM ProductCursor INTO @MyProductID,
@MyProductname, @MyUnitPrice PRINT '@MyProductID = ' + CONVERT(nvarchar,
@MyProductID) PRINT '@MyProductName = ' + CONVERT(nvarchar, @MyProductName) PRINT
'@MyUnitPrice = ' + CONVERT(nvarchar, @MyUnitPrice) END
You'll notice that the condition @@FETCH_STATUS = 0 is used in the WHILE loop to check that the
FETCH statement successfully returned a row. When this condition is no longer true, the loop
ends.Tip
You can get the number of rows stored in a cursor using the @@CURSOR_ROWS function. You'll
learn more about functions later in the "Using Functions" section. Step 5: Close the Cursor
Close your cursor using the CLOSE statement. The following example closes ProductCursor: CLOSE
ProductCursor
You should also remove the reference to your cursor using the DEALLOCATE statement. This frees
the system resources used by your cursor. The following example removes the reference to
ProductCursor using the DEALLOCATE statement: DEALLOCATE ProductCursor
The following section shows a complete example script that you may run using Query Analyzer. This
script contains all five steps for using a cursor. Complete Example: ProductCursor.sql
Listing 4.1 shows the ProductCursor.sql script. You can load this file into Query Analyzer and run
it.Listing 4.1: USING CURSORS /* ProductCursor.sql uses a cursor to display the ProductID,
ProductName, and UnitPrice columns from the Products table */ USE Northwind -- step 1: declare
the variables DECLARE @MyProductID int DECLARE @MyProductName nvarchar(40) DECLARE
@MyUnitPrice money -- step 2: declare the cursor DECLARE ProductCursor CURSOR FOR
SELECT ProductID, ProductName, UnitPrice FROM Products WHERE ProductID <= 10 -- step 3:
open the cursor OPEN ProductCursor -- step 4: fetch the rows from the cursor FETCH NEXT FROM
ProductCursor INTO @MyProductID, @MyProductname, @MyUnitPrice PRINT '@MyProductID = ' +
CONVERT(nvarchar, @MyProductID) PRINT '@MyProductName = ' + CONVERT(nvarchar,
@MyProductName) PRINT '@MyUnitPrice = ' + CONVERT(nvarchar, @MyUnitPrice) WHILE
@@FETCH_STATUS = 0 BEGIN FETCH NEXT FROM ProductCursor INTO @MyProductID,
@MyProductName, @MyUnitPrice PRINT '@MyProductID = ' + CONVERT(nvarchar,
@MyProductID) PRINT '@MyProductName = ' + CONVERT(nvarchar, @MyProductName) PRINT
'@MyUnitPrice = ' + CONVERT(nvarchar, @MyUnitPrice) END -- step 5: close the cursor CLOSE
ProductCursor DEALLOCATE ProductCursor
The output for the first two rows read by the cursor is as follows: @MyProductID = 1
@MyProductName = Chai @MyUnitPrice = 18.00 @MyProductID = 2 @MyProductName = Chang
@MyUnitPrice = 19.00 ...

5.4.3 Using Functions

Using Functions
SQL Server provides a number of functions you can use to get values from the database. For
example, you can use the COUNT() function to get the number of rows in a table. The various
functions are split into the categories shown in Table 4.2. Table 4.2: FUNCTIONS
FUNCTION CATEGORY
DESCRIPTION
Aggregate
Return information based on one or more rows in a table.
Mathematical
Perform calculations.
String
Perform string manipulations.
Date and time
Work with dates and times.
System
Return information on SQL Server.
Configuration

Part 1: Introduction to ADO.NET and Databases 79

© 2004 ... Your company

Return information on the configuration of the server.
Cursor
Return information on cursors.
Metadata
Return information on the database and the various database items, such as tables.
Security
Return information on the database users and roles.
System statistical
Return statistical information on SQL Server.
Text and image
Perform text and image manipulations.
You'll learn about the first five functions in the following sections. The other categories of functions
are beyond the scope of this book, as they are of primary interest to database administrators. You
can learn about those functions in the SQL Server Online Books documentation. Using Aggregate
Functions
Earlier, you saw the use of the COUNT() aggregate function to get the number of rows. COUNT() and
some other aggregate functions you can use with SQL Server are listed in Table 4.3. The expression
you may pass to the aggregate functions is typically a single column, but it can also be a calculated
field. ALL means that the function is applied to all the column values, while DISTINCT means that the
function is applied only to unique values. ALL is the default. Table 4.3: AGGREGATE FUNCTIONS
FUNCTION
DESCRIPTION
AVG([ALL | DISTINCT] expression)
Returns the average of the values in a group.
COUNT([ALL | DISTINCT] expression] | *)
Returns the number of rows in a group. COUNT() returns an int data type value.
COUNT_BIG([ALL | DISTINCT] expression } | *)
Returns the number of values in a group.COUNT_BIG()returns a bigint data type value
MAX([ALL | DISTINCT] expression)
Returns the highest value.
MIN([ALL | DISTINCT] expression)
Returns the lowest value.
SUM([ALL | DISTINCT] expression)
Returns the sum of any non-null values. SUM() can be used only with numeric expressions.
STDEV(expression)
Returns the standard deviation for all the values.
STDEVP(expression)
Returns the standard deviation for the population of all the values.
VAR(expression)
Returns the variance for all the values.
VARP(expression)
Returns the variance for the population of all the values.
Let's consider examples that use some of the aggregate functions.
You use the AVG() function to get the average value. For example, the following statement gets the
average of the UnitPrice column of the Products table using the AVG() function: SELECT
AVG(UnitPrice) FROM Products;
This example returns 28.8663. Since ALL is the default used with functions, this example uses every
row in the Products table when performing the calculation. If you wanted to just use unique values in
the calculation, then you use the DISTINCT option, as shown in the following example: SELECT
AVG(DISTINCT UnitPrice) FROM Products;
This example returns 31.4162, slightly higher than the previous result because only unique values are
used this time.
In addition to passing a column to a function, you can also pass a calculated field. For example, the
following statement passes the calculated field UnitPrice * 1.20 to the AVG() function: SELECT
AVG(UnitPrice * 1.20) FROM Products;
This example returns 34.639636; the average after the UnitPrice values have been increased 20

Mastering C# Database Programming @Team LiB80

© 2004 ... Your company

percent.
You can limit the rows passed to a function using a WHERE clause. For example, the following
SELECT statement calculates the average UnitPrice value for the rows with a CategoryID of 1:
SELECT AVG(UnitPrice) FROM Products WHERE CategoryID = 1;
This example returns 37.9791.
You can combine a function with a GROUP BY clause to perform a calculation on each group of rows.
For example, the following SELECT statement calculates the average UnitPrice value for each block
of rows grouped by CategoryID: SELECT AVG(UnitPrice) FROM Products GROUP BY CategoryID;

Figure 4.2 shows the results of this SELECT statement.
Figure 4.2: Using the AVG() function to compute the average value of the UnitPrice column
You can also supply a HAVING clause to eliminate groups used in a SELECT statement. For
example, the following statement adds a HAVING clause to the previous example to eliminate the
groups that have an average value greater than 50: SELECT AVG(UnitPrice) FROM Products
GROUP BY CategoryID HAVING AVG(UnitPrice) > 50;
This example returns 54.0066.
Let's take a look at some of the other aggregate functions. You get the total number of rows using the
COUNT() function. For example, the following statement gets the total number of rows in the Products
table using the COUNT() function: SELECT COUNT(*) FROM Products;
This example returns 77.
You use the MAX() and MIN() functions to get the maximum and minimum values. For example, the
following statement uses these functions to get the maximum and minimum UnitPrice: SELECT
MAX(UnitPrice), MIN(UnitPrice) FROM Products;
This example returns 263.5000 and 2.5000 for the respective maximum and minimum values.
You use the SUM() function to get the total of any non-null values. For example, the following
statement gets the sum of the UnitPrice column values for each group of rows using the SUM()
function: SELECT SupplierID, SUM(UnitPrice) AS SumUnitPrice FROM Products GROUP BY
SupplierID;
The GROUP BY clause of this example returns one row for each block of rows with identical
SupplierID column values. The SUM() function then adds up the UnitPrice column values for all the
rows within each block and returns a single value. For example, SUM() returns 47.0000 for the group
where the SupplierID is 1. This is the sum of the UnitPrice column values for all the rows where the
SupplierID is 1. Similarly, SUM() returns 81.4000 where the SupplierID is 2, and so on. The AS clause

Part 1: Introduction to ADO.NET and Databases 81

© 2004 ... Your company

in this example names the results returned by the SUM() function as SumUnitPrice.
Figure 4.3 shows the results of this SELECT

statement.
Figure 4.3: Using the SUM() function to compute the total of the UnitPrice column Using Mathematical
Functions
The mathematical functions allow you to perform numerical operations, such as getting the absolute
value of a number. Table 4.4 lists the mathematical functions available in SQL Server. The
expression you may pass to the mathematical functions is typically a single column or value, but it
can also be a calculated field. Table 4.4: MATHEMATICAL FUNCTIONS
FUNCTION
DESCRIPTION
ABS(expression)
Returns the absolute value of expression . This is always a positive number.
ACOS(expression)
Returns the arccosine of expression .
ASIN(expression)
Returns the arcsine of expression .
ATAN(expression)
Returns the arctangent of expression .
ATN2(expression1 , expression2)
Returns the arctangent of the angle between expression1 and expression2 .
CEILING(expression)
Returns the smallest integer greater than or equal to expression .
COS(expression)
Returns the cosine of expression .
COT(expression)
Returns the cotangent of expression .
DEGREES(expression)
Converts the supplied angle in radians to an angle in degrees.

Mastering C# Database Programming @Team LiB82

© 2004 ... Your company

EXP(expression)
Returns the exponential value of expression .
FLOOR(expression)
Returns the largest integer less than or equal to expression .
LOG(expression)
Returns the natural logarithm of expression .
LOG10(expression)
Returns the base-10 logarithm of expression .
PI()
Returns the mathematical constant Pi.
POWER(expression , y)
Returns the value of expression raised to the power y .
RADIANS(expression)
Converts the supplied angle in degrees to an angle in radians.
RAND([expression])
Returns a random floating-point number between 0 and 1. The expression is an optional seed value
that you may use to generate the random number.
ROUND(expression , length [, function])
Returns the value of expression rounded or truncated to the number of decimal placed specified by
length . The optional function is used to specify the type of operation to perform: 0 (the default)
rounds the number, and any other value truncates the number.
SIGN(expression)
Returns 1, 0, or -1 depending on the sign of expression . Returns 1 for a positive number, 0 for zero,
or -1 for a negative number.
SIN(expression)
Returns the sine of expression .
SQUARE(expression)
Returns the square of expression .
SQRT(expression)
Returns the square root of expression .
TAN(expression)
Returns the tangent of expression .
Let's consider examples that use some of the mathematical functions. You use the ABS() function to
get the absolute value. The following example returns 10 and 15: SELECT ABS(-10), ABS(15);
You use the ACOS(), ASIN(), and ATAN() functions to get the arccosine, arcsine, and arctangent of a
number. The following example returns 0.0, 1.5707963267948966, and 0.78539816339744828:
SELECT ACOS(1), ASIN(1), ATAN(1);
You use the CEILING() function to get the smallest integer greater than or equal to the value passed
to it. The following example returns 2 and -1: SELECT CEILING(1.4), CEILING(-1.4);
You use the FLOOR() function to get the largest integer less than or equal to the value passed to it.
The following example returns 1 and -2: SELECT FLOOR(1.4), FLOOR(-1.4);
You use the PI() function to get the mathematical constant Pi. The following example returns
3.1415926535897931: SELECT PI();
You use the POWER() function to get the value of a number raised to a specified power. The
following example returns 8: SELECT POWER(2, 3);
You use the ROUND() function to get the value of a number rounded or truncated to a specified
length. The following example returns 1.23500, which is 1.23456 rounded to three decimal places:
SELECT ROUND(1.23456, 3);
The next example passes a non-zero number as the third parameter to ROUND(), which indicates
that the number is to be truncated rather than rounded, as was done in the previous example:
SELECT ROUND(1.23456, 3, 1);
This example returns 1.23400, which is 1.23456 truncated to three decimal places.
You use the SQUARE() function to get the square of a number. The following example returns 16.0:
SELECT SQUARE(4);
You use the SQRT() function to get the square root of a number. The following example returns 4.0:
SELECT SQRT(16); Using String Functions

Part 1: Introduction to ADO.NET and Databases 83

© 2004 ... Your company

The string functions allow you to manipulate strings. For example, you can replace specified
characters in a string. Table 4.5 lists the string functions available in SQL Server. Table 4.5: STRING
FUNCTIONS
FUNCTION
DESCRIPTION
ASCII(charExpression)
Returns the ASCII code for the leftmost character of charExpression .
CHAR(intExpression)
Returns the character that corresponds to the ASCII code specified by intExpression .
CHARINDEX (charExpression1 , charExpression2 [, start])
Returns the position of the characters specified by charExpression1 in charExpression2 , starting at
the optional position specified by start .
DIFFERENCE (charExpression1 , charExpression2)
Returns the difference between the SOUNDEX values of the two character expressions. You use the
SOUNDEX code to evaluate the phonetic similarity of two strings. The returned value is between 0
and 4; 4 indicates that the two expressions are phonetically identical.
LEFT(charExpression , intExpression)
Returns the leftmost characters specified by intExprssion from charExpression .
LEN(charExpression)
Returns the number of characters in charExpression .
LOWER(charExpression)
Converts the characters in charExpression to lowercase and returns those characters.
LTRIM(charExpression)
Removes any leading spaces from the start of charExpression and returns the remaining characters.
NCHAR(intExpression)
Returns the Unicode character with the code specified by intExpression .
PATINDEX('%pattern%', charExpression)
Returns the starting position of the first occurrence of pattern in charExpression . If pattern is not
found then zeros are returned.
REPLACE (charExpression1 , charExpression2 , charExpression3)
Replaces all occurrences of charExpression2 in charExpression1 with charExpression3 .
QUOTENAME ('charString ' [, 'quoteChar '])
Returns a Unicode string with the delimiters specified by quoteChar added to make charString a
valid delimited identifier.
REPLICATE (charExpression , intExpression)
Repeats charExpression a total of intExpression times.
REVERSE(charExpression)
Reverses the characters in charExpression and returns those characters.
RIGHT(charExpression , intExpression)
Returns the rightmost characters specified by intExprssion from charExpression .
RTRIM(charExpression)
Removes any trailing spaces from the end of charExpression and returns the remaining characters.
SOUNDEX(charExpression)
Returns the four-character SOUNDEX code. You use this code to evaluate the phonetic similarity of
two strings.
SPACE(intExpression)
Returns a string of repeated spaces for a total specified by intExpression .
STR(floatExpression [, length [, decimal]])
Converts the number specified by floatExpression to characters; length specifies the total number of
characters you want to see (including digits and spaces, plus the positive or negative sign and
decimal point); decimal specifies the number of digits to the right of the decimal point. The number is
rounded if necessary.
STUFF (charExpression1 , start , length , charExpression2)
Deletes characters from charExpression1 , starting at the position specified by start for a total of
length characters, and then inserts the characters specified by charExpression2 .
SUBSTRING(expression , start , length)

Mastering C# Database Programming @Team LiB84

© 2004 ... Your company

Returns part of a character, binary, text, or image expression .
UNICODE('nCharExpression')
Returns the Unicode value for the first character of the nchar or nvarchar expression
nCharExpression.
UPPER(charExpression)
Converts the characters in charExpression to uppercase and returns those characters.
Let's consider examples that use some of the string functions.
You use the ASCII() function to get the ASCII code for the leftmost character of the supplied character
expression. The following example returns 65 and 97: SELECT ASCII('A'), ASCII('a');
You use the CHAR() function to get the character that corresponds to the ASCII code of the supplied
integer expression. The following example returns A and a: SELECT CHAR(65), CHAR(97);
You use the CHARINDEX() function to get the position of characters. The following example returns
16, which is the position where the word ten starts: SELECT CHARINDEX('ten', 'Four-score and ten
years');
You use the DIFFERENCE() function to obtain the difference between the SOUNDEX values of two
character expressions. The following example returns 4, indicating that Brown and Browne are
phonetically identical: SELECT DIFFERENCE('Brown', 'Browne');
You use the LEFT() function to obtain the leftmost characters of a character expression. The following
example returns Four-score, which are the 10 leftmost characters of Four-score and ten years:
SELECT LEFT('Four-score and ten years', 10);
You use the RIGHT() function to obtain the rightmost characters of a character expression. The
following example returns years, which are the five rightmost characters of Four-score and ten years:
SELECT RIGHT('Four-score and ten years', 5);
You use the LEN() function to obtain the digits in a character expression. The following example
returns 24: SELECT LEN('Four-score and ten years');
You use the LOWER() function to obtain the lowercase version of a character expression. The
following example returns four-score and ten years: SELECT LOWER('FOUR-SCORE AND TEN
YEARS');
You use the UPPER() function to obtain the uppercase version of a character expression. The
following example returns FOUR-SCORE AND TEN YEARS: SELECT UPPER('four-score and ten
years');
You use the LTRIM() and RTRIM() functions to remove any spaces from the left and right of a
character expression. The following example returns FOUR-SCORE and AND TEN YEARS (spaces
removed): SELECT LTRIM(' FOUR-SCORE'), RTRIM('AND TEN YEARS ');
You use the STR() function to convert a numeric value to a string consisting of numbers. The first
parameter is the number to convert, the second is the total number of characters you want in your
string, and the third is the number of digits after the decimal point. The following example returns
123.46: SELECT STR(123.456, 6, 2);
The number 123.456 is converted to a string of six characters, with two digits after the decimal point,
and rounded.
You use the STUFF() function to replace characters. The first parameter is the string you want to
replace characters in, the second is the starting position, the third is the total number of characters,
and the fourth is the set of characters to insert. The following example returns Five-score and ten:
SELECT STUFF('Four-score and ten', 1, 4, 'Five');
Four is replaced with Five.
You use the SUBSTRING() function to obtain part of a string. The first parameter is the string, the
second is the starting position, and the third is the total number of characters. The following example
returns Four: SELECT SUBSTRING('Four-score and ten', 1, 4);
You use the UNICODE() function to obtain the Unicode value for the first character. The following
example returns 65 and 97: SELECT UNICODE('A'), UNICODE('a'); Using Date and Time Functions
The date and time functions allow you to manipulate dates and times. For example, you can add a
number of days to a given date. Table 4.6 lists the date and time functions available in SQL
Server. Table 4.6: DATE AND TIME FUNCTIONS
FUNCTION
DESCRIPTION
DATEADD(interval , number , date)

Part 1: Introduction to ADO.NET and Databases 85

© 2004 ... Your company

Returns a datetime that is the result of adding the specified number of interval units to date . Valid
intervals include year, quarter, month, dayofyear, day, week, hour, minute, second, and millisecond.
DATEDIFF (interval , startDate , endDate)
Returns the difference between startDate and endDate , with the difference calculated in interval
units (year, quarter, and so on).
DATENAME(interval , date)
Returns a character string that represents the name of interval part of date .
DATEPART(interval , date)
Returns an integer that represents the interval part of date .
DAY(date)
Returns an integer that represents the day part of date .
GETDATE()
Returns a datetime containing the current system date.
GETUTCDATE()
Returns a datetime containing the current system date as UTC time (Universal Time Coordinate or
Greenwich Mean Time). The UTC time is derived from the current local time and the system time-
zone setting.
MONTH(date)
Returns an integer that represents the month part of date .
YEAR(date)
Returns an integer that represents the year part of date .
Let's consider examples that use some of the date and time functions.
You use the DATEADD() function to add a number of intervals to a date. The following example adds
two days to the date 12/20/2003 and returns 2003-12-22 00:00:00.000: SELECT DATEADD(day, 2,
'12/20/2003');
You use the DATEDIFF() function to obtain the difference between two dates. The following example
obtains the difference between 12/20/2003 and 12/22/2003 in days and returns 2 days: SELECT
DATEDIFF(day, '12/20/2003', '12/22/2003');
You use the DATENAME() method to obtain a character string that represents the interval part of a
date. The following example gets the month name of 12/20/2003 and returns December: SELECT
DATENAME(month, '12/20/2003');
You use the DATEPART() method to obtain an integer that represents the interval part of a date. The
following example gets the month number of 12/20/2003 and returns 12: SELECT DATEPART(month,
'12/20/2003');
You use the DAY() function to obtain an integer that represents the day part of a date. The following
example gets the day number of 12/20/2003 and returns 20: SELECT DAY('12/20/2003');
You use the MONTH() function to obtain an integer that represents the month part of a date. The
following example gets the month number of 12/20/2003 and returns 12: SELECT
MONTH('12/20/2003');
You use the YEAR() function to obtain an integer that represents the year part of a date. The
following example gets the year number of 12/20/2003 and returns 2003: SELECT
YEAR('12/20/2003');
You use the GETDATE() function to obtain the current system date. The following example returns
2002-07-16 12:59:50.823: SELECT GETDATE();
You use the GETUTCDATE() function to obtain the current system date as UTC time. The following
example returns 2002-07-16 20:02:18.123: SELECT GETUTCDATE(); Using System Functions
The system functions allow you to manipulate and obtain information about values, objects, and
settings in SQL Server. For example, you can convert a value in one type to another type. Table 4.7
lists some of the system functions available in SQL Server. Table 4.7: SYSTEM FUNCTIONS
FUNCTION
DESCRIPTION
CONVERT(dataType expression [, style [(length)],])
Converts the value in expression to the type specified by dataType . If you are converting to an
nchar, nvarchar, char, varchar, binary, or varbinary type, you can also specify an optional length ,
which specifies the length of the new value. You can use the optional style when
Converting datetime or smalldatetime data to character data; style is the format for the date and time.

Mastering C# Database Programming @Team LiB86

© 2004 ... Your company

Converting float, real, money, or smallmoney data to character data; style is the string format for the
number. You can look up the details for style option in the SQL Server Books Online documentation.
COALESCE(expression1 [, ... expressionN])
Returns the first non-null expression in the list of expressions.
DATALENGTH(expression).
Returns the number of bytes used to represent expression .
@@ERROR
Returns the error number for the last T-SQL statement that was executed.
@@IDENTITY
Returns the last inserted identity value.
ISDATE(expression)
Returns 1 when expression is a valid date, otherwise 0 is returned.
ISNULL(expression , replacementValue)
If expression is null, then replacementValue is returned, otherwise expression is returned.
ISNUMERIC(expression).
Returns 1 when expression is a valid number, otherwise 0 is returned.
NEWID()
Returns a unique value of the uniqueidentifier type.
NULLIF(expression1 , expression2)
Returns a null if expression1 equals expression2.
@@ROWCOUNT
Returns the number of rows affected by the last T-SQL statement that was executed.
@@TRANCOUNT
Returns the number of active transactions for the currentconnection to the database.
Let's consider examples that use some of the system functions.
You use the CONVERT() function to convert a value from one type to another. The following example
converts the number 123.456 to an nvarchar and returns 123.456: SELECT CONVERT(nvarchar,
123.456);
You use the COALESCE() function to obtain the first non-null expression in a list. The following
example returns 123.456: SELECT COALESCE(null, null, 123.456, null);
You use the DATALENGTH() function to obtain the number of bytes used to represent an expression.
The following example displays the number of bytes used to represent the value stored in the
CompanyName column of the Customers table for the row where CustomerID equals ALFKI: SELECT
DATALENGTH(CompanyName), CompanyName FROM Customers WHERE CustomerID = 'ALFKI';
This example returns 38 and Alfreds Futterkiste, which contains 19 letters. Each letter is stored in 2
bytes, and the 19-letters string therefore takes up 38 bytes (2 * 19).
You use the ISDATE() function to determine if an expression is a valid date. ISDATE() returns 1 when
the expression is a valid date, otherwise it returns 0. The following example returns 1 and 0: SELECT
ISDATE('12/20/2004'), ISDATE(1234);
You use the ISNUMERIC() function to determine if an expression is a valid number. The following
example returns 1 and 0: SELECT ISNUMERIC(1234), ISNUMERIC('abc');
You use the ISNULL() function to replace a null value with another value. The following example
returns 10 and 20: SELECT ISNULL(null, 10), ISNULL(20, 10);

5.4.4 Creating User-Defined Functions

Creating User-Defined Functions
You can create your own user-defined functions in SQL Server. For example, you might want to
create your own function to compute the discounted price given the original price and factor to
multiply that price by. You create a function using the CREATE FUNCTION statement. There are
three types of userdefined functions:
Scalar functions Scalar functions return a single value. The returned value can be of any data type
except text, ntext, image, cursor, table, timestamp, and user-defined data types.
Inline table-valued functions Inline table-valued functions return an object of the table type. You
can think of a table as a regular database table, except it is stored in memory. An inline table-valued

Part 1: Introduction to ADO.NET and Databases 87

© 2004 ... Your company

function can return the results retrieved by only a single SELECT statement.
Multistatement table-valued functions Multistatement table-valued functions return an object of
the table type. Unlike an inline table-valued function, a multistatement table-valued function can
contain multiple T-SQL statements.
You'll see examples of these three types of functions in the following sections. Using Scalar
Functions
Scalar functions return a single value. Listing 4.2 shows the DiscountPrice.sql script that creates the
DiscountPrice() function, which returns the original price of an item multiplied by a discount factor.
These values are passed as parameters to the DiscountPrice() function. You can load this file into
Query Analyzer and run it.Listing 4.2: DISCOUNTPRICE.SQL /* DiscountPrice.sql creates a scalar
function to return the new price of an item given the original price and a discount factor */ CREATE
FUNCTION DiscountPrice(@OriginalPrice money, @Discount float) RETURNS money AS BEGIN
RETURN @OriginalPrice * @Discount END
The parameters to the function are placed in brackets after the name of the function in the CREATE
FUNCTION statement.Warning
Make sure you select the Northwind database from the drop-down list box on the Query Analyzer
toolbar before running the script. That way, the function is created in the Northwind database.
You can also create functions using Enterprise Manager. You do this by clicking the right mouse
button on the User Defined Functions node in the Databases folder and selecting New User Defined
Function. You can then cut and paste the contents of DiscountPrice.sql into the Enterprise Manager

properties dialog box, as shown in Figure 4.4.
Figure 4.4: Using Enterprise Manager to define a function
You can view and modify a function by double-clicking the function name in Enterprise Manager. You
can also delete a function using Enterprise Manager. The Object Browser of Query Analyzer allows
you to view, modify, and delete functions as well.Tip
You can also delete a function using the DROP FUNCTION statement, and you can modify a
function using the ALTER FUNCTION statement.
Once you've created the function, you can call it. When calling a scalar function, you use the
following syntax:owner .functionName
Where owner is the database user who owns the function, and functionName is the name of the
function.
Let's say you created the DiscountPrice() function using the dbo user, then you call that function
using dbo.DiscountPrice(). The following example returns 3.0000, which is 10 * 0.3: SELECT
dbo.DiscountPrice(10, 0.3);
As with any other function, you can pass a column to DiscountPrice(). The following example returns
5.4000 and 18.0000; 5.4000 is 18.0000 * 0.3: SELECT dbo.DiscountPrice(UnitPrice, 0.3), UnitPrice
FROM Products WHERE ProductID = 1;
You can of course also pass variables as parameters to a function. As before, this example returns
5.4000 and 18.0000: DECLARE @MyDiscountFactor float SET @MyDiscountFactor = 0.3 SELECT
dbo.DiscountPrice(UnitPrice, @MyDiscountFactor), UnitPrice FROM Products WHERE ProductID =
1; Using Inline Table-Valued Functions

Mastering C# Database Programming @Team LiB88

© 2004 ... Your company

An inline table-valued function returns an object of the table type, which is populated using a single
SELECT statement. Unlike a scalar function, an inline table-valued function doesn't contain a body of
statements placed within BEGIN and END statements. Instead, only a single SELECT statement is
placed within the function.
For example, Listing 4.3 shows the ProductsToBeReordered.sql script that creates the
ProductsToBeReordered() function. This function returns a table containing the rows from the
Products table with a UnitsInStock column value less than or equal to the reorder level parameter
passed to the function.Listing 4.3: PRODUCTSTOBEREORDERED.SQL /*
ProductsToBeReordered.sql creates an inline table-valued function to return the rows from the
Products table whose UnitsInStock column is less than or equal to the reorder level passed as a
parameter to the function */ CREATE FUNCTION ProductsToBeReordered(@ReorderLevel int)
RETURNS table AS RETURN (SELECT * FROM Products WHERE UnitsInStock <=
@ReorderLevel)
Unlike a scalar function, you don't have to add the owner when calling an inline table-valued function.
You use a SELECT statement to read the table returned by the function as you would any other table.
For example, the following SELECT statement displays all the rows and columns returned by the
function call ProductsToBeReordered(10): SELECT * FROM ProductsToBeReordered(10);
You can of course also display only selected columns and rows from the table returned by an inline
table-valued function. For example: SELECT ProductID, ProductName, UnitsInStock FROM
ProductsToBeReordered(10) WHERE ProductID <= 50;
Figure 4.5 shows the results of this SELECT

statement.
Figure 4.5: Using an inline table-valued function Using Multistatement Table-Valued Functions
Multistatement table-valued functions return an object of the table type. Unlike an inline table-valued
function, a multistatement table-valued function can contain multiple T-SQL statements, and allow
you to build complex functions.
For example, Listing 4.4 shows the ProductsToBeReordered2.sql script that creates the
ProductsToBeReordered2() function. This function returns a table containing the ProductID,
ProductName, and UnitsInStock columns from the Products table with a UnitsInStock column value
less than or equal to the reorder level parameter. In addition, a new column named Reorder is added
to the table, which contains the word Yes or No, depending on whether the product must be
reordered.Listing 4.4: PRODUCTSTOBEREORDERED2.SQL /* ProductsToBeReordered2.sql

Part 1: Introduction to ADO.NET and Databases 89

© 2004 ... Your company

creates an inline table-valued function that returns the rows from the Products table whose
UnitsInStock column is less than or equal to the reorder level passed as a parameter to the function
*/ CREATE FUNCTION ProductsToBeReordered2(@ReorderLevel int) RETURNS @MyProducts
table (ProductID int, ProductName nvarchar(40), UnitsInStock smallint, Reorder nvarchar(3))
AS BEGIN -- retrieve rows from the Products table and -- insert them into the MyProducts table, --
setting the Reorder column to 'No' INSERT INTO @MyProducts SELECT ProductID,
ProductName, UnitsInStock, 'No' FROM Products; -- update the MyProducts table, setting the --
Reorder column to 'Yes' when the UnitsInStock -- column is less than or equal to @ReorderLevel
UPDATE @MyProducts SET Reorder = 'Yes' WHERE UnitsInStock <= @ReorderLevel RETURN
END
As with an inline table-valued function, you don't have to add the owner when calling an inline table-
valued function. You use a SELECT statement to read the table returned by the function as you would
any other regular database table. For example, the following SELECT statement displays all the rows
and columns returned by the function call ProductsToBeReordered2(20): SELECT * FROM
ProductsToBeReordered2(20);

Figure 4.6 shows the results of this SELECT statement.
Figure 4.6: Using a multistatement table-valued function
In the next section, you'll learn how to use stored procedures.

5.4.5 Introducing Stored Procedures

Introducing Stored Procedures
SQL Server allows you to store procedures in a database. Stored procedures differ from user-defined
functions in that procedures can return a much wider array of data types.
You'll typically create a stored procedure when you need to perform a task that intensively uses the
database, or you want to centralize code in the database that any user can call rather than have each
user write their own program to perform the same task. One example of intensive database use is a
banking application by which you need to update accounts at the end of each day. One example of
when you'd use centralized code is when you want to restrict user access to database tables: you
might want users to be able to add a row to a table only through a procedure so that no mistakes are
made.
In this section, you'll learn how to create a stored procedure in the Northwind database and run it
using the Query Analyzer tool. Creating a Stored Procedure
The procedure you'll see in this section is named AddProduct(). This procedure adds a row to the
Products table, setting the column values for the new row to those passed as parameters to the
procedure.
The ProductID column for the new row is assigned a value automatically by the database through the
use of an identity that was set up when the table was originally created. This identity value may be
read using the @@IDENTITY function after the new row is added to the table. The AddProduct()

Mastering C# Database Programming @Team LiB90

© 2004 ... Your company

procedure you'll see here returns that identity value to the calling statement.
You create a procedure using the CREATE PROCEDURE statement, and Listing 4.5 shows the
AddProduct.sql script that creates the AddProduct() procedure.Listing 4.5: ADDPRODUCT.SQL /*
AddProduct.sql creates a procedure that adds a row to the Products table using values passed as
parameters to the procedure. The procedure returns the ProductID of the new row. */ CREATE
PROCEDURE AddProduct @MyProductName nvarchar(40), @MySupplierID int, @MyCategoryID
int, @MyQuantityPerUnit nvarchar(20), @MyUnitPrice money, @MyUnitsInStock smallint,
@MyUnitsOnOrder smallint, @MyReorderLevel smallint, @MyDiscontinued bit AS DECLARE
@ProductID int -- insert a row into the Products table INSERT INTO Products (ProductName,
SupplierID, CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel,
Discontinued) VALUES (@MyProductName, @MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, @MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, @MyReorderLevel,
@MyDiscontinued) -- use the @@IDENTITY function to get the last inserted -- identity value,
which in this case is the ProductID of -- the new row in the Products table SET @ProductID =
@@IDENTITY -- return the ProductID RETURN @ProductID
You can also create procedures using Enterprise Manager. You do this by clicking the right mouse,
button on the Stored Procedures node in the Databases folder and selecting New Stored Procedure.
You can then cut and paste the contents of AddProduct.sql into the Enterprise Manager properties
dialog box, as shown in Figure 4.7. You'll notice I've added some comments to the start of the file that

indicate what the procedure does.
Figure 4.7: Using Enterprise Manager to define a procedure
You can view and modify a procedure by double-clicking the procedure name in Enterprise Manager.
You can also delete a procedure using Enterprise Manager. The Object Browser of Query Analyzer
allows you to view, modify, and delete procedures as well.Tip
You can also delete a procedure using the DROP PROCEDURE statement, and you can modify a
procedure using the ALTER PROCEDURE statement.
In the next section, you'll see how to run a stored procedure. Running a Stored Procedure
You run a procedure using the EXECUTE statement. For example, the following statements run the
AddProduct() procedure: DECLARE @MyProductID int EXECUTE @MyProductID = AddProduct
'Widget', 1, 1, '1 Per box', 5.99, 10, 5, 5, 1 PRINT @MyProductID
With the initial set of rows in the Products table, the next identity value generated by SQL Server for
the ProductID is 78, which is the value displayed by the previous example if you run it.
You can of course also pass variables as parameters to a procedure. The following example displays
79-the next ProductID: DECLARE @MyProductID int DECLARE @MyProductName nvarchar(40)
DECLARE @MySupplierID int DECLARE @MyCategoryID int DECLARE @MyQuantityPerUnit
nvarchar(20) DECLARE @MyUnitPrice money DECLARE @MyUnitsInStock smallint DECLARE
@MyUnitsOnOrder smallint DECLARE @MyReorderLevel smallint DECLARE @MyDiscontinued bit
SET @MyProductName = 'Wheel' SET @MySupplierID = 2 SET @MyCategoryID = 1 SET
@MyQuantityPerUnit = '4 per box' SET @MyUnitPrice = 99.99 SET @MyUnitsInStock = 10 SET
@MyUnitsOnOrder = 5 SET @MyReorderLevel = 5 SET @MyDiscontinued = 0 EXECUTE
@MyProductID = AddProduct @MyProductName, @MySupplierID, @MyCategoryID,

Part 1: Introduction to ADO.NET and Databases 91

© 2004 ... Your company

@MyQuantityPerUnit, @MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, @MyReorderLevel,
@MyDiscontinued PRINT @MyProductID

5.4.6 Introducing Triggers

Introducing Triggers
A database trigger is a special kind of stored procedure that is run automatically by the database-or
in trigger terms, fired -after a specified INSERT, UPDATE, or DELETE statement is run against a
specified database table. Triggers are very useful for doing things such as auditing changes made to
column values in a table.
A trigger can also fire instead of an INSERT, UPDATE, or DELETE. For example, instead of
performing an INSERT to add a row to the Products table, a trigger could raise an error if a product
with the same ProductID already existed in the table.
As mentioned, triggers are very useful for auditing changes made to column values. In this section,
you'll see an example of a trigger that will audit changes made to the Products table.
Also, when an UPDATE statement modifies the UnitPrice column of a row in the Products table, a row
will be added to the ProductAudit table. Finally, when a DELETE statement removes a row from the
Products table, a row will be added to the ProductAudit table.
Before you see the triggers, you'll need to create the ProductAudit table. Listing 4.6 shows the
ProductAudit.sql script that creates the ProductAudit table.Listing 4.6: PRODUCTAUDIT.SQL /*
ProductAudit.sql creates a table that is used to store the results of triggers that audit modifications
to the Products table */ USE Northwind CREATE TABLE ProductAudit (ID int IDENTITY(1, 1)
PRIMARY KEY, Action nvarchar(100) NOT NULL, PerformedBy nvarchar(15) NOT NULL
DEFAULT User, TookPlace datetime NOT NULL DEFAULT GetDate())
The IDENTITY clause creates an identity for the ID primary key column of the ProductAudit table. An
identity automatically generates values for a column. The identity for the ID column starts with the
value 1, which is incremented by 1 after each INSERT. The Action column stores a string that records
the action performed, for example, 'Product added with ProductID of 80'. The PerformedBy column
stores the name of the user who performed the action; this is defaulted to User, which returns the
current user. The TookPlace column stores the date and time when the action took place; this is
defaulted using the GetDate() function, which returns the current date and time.
In the following sections, you'll learn how to create and use the following triggers:
InsertProductTrigger Fires after an INSERT statement is performed on the Products table.
UpdateUnitPriceProductTrigger Fires after an UPDATE statement is performed on the Products
table.
DeleteProductTrigger Fires after a DELETE statement is performed on the Products table.
First off, let's examine InsertProductTrigger. Creating InsertProductTrigger
You create a trigger using the CREATE TRIGGER statement. Listing 4.7 shows the
InsertProductTrigger.sql script that creates the trigger InsertProductTrigger, which audits the addition
of new rows to the Products table.Listing 4.7: INSERTPRODUCTTRIGGER.SQL /*
InsertProductTrigger.sql creates a trigger that fires after an INSERT statement is performed on the
Products table */ CREATE TRIGGER InsertProductTrigger ON Products AFTER INSERT AS --
don't return the number of rows affected SET NOCOUNT ON -- declare an int variable to store the
new -- ProductID DECLARE @NewProductID int -- get the ProductID of the new row that -- was
added to the Products table SELECT @NewProductID = ProductID FROM inserted -- add a row
to the ProductAudit table INSERT INTO ProductAudit (Action) VALUES ('Product added with
ProductID of ' + CONVERT(nvarchar, @NewProductID))
There are several things you should notice about this CREATE TRIGGER statement:
The AFTER INSERT clause specifies that the trigger is to fire after an INSERT statement is
performed.
SET NOCOUNT ON prevents the trigger from returning the number of rows affected. This improves
performance of the trigger.
You can retrieve column values for the INSERT statement that caused the trigger to fire by performing
a SELECT against the special inserted table. For example, you can retrieve all the columns of a
newly added row using SELECT * FROM inserted. The trigger code retrieves the ProductID column of

Mastering C# Database Programming @Team LiB92

© 2004 ... Your company

the new row from the inserted table.
The INSERT statement that adds a row to the ProductAudit table supplies a value only for the Action
column. This is because the ID, PerformedBy, and TookPlace column values are set automatically by
SQL Server.
You can also create, edit, and delete triggers using Enterprise Manager. You do this by first clicking
the Tables node in the Databases folder, then clicking the right mouse button on the table you want to
modify, and then selecting All Tasks £ Manage Triggers. Figure 4.8 shows InsertProductTrigger in
Enterprise Manager. You'll notice I've added some comments to the start of the code that indicates

what the trigger does.
Figure 4.8: Using Enterprise Manager to view a trigger
The Object Browser of Query Analyzer also allows you to view, modify, and delete triggers.Tip
You can delete a trigger using the DROP TRIGGER statement, and you can modify a trigger using
the ALTER TRIGGER statement. Testing InsertProductTrigger
To test InsertProductTrigger, all you have to do is to add a row to the Products table using an
INSERT statement. For example: INSERT INTO Products (ProductName, SupplierID, UnitPrice)
VALUES ('Widget', 1, 10)
You can check that InsertProductTrigger fired by retrieving the rows from the ProductAudit table using
the following SELECT statement: SELECT * FROM ProductAudit
The row added to the ProductAudit table by InsertProductTrigger as a result of performing the
previous INSERT statement is shown in Table 4.8. Table 4.8: ROW ADDED TO THE ProductAudit
TABLE BY InsertProductTrigger
ID
ACTION
PERFORMEDBY
TOOKPLACE
1
Product added with
ProductID of 80
dbo
2002-07-18 13:55:12.620 Creating and Testing UpdateUnitPriceProductTrigger

Part 1: Introduction to ADO.NET and Databases 93

© 2004 ... Your company

The UpdateUnitPriceProductTrigger trigger fires after an UPDATE statement is performed on the
UnitPrice column of the Products table. If the reduction of the unit price of a product is greater than 25
percent, then a row is added to the ProductAudit table to audit the change. Listing 4.8 shows the
UpdateUnitPriceProductTrigger.sql script.Listing 4.8: UPDATEUNITPRICEPRODUCTTRIGGER.SQL
/* UpdateUnitPriceProductTrigger.sql creates a trigger that fires after an UPDATE statement is
performed on the the UnitPrice column of the Products table. If the reduction of the unit price of a
product is greater than 25% then a row is added to the ProductAudit table to audit the change. */
CREATE TRIGGER UpdateUnitPriceProductTrigger ON Products AFTER UPDATE AS -- don't
return the number of rows affected SET NOCOUNT ON -- only run the code if the UnitPrice
column -- was modified IF UPDATE(UnitPrice) BEGIN -- declare an int variable to store the --
ProductID DECLARE @MyProductID int -- declare two money variables to store the -- old unit
price and the new unit price DECLARE @OldUnitPrice money DECLARE @NewUnitPrice money
-- declare a float variable to store the price -- reduction percentage DECLARE
@PriceReductionPercentage float -- get the ProductID of the row that -- was modified from the
inserted table SELECT @MyProductID = ProductID FROM inserted -- get the old unit price from
the deleted table SELECT @OldUnitPrice = UnitPrice FROM deleted WHERE ProductID =
@MyProductID -- get the new unit price from the inserted table SELECT @NewUnitPrice =
UnitPrice FROM inserted -- calculate the price reduction percentage SET
@PriceReductionPercentage = ((@OldUnitPrice -@NewUnitPrice) / @OldUnitPrice) * 100 -- if
the price reduction percentage is greater than 25% -- then audit the change by adding a row to the
PriceAudit table IF (@PriceReductionPercentage > 25) BEGIN -- add a row to the ProductAudit
table INSERT INTO ProductAudit (Action) VALUES ('UnitPrice of ProductID #' +
CONVERT(nvarchar, @MyProductID) + ' was reduced by ' + CONVERT(nvarchar,
@PriceReductionPercentage) + '%') END END
There are a couple of things you should notice about this CREATE TRIGGER statement:
The AFTER UPDATE clause specifies that the trigger is to fire after an UPDATE statement is
performed.
You can retrieve the old column values before the UPDATE was applied from the deleted table, and
you can retrieve the new column values after the UPDATE was applied from the inserted table.
To test UpdateUnitPriceProductTrigger, all you have to do is to reduce the value of the UnitPrice
column for a row in the Products table using an UPDATE statement. For example, the following
UPDATE statement multiplies the UnitPrice by 0.70 for the row with a ProductID of 80 (this reduces
the UnitPrice of that row by 30 percent): UPDATE Products SET UnitPrice = UnitPrice * 0.70 WHERE
ProductID = 80
The row added to the ProductAudit table as a result of performing this UPDATE statement is shown in
Table 4.9. This row is added by UpdateUnitPriceProductTrigger. Table 4.9: ROW ADDED TO THE
ProductAudit TABLE BY UpdateUnitPriceProductTrigger
ID
ACTION
PERFORMEDBY
TOOKPLACE
2
UnitPrice of ProductID #80
was reduced by 30%
dbo
2002-07-18 17:26:37.590 Creating and Testing DeleteProductTrigger
The DeleteProductTrigger trigger fires after a DELETE statement is performed on the Products table.
This trigger adds a row to the ProductAudit table to audit the change. Listing 4.9 shows the
DeleteProductTrigger.sql script.Listing 4.9: DELETEPRODUCTTRIGGER.SQL /*
DeleteProductTrigger.sql creates a trigger that fires after a DELETE statement is performed on the
Products table */ CREATE TRIGGER DeleteProductTrigger ON Products AFTER DELETE AS --
don't return the number of rows affected SET NOCOUNT ON -- declare an int variable to store the
-- ProductID DECLARE @NewProductID int -- get the ProductID of the row that -- was removed
from the Products table SELECT @NewProductID = ProductID FROM deleted -- add a row to the
ProductAudit table INSERT INTO ProductAudit (Action) VALUES ('Product #' +
CONVERT(nvarchar, @NewProductID) + ' was removed')

Mastering C# Database Programming @Team LiB94

© 2004 ... Your company

To test DeleteProductTrigger, all you have to do is to remove a row from the Products table using a
DELETE statement. For example, the following DELETE statement removes the row with the
ProductID of 80: DELETE FROM Products WHERE ProductID = 80
The row added to the ProductAudit table as a result of performing this DELETE statement is shown in
Table 4.10. This row is added by DeleteProductTrigger. Table 4.10: ROW ADDED TO THE
ProductAudit TABLE BY DeleteProductTrigger
ID
ACTION
PERFORMEDBY
TOOKPLACE
3
Product #80 was removed
dbo
2002-07-18 17:35:53.510

5.4.7 Summary

Summary
In this chapter, you learned about programming with Transact-SQL. T-SQL enables you to write
programs that contain SQL statements, along with standard programming constructs such as
variables, conditional logic, loops, procedures, and functions.
SQL Server provides a number of functions you can use to get values from the database. For
example, you can use the COUNT() function to get the number of rows in a table. You saw how to use
the following functions: aggregate, mathematical, string, date and time, and system.
You can create your own user-defined functions in SQL Server. For example, you might want to
create your own function to compute the discounted price given the original price and factor to
multiply that price by.
SQL Server allows you to store procedures in a database. Stored procedures differ from user-defined
functions in that procedures can return a much wider array of data types. You'll typically create a
stored procedure when you need to perform a task that intensively uses the database, or you want to
centralize code in the database that any user can call rather than have each user write their own
program to perform the same task.
In the next chapter, you'll learn about the ADO.NET classes.

5.5 Chapter 5: Overview of the ADO.NET Classes

Chapter 5: Overview of the ADO.NET ClassesOverview
ADO.NET allows you to interact with a database directly using objects of the managed provider
classes. These objects allow you to connect to the database and execute SQL statements while
directly connected to the database. The example program you saw in Chapter 1 showed how to
connect to a database directly and read the rows from a table in a forward-only direction.
ADO.NET also allows you to work in a disconnected manner. When doing this, you store information
from a database locally in the memory of the computer on which your program is running. You store
that information using objects of the data set classes. Once you have that information in the memory,
you can then read and manipulate that information. For example, you can display the columns for the
rows, add new rows, modify rows, and delete rows. Periodically, you'll reconnect to the database to
synchronize your changes you've made locally with the database. This disconnected model allows
you to write applications that run on the Internet, as well as for devices that aren't always connected
to the database-PDAs such as the Palm and the Pocket PC, for example.
This chapter provides descriptions of the ADO.NET classes, as well as a complete C# program that
connects to a database, stores the rows locally, disconnects from the database, and then reads the
contents of those local rows while disconnected from the database. This capability to store a local
copy of rows retrieved from the database is one of the main strengths of ADO.NET. The example

Part 1: Introduction to ADO.NET and Databases 95

© 2004 ... Your company

program illustrates the basic ideas of using the ADO.NET disconnected model to read rows from the
database and store them locally in memory. In later chapters, you'll see how to modify data locally
and then synchronize those changes with the database.
This chapter lays the foundation for Part II, "Fundamental Database Programming with ADO.NET,"
where you'll see the details of the various ADO.NET classes.
Featured in this chapter:
The Managed Provider and Generic Data Set Classes
Performing a SQL SELECT Statement and Storing the Rows Locally

5.5.1 The Managed Provider and Generic Data Set Classes

The Managed Provider and Generic Data Set Classes
To provide both connected and disconnected database access, ADO.NET defines two sets of
classes: managed provider and generic data.
You use objects of the managed provider classes to directly connect to a database and to
synchronize your locally stored data with the database. You can use the managed provider classes to
read rows from the database in a forward-only direction. You use a different set of managed provider
classes depending on the database you use.
You use objects of the generic data classes to store a local copy of the information retrieved from the
database. This copy is stored in the memory of the computer where the C# program is running. The
main generic data class is the System.Data.DataSet class. The generic data classes, as their name
suggests, are not specific to any database, and you always use the same classes regardless of the
database you use. The generic data classes represent information retrieved from the database as
XML. The Managed Provider Classes
The managed provider objects allow you to directly access a database, and you'll be introduced to the
classes that allow you to create these objects in this section. You use the managed provider objects
to connect to the database and read and write information to and from the database.
Figure 5.1 illustrates some of the managed provider objects and how they relate to each

other.
Figure 5.1: Some of the managed provider objects

Mastering C# Database Programming @Team LiB96

© 2004 ... Your company

There are currently three sets of managed provider classes, and each set is designed to work with
different database standards:
SQL Server Managed Provider Classes You use the SQL Server managed provider classes to
connect to a SQL Server database.
OLE DB Managed Provider Classes You use the OLE DB (Object Linking and Embedding for
Databases) managed provider classes to connect to any database that supports OLE DB, such as
Access or Oracle.
ODBC Managed Provider Classes You use the ODBC (Open Database Connectivity) managed
provider classes to connect to any database that supports ODBC. All the major databases support
ODBC, but ODBC is typically slower than the previous two sets of classes when working with .NET.
You should use the ODBC managed provider classes only when there aren't any alternative OLE DB
managed provider classes.
These three sets of classes all implement the same basic functionality.Note
Whenever you see Sql at the start of a managed provider class name, you know that class is used
with a SQL Server database. For example, SqlConnection allows you to connect to a SQL Server
database. Similarly, OleDb is for databases that support OLE DB. For example, OleDbConnection
allows you to connect to a database using OLE DB. Finally, Odbc is for databases that support
ODBC. For example, OdbcConnection allows you to connect to a database using ODBC. I refer to all
of these classes as the Connection classes.
You'll see some of the various managed provider classes in the following sections.The Connection
Classes
There are three Connection classes: SqlConnection, OleDbConnection, and OdbcConnection. You
use an object of the SqlConnection class to connect to a SQL Server database. You use an object of
the OleDbConnection class to connect to any database that supports OLE DB, such as Access or
Oracle. You use an object of the OdbcConnection class to connect to any database that supports
ODBC. Ultimately, all communication with a database is done through a Connection object.The
Command Classes
There are three Command classes: SqlCommand, OleDbCommand, and OdbcCommand. You use a
Command object to run a SQL statement, such as a SELECT, INSERT, UPDATE, or DELETE
statement. You can also use a Command object to call a stored procedure or retrieve rows from a
specific table. You run the command stored in a Command object using a Connection object. The
Parameter Classes
There are three Parameter classes: SqlParameter, OleDbParameter, and OdbcParameter. You use a
Parameter object to pass a parameter to a Command object. You can use a Parameter to pass a
value to a SQL statement or a stored procedure call. You can store multiple Parameter objects in a
Command object through a ParameterCollection object.The ParameterCollection Classes
There are three ParameterCollection classes: SqlParameterCollection, OleDbParameterCollection,
and OdbcParameterCollection. You use a ParameterCollection object to store multiple Parameter
objects for a Command object.The DataReader Classes
There are three DataReader classes: SqlDataReader, OleDbDataReader, and OdbcDataReader. You
use a DataReader object to read rows retrieved from the database using a Command object.
DataReader objects can only be used to read rows in a forward direction. DataReader objects act as
an alternative to a DataSet object. You cannot use a DataReader to modify rows in the database.Tip
Reading rows using a DataReader object is typically faster than reading from a DataSet .The
DataAdapter Classes
There are three DataAdapter classes: SqlDataAdapter, OleDbDataAdapter, and OdbcDataAdapter.
You use a DataAdapter object to move rows between a DataSet object and a database. You use a
DataAdapter object to synchronize your locally stored rows with the database. This synchronization is
performed through a Connection object. For example, you can read rows from the database into a
DataSet through a DataAdapter, modify those rows in your DataSet, and then push those changes to
the database through a Connection object.The CommandBuilder Classes
There are three CommandBuilder classes: SqlCommandBuilder, OleDbCommandBuilder, and
OdbcCommandBuilder. You use a CommandBuilder object to automatically generate single-table
INSERT, UPDATE, and DELETE commands that synchronize any changes you make to a DataSet
object with the database. This synchronization is performed through a DataAdapter object.The
Transaction Classes

Part 1: Introduction to ADO.NET and Databases 97

© 2004 ... Your company

There are three Transaction classes: SqlTransaction, OleDbTransaction, and OdbcTransaction. You
use a Transaction object to represent a database transaction . A database transaction is a group of
statements that modify the rows in the database. These statements are considered a logical unit of
work. For example, in the case of a banking transaction, you might want to withdraw money from one
account and deposit it into another. You would then commit both of these changes as one unit, or if
there's a problem, roll back both changes. Namespaces for the Managed Provider Classes
The managed provider classes for SQL Server (SqlConnection and so on) are declared in the
System.Data.SqlClient namespace. The classes for OLE DB-compliant databases (SqlDbConnection
and so on) are declared in the System.Data.OleDb namespace. The classes for ODBC-compliant
databases (OdbcConnection and so on) are declared in the System.Data.Odbc namespace.Note
At time of writing, you have to download the ODBC managed provider classes from Microsoft's Web
site at http://msdn.microsoft.com/downloads . This download is separate from the .NET SDK. Look for
"ODBC .NET Data Provider" in the MSDN table of contents.
In the following section, you'll learn about the generic data classes. The Generic Data Classes
As you learned in the previous section, you can use the managed data provider objects to connect to
the database through a Connection object, issue a SQL statement through a Command object, and
read retrieved rows using a DataReader object; however, you can read rows only in a forward only
direction and you must be connected to the database.
The generic data objects allow you to store a local copy of the information stored in the database.
This allows you to work the information while disconnected from the database. You can read the rows
in any order, and you can search, sort, and filter those rows in a flexible manner. You can even make
changes to those rows and then synchronize those changes with the database
Figure 5.2 illustrates some of the generic data set objects and how they relate to each other. The
bridge between the managed provider and generic data set objects is the DataAdapter, which you use
to synchronize changes between your DataSet and the

database.
Figure 5.2: Some of the generic data set objects
The following sections outline some of the generic data classes.The DataSet Class
You use an object of the DataSet class to represent a local copy of the information stored in the
database. You can make changes to that local copy in your DataSet and then later synchronize those
changes with the database through a managed provider DataAdapter object. A DataSet object can

Mastering C# Database Programming @Team LiB98

© 2004 ... Your company

represent database structures such as tables, rows, and columns. You can even add constraints to
your locally stored tables to enforce unique and foreign key constraints.
You can also use a DataSet object to represent XML data. In fact, all information stored in a DataSet
is represented using XML, including information retrieved from the database.The DataTable Class
You use an object of the DataTable class to represent a table. You can store multiple DataTable
objects in a DataSet through a DataTableCollection object. A DataSet object has a property named
Tables, which you use to access the DataTableCollection containing the DataTable objects stored in
that DataSet. The DataRow Class
You use an object of the DataRow class to represent a row. You can store multiple DataRow objects
in a DataTable through a DataRowCollection object. A DataTable object has a property named Rows,
which you use to access the DataRowCollection containing the DataRow objects stored in that
DataTable.The DataColumn Class
You use an object of the DataColumn class to represent a column. You can store multiple
DataColumn objects in a DataTable through a DataColumnCollection object. A DataTable object has
a property named Columns, which you use to access the DataColumnCollection containing the
DataColumn objects stored in that DataTable. The Constraint Class
You use an object of the Constraint class to represent a database constraint that is to be enforced on
one or more DataColumn objects of a DataTable. You can store multiple Constraint objects in a
DataTable through a ConstraintCollection object. A DataTable object has a property named
Constraints, which you use to access the ConstraintCollection containing the Constraint objects
stored in that DataTable.The DataView Class
You use an object of the DataView class to view only specific rows in a DataTable object using a
filter, which specifies the criteria to restrict the rows.The DataRelation Class
You use an object of the DataRelation class to represent a relationship between two DataTable
objects. You can use a DataRelation object to model parent-child relationships between two database
tables. You can store multiple DataRelation objects in a DataSet through a DataRelationCollection
object. A DataSet object has a property named Relations, which you use to access the
DataRelationCollection containing the DataRelation objects stored in that DataSet.The
UniqueConstraint Class
You use an object of the UniqueConstraint class to represent a database constraint that enforces that
the value stored in a DataColumn object is unique. The UniqueConstraint class is derived from the
Constraint class. You can store multiple UniqueConstraint objects in a DataTable through a
ConstraintCollection object.The ForeignKeyConstraint Class
You use an object of the ForeignKeyConstraint class to specify the action performed when the column
values in the parent table are updated or deleted.
The ForeignKeyConstraint class is derived from the Constraint class. You can either have the child
rows deleted (cascading action), set the child columns to null, or set the child columns to a default
value. You can store multiple ForeignKeyConstraint objects in a DataTable through a
ConstraintCollection object.Namespaces for the Generic Data Classes
The DataSet, DataTable, DataRow, DataColumn, DataRelation, Constraint, and DataView classes
are all declared in the System.Data namespace. This namespace contains other classes that you can
use in your programs. You can view the full set of classes declared in the System.Data namespace
using the .NET documentation. Chapter 1 explains how you access this documentation.
In the next section, you'll see a simple example that illustrates how to issue a SQL SELECT
statement that retrieve rows from the Customers table, and then stores the returned rows in a DataSet
object. This program will give you a basic understanding on how to use some of the managed
provider and generic data classes previously outlined. In Part II, you'll see the details of the various
classes used in this example.

5.5.2 Performing a SQL SELECT Statement and Storing the Rows Locally

Performing a SQL SELECT Statement and Storing the Rows Locally
In the example featured in this section, you'll see how to connect to the SQL Server Northwind
database and perform a SQL SELECT statement to retrieve the CustomerID, CompanyName,
ContactName, and Address columns for the first 10 rows from the Customers table. These rows are

Part 1: Introduction to ADO.NET and Databases 99

© 2004 ... Your company

stored in a DataSet object.Note
Since I'll be using a SQL Server database, I'll use the SQL Server managed provider classes in the
example. Outlining the Procedure
You can use the following steps to retrieve the rows into a DataSet object:
Formulate a string containing the details of the database connection.
Create a SqlConnection object to connect to the database, passing the connection string to the
constructor.
Formulate a string containing a SELECT statement to retrieve the columns for the rows from the
Customers table.
Create a SqlCommand object to hold the SELECT statement.
Set the CommandText property of the SqlCommand object to the SELECT string.
Create a SqlDataAdapter object.
Set the SelectCommand property of the SqlAdapter object to the SqlCommand object.
Create a DataSet object to store the results of the SELECT statement.
Open the database connection using the Open() method of the SqlConnection object.
Call the Fill() method of the SqlDataAdapter object to retrieve the rows from the table, storing the
rows locally in a DataTable of the DataSet object.
Close the database connection, using the Close() method of the SqlConnection object created in step
1.
Get the DataTable object from the DataSet object.
Display the columns for each row in the DataTable, using a DataRow object to access each row in the
DataTable.
In the following sections, you'll learn the details of these steps and see example code. Step 1:
Formulate a String Containing the Details of the Database Connection
When connecting to a SQL Server database, your string must specify the following:
The name of the computer on which SQL Server is running. You set this in the server part of the
string. If SQL Server is running on your local computer, you can use localhost as the server name.
For example: server=localhost.
The name of the database. You set this in the database part of the string. For example:
database=Northwind.
The name of the user to connect to the database as. You set this in the uid part of the string. For
example: uid=sa.
The password for the database user. You set this in the pwd part of the string. For example:
pwd=sa.Note
Typically, your organization's DBA (database administrator) will provide you with the appropriate
values for the connection string. The DBA is responsible for administering the database.
The following example creates a string named connectionString and sets it to an appropriate string to
connect to the Northwind database running on the local computer, using the sa user (with a password
of sa) to connect to that database: string connectionString =
"server=localhost;database=Northwind;uid=sa;pwd=sa";
Your connection string will differ based on how you connect to your Northwind database.Step 2:
Create a SqlConnection Object to Connect to the Database
Create a SqlConnection object to connect to the database, passing the connection string created in
the previous step to the constructor. You use an object of the SqlConnection class to connect to a
SQL Server database.
The following example creates a SqlConnection object named mySqlConnection, passing
connectionString (created in step 1) to the constructor: SqlConnection mySqlConnection = new
SqlConnection(connectionString); Step 3: Formulate a String Containing the SELECT Statement
Formulate a string containing the SELECT statement to retrieve the CustomerID, CompanyName,
ContactName, and Address columns for the first 10 rows from the Customers table. For example:
string selectString = "SELECT TOP 10 CustomerID, CompanyName, ContactName, Address "+
"FROM Customers "+ "ORDER BY CustomerID"; Note
You use the TOP keyword in combination with an ORDER BY clause to retrieve the top N rows from
a SELECT statement. You can learn more about the TOP keyword in Chapter 3.Step 4: Create a
SqlCommand Object to Hold the SELECT Statement
You can call the CreateCommand() method of mySqlConnection to create a new SqlCommand object

Mastering C# Database Programming @Team LiB100

© 2004 ... Your company

for that connection. The CreateCommand() method returns a new SqlCommand object for the
SqlConnection object.
In the following example, a new SqlCommand object named mySqlCommand is set to the
SqlCommand object returned by calling the CreateCommand() method of mySqlConnection:
SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); Step 5: Set the CommandText
Property of the SqlCommand Object to the SELECT String
Set the CommandText property of your SqlCommand object to the SELECT string created in step 4.
The CommandText property contains the SQL statement you want to perform. In the following
example, the CommandText property of mySqlCommand is set to selectString:
mySqlCommand.CommandText = selectString; Step 6: Create a SqlDataAdapter Object
You use a SqlDataAdapter object to move information between your DataSet object and the
database. You'll see how to create a DataSet object in step 8. The following example creates a
SqlDataAdapter object named mySqlDataAdapter: SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); Step 7: Set the SelectCommand Property of the SqlAdapter Object to the
SqlCommand Object
The SelectCommand property contains the SELECT statement you want to run. In the following
example, the SelectCommand property of mySqlDataAdapter is set to mySqlCommand:
mySqlDataAdapter.SelectCommand = mySqlCommand;
This enables you to perform the SELECT statement defined in mySqlCommand. Step 10 actually
performs the SELECT statement to retrieve rows from the database.Step 8: Create a DataSet Object
to Store the Results of the SELECT Statement
You use a DataSet object to store a local copy of information retrieved from the database. The
following example creates a DataSet object named myDataSet: DataSet myDataSet = new DataSet();
Step 9: Open the Database Connection Using the Open () Method of the SQLConnection Object
The following example calls the Open() method for mySqlConnection: mySqlConnection.Open();
Once you've opened the database connection, you can access the database.Step 10: Call the Fill()
Method of the SqlDataAdapter Object to Retrieve the Rows From the Table
Call the Fill() method of your SqlDataAdapter object to retrieve the rows from the database, storing
these rows locally in a DataTable of your DataSet object.
The Fill() method is overloaded, and the version you'll see in the example accepts two parameters:
A DataSet object
A string containing the name of the DataTable object to create in the specified DataSet
The Fill() method then creates a DataTable in the DataSet with the specified name and runs the
SELECT statement. The DataTable created in your DataSet is then populated with the rows retrieved
by the SELECT statement.
The following example calls the Fill() method of mySqlDataAdapter, passing myDataSet and
"Customers" to the Fill() method: mySqlDataAdapter.Fill(myDataSet, "Customers");
The Fill() method creates a DataTable object named Customers in myDataSet and populates it with
the rows retrieved by the SELECT statement. You can access these rows, even when disconnected
from the database.Step 11: Close the Database Connection
Close the database connection using the Close() method of the SqlConnection object created in the
first step. For example: mySqlConnection.Close(); Note
Of course, you don't have to immediately close the database connection before reading locally stored
rows from your DataSet . I close the connection at this point in the example to show that you can
indeed read the locally stored rows- even when disconnected from the database.Step 12: Get the
DataTable Object From the DataSet Object
Get the DataTable object created in step 10 from the DataSet object.
You get a DataTable from your DataSet using the Tables property, which returns a
DataTableCollection object. To get an individual DataTable from your DataSet, you pass the name of
your DataTable in brackets ("Customers", for example) to the Tables property. The Tables property
will then return your requested DataTable, which you can store in a new DataTable object that you
declare. In the following example, myDataSet.Tables["Customers"] returns the Customers DataTable
created in myDataSet in step 10, and stores the returned DataTable in myDataTable: DataTable
myDataTable = myDataSet.Tables["Customers"]; Note
You can also specify the DataTable you want to get by passing a numeric value to the Tables
property. For example, myDataSet.Tables[0] also returns the Customers DataTable .Step 13: Display

Part 1: Introduction to ADO.NET and Databases 101

© 2004 ... Your company

the Columns for Each Row in the DataTable
Display the columns for each row in the DataTable, using a DataRow object to access each row in the
DataTable. The DataTable class defines a property named Rows that returns a DataRowCollection
object containing the DataRow objects stored in that DataTable. You can use the Rows property in a
foreach loop to iterate over the DataRow objects. For example: foreach (DataRow myDataRow in
myDataTable.Rows) { // ... access the myDataRow object }
Each DataRow object stores DataColumn objects that contain the values retrieved from the columns
of the database table. You can access these column values by passing the name of the column in
brackets to the DataRow object. For example, myDataRow["CustomerID"] returns the value of the
CustomerID column.
In the following example, a foreach loop iterates over the DataRow objects in myDataTable, and the
column values are displayed for each row: foreach (DataRow myDataRow in myDataTable.Rows) {
Console.WriteLine("CustomerID = "+ myDataRow["CustomerID"]);
Console.WriteLine("CompanyName = "+ myDataRow["CompanyName"]);
Console.WriteLine("ContactName = "+ myDataRow["ContactName"]); Console.WriteLine("Address =
"+ myDataRow["Address"]); }
As you can see, the name of each column is passed in brackets to each DataRow object, which then
returns the column value.Note
You can also specify the column you want to get by passing a numeric value in brackets. For
example, myDataRow[0] also returns the CustomerID column value. Putting It All Together
Listing 5.1 shows a complete program that uses these steps. This program is named
SelectIntoDataSet.cs and is located in the ch05 directory.Listing 5.1: SELECTINTODATASET.CS /*
SelectIntoDataSet.cs illustrates how to perform a SELECT statement and store the returned rows in
a DataSet object */ using System; using System.Data; using System.Data.SqlClient; class
SelectIntoDataSet { public static void Main() { // step 1: formulate a string containing the details
of the // database connection string connectionString =
"server=localhost;database=Northwind;uid=sa;pwd=sa"; // step 2: create a SqlConnection object to
connect to the // database, passing the connection string to the constructor SqlConnection
mySqlConnection = new SqlConnection(connectionString); // step 3: formulate a SELECT
statement to retrieve the // CustomerID, CompanyName, ContactName, and Address // columns
for the first ten rows from the Customers table string selectString = "SELECT TOP 10
CustomerID, CompanyName, ContactName, Address "+ "FROM Customers " + "ORDER BY
CustomerID"; // step 4: create a SqlCommand object to hold the SELECT statement
SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); // step 5: set the
CommandText property of the SqlCommand object to // the SELECT string
mySqlCommand.CommandText = selectString; // step 6: create a SqlDataAdapter object
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); // step 7: set the SelectCommand
property of the SqlAdapter object // to the SqlCommand object
mySqlDataAdapter.SelectCommand = mySqlCommand; // step 8: create a DataSet object to store
the results of // the SELECT statement DataSet myDataSet = new DataSet(); // step 9: open
the database connection using the // Open() method of the SqlConnection object
mySqlConnection.Open(); // step 10: use the Fill() method of the SqlDataAdapter object to //
retrieve the rows from the table, storing the rows locally // in a DataTable of the DataSet object
Console.WriteLine("Retrieving rows from the Customers table");
mySqlDataAdapter.Fill(myDataSet, "Customers"); // step 11: close the database connection using
the Close() method // of the SqlConnection object created in Step 1 mySqlConnection.Close();
// step 12: get the DataTable object from the DataSet object DataTable myDataTable =
myDataSet.Tables["Customers"]; // step 13: display the columns for each row in the DataTable,
// using a DataRow object to access each row in the DataTable foreach (DataRow myDataRow in
myDataTable.Rows) { Console.WriteLine("CustomerID = "+ myDataRow["CustomerID"]);
Console.WriteLine("CompanyName = "+ myDataRow["CompanyName"]);
Console.WriteLine("ContactName = "+ myDataRow["ContactName"]);
Console.WriteLine("Address = "+ myDataRow["Address"]); } } }
The output from this program is as follows: Retrieving rows from the Customers table CustomerID =
ALFKI CompanyName = Alfreds Futterkiste ContactName = Maria Anders Address = Obere Str. 57
CustomerID = ANATR CompanyName = Ana Trujillo Emparedados y helados ContactName = Ana

Mastering C# Database Programming @Team LiB102

© 2004 ... Your company

Trujillo Address = Avda. de la Constitución 2222 CustomerID = ANTON CompanyName = Antonio
Moreno Taquería ContactName = Antonio Moreno Address = Mataderos 2312 CustomerID =
AROUT CompanyName = Around the Horn ContactName = Thomas Hardy Address = 120 Hanover
Sq. CustomerID = BERGS CompanyName = Berglunds snabbköp ContactName = Christina Berglund
Address = Berguvsvägen 8 CustomerID = BLAUS CompanyName = Blauer See Delikatessen
ContactName = Hanna Moos Address = Forsterstr. 57 CustomerID = BLONP CompanyName =
Blondesddsl père et fils ContactName = Frédérique Citeaux Address = 24, place Kléber CustomerID
= BOLID CompanyName = Bólido Comidas preparadas ContactName = Martín Sommer Address = C/
Araquil, 67 CustomerID = BONAP CompanyName = Bon app' ContactName = Laurence Lebihan
Address = 12, rue des Bouchers CustomerID = BOTTM CompanyName = Bottom-Dollar Markets
ContactName = Elizabeth Lincoln Address = 23 Tsawassen Blvd.

5.5.3 Summary

Summary
In this chapter, you got an overview of the ADO.NET classes, and you examined a complete program
that connected to a database, stored the rows locally, disconnected from the database, and then read
the contents of those local rows while disconnected from the database.
ADO.NET allows you to interact with a database directly using objects of the managed provider
classes. These objects allow you to connect to the database and execute SQL statements while
directly connected to the database. You use different sets of managed provider classes, depending
on the database you are using.
ADO.NET also allows you to work in a disconnected manner. When doing this, you store information
from a database locally in the memory of the computer on which your program is running. You store
that information using objects of the data set classes.
Some of the SQL Server managed provider classes include SqlConnection, SqlCommand,
SqlDataReader, SqlDataAdapter, and SqlTransaction. You use an object of the SqlConnection class
to connect to a SQL Server database. You use an object of the SqlCommand class to represent a
SQL statement or stored procedure call that you then execute. You use an object of the
SqlDataReader class to read rows retrieved from a SQL Server database. You use an object of the
SqlDataAdapter class to move rows between a DataSet object and a SQL Server database. You use
an object of the SqlTransaction class to represent a database transaction in a SQL Server database.
You use an object of the DataSet class to represent a local copy of the information stored in a
database. You can also use a DataSet object to represent XML data. Some of the objects you can
store in a DataSet include DataTable, DataRow, DataColumn, DataRelation, and DataView objects.
You use an object of the DataTable class to represent a table. You use an object of the DataRow
class to represent a row. You use an object of the DataColumn class to represent a column. You use
an object of the DataRelation class to represent a relationship between two DataTable objects. You
use a DataRelation object to model parent-child relationships between two database tables. You use
an object of the DataView class to view only specific rows in a DataTable object using a filter.
In Chapter 6, you'll learn how to use Visual Studio .NET to create Windows programs.

5.6 Chapter 6: Introducing Windows Applications and ADO.NET

Chapter 6: Introducing Windows Applications and ADO.NETOverview
In the previous chapters, you ran programs using the Windows Command Prompt tool. In this
chapter, you'll be introduced to Windows applications. Windows provides graphical items, such as
menus, text boxes, and radio buttons, so that you can build a visual interface that is easy to use. You
can create Windows applications that use ADO.NET, and you'll see how to do that, using Visual
Studio .NET (VS .NET), in this chapter.
Windows applications are simple to learn and use because people have become accustomed to
interacting with machines in a visual manner. The ubiquitous Microsoft Word and Excel are just two
examples of how successful Windows applications can be because of the way they combine power

Part 1: Introduction to ADO.NET and Databases 103

© 2004 ... Your company

and ease of use.
The idea of using graphical user interfaces (GUIs) and a mouse to interact with a computer is not
unique to Windows. In fact, these concepts were originally developed back in the early 1970s by
engineers at Xerox Corporation's Palo Alto Research Center (PARC) in California, and one of the first
computers to use a GUI and a mouse was the Alto. Unfortunately, the Alto was expensive, and it
wasn't until Apple Computer launched the Macintosh in 1984 that the GUI became popular. Later,
Microsoft developed the Windows operating system that built on the ideas made popular by Apple.
Featured in this chapter:
Developing a simple Windows application
Using Windows controls
Accessing a database with a DataGrid control
Creating a Windows form with the Data Form Wizard

5.6.1 Developing a Simple Windows Application

Developing a Simple Windows Application
In this section, you'll see how to create a simple Windows application using VS .NET. This application
will consist of a single form that contains a label and a button. When you click the button, the text for
the label will change to a quote from Shakespeare's play, Macbeth . You'll also see how to compile
and run the example application. Creating the Windows Application
Start VS .NET by selecting Start £ Programs £ Microsoft Visual Studio .NET £ Microsoft Visual Studio
.NET. To create a new Windows application, click the New Project button on the Start page, or select
File £ New £ Project.Tip
You can also create a new project by pressing Ctrl+Shift+N on your keyboard.
You'll see the New Project dialog box, which you use to select the type of project you want to create.
Because you're going to create a C# Windows application, select the Visual C# Projects folder from
the Project Types list, and select Windows Application from the Templates area of the New Project
dialog box. VS .NET will assign a default name to your project; this default name will be
WindowsApplication1, or something similar. You can specify your own name for your project by
changing the text in the Name field; go ahead and enter MyWindowsApplication in the Name field,

as shown in Figure 6.1.
Figure 6.1: Creating a C# Windows application in Visual Studio .NETNote
The Location field specifies the directory where the files for your new project are stored. VS .NET will
set a default directory, but you can change this by entering your own directory. This default directory
is the Documents and Settings directory on your hard drive.
Click the OK button to continue. VS .NET will create a new subdirectory named
MyWindowsApplication in the directory specified in the Location field. Once VS .NET creates the
directory, along with some initial files for your project, VS .NET will display a blank form, as shown in
Figure 6.2. You can think of the form as the canvas on which you can place standard Windows
controls, such as labels, text boxes, and buttons. You'll be adding controls to your form

Mastering C# Database Programming @Team LiB104

© 2004 ... Your company

shortly.
Figure 6.2: A blank form
In the next section, you'll learn about the Toolbox, which you use to add controls to your
form.Working with the Toolbox
You add controls to your form by selecting the control from the Toolbox and dragging the control to
your form. You can also click and drag, or double-click on the control to drop a new one of that type
onto your form. As you can see in Figure 6.2 shown earlier, the Toolbox is to the left of the blank
form.Note
If you don't see the Toolbox, you can display it by selecting View £ Toolbox, or by pressing Ctrl+Alt+X
on your keyboard.
You can see that the available items in the Toolbox are categorized into groups with names such as
Data and XML Schema. The Toolbox will show only categories that are relevant to the type of
application you are developing. The following list describes the contents of some of these categories:
Data The Data category contains classes that allow you to access and store information from a
database. The Data category includes the following classes: SqlConnection, SqlCommand, DataSet,
and DataView, among others.
XML Schema The XML Schema category contains classes that allow you to access XML data.
Dialog Editor The Dialog Editor category contains controls that you can place on Windows dialog
boxes.
Web Forms The Web Forms category contains controls that are for web forms. You can design web
forms using VS .NET and deploy them to Microsoft's Internet Information Server (IIS). These web
forms may then be run over the Internet.
Components The Components category contains classes such as FileSystemWatcher, which
allows you to monitor changes in a computer's file system. Other classes include EventLog,
DirectoryEntry, DirectorySearcher, MessageQueue, PerformanceCounter, Process, ServiceController,
and Timer. These allow you to perform various system operations.
Windows Forms The Windows Forms category contains controls that you can add to a Windows
form. These include labels, buttons, and text boxes, among others. You'll use some of these controls
in this chapter.
HTML The HTML category contains controls that you can add to a web form. These include labels,
buttons, tables, and images, among others.
In the next section, you'll learn about the Properties window. Working with the Properties Window
The Properties window contains aspects of a control that you can set. For example, you can set the
background color of your form using the BackColor property. Some other properties of the form
control include ForeColor (the foreground color) and BackgroundImage (an image displayed in the
background). Different types of controls have different types of properties.
As you can see from Figure 6.2 shown earlier, the Properties window is to the right of the blank
form.Note
If you don't see the Properties window, you can display it by selecting View £ Properties Window, or
by pressing F4 on your keyboard.

Part 1: Introduction to ADO.NET and Databases 105

© 2004 ... Your company

You set the property by clicking the area to the right of the property name. Go ahead and click to the
right of the BackColor property to view some of the colors to which you can set this property.
In the next section, you'll learn how to add a label and button control to your form. You'll also set a
couple of the properties for those controls. Adding a Label and a Button Control
To add a label and a button control to your form select the appropriate control from the Toolbox and
drag it to your form. For example, to add a label to your form, you select the label control from the
Toolbox. Once you've dragged a label to your form, you can resize it by using the mouse or setting
the Size property in the Properties window. You can also click on the label in the Toolbox and drag it
on your form.
Make your label big enough so that that it stretches across the length of your form. Next, add a button
control below your label, as shown in Figure

6.3.
Figure 6.3: The form with a label and button control
Next, you'll change some of the properties for your label and button. You do this using the Properties
window. Set the Name property of your label to myLabel. Set the Name and Text properties for your
button to myButton and Press Me!, respectively. Also, set the Text property of your form to My
Form.Note
You use the Name property when referencing a Windows control in C# code.
Next, you'll add a line of code to the myButton_Click() method. This method is executed when
myButton is clicked in your running form. The statement you'll add to myButton_Click() will set the
Text property of myLabel to a string. This string will contain a line from Shakespeare's play, Macbeth .
To add the code, double-click myButton and enter the following code in the myButton_Click() method:
myLabel.Text = "Is this a dagger which I see before me,\n" + "The handle toward my hand? Come,
let me clutch thee.\n" + "I have thee not, and yet I see thee still.\n" + "Art thou not, fatal vision,
sensible\n" + "To feeling as to sight? or art thou but\n" + "A dagger of the mind, a false creation,\n"
+ "Proceeding from the heat-oppressed brain?"; Note
If you're a Shakespeare fan, you'll recognize this line from the scene before Macbeth kills King
Duncan.
You've now finished your form. Build your project by selecting Build £ Build Solution, or by pressing
Ctrl+Shift+B on your keyboard.
To run your form, select Debug £ Start without Debugging, or press Ctrl+F5 on your keyboard.Tip
You can take a shortcut when building and running your form: If you simply start your form without
first building it, VS .NET will check to see if you made any changes to your form since you last ran it.
If you did make a change, VS .NET will first rebuild your project and then run it.
Figure 6.4 shows the running form after the Press Me! button is

Mastering C# Database Programming @Team LiB106

© 2004 ... Your company

clicked.
Figure 6.4: The running form
Now that you've created and run the form, let's take a look at the code generated by VS .NET for it.
The C# code for your form is contained in the file Form1.cs file. You'll examine this code in the next
section. Examining the Code behind the Form
The Form1.cs file contains the code for your form. This code is often referred to as the code behind
your form because you can think of it as being behind the visual design for your form. You can view
the code for your form by selecting View £ Code, or by pressing the F7 key on your keyboard. Listing
6.1 shows the contents of the Form1.cs file.Listing 6.1: Form1.cs using System; using
System.Drawing; using System.Collections; using System.ComponentModel; using
System.Windows.Forms; using System.Data; namespace MyWindowsApplication { /// <summary>
/// Summary description for Form1. /// </summary> public class Form1 :
System.Windows.Forms.Form { private System.Windows.Forms.Label myLabel; private
System.Windows.Forms.Button myButton; /// <summary> /// Required designer variable. ///
</summary> private System.ComponentModel.Container components = null; public Form1() {
// // Required for Windows Form Designer support // InitializeComponent(); // //
TODO: Add any constructor code after InitializeComponent call // } /// <summary> ///
Clean up any resources being used. /// </summary> protected override void Dispose(bool
disposing) { if(disposing) { if (components != null) { components.Dispose();
} } base.Dispose(disposing); } #region Windows Form Designer generated code ///
<summary> /// Required method for Designer support - do not modify /// the contents of this
method with the code editor. /// </summary> private void InitializeComponent() {
this.myLabel = new System.Windows.Forms.Label(); this.myButton = new
System.Windows.Forms.Button(); this.SuspendLayout(); // // myLabel //
this.myLabel.Location = new System.Drawing.Point(8, 8); this.myLabel.Name = "myLabel";
this.myLabel.Size = new System.Drawing.Size(288, 184); this.myLabel.TabIndex = 0;
this.myLabel.Text = "label1"; // // myButton // this.myButton.Location = new
System.Drawing.Point(120, 200); this.myButton.Name = "myButton"; this.myButton.Size = new
System.Drawing.Size(72, 24); this.myButton.TabIndex = 1; this.myButton.Text = "Press Me!";
this.myButton.Click += new System.EventHandler(this.myButton_Click); // // Form1 //
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); this.ClientSize = new
System.Drawing.Size(304, 237); this.Controls.AddRange(new System.Windows.Forms.Control[] {
this.myButton, this.myLabel}); this.Name = "Form1"; this.Text = "My Form";
this.ResumeLayout(false); } #endregion /// <summary> /// The main entry point for the
application. /// </summary> [STAThread] static void Main() { Application.Run(new
Form1()); } private void myButton_Click(object sender, System.EventArgs e) {
myLabel.Text = "Is this a dagger which I see before me,\n" + "The handle toward my hand?
Come, let me clutch thee.\n" + "I have thee not, and yet I see thee still.\n" + "Art thou not,
fatal vision, sensible\n" + "To feeling as to sight? or art thou but\n" + "A dagger of the mind,
a false creation,\n" + "Proceeding from the heat-oppressed brain?"; } } }
As you can see, the Form1 class is derived from the System.Windows.Forms.Form class. The Form
class represents a Windows form.Note

Part 1: Introduction to ADO.NET and Databases 107

© 2004 ... Your company

The System.Windows.Forms namespace contains the various classes for creating Windows
applications. Most of the classes in this namespace are derived from the
System.Windows.Forms.Control class; this class provides the basic functionality for the controls you
can place on a form.
The Form1 class declares two private objects named myLabel and myButton, which are the label and
button controls you added to your form earlier. Because the myLabel and myButton objects are
private, this means that they are accessible only in the Form1 class.
Access modifiers enable you to specify the degree to which a class member is available outside the
class. You can also use an access modifier to specify the degree to which the class itself is available.
Table 6.1 shows the access modifiers in decreasing order of availability: public is the most
accessible, and private the least. Table 6.1: ACCESS MODIFIERS
ACCESS MODIFIER
ACCESSIBILITY
public
Member accessible without restriction.
protected internal
Member accessible only within the class, a derived class, or class in the same program (or assembly).
internal
Member accessible only within the class or class in the same program (or assembly).
protected
Member accessible only within the class or derived classes.
private
Member accessible only within the class. This is the default.
The Form1 class constructor calls the InitializeComponent() method. This method adds myLabel and
myButton to the form and sets the properties for those objects. These properties include the Location
(the position in the form), Name, Size, TabIndex (the order in which the control is accessed using the
Tab key), and Text. For example, the following code sets the properties of myLabel:
this.myLabel.Location = new System.Drawing.Point(8, 8); this.myLabel.Name = "myLabel";
this.myLabel.Size = new System.Drawing.Size(288, 184); this.myLabel.TabIndex = 0;
this.myLabel.Text = "label1";
You'll notice that the InitializeComponent() method is within #region and #endregionpreprocessor
directives . These directives enclose an area of code that may be hidden in VS .NET's code editor,
leaving only the text that immediately follows #region visible. Figure 6.5 shows how the hidden code

appears in VS .NET.
Figure 6.5: Hiding code in VS .NET using the #region directive
To view hidden code, all you have to do is to click the plus icon to the left of the code. Figure 6.6
shows the code within the #region and #endregion

Mastering C# Database Programming @Team LiB108

© 2004 ... Your company

directives.
Figure 6.6: Viewing hidden code in VS .NET
The Main() method runs the form by calling the Application.Run() method. The Application class is
static and provides a number of methods you can use in your Windows programs. Because this class
is static, you don't create an instance of this class, and its members are always available within your
form. When the Run() method is called, your form waits for events from the mouse and keyboard. One
example of an event is the clicking of the button in your form.
The myButton_Click() method is the method you modified earlier that sets the Text property of
myLabel to a string containing the quote from Macbeth . When myButton is clicked, the
myButton_Click() method is called and the text in myLabel is changed; you saw this when you ran
your form earlier.
In the next section, you'll learn about the VS .NET Solution Explorer. Working with the Solution
Explorer
You can use the VS .NET Solution Explorer to view the items in your project, such as the namespace
for your project. Of course, a project may contain more than one namespace. To view the Solution
Explorer, you select View £ Solution Explorer.Tip
You can also view the Solution Explorer by pressing Ctrl+Alt+L on your keyboard.
You can use Solution Explorer to view the following items in a project's namespace:
References References include other namespaces and classes to which your form's code refers.
You can employ the using statement to reference other namespaces and classes.
Icon File An icon file has the extension .ico. You use an icon file to set the image displayed in
Windows Explorer for your application.
Assembly File An assembly file contains the metadata for your application's assembly. An assembly
is collection of code for your application.
Code Files A code file is a program source file, such as the code for a form. You saw an example of
this in the earlier "Examining the Code behind the Form" section.
Figure 6.7 shows the Solution Explorer for this

example.
Figure 6.7: The Solution Explorer

Part 1: Introduction to ADO.NET and Databases 109

© 2004 ... Your company

As you can see from Figure 6.7, you can expand or collapse the items shown in the Solution Explorer
by clicking the plus or minus icon, respectively. You can also display the properties for an item in
Solution Explorer: When you have the Properties window displayed, selecting an item in Solution
Explorer will also display the properties for that item. For example, in Figure 6.7, the properties for the
MyWindowsApplication project are displayed; you can see that the project file is
MyWindowsApplication.csproj.
In the next section, you'll learn about the VS .NET Class View. Working with the Class View
You use the VS .NET Class View to examine the classes, methods, and objects in your project. To
see the Class View, you select View £ Class View.Tip
You can also see the Class View by pressing Ctrl+Shift+C on your keyboard.
Figure 6.8 shows the Class View for the

example.
Figure 6.8: The Class View
As you can see from Figure 6.8, you can view the classes, methods, and objects for the example. You
can also view the properties for a selected item in the Properties window. For example, Figure 6.8
also shows the properties for the Form1 class.
Next, you'll be introduced to the other types of Windows controls.

5.6.2 Using Windows Controls

Using Windows Controls
Table 6.2 lists the commonly used Windows form controls that you can pick from the Windows Forms
section of the Toolbox. You can place any of these controls on your Windows form. Table 6.2:
COMMONLY USED WINDOWS FORM CONTROLS
CONTROL
DESCRIPTION
Label
Displays text. You set the text that you want to display using the Text property.
LinkLabel
Similar to a label, except it displays hyperlinks. You set the hyperlink that you want to display using
the Text property. You set the navigation via the LinkClicked event.
Button
A clickable button. The Text property determines the text shown on the button.
TextBox
A box containing text that the user of your form may edit at runtime. The Text property contains the
text contained in the TextBox.
MainMenu
A menu you can add to a form.
CheckBox
A check box contains a Boolean true/false value that is set to true by the user if they check the box.
The Checked property indicates the Boolean value.
RadioButton
A radio button contains a Boolean true/false value that is set to true by the user if they click the

Mastering C# Database Programming @Team LiB110

© 2004 ... Your company

button. The Checked property indicates the Boolean value.
GroupBox
A group box allows you to group related controls together. For example, you can group related radio
buttons together. Most importantly, it allows you to treat multiple controls as a group.
PictureBox
A picture box displays an image that you set using the Image property.
Panel
A container for other controls such as radio buttons or group boxes.
DataGrid
A grid containing data retrieved from a data source, such as a database. You set the data source
using the DataSource property.
ListBox
A list of options. You set the list of options using the Add() method of the Items collection property.
CheckedListBox
Similar to a list box except that a check mark is placed to the left of each item in the list. The check
mark allows the user to select the items via a check box, as opposed to multiselecting with the Shift
and/or Ctrl keys.
ComboBox
Combines an editable field with a list box.
In the next section, you'll learn how to use a DataGrid control to access the rows in a database table.

5.6.3 Using a DataGrid Control to Access a Database

Using a DataGrid Control to Access a Database
In this section, you'll learn how to use a DataGrid control to access the rows in a database table.
Follow these steps to create a DataGrid using VS .NET:
First, select File £ New Project. In the New Project dialog box, select Windows Application, and enter
DataGridWindowsApplication in the Name field.
Click OK to continue. Your new project will contain a blank form.
Add a DataGrid control to the form by selecting View £ Toolbox, selecting a DataGrid, and dragging it
to your form. Figure 6.9 shows a form with a DataGrid. Make your DataGrid almost as big as your
form by dragging the corners of your DataGrid out to the end of your form.

Figure 6.9: Form with a DataGrid
Next, you'll add a SqlConnection object and a SqlDataAdapter object to your form.Note
You use a SqlConnection object to connect to a SQL Server database, and a SqlDataAdapter object
to move rows between SQL Server and a DataSet object. You'll learn the details on how to pull rows
from the database into a DataSet in Chapter 10, and how to push changes made in a DataSet to the
database in Chapter 11.

Part 1: Introduction to ADO.NET and Databases 111

© 2004 ... Your company

You can drag a table from a SQL Server database onto your form and have the SqlConnection and
SqlDataAdapter objects created in one step. You use Server Explorer for this. With databases that do
not show up in Server Explorer, your choices are limited. You can use the controls in Data category of
the Toolbox to drag each item to your form, and then set properties for each data object with the
Properties window.Note
To open Server Explorer, select View Server Explorer, or press Cntl+Alt+S.
To add a SqlConnection and SqlDataAdapter object to your form, perform the following steps:
Open Server Explorer.
Open the connection to your SQL Server Northwind database (or create a new connection if
necessary by right-clicking on the Data Connections node and selecting Add Connection, and
entering the sa username and password for your Northwind database; you might need to get the
password from your database administrator).
Drill down to the Customers table in the Northwind database and drag it to your form. This creates a
SqlConnection object named sqlConnection1 and a SqlDataAdapter object named sqlDataAdapter1,
as shown in Figure 6.10.

Figure 6.10: Form with SqlConnection and SqlDataAdapter objects
Click your sqlConnection1 object to display the properties for this object in the Properties window.
To enable sqlConnection1 to access the database, you need to set the password for the connection.
To do this, add a substring containing pwd to the ConnectionString property of sqlConnection1. Go
ahead and add pwd=sa (you might need to get the password for the sa user from your database
administrator) to the ConnectionString property, as shown in Figure 6.11.

Mastering C# Database Programming @Team LiB112

© 2004 ... Your company

Figure 6.11: Setting the ConnectionString property for the sqlConnection1 object
Next, you'll modify the SQL SELECT statement used to retrieve the rows from the Customers table:
Click your sqlDataAdapter1 object to display the properties for this object.
Click the addition icon to the left of the SelectCommand property to display the dynamic properties;
one of the dynamic properties is the CommandText property, which contains the SELECT statement
(see Figure 6.12).

Part 1: Introduction to ADO.NET and Databases 113

© 2004 ... Your company

Figure 6.12: SelectCommand property for the sqlDataAdapter1 object
Click CommandText, and then click the button with the ellipsis to display the Query Builder, as shown
in Figure 6.13.

Figure 6.13: The Query Builder
You use the Query Builder to define SQL statements. You can type in the SQL statement, or you can
build it up visually. Make sure all the columns are selected from the Customers table using the
Customers box at the top left of the Query Builder.
Click OK to continue.

Mastering C# Database Programming @Team LiB114

© 2004 ... Your company

To check the rows returned by this SELECT statement, perform the following steps:
Click the Preview Data link near the bottom of the Properties window. This displays the Data Adapter
Preview dialog box.
In the Data Adapter Preview dialog box, click the Fill Dataset button to run the SELECT statement, as
shown in Figure 6.14.

Figure 6.14: Previewing the rows retrieved by the SELECT statement
Click the Close button to close the Data Adapter Preview dialog box.
Next, you need to create a DataSet object. You use a DataSet object to a store local copy of the
information stored in the database. A DataSet object can represent database structures such as
tables, rows, and columns, among others. In this example, you'll use a DataSet object to store the
rows from the Customers table:
Click an area of your form outside the DataGrid.
Click the Generate Dataset link near the bottom of the Properties window. This displays the Generate
Dataset dialog box.
Select the New radio button and make sure the field to the right of this radio button contains
DataSet1, as shown in Figure 6.15.

Figure 6.15: Entering the DataSet details in the Generate Dataset dialog box
Click the OK button to continue. This adds a new DataSet object named dataSet11 to your form.
Next, you'll need to set the DataSource property of your DataGrid to your DataSet object. This sets
the source of the data for your DataGrid, allowing the rows from your DataSet to be displayed in your

Part 1: Introduction to ADO.NET and Databases 115

© 2004 ... Your company

DataGrid. To set the DataSource property, you perform the following steps:
Click your DataGrid object and set the DataSource property to dataSet11.Customers.
Now, you'll add a button that will fill sqlDataAdapter1 with the rows retrieved by your SELECT
statement. Select Button from the Toolbox and drag it onto your form to a position just below your
DataGrid.
Set the Text property for your button to Run SELECT in the Properties window.
To populate sqlDataAdapter1 with the rows retrieved by the SELECT statement, you need to call the
Fill() method for this object. You'll call this method when the button is clicked. To add the required
code, perform the following steps:
Double-click the button you added earlier. This opens the code window and positions the cursor in
the button1_Click() method.
Enter the following code in this method: dataSet11.Clear(); sqlDataAdapter1.Fill(dataSet11,
"Customers"); Note
You could also call the Fill() method in the Form1_Load event. This event occurs when the form is
initially loaded.
Next, add another button that will allow you to save any changes you make to the rows in the
DataGrid:
Go ahead and add another button and set the Text property of this button to Update.
Double-click this button and add the following statement to the button2_Click() method:
sqlDataAdapter1.Update(dataSet11, "Customers");
This statement updates a row with the new column values you enter in your DataGrid.
You've now finished your form. Build the project by selecting Build £ Build Solution.
Finally, you're ready to run your form! Perform the following steps:
Select Debug £ Start without Debugging to start your form.
Click the Run SELECT button on your form to run your SELECT statement. This retrieves the rows
from the Customers table and displays them in the DataGrid of your form.
Modify the CompanyName column of the first row to Alfreds Futterkiste Shoppe and click the Update
button; this commits the change you made to the row in the Customers table (see Figure 6.16).

Figure 6.16: The running form
Reset the CompanyName for the first row back to the original by removing Shoppe from the end and
clicking the Update button again.
In the next section, you learn how to use the VS .NET Data Form Wizard to create a more advanced
Windows application that accesses the SQL Server Northwind database.

Mastering C# Database Programming @Team LiB116

© 2004 ... Your company

5.6.4 Using the Data Form Wizard to Create a Windows Form

Using the Data Form Wizard to Create a Windows Form
In this section, you'll use the VS .NET Data Form Wizard to create a Windows application that
accesses both the Customers and Orders tables. The Orders table contains rows that represent
orders placed by the customers.
The rows in the Orders table are related to the rows in the Customers table through a foreign key:
The Orders table contains a column named CustomerID that is a foreign key to the CustomerID
column of the Customers table (CustomerID is the primary key for the Customers table). The use of
the foreign key defines a parent-child relationship between the Customers and Orders tables.
The form you'll create will display a row from the Customers table, along with any related rows from
the Orders table. To give you a clear idea of the final goal, Figure 6.17 shows the completed form up
and running. Notice that the top part of the form shows the details for the row from the Customers
table where the CustomerID is ALFKI; the bottom part of the form contains a DataGrid control that
displays the rows from the Orders table for that customer. When you move to the next row in the
Customers table, the rows from the Orders table for that customer are automatically displayed in the

DataGrid.
Figure 6.17: The running form
Perform these steps to begin build the form:
Select File £ New Project.
In the New Project dialog box, select Empty Project, and enter DataFormWindowsApplication in
the Name field. Because you'll be adding a new form to your new application shortly, there's no need
to have VS .NET generate the usual blank form for you; that's why you're creating an empty project.
Click OK to continue. VS .NET will create a new empty project for you.
Next, you'll use the Data Form Wizard to create a form that accesses the Customers and Orders
tables in the Northwind database:
Select Project £ Add New Item.
Select Data Form Wizard from the Templates section on the right, enter the Name of the form as
MyDataForm.cs , and click Open (see Figure 6.18). You'll then see the welcome page for the Data
Form Wizard.

Part 1: Introduction to ADO.NET and Databases 117

© 2004 ... Your company

Figure 6.18: Adding a data form using the Data Form Wizard
Click the Next button to proceed.
Now you enter the DataSet object you want to use in your form. You can pick an existing DataSet, or
you can create a new one. Because this is a new project, you'll be creating a new DataSet. Enter
myDataSet as the name for your DataSet, as shown in Figure 6.19.

Figure 6.19: Entering the name of the new DataSet
Click the Next button to go to the next step.
You must now choose a data connection to access the database. You can pick an existing
connection, or you can create a new one. Select your connection, as shown in Figure 6.20-of course,
your connection name will be different.

Mastering C# Database Programming @Team LiB118

© 2004 ... Your company

Figure 6.20: Choosing the data connection
Click the Next button to continue.
You now log in to the database by specifying the password for the database user. You used the sa
user when creating the database connection earlier, and you therefore need to reenter the password
for that user, as shown in Figure 6.21.

Figure 6.21: Logging in to the SQL Server Northwind database
Click the OK button to proceed.
You now select the database tables or views you want to use in your form. The area on the bottom left
of the dialog box shows the tables and views you can access using your form. The area on the bottom
right shows the tables and views you've added. You add a table or view to your form by selecting it
from the area on the left and clicking the right-arrow button.Tip
You can also double-click on the table or view to add them to your form.
When you do this, the table or view moves to the right, indicating that you've selected them for use in
your form. If you decide you don't want to use a table or view, you can unselect them using the left-
arrow button. You can also double-click the table or view to unselect them. Select the Customers and
Orders tables, as shown in Figure 6.22. Click the Next button to

Part 1: Introduction to ADO.NET and Databases 119

© 2004 ... Your company

proceed.
Figure 6.22: Selecting the Customers and Orders tables for use in the form
Because you selected two tables-Customers and Orders-your next step is to define a relationship
between those tables. This relationship is used in your form to synchronize navigation between the
rows in the Customers table with the rows in the Orders table: When you move to a new row in the
Customers table, the rows from the Orders table will be displayed in your form. Set the following in
the dialog box (as shown in Figure 6.23):
Enter myRelationship in the Name field.
Select Customers as the parent table.
Select Orders as the child table.
Select CustomerID as the key for each table.Warning
To add the relationship to your form, click the right-arrow button. If you don't do this, your relationship
won't be added to your form.
Click the Next button to continue.
Select the columns from the tables you want to display in your form. Because you added the
Customers and Orders tables to your form, you'll be selecting the columns to display from these two
tables. By default, all the columns from the tables are selected. You won't be displaying all the
columns from the Customers or the Orders table. Unselect the City column for the Customers table.
(Later, you'll see how to add this column to your form manually.)
Deselect the following columns for the Orders table:
RequiredDate
ShipAddress
ShippedDate
ShipCity
ShipVia
ShipRegion
Freight
ShipPostalCode
ShipName

Mastering C# Database Programming @Team LiB120

© 2004 ... Your company

ShipCountry
Figure 6.23: Creating a relationship between two tablesNote
Remember: You're unselecting these columns, so you uncheck the columns for the Orders table.
Figure 6.24 shows the completed dialog box with the selected columns to display from each

table.
Figure 6.24: Selecting the columns to display from each table
Click the Next button to proceed.
Select the display style for the rows (also known as records) in the parent table that are displayed in
your form. You can display the rows in a grid, or you can display each column using a separate
control. You'll use a separate control for the columns, so select the Single Record in individual
controls radio button. The other check boxes in the dialog box allow you pick the controls you want to
add to your form. These controls affect the rows in the master table, and you can add the following
controls to your form:Note
In this example, the parent table is the Customers table, and the child table is the Orders table. The
rows for the child table are displayed in a DataGrid control.
Cancel All The Cancel All button allows you to undo any changes you've made to the current row.
Add The Add button allows you to add a new row.
Delete The Delete button allows you to delete the current row.
Cancel The Cancel button allows you to cancel a change made to the current row.
Navigation Controls The Navigation controls consist of four buttons that allow you to move to first
row, the previous row, the next row, and the last row. An indicator is also displayed to show the

Part 1: Introduction to ADO.NET and Databases 121

© 2004 ... Your company

current row.

Figure 6.25 shows the completed dialog box.
Figure 6.25: Choosing the display style
You've now completed all the steps in the Data Form Wizard. Click the Finish button to create your
form. VS .NET will now display the new form, as shown in Figure 6.26.

Figure 6.26: The completed form
The managed provider objects in your form use the OLE DB classes contained in the
System.Data.OleDb namespace-even though a SQL Server database is used. These objects work
with any OLE DB-compliant database. The code would be more efficient if the managed provider
classes in the System.Data.SqlClient namespace were used instead; these classes are specifically
for use with a SQL Server database. This is the price of having the VS .NET wizard generate the
code for you.
In the next section, you'll learn how the text-box controls in your form access the columns in the
Customers table. Data Binding
Each text-box control in the upper part of your form is bound to a column in the Customers table using
a process known as data binding . When a control is bound to a column in a DataSet object, the value
for that column is displayed in the control through the Text property in the DataBindings group. The
Text property in the DataBindings group sets the text displayed in a control. To examine or set the
data binding for a control, you select the control in the form designer and expand the DataBindings
properties in the Properties window. You'll see these properties in the Data area of the Properties
window.
Next, you'll see how the text box for the Customer ID is set. Select the text box to the right of the

Mastering C# Database Programming @Team LiB122

© 2004 ... Your company

CustomerID label in your form; this text box is named editCustomerID. Make sure the DataBindings
properties are expanded in the Properties window. Finally, click the drop-down list for the Text
property to view the current column to which the text box is bound. As you can see from Figure 6.27,
editCustomerID is bound to the CustomerID column of the Customers table. This means that when
you run the form and load data from the database, the CustomerID column value will be displayed in

the editCustomerID text box.
Figure 6.27: The editCustomerID text box is bound to the CustomerID column
In the next section, you'll add a label and a text-box control to display the City column in your
form. Adding Controls to the Form
When you ran the Data Form Wizard earlier to create your form, you'll recall that I told you to
unselect the City column of the Customers table so that it didn't appear on your form. I asked you to
do this so that you can now see how to manually add a control and bind it to the City column. That
way, you can see how to build your own forms that access the database.
Follow these steps to add a label and a text box to your form:
Add a label below the Address label in your form. Set the Name property for your new label to lblCity.
Set the Text property for your label to City.
Next, add a text box below the editAddress text box.
Set the Name property for your new text box to editCity.
Remove the current text from the Text property so that no default text is shown in the control.
Next, you need to bind editCity to the City column of the Customers table. To do this, you open the
DataBindings properties and set the text property by selecting City from the Customers table, as

shown in Figure 6.28.
Figure 6.28: Binding the City column to the editCity text box

Part 1: Introduction to ADO.NET and Databases 123

© 2004 ... Your company

In the next section, you'll add a Main() method to the code of your form. Adding the Main() Method
As you know, all programs must have a Main() method. The Main() method is executed when you run
your program. In this section, you'll add a Main() method to your form. To do this, select View £ Code,
and add the following Main() method inside your MyDataForm class (a good place to add Main()
would be at the start of your MyDataForm class after the open curled bracket {): public class
MyDataForm : System.Windows.Forms.Form { public static void Main() { Application.Run(new
MyDataForm()); } ...
This code creates a new object of the MyDataForm class, causing your form to be displayed on the
screen. Setting the Password
Before you can run your form, you need to set the password for the database user in the
ConnectionString property of the data connection object. This object was automatically created by VS
.NET when you ran the Data Form Wizard, and the object has the default name oleDbConnection1.
To modify the ConnectionString property for oleDbConnection1, select oleDbConnection1 from the
drop-down list in the Properties window. Go ahead and add the text pwd=sa in the ConnectionString

property, as shown in Figure 6.29.
Figure 6.29: Setting the ConnectionString property
You're now ready to run your form. Running the Form
To run your form, select Debug £ Start without Debugging. Figure 6.30 shows the running form. You
click the Load button to display the rows from the Customers and Orders tables in your

form.
Figure 6.30: The running form Note
You'll see a Windows console appear in the background. Don't worry about it.

Mastering C# Database Programming @Team LiB124

© 2004 ... Your company

Notice that the top part of the form shows the details for the row from the Customers table where the
CustomerID is ALFKI; the bottom part of the form contains a DataGrid control that displays the rows
from the Orders table for that customer. When you move to the next row in the Customers table, the
rows from the Orders table for that customer are automatically displayed in the DataGrid.
Feel free to try out the other buttons on your form to add, modify, and delete rows in the Customers
table. You can also use the DataGrid control to add, modify, and delete rows from the Orders table for
the current customer.

5.6.5 Summary

Summary
In this chapter, you learned how to create Windows programs using Visual Studio .NET. Windows
provides graphical items such as menus, text boxes, radio buttons, and text boxes that allow you to
build a visual interface that users of your programs will find easy to use.
You saw how to use a DataGrid control to access the rows in a database table. You also learned how
to use the Visual Studio .NET Data Form Wizard to create a Windows application that accesses both
the Customers and Orders tables at the same time.
In Part II, "Fundamental Database Programming with ADO.NET," you'll examine the details of the
various ADO.NET classes and you'll see how to work in depth with ADO.NET.

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

VI

Mastering C# Database Programming @Team LiB126

© 2004 ... Your company

6 Part 2: Fundamental Database Programming with
ADO.NET

Part 2: Fundamental Database Programming with ADO.NETChapter
List Chapter 7: Connecting to a DatabaseChapter 8: Executing Database CommandsChapter 9:
Using DataReader Objects to Read ResultsChapter 10: Using Dataset Objects to Store
DataChapter 11: Using DataSet Objects to Modify DataChapter 12: Navigating and Modifying
Related DataChapter 13: Using DataView Objects

6.1 Chapter 7: Connecting to a Database

Chapter 7: Connecting to a DatabaseOverview
In this chapter, you'll learn the details on connecting to a database using objects of a Connection
class. There are three Connection classes: SqlConnection, OleDbConnection, and OdbcConnection.
You use an object of the SqlConnection class to connect to a SQL Server database, an object of the
OleDbConnection class to connect to any database that supports OLE DB, such as Oracle or Access,
and an object of the OdbcConnection class to connect to any database that supports ODBC.
Ultimately, all communication with a database is done through a Connection object.
Featured in this chapter:
Using a SqlConnection object to connect to a SQL Server database
Connection pooling
Getting the state of a Connection
Using Connection events
Creating a Connection object using Visual Studio .NET

6.1.1 Understanding the SqlConnection Class

Understanding the SqlConnection Class
You use an object of the SqlConnection class to connect to a SQL Server database, and this object
handles the communication between the database and your C# program.Note
Although the SqlConnection class is specific to SQL Server, many of the properties, methods, and
events in this class are the same as those for the OleDbConnection and OdbcConnection classes. If
a property or method is specific to SqlConnection , it says so in the Description column of the tables
shown in this section. You can look up the exact properties, methods, and events for a specific class
using the .NET online reference. You saw how to do that in Chapter 1, "Introduction to Database
Programming with ADO.NET."
Table 7.1 shows some of the SqlConnection properties. Table 7.1: SqlConnection PROPERTIES
PROPERTY
TYPE
DESCRIPTION
ConnectionString
string
Gets or sets the string used to open a database.
ConnectionTimeout
int
Gets the number of seconds to wait while trying to establish a connection to a database. The default
is 15 seconds.
Database
string
Gets the name of the current database (or the database to be used once the connection to the
database is made).

Part 2: Fundamental Database Programming with ADO.NET 127

© 2004 ... Your company

DataSource
string
Gets the name of the database server.
PacketSize
int
Gets the size (in bytes) of network packets used to communicate with SQL Server. This property
applies only to the SqlConnection class. The default is 8,192 bytes.
ServerVersion
string
Gets a string containing the version of SQL Server.
State
ConnectionState
Gets the current state of the connection: Broken, Closed, Connecting, Executing, Fetching, or Open.
These states are covered later in the "Getting the State of a Connection" section.
WorkstationId
string
Gets a string that identifies the client computer that is connected to SQL Server. This property applies
only to the SqlConnection class.
Table 7.2 shows some of the SqlConnection methods. Table 7.2: SqlConnection METHODS
METHOD
RETURN TYPE
DESCRIPTION
BeginTransaction()
SqlTransaction
Overloaded. Begins a database transaction.
ChangeDatabase()
void
Changes the current database for an open connection.
Close()
void
Closes the connection to the database.
CreateCommand()
SqlCommand
Creates and returns a command object.
Open()
void
Opens a database connection with the property settings specified by the ConnectionString property.
You can use events to allow one object to notify another object that something has occurred. For
example, when you click a mouse button in a Windows application, an event occurs, or is fired . Table
7.3 shows some of the SqlConnection events. You'll learn how to use these events later in the
"Using Connection Events" section. Table 7.3: SqlConnection EVENTS
EVENT
EVENT HANDLER
DESCRIPTION
StateChange
StateChangeEventHandler
Fires when the state of the connection is changed.
InfoMessage
SqlInfoMessageEventHandler
Fires when the database returns a warning or information message.
You'll learn how to use some of these properties, methods, and events in the following sections.

Mastering C# Database Programming @Team LiB128

© 2004 ... Your company

6.1.2 Using a SqlConnection Object to Connect to a SQL Server Database

Using a SqlConnection Object to Connect to a SQL Server Database
You create a SqlConnection object using the SqlConnection() constructor. This constructor is
overloaded, meaning that there are multiple versions of the constructor that you can call. The
SqlConnection() constructors are as follows: SqlConnection() SqlConnection(string connectionString)
where connectionString contains the details for the database connection. You'll learn the details of
the connectionString in this section.
Assuming you've imported the System.Data.SqlClient namespace, you can create a new
SqlConnection object using the following statement: SqlConnection mySqlConnection = new
SqlConnection();
You can then set the details for the database connection using the ConnectionString property of
mySqlConnection. For example: mySqlConnection.ConnectionString =
"server=localhost;database=Northwind;uid=sa;pwd=sa";
where
server specifies the name of the computer on which SQL Server is running.
database specifies the name of the database.
uid specifies the name of the database user.
pwd specifies the password for the user.Warning
For security reasons, do not include the username password in your production code. Instead ask the
user to enter their name and password-or use integrated security, which you'll learn about shortly.
One thing you need to bear in mind is that you can set the ConnectionString property only when your
Connection object is closed.
You can also pass a connection string directly to the SqlConnection() constructor. For example: string
connectionString = "server=localhost;database=Northwind;uid=sa;pwd=sa"; SqlConnection
mySqlConnection = new SqlConnection(connectionString);
Or more simply: SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa");
You can set an optional connection timeout, which specifies the number of seconds that the Open()
method will wait for a connection to the database. You do this by specifying a connection timeout in
your connection string. For example, the following string specifies a connection timeout of 10
seconds: string connectionString = "server=localhost;database=Northwind;uid=sa;pwd=sa;" +
"connection timeout=10"; Note
The default connection timeout is 15 seconds. A connection timeout of 0 seconds means the
connection attempt will wait indefinitely. Avoid setting your connection timeout to 0.
Before starting a Windows session, you typically log in to Windows with a username and password. If
you're using Windows integrated security, you can pass your username and password to SQL Server
and use those credentials to connect to the database. This saves you from providing a separate
username and password to SQL Server. You can use integrated security in your program by
specifying integrated security=SSPI in your connection string. For example: string connectionString =
"server=localhost;database=Northwind;integrated security=SSPI";
Notice that you don't provide the username and password. Instead, the username and password you
used when logging into Windows is passed to SQL Server. SQL Server will then check its list of users
to see if you have permission to access the database. (For further details on integrated security,
consult the SQL Server Books Online documentation.)
You've now seen how to create a Connection object using program statements. You'll see how to
create a Connection object visually using Visual Studio .NET later in the
"Creating a Connection Object using Visual Studio .NET" section. Next, you'll see how to open and
close a connection. Opening and Closing a Database Connection
Once you've created your Connection object and set its ConnectionString property to the appropriate
details for your database connection, you can open the connection to the database. You do this by
calling the Open() method of your Connection object. The following example calls the Open() method
of mySqlConnection: mySqlConnection.Open();
Once you've finished with your database connection, you call the Close() method of your Connection
object. For example: mySqlConnection.Close();
Listing 7.1 illustrates how to connect to the SQL Server Northwind database using a SqlConnection

Part 2: Fundamental Database Programming with ADO.NET 129

© 2004 ... Your company

object and display some of the properties of that object.Listing 7.1: MYSQLCONNECTION.CS /*
MySqlConnection.cs illustrates how to use a SqlConnection object to connect to a SQL Server
database */ using System; using System.Data; using System.Data.SqlClient; class MySqlConnection
{ public static void Main() { // formulate a string containing the details of the // database
connection string connectionString = "server=localhost;database=Northwind;uid=sa;pwd=sa";
// create a SqlConnection object to connect to the // database, passing the connection string to the
constructor SqlConnection mySqlConnection = new SqlConnection(connectionString); //
open the database connection using the // Open() method of the SqlConnection object
mySqlConnection.Open(); // display the properties of the SqlConnection object
Console.WriteLine("mySqlConnection.ConnectionString = "+
mySqlConnection.ConnectionString); Console.WriteLine("mySqlConnection.ConnectionTimeout =
"+ mySqlConnection.ConnectionTimeout); Console.WriteLine("mySqlConnection.Database = "+
mySqlConnection.Database); Console.WriteLine("mySqlConnection.DataSource = "+
mySqlConnection.DataSource); Console.WriteLine("mySqlConnection.PacketSize = "+
mySqlConnection.PacketSize); Console.WriteLine("mySqlConnection.ServerVersion = "+
mySqlConnection.ServerVersion); Console.WriteLine("mySqlConnection.State = "+
mySqlConnection.State); Console.WriteLine("mySqlConnection.WorkstationId = "+
mySqlConnection.WorkstationId); // close the database connection using the Close() method // of
the SqlConnection object mySqlConnection.Close(); } }
The output from this program is as follows: mySqlConnection.ConnectionString =
server=localhost;database=Northwind;uid=sa; mySqlConnection.ConnectionTimeout = 15
mySqlConnection.Database = Northwind mySqlConnection.DataSource = localhost
mySqlConnection.PacketSize = 8192 mySqlConnection.ServerVersion = 08.00.0194
mySqlConnection.State = Open mySqlConnection.WorkstationId = JMPRICE-DT1 Note
Your results will differ from those here. For example, your connection string and workstation ID will be
different. Connection Pooling
Opening and closing a database connection is a relatively time-consuming process. For this reason,
ADO.NET automatically stores database connections in a pool. Connection pooling offers a great
performance improvement because you don't have to wait for a brand new connection to the database
to be established when there's a suitable connection already available. When you close a connection,
that connection isn't actually closed; instead, your connection is marked as unused and stored in the
pool, ready to be used again.
If you then supply the same details in the connection string (same database, username, password,
and so on), then the connection from the pool is retrieved and returned to you. You then use that
same connection to access the database.
When using a SqlConnection object, you can indicate the maximum number of connections allowed in
the pool by specifying max pool size in your connection string (the default is 100). You can also
indicate the minimum number of connections in the pool by specifying min pool size (the default is 0).
For example, the following SqlConnection specifies a max pool size of 10 and a min pool size of 5:
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa;" + "max pool size=10;min pool size=5");
In this example, a pool with five initial SqlConnection objects is created. A maximum of 10
SqlConnection objects can be stored in the pool. If you attempt to open a new SqlConnection object
and the pool is already full with currently used objects, your request waits until a SqlConnection
object is closed, at which point that object is returned for you to use. If your request waits longer than
the number of seconds in the ConnectionTimout property, then an exception is thrown.
Listing 7.2 illustrates the time-saving when opening a previously pooled connection.Listing 7.2:
CONNECTIONPOOLING.CS /* ConnectionPooling.cs illustrates connection pooling */ using
System; using System.Data; using System.Data.SqlClient; class ConnectionPooling { public static
void Main() { // create a SqlConnection object to connect to the database, // setting max pool
size to 10 and min pool size to 5 SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa;" + "max pool size=10;min pool size=5"
); // open the SqlConnection object 10 times for (int count = 1; count <= 10; count++) {
Console.WriteLine("count = "+ count); // create a DateTime object and set it to the // current
date and time DateTime start = DateTime.Now; // open the database connection using the
// Open() method of the SqlConnection object mySqlConnection.Open(); // subtract the

Mastering C# Database Programming @Team LiB130

© 2004 ... Your company

current date and time from the start, // storing the difference in a TimeSpan TimeSpan
timeTaken = DateTime.Now - start; // display the number of milliseconds taken to open // the
connection Console.WriteLine("Milliseconds = "+ timeTaken.Milliseconds); // display the
connection state Console.WriteLine("mySqlConnection.State = "+ mySqlConnection.State);
// close the database connection using the Close() method // of the SqlConnection object
mySqlConnection.Close(); } } }
The output from this program is as follows: count = 1 Milliseconds = 101 mySqlConnection.State =
Open count = 2 Milliseconds = 0 mySqlConnection.State = Open count = 3 Milliseconds = 0
mySqlConnection.State = Open count = 4 Milliseconds = 0 mySqlConnection.State = Open count = 5
Milliseconds = 0 mySqlConnection.State = Open count = 6 Milliseconds = 0 mySqlConnection.State =
Open count = 7 Milliseconds = 0 mySqlConnection.State = Open count = 8 Milliseconds = 0
mySqlConnection.State = Open count = 9 Milliseconds = 0 mySqlConnection.State = Open count =
10 Milliseconds = 0 mySqlConnection.State = Open Note
Your results might differ from those here.
As you can see, the time to open the first connection is relatively long compared with the subsequent
ones. This is because the first connection makes the actual connection to the database. When it is
closed, it's stored in the connection pool. When the connection is then opened again, it's retrieved
from the pool, and this retrieval is very fast. Getting the State of a Connection Object
The state of a connection enables you to know the progress of your connection request to the
database; two examples of states are open and closed. You use the Connection object's State
property to get the current state of the connection to the database. The State property returns a
constant from the ConnectionState enumeration.Note
An enumeration is a list of numeric constants, each of which has a name.
Table 7.4 lists the constants defined in the ConnectionState enumeration. Table 7.4: ConnectionState
CONSTANTS
CONSTANT NAME
DESCRIPTION
Broken
The Connection is broken. This can happen after you've opened the Connection object. You can
close the Connection and reopen it.
Closed
The Connection is closed.
Connecting
The Connection is establishing access to the database.
Executing
The Connection is running a command.
Fetching
The Connection is retrieving information from the database.
Open
The Connection is open.Note
In version 1 of ADO.NET, only the Open and Closed states are used. The other states will be used
in later versions.
An example of using the State property would be to check if your Connection object is currently open
before calling its Open() method. You might need to do that if you have a complex application and
you're using a Connection object created somewhere else in the application: you might not know the
current state of that Connection object and you don't want to call the Open() method on an already
open Connection because that will raise an exception.
The following example uses the State property to check if mySqlConnection is closed before opening
it: if (mySqlConnection.State == ConnectionState.Closed) { mySqlConnection.Open(); }
As you'll learn in the next section, you can use the StateChange event to monitor changes in a
Connection object's state. Using Connection Events
The Connection classes have two useful events: StateChange and InfoMessage. You'll see how to
use these events next.The StateChange Event
The StateChange event fires when the state of your connection is changed, and you can use this
event to monitor changes in the state of your Connection object.
The method that handles an event is known as an event handler . You call this method when a

Part 2: Fundamental Database Programming with ADO.NET 131

© 2004 ... Your company

particular event is fired. All event handler methods must return void and accept two parameters. The
first parameter is an object (of the class System.Object), and it represents the object that raises the
event.Note
The System.Object class acts as the base class for all classes. In other words, all classes are
ultimately derived from the System.Object class.
The second parameter is an object of a class that is derived from the System.EventArgs class. The
EventArgs class is the base class for event data and represents the details of the event. In the case
of the StateChange event, this second object is of the StateChangeEventArgs class.
The following example defines a method named StateChangeHandler to handle the StateChange
event. You'll notice that the second parameter to this method is a StateChangeEventArgs object. You
get the original state of the connection using this object's OriginalState property, and you get the
current state using the CurrentState property. public static void StateChangeHandler(object
mySender, StateChangeEventArgs myEvent) { Console.WriteLine("mySqlConnection State has
changed from "+ myEvent.OriginalState + "to "+ myEvent.CurrentState); }
To monitor an event, you must register your event handler method with that event. For example, the
following statement registers the StateChangeHandler() method with the StateChange event of the
mySqlConnection object: mySqlConnection.StateChange += new
StateChangeEventHandler(StateChangeHandler);
Whenever the StateChange event fires, the StateChangeHandler() method will be called, which
displays the original and current state of mySqlConnection.
Listing 7.3 illustrates the use of the StateChange event.Listing 7.3: STATECHANGE.CS /*
StateChange.cs illustrates how to use the StateChange event */ using System; using System.Data;
using System.Data.SqlClient; class StateChange { // define the StateChangeHandler() method to
handle the // StateChange event public static void StateChangeHandler(object mySender,
StateChangeEventArgs myEvent) { Console.WriteLine("mySqlConnection State has
changed from "+ myEvent.OriginalState + "to "+ myEvent.CurrentState); } public static
void Main() { // create a SqlConnection object SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); // monitor the
StateChange event using the StateChangeHandler() method mySqlConnection.StateChange +=
new StateChangeEventHandler(StateChangeHandler); // open mySqlConnection, causing the
State to change from Closed // to Open Console.WriteLine("Calling mySqlConnection.Open()");
mySqlConnection.Open(); // close mySqlConnection, causing the State to change from Open //
to Closed Console.WriteLine("Calling mySqlConnection.Close()"); mySqlConnection.Close(); } }

The output from this program is as follows: Calling mySqlConnection.Open() mySqlConnection State
has changed from Closed to Open Calling mySqlConnection.Close() mySqlConnection State has
changed from Open to Closed The InfoMessage Event
The InfoMessage event fires when the database returns a warning or information message produced
by the database. You use the InfoMessage event to monitor these messages. To get the message,
you read the contents of the Errors collection from the SqlInfoMessageEventArgs object.
You can produce information and error messages using the SQL Server PRINT or RAISERROR
statements, which are described in Chapter 4, "Introduction to Transact-SQL Programming."
The following InfoMessageHandler() method is used to handle the InfoMessage event. Notice the use
of the Errors collection to display the message: public static void InfoMessageHandler(object
mySender, SqlInfoMessageEventArgs myEvent) { Console.WriteLine("The following message
was produced:\n" + myEvent.Errors[0]); } Note
If you're using the OLE DB managed providers, you replace SqlInfoMessageEventArgs with
OleDbInfoMessageEventArgs . If you're using the ODBC managed providers, you replace
SqlInfoMessageEventArgs with OdbcInfoMessageEventArgs .
Listing 7.4 illustrates the use of the InfoMessage event. You'll notice this program uses the
ExecuteNonQuery() method of the SqlCommand object to send PRINT and RAISERROR statements
to the database for execution. You'll learn the details of the SqlCommand object and the
ExecuteNonQuery() method in Chapter 8, "Executing Database Commands."Listing 7.4:
INFOMESSAGE.CS /* InfoMessage.cs illustrates how to use the InfoMessage event */ using
System; using System.Data; using System.Data.SqlClient; class InfoMessage { // define the
InfoMessageHandler() method to handle the // InfoMessage event public static void

Mastering C# Database Programming @Team LiB132

© 2004 ... Your company

InfoMessageHandler(object mySender, SqlInfoMessageEventArgs myEvent) {
Console.WriteLine("The following message was produced:\n" + myEvent.Errors[0]); }
public static void Main() { // create a SqlConnection object SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); // monitor the
InfoMessage event using the InfoMessageHandler() method mySqlConnection.InfoMessage +=
new SqlInfoMessageEventHandler(InfoMessageHandler); // open mySqlConnection
mySqlConnection.Open(); // create a SqlCommand object SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); // run a PRINT statement mySqlCommand.CommandText =
"PRINT 'This is the message from the PRINT statement'"; mySqlCommand.ExecuteNonQuery(); //
run a RAISERROR statement mySqlCommand.CommandText = "RAISERROR('This is the
message from the RAISERROR statement', 10, 1)"; mySqlCommand.ExecuteNonQuery(); // close
mySqlConnection mySqlConnection.Close(); } }
The output from this program is as follows: The following message was produced:
System.Data.SqlClient.SqlError: This is the message from the PRINT statement The following
message was produced: System.Data.SqlClient.SqlError: This is the message from the RAISERROR
statement

6.1.3 Creating a Connection Object Using Visual Studio .NET

Creating a Connection Object Using Visual Studio .NET
To create a SqlConnection object using Visual Studio .NET, you drag a SqlConnection object from the
Data tab of the Toolbox to your form. You'll recall that a SqlConnection object allows you to connect
to a SQL Server database. You can also drag an OleDbConnection object from the Toolbox to your
form to connect to a database that supports OLE DB.
Figure 7.1 shows a form with a SqlConnection object. This object is assigned the default name of

sqlConnection1.
Figure 7.1: Creating a SqlConnection object with Visual Studio .NET
Once you've created a SqlConnection object, that object appears in the "tray" below the form. The
tray is used to store nonvisual components like SqlConnection objects. Other objects that appear in
the tray are SqlCommand objects. These objects are considered nonvisual because you don't see
them when you run your form. You can of course still work with them visually when designing your
form.
To the right of the form, you'll notice the Properties window, which you use to set the properties for
your SqlConnection object. To set the ConnectionString property that specifies the details of the
database connection, you can either type in the string directly or click the drop-down list and build the
ConnectionString visually. To do this, you select New Connection from the drop-down list, which
displays the Data Link Properties dialog box. This dialog box contains four tabs, the first of which is
the Provider tab, which allows you to select the type of provider you want to connect to, as shown in

Part 2: Fundamental Database Programming with ADO.NET 133

© 2004 ... Your company

Figure 7.2.
Figure 7.2: Selecting the provider
Click the Next button to continue to the Connection tab (you can also click the Connection tab
directly), where you enter the details for your database connection, as shown in Figure

Mastering C# Database Programming @Team LiB134

© 2004 ... Your company

7.3.
Figure 7.3: Entering the connection details Warning
For security reasons, do not enable the Allow Saving Password check box. If you did, your password
would be stored in the actual code, and anyone could get your password from the code. Leave Allow
Saving Password in its default non-enabled state; that way, the user will be prompted to enter the
password. For testing purposes, however, leaving your password in is sometimes acceptable-just
remember not to release your password in production code.
Once you've entered your connection details, you can press the Test Connection button to ensure
your details are correct.
At this point, you've entered all the mandatory details, and you can choose to save your details by
clicking OK, or you can click Advanced to enter additional details such as the connection timeout, as

Part 2: Fundamental Database Programming with ADO.NET 135

© 2004 ... Your company

shown in Figure 7.4.
Figure 7.4: Entering the advanced connection details
You can also click the All tab to view and edit all the values for the connection, as shown in Figure

Mastering C# Database Programming @Team LiB136

© 2004 ... Your company

7.5. To edit a value, you click Edit Value.
Figure 7.5: Viewing all the connection details
Click the OK button to save your connection details.
On my computer, the ConnectionString property for my SqlConnection object that connects to the
SQL Server Northwind database is set to data source=localhost;initial catalog=Northwind;persist
security info=False; user id=sa;pwd=sa;workstation id=JMPRICE-DT1;packet size=4096 Note
The persist security info Boolean value controls whether security-sensitive information such as your
password is returned in a connection that has been previously opened. You'll typically want to leave
this in the default setting of False . Coding an Event in VS .NET
You can add code for an event in VS .NET. For example, let's say you wanted to add code for the
State-Change event of the sqlConnection1 object created earlier. To do this, you first select
sqlConnection1 in the tray, then you click the Events (lighting) button in the Properties window. Figure
7.6 shows the sqlConnection1 object's

events.

Part 2: Fundamental Database Programming with ADO.NET 137

© 2004 ... Your company

Figure 7.6: sqlConnection1 object's events
You then double-click the name of the event in the Properties window you want to code. In this
example, you double-click the StateChange event. VS .NET then displays the code and creates a
skeleton of the event handler method for you, as shown in Figure 7.7. The cursor shows where you

add your code.
Figure 7.7: The beginning StateChange event handler method
All you have to do is add your code to the event handler method. For example, you can set your
method to private void sqlConnection1_StateChange(object sender,
System.Data.StateChangeEventArgs e) { Console.WriteLine("State has changed from "+
e.OriginalState + "to "+ e.CurrentState); }
Figure 7.8 shows the completed event handler

method.
Figure 7.8: The completed StateChange event handler method
Once you've created a SqlConnection object, you can then use it with other ADO.NET objects, such
as a SqlCommand object. You'll see how to do that with VS .NET in Chapter 8.

6.1.4 Summary

Summary
In this chapter, you learned how to connect to a database. There are three Connection classes:
SqlConnection, OleDbConnection, and OdbcConnection. You use an object of the SqlConnection
class to connect to a SQL Server database, an object of the OleDbConnection class to connect to any
database that supports OLE DB, such as Oracle or Access, and an object of the OdbcConnection
class to connect to any database that supports ODBC. Ultimately, all communication with a database

Mastering C# Database Programming @Team LiB138

© 2004 ... Your company

is done through a Connection object.
ADO.NET automatically stores database connections in a pool. When you close a connection, that
connection isn't actually closed. Instead, your connection is marked as unused and stored in the pool
ready to be used again. If you then supply the same details in the connection string (same database,
username, password, and so on), then the connection from the pool is retrieved and returned to you.
You then use that same connection to access the database. Connection pooling offers a great
performance improvement, because you don't have to wait for a new connection to the database to be
established when there's a suitable connection already available in the pool.
You use a Connection object's State property to get the current state of the connection to the
database. The State property returns a constant from the ConnectionState enumeration.
You use a Connection object's StateChange event to monitor changes in the state of your Connection
object. You use a Connection object's InfoMessage event to monitor warning or information messages
produced by the database. You can produce such messages using the SQL Server PRINT or
RAISERROR statements.
To create a SqlConnection object using Visual Studio .NET, you drag a SqlConnection object from the
Data tab of the Toolbox to your form. You can also drag an OleDbConnection object from the Toolbox
to your form.
In the next chapter, you'll learn how to execute database commands.

6.2 Chapter 8: Executing Database Commands

Chapter 8: Executing Database CommandsOverview
Database commands are executed through Command objects, and are part of the managed
providers. There are three Command classes: SqlCommand, OleDbCommand, and OdbcCommand.
You use a Command object to execute a SQL SELECT, INSERT, UPDATE, or DELETE statement.
You can also use a Command object to call a stored procedure, or retrieve all the rows and columns
from a specific table; this is known as a TableDirect command. A Command object communicates with
the database using a Connection object, which was described in Chapter 7, "Connecting to a
Database."
Featured in this chapter:
The SqlCommand class
Using a SqlCommand object to execute commands against a SQL Server Database
Executing SELECT statements and TableDirect commands
Executing a command that retrieves data as XML
Executing commands that modify information in the database
Introducing transactions
Supplying parameters to commands
Executing SQL Server stored procedures
Creating a Command object using Visual Studio .NET

6.2.1 The SqlCommand Class

The SqlCommand Class
You use an object of the SqlCommand class to execute a command against a SQL Server database,
an object of the OleDbCommand class to execute a command against any database that supports
OLE DB, such as Oracle or Access, and an object of the OdbcCommand class to execute a command
against any database that supports ODBC. Table 8.1 shows some of the SqlCommand properties.
Table 8.2 shows some of the SqlCommand methods. You'll learn how to use some of these properties
and methods in this chapter. Table 8.1: SqlCommand PROPERTIES
PROPERTY
TYPE
DESCRIPTION
CommandText

Part 2: Fundamental Database Programming with ADO.NET 139

© 2004 ... Your company

string
Gets or sets the SQL statement, stored procedure call, or table to retrieve from.
CommandTimeout
int
Gets or sets the number of seconds to wait before ending an attempt to execute the command. The
default is 30 seconds.
CommandType
CommandType
Gets or sets a value that indicates how the CommandText property is to be interpreted. Valid values
are CommandType.Text, CommandType .StoredProcedure, and CommandType .TableDirect. Text
indicates the command is a SQL statement. StoredProcedure indicates the command is a stored
procedure call. TableDirect indicates the name of a table, for which all rows and columns are to be
retrieved. The default is Text.
Connection
string
Gets the name of the database connection.
DesignTimeVisible
bool
Gets or sets a Boolean value that indicates whether the Command object is visible in a Windows
Forms Designer control. The default is false.
Parameters
SqlParameterCollection
Gets the parameters (if any) to supply to the command. When using a SqlConnection, the parameters
are stored in a SqlParameterCollection object.
Transaction
SqlTransaction
Gets or sets the database transaction for the command.
UpdatedRowSource
UpdateRowSource
Gets or sets how the command results are to be applied to a DataRow object when the Update()
method of a DataAdapter object is called. Table 8.2: SqlCommand METHODS
METHOD
RETURN TYPE
DESCRIPTION
Cancel()
void
Cancels the execution of the command.
CreateParameter()
SqlParameter
Creates a new parameter for the command.
ExecuteNonQuery()
int
Used to execute SQL statements that don't return a result set. These statements include INSERT,
UPDATE, and DELETE statements, Data Definition Language statements, or stored procedure calls
that don't return a result set. The int value returned is the number of database rows affected by the
command, if any.
ExecuteReader()
SqlDataReader
Used to execute SQL SELECT statements, TableDirect commands, or stored procedures that return a
result set. Returns the result set in a DataReader object.
ExecuteScalar()
object
Used to execute SQL SELECT statements that return a single value (any other values are ignored).
Returns the result of the command as an object.
ExecuteXmlReader()
XmlReader

Mastering C# Database Programming @Team LiB140

© 2004 ... Your company

Used to execute SQL SELECT statements that return XML data. Returns the result set in an
XmlReader object. Applies only to the SqlCommand class.
Prepare()
void
Creates a prepared version of the command. Sometimes results in faster execution of the command.
ResetCommandTimeout()
void
Resets the CommandTimeout property to its default value. Note
Although the SqlCommand class is specific to SQL Server, many of the properties and methods in
this class are the same as those for the OleDbCommand and OdbcCommand classes. If a property
or method is specific to SqlCommand , it says so in the Description column of the tables shown in this
section.Tip
You're actually better off using the T-SQL EXECUTE command rather than
CommandType.StoredProcedure to execute a stored procedure. This is because you can read
values that are returned from a stored procedure through a RETURN statement, which you can't do
when setting the CommandType to StoredProcedure . See the section
"Executing SQL Server Stored Procedures" later in this chapter.

6.2.2 Creating a SqlCommand Object

Creating a SqlCommand Object
There are two ways you can create a SqlCommand object:
Use one of the SqlCommand constructors.
Call the CreateCommand() method of a SqlConnection object.
You'll see how to use both these ways to create SqlCommand objects next.Note
You can use the same ways shown in the following sections to create an OleDbCommand or
OdbcCommand object. Creating a SqlCommand Object Using a Constructor
The SqlCommand constructors are as follows: SqlCommand() SqlCommand(string commandText)
SqlCommand(string commandText , SqlConnection mySqlConnection) SqlCommand(string
commandText , SqlConnection mySqlConnection , SqlTransaction mySqlTransaction)
where
commandText contains your SQL statement, stored procedure call, or table to retrieve from.
mySqlConnection is your SqlConnection object.
mySqlTransaction is your SqlTransaction object.
Before you use a SqlCommand object you first need a SqlConnection object, which is used to
communicate with a SQL Server database: mySqlConnection.ConnectionString =
"server=localhost;database=Northwind;uid=sa;pwd=sa";
Next, you can create a new SqlCommand object using the following statement: SqlCommand
mySqlCommand = new SqlCommand();
You then set the Connection property of mySqlCommand to mySqlConnection:
mySqlCommand.Connection = mySqlConnection;
The mySqlCommand object will then use mySqlConnection to communicate with the database.
Now, the CommandType property of a Connection object determines the type of command to be
executed. You can use any of the values in the System.Data.CommandType enumeration to specify
the CommandType property. Table 8.3 shows the CommandType enumeration values. Table 8.3:
CommandType ENUMERATION VALUES
VALUE
DESCRIPTION
Text
Indicates the command is a SQL statement. Text is the default.
StoredProcedure
Indicates the command is a stored procedure call.
TableDirect
Indicates the name of a table, for which all rows and columns are to be retrieved. Note: SqlCommand
objects don't support TableDirect. You have to use an object of one of the other Command classes

Part 2: Fundamental Database Programming with ADO.NET 141

© 2004 ... Your company

instead.
You'll see how to use all three of these command types in this chapter. For now, I'll focus on the
default Text command type, which indicates the command is a SQL statement.
You set the command to be executed using the CommandText property of your Command object. The
following example sets the CommandText property of mySqlCommand to a SELECT statement:
mySqlCommand.CommandText = "SELECT TOP 10 CustomerID, CompanyName, ContactName,
Address " + "FROM Customers " + "ORDER BY CustomerID";
You can also pass the command and the Connection object to the constructor in one step when
creating a Command object. For example: SqlCommand mySqlCommand = new SqlCommand(
"SELECT TOP 5 CustomerID, CompanyName, ContactName, Address " + "FROM Customers " +
"ORDER BY CustomerID", mySqlConnection);
In the next section, you'll learn how to create a SqlCommand object using the CreateCommand()
method of a SqlConnection object. Creating a SqlCommand Object Using the CreateCommand()
Method
Rather than creating a SqlCommand object using the constructors, you can use the
CreateCommand() method of a SqlConnection object. The CreateCommand() method returns a new
SqlCommand object. For example: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand();
The mySqlCommand object will use mySqlConnection to communicate with the database.

6.2.3 Executing SELECT Statements and TableDirect Commands

Executing SELECT Statements and TableDirect Commands
A TableDirect command is actually a SELECT statement that returns all the rows and columns for a
specified table. A Command object has three methods you can use to execute a SELECT statement
or TableDirect command. Table 8.4 shows these methods, which you'll learn how to use in the
following sections. Table 8.4: METHODS THAT RETRIEVE INFORMATION FROM THE DATABASE
METHOD
RETURN TYPE
DESCRIPTION
ExecuteReader()
SqlDataReader
Used to execute SQL SELECT statements, TableDirect commands or stored procedure calls that
return a result set. Returns the result set in a DataReader object.
ExecuteScalar()
object
Used to execute SQL SELECT statements that return a single value (any other values are ignored).
Returns the single value as an object.
ExecuteXmlReader()
XmlReader
Used to execute SQL SELECT statements that return XML data. Returns the result set in an
XmlReader object. Applies only to the SqlCommand class. Executing a SELECT Statement Using the
ExecuteReader() Method
Let's take a look at an example that executes a SELECT statement using the ExecuteReader()
method. This method returns the result set in a DataReader object, which you can then use to read
the rows returned by the database. For example, the following code creates the required objects and
executes a SELECT statement that retrieves the top five rows from the Customers table:
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5
CustomerID, CompanyName, ContactName, Address " + "FROM Customers " + "ORDER BY
CustomerID"; mySqlConnection.Open(); SqlDataReader mySqlDataReader =
mySqlCommand.ExecuteReader(); Tip
You'll notice that I didn't call the Open() method of the SqlConnection object until just before calling
the ExecuteReader() method of the SqlCommand object. This is intentional. By opening the

Mastering C# Database Programming @Team LiB142

© 2004 ... Your company

connection at the very last moment, you minimize time spent connected to the database and therefore
conserve database resources.
The result set returned by mySqlCommand is stored in mySqlDataReader. You then read the rows
from mySqlDataReader using the Read() method. This method returns the Boolean true value when
there is another row to read, otherwise it returns false. You can read an individual column value in a
row from mySqlDataReader by passing the name of the column in square brackets. For example, to
read the CustomerID column, you use mySqlDataReader["CustomerID"].Note
You can also specify the column you want to get by passing a numeric value in brackets. For
example, my SqlDataReader[0] also returns the CustomerID column value. 0 corresponds to the first
column in the table, which in this example is the CustomerID column.
You can use the Read() method in a while loop to read each row in turn, as shown in the following
example: while (mySqlDataReader.Read()) { Console.WriteLine("mySqlDataReader[\" CustomerID\"]
= " + mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\"
CompanyName\"] = " + mySqlDataReader["CompanyName"]);
Console.WriteLine("mySqlDataReader[\" ContactName\"] = " + mySqlDataReader["ContactName"]);
Console.WriteLine("mySqlDataReader[\" Address\"] = " + mySqlDataReader["Address"]); }
Listing 8.1 illustrates a complete program that uses the code examples shown in this section.Listing
8.1: EXECUTESELECT.CS /* ExecuteSelect.cs illustrates how to execute a SELECT statement
using a SqlCommand object */ using System; using System.Data; using System.Data.SqlClient;
class ExecuteSelect { public static void Main() { // create a SqlConnection object to connect to
the database SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object
SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); // set the CommandText
property of the SqlCommand object to // the SELECT statement mySqlCommand.CommandText
= "SELECT TOP 5 CustomerID, CompanyName, ContactName, Address " + "FROM
Customers " + "ORDER BY CustomerID"; // open the database connection using the //
Open() method of the SqlConnection object mySqlConnection.Open(); // create a
SqlDataReader object and call the ExecuteReader() // method of the SqlCommand object to run the
SQL SELECT statement SqlDataReader mySqlDataReader = mySqlCommand.ExecuteReader();
// read the rows from the SqlDataReader object using // the Read() method while
(mySqlDataReader.Read()) { Console.WriteLine("mySqlDataReader[\" CustomerID\"] = " +
mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\" CompanyName\"] = "
+ mySqlDataReader["CompanyName"]); Console.WriteLine("mySqlDataReader[\"
ContactName\"] = " + mySqlDataReader["ContactName"]);
Console.WriteLine("mySqlDataReader[\" Address\"] = " + mySqlDataReader["Address"]); }
// close the SqlDataReader object using the Close() method mySqlDataReader.Close(); // close
the SqlConnection object using the Close() method mySqlConnection.Close(); } }
The output from this program is as follows: mySqlDataReader["CustomerID"] = ALFKI
mySqlDataReader["CompanyName"] = Alfreds Futterkiste mySqlDataReader["ContactName"] = Maria
Anders mySqlDataReader["Address"] = Obere Str. 57 mySqlDataReader["CustomerID"] = ANATR
mySqlDataReader["CompanyName"] = Ana Trujillo3 Emparedados y helados
mySqlDataReader["ContactName"] = Ana Trujillo mySqlDataReader["Address"] = Avda. de la
Constitución 2222 mySqlDataReader["CustomerID"] = ANTON mySqlDataReader["CompanyName"] =
Antonio Moreno Taquería mySqlDataReader["ContactName"] = Antonio Moreno
mySqlDataReader["Address"] = Mataderos 2312 mySqlDataReader["CustomerID"] = AROUT
mySqlDataReader["CompanyName"] = Around the Horn mySqlDataReader["ContactName"] =
Thomas Hardy mySqlDataReader["Address"] = 120 Hanover Sq. mySqlDataReader["CustomerID"] =
BERGS mySqlDataReader["CompanyName"] = Berglunds snabbköp
mySqlDataReader["ContactName"] = Christina Berglund mySqlDataReader["Address"] =
Berguvsvägen 8 Controlling the Command Behavior Using the ExecuteReader() Method
The ExecuteReader() method accepts an optional parameter that controls the command behavior.
The values for this parameter come from the System.Data.CommandBehavior enumeration, for which
values are shown in Table 8.5. Table 8.5: CommandBehavior ENUMERATION VALUES
VALUE
DESCRIPTION
CloseConnection

Part 2: Fundamental Database Programming with ADO.NET 143

© 2004 ... Your company

Specifies that when the associated DataReader object is closed, the Connection object is also closed.
Default
Indicates the Command object may return multiple result sets.
KeyInfo
Specifies the Command object returns information about the primary key columns in the result set.
SchemaOnly
Indicates the Command object returns information only about the columns.
SequentialAccess
Enables a DataReader object to read rows that have columns containing large binary values.
SequentialAccess causes the DataReader to read the data as a stream. You then use the GetBytes()
or GetChars() methods of the DataReader to read the stream. Note: you'll learn the details of
DataReader objects in the next chapter.
SingleResult
Specifies the Command object returns a single result set.
SingleRow
Indicates the Command object returns a single row.
You'll see how to use the SingleRow and SchemaOnly command behaviors next.Using the SingleRow
Command Behavior
You use the SingleRow command behavior to indicate that your Command object returns a single
row. For example, let's say you have a Command object named mySqlCommand with the
CommandText property set as follows: mySqlCommand.CommandText = "SELECT ProductID,
ProductName, QuantityPerUnit, UnitPrice " + "FROM Products";
Next, the following example passes the CommandBehavior.SingleRow value to the ExecuteReader()
method, indicating that the Command object retrieves only the first row: SqlDataReader
mySqlDataReader = mySqlCommand.ExecuteReader(CommandBehavior.SingleRow);
Even though the earlier SELECT statement indicates that all the rows are to be retrieved from the
Products table, the mySqlDataReader object will be able to read only the first row.
Listing 8.2 illustrates the effect of using CommandBehavior.SingleRow.Listing 8.2:
SINGLEROWCOMMANDBEHAVIOR.CS /* SingleRowCommandBehavior.cs illustrates how to
control the command behavior to return a single row */ using System; using System.Data; using
System.Data.SqlClient; class SingleRowCommandBehavior { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT ProductID,
ProductName, QuantityPerUnit, UnitPrice " + "FROM Products"; mySqlConnection.Open();
// pass the CommandBehavior.SingleRow value to the // ExecuteReader() method, indicating that
the Command object // only returns a single row SqlDataReader mySqlDataReader =
mySqlCommand.ExecuteReader(CommandBehavior.SingleRow); while
(mySqlDataReader.Read()) { Console.WriteLine("mySqlDataReader[\" ProductID\"] = " +
mySqlDataReader["ProductID"]); Console.WriteLine("mySqlDataReader[\" ProductName\"] = " +
mySqlDataReader["ProductName"]); Console.WriteLine("mySqlDataReader[\" QuantityPerUnit\"]
= " + mySqlDataReader["QuantityPerUnit"]); Console.WriteLine("mySqlDataReader[\"
UnitPrice\"] = " + mySqlDataReader["UnitPrice"]); } mySqlDataReader.Close();
mySqlConnection.Close(); } }
The output from this program is as follows: mySqlDataReader["ProductID"] = 1
mySqlDataReader["ProductName"] = Chai mySqlDataReader["QuantityPerUnit"] = 10 boxes x 20
bags mySqlDataReader["UnitPrice"] = 18 Using the SchemaOnly Command Behavior
You use the SchemaOnly command behavior to indicate that your Command object returns
information only about the columns retrieved by a SELECT statement, or all the columns when you
use a TableDirect command.
For example, let's say you have a Command object named mySqlCommand with the CommandText
property set as follows: mySqlCommand.CommandText = "SELECT ProductID, ProductName,
UnitPrice " + "FROM Products " + "WHERE ProductID = 1";
Next, the following example passes the CommandBehavior.SchemaOnly value to the
ExecuteReader() method, indicating that the Command object returns information about the schema:
SqlDataReader productsSqlDataReader =

Mastering C# Database Programming @Team LiB144

© 2004 ... Your company

mySqlCommand.ExecuteReader(CommandBehavior.SchemaOnly);
In this example, since the ProductID, ProductName, and UnitPrice columns of the Products table were
used in the earlier SELECT statement, information about those columns is retrieved instead of the
column values.
You get the information about the columns using the GetSchemaTable() method of your SqlData-
Reader object. The GetSchemaTable() method returns a DataTable object with columns that contain
the details of the retrieved database columns: DataTable myDataTable =
productsSqlDataReader.GetSchemaTable();
To display the values in the DataTable object, you can use the following loop that displays the
DataTable column names and the contents of each DataTable column: foreach (DataRow
myDataRow in myDataTable.Rows) { foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine(myDataColumn + "= " +
myDataRow[myDataColumn]); if (myDataColumn.ToString() == "ProviderType") {
Console.WriteLine(myDataColumn + "= " + ((System.Data.SqlDbType)
myDataRow[myDataColumn])); } } }
Notice that this code features two foreach loops. The outer loop iterates over the DataRow objects in
myDataTable, and the inner loop iterates over the DataColumn objects in the current DataRow. Don't
worry too much about the details of accessing a DataTable just yet: you'll learn the details in
Chapter 10, "Using DataSet Objects to Store Data."
The if statement in the inner foreach loop requires a little explanation. What I'm doing is examining
the myDataColumn to see if it contains the ProviderType. ProviderType contains a number value that
indicates the SQL Server type of the database column. I cast this number to System.Data.SqlDbType,
which is an enumeration that defines the SQL Server column types, as you'll see later in the
"Supplying Parameters to Commands" section. Table 8.9 in that section shows the SqlDbType
enumeration values. By casting the ProviderType number to SqlDbType, you can see the actual
name of the SQL Server column type.
The first iteration of the outer loop displays all the DataColumn object values for the first DataRow
object. This cause the following output to be produced and shows the schema details for the
ProductID column; notice the ProviderType number and name that indicate ProductID is a SQL
Server int: ColumnName = ProductID ColumnOrdinal = 0 ColumnSize = 4 NumericPrecision = 0
NumericScale = 0 IsUnique = IsKey = BaseCatalogName = BaseColumnName = ProductID
BaseSchemaName = BaseTableName = DataType = System.Int32 AllowDBNull = False ProviderType
= 8 ProviderType = Int IsAliased = IsExpression = IsIdentity = True IsAutoIncrement = True
IsRowVersion = IsHidden = IsLong = False IsReadOnly = True
The meanings of these results are shown in Table 8.6. Table 8.6: SCHEMA COLUMN VALUES
VALUE
DESCRIPTION
ColumnName
Name of the column.
ColumnOrdinal
Ordinal of the column.
ColumnSize
Maximum length (in characters) of a column value. For fixed-length SQL Server types such as int, the
ColumnSize is the length of that type.
NumericPrecision
Total number of digits used to represent a floating-point type. An example of a floating-point type is
the SQL Server float type. The total number of digits includes the digits to the left and right of the
decimal point.
NumericScale
Total number of digits to the right of the decimal point in a floating-point type.
IsUnique
Boolean true/false value that indicates whether two rows can have the same value in the current
column.
IsKey
Boolean true/false value that indicates whether the column is part of the primary key.
BaseCatalogName

Part 2: Fundamental Database Programming with ADO.NET 145

© 2004 ... Your company

Name of the catalog in the database that contains the column. BaseCatalogName defaults to null.
BaseColumnName
Name of the column in the database. This will differ from the ColumnName if you use an alias for the
column. BaseColumnName defaults to null.
BaseSchemaName
Name of the schema in the database that contains the column. BaseSchemaName defaults to null.
BaseTableName
Name of the table or view in the database that contains the column. BaseTableName defaults to null.
DataType
.NET type used to represent the column. You'll learn about the .NET types in the next chapter.
AllowDBNull
Boolean true/false value that indicates whether the column can accept a database null value.
ProviderType
Indicates the column's database type.
IsAliased
Boolean true/false value that indicates whether the column is an alias.
IsExpression
Boolean true/false value that indicates whether the column is an expression.
IsIdentity
Boolean true/false value that indicates whether the column is an identity.
IsAutoIncrement
Boolean true/false value that indicates whether the column is automatically assigned a value for a
new row and that value is automatically incremented.
IsRowVersion
Boolean true/false value that indicates whether the column contains a persistent row identifier that
cannot be written to.
IsHidden
Boolean true/false value that indicates whether the column is hidden.
IsLong
Boolean true/false value that indicates whether the column contains a binary long object (BLOB). A
BLOB contains a long string of binary data.
IsReadOnly
Boolean true/false value that indicates whether the column can be modified.
Listing 8.3 illustrates the effect of using CommandBehavior.SchemaOnly and displays the schema
details for the ProductID, ProductName, and UnitPrice columns.Listing 8.3:
SCHEMAONLYCOMMANDBEHAVIOR.CS /* SchemaOnlyCommandBehavior.cs illustrates how to
read a table schema */ using System; using System.Data; using System.Data.SqlClient; class
SchemaOnlyCommandBehavior { public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT ProductID, ProductName, UnitPrice " + "FROM
Products " + "WHERE ProductID = 1"; mySqlConnection.Open(); // pass the
CommandBehavior.SchemaOnly constant to the // ExecuteReader() method to get the schema
SqlDataReader productsSqlDataReader =
mySqlCommand.ExecuteReader(CommandBehavior.SchemaOnly); // read the DataTable
containing the schema from the DataReader DataTable myDataTable =
productsSqlDataReader.GetSchemaTable(); // display the rows and columns in the DataTable
foreach (DataRow myDataRow in myDataTable.Rows) { Console.WriteLine("\nNew column
details follow:"); foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); if
(myDataColumn.ToString() == "ProviderType") { Console.WriteLine(myDataColumn + "= "
+ ((System.Data.SqlDbType) myDataRow[myDataColumn])); } } }
productsSqlDataReader.Close(); mySqlConnection.Close(); } }
You should notice the different details for the ProductID, ProductName, and UnitPrice columns in the
output that follows: New column details follow: ColumnName = ProductID ColumnOrdinal = 0
ColumnSize = 4 NumericPrecision = 0 NumericScale = 0 IsUnique = IsKey = BaseCatalogName =

Mastering C# Database Programming @Team LiB146

© 2004 ... Your company

BaseColumnName = ProductID BaseSchemaName = BaseTableName = DataType = System.Int32
AllowDBNull = False ProviderType = 8 ProviderType = Int IsAliased = IsExpression = IsIdentity =
True IsAutoIncrement = True IsRowVersion = IsHidden = IsLong = False IsReadOnly = True New
column details follow: ColumnName = ProductName ColumnOrdinal = 1 ColumnSize = 40
NumericPrecision = 0 NumericScale = 0 IsUnique = IsKey = BaseCatalogName = BaseColumnName
= ProductName BaseSchemaName = BaseTableName = DataType = System.String AllowDBNull =
False ProviderType = 12 ProviderType = NVarChar IsAliased = IsExpression = IsIdentity = False
IsAutoIncrement = False IsRowVersion = IsHidden = IsLong = False IsReadOnly = False New
column details follow: ColumnName = UnitPrice ColumnOrdinal = 2 ColumnSize = 8
NumericPrecision = 0 NumericScale = 0 IsUnique = IsKey = BaseCatalogName = BaseColumnName
= UnitPrice BaseSchemaName = BaseTableName = DataType = System.Decimal AllowDBNull = True
ProviderType = 9 ProviderType = Money IsAliased = IsExpression = IsIdentity = False
IsAutoIncrement = False IsRowVersion = IsHidden = IsLong = False IsReadOnly = False Executing a
TableDirect Statement Using the ExecuteReader() Method
When you set the CommandType property of a Command object to TableDirect, you specify that you
want to retrieve all the rows and columns of a particular table. You specify the name of the table to
retrieve from in the CommandText property.Warning
SqlCommand objects don't support the CommandType of TableDirect . The example in this section
will use an OleDbCommand object instead.
As you know, you can use a SqlConnection object to connect to SQL Server. You can also use an
OleDbConnection object to connect to SQL Server. You simply set the provider to SQLOLEDB in the
connection string passed to the OleDbConnection constructor. For example: OleDbConnection
myOleDbConnection = new OleDbConnection(
"Provider=SQLOLEDB;server=localhost;database=Northwind;" + "uid=sa;pwd=sa");
Next, you create an OleDbConnection object: OleDbCommand myOleDbCommand =
myOleDbConnection.CreateCommand();
You then set the CommandType of myOleDbConnection to CommandType.TableDirect:
myOleDbCommand.CommandType = CommandType.TableDirect;
Next, you specify the name of the table to retrieve from using the CommandText property. The
following example sets the CommandText property of myOleDbCommand to Products:
myOleDbCommand.CommandText = "Products";
You next open the database connection: myOleDbConnection.Open();
Finally, you execute myOleDbCommand using the ExecuteReader() method: OleDbDataReader
myOleDbDataReader = myOleDbCommand.ExecuteReader();
The SQL statement actually executed is SELECT * FROM Products, which retrieves all the rows and
columns from the Products table.
Listing 8.4 illustrates the code shown in this section.Listing 8.4: EXECUTETABLEDIRECT.CS /*
ExecuteTableDirect.cs illustrates how to execute a TableDirect command */ using System; using
System.Data; using System.Data.OleDb; class ExecuteTableDirect { public static void Main() {
OleDbConnection myOleDbConnection = new OleDbConnection(
"Provider=SQLOLEDB;server=localhost;database=Northwind;" + "uid=sa;pwd=sa");
OleDbCommand myOleDbCommand = myOleDbConnection.CreateCommand(); // set the
CommandType property of the OleDbCommand object to // TableDirect
myOleDbCommand.CommandType = CommandType.TableDirect; // set the CommandText
property of the OleDbCommand object to // the name of the table to retrieve from
myOleDbCommand.CommandText = "Products"; myOleDbConnection.Open();
OleDbDataReader myOleDbDataReader = myOleDbCommand.ExecuteReader(); // only read the
first 5 rows from the OleDbDataReader object for (int count = 1; count <= 5; count++) {
myOleDbDataReader.Read(); Console.WriteLine("myOleDbDataReader[\" ProductID\"] = " +
myOleDbDataReader["ProductID"]); Console.WriteLine("myOleDbDataReader[\" ProductName\"]
= " + myOleDbDataReader["ProductName"]); Console.WriteLine("myOleDbDataReader[\"
QuantityPerUnit\"] = " + myOleDbDataReader["QuantityPerUnit"]);
Console.WriteLine("myOleDbDataReader[\" UnitPrice\"] = " + myOleDbDataReader["UnitPrice"]);
} myOleDbDataReader.Close(); myOleDbConnection.Close(); } }
You'll notice that this program displays only the first five rows from the Products table, even though all
the rows are retrieved.

Part 2: Fundamental Database Programming with ADO.NET 147

© 2004 ... Your company

The output from this program is as follows: myOleDbDataReader["ProductID"] = 1
myOleDbDataReader["ProductName"] = Chai myOleDbDataReader["QuantityPerUnit"] = 10 boxes x
20 bags myOleDbDataReader["UnitPrice"] = 18 myOleDbDataReader["ProductID"] = 2
myOleDbDataReader["ProductName"] = Chang myOleDbDataReader["QuantityPerUnit"] = 24 - 12 oz
bottles myOleDbDataReader["UnitPrice"] = 19 myOleDbDataReader["ProductID"] = 3
myOleDbDataReader["ProductName"] = Aniseed Syrup myOleDbDataReader["QuantityPerUnit"] = 12
- 550 ml bottles myOleDbDataReader["UnitPrice"] = 10 myOleDbDataReader["ProductID"] = 4
myOleDbDataReader["ProductName"] = Chef Anton's Cajun Seasoning
myOleDbDataReader["QuantityPerUnit"] = 48 - 6 oz jars myOleDbDataReader["UnitPrice"] = 22
myOleDbDataReader["ProductID"] = 5 myOleDbDataReader["ProductName"] = Chef Anton's Gumbo
Mix myOleDbDataReader["QuantityPerUnit"] = 36 boxes myOleDbDataReader["UnitPrice"] = 21.35
Executing a SELECT Statement Using the ExecuteScalar() Method
You use the ExecuteScalar() method to execute SQL SELECT statements that return a single value;
any other values are ignored. The ExecuteScalar() method returns the single result as an object of
the System.Object class. One use for the ExecuteScalar() method is to execute a SELECT statement
that uses an aggregate function such as COUNT() to get the number of rows in a table. Aggregate
functions are covered in Chapter 4, "Introduction to Transact-SQL Programming."
For example, the following statement sets the CommandText property of the mySqlCommand object
to a SELECT that uses the COUNT() function. This SELECT returns the number of rows in the
Products table: mySqlCommand.CommandText = "SELECT COUNT(*) " + "FROM Products";
Next, the following example executes the SELECT statement using the ExecuteScalar() method: int
returnValue = (int) mySqlCommand.ExecuteScalar();
You'll notice I cast the generic object returned by ExecuteScalar() to an int before storing the result in
the int returnValue variable.
Listing 8.5 illustrates the use of the ExecuteScalar() method.Listing 8.5: EXECUTESCALAR.CS /*
ExecuteScalar.cs illustrates how to use the ExecuteScalar() method to run a SELECT statement that
returns a single value */ using System; using System.Data; using System.Data.SqlClient; class
ExecuteScalar { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT COUNT(*) " + "FROM Products"; mySqlConnection.Open(); // call the
ExecuteScalar() method of the SqlCommand object // to run the SELECT statement int
returnValue = (int) mySqlCommand.ExecuteScalar();
Console.WriteLine("mySqlCommand.ExecuteScalar() = " + returnValue);
mySqlConnection.Close(); } }
The output from this program is as follows: mySqlCommand.ExecuteScalar() = 79
Of course, your output might vary depending on the number of rows in your Products table. Executing
a Command that Retrieves Data as XML Using the ExecuteXMLReader() Method
You use the ExecuteXmlReader() method to execute a SQL SELECT statement that returns XML
data. The ExecuteXmlReader() method returns the results in an XmlReader object, which you then
use to read the retrieved XML data.Note
The ExecuteXmlReader() method applies only to the SqlCommand class.
SQL Server extends standard SQL to allow you to query the database and get results back as XML.
Specifically, you can add a FOR XML clause to the end of a SELECT statement. The FOR XML
clause has the following syntax: FOR XML {RAW | AUTO | EXPLICIT} [, XMLDATA] [, ELEMENTS] [,
BINARY BASE64]
Table 8.7 shows the description of the keywords used in the FOR XML clause. Table 8.7: FOR XML
KEYWORDS
KEYWORD
DESCRIPTION
FOR XML
Specifies that SQL Server is to return results as XML.
RAW
Indicates that each row in the result set is returned as an XML <row> element. Column values
become attributes of the <row> element.
AUTO

Mastering C# Database Programming @Team LiB148

© 2004 ... Your company

Specifies that each row in the result set is returned as an XML element with the name of table used in
place of the generic <row> element.
EXPLICIT
Indicates that your SELECT statement specifies the parent-child relationship, which is then used by
SQL Server to create XML with the appropriate nesting structure.
XMLDATA
Specifies that the Document Type Definition is to be included in the returned XML.
ELEMENTS
Indicates that the columns are returned as subelements of the row. Otherwise, the columns are
returned as attributes of the row. You can use this option only with AUTO.
BINARY BASE64
Specifies that any binary data returned by the query is encoded in base 64. If you want to retrieve
binary data using RAW and EXPLICIT mode, then you must use BINARY BASE64. In AUTO mode,
binary data is returned as a reference by default.
You'll see a simple example of the FOR XML clause here, and you'll learn the full details of this
clause in Chapter 16, "Using SQL Server's XML Support."
The following example sets the CommandText property of mySqlCommand to a SELECT statement
that uses the FOR XML AUTO clause. This SELECT statement returns the first five rows from the
Products table as XML. mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID " + "FOR XML AUTO";
Next, the following statement executes the SELECT using the ExecuteXmlReader() method:
XmlReader myXmlReader = mySqlCommand.ExecuteXmlReader(); Note
The XmlReader class is defined in the System.Xml namespace.
To start reading the XML from the XmlReader object, you use the Read() method. You then check to
make sure you're not at the end of the rows using the EOF property of the XmlReader object. EOF
returns true if there are no more rows to read, otherwise it returns false. You use the ReadOuterXml()
method to read the actual XML from the XmlReader object. The following example illustrates how to
read XML from myXmlReader: myXmlReader.Read(); while (!myXmlReader.EOF) {
Console.WriteLine(myXmlReader.ReadOuterXml()); }
Listing 8.6 illustrates the use of the ExecuteXmlReader() method.Listing 8.6:
EXECUTEXMLREADER.CS /* ExecuteXmlReader.cs illustrates how to use the
ExecuteXmlReader() method to run a SELECT statement that returns XML */ using System; using
System.Data; using System.Data.SqlClient; using System.Xml; class ExecuteXmlReader { public
static void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); // set the CommandText property of the SqlCommand object
to // a SELECT statement that retrieves XML mySqlCommand.CommandText = "SELECT
TOP 5 ProductID, ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID " +
"FOR XML AUTO"; mySqlConnection.Open(); // create a SqlDataReader object and call the
ExecuteReader() // method of the SqlCommand object to run the SELECT statement XmlReader
myXmlReader = mySqlCommand.ExecuteXmlReader(); // read the rows from the XmlReader object
using the Read() method myXmlReader.Read(); while (!myXmlReader.EOF) {
Console.WriteLine(myXmlReader.ReadOuterXml()); } myXmlReader.Close();
mySqlConnection.Close(); } }
You'll notice I imported the System.Xml namespace near the beginning of this program.
The output from this program is as follows: <Products ProductID="1" ProductName="Chai"
UnitPrice="18.0000"/> <Products ProductID="2" ProductName="Chang" UnitPrice="19.0000"/>
<Products ProductID="3" ProductName="Aniseed Syrup" UnitPrice="10.0000"/> <Products
ProductID="4" ProductName="Chef Anton's Cajun Seasoning" UnitPrice="22.0000"/>
<Products ProductID="5" ProductName="Chef Anton's Gumbo Mix" UnitPrice="21. 3500"/>
Notice that each of the 5 rows from the Products table is returned as XML.

Part 2: Fundamental Database Programming with ADO.NET 149

© 2004 ... Your company

6.2.4 Executing Commands that Modify Information in the Database

Executing Commands that Modify Information in the Database
You can use the ExecuteNonQuery() method of a Command object to execute any command that
doesn't return a result set from the database. In this section, you'll learn how to use the
ExecuteNonQuery() method to execute commands that modify information in the database.
You can use the ExecuteNonQuery() method to execute SQL INSERT, UPDATE, and DELETE
statements. You can also use the ExecuteNonQuery() method to call stored procedures that don't
return a value, or issue Data Definition Language (DDL) statements such as CREATE TABLE and
CREATE INDEX. (DDL was covered in Chapter 3, "Introduction to the Structured Query Language.")
Table 8.8 summarizes the ExecuteNonQuery() method. Table 8.8: THE ExecuteNonQuery() METHOD
METHOD
RETURN TYPE
DESCRIPTION
ExecuteNonQuery()
int
Used to execute SQL statements that don't return a result set, such as INSERT, UPDATE, and
DELETE statements, DDL statements, or stored procedure calls that don't return a result set. The int
value returned is the number of database rows affected by the command, if any.
You'll learn how to execute INSERT, UPDATE, and DELETE statements, and how to execute DDL
statements in this section. You'll learn how to execute stored procedure calls later in the
"Executing SQL Server Stored Procedures" section. Executing INSERT , UPDATE , and DELETE
Statements Using the ExecuteNonQuery() Method
Let's take a look at an example that executes an INSERT statement using the ExecuteNonQuery()
method. First, a Command object is needed: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand();
Next, you set the CommandText property of your Command object to the INSERT statement. The
following example sets the CommandText property of mySqlCommand to an INSERT statement that
adds a row to the Customers table: mySqlCommand.CommandText = "INSERT INTO Customers (" +
" CustomerID, CompanyName" + ") VALUES (" + " 'J2COM', 'Jason Price Corporation'" + ")";
Finally, you execute the INSERT statement using the ExecuteNonQuery() method: int numberOfRows
= mySqlCommand.ExecuteNonQuery();
The ExecuteNonQuery() method returns an int value that indicates the number of rows affected by the
command. In this example, the value returned is the number of rows added to the Customers table,
which is 1 since one row was added by the INSERT statement.
Let's take a look at an example that executes an UPDATE statement to modify the new row just
added. The following code sets the CommandText property of mySqlCommand to an UPDATE
statement that modifies the CompanyName column of the new row, and then calls the
ExecuteNonQuery() method to execute the UPDATE: mySqlCommand.CommandText = "UPDATE
Customers " + "SET CompanyName = 'New Company' " + "WHERE CustomerID = 'J2COM'";
numberOfRows = mySqlCommand.ExecuteNonQuery();
The ExecuteNonQuery() method returns the number of rows modified by the UPDATE statement,
which is 1 since one row was modified.
Finally, let's take a look at an example that executes a DELETE statement to remove the new row:
mySqlCommand.CommandText = "DELETE FROM Customers " + "WHERE CustomerID =
'J2COM'"; numberOfRows = mySqlCommand.ExecuteNonQuery();
ExecuteNonQuery() returns 1 again because only one row was removed by the DELETE statement.
Listing 8.7 illustrates the use of the ExecuteNonQuery() method to execute the INSERT, UPDATE,
and DELETE statements shown in this section. This program features a procedure named
DisplayRow() that retrieves and displays the details of a specified row from the Customers table.
DisplayRow() is used in the program to show the result of the INSERT and UPDATE
statements.Listing 8.7: EXECUTEINSERTUPDATEDELETE.CS /* ExecuteInsertUpdateDelete.cs
illustrates how to use the ExecuteNonQuery() method to run INSERT, UPDATE, and DELETE
statements */ using System; using System.Data; using System.Data.SqlClient; class
ExecuteInsertUpdateDelete { public static void DisplayRow(SqlCommand mySqlCommand, string
CustomerID) { mySqlCommand.CommandText = "SELECT CustomerID, CompanyName " +

Mastering C# Database Programming @Team LiB150

© 2004 ... Your company

"FROM Customers " + "WHERE CustomerID = '" + CustomerID + "'"; SqlDataReader
mySqlDataReader = mySqlCommand.ExecuteReader(); while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[\" CustomerID\"] = " + mySqlDataReader["CustomerID"]);
Console.WriteLine("mySqlDataReader[\" CompanyName\"] = " +
mySqlDataReader["CompanyName"]); } mySqlDataReader.Close(); } public static void Main()
{ SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object and
set its Commandtext property // to an INSERT statement SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "INSERT INTO
Customers (" + " CustomerID, CompanyName" + ") VALUES (" + " 'J2COM', 'Jason Price
Corporation'" + ")"; mySqlConnection.Open(); // call the ExecuteNonQuery() method of the
SqlCommand object // to run the INSERT statement int numberOfRows =
mySqlCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows added = " +
numberOfRows); DisplayRow(mySqlCommand, "J2COM"); // set the CommandText property of
the SqlCommand object to // an UPDATE statement mySqlCommand.CommandText =
"UPDATE Customers " + "SET CompanyName = 'New Company' " + "WHERE CustomerID =
'J2COM'"; // call the ExecuteNonQuery() method of the SqlCommand object // to run the
UPDATE statement numberOfRows = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("Number of rows updated = " + numberOfRows); DisplayRow(mySqlCommand,
"J2COM"); // set the CommandText property of the SqlCommand object to // a DELETE
statement mySqlCommand.CommandText = "DELETE FROM Customers " + "WHERE
CustomerID = 'J2COM'"; // call the ExecuteNonQuery() method of the SqlCommand object // to
run the DELETE statement numberOfRows = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("Number of rows deleted = " + numberOfRows); mySqlConnection.Close(); } }
The output from this program is as follows: Number of rows added = 1
mySqlDataReader["CustomerID"] = J2COM mySqlDataReader["CompanyName"] = Jason Price
Corporation Number of rows updated = 1 mySqlDataReader["CustomerID"] = J2COM
mySqlDataReader["CompanyName"] = New Company Number of rows deleted = 1 Executing DDL
Statements Using the ExecuteNonQuery() Method
In addition to running INSERT, UPDATE, and DELETE statements, you can also use the
ExecuteNonQuery() method to execute DDL statements such as CREATE TABLE.
Let's take a look at an example that executes a CREATE TABLE statement, followed by an ALTER
TABLE statement, followed by a DROP TABLE statement. First, a Command object is needed:
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
Next, you set the CommandText property of the Command object to the CREATE TABLE statement.
The following example sets the CommandText property of mySqlCommand to a CREATE TABLE
statement that creates a table named MyPersons to store information about people:
mySqlCommand.CommandText = "CREATE TABLE MyPersons (" + " PersonID int CONSTRAINT
PK_Persons PRIMARY KEY," + " FirstName nvarchar(15) NOT NULL," + " LastName
nvarchar(15) NOT NULL," + " DateOfBirth datetime" + ")";
Next, you call the ExecuteNonQuery() method to execute the CREATE TABLE statement: int result =
mySqlCommand.ExecuteNonQuery();
Since a CREATE TABLE statement doesn't affect any rows, ExecuteNonQuery() returns the value -1.
The next example executes an ALTER TABLE statement to add a foreign key constraint to the
MyPersons table: mySqlCommand.CommandText = "ALTER TABLE MyPersons " + "ADD
EmployerID nchar(5) CONSTRAINT FK_Persons_Customers " + "REFERENCES
Customers(CustomerID)"; result = mySqlCommand.ExecuteNonQuery();
Once again, ExecuteNonQuery() returns -1 since the ALTER TABLE statement doesn't affect any
rows.
The final example executes a DROP TABLE statement to drop the MyPersons table:
mySqlCommand.CommandText = "DROP TABLE MyPersons"; result =
mySqlCommand.ExecuteNonQuery();
ExecuteNonQuery() returns -1 again.
Listing 8.8 illustrates the use of the ExecuteNonQuery() method to execute the DDL statements
shown in this section.Listing 8.8: EXECUTEDDL.CS /* ExecuteDDL.cs illustrates how to use the
ExecuteNonQuery() method to run DDL statements */ using System; using System.Data; using

Part 2: Fundamental Database Programming with ADO.NET 151

© 2004 ... Your company

System.Data.SqlClient; class ExecuteDDL { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); // set the CommandText property of the SqlCommand object
to // a CREATE TABLE statement mySqlCommand.CommandText = "CREATE TABLE
MyPersons (" + " PersonID int CONSTRAINT PK_Persons PRIMARY KEY," + " FirstName
nvarchar(15) NOT NULL," + " LastName nvarchar(15) NOT NULL," + " DateOfBirth datetime"
+ ")"; mySqlConnection.Open(); // call the ExecuteNonQuery() method of the SqlCommand
object // to run the CREATE TABLE statement Console.WriteLine("Creating MyPersons table");
int result = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("mySqlCommand.ExecuteNonQuery() = " + result); // set the CommandText
property of the SqlCommand object to // an ALTER TABLE statement
mySqlCommand.CommandText = "ALTER TABLE MyPersons " + "ADD EmployerID nchar(5)
CONSTRAINT FK_Persons_Customers " + "REFERENCES Customers(CustomerID)"; // call
the ExecuteNonQuery() method of the SqlCommand object // to run the ALTER TABLE statement
Console.WriteLine("Altering MyPersons table"); result = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("mySqlCommand.ExecuteNonQuery() = " + result); // set the CommandText
property of the SqlCommand object to // a DROP TABLE statement
mySqlCommand.CommandText = "DROP TABLE MyPersons"; // call the ExecuteNonQuery()
method of the SqlCommand object // to run the DROP TABLE statement
Console.WriteLine("Dropping MyPersons table"); result = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("mySqlCommand.ExecuteNonQuery() = " + result); mySqlConnection.Close();
} }
The output from this program is as follows: Creating MyPersons table
mySqlCommand.ExecuteNonQuery() = -1 Altering MyPersons table
mySqlCommand.ExecuteNonQuery() = -1 Dropping MyPersons table
mySqlCommand.ExecuteNonQuery() = -1

6.2.5 Introducing Transactions

Introducing Transactions
In Chapter 3, you saw how you can group SQL statements together into transactions. The transaction
is then committed or rolled back as one unit. For example, in the case of a banking transaction, you
might want to withdraw money from one account and deposit it into another. You would then commit
both of these changes as one unit, or if there's a problem, roll back both changes. You'll be
introduced to using transactions in ADO.NET in this section.
There are three Transaction classes: SqlTransaction, OleDbTransaction, and OdbcTransaction, and
you use an object of one of these classes to represent a transaction in ADO.NET. I'll show you how to
use an object of the SqlTransaction class in this section.
Let's consider an example transaction that consists of two INSERT statements. The first INSERT
statement will add a row to the Customers table, and the second one will add a row to the Orders
table. The new row in the Orders table will reference the new row in the Customers table, and the two
INSERT statements are as follows: INSERT INTO Customers CustomerID, CompanyName)
VALUES 'J3COM', 'Jason Price Corporation') INSERT INTO Orders (CustomerID) VALUES (
'J3COM')
You can use the following steps to perform these two INSERT statements using a SqlTransaction
object:
Create a SqlTransaction object and start the transaction by calling the BeginTransaction() method of
the SqlConnection object.
Create a SqlCommand object to hold the SQL statement.
Set the Transaction property for the SqlCommand object to the SqlTransaction object created in step
1.
Set the CommandText property of the SqlCommand object to the first INSERT statement. This
INSERT statement adds a row to the Customers table.
Run the first INSERT statement using the ExecuteNonQuery() method of the SqlCommand object.

Mastering C# Database Programming @Team LiB152

© 2004 ... Your company

This method is used because an INSERT statement doesn't return a result set.
Set the CommandText property of the SqlCommand object to the second INSERT statement. This
statement adds a row to the Orders table.
Run the second INSERT statement using the ExecuteNonQuery() method of the SqlCommand object.
Commit the transaction using the Commit() method of the SqlTransaction object. This makes the two
new rows added by the INSERT statements permanent in the database.
Listing 8.9 illustrates these steps.Listing 8.9: EXECUTETRANSACTION.CS /*
ExecuteTransaction.cs illustrates the use of a transaction */ using System; using System.Data; using
System.Data.SqlClient; class ExecuteTransaction { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); mySqlConnection.Open(); // step
1: create a SqlTransaction object and start the transaction // by calling the BeginTransaction()
method of the SqlConnection // object SqlTransaction mySqlTransaction =
mySqlConnection.BeginTransaction(); // step 2: create a SqlCommand object to hold a SQL
statement SqlCommand mySqlCommand = mySqlConnection.CreateCommand(); // step 3: set
the Transaction property for the SqlCommand object mySqlCommand.Transaction =
mySqlTransaction; // step 4: set the CommandText property of the SqlCommand object to // the
first INSERT statement mySqlCommand.CommandText = "INSERT INTO Customers (" + "
CustomerID, CompanyName" + ") VALUES (" + " 'J3COM', 'Jason Price Corporation'" +
")"; // step 5: run the first INSERT statement Console.WriteLine("Running first INSERT
statement"); mySqlCommand.ExecuteNonQuery(); // step 6: set the CommandText property of
the SqlCommand object to // the second INSERT statement mySqlCommand.CommandText =
"INSERT INTO Orders (" + " CustomerID" + ") VALUES (" + " 'J3COM'" + ")"; //
step 7: run the second INSERT statement Console.WriteLine("Running second INSERT
statement"); mySqlCommand.ExecuteNonQuery(); // step 8: commit the transaction using the
Commit() method // of the SqlTransaction object Console.WriteLine("Committing transaction");
mySqlTransaction.Commit(); mySqlConnection.Close(); } } Note
If you wanted to undo the SQL statements that make up the transaction, you can use the Rollback()
method instead of the Commit() method. By default, transactions are rolled back. Always use the
Commit() or Rollback() methods to explicitly indicate whether you want to commit or roll back your
transactions.
The output from this program is as follows: Running first INSERT statement Running second INSERT
statement Committing transaction
If you want to run the program more than once, you'll need to remove the row added to the Customers
and Orders table using the following DELETE statements (you can do this using the Query Analyzer
tool): DELETE FROM Orders WHERE CustomerID = 'J3COM' DELETE FROM Customers WHERE
CustomerID = 'J3COM'

6.2.6 Supplying Parameters to Commands

Supplying Parameters to Commands
In the examples you've seen up to this point, the values for each column have been hard-coded in the
SQL statements. For example, in Listing 8.9, shown earlier, the INSERT statement that added the row
to the Customers table was: INSERT INTO Customers CustomerID, CompanyName) VALUES
'J3COM', 'Jason Price Corporation')
As you can see, the values for the CustomerID and CompanyName columns are hard-coded to
'J3COM' and 'Jason Price Corporation'. If you had to execute many such INSERT statements, hard-
coding column values would be tiresome and inefficient. Fortunately, you can use parameters to solve
this problem. Parameters allow you specify different column values when running your program.
To execute a command containing parameters, you use the following high-level steps:
Create a Command object containing a SQL statement with parameter placeholders. These
placeholders mark the position where a parameter will be supplied.
Add parameters to the Command object.
Set the parameters to specified values.
Execute the command.

Part 2: Fundamental Database Programming with ADO.NET 153

© 2004 ... Your company

Let's take a look at the details of the four steps when using parameters with SQL Server. Step 1:
Create a Command Object Containing a SQL Statement with Parameter Placeholders
This is straightforward: wherever you would normally place a column value in your SQL statement,
you specify a parameter placeholder instead. A placeholder marks the position where a value will be
supplied later.
The syntax you use for the placeholders depends on the database you are using. With SQL Server,
example placeholders would be @CustomerID and @CompanyName. The following INSERT
statement uses these placeholders for the CustomerID, CompanyName, and ContactName column
values of the Customers table: INSERT INTO Customers CustomerID, CompanyName,
ContactName) VALUES @CustomerID, @CompanyName, @ContactName)
You can use a placeholder anywhere a column value is valid in a SELECT, INSERT, UPDATE, or
DELETE statement. Here are some examples of SELECT, UPDATE, and DELETE statements with
placeholders: SELECT * FROM Customers WHERE CustomerID = @CustomerID UPDATE
Customers SET CompanyName = @CompanyName WHERE CustomerID = @CustomerID DELETE
FROM Customers WHERE CustomerID = @CustomerID
Let's take a look at some code that creates a SqlCommand object and sets its CommandText property
to an INSERT statement: SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "INSERT INTO Customers (" + " CustomerID, CompanyName,
ContactName" + ") VALUES (" + " @CustomerID, @CompanyName, @ContactName" + ")";
This INSERT statement will be used to add a row to the Customers table. The column values for this
row will be specified using parameters. All that's been done in the previous code is to create a
SqlCommand object with an INSERT statement that has placeholders. Before you can execute this
INSERT statement, you need to add the actual parameters to the SqlCommand object-and you'll do
that in the next step. Step 2: Add Parameters to the Command Object
To add parameters to your Command object, you use the Add() method. It is overloaded, and the
version used in this section accepts three parameters:
The placeholder string for the parameter in your SQL statement. For example, @CustomerID is the
first placeholder in the INSERT statement shown in the previous section.
The type for the column in the database. For SQL Server, these types are defined in the System
.Data.SqlDbType enumeration. Table 8.9 shows these database types. Table 8.9: SqlDbType
ENUMERATION MEMBERS
MEMBER
DESCRIPTION
BigInt
A 64-bit signed integer between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).
Binary
An array of bytes with a maximum length of 8,000.
Bit
An unsigned numeric value that can be 0, 1, or a null reference.
Char
A string of non-Unicode characters with a maximum length of 8,000.
DateTime
A date and time between 12:00:00 AM January 1, 1753 and 11:59:59 PM December 31, 9999. This is
accurate to 3.33 milliseconds.
Decimal
Fixed precision and scale numeric value between -1038 + 1 and 1038 - 1.
Float
A 64-bit floating-point number between -1.79769313486232E308 and 1.79769313486232E308 with
15 significant figures of precision.
Image
An array of bytes with a maximum length of 231 - 1 (2,147,483,647).
Int
A 32-bit signed integer between -231 (-2,147,483,648) and 231 - 1 (2,147,483,647).
Money
A currency value between -922,337,203,685,477.5808 and 922,337,203,685,477.5807. This is

Mastering C# Database Programming @Team LiB154

© 2004 ... Your company

accurate to 1/10,000th of a currency unit.
NChar
A string of Unicode characters with a maximum length of 4,000.
Ntext
A string of Unicode characters with a maximum length of 230 - 1 (1,073,741,823).
NVarChar
A string of Unicode characters with a maximum length of 4,000.
Real
A 32-bit floating-point number between -3.402823E38 and 3.402823E38 with seven significant figures
of precision.
SmallDateTime
A date and time between 12:00:00 AMJanuary 1, 1900 and 11:59:59 PM June 6, 2079. This is
accurate to 1 minute.
SmallInt
A 16-bit signed integer between -215 (-32,768) and 215 - 1 (32,767).
SmallMoney
A currency value between -214,748.3648 and 214,748.3647. Accurate to 1/10,000th of a currency
unit.
Text
A string of non-Unicode characters with a maximum length of 231 - 1 (2,147,483,647).
Timestamp
A date and time in the format yyyymmddhhmmss.
TinyInt
An 8-bit unsigned integer between 0 and 28 - 1 (255).
UniqueIdentifier
A 128-bit integer value (16 bytes) that that is unique across all computers and networks.
VarBinary
An array of bytes with a maximum length of 8,000.
VarChar
A string of non-Unicode characters with a maximum length of 4,000.
Variant
A data type that can contain numbers, strings, bytes, or dates.
The maximum length of the parameter value. You specify this parameter only when using variable
length types, for example, Char and VarChar.
Earlier in step 1, the CommandText property for mySqlCommand had three placeholders and was set
as follows: mySqlCommand.CommandText = "INSERT INTO Customers (" + " CustomerID,
CompanyName, ContactName" + ") VALUES (" + " @CustomerID, @CompanyName,
@ContactName" + ")";
The following statements use the Add() method to add the three parameters to mySqlCommand:
mySqlCommand.Parameters.Add("@CustomerID", SqlDbType.NChar, 5);
mySqlCommand.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 40);
mySqlCommand.Parameters.Add("@ContactName", SqlDbType.NVarChar, 30);
Notice that you call the Add() method through the Parameters property of mySqlCommand. This
requires some explanation. A SqlCommand object stores parameters using a SqlParameterCollection
object, which is a collection of SqlParameter objects (a SqlParameter object contains the details of a
parameter). One of the SqlParameterCollection methods is Add(), which you use to add a
SqlParameter object to the collection. Therefore, to add a parameter to mySqlCommand, you call the
Add() method through its Parameters property.
As you can see from the previous code that added the three parameters to mySqlCommand, the
@CustomerID parameter is defined as an NChar-a string of Unicode characters with a maximum
length of 4,000. A value of 5 is passed as the third parameter to the Add() method for @CustomerID,
meaning that a maximum of five characters may be supplied as the parameter value. Similarly, the
@CompanyName and @ContactName parameters are defined as an NVarChar-a string of Unicode
characters-with a maximum length of 40 and 30 characters respectively, as indicated by the third
parameter to the Add() method. You'll see the setting of these parameters to values in the next
step. Step 3: Set the Parameters to Specified Values

Part 2: Fundamental Database Programming with ADO.NET 155

© 2004 ... Your company

You use the Value property of each parameter to set it to a specified value in your Command object.
These values are substituted for the placeholders in your SQL statement.
The following example uses the Value property to set the values of the parameters added in the
previous section: mySqlCommand.Parameters["@CustomerID"].Value = "J4COM";
mySqlCommand.Parameters["@CompanyName"].Value = "J4 Company";
mySqlCommand.Parameters["@ContactName"].Value = "Jason Price";
In this example, the @CustomerID, @CompanyName, and @ContactName parameters are set to
J4COM, J4 Company, and Jason Price respectively. These values will be substituted for the
placeholders in the INSERT statement, which becomes INSERT INTO Customers (CustomerID,
CompanyName, ContactName) VALUES ('J4COM', 'J4 Company', 'Jason Price')
As you can see, the column values are the same as those specified in the Value property for each
parameter.
You can also add a parameter and set its value in one step. For example:
mySqlCommand.Parameters.Add("@CustomerID", SqlDbType.NChar, 5).Value = "J4COM";
You can also set a parameter to a null value. As you learned in Chapter 2, "Introduction to
Databases," a column defined as null can store a null value. A null value indicates that the column
value is unknown. You indicate that a parameter can accept a null value by setting the IsNullable
property to true (the default is false). For example:
mySqlCommand.Parameters["@ContactName"].IsNullable = true;
You can then set the Value property of the parameter to null using the System.DBNull class. For
example: mySqlCommand.Parameters["@ContactName"].Value = DbNull.Value;
The DBNull.Value property returns a null value. In this example, the final INSERT statement
becomes: INSERT INTO Customers (CustomerID, CompanyName, ContactName) VALUES (
'J4COM', 'J4 Company', NULL)
The only thing left to do is to execute the SQL statement. Step 4: Execute the Command
To execute the command, you use one of your Command object's execute methods. For example:
mySqlCommand.ExecuteNonQuery();
This runs the INSERT statement that adds the new row to the Customers table. I used the
ExecuteNonQuery() method because an INSERT statement doesn't return a result set from the
database. You can also use this method to execute UPDATE and DELETE statements. If you were
executing a SELECT statement, you would use the ExecuteReader(), ExecuteScalar(), or
ExecuteXmlReader() methods.
Listing 8.10 illustrates these four steps.Listing 8.10: USINGPARAMETERS.CS /*
UsingParameters.cs illustrates how to run an INSERT statement that uses parameters */ using
System; using System.Data; using System.Data.SqlClient; class UsingParameters { public static
void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); mySqlConnection.Open(); // step
1: create a Command object containing a SQL statement // with parameter placeholders
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "INSERT INTO Customers (" + " CustomerID,
CompanyName, ContactName" + ") VALUES (" + " @CustomerID, @CompanyName,
@ContactName" + ")"; // step 2: add parameters to the Command object
mySqlCommand.Parameters.Add("@CustomerID", SqlDbType.NChar, 5);
mySqlCommand.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 40);
mySqlCommand.Parameters.Add("@ContactName", SqlDbType.NVarChar, 30); // step 3: set the
parameters to specified values mySqlCommand.Parameters["@CustomerID"].Value = "J4COM";
mySqlCommand.Parameters["@CompanyName"].Value = "J4 Company";
mySqlCommand.Parameters["@ContactName"].IsNullable = true;
mySqlCommand.Parameters["@ContactName"].Value = DBNull.Value; // step 4: execute the
command mySqlCommand.ExecuteNonQuery(); Console.WriteLine("Successfully added row to
Customers table"); mySqlConnection.Close(); } }
The output from this program is as follows: Successfully added row to Customers table

Mastering C# Database Programming @Team LiB156

© 2004 ... Your company

6.2.7 Executing SQL Server Stored Procedures

Executing SQL Server Stored Procedures
In Chapter 4, you saw how to create and execute SQL Server stored procedures using T-SQL. You
execute a stored procedure using the T-SQL EXECUTE statement. In this section, you'll see how to
execute SQL Server procedures using ADO.NET.
In Table 8.1, shown earlier in this chapter, I mentioned the CommandType of StoredProcedure.
Although you can use this CommandType to indicate that a command is to execute a stored
procedure, you're actually better off using the T-SQL EXECUTE command to execute a stored
procedure. This is because you can read values that are returned from a stored procedure through a
RETURN statement, which you can't do when setting the CommandType to StoredProcedure. Also,
it's a lot easier to understand your code when you use the EXECUTE command.
There are a couple of ways you can execute a stored procedure depending on whether your
procedure returns a result set (a result set is one or more rows retrieved from a table by a SELECT
statement). You'll learn these two ways to execute a stored procedure next. Executing a Stored
Procedure That Does Not Return a Result Set
If your procedure does not return a result set, then you use the following steps to execute it:
Create a Command object and set its CommandText property to an EXECUTE statement containing
your procedure call.
Add any required parameters for the procedure call to your Command object, remembering to set the
Direction property for any output parameters to ParameterDirection.Output. These output parameters
can be defined using the T-SQL OUTPUT keyword in your procedure call, or returned using a
RETURN statement in your actual procedure.
Execute your Command object using the ExecuteNonQuery() method. You use this method because
the procedure doesn't return a result set.
Read the values of any output parameters.
You'll see how to use these four steps to call the following two SQL Server stored procedures:
The first procedure, AddProduct(), will return an output parameter defined using the OUTPUT
keyword.
The second procedure, AddProduct2(), will return an output parameter using the RETURN statement.
These examples will show you the possible ways to execute a stored procedure using ADO.NET and
read the output parameters. Executing the AddProduct() Stored Procedure
In Chapter 4, you saw how to create a stored procedure in the SQL Server Northwind database. The
procedure you saw was named AddProduct(), and Listing 8.11 shows the AddProduct.sql script that
creates the AddProduct() procedure. You saw how to run this script in Chapter 4. If you didn't already
run this script when reading Chapter 4, and you want to run the example C# program shown later,
you'll need to run this script. AddProduct() adds a row to the Products table and returns the ProductID
of the new row as an OUTPUT parameter.Listing 8.11: ADDPRODUCT.SQL /* AddProduct.sql
creates a procedure that adds a row to the Products table using values passed as parameters to the
procedure. The procedure returns the ProductID of the new row in an OUTPUT parameter named
@MyProductID */ CREATE PROCEDURE AddProduct @MyProductID int OUTPUT,
@MyProductName nvarchar(40), @MySupplierID int, @MyCategoryID int, @MyQuantityPerUnit
nvarchar(20), @MyUnitPrice money, @MyUnitsInStock smallint, @MyUnitsOnOrder smallint,
@MyReorderLevel smallint, @MyDiscontinued bit AS - insert a row into the Products table
INSERT INTO Products (ProductName, SupplierID, CategoryID, QuantityPerUnit, UnitPrice,
UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued) VALUES (@MyProductName,
@MySupplierID, @MyCategoryID, @MyQuantityPerUnit, @MyUnitPrice, @MyUnitsInStock,
@MyUnitsOnOrder, @MyReorderLevel, @MyDiscontinued) - use the SCOPE_IDENTITY()
function to get the last - identity value inserted into a table performed within - the current database
session and stored procedure, - so SCOPE_IDENTITY returns the ProductID for the new row - in
the Products table in this case SELECT @MyProductID = SCOPE_IDENTITY()
Notice the OUTPUT parameter named @MyProductID returned by AddProduct(). Because
AddProduct() doesn't return a result set, you use the first set of steps outlined earlier. Let's examine
the details of these four steps to execute this stored procedure.Step 1: Create a Command Object
and set its CommandText Property to an EXECUTE Statement
Your first step is to create a Command object and set its CommandText property to an EXECUTE

Part 2: Fundamental Database Programming with ADO.NET 157

© 2004 ... Your company

statement containing the call to AddProduct(); notice the parameter placeholders used to mark the
position where the parameter values will be substituted in step 2: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "EXECUTE AddProduct
@MyProductID OUTPUT, @MyProductName, " + "@MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, " + "@MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, " +
"@MyReorderLevel, @MyDiscontinued";
Notice the OUTPUT parameter placeholder named @MyProductID. This is used to store the
OUTPUT parameter returned by AddProduct(). The other parameter placeholders are used to pass
values to AddProduct(), which then uses those values in its INSERT statement. Step 2: Add Any
Required Parameters to the Command Object
Your second step is to add any parameters to your Command object, remembering to set the
Direction property for any output parameters to ParameterDirection.Output.
In this example, AddProduct() expects an output parameter to store the ProductID for the new row,
and you therefore need to add an output parameter to your Command object. You do this by setting
the Direction property of your parameter to ParameterDirection.Output. For example:
mySqlCommand.Parameters.Add("@MyProductID", SqlDbType.Int);
mySqlCommand.Parameters["@MyProductID"].Direction = ParameterDirection.Output;
The other parameters required to call AddProduct() are: mySqlCommand.Parameters.Add(
"@MyProductName", SqlDbType.NVarChar, 40).Value = "Widget"; mySqlCommand.Parameters.Add(
"@MySupplierID", SqlDbType.Int).Value = 1; mySqlCommand.Parameters.Add("@MyCategoryID",
SqlDbType.Int).Value = 1; mySqlCommand.Parameters.Add("@MyQuantityPerUnit",
SqlDbType.NVarChar, 20).Value = "1 per box"; mySqlCommand.Parameters.Add("@MyUnitPrice",
SqlDbType.Money).Value = 5.99; mySqlCommand.Parameters.Add("@MyUnitsInStock",
SqlDbType.SmallInt).Value = 10; mySqlCommand.Parameters.Add("@MyUnitsOnOrder",
SqlDbType.SmallInt).Value = 5; mySqlCommand.Parameters.Add("@MyReorderLevel",
SqlDbType.SmallInt).Value = 5; mySqlCommand.Parameters.Add("@MyDiscontinued",
SqlDbType.Bit).Value = 1;
Notice that the SqlDbType parameter types correspond to the types expected by the AddProduct()
stored procedure. The values the parameters are set to are then substituted for the placeholders in
the EXECUTE statement shown in step 1.Step 3: Execute the Command Object Using the
ExecuteNonQuery() Method
Your third step is to execute your Command object using the ExecuteNonQuery() method. You use
ExecuteNonQuery() because the AddProduct() procedure doesn't return a result set. For example:
mySqlCommand.ExecuteNonQuery(); Step 4: Read the Values of any Output Parameters
Your last step is to read the values of any output parameters. AddProduct() used one output
parameter named @MyProductID. You read this returned value from the Value property of
@MyProductID: Console.WriteLine("New ProductID = " +
mySqlCommand.Parameters["@MyProductID"].Value);
This displays the values of the ProductID generated by SQL Server for the new row in the Products
table.
Listing 8.12 illustrates these steps to call the AddProduct() procedure.Listing 8.12:
EXECUTEADDPRODUCT.CS /* ExecuteAddProduct.cs illustrates how to call the SQL Server
AddProduct() stored procedure */ using System; using System.Data; using System.Data.SqlClient;
class ExecuteAddProduct { public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
mySqlConnection.Open(); // step 1: create a Command object and set its CommandText //
property to an EXECUTE statement containing the stored // procedure call SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"EXECUTE AddProduct @MyProductID OUTPUT, @MyProductName, " + "@MySupplierID,
@MyCategoryID, @MyQuantityPerUnit, " + "@MyUnitPrice, @MyUnitsInStock,
@MyUnitsOnOrder, " + "@MyReorderLevel, @MyDiscontinued"; // step 2: add the required
parameters to the Command object mySqlCommand.Parameters.Add("@MyProductID",
SqlDbType.Int); mySqlCommand.Parameters["@MyProductID"].Direction =
ParameterDirection.Output; mySqlCommand.Parameters.Add("@MyProductName",
SqlDbType.NVarChar, 40).Value = "Widget"; mySqlCommand.Parameters.Add(
"@MySupplierID", SqlDbType.Int).Value = 1; mySqlCommand.Parameters.Add(

Mastering C# Database Programming @Team LiB158

© 2004 ... Your company

"@MyCategoryID", SqlDbType.Int).Value = 1; mySqlCommand.Parameters.Add(
"@MyQuantityPerUnit", SqlDbType.NVarChar, 20).Value = "1 per box";
mySqlCommand.Parameters.Add("@MyUnitPrice", SqlDbType.Money).Value = 5.99;
mySqlCommand.Parameters.Add("@MyUnitsInStock", SqlDbType.SmallInt).Value = 10;
mySqlCommand.Parameters.Add("@MyUnitsOnOrder", SqlDbType.SmallInt).Value = 5;
mySqlCommand.Parameters.Add("@MyReorderLevel", SqlDbType.SmallInt).Value = 5;
mySqlCommand.Parameters.Add("@MyDiscontinued", SqlDbType.Bit).Value = 1; // step 3:
execute the Command object using the // ExecuteNonQuery() method
mySqlCommand.ExecuteNonQuery(); // step 4: read the value of the output parameter
Console.WriteLine("New ProductID = " + mySqlCommand.Parameters["@MyProductID"].Value);
mySqlConnection.Close(); } }
The output from this program is as follows: New ProductID = 81
Of course, depending on the existing rows in your Products table, you'll get a different
result.Executing the AddProduct2() Stored Procedure
As you'll see, the AddProduct2() procedure is similar to AddProduct(), except that it uses a RETURN
statement instead of an OUTPUT parameter to return the ProductID for the new row. Listing 8.13
shows the AddProduct2.sql script that creates the AddProduct2() procedure. You'll need to run this
script before running the C# program.Listing 8.13: ADDPRODUCT2.SQL /* AddProduct2.sql
creates a procedure that adds a row to the Products table using values passed as parameters to the
procedure. The procedure returns the ProductID of the new row using a RETURN statement */
CREATE PROCEDURE AddProduct2 @MyProductName nvarchar(40), @MySupplierID int,
@MyCategoryID int, @MyQuantityPerUnit nvarchar(20), @MyUnitPrice money,
@MyUnitsInStock smallint, @MyUnitsOnOrder smallint, @MyReorderLevel smallint,
@MyDiscontinued bit AS - declare the @MyProductID variable DECLARE @MyProductID int -
insert a row into the Products table INSERT INTO Products (ProductName, SupplierID,
CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel,
Discontinued) VALUES (@MyProductName, @MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, @MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, @MyReorderLevel,
@MyDiscontinued) - use the SCOPE_IDENTITY() function to get the last - identity value
inserted into a table performed within - the current database session and stored procedure, - so
SCOPE_IDENTITY returns the ProductID for the new row - in the Products table in this case SET
@MyProductID = SCOPE_IDENTITY() RETURN @MyProductID
Notice the RETURN statement at the end to return @MyProductID. Because AddProduct2() doesn't
return a result set of rows, you use the same four steps shown in the previous section to execute the
procedure using ADO.NET. The only difference is in the construction of your EXECUTE command
when setting the CommandText property in step 1. To call AddProduct2() you set the CommandText
property of your Command object as follows: mySqlCommand.CommandText = "EXECUTE
@MyProductID = AddProduct2 @MyProductName, " + "@MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, " + "@MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, " +
"@MyReorderLevel, @MyDiscontinued";
Notice the change in the position of the @MyProductID parameter: it is shifted to just after the
EXECUTE and set equal to the value returned by AddProduct2(). This change is made because Add-
Product2() uses a RETURN statement to output the @MyProductID value. The rest of the C# code
required to call AddProduct2() is the same as that shown earlier in Listing 8.12. Note
Because only the EXECUTE is different, I've omitted the program that calls AddProduct2() from this
book. You can see this program in the ExecuteAddProduct2.cs file I've provided. Feel free to
examine and run it. Executing a Stored Procedure that Does Return a Result Set
If your procedure does return a result set, then you use the following steps to execute it:
Create a Command object and set its CommandText property to an EXECUTE statement containing
your procedure call.
Add any required parameters to your Command object, remembering to set the Direction property for
any output parameters to ParameterDirection.Output.
Execute your command using the ExecuteReader() method, storing the returned DataReader object.
Read the rows in the result set using your DataReader object.
Close your DataReader object. You must do this before you can read any output parameters.
Read the values of any output parameters.

Part 2: Fundamental Database Programming with ADO.NET 159

© 2004 ... Your company

In the following example, you'll see a stored procedure named AddProduct3() that will return a result
set along with an output parameter using a RETURN statement.
The AddProduct3() procedure is similar to AddProduct2(), except that it also returns a result set using
a SELECT statement. This SELECT contains the ProductName and UnitPrice columns for the new
row added to the Products table. This result set is returned in addition to the ProductID of the new
row, which is returned using the RETURN statement. Listing 8.14 shows the AddProduct3.sql script
that creates the AddProduct3() procedure. You'll need to run this script before running the C#
program.Listing 8.14: ADDPRODUCT3.SQL /* AddProduct3.sql creates a procedure that adds a
row to the Products table using values passed as parameters to the procedure. The procedure
returns the ProductID of the new row using a RETURN statement and returns a result set containing
the new row */ CREATE PROCEDURE AddProduct3 @MyProductName nvarchar(40),
@MySupplierID int, @MyCategoryID int, @MyQuantityPerUnit nvarchar(20), @MyUnitPrice
money, @MyUnitsInStock smallint, @MyUnitsOnOrder smallint, @MyReorderLevel smallint,
@MyDiscontinued bit AS - declare the @MyProductID variable DECLARE @MyProductID int -
insert a row into the Products table INSERT INTO Products (ProductName, SupplierID,
CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel,
Discontinued) VALUES (@MyProductName, @MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, @MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, @MyReorderLevel,
@MyDiscontinued) - use the SCOPE_IDENTITY() function to get the last - identity value
inserted into a table performed within - the current database session and stored procedure, - so
SCOPE_IDENTITY returns the ProductID for the new row - in the Products table in this case SET
@MyProductID = SCOPE_IDENTITY() - return the result set SELECT ProductName, UnitPrice
FROM Products WHERE ProductID = @MyProductID - return @MyProductID RETURN
@MyProductID
Since you've already seen the basics for the code that execute the six steps shown earlier in this
section, I'll go straight to the code with minimal explanation. Listing 8.15 shows the program that calls
AddProduct3(). The important things to notice are:Listing 8.15: EXECUTEADDPRODUCT3.CS /*
ExecuteAddProduct3.cs illustrates how to call the SQL Server AddProduct3() stored procedure */
using System; using System.Data; using System.Data.SqlClient; class ExecuteAddProduct3 { public
static void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); mySqlConnection.Open(); // step
1: create a Command object and set its CommandText // property to an EXECUTE statement
containing the stored // procedure call SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "EXECUTE
@MyProductID = AddProduct3 @MyProductName, " + "@MySupplierID, @MyCategoryID,
@MyQuantityPerUnit, " + "@MyUnitPrice, @MyUnitsInStock, @MyUnitsOnOrder, " +
"@MyReorderLevel, @MyDiscontinued"; // step 2: add the required parameters to the Command
object mySqlCommand.Parameters.Add("@MyProductID", SqlDbType.Int);
mySqlCommand.Parameters["@MyProductID"].Direction = ParameterDirection.Output;
mySqlCommand.Parameters.Add("@MyProductName", SqlDbType.NVarChar, 40).Value =
"Widget"; mySqlCommand.Parameters.Add("@MySupplierID", SqlDbType.Int).Value = 1;
mySqlCommand.Parameters.Add("@MyCategoryID", SqlDbType.Int).Value = 1;
mySqlCommand.Parameters.Add("@MyQuantityPerUnit", SqlDbType.NVarChar, 20).Value = "1
per box"; mySqlCommand.Parameters.Add("@MyUnitPrice", SqlDbType.Money).Value = 5.99;
mySqlCommand.Parameters.Add("@MyUnitsInStock", SqlDbType.SmallInt).Value = 10;
mySqlCommand.Parameters.Add("@MyUnitsOnOrder", SqlDbType.SmallInt).Value = 5;
mySqlCommand.Parameters.Add("@MyReorderLevel", SqlDbType.SmallInt).Value = 5;
mySqlCommand.Parameters.Add("@MyDiscontinued", SqlDbType.Bit).Value = 1; // step 3:
execute the Command object using the ExecuteReader() // method SqlDataReader
mySqlDataReader = mySqlCommand.ExecuteReader(); // step 4: read the rows using the
DataReader object while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[\" ProductName\"] = " +
mySqlDataReader["ProductName"]); Console.WriteLine("mySqlDataReader[\" UnitPrice\"] = " +
mySqlDataReader["UnitPrice"]); } // step 5: close the DataReader object
mySqlDataReader.Close(); // step 6: read the value of the output parameter
Console.WriteLine("New ProductID = " + mySqlCommand.Parameters["@MyProductID"].Value);

Mastering C# Database Programming @Team LiB160

© 2004 ... Your company

mySqlConnection.Close(); } }
The ExecuteReader() method is used to return the result set containing the ProductName and
UnitPrice columns for the new row.
The result set is then read using a SqlDataReader object.
The SqlDataReader object is closed before the output parameter is read.
The output from this program is as follows: mySqlDataReader["ProductName"] = Widget
mySqlDataReader["UnitPrice"] = 5.99 New ProductID = 83

6.2.8 Creating a Command Object Using Visual Studio .NET

Creating a Command Object Using Visual Studio .NET
To create a SqlCommand object using Visual Studio .NET (VS .NET), you drag a SqlCommand object
from the Data tab of the Toolbox to your form. You can also drag an OleDbCommand object from the
Data tab of the Toolbox to your form.
Before you perform the procedure explained in this section, do the following:
Create a new project named MyDataReader containing a Windows application.
Add a SqlConnection object to your project (refer back to the previous chapter to see how to add a
SqlConnection object using VS .NET). This object will have the default name of sqlConnection1.
Configure your sqlConnection1 object to access your Northwind database.
Drag a SqlCommand object to your form. Figure 8.1 shows a form with a SqlCommand object. This
object is assigned the default name of

sqlCommand1.
Figure 8.1: A SqlCommand object in a form
You then set the Connection property for your sqlCommand1 using the drop-down list to the right of
the Connection property in the Properties window. You can select an existing Connection object from
the drop-down list; you can also create a new Connection object by selecting New from the list. For
this example, select your existing sqlConnection1 object for the Connection property of your
sqlCommand1 object, as shown in Figure 8.1.
You can use Query Builder to create a SQL statement by clicking on the ellipsis button to the right of
the CommandText property, and you can set parameters for a command by clicking the ellipsis button
to the right of the Parameters property. You'll set the CommandText property of your SqlCommand
object to a SELECT statement that retrieves the CustomerID, CompanyName, and ContactName
columns from the Customers table. You'll construct this SELECT statement using Query Builder. To
get started, click the ellipsis button to the right of the CommandText property for your SqlCommand
object.
In the Add Table dialog, select the Customers table, as shown in Figure 8.2. Click the Add button to
add the Customers table to your query. Click the Close button to

Part 2: Fundamental Database Programming with ADO.NET 161

© 2004 ... Your company

continue.
Figure 8.2: Adding the Customers table to the query using the Add Table dialog
Next, you construct your query using Query Builder. You select the columns you want to retrieve here.
Add the CustomerID, CompanyName, and ContactName columns using Query Builder, as shown in

Figure 8.3.
Figure 8.3: Adding the CustomerID, CompanyName, and ContactName columns to the query using
Query Builder
Click the OK button to continue. The CommandText property of your SqlCommand object is then set
to the SELECT statement you created in Query Builder.Note
Save your MyDataReader project by selecting File £ Save All. You'll see the use of the SqlCommand
object you added to your project in the next chapter.

6.2.9 Summary

Summary
In this chapter, you learned how to execute database commands. There are three Command classes:
SqlCommand, OleDbCommand, and OdbcCommand. You use a Command object to execute a SQL
SELECT, INSERT, UPDATE, or DELETE statement. You can also use a Command object to execute
a stored procedure call, or retrieve all the rows and columns from a specific table; this is known as a
TableDirect command. You use an object of the SqlCommand class to execute a command against a
SQL Server database, an object of the SqlDataReader class to read the rows retrieved from a SQL
Server database, and an object of the SqlTransaction class to represent a database transaction in a

Mastering C# Database Programming @Team LiB162

© 2004 ... Your company

SQL Server database.
In the next chapter, you'll learn the details of DataReader objects.

6.3 Chapter 9: Using DataReader Objects to Read Results

Chapter 9: Using DataReader Objects to Read ResultsOverview
Reading rows using a DataReader object (sometimes known as a firehose cursor) is typically faster
than reading from a DataSet. DataReader objects are part of the managed providers, and there are
three DataReader classes: SqlDataReader, OleDbDataReader, and OdbcDataReader. You use a
DataReader object to read rows retrieved from the database using a Command object.
DataReader objects can be used to read rows only in a forward direction. DataReader objects act as
an alternative to a DataSet object (DataSet objects allow you to store a copy of the rows from the
database, and you can work with that copy while disconnected from the database). You cannot use a
DataReader to modify rows in the database.
Featured in this chapter:
The SqlDataReader class
Creating a SqlDataReader object
Reading rows from a SqlDataReader object
Returning strongly typed column values
Reading null values
Executing multiple SQL statements
Using a DataReader object in Visual Studio .NET

6.3.1 The SqlDataReader Class

The SqlDataReader Class
You use an object of the SqlDataReader class to read rows retrieved from a SQL Server database, an
object of the OleDbDataReader class to read rows from any database that supports OLE DB, such as
Oracle or Access, and an object of the OdbcDataReader class to read rows from any data-base that
supports ODBC. Table 9.1 shows some of the SqlDataReader properties. Table 9.1: SqlDataReader
PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Depth
int
Gets a value indicating the depth of nesting for the current row.
FieldCount
int
Gets the number of columns in the current row.
IsClosed
bool
Gets a bool value indicating whether the data reader is closed.
RecordsAffected
int
Gets the number of rows added, modified, or removed by execution of the SQL statement. Note
Although the SqlDataReader class is specific to SQL Server, many of the properties and methods in
this class are the same as those for the OleDbDataReader and OdbcDataReader classes.
Table 9.2 shows some of the public SqlDataReader methods. Table 9.2: SqlDataReader METHODS
METHOD
RETURN TYPE
DESCRIPTION
GetBoolean()

Part 2: Fundamental Database Programming with ADO.NET 163

© 2004 ... Your company

bool
Returns the value of the specified column as a bool.
GetByte()
byte
Returns the value of the specified column as a byte.
GetBytes()
long
Reads a stream of byte values from the specified column into a byte array. The long value returned is
the number of byte values read from the column.
GetChar()
char
Returns the value of the specified column as a char.
GetChars()
long
Reads a stream of char values from the specified column into a char array. The long value returned is
the number of char values read from the column.
GetDataTypeName()
string
Returns the name of the source data type for the specified column.
GetDateTime()
DateTime
Returns the value of the specified column as a DateTime.
GetDecimal()
decimal
Returns the value of the specified column as a decimal.
GetDouble()
double
Returns the value of the specified column as a double.
GetFieldType()
Type
Returns the Type of the specified column.
GetFloat()
float
Returns the value of the specified column as a float.
GetGuid()
Guid
Returns the value of the specified column as a globally unique identifier (GUID).
GetInt16()
short
Returns the value of the specified column as a short.
GetInt32()
int
Returns the value of the specified column as an int.
GetInt64()
long
Returns the value of the specified column as a long.
GetName()
string
Returns the name of the specified column.
GetOrdinal()
int
Returns the numeric position, or ordinal, of the specified column (first column has an ordinal of 0).
GetSchemaTable()
DataTable
Returns a DataTable that contains details of the columns stored in the data reader.
GetSqlBinary()

Mastering C# Database Programming @Team LiB164

© 2004 ... Your company

SqlBinary
Returns the value of the specified column as a SqlBinary object. The SqlBinary class is declared in
the System.Data.SqlTypes namespace.
All the GetSql* methods are specific to the SqlDataReader class.
GetSqlBoolean()
SqlBoolean
Returns the value of the specified column as a SqlBoolean object.
GetSqlByte()
SqlByte
Returns the value of the specified column as a SqlByte object.
GetSqlDateTime()
SqlDateTime
Returns the value of the specified column as a SqlDateTime object.
GetSqlDecimal()
SqlDecimal
Returns the value of the specified column as a SqlDecimal object.
GetSqlDouble()
SqlDouble
Returns the value of the specified column as a SqlDouble object.
GetSqlGuid()
SqlGuid
Returns the value of the specified column as a SqlGuid object.
GetSqlInt16()
SqlInt16
Returns the value of the specified column as a SqlInt16 object.
GetSqlInt32()
SqlInt32
Returns the value of the specified column as a SqlInt32 object.
GetSqlInt64()
SqlInt64
Returns the value of the specified column as a SqlInt64 object.
GetSqlMoney()
SqlMoney
Returns the value of the specified column as a SqlMoney object.
GetSqlSingle()
SqlSingle
Returns the value of the specified column as a SqlSingle object.
GetSqlString()
SqlString
Returns the value of the specified column as a SqlString object.
GetSqlValue()
object
Returns the value of the specified column as an object.
GetSqlValues()
int
Copies the value of all the columns in the current row into a specified object array. The int returned by
this method is the number of elements in the array.
GetString()
string
Returns the value of the specified column as a string.
GetValue()
object
Returns the value of the specified column as an object.
GetValues()
int
Copies the value of all the columns in the current row into a specified object array. The int returned by

Part 2: Fundamental Database Programming with ADO.NET 165

© 2004 ... Your company

this method is the number of elements in the array.
IsDBNull()
bool
Returns a bool that indicates whether the specified column contains a null value.
NextResult()
bool
Moves the data reader to the next row in the result set. The bool returned by this method indicates
whether there are more rows in the result set.
Read()
bool
Moves the data reader to the next row in the result set and reads the row. The bool returned by this
method indicates whether there are more rows in the result set.Note
The DataTable column details include the name (stored in the ColumnName column of the returned
DataTable), ordinal (stored in ColumnOrdinal), maximum length of the value that may be stored in
the column (stored in ColumnSize), precision and scale of a numeric column (stored in
NumericPrecision and NumericScale), among others. Precision is the total number of digits that
make up a number, and scale is the total number of digits to the right of the decimal point. You saw
how to read a schema using a program in the previous chapter.Tip
The System.Data.SqlTypes namespace provides classes for native data types used within SQL
Server. These classes provide a safer and faster alternative to other data types returned by the other
Get* methods. Using the classes in this namespace helps prevent type conversion errors caused by
loss of precision. Because other data types are converted to and from SqlTypes behind the scenes,
explicitly creating and using objects within this namespace results in faster code as well. You'll learn
more about the SqlTypes namespace later in the
"Using the GetSql* Methods to Read Column Values" section.

6.3.2 Creating a SqlDataReader Object

Creating a SqlDataReader Object
You can create a DataReader object only by calling the ExecuteReader() method of a Command
object. Command objects were covered in the previous chapter. For example, the following code
creates the required objects and executes a SELECT statement that retrieves the top five rows from
the Products table of the SQL Server Northwind database, storing the returned rows in a
SqlDataReader object: SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName, UnitPrice, " + "UnitsInStock, Discontinued " + "FROM Products " + "ORDER BY
ProductID"; mySqlConnection.Open(); SqlDataReader productsSqlDataReader =
mySqlCommand.ExecuteReader();
Notice that the SqlDataReader object returned by the ExecuteReader() method is stored in the
productsSqlDataReader object. You'll see how to use productsSqlDataReader in the following
section.

6.3.3 Reading Rows from a SqlDataReader Object

Reading Rows from a SqlDataReader Object
You read the rows from a DataReader object using the Read() method. This method returns the
Boolean true value when there is another row to read, otherwise it returns false.
You can read an individual column value in a row from a DataReader by passing the name of the
column in square brackets. For example, to read the CustomerID column, you use
productsSqlDataReader["ProductID"]. You can also specify the column you want to get by passing a
numeric value in brackets. For example, productsSqlDataReader[0] also returns the ProductID
column value.Tip
The difference between these two ways of reading a column value is performance: using numeric

Mastering C# Database Programming @Team LiB166

© 2004 ... Your company

column positions instead of column names results in faster execution of the code.
Let's take a look at two code snippets that illustrate these two ways of reading column values. The
first code snippet uses the column names to read the column values: while
(productsSqlDataReader.Read()) { Console.WriteLine(productsSqlDataReader["ProductID"]);
Console.WriteLine(productsSqlDataReader["ProductName"]);
Console.WriteLine(productsSqlDataReader["UnitPrice"]);
Console.WriteLine(productsSqlDataReader["Discontinued"]); }
The second code snippet uses the numeric column positions to read the column values: while
(productsSqlDataReader.Read()) { Console.WriteLine(productsSqlDataReader[0]);
Console.WriteLine(productsSqlDataReader[1]); Console.WriteLine(productsSqlDataReader[2]);
Console.WriteLine(productsSqlDataReader[3]); }
Although the second code snippet is faster, it is less flexible since you have to hard-code the numeric
column positions. If the column positions in the SELECT statement are changed, you need to change
the hard-coded column positions in the code-and this is a maintenance nightmare. Also, hard-coding
the column positions makes your programs more difficult to read.
There is a solution to this problem: you can call the GetOrdinal() method of your DataReader object.
The GetOrdinal() method returns the position of a column given its name; this position is known as
the column's ordinal . You can then use the position returned by GetOrdinal() to get the column
values from your DataReader.
Let's take a look at some code that uses the GetOrdinal() method to obtain the positions of the
columns from the example SELECT statement: int productIDColPos =
productsSqlDataReader.GetOrdinal("ProductID"); int productNameColPos =
productsSqlDataReader.GetOrdinal("ProductName"); int unitPriceColPos =
productsSqlDataReader.GetOrdinal("UnitPrice"); int discontinuedColPos =
productsSqlDataReader.GetOrdinal("Discontinued");
You can then use these int values to get the column values from productsSqlDataReader: while
(productsSqlDataReader.Read()) { Console.WriteLine(productsSqlDataReader[productIDColPos]);
Console.WriteLine(productsSqlDataReader[productNameColPos]);
Console.WriteLine(productsSqlDataReader[unitPriceColPos]);
Console.WriteLine(productsSqlDataReader[discontinuedColPos]); }
This way gives you the best of both worlds: high performance and flexibility.Warning
When you've finished reading the rows from your DataReader object, close it using the Close()
method. The reason for this is that a DataReader object ties up the Connection object, and no other
commands can be executed while there is an open DataReader for that Connection .
The following example closes productsSqlDataReader using the Close() method:
productsSqlDataReader.Close();
Once you've closed your DataReader, you can execute other commands using your Connection
object.
Listing 9.1 uses the code examples shown in this section.Listing 9.1: USINGCOLUMNORDINALS.CS
/* UsingColumnOrdinals.cs illustrates how to use the GetOrdinal() method of a DataReader object
to get the numeric positions of a column */ using System; using System.Data; using
System.Data.SqlClient; class UsingColumnOrdinals { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5
ProductID, ProductName, UnitPrice, " + "UnitsInStock, Discontinued " + "FROM Products " +
"ORDER BY ProductID"; mySqlConnection.Open(); SqlDataReader productsSqlDataReader =
mySqlCommand.ExecuteReader(); // use the GetOrdinal() method of the DataReader object // to
obtain the numeric positions of the columns int productIDColPos =
productsSqlDataReader.GetOrdinal("ProductID"); int productNameColPos =
productsSqlDataReader.GetOrdinal("ProductName"); int unitPriceColPos =
productsSqlDataReader.GetOrdinal("UnitPrice"); int unitsInStockColPos =
productsSqlDataReader.GetOrdinal("UnitsInStock"); int discontinuedColPos =
productsSqlDataReader.GetOrdinal("Discontinued"); while (productsSqlDataReader.Read()) {
Console.WriteLine("ProductID = " + productsSqlDataReader[productIDColPos]);
Console.WriteLine("ProductName = " + productsSqlDataReader[productNameColPos]);

Part 2: Fundamental Database Programming with ADO.NET 167

© 2004 ... Your company

Console.WriteLine("UnitPrice = " + productsSqlDataReader[unitPriceColPos]);
Console.WriteLine("UnitsInStock = " + productsSqlDataReader[unitsInStockColPos]);
Console.WriteLine("Discontinued = " + productsSqlDataReader[discontinuedColPos]); }
productsSqlDataReader.Close(); mySqlConnection.Close(); } }
The output from this program is as follows: ProductID = 1 ProductName = Chai UnitPrice = 18
UnitsInStock = 39 Discontinued = False ProductID = 2 ProductName = Chang UnitPrice = 19
UnitsInStock = 17 Discontinued = False ProductID = 3 ProductName = Aniseed Syrup UnitPrice = 10
UnitsInStock = 13 Discontinued = False ProductID = 4 ProductName = Chef Anton's Cajun Seasoning
UnitPrice = 22 UnitsInStock = 53 Discontinued = False ProductID = 5 ProductName = Chef Anton's
Gumbo Mix UnitPrice = 21.35 UnitsInStock = 0 Discontinued = True

6.3.4 Returning Strongly Typed Column Values

Returning Strongly Typed Column Values
Up to this point, you've retrieved column values from a DataReader only as generic objects of the
System.Object class (such objects are often referred to as being of the C# object type). Note
All classes in C# are derived from the System.Object class.
I'll rewrite the while loop shown in the example in the previous section to show how you store column
values as objects of the System.Object class: while (productsSqlDataReader.Read()) { object
productID = productsSqlDataReader[productIDColPos]; object productName =
productsSqlDataReader[productNameColPos]; object unitPrice =
productsSqlDataReader[unitPriceColPos]; object unitsInStock =
productsSqlDataReader[unitsInStockColPos]; object discontinued =
productsSqlDataReader[discontinuedColPos]; Console.WriteLine("productID = " + productID);
Console.WriteLine("productName = " + productName); Console.WriteLine("unitPrice = " + unitPrice);
Console.WriteLine("unitsInStock = " + unitsInStock); Console.WriteLine("discontinued = " +
discontinued); }
This code results in the same output as Listing 9.1. All I did in Listing 9.1 is to explicitly show that a
DataReader returns a column value as an object of the System.Object class by default. When an
object of the System.Object class is displayed by the Console.WriteLine() method, the object is first
implicitly converted to a string and then displayed.
That's fine for just displaying the column values, but what if you want to perform some kind of
calculation with a value? To do that, you must first cast the value to a specific type. The following
example casts the unitPrice object to a decimal and then multiplies it by 1.2: decimal newUnitPrice =
(decimal) unitPrice * 1.2m; Note
You add an m to the end of a literal number to indicate it is of the decimal type.
Casting an object to a specific type works, but it's not very elegant. It also goes against the one of the
main benefits of a modern programming language: use of strong typing. Strongly typing means that
you pick the type of a variable or object when declaring it. The main benefit of strong typing is that
you're less likely to have runtime errors in your programs that are caused by using the wrong type.
This is because the compiler checks your code to make sure the context of the type is correct.
The bottom line is that you should endeavor to make all your variables and objects of the appropriate
type to begin with, and use casting only when you have no other choice. In this case, you have a
choice: instead of casting, you can use one of the DataReader object's Get* methods to return a
column value in an appropriate type. Note
I use the asterisk in Get* to indicate there are many methods that start with Get . You can see all the
Get* methods in Table 9.2, shown earlier.
For example, one of the Get* methods is GetInt32(), which returns a column value as an int value.
The following code shows the use of the GetInt32() method to obtain the column value for the
ProductID column as an int: int productID = productsSqlDataReader.GetInt32(productIDColPos);
As you can see, you pass the ordinal of the column that has the value you want to obtain to the Get*
method. You saw how to get a column's ordinal value in the previous section.

Mastering C# Database Programming @Team LiB168

© 2004 ... Your company

6.3.5 Using the Get* Methods to Read Column Values

Using the Get* Methods to Read Column Values
Before I show you the other Get* methods that read column values, you need to know the standard
C# types and the values they support. You need to know these so that you can understand the type
compatibilities between C# and SQL Server shown later. Table 9.3 shows the standard C# types,
along with the underlying .NET type and the values that can be stored in the C# type. Table 9.3:
STANDARD C# AND .NET TYPES
C# TYPE
.NET TYPE
VALUES
bool
Boolean
A Boolean true or false value.
byte
Byte
An 8-bit unsigned integer between 0 and 28 - 1(255).
char
Char
A 16-bit Unicode character.
DateTime
DateTime
A date and time between 12:00:00 AM January 1, 0001 and 11:59:59 PM December 31, 9999.
decimal
Decimal
A fixed precision and scale number between approximately +/-1.0 *10-28 and approximately +/-7.9
*1028 with 28 significant figures of precision.
double
Double
A 64-bit floating-point number between approximately +/-5 *10-324 and approximately +/-1.7 *10308
with 15 to 16 significant figures of precision.
float
Single
A 32-bit floating-point number between approximately +/-1.5 *10-45 to approximately +/-3.4 *1038
with 7 significant figures of precision.
Guid
Guid
A 128-bit unsigned integer value (16 bytes) that that is unique across all computers and networks.
int
Int32
A 32-bit signed integer between -231 (-2,147,483,648) and 231 - 1 (2,147,483,647).
long
Int64
A 64-bit signed integer between -263 (-9,223,372,036,854,775,808) and 263 - 1
(9,223,372,036,854,775,807).
sbyte
SByte
An 8-bit signed integer between -27 (-128) and 27 - 1 (127).
short
Int16
A 16-bit signed integer between -215 (-32,768) and 215 - 1 (32,767).
string
String
A variable-length string of 16-bit Unicode characters.
uint
UInt32

Part 2: Fundamental Database Programming with ADO.NET 169

© 2004 ... Your company

A 32-bit unsigned integer between 0 and 232 - 1 (4,294,967,295).
ulong
UInt64
A 64-bit unsigned integer between 0 and 264 - 1 (18,446,744,073,709,551,615).
ushort
UInt16
A 16-bit unsigned integer between 0 and 216 - 1 (65,535).Note
The standard C# types are defined in the System namespace.
Table 9.4 shows the SQL Server types, the compatible standard C# types, and the DataReader Get*
methods that return each C# type. You use this table to figure out which method to call to get a
specific column type. For example, if you need to get the value of a bigint column, you call the
GetInt64() method that returns a long. Table 9.4: SQL SERVER TYPES, COMPATIBLE STANDARD
C# TYPES, AND GET* METHODS
SQL SERVER TYPE
COMPATIBLE STANDARD C# TYPE
GET* METHOD
binary
byte[]
GetBytes()
bigint
long
GetInt64()
bit
bool
GetBoolean()
char
string
GetString()
datetime
DateTime
GetDateTime()
decimal
decimal
GetDecimal()
float
double
GetDouble()
image
byte[]
GetBytes()
int
int
GetInt32()
money
decimal
GetDecimal()
nchar
string
GetString()
ntext
string
GetString()
nvarchar
string
GetString()
numeric

Mastering C# Database Programming @Team LiB170

© 2004 ... Your company

decimal
GetDecimal()
real
float
GetFloat()
smalldatetime
DateTime
GetDateTime()
smallint
short
GetInt16()
smallmoney
decimal
GetDecimal()
sql_varient
object
GetValue()
text
string
GetString()
timestamp
byte[]
GetBytes()
tinyint
byte
GetByte()
varbinary
byte[]
GetBytes()
varchar
string
GetString()
uniqueidentifier
Guid
GetGuid()Note
You can see the SQL Server types and the values supported by those types in Table 2.3 of
Chapter 2, "Introduction to Databases."Note
The Get* methods are defined in all of the DataReader classes and work for all databases.
Next you'll see how to use some of the methods shown in Table 9.4.

6.3.6 An Example of Using the Get* Methods

An Example of Using the Get* Methods
Let's take a look at an example that reads the ProductID, ProductName, UnitPrice, UnitsInStock, and
Discontinued columns from the Products table using the Get* methods.
To figure out which Get* method to use to retrieve a particular SQL Server column type, you use
Table 9.4, shown earlier. For example, the ProductID column is a SQL Server int, and looking up that
SQL Server type in Table 9.4, you can see you use the GetInt32() method to obtain the column value
as a C# int. Table 9.5 summarizes the column names, SQL Server types, Get* methods, and C#
return types required to retrieve the five columns from the Products table. Table 9.5: Products TABLE
COLUMNS, TYPES, AND METHODS
COLUMN NAME
SQL SERVER COLUMN TYPE
GET* METHOD
C# RETURN TYPE

Part 2: Fundamental Database Programming with ADO.NET 171

© 2004 ... Your company

ProductID
int
GetInt32()
int
ProductName
nvarchar
GetString()
string
UnitPrice
money
GetDecimal()
decimal
UnitsInStock
smallint
GetInt16()
short
Discontinued
bit
GetBoolean()
bool
Let's assume that you already have a SqlDataReader object named productsSqlDataReader and that
it may be used to read the five columns from the Products table. The following while loop uses the
Get* methods and returned C# types shown in Table 9.5 to obtain the column values from
productsSqlDataReader: while (productsSqlDataReader.Read()) { int productID =
productsSqlDataReader.GetInt32(productIDColPos); Console.WriteLine("productID = " + productID);
string productName = productsSqlDataReader.GetString(productNameColPos);
Console.WriteLine("productName = " + productName); decimal unitPrice =
productsSqlDataReader.GetDecimal(unitPriceColPos); Console.WriteLine("unitPrice = " +
unitPrice); short unitsInStock = productsSqlDataReader.GetInt16(unitsInStockColPos);
Console.WriteLine("unitsInStock = " + unitsInStock); bool discontinued =
productsSqlDataReader.GetBoolean(discontinuedColPos); Console.WriteLine("discontinued = " +
discontinued); }
As you can see, five variables of the appropriate type are created in this while loop, each of which is
used to store the result from the Get* method. For example, the productID variable is used to store
the ProductID column value, and since ProductID is of the SQL Server int type, the appropriate C#
type for the productID variable is int. To get the ProductID column value as a C# int, you call the
GetInt32() method. Similarly, the productName variable is a C# string that is used to store the
ProductName column value. This column is of the nvarchar SQL Server type, and to get the Product-
Name column value, the GetString() method is used.
Of course, this code depends on your knowing the type of the database column. If you don't know the
type of a column, you can get it using Visual Studio .NET's Server Explorer. For example, Figure 9.1
shows the details of the ProductID column of the Products table. As you can see, ProductID is an

Mastering C# Database Programming @Team LiB172

© 2004 ... Your company

int.
Figure 9.1: Obtaining the type of a column using Visual Studio .NET's Server Explorer
Before closing this section, I will show you how to get the .NET type and database type of a column
using C#. You get the .NET type used to represent a column using the GetFieldType() method of your
DataReader object. For example: Console.WriteLine("ProductID .NET type = " +
productsSqlDataReader.GetFieldType(productIDColPos));
This example displays: ProductID .NET type = System.Int32
As you can see, the System.Int32 .NET type is used to represent the ProductID column. The
System.Int32 .NET type corresponds to the C# int type. You can see this type correspondence in
Table 9.3, shown earlier.
You can get the database type for a column using the GetDataTypeName() method of your
DataReader object. For example: Console.WriteLine("ProductID database type = " +
productsSqlDataReader.GetDataTypeName(productIDColPos));
This example displays: ProductID database type = int
As you can see, the ProductID column is of the SQL Server int type.
Listing 9.2 uses the code examples shown in this section.Listing 9.2:
STRONGLYTYPEDCOLUMNVALUES.CS /* StronglyTypedColumnValues.cs illustrates how to
read column values as C# types using the Get* methods */ using System; using System.Data; using
System.Data.SqlClient; class StronglyTypedColumnValues { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5
ProductID, ProductName, UnitPrice, " + "UnitsInStock, Discontinued " + "FROM Products " +
"ORDER BY ProductID"; mySqlConnection.Open(); SqlDataReader productsSqlDataReader =
mySqlCommand.ExecuteReader(); int productIDColPos =
productsSqlDataReader.GetOrdinal("ProductID"); int productNameColPos =
productsSqlDataReader.GetOrdinal("ProductName"); int unitPriceColPos =
productsSqlDataReader.GetOrdinal("UnitPrice"); int unitsInStockColPos =
productsSqlDataReader.GetOrdinal("UnitsInStock"); int discontinuedColPos =
productsSqlDataReader.GetOrdinal("Discontinued"); // use the GetFieldType() method of the
DataReader object // to obtain the .NET type of a column Console.WriteLine("ProductID .NET
type = " + productsSqlDataReader.GetFieldType(productIDColPos));
Console.WriteLine("ProductName .NET type = " +
productsSqlDataReader.GetFieldType(productNameColPos)); Console.WriteLine("UnitPrice .NET
type = " + productsSqlDataReader.GetFieldType(unitPriceColPos));
Console.WriteLine("UnitsInStock .NET type = " +
productsSqlDataReader.GetFieldType(unitsInStockColPos)); Console.WriteLine("Discontinued
.NET type = " + productsSqlDataReader.GetFieldType(discontinuedColPos)); // use the
GetDataTypeName() method of the DataReader object // to obtain the database type of a column
Console.WriteLine("ProductID database type = " +
productsSqlDataReader.GetDataTypeName(productIDColPos)); Console.WriteLine("ProductName

Part 2: Fundamental Database Programming with ADO.NET 173

© 2004 ... Your company

database type = " + productsSqlDataReader.GetDataTypeName(productNameColPos));
Console.WriteLine("UnitPrice database type = " +
productsSqlDataReader.GetDataTypeName(unitPriceColPos)); Console.WriteLine("UnitsInStock
database type = " + productsSqlDataReader.GetDataTypeName(unitsInStockColPos));
Console.WriteLine("Discontinued database type = " +
productsSqlDataReader.GetDataTypeName(discontinuedColPos)); // read the column values
using Get* methods that // return specific C# types while (productsSqlDataReader.Read()) {
int productID = productsSqlDataReader.GetInt32(productIDColPos);
Console.WriteLine("productID = " + productID); string productName =
productsSqlDataReader.GetString(productNameColPos); Console.WriteLine("productName = " +
productName); decimal unitPrice = productsSqlDataReader.GetDecimal(unitPriceColPos);
Console.WriteLine("unitPrice = " + unitPrice); short unitsInStock =
productsSqlDataReader.GetInt16(unitsInStockColPos); Console.WriteLine("unitsInStock = " +
unitsInStock); bool discontinued =
productsSqlDataReader.GetBoolean(discontinuedColPos); Console.WriteLine("discontinued = "
+ discontinued); } productsSqlDataReader.Close(); mySqlConnection.Close(); } }
The output from this program is as follows: ProductID .NET type = System.Int32 ProductName .NET
type = System.String UnitPrice .NET type = System.Decimal UnitsInStock .NET type = System.Int16
Discontinued .NET type = System.Boolean ProductID database type = int ProductName database
type = nvarchar UnitPrice database type = money UnitsInStock database type = smallint Discontinued
database type = bit productID = 1 productName = Chai unitPrice = 18 unitsInStock = 39 discontinued
= False productID = 2 productName = Chang unitPrice = 19 unitsInStock = 17 discontinued = False
productID = 3 productName = Aniseed Syrup unitPrice = 10 unitsInStock = 13 discontinued = False
productID = 4 productName = Chef Anton's Cajun Seasoning unitPrice = 22 unitsInStock = 53
discontinued = False productID = 5 productName = Chef Anton's Gumbo Mix unitPrice = 21.35
unitsInStock = 0 discontinued = True Using the GetSql* Methods to Read Column Values
In addition to using the Get* methods to read column values as standard C# types, if you are using
SQL Server, you can also use the GetSql* methods. The GetSql* methods return values as Sql*
types, which correspond to the actual types used by SQL Server in the database.Note
You can see all the GetSql* methods in Table 9.2, shown earlier.
The GetSql* methods and Sql* types are defined in the System.Data.SqlTypes namespace, and they
are specific to SQL Server. In addition, the GetSql* methods are specific to the SqlDataReader class.
Using the GetSql* methods and Sql* types helps prevent type conversion errors caused by loss of
precision in numeric values.
The GetSql* methods are also faster than their Get* counterparts. This is because the
GetSql*methods don't need to convert between SQL Server types and the standard C# types, which
the Get* methods have to do.Tip
If you are using SQL Server, always use the GetSql* methods and Sql* types rather than the Get*
methods and the standard C# types. I showed you the Get* methods earlier only because they work
with non-SQL Server databases.
Table 9.6 shows the Sql* types and the values that may be stored in those types. Table 9.6: Sql*
TYPES
Sql* TYPE
VALUES
SqlBinary
A variable-length string of binary data.
SqlBoolean
An integer with either a 1 or 0 value.
SqlByte
An 8-bit unsigned integer value between 0 and 28 - 1 (255).
SqlDateTime
A date and time between 12:00:00 AM January 1, 1753 and 11:59:59 PM December 31, 9999. This is
accurate to 3.33 milliseconds.
SqlDecimal
Fixed precision and scale numeric value between -1038 + 1 and 1038 - 1.
SqlDouble

Mastering C# Database Programming @Team LiB174

© 2004 ... Your company

A 64-bit floating-point number between -1.79769313486232E308 and 1.79769313486232E308 with
15 significant figures of precision.
SqlGuid
A 128-bit integer value (16 bytes) that that is unique across all computers and networks.
SqlInt16
A 16-bit signed integer between -215 (-32,768) and 215 - 1 (32,767).
SqlInt32
A 32-bit signed integer between-231 (-2,147,483,648) and 231 - 1 (2,147,483,647).
SqlInt64
A 64-bit signed integer between -263 (-9,223,372,036,854,775,808) and 263 - 1
(9,223,372,036,854,775,807).
SqlMoney
A currency value between -922,337,203,685,477.5808 and 922,337,203,685,477.5807. This is
accurate to 1/10,000th of a currency unit.
SqlSingle
A 32-bit floating-point number between -3.402823E38 and 3.402823E38 with seven significant figures
of precision.
SqlString
A variable-length string of characters.
Table 9.7 shows the SQL server types, the corresponding Sql* types, and the GetSql* methods used
to read a column as the Sql* type. Table 9.7: SQL SERVER TYPES, COMPATIBLE Sql* TYPES, AND
GetSql* METHODS
SQL SERVER TYPE
Sql* TYPE
GetSql* METHOD
bigint
SqlInt64
GetSqlInt64()
int
SqlInt32
GetSqlInt32()
smallint
SqlInt16
GetSqlInt16()
tinyint
SqlByte
GetSqlByte()
bit
SqlBoolean
GetSqlBoolean()
decimal
SqlDecimal
GetSqlDecimal()
numeric
SqlDecimal
GetSqlDecimal()
money
SqlMoney
GetSqlMoney()
smallmoney
SqlMoney
GetSqlMoney()
float
SqlDouble
GetSqlDouble()
real

Part 2: Fundamental Database Programming with ADO.NET 175

© 2004 ... Your company

SqlSingle
GetSqlSingle()
datetime
SqlDateTime
GetSqlDateTime()
smalldatetime
SqlDateTime
GetSqlDateTime()
char
SqlString
GetSqlString()
varchar
SqlString
GetSqlString()
text
SqlString
GetSqlString()
nchar
SqlString
GetSqlString()
nvarchar
SqlString
GetSqlString()
ntext
SqlString
GetSqlString()
binary
SqlBinary
GetSqlBinary()
varbinary
SqlBinary
GetSqlBinary()
image
SqlBinary
GetSqlBinary()
sql_varient
object
GetSqlValue()
timestamp
SqlBinary
GetSqlBinary()
uniqueidentifier
SqlGuid
GetSqlGuid()
Next you'll see how to use some of the methods shown in Table 9.7. An Example of Using the GetSql*
Methods
Let's take a look at an example that reads the ProductID, ProductName, UnitPrice, UnitsInStock, and
Discontinued columns from the Products table using the GetSql* methods.
To figure out which GetSql* method to use to retrieve a particular column type, you use Table 9.7,
shown earlier. For example, the ProductID column is a SQL Server int, and looking up that type in
Table 9.7, you can see you use the GetSqlInt32() method to obtain the column value as a C#
SqlInt32. Table 9.8 summarizes the column names, SQL Server types, GetSql* methods, and Sql*
return types for the columns retrieved from the Products table. Table 9.8: Products TABLE
COLUMNS, TYPES, AND GetSql* METHODS
COLUMN NAME
SQL SERVER COLUMN TYPE

Mastering C# Database Programming @Team LiB176

© 2004 ... Your company

GETSql* METHOD
Sql* Return Type
ProductID
int
GetInt32()
SqlInt32
ProductName
nvarchar
GetSqlString()
SqlString
UnitPrice
money
GetSqlMoney()
SqlMoney
UnitsInStock
smallint
GetSqlInt16()
SqlInt16
Discontinued
bit
GetSqlBoolean()
SqlBoolean
Let's assume that you already have a SqlDataReader object named productsSqlDataReader and it
may be used to read the columns from the Products table. The following while loop uses the GetSql*
methods and returned Sql* types shown earlier in Table 9.8 to obtain the column values from
productsSqlDataReader: while (productsSqlDataReader.Read()) { SqlInt32 productID =
productsSqlDataReader.GetSqlInt32(productIDColPos); Console.WriteLine("productID = " +
productID); SqlString productName =
productsSqlDataReader.GetSqlString(productNameColPos); Console.WriteLine("productName = " +
productName); SqlMoney unitPrice = productsSqlDataReader.GetSqlMoney(unitPriceColPos);
Console.WriteLine("unitPrice = " + unitPrice); SqlInt16 unitsInStock =
productsSqlDataReader.GetSqlInt16(unitsInStockColPos); Console.WriteLine("unitsInStock = " +
unitsInStock); SqlBoolean discontinued =
productsSqlDataReader.GetSqlBoolean(discontinuedColPos); Console.WriteLine("discontinued = "
+ discontinued); }
Listing 9.3 uses this while loop.Listing 9.3: STRONGLYTYPEDCOLUMNVALUESSQL.CS /*
StronglyTypedColumnValuesSql.cs illustrates how to read column values as Sql* types using the
GetSql* methods */ using System; using System.Data; using System.Data.SqlClient; using
System.Data.SqlTypes; class StronglyTypedColumnValuesSql { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5
ProductID, ProductName, UnitPrice, " + "UnitsInStock, Discontinued " + "FROM Products " +
"ORDER BY ProductID"; mySqlConnection.Open(); SqlDataReader productsSqlDataReader =
mySqlCommand.ExecuteReader(); int productIDColPos =
productsSqlDataReader.GetOrdinal("ProductID"); int productNameColPos =
productsSqlDataReader.GetOrdinal("ProductName"); int unitPriceColPos =
productsSqlDataReader.GetOrdinal("UnitPrice"); int unitsInStockColPos =
productsSqlDataReader.GetOrdinal("UnitsInStock"); int discontinuedColPos =
productsSqlDataReader.GetOrdinal("Discontinued"); // read the column values using GetSql*
methods that // return specific Sql* types while (productsSqlDataReader.Read()) { SqlInt32
productID = productsSqlDataReader.GetSqlInt32(productIDColPos);
Console.WriteLine("productID = " + productID); SqlString productName =
productsSqlDataReader.GetSqlString(productNameColPos); Console.WriteLine("productName =
" + productName); SqlMoney unitPrice =
productsSqlDataReader.GetSqlMoney(unitPriceColPos); Console.WriteLine("unitPrice = " +

Part 2: Fundamental Database Programming with ADO.NET 177

© 2004 ... Your company

unitPrice); SqlInt16 unitsInStock =
productsSqlDataReader.GetSqlInt16(unitsInStockColPos); Console.WriteLine("unitsInStock = " +
unitsInStock); SqlBoolean discontinued =
productsSqlDataReader.GetSqlBoolean(discontinuedColPos); Console.WriteLine("discontinued =
" + discontinued); } productsSqlDataReader.Close(); mySqlConnection.Close(); } }
The output from this program is as follows: productID = 1 productName = Chai unitPrice = 18
unitsInStock = 39 discontinued = False productID = 2 productName = Chang unitPrice = 19
unitsInStock = 17 discontinued = False productID = 3 productName = Aniseed Syrup unitPrice = 10
unitsInStock = 13 discontinued = False productID = 4 productName = Chef Anton's Cajun Seasoning
unitPrice = 22 unitsInStock = 53 discontinued = False productID = 5 productName = Chef Anton's
Gumbo Mix unitPrice = 21.35 unitsInStock = 0 discontinued = True

6.3.7 Reading Null Values

Reading Null Values
As you learned in Chapter 2, a column defined as null can store a null value. A null value indicates
that the column value is unknown. A standard C# type cannot store a null value, but a Sql* type can.
Let's consider an example of reading a null value from the database. Say you've performed a
SELECT statement that retrieves the UnitPrice column for a row from the Products table, and that the
UnitPrice column contains a null value. If you try to store that null value in a standard C# type (such
as a decimal) using the following code: decimal unitPrice =
productsSqlDataReader.GetDecimal(unitPriceColPos);
then you'll get the following exception: System.Data.SqlTypes.SqlNullValueException
You'll also get this exception if you try to store the null value in an object, as shown in the following
example: object unitPriceObj = productsSqlDataReader["UnitPrice"];
You can check if a column contains a null value using the IsDBNull() method of a DataReader object.
This method returns a Boolean true or false value that indicates whether the column value is null. You
can then use that Boolean result to decide what to do. For example: if
(productsSqlDataReader.IsDBNull(unitPriceColPos)) { Console.WriteLine("UnitPrice column
contains a null value"); } else { unitPrice = productsSqlDataReader.GetDecimal(unitPriceColPos); }
Because productsSqlDataReader.IsDBNull(unitPriceColPos) returns true, this example displays:
UnitPrice column contains a null value
As mentioned, a Sql* type can store a null value. A null value is stored as Null. For example:
SqlMoney unitPrice = productsSqlDataReader.GetSqlMoney(unitPriceColPos);
Console.WriteLine("unitPrice = " + unitPrice);
This example displays: unitPrice = Null
Each of the Sql* types also has a Boolean property named IsNull that is true when the Sql* object
contains a null value. For example: Console.WriteLine("unitPrice.IsNull = " + unitPrice.IsNull);
This example displays: unitPrice.IsNull = True
True is displayed because unitPrice contains Null.

6.3.8 Executing Multiple SQL Statements

Executing Multiple SQL Statements
Typically, your C# program and the database will run on different computers and communicate over a
network. Each time you execute a command in your program, it has to travel over the network to the
database and be executed by the database, and any results must be sent back across the network to
your program. That's a lot of network traffic! One way to potentially reduce network traffic is to
execute multiple SQL statements at a time.
In this section, you'll see how to execute multiple SELECT statements and retrieve results, and you'll
see how to execute multiple SELECT, INSERT, UPDATE, and DELETE statements that are
interleaved. Executing Multiple SELECT Statements
Let's take a look at how you execute multiple SELECT statements and retrieve the results. The
following code first creates a SqlCommand object named mySqlCommand and sets its CommandText

Mastering C# Database Programming @Team LiB178

© 2004 ... Your company

property to three different SELECT statements: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName " + "FROM Products " + "ORDER BY ProductID;" + "SELECT TOP 3 CustomerID,
CompanyName " + "FROM Customers " + "ORDER BY CustomerID;" + "SELECT TOP 6 OrderID,
CustomerID " + "FROM Orders " + "ORDER BY OrderID;";
Notice that all of the SELECT statements are separated by semi-colons. Using Table Joins
Be careful to retrieve only the rows and columns you actually need. Also, make sure you use SELECT
statements that retrieve rows from multiple tables. For example, if you want to see all the orders
placed by the customer with the CustomerID of ALFKI, don't perform two separate SELECT
statements against the Customers and Orders tables. Instead, use a table join, as shown in the
following SELECT statement: SELECT Customers.CustomerID, CompanyName, OrderID FROM
Customers, Orders WHERE Customers.CustomerID = Orders.CustomerID AND
Customers.CustomerID = 'ALFKI';
To run earlier SQL statements, you call the ExecuteReader() method, which returns a SqlDataReader
object: SqlDataReader mySqlDataReader = mySqlCommand.ExecuteReader();
The command will return three result sets, one for each SELECT statement. To read the first result
set, you call the Read() method of mySqlDataReader. The Read() method returns false when there
are no more rows to read. Once you're at the end of a result set, you call the NextResult() method of
mySqlDataReader before reading the next result set. The NextResult() method advances
mySqlDataReader onto the next result set and returns false when there are no more result sets.
The following code illustrates the use of the Read() and NextResult() methods to read the three result
sets from the SELECT statements: do { while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[0] = " + mySqlDataReader[0]);
Console.WriteLine("mySqlDataReader[1] = " + mySqlDataReader[1]); } } while
(mySqlDataReader.NextResult());
Notice the use of the outer do...while loop, which tests the return value from
mySqlDataReader.NextResult() at the end. Because a do...while loop checks the condition at the end
of the loop, this means that the statements in the do...while loop execute at least once. You want to
put the call to NextResult() at the end because it first attempts to advance mySqlDataReader to the
next result set and then returns the Boolean result that indicates whether there is another result set to
move to. If you put the call to NextResult() in a regular while loop, then mySqlDataReader would skip
over the first result set, and you don't want to do that!
Listing 9.4 illustrates how to execute multiple SELECT statements and read the results.Listing 9.4:
EXECUTEMULTIPLESELECTS.CS /* ExecuteMultipleSelects.cs illustrates how to execute
multiple SELECT statements using a SqlCommand object and read the results using a
SqlDataReader object */ using System; using System.Data; using System.Data.SqlClient; class
ExecuteSelect { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); // set the CommandText property of the
SqlCommand object to // the mutliple SELECT statements mySqlCommand.CommandText =
"SELECT TOP 5 ProductID, ProductName " + "FROM Products " + "ORDER BY ProductID;" +
"SELECT TOP 3 CustomerID, CompanyName " + "FROM Customers " + "ORDER BY
CustomerID;" + "SELECT TOP 6 OrderID, CustomerID " + "FROM Orders " + "ORDER BY
OrderID;"; mySqlConnection.Open(); SqlDataReader mySqlDataReader =
mySqlCommand.ExecuteReader(); // read the result sets from the SqlDataReader object using //
the Read() and NextResult() methods do { while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[0] = " + mySqlDataReader[0]);
Console.WriteLine("mySqlDataReader[1] = " + mySqlDataReader[1]); }
Console.WriteLine(""); // visually split the results } while (mySqlDataReader.NextResult());
mySqlDataReader.Close(); mySqlConnection.Close(); } }
The output from this program is as follows: mySqlDataReader[0] = 1 mySqlDataReader[1] = Chai
mySqlDataReader[0] = 2 mySqlDataReader[1] = Chang mySqlDataReader[0] = 3
mySqlDataReader[1] = Aniseed Syrup mySqlDataReader[0] = 4 mySqlDataReader[1] = Chef Anton's
Cajun Seasoning mySqlDataReader[0] = 5 mySqlDataReader[1] = Chef Anton's Gumbo Mix
mySqlDataReader[0] = ALFKI mySqlDataReader[1] = Alfreds Futterkiste mySqlDataReader[0] =
ANATR mySqlDataReader[1] = Ana Trujillo3 Emparedados y helados mySqlDataReader[0] = ANTON

Part 2: Fundamental Database Programming with ADO.NET 179

© 2004 ... Your company

mySqlDataReader[1] = Antonio Moreno Taquería mySqlDataReader[0] = 10248 mySqlDataReader[1]
= VINET mySqlDataReader[0] = 10249 mySqlDataReader[1] = TOMSP mySqlDataReader[0] = 10250
mySqlDataReader[1] = HANAR mySqlDataReader[0] = 10251 mySqlDataReader[1] = VICTE
mySqlDataReader[0] = 10252 mySqlDataReader[1] = SUPRD mySqlDataReader[0] = 10253
mySqlDataReader[1] = HANAR Executing Multiple SELECT, INSERT, UPDATE , and DELETE
Statements
You can interleave multiple SELECT, INSERT, UPDATE, and DELETE statements. This can save
network traffic because you're sending multiple SQL statements to the database in one go. The
following code first creates a SqlCommand object named mySqlCommand and sets its CommandText
property to multiple interleaved SQL statements: mySqlCommand.CommandText = "INSERT INTO
Customers (CustomerID, CompanyName) "+ "VALUES ('J5COM', 'Jason 5 Company');" + "SELECT
CustomerID, CompanyName " + "FROM Customers " + "WHERE CustomerID = 'J5COM';" +
"UPDATE Customers " + "SET CompanyName = 'Another Jason Company' " + "WHERE
CustomerID = 'J5COM';" + "SELECT CustomerID, CompanyName " + "FROM Customers " +
"WHERE CustomerID = 'J5COM';" + "DELETE FROM Customers " + "WHERE CustomerID =
'J5COM';";
The SQL statements are as follows:
The INSERT statement adds a new row to the Customers table.
The first SELECT statement retrieves the new row.
The UPDATE statement modifies the CompanyName column of the row.
The second SELECT statement retrieves the row again.
The DELETE statement removes the row.
You can use the same do...while loop as shown in the previous section to retrieve the two result sets
returned by the SELECT statements. The same loop works even though the example executes inter-
leaved non-SELECT statements. It works because only the SELECT statements return result sets and
the NextResult() method returns true only for the SELECT statements; it returns false for the other
SQL statements. Therefore, NextResult() returns false for the INSERT statement and advances to
result set for the first SELECT statement, and so on.
Listing 9.5 illustrates how to execute multiple SQL statements.Listing 9.5:
EXECUTEMULTIPLESQL.CS /* ExecuteMultipleSQL.cs illustrates how to execute multiple SQL
statements using a SqlCommand object */ using System; using System.Data; using
System.Data.SqlClient; class ExecuteMultipleSQL { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); // set the CommandText property of the SqlCommand object
to // the INSERT, UPDATE, and DELETE statements mySqlCommand.CommandText =
"INSERT INTO Customers (CustomerID, CompanyName) " + "VALUES ('J5COM', 'Jason 5
Company');" + "SELECT CustomerID, CompanyName " + "FROM Customers " + "WHERE
CustomerID = 'J5COM';" + "UPDATE Customers " + "SET CompanyName = 'Another Jason
Company' " + "WHERE CustomerID = 'J5COM';" + "SELECT CustomerID, CompanyName " +
"FROM Customers " + "WHERE CustomerID = 'J5COM';" + "DELETE FROM Customers " +
"WHERE CustomerID = 'J5COM';"; mySqlConnection.Open(); SqlDataReader
mySqlDataReader = mySqlCommand.ExecuteReader(); // read the result sets from the
SqlDataReader object using // the Read() and NextResult() methods do { while
(mySqlDataReader.Read()) { Console.WriteLine("mySqlDataReader[0] = " +
mySqlDataReader[0]); Console.WriteLine("mySqlDataReader[1] = " +
mySqlDataReader[1]); } Console.WriteLine(""); // visually split the results } while
(mySqlDataReader.NextResult()); mySqlDataReader.Close(); mySqlConnection.Close(); } }
The output from this program is as follows: mySqlDataReader[0] = J5COM mySqlDataReader[1] =
Jason 5 Company mySqlDataReader[0] = J5COM mySqlDataReader[1] = Another Jason Company

6.3.9 Using a DataReader Object in Visual Studio .NET

Using a DataReader Object in Visual Studio .NET
You can't visually create a DataReader object in Visual Studio .NET (VS .NET); you can only create

Mastering C# Database Programming @Team LiB180

© 2004 ... Your company

them using program statements.
In this section, you'll see how to create a SqlDataReader object and use it to retrieve the result set
from a SqlCommand object, which you saw how to create using VS .NET in the previous chapter.
That SqlCommand object contained a SELECT statement that retrieved the CustomerID,
CompanyName, and ContactName columns from the Customers table. You'll see how to execute this
SELECT statement, read the result set using the SqlDataReader object, and display the result set in a
ListView control. A ListView control allows you to view information laid out in a grid.Note
You can either modify the MyDataReader project you created in the previous chapter, or if you don't
want to follow along with the instructions in this section, you can simply open the completed VS .NET
project contained in the DataReader directory. To open the completed project, select File £ Open £
Project, browse to the VS .NET projects\DataReader directory, and open the
WindowsApplication4.csproj file.
If you are modifying your existing Windows application, drag a ListView control to your form. Figure
9.2 shows a form with a ListView control. Make sure the Name property of your ListView is set to
listView1 (this is the default name, so you shouldn't have to change

it).
Figure 9.2: Adding a ListView control to the formWarning
If you opened the completed project, you don't have to add a ListView controI; it's already on the
completed form. You will need to change the ConnectionString property of the sqlConnection1 object
so that it connects to your SQL Server Northwind database. Once you've set your ConnectionString ,
you can run the form by selecting Debug £ Start Without Debugging.
Next, double-click an area on your form outside the ListView control. This causes VS .NET to display
the code editor, and you'll see the cursor positioned in the Form1_Load() method; this method is
called when your form is initially loaded at runtime. Typically, this is the method by which you want to
execute your database operations. Set your Form1_Load() method to the following code: private void
Form1_Load(object sender, System.EventArgs e) { sqlConnection1.Open();
System.Data.SqlClient.SqlDataReader mySqlDataReader = sqlCommand1.ExecuteReader();
while (mySqlDataReader.Read()) {
listView1.Items.Add(mySqlDataReader["CustomerID"].ToString());
listView1.Items.Add(mySqlDataReader["CompanyName"].ToString());
listView1.Items.Add(mySqlDataReader["ContactName"].ToString()); } mySqlDataReader.Close();
sqlConnection1.Close(); }
Notice you add an item to the ListView control using the Add() method, which is accessed using the
Items property. The Add() method expects a string parameter, and you therefore call the ToString()
method to convert the object returned by the SqlDataReader object to a string. Also notice you
include the namespace when referencing the SqlDataReader class: you use
System.Data.SqlClient.SqlDataReader when creating the SqlDataReader object.
The previous code opens the database connection, creates a SqlDataReader object, and uses it to
read the rows from the result set returned by the SqlCommand object. Each column of the result set is
then added to the ListView control using the Add() method.

Part 2: Fundamental Database Programming with ADO.NET 181

© 2004 ... Your company

Figure 9.3 shows the completed Form1_Load()

method.
Figure 9.3: The completed Form1_Load() method
Before you run your form, you'll need to add a substring containing the password for the database
connection to the ConnectString property of your SqlConnection object. For my installation of SQL
Server, the password to access the Northwind database is sa, and my ConnectionString property is
set to: data source=localhost;initial catalog=Northwind;persist security info=False;user
id=sa;pwd=sa;workstation id=JMPRICE-DT1;packet size=4096
Notice the substring pwd=sa in this string to set the password.
Finally, run your form by pressing Ctl+F5 on your keyboard, or select Debug â Start Without

Debugging. Figure 9.4 shows the running form.
Figure 9.4: The running form
Save your MyDataReader project by selecting File £ Save All. You'll use this project in later chapters.
If you used the completed DataReader project rather than modifying your existing project, don't worry:
you'll be able to use the completed DataReader project in the later chapters also.

6.3.10 Summary

Summary
In this chapter, you learned how to use a DataReader object to read results returned from the
database. DataReader objects are part of the managed providers, and there are three DataReader

Mastering C# Database Programming @Team LiB182

© 2004 ... Your company

classes: SqlDataReader, OleDbDataReader, and OdbcDataReader. You use an object of the
SqlDataReader class to read rows retrieved from a SQL Server database; an object of the
OleDbDataReader class to read rows from any database that supports OLE DB, such as Oracle or
Access; and an object of the OdbcDataReader class to read rows from any database that supports
ODBC.
DataReader objects can be used to read rows only in a forward direction, and you cannot use them to
modify the database, but they do offer very fast retrieval of rows. DataReader objects act as an
alternative to a DataSet object. DataSet objects allow you to store a copy of the rows from the
database, and you can work with that copy while disconnected from the database.

6.4 Chapter 10: Using Dataset Objects to Store Data

Chapter 10: Using Dataset Objects to Store DataOverview
In this chapter, you'll learn the details of using DataSet objects to store results returned from the
database. DataSet objects allow you to store a copy of the information from the database, and you
can work with that local copy while disconnected from the database. Unlike managed provider objects
such as the SqlDataReader, a DataSet is generic and therefore works with any database. A DataSet
object also allows you to read rows in any order and modify rows-unlike a SqlDataReader, which
allows you to read rows only in a sequential forward direction. That's not to say SqlDataReader
objects are bad: as you learned in Chapter 9, they offer very fast access to data.
You'll also learn the details of using a DataAdapter object to read rows from the database into a
DataSet. The DataAdapter is part of the managed provider classes, and there are three DataAdapter
classes: SqlDataAdapter, OleDbDataAdapter, and OdbcDataAdapter.
You use a DataAdapter to copy rows from the database to your DataSet and also push any changes
you make to the rows in your DataSet to the database. You'll see how to make changes to the rows in
a DataSet and push those changes to the database in Chapter 11, "Using DataSet Objects to Modify
Data." In this chapter, you'll focus on copying rows from the database and storing them in a DataSet.
Featured in this chapter:
The SqlDataAdapter class
Creating a SqlDataAdapter object
The DataSet class
Creating a DataSet object
Populating a DataSet object
Using the Merge() method
Writing and reading XML using a DataSet object
Mapping tables and columns
Creating and using strongly typed DataSet classes
Creating a DataAdapter object and DataSet object using Visual Studio .NET

6.4.1 The SqlDataAdapter Class

The SqlDataAdapter Class
You use an object of the SqlDataAdapter class to synchronize data stored in a DataSet object with a
SQL Server database. You use an object of the OleDbDataAdapter class to synchronize data with a
database that supports OLE DB, such as Oracle or Access. You use an object of the
OdbcDataAdapter class to synchronize data with a database that supports ODBC.Note
Although the SqlDataAdapter class is specific to SQL Server, many of the properties and methods in
this class are the same as those for the OleDbDataAdapter and OdbcDataAdapter classes.
Table 10.1 shows some of the SqlDataAdapter properties. Table 10.1: SqlDataAdapter PROPERTIES
PROPERTY
TYPE
DESCRIPTION
AcceptChangesDuringFill

Part 2: Fundamental Database Programming with ADO.NET 183

© 2004 ... Your company

bool
Gets or sets a bool that indicates whether the AcceptChanges() method is called after a DataRow
object has been added, modified, or removed in a DataTable object. The default is true.
ContinueUpdateOnError
bool
Gets or sets a bool that indicates whether to continue updating the database when an error occurs.
When set to true, no exception is thrown when an error occurs during the update of a row. The update
of the row is skipped and the error information is placed in the RowError property of the DataRow that
caused the error. The DataAdapter continues to update subsequent rows.
When set to false, an exception is thrown when an error occurs. The default is false.
DeleteCommand
SqlCommand
Gets or sets a command containing a SQL DELETE statement or stored procedure call to remove
rows from the database.
InsertCommand
SqlCommand
Gets or sets a command containing a SQL INSERT statement or stored procedure call to add rows to
the database.
MissingMappingAction
MissingMappingAction
Gets or sets the action to take when the incoming table or column doesn't have a matching table or
column in the TableMappings collection.
The values for this action come from the System.Data.MissingMappingAction enumeration with the
members Error, Ignore, and Passthrough:
Error means a SystemException is thrown.
Ignore means the table or column is ignored and not read.
Passthrough means the table or column is added to the DataSet with its original name.
The default is Passthrough.
MissingSchemaAction
MissingSchemaAction
Gets or sets the action to take when the incoming column doesn't have a matching column in the
DataTable object's Column collection.
The values for this action come from the System.Data.MissingSchemaAction enumeration with the
members Add, AddWithKey, Error, and Ignore:
Add means the column is added to the DataTable.
AddWithKey means the column and primary key information is added to the DataTable.
Error means a SystemException is thrown.
Ignore means the column is ignored and not read.
The default is Add.
SelectCommand
SqlCommand
Gets or sets a command containing a SQL SELECT statement or stored procedure call to retrieve
rows from the database.
TableMappings
DataTableMappingCollection
Gets a DataTableMappingCollection that contains the mapping between a database table and a
DataTable object in the DataSet.
UpdateCommand
SqlCommand
Gets or sets a command containing a SQL UPDATE statement or stored procedure call to modify
rows in the database.
Table 10.2 shows some of the SqlDataAdapter methods. Table 10.2: SqlDataAdapter METHODS
METHOD
RETURN TYPE
DESCRIPTION
Fill()

Mastering C# Database Programming @Team LiB184

© 2004 ... Your company

int
Overloaded. Synchronizes the rows in the DataSet object to match those in the database. The int
returned by this method is the number of rows synchronized in the DataSet with the database.
FillSchema()
DataTable DataTable[]
Overloaded. Adds a DataTable to a DataSet object and configures the schema to match the
database.
GetFillParameters()
IDataParameter[]
Returns an array of any parameters set for the SQL SELECT statement.
Update()
int
Overloaded. Calls the respective SQL INSERT, UPDATE, or DELETE statements or stored procedure
call (stored in the InsertCommand, UpdateCommand, and DeleteCommand properties, respectively)
for each row that has been added, modified, or removed from a DataTable object. The int returned by
this method is the number of rows updated.
Table 10.3 shows some of the SqlDataAdapter events. Table 10.3: SqlDataAdapter EVENTS
EVENT
EVENT HANDLER
DESCRIPTION
FillError
FillErrorEventHandler
Fires when an error occurs during a fill operation.
RowUpdating
RowUpdatingEventHandler
Fires before a row is added, modified, or deleted in the database.
RowUpdated
RowUpdatedEventHandler
Fires after a row is added, modified, or deleted in the database.
You'll learn how to use some of these properties and methods to store data in DataSet objects in this
chapter. You'll see how to use the other properties, methods, and the events in Chapter 11, in which
you'll learn how to modify data in DataSet objects, and then push those modifications to the
database. Creating a SqlDataAdapter Object
You create a SqlDataAdapter object using one of the following SqlDataAdapter constructors:
SqlDataAdapter() SqlDataAdapter(SqlCommand mySqlCommand) SqlDataAdapter(string
selectCommandString , SqlConnection mySqlConnection) SqlDataAdapter(string
selectCommandString , string connectionString)
where
mySqlCommand specifies your SqlCommand object.
selectCommandString specifies your SELECT statement or stored procedure call.
mySqlConnection specifies your SqlConnection object.
connectionString specifies your connection string to connect to the database.
The following example uses the SqlDataAdapter() constructor to create a SqlDataAdapter object:
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
Before using mySqlDataAdapter to populate a DataSet, you must set its SelectCommand property to
a SqlCommand that contains a SELECT command or stored procedure call. The following example
creates a SqlCommand object with its CommandText property set to a SELECT statement that will
retrieve the top five rows from the Products table, and sets the CommandText property of
mySqlDataAdapter to that SqlCommand object: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID";
mySqlDataAdapter.SelectCommand = mySqlCommand;
The next example uses the SqlDataAdapter(SqlCommand mySqlCommand) constructor:
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(mySqlCommand);
The next example uses the SqlDataAdapter(string selectCommandString ,
SqlConnectionmySqlConnection) constructor: SqlConnection mySqlConnection = new

Part 2: Fundamental Database Programming with ADO.NET 185

© 2004 ... Your company

SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); string
selectCommandString = "SELECT TOP 10 ProductID, ProductName, UnitPrice " + "FROM
Products " + "ORDER BY ProductID"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(selectCommandString, mySqlConnection);
The final example uses the SqlDataAdapter(string selectCommandString , string connectionString)
constructor: string selectCommandString = "server=localhost;database=Northwind;uid=sa;pwd=sa";
string connectionString = "SELECT TOP 10 ProductID, ProductName, UnitPrice " + "FROM
Products " + "ORDER BY ProductID"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(selectCommandString, connectionString); Warning
This constructor causes the SqlDataAdapter object to create a separate SqlConnection object. This
is typically undesirable from a performance perspective because opening a connection to the
database using a SqlConnection object takes a relatively long time. You should therefore avoid using
the SqlDataAdapter(string selectCommandString, string connectionString) constructor. Instead, you
should use an existing SqlConnection object with your SqlDataAdapter object.
A DataAdapter object doesn't store rows: it merely acts as a conduit between the database and an
object of the DataSet class. In the next section, you'll learn about the DataSet class.

6.4.2 The DataSet Class

The DataSet Class
You use an object of the DataSet class to represent a local copy of the information stored in the
database. You can make changes to that local copy in your DataSet and then later synchronize those
changes with the database through a DataAdapter. A DataSet can represent database structures
such as tables, rows, and columns. You can even add constraints to your locally stored tables to
enforce unique and foreign key constraints.
Figure 10.1 shows the DataSet and its relationship to some of the objects you can store within it. As
you can see from this figure, you can store multiple DataTable objects in a DataSet, and so

on.
Figure 10.1: Some of the DataSet objects
Table 10.4 shows some of the DataSet properties. Table 10.4: DataSet PROPERTIES
PROPERTY
TYPE

Mastering C# Database Programming @Team LiB186

© 2004 ... Your company

DESCRIPTION
CaseSensitive
bool
Gets or sets a bool value that indicates whether string comparisons within DataTable objects are
case-sensitive.
DataSetName
string
Gets or sets the name of the current DataSet object.
DefaultViewManager
DataViewManager
Gets a custom view of the data stored in the DataSet object. You use a view to filter, search, and
navigate the DataSet.
EnforceConstraints
bool
Gets or sets a bool value that indicates whether constraint rules are followed when updating
information in the DataSet object.
ExtendedProperties
PropertyCollection
Gets a collection (PropertyCollection) of user information. You can use the PropertyCollection to store
strings with any additional information you want. You use the Add() method through
ExtendedProperties to add a string.
HasErrors
bool
Gets a bool value that indicates whether there are errors in any of the rows in the tables of the
DataSet object.
Locale
CultureInfo
Gets or sets a CultureInfo object for the DataSet. A CultureInfo object contains information about a
specific culture including its name, writing system, and calendar.
Namespace
string
Gets or sets the namespace for the DataSet object. The namespace is a string that is used when
reading and writing an XML document using the ReadXml(), WriteXml(), ReadXmlSchema(), and
WriteXmlSchema() methods. The namespace is used to scope the XML attributes and elements.
Prefix
string
Gets or sets the XML prefix for the DataSet namespace. The prefix is used in an XML document to
identify the elements that belong to the DataSet object's namespace.
Relations
DataRelationCollection
Gets the collection of relations (DataRelationCollection) that allows navigation from a parent table to
a child table. A DataRelationCollection consists of DataRelation objects.
Tables
DataTableCollection
Gets the collection of tables (DataTableCollection) that contains the DataTable objects stored in the
DataSet.
Table 10.5 shows some of the DataSet methods. Table 10.5: DataSet METHODS
METHOD
RETURN TYPE
DESCRIPTION
AcceptChanges()
void
Commits all the changes made to the DataSet object since it was loaded or since the last time the
AcceptChanges() method was called.
BeginInit()
void

Part 2: Fundamental Database Programming with ADO.NET 187

© 2004 ... Your company

Used by the Visual Studio .NET designer to initialize a DataSet used in a form or component.
Clear()
void
Removes all rows from all tables in the DataSet object.
Clone()
DataSet
Clones the structure of the DataSet object and returns that clone. The clone contains all the schemas,
relations, and constraints.
Copy()
DataSet
Copies the structure and data of the DataSet object and returns that copy. The copy contains all the
schemas, relations, constraints, and data.
EndInit()
void
Used by the Visual Studio .NET designer to end initialization of a DataSet used in a form or
component.
GetChanges()
DataSet
Overloaded. Gets a copy of all the changes made to the DataSet object since it was last loaded or
since the last time the AcceptChanges() method was called.
GetXml()
string
Returns the XML representation of the data stored in the DataSet object.
GetXmlSchema()
string
Returns the XML representation of the schema for the DataSet object.
HasChanges()
bool
Overloaded. Returns a bool value that indicates whether the DataSet object has changes that haven't
been committed.
Merge()
void
Overloaded. Merges this DataSet with another specified DataSet object.
ReadXml()
XmlReadMode
Overloaded. Loads the data from an XML file into the DataSet object.
ReadXmlSchema()
void
Overloaded. Loads a schema from an XML file into the DataSet object.
RejectChanges()
void
Undoes all the changes made to the DataSet object since it was created or since the last time the
AcceptChanges() method was called.
Reset()
void
Resets the DataSet object to its original state.
WriteXml()
void
Overloaded. Writes out the data from the DataSet object to an XML file.
WriteXmlSchema()
void
Overloaded. Writes out the schema of the DataSet object to an XML file.
Table 10.6 shows one of the DataSet events. Table 10.6: DataSet EVENT
EVENT
EVENT HANDLER
DESCRIPTION

Mastering C# Database Programming @Team LiB188

© 2004 ... Your company

MergeFailed
MergeFailedEventHandler
Fires when an attempt is made add a DataRow to a DataSet when a DataRow with the same primary
key value already exists in that DataSet.
In the next section, you'll learn how to create a DataSet object. Creating a DataSet Object
You create a DataSet object using one of the following DataSet constructors: DataSet()
DataSet(string dataSetNameString)
where dataSetNameString is the string assigned to the DataSetName property of your DataSet
object. The setting of the DataSetName property is optional.
The following example uses the DataSet() constructor to create a DataSet object: DataSet myDataSet
= new DataSet();
The next example uses the DataSet(string dataSetNameString) constructor to create a DataSet
object: DataSet myDataSet = new DataSet("myDataSet"); Populating a DataSet Object
In this section, you'll learn how to populate a DataSet using the Fill() method of a DataAdapter.
Specifically, you'll see how to populate a DataSet using
A SELECT statement
A range of rows
A stored procedureUsing a SELECT Statement
Before you populate a DataSet you first need a Connection, a Command, and a DataAdapter:
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); mySqlConnection.Open();
Notice the mySqlCommand object contains a SELECT statement that retrieves the ProductID,
ProductName, and UnitPrice columns of the top five rows from the Products table. RETRIEVING
FROM MULTIPLE TABLES
Of course, you're not limited to a SELECT statement that retrieves from a single table. You can use a
SELECT statement that retrieves from multiple tables using a join, however, you should typically
avoid doing that because a DataTable is meant to be used to store rows from a single database
table.
Next, to populate myDataSet with the rows from the Products table, you call the Fill() method of
mySqlDataAdapter. For example: int numberOfRows = mySqlDataAdapter.Fill(myDataSet,
"Products");
The int returned by the Fill() method is the number of rows synchronized between the DataSet and
the database via the DataAdapter. In the previous example, the int is the number of rows copied from
the Products table to myDataSet and is set to 5-the number of rows retrieved by the SELECT
statement shown earlier.
The first parameter to the Fill() method is your DataSet, and the second parameter is a string
containing the name you want to assign to the DataTable created in your DataSet.Note
The name you assign to your DataTable doesn't have to be the same as the name of the database
table. You can use any string of text, though typically you should still use the same name, since it will
help you keep track of what database table was used to populate the DataTable .
When you call the Fill() method for the first time, the following steps are performed by ADO.NET:
The SELECT statement in your SqlCommand is executed.
A new DataTable object is created in your DataSet.
Your DataTable is populated with the result set returned by the SELECT statement.
If you're finished with the database after calling the Fill() method, you should close your Connection
object using the Close() method: mySqlConnection.Close(); Note
The Fill() method will actually open and close the Connection for you if you don't open it first,
however, it is better to explicitly open and close the Connection because that way it is clearer what
your program is doing. Also, if you're calling the Fill() method repeatedly over a short span of code,
you'll want to keep the database connection open and close it only when you're finished.
The DataSet is now populated with a DataTable named Products. You can read the
ProductsDataTable from myDataSet using the following example: DataTable myDataTable =

Part 2: Fundamental Database Programming with ADO.NET 189

© 2004 ... Your company

myDataSet.Tables["Products"];
You can also read the Products DataTable using an int value: DataTable myDataTable =
myDataSet.Tables[0];
You can display the column values for each row in myDataTable using the following foreach loop that
iterates over the DataRow objects stored in myDataTable; notice the use of the myDataTable object's
Rows property: foreach (DataRow myDataRow in myDataTable.Rows) {
Console.WriteLine("ProductID = " + myDataRow["ProductID"]); Console.WriteLine("ProductName = "
+ myDataRow["ProductName"]); Console.WriteLine("UnitPrice = " + myDataRow["UnitPrice"]); }
The Rows property returns a DataRowCollection object that allows you to access all the DataRow
objects stored in myDataTable. You can read each column value in a DataRow using the name of the
column; for example, to read the ProductID column value you use myDataRow["ProductID"]. You can
also use the numeric position of the column; for example, myDataRow[0] returns the value for the first
column. This is the ProductID column.
You can also use the following code to iterate over all the DataTable, DataRow, and DataColumn
objects stored in myDataSet: foreach (DataTable myDataTable in myDataSet.Tables) { foreach
(DataRow myDataRow in myDataTable.Rows) { foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine(myDataColumn + "= " +
myDataRow[myDataColumn]); } } }
Notice you don't need to know the names of the DataTable or DataColumn objects to display them.
The call to the WriteLine() method displays myDataColumn, which returns the name of the column,
and myDataRow[myDataColumn], which returns the column value for the current row.Note
You'll see the details of the DataTable , DataRow , and DataColumn classes in Chapter 11.
Listing 10.1 shows a program that uses the code examples shown in this section.Listing 10.1:
POPULATEDATASETUSINGSELECT.CS /* PopulateDataSetUsingSelect.cs illustrates how to
populate a DataSet object using a SELECT statement */ using System; using System.Data; using
System.Data.SqlClient; class PopulateDataSetUsingSelect { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object and
set its CommandText property // to a SELECT statement that retrieves the top 5 rows from // the
Products table SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT TOP 5 ProductID, ProductName, UnitPrice " +
"FROM Products " + "ORDER BY ProductID"; // create a SqlDataAdapter object and set its
SelectCommand // property to the SqlCommand object SqlDataAdapter mySqlDataAdapter =
new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; // create a
DataSet object DataSet myDataSet = new DataSet(); // open the database connection
mySqlConnection.Open(); // use the Fill() method of the SqlDataAdapter object to // retrieve the
rows from the table, storing the rows locally // in a DataTable of the DataSet object
Console.WriteLine("Retrieving rows from the Products table"); int numberOfRows =
mySqlDataAdapter.Fill(myDataSet, "Products"); Console.WriteLine("numberOfRows = " +
numberOfRows); // close the database connection mySqlConnection.Close(); // get the
DataTable object from the DataSet object DataTable myDataTable =
myDataSet.Tables["Products"]; // display the column values for each row in the DataTable, //
using a DataRow object to access each row in the DataTable foreach (DataRow myDataRow in
myDataTable.Rows) { Console.WriteLine("ProductID = " + myDataRow["ProductID"]);
Console.WriteLine("ProductName = " + myDataRow["ProductName"]);
Console.WriteLine("UnitPrice = " + myDataRow["UnitPrice"]); } } }
The output from this program is as follows: Retrieving rows from the Products table numberOfRows =
5 ProductID = 1 ProductName = Chai UnitPrice = 18 ProductID = 2 ProductName = Chang UnitPrice
= 19 ProductID = 3 ProductName = Aniseed Syrup UnitPrice = 10 ProductID = 4 ProductName = Chef
Anton's Cajun Seasoning UnitPrice = 22 ProductID = 5 ProductName = Chef Anton's Gumbo Mix
UnitPrice = 21.35 Using a Range of Rows
In this section, you'll learn how to populate a DataSet with a range of rows. Now, the Fill() method is
overloaded and a partial list of Fill() methods is as follows: int Fill(DataSet myDataSet) int
Fill(DataTable myDataTable) int Fill(DataSet myDataSet , string dataTableName) int Fill(DataSet
myDataSet , int startRow , int numOfRows , string dataTableName)
where

Mastering C# Database Programming @Team LiB190

© 2004 ... Your company

dataTableName specifies a string containing the name of the DataTable to fill.
startRow is an int that specifies the position of the row in the result set to read (starting at 0).
NumOfRows is an int that specifies the number rows to read.
The range of rows from startRow to startRow + numOfRows is then stored in the DataTable . The
int returned by the Fill() method is the number of rows retrieved from the database.
As you can see, the final Fill() method allows you to populate a DataSet with a range of rows. The
following example shows the use of this Fill() method to store a range of rows. It retrieves the top five
rows from the Products table, but stores only three rows in the Products DataTable, starting at
position 1 (because rows are numbered starting at 0, position 1 corresponds to the second row in the
result set returned by the SELECT statement): SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 5 ProductID,
ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet, 1, 3,
"Products");
The numberOfRows variable is set to 3-the number of rows myDataSet was populated with. One thing
to remember is the DataAdapter still retrieves all five rows from the Products table, but only three are
actually used to populate the DataSet: the other two are thrown away.
Listing 10.2 shows a program that uses the code examples shown in this section.Listing 10.2:
POPULATEDATASETUSINGRANGE.CS /* PopulateDataSetUsingRange.cs illustrates how to
populate a DataSet object with a range of rows from a SELECT statement */ using System; using
System.Data; using System.Data.SqlClient; class PopulateDataSetUsingRange { public static void
Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object and
set its CommandText property // to a SELECT statement that retrieves the top 5 rows from // the
Products table SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT TOP 5 ProductID, ProductName, UnitPrice " +
"FROM Products " + "ORDER BY ProductID"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet =
new DataSet(); mySqlConnection.Open(); // use the Fill() method of the SqlDataAdapter object
to // retrieve the rows from the table, storing a range of rows // in a DataTable of the DataSet
object Console.WriteLine("Retrieving rows from the Products table"); int numberOfRows =
mySqlDataAdapter.Fill(myDataSet, 1, 3, "Products"); Console.WriteLine("numberOfRows = " +
numberOfRows); mySqlConnection.Close(); DataTable myDataTable =
myDataSet.Tables["Products"]; foreach (DataRow myDataRow in myDataTable.Rows) {
Console.WriteLine("ProductID = " + myDataRow["ProductID"]); Console.WriteLine("ProductName
= " + myDataRow["ProductName"]); Console.WriteLine("UnitPrice = " + myDataRow["UnitPrice"]);
} } }
The output from this program is as follows: Retrieving rows from the Products table numberOfRows =
3 ProductID = 2 ProductName = Chang UnitPrice = 19 ProductID = 3 ProductName = Aniseed Syrup
UnitPrice = 10 ProductID = 4 ProductName = Chef Anton's Cajun Seasoning UnitPrice = 22 Using a
Stored Procedure
You can also populate a DataSet object using a stored procedure that returns a result set. For
example, the SQL Server Northwind database contains a stored procedure called CustOrderHist()
that returns the products and total number of the products ordered by a customer. The customer's
CustomerID is passed as a parameter to CustOrderHist().
Listing 10.3 shows the definition of the CustOrderHist() stored procedure.Listing 10.3:
CUSTORDERHIST() STORED PROCEDURE CREATE PROCEDURE CustOrderHist @CustomerID
nchar(5) AS SELECT ProductName, Total=SUM(Quantity) FROM Products P, [Order Details] OD,
Orders O, Customers C WHERE C.CustomerID = @CustomerID AND C.CustomerID = O.CustomerID
AND O.OrderID = OD.OrderID AND OD.ProductID = P.ProductID GROUP BY ProductName Note
You don't have to create the CustOrderHist() procedure yourself. It's already defined in the Northwind
database.
Calling CustOrderHist() and populating a DataSet with the returned result set is straightforward. For
example, the following code creates a SqlCommand object, sets its CommandText object to an
EXECUTE statement that calls CustOrderHist(), and sets the @CustomerID parameter to ALFKI

Part 2: Fundamental Database Programming with ADO.NET 191

© 2004 ... Your company

(parameters are covered in Chapter 8, "Executing Database Commands"): SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"EXECUTE CustOrderHist @CustomerID"; mySqlCommand.Parameters.Add("@CustomerID",
SqlDbType.NVarChar, 5).Value = "ALFKI";
You then use code similar to thatshown in the previous section to populate a DataSet with the result
set returned by CustOrderHist(): SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet, "CustOrderHist");
mySqlConnection.Close();
The CustOrderHist DataTable contained within myDataSet is populated with the result set returned by
the CustOrderHist() procedure.
Listing 10.4 shows a program that uses the code examples shown in this section.Listing 10.4:
POPULATEDATASETUSINGPROCEDURE.CS /* PopulateDataSetUsingProcedure.cs illustrates
how to populate a DataSet object using a stored procedure */ using System; using System.Data;
using System.Data.SqlClient; class PopulateDataSetUsingProcedure { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object and
set its CommandText property // to call the CustOrderHist() stored procedure SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"EXECUTE CustOrderHist @CustomerID"; mySqlCommand.Parameters.Add("@CustomerID",
SqlDbType.NVarChar, 5).Value = "ALFKI"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet =
new DataSet(); mySqlConnection.Open(); Console.WriteLine("Retrieving rows from the
CustOrderHist() Procedure"); int numberOfRows = mySqlDataAdapter.Fill(myDataSet,
"CustOrderHist"); Console.WriteLine("numberOfRows = " + numberOfRows);
mySqlConnection.Close(); DataTable myDataTable = myDataSet.Tables["CustOrderHist"];
foreach (DataRow myDataRow in myDataTable.Rows) { Console.WriteLine("ProductName = " +
myDataRow["ProductName"]); Console.WriteLine("Total = " + myDataRow["Total"]); } } }
The output from this program is as follows: Retrieving rows from the CustOrderHist() Procedure
numberOfRows = 11 ProductName = Aniseed Syrup Total = 6 ProductName = Chartreuse verte Total
= 21 ProductName = Escargots de Bourgogne Total = 40 ProductName = Flotemysost Total = 20
ProductName = Grandma's Boysenberry Spread Total = 16 ProductName = Lakkalikööri Total = 15
ProductName = Original Frankfurter grüne Soße Total = 2 ProductName = Raclette Courdavault Total
= 15 ProductName = Rössle Sauerkraut Total = 17 ProductName = Spegesild Total = 2 ProductName
= Vegie-spread Total = 20 Populating a DataSet with Multiple DataTable Objects
You can populate a DataSet with multiple DataTable objects. You might want to do that when you
need to access the information stored in multiple tables in the database.
You may use any of the following techniques to populate a DataSet with multiple DataTable objects:
Use multiple SELECT statements in the same SelectCommand.
Change the CommandText property of the SelectCommand before each call to the Fill() method.
Use multiple DataAdapter objects to populate the same DataSet.
Let's take a look at each of these techniques.Using Multiple SELECT Statements in the Same
SelectCommand
The following example sets the CommandText property of a SqlCommand object to two separate
SELECT statements: SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT TOP 2 ProductID, ProductName, UnitPrice " + "FROM
Products " + "ORDER BY ProductID;" + "SELECT CustomerID, CompanyName " + "FROM
Customers " + "WHERE CustomerID = 'ALFKI';";
Notice that each SELECT statement is separated by a semicolon (;). When these SELECT
statements are run, two result sets are returned: one containing the two rows from the Products table,
the second containing the one row from the Customers table. These two result sets are stored in
separate DataTable objects by the following code: SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new
DataSet(); mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet);
mySqlConnection.Close();
Notice the use of the Fill(myDataSet) method, which doesn't specify the name of the DataTable to be

Mastering C# Database Programming @Team LiB192

© 2004 ... Your company

created. Instead, the names of the two DataTable objects used to store the result sets are
automatically set to the default of Table and Table1. Table stores the result set from the Products
table, and Table1 stores the result set from the Customers table.
The name of a DataTable object is stored in its TableName property, which you can change. For
example, the following code changes the name of the Table DataSet to Products and the
Table1DataSet to Customers: myDataSet.Tables["Table"].TableName = "Products";
myDataSet.Tables["Table1"].TableName = "Customers";
Listing 10.5 shows a program that uses the code examples shown in this section.Listing 10.5:
MULTIPLEDATATABLES.CS /* MutlipleDataTables.cs illustrates how to populate a DataSet with
multiple DataTable objects using multiple SELECT statements */ using System; using System.Data;
using System.Data.SqlClient; class MultipleDataTables { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); // create a SqlCommand object and
set its CommandText property // to mutliple SELECT statements SqlCommand mySqlCommand
= mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
ProductID, ProductName, UnitPrice " + "FROM Products " + "ORDER BY ProductID;" +
"SELECT CustomerID, CompanyName " + "FROM Customers " + "WHERE CustomerID =
'ALFKI';"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet);
Console.WriteLine("numberOfRows = " + numberOfRows); mySqlConnection.Close(); // change
the TableName property of the DataTable objects myDataSet.Tables["Table"].TableName =
"Products"; myDataSet.Tables["Table1"].TableName = "Customers"; foreach (DataTable
myDataTable in myDataSet.Tables) { Console.WriteLine("\nReading from the " +
myDataTable.TableName + "DataTable"); foreach (DataRow myDataRow in myDataTable.Rows)
{ foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } } } } }
The output from this program is as follows: numberOfRows = 3 Reading from the Products DataTable
ProductID = 1 ProductName = Chai UnitPrice = 18 ProductID = 2 ProductName = Chang UnitPrice =
19 Reading from the Customers DataTable CustomerID = ALFKI CompanyName = Alfreds
Futterkiste Changing the CommandText Property of the SelectCommand
You can also populate a DataSet with multiple DataTable objects by changing the CommandText
property of the SelectCommand for your DataAdapter object before each call to the Fill() method.
First, the following code populates a DataSet with a DataTable containing two rows from the Products
table: SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT TOP 2 ProductID, ProductName, UnitPrice " + "FROM
Products " + "ORDER BY ProductID"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet, "Products");
The myDataSet object now contains a DataTable named Products.
Next, the CommandText property for the SelectCommand of mySqlDataAdapter is changed to a
SELECT statement that retrieves rows from the Customers table, and the Fill() method is called
again: mySqlDataAdapter.SelectCommand.CommandText = "SELECT CustomerID, CompanyName
" + "FROM Customers " + "WHERE CustomerID = 'ALFKI'"; numberOfRows =
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close();
The myDataSet object now contains an additional DataTable named Customers.
Listing 10.6 shows a program that uses the code examples shown in this section.Listing 10.6:
MULTIPLEDATATABLES2.CS /* MutlipleDataTables2.cs illustrates how to populate a DataSet
object with multiple DataTable objects by changing the CommandText property of a DataAdapter
object's SelectCommand */ using System; using System.Data; using System.Data.SqlClient; class
MultipleDataTables2 { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT TOP 2 ProductID, ProductName, UnitPrice " + "FROM Products " + "ORDER BY
ProductID"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();

Part 2: Fundamental Database Programming with ADO.NET 193

© 2004 ... Your company

mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet, "Products");
Console.WriteLine("numberOfRows = " + numberOfRows); // change the CommandText property
of the SelectCommand mySqlDataAdapter.SelectCommand.CommandText = "SELECT
CustomerID, CompanyName " + "FROM Customers " + "WHERE CustomerID = 'ALFKI'";
numberOfRows = mySqlDataAdapter.Fill(myDataSet, "Customers");
Console.WriteLine("numberOfRows = " + numberOfRows); mySqlConnection.Close(); foreach
(DataTable myDataTable in myDataSet.Tables) { Console.WriteLine("\nReading from the " +
myDataTable.TableName + "DataTable"); foreach (DataRow myDataRow in myDataTable.Rows)
{ foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } } } } }

The output from this program is as follows: numberOfRows = 2 numberOfRows = 1 Reading from the
Products DataTable ProductID = 1 ProductName = Chai UnitPrice = 18 ProductID = 2 ProductName =
Chang UnitPrice = 19 Reading from the Customers DataTable CustomerID = ALFKI CompanyName
= Alfreds Futterkiste Using Multiple DataAdapter Objects to Populate the Same DataSet Object
You can also populate the same DataSet with multiple DataTable objects using different DataAdapter
objects. For example, assume you already have a DataSet named myDataSet that was populated
using a SqlDataAdapter named mySqlDataAdapter, and that myDataSet currently contains a
DataTable named Products. The following example creates another SqlDataAdapter and uses it to
populate myDataSet with another DataTable named Customers: SqlDataAdapter mySqlDataAdapter2
= new SqlDataAdapter(); mySqlDataAdapter2.SelectCommand = mySqlCommand;
mySqlDataAdapter2.SelectCommand.CommandText = "SELECT CustomerID, CompanyName " +
"FROM Customers " + "WHERE CustomerID = 'ALFKI'"; numberOfRows =
mySqlDataAdapter2.Fill(myDataSet, "Customers");
Listing 10.7 shows a program that uses the code examples shown in this section.Listing 10.7:
MULTIPLEDATATABLES3.CS /* MutlipleDataTables3.cs illustrates how to populate a DataSet
object with multiple DataTable objects using multiple DataAdapter objects to populate the same
DataSet object */ using System; using System.Data; using System.Data.SqlClient; class
MultipleDataTables3 { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT TOP 2 ProductID, ProductName, UnitPrice " + "FROM Products " + "ORDER BY
ProductID"; SqlDataAdapter mySqlDataAdapter1 = new SqlDataAdapter();
mySqlDataAdapter1.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter1.Fill(myDataSet, "Products");
Console.WriteLine("numberOfRows = " + numberOfRows); // create another DataAdapter object
SqlDataAdapter mySqlDataAdapter2 = new SqlDataAdapter();
mySqlDataAdapter2.SelectCommand = mySqlCommand;
mySqlDataAdapter2.SelectCommand.CommandText = "SELECT CustomerID, CompanyName " +
"FROM Customers " + "WHERE CustomerID = 'ALFKI'"; numberOfRows =
mySqlDataAdapter2.Fill(myDataSet, "Customers"); Console.WriteLine("numberOfRows = " +
numberOfRows); mySqlConnection.Close(); foreach (DataTable myDataTable in
myDataSet.Tables) { Console.WriteLine("\nReading from the " + myDataTable.TableName +
"DataTable"); foreach (DataRow myDataRow in myDataTable.Rows) { foreach
(DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } } } } }

The output from this program is as follows: numberOfRows = 2 numberOfRows = 1 Reading from the
Products DataTable ProductID = 1 ProductName = Chai UnitPrice = 18 ProductID = 2 ProductName =
Chang UnitPrice = 19 Reading from the Customers DataTable CustomerID = ALFKI CompanyName
= Alfreds Futterkiste Merging DataRow , DataSet , and DataTable Objects into Another DataSet
In this section, you'll learn how to use the Merge() method to merge DataRow, DataSet, and
DataTable objects into another DataSet. You might want to do this when you have multiple sources of
data; for example, you might get data from many regional offices that is sent to headquarters, and you
need to merge all that data into one DataSet.
The Merge() method is overloaded as follows: void Merge(DataRow[] myDataRows) void

Mastering C# Database Programming @Team LiB194

© 2004 ... Your company

Merge(DataSet myDataSet) void Merge(DataTable myDataTable) void Merge(DataSet myDataSet ,
bool preserveChanges) void Merge(DataRow[] myDataRows , bool preserveChanges ,
MissingSchemaAction myMissingSchemaAction) void Merge(DataSet myDataSet , bool
preserveChanges , MissingSchemaAction myMissingSchemaAction) void Merge(DataTable
myDataTable , bool preserveChanges , MissingSchemaAction myMissingSchemaAction)
where
PreserveChanges specifies whether changes in the current DataSet (the DataSet with the Merge()
method that is called) are to be kept.
MyMissingSchemaAction specifies the action to take when the current DataSet doesn't have the
same tables or columns as the DataRow, DataSet, or DataTable being merged into that DataSet.
You set myMissingSchemaAction to one of the constants defined in the
System.Data.MissingSchemaAction enumeration. Table 10.7 shows the constants defined in the
MissingSchemaAction enumeration. Table 10.7: MissingSchemaAction ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Add
The column or table is added to the current DataSet. Add is the default.
AddWithKey
The column and primary key information is added to the current DataSet.
Error
A SystemException is thrown.
Ignore
The column or table is ignored and not read.
Listing 10.8 illustrates the use of the Merge() method.Listing 10.8: MERGE.CS /* Merge.cs
illustrates how to use the Merge() method */ using System; using System.Data; using
System.Data.SqlClient; class Merge { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); // populate myDataSet with three rows from the Customers
table mySqlCommand.CommandText = "SELECT CustomerID, CompanyName, ContactName,
Address " + "FROM Customers " + "WHERE CustomerID IN ('ALFKI', 'ANATR', 'ANTON')";
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand
= mySqlCommand; DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet, "Customers"); // populate myDataSet2 with two rows from the
Customers table mySqlCommand.CommandText = "SELECT CustomerID, CompanyName,
ContactName, Address " + "FROM Customers " + "WHERE CustomerID IN ('AROUT',
'BERGS')"; DataSet myDataSet2 = new DataSet(); mySqlDataAdapter.Fill(myDataSet2,
"Customers2"); // populate myDataSet3 with five rows from the Products table
mySqlCommand.CommandText = "SELECT TOP 5 ProductID, ProductName, UnitPrice " +
"FROM Products " + "ORDER BY ProductID"; DataSet myDataSet3 = new DataSet();
mySqlDataAdapter.Fill(myDataSet3, "Products"); mySqlConnection.Close(); // merge
myDataSet2 into myDataSet myDataSet.Merge(myDataSet2); // merge myDataSet3 into
myDataSet myDataSet.Merge(myDataSet3, true, MissingSchemaAction.Add); // display the rows
in myDataSet foreach (DataTable myDataTable in myDataSet.Tables) {
Console.WriteLine("\nReading from the " + myDataTable + "DataTable"); foreach (DataRow
myDataRow in myDataTable.Rows) { foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine(myDataColumn + "= " +
myDataRow[myDataColumn]); } } } } }
The output from this program is as follows: Reading from the Customers DataTable CustomerID =
ALFKI CompanyName = Alfreds Futterkiste ContactName = Maria Anders Address = Obere Str. 57
CustomerID = ANATR CompanyName = Ana Trujillo3 Emparedados y helados ContactName = Ana
Trujillo Address = Avda. de la Constitución 2222 CustomerID = ANTON CompanyName = Antonio
Moreno Taquería ContactName = Antonio Moreno Address = Mataderos 2312 Reading from the
Customers2 DataTable CustomerID = AROUT CompanyName = Around the Horn ContactName =
Thomas Hardy Address = 120 Hanover Sq. CustomerID = BERGS CompanyName = Berglunds
snabbköp ContactName = Christina Berglund Address = Berguvsvägen 8 Reading from the Products

Part 2: Fundamental Database Programming with ADO.NET 195

© 2004 ... Your company

DataTable ProductID = 1 ProductName = Chai UnitPrice = 18 ProductID = 2 ProductName = Chang
UnitPrice = 19 ProductID = 3 ProductName = Aniseed Syrup UnitPrice = 10 ProductID = 4
ProductName = Chef Anton's Cajun Seasoning UnitPrice = 22 ProductID = 5 ProductName = Chef
Anton's Gumbo Mix UnitPrice = 21.35

6.4.3 Writing and Reading XML Using a DataSet Object

Writing and Reading XML Using a DataSet Object
XML is a convenient format for moving information around. You can write out the contents of the
DataTable objects contained in a DataSet to an XML file using the WriteXml() method. The XML file
written by this method contains the DataTable column names and values.
You can write out the schema of a DataSet object to an XML file using the WriteXmlSchema()
method. The XML file written by this method contains the structure of the DataTable objects contained
in the DataSet. You can also get the XML in a DataSet using the GetXml() method, which returns the
XML in a string.
You can read the contents of the DataTable objects in an XML file into a DataSet using the
ReadXml() method. You can also read the schema contained in an XML file using the
ReadXmlSchema() method. Note
SQL Server also contains extensive built-in XML functionality, which you'll learn about in Chapter 16,
"Using SQL Server's XML Support." Using the WriteXml() Method
Let's say you have a DataSet object named myDataSet. Assume that myDataSet has a DataTable
that contains the CustomerID, CompanyName, ContactName, and Address columns for the top two
rows from the Customers table. The following code shows this: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
CustomerID, CompanyName, ContactName, Address " + "FROM Customers " + "ORDER BY
CustomerID"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); Console.WriteLine("Retrieving rows from the Customers table");
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close();
You can write out the contents of myDataSet to an XML file using the WriteXml() method. For
example: myDataSet.WriteXml("myXmlFile.xml");
This writes an XML file named myXmlFile.xml, as shown in Listing 10.9.Listing 10.9:
MYXMLFILE.XML <?xml version="1.0" standalone="yes"?> <NewDataSet> <Customers>
<CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds Futterkiste</CompanyName>
<ContactName>Maria Anders</ContactName> <Address>Obere Str. 57</Address> </Customers>
<Customers> <CustomerID>ANATR</CustomerID> <CompanyName>Ana Trujillo Emparedados
y helados</CompanyName> <ContactName>Ana Trujillo</ContactName> <Address>Avda. de la
Constitución 2222</Address> </Customers> </NewDataSet>
As you can see, this file contains the columns for the rows retrieved from the Customers table.
The WriteXml() method is overloaded as follows: void WriteXml(Stream myStream); void
WriteXml(string fileName); void WriteXml(TextWriter myTextWriter); void WriteXml(XmlWriter
myXmlWriter); void WriteXml(stream myStream, XmlWriteMode myXmlWriteMode); void
WriteXml(string fileName, XmlWriteMode myXmlWriteMode); void WriteXml(TextWriter myTextWriter,
XmlWriteMode myXmlWriteMode); void WriteXml(XmlWriter myXmlWriter, XmlWriteMode
myXmlWriteMode);
where myXmlWriteMode is a constant from the System.Data.XmlWriteMode enumeration that
specifies how to write XML data and the schema. Table 10.8 shows the constants defined in the
XmlWriteMode enumeration. Table 10.8: XmlWriteMode ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
DiffGram
Writes out the DataSet as a DiffGram, which contains the original values and the changes to those
values to make them current. You can generate a DiffGram that contains only the changes by calling
the GetChanges() method of your DataSet, and then call WriteXml().
IgnoreSchema

Mastering C# Database Programming @Team LiB196

© 2004 ... Your company

Writes out only the data in the DataSet, without writing the schema. IgnoreSchema is the default.
WriteSchema
Writes out the schema in the DataSet.
The following example shows the use of the XmlWriteMode.WriteSchema constant:
myDataSet.WriteXml("myXmlFile2.xml", XmlWriteMode.WriteSchema);
This writes an XML file named myXmlFile2.xml, as shown in Listing 10.10.Listing 10.10:
MYXMLFILE2.XML <?xml version="1.0" standalone="yes"?> <NewDataSet> <xsd:schema
id="NewDataSet" targetNamespace="" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft- com:xml-msdata"> <xsd:element name="NewDataSet"
msdata:IsDataSet="true"> <xsd:complexType> <xsd:choice maxOccurs="unbounded">
<xsd:element name="Customers"> <xsd:complexType> <xsd:sequence>
<xsd:element name="CustomerID" type="xsd:string" minOccurs="0" /> <xsd:element
name="CompanyName" type="xsd:string" minOccurs="0" /> <xsd:element
name="ContactName" type="xsd:string" minOccurs="0" /> <xsd:element name="Address"
type="xsd:string" minOccurs="0" /> </xsd:sequence> </xsd:complexType>
</xsd:element> </xsd:choice> </xsd:complexType> </xsd:element> </xsd:schema>
<Customers> <CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds
Futterkiste</CompanyName> <ContactName>Maria Anders</ContactName> <Address>Obere
Str. 57</Address> </Customers> <Customers> <CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo3 Emparedados y helados</CompanyName> <ContactName>Ana
Trujillo</ContactName> <Address>Avda. de la Constitución 2222</Address> </Customers>
</NewDataSet>
As you can see, this file contains the schema definition for the columns used in the original SELECT
statement, as well as the column values for the rows retrieved. Using the WriteXmlSchema() Method
You can write out the schema of myDataSet to an XML file using the WriteXmlSchema() method. For
example: myDataSet.WriteXmlSchema("myXmlSchemaFile.xml");
This writes an XML file named myXmlSchemaFile.xml, as shown in Listing 10.11.Listing 10.11:
MYXMLSCHEMAFILE.XML <?xml version="1.0" standalone="yes"?> <xsd:schema id="NewDataSet"
targetNamespace="" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"> <xsd:element name="NewDataSet"
msdata:IsDataSet="true"> <xsd:complexType> <xsd:choice maxOccurs="unbounded">
<xsd:element name="Customers"> <xsd:complexType> <xsd:sequence>
<xsd:element name="CustomerID" type="xsd:string" minOccurs="0" /> <xsd:element
name="CompanyName" type="xsd:string" minOccurs="0" /> <xsd:element
name="ContactName" type="xsd:string" minOccurs="0" /> <xsd:element name="Address"
type="xsd:string" minOccurs="0" /> </xsd:sequence> </xsd:complexType>
</xsd:element> </xsd:choice> </xsd:complexType> </xsd:element> </xsd:schema>
As you can see, this file contains the schema definition for the columns retrieved from the Customers
table by the original SELECT statement. Using the ReadXml() Method
You can read the contents of an XML file into a DataSet object using the ReadXml() method. This
method reads the rows and columns from the XML file into DataTable objects of the DataSet. For
example, the following statement uses the ReadXml() method to read the XML file myXmlFile.xml
previously written by the WriteXml() method: myDataSet.ReadXml("myXmlFile.xml");
The ReadXml() method is overloaded as follows: void ReadXml(Stream myStream); void
ReadXml(string fileName); void ReadXml(TextReader myTextReader); void ReadXml(XmlReader
myXmlReader); void ReadXml(stream myStream, XmlReadMode myXmlReadMode); void
ReadXml(string fileName, XmlReadMode myXmlReadMode); void ReadXml(TextReader
myTextReader, XmlReadMode myXmlReadMode); void ReadXml(XmlReader myXmlReader,
XmlReadMode myXmlReadMode);
where myXmlReadMode is a constant from the System.Data.XmlReadMode enumeration that
specifies how to read XML data and the schema. Table 10.9 shows the constants defined in the
XmlReadMode enumeration. Table 10.9: XmlReadMode ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Auto
Reads the XML file in an appropriate manner:

Part 2: Fundamental Database Programming with ADO.NET 197

© 2004 ... Your company

If the XML file contains a DiffGram, then XmlReadMode is set to DiffGram.
If the DataSet already contains a schema or the XML file contains a schema, then XmlReadMode is
set to ReadSchema.
If the DataSet doesn't contain a schema and the XML file doesn't contain a schema, then
XmlReadMode is set to InferSchema.
Auto is the default.
DiffGram
Reads the XML file as a DiffGram, which contains the original values and the changes to those values
to make them current. The changes are then applied to your DataSet. This is similar to calling the
Merge() method of a DataSet in that changes from one DataSet are merged with another.
Fragment
Reads an XML file that contains inline XDR schema fragments such as those generated by executing
SELECT statements containing FOR XML clauses.
IgnoreSchema
Reads out only the data in the DataSet, without reading the schema.
InferSchema
Infers the schema of the XML file by examining the data stored in it.
ReadSchema
Reads the schema from the XML file into the DataSet.
The following example shows the use of the XmlReadMode.ReadSchema constant:
myDataSet.ReadXml("myXmlFile2.xml", XmlReadMode.ReadSchema);
Listing 10.12 illustrates how to write and read XML files using ADO.NET.Listing 10.12:
WRITEANDREADXML.CS /* WriteAndReadXml.cs illustrates how to write and read XML files */
using System; using System.Data; using System.Data.SqlClient; class WriteAndReadXML { public
static void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
CustomerID, CompanyName, ContactName, Address " + "FROM Customers " + "ORDER BY
CustomerID"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); Console.WriteLine("Retrieving rows from the Customers table");
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close(); // use the WriteXml()
method to write the DataSet out to an // XML file Console.WriteLine("Writing rows out to an XML
file named " + "myXmlFile.xml using the WriteXml() method");
myDataSet.WriteXml("myXmlFile.xml"); Console.WriteLine("Writing schema out to an XML file
named " + "myXmlFile2.xml using the WriteXml() method");
myDataSet.WriteXml("myXmlFile2.xml", XmlWriteMode.WriteSchema); // use the
WriteXmlSchema() method to write the schema of the // DataSet out to an XML file
Console.WriteLine("Writing schema out to an XML file named " + "myXmlSchemaFile.xml using the
WriteXmlSchema() method"); myDataSet.WriteXmlSchema("myXmlSchemaFile.xml"); // use the
Clear() method to clear the current rows in the DataSet myDataSet.Clear(); // use the ReadXml()
method to read the contents of the XML file // into the DataSet Console.WriteLine("Reading rows
from myXmlFile.xml " + "using the ReadXml() method"); myDataSet.ReadXml("myXmlFile.xml");
DataTable myDataTable = myDataSet.Tables["Customers"]; foreach (DataRow myDataRow in
myDataTable.Rows) { Console.WriteLine("CustomerID = " + myDataRow["CustomerID"]);
Console.WriteLine("CompanyName = " + myDataRow["CompanyName"]);
Console.WriteLine("ContactName = " + myDataRow["ContactName"]);
Console.WriteLine("Address = " + myDataRow["Address"]); } } }
The output from this program is as follows: Retrieving rows from the Customers table Writing rows out
to an XML file named myXmlFile.xml using the WriteXml() method Writing schema out to an XML file
named myXmlFile2.xml using the WriteXml() method Writing schema out to an XML file named
myXmlSchemaFile.xml using the WriteXmlSchema() method Reading rows from myXmlFile.xml using
the ReadXml() method CustomerID = ALFKI CompanyName = Alfreds Futterkiste ContactName =
Maria Anders Address = Obere Str. 57 CustomerID = ANATR CompanyName = Ana Trujillo3
Emparedados y helados ContactName = Ana Trujillo Address = Avda. de la Constitución 2222

Mastering C# Database Programming @Team LiB198

© 2004 ... Your company

6.4.4 Mapping Tables and Columns

Mapping Tables and Columns
In Chapter 3, "Introduction to Structured Query Language (SQL)," you learned that the AS keyword is
used to specify an alias for a table or column. The following example uses the AS keyword to alias
the CustomerID column as MyCustomer and also alias the Customers table as Cust: SELECT
CustomerID AS MyCustomer, CompanyName, Address FROM Customers AS Cust WHERE
CustomerID = 'ALFKI';
Figure 10.2 shows the results of this SELECT

statement.
Figure 10.2: Using the AS keyword
The following code uses this SELECT statement to populate a DataSet object named myDataSet:
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT CustomerID AS MyCustomer, CompanyName, Address
" + "FROM Customers AS Cust " + "WHERE CustomerID = 'ALFKI'"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet,
"Customers"); mySqlConnection.Close();
Notice the Fill() method specifies the name of the DataTable as Customers, which is known as the
source DataTable name.
To map a DataTable in your DataSet, you create an object of the DataTableMapping class using the
Add() method; this class belongs to the System.Data.Common namespace, which you should import
into your program. The following example creates a DataTableMapping object named
myDataTableMapping, passing Customers and Cust to the Add() method: DataTableMapping
myDataTableMapping = mySqlDataAdapter.TableMappings.Add("Customers", "Cust");
Notice that the Add() method is called through the TableMappings property. The TableMappings
property returns an object of the TableMappingCollection class. This object is a collection of
TableMapping objects, and you use a TableMapping object to map the source name to a different
DataTable name, therefore, the previous example maps the source name of Customers to Cust.
You can read this mapping using the SourceTable and DataSetTable properties of
myDataTableMapping. For example: Console.WriteLine("myDataTableMapping.SourceTable = " +
myDataTableMapping.SourceTable); Console.WriteLine("myDataTableMapping.DataSetTable = " +
myDataTableMapping.DataSetTable);
This example displays the following: myDataTableMapping.DataSetTable = Cust
myDataTableMapping.SourceTable = Customers
You should also change the TableName property of the DataTable object in your DataSet to keep the
names consistent: myDataSet.Tables["Customers"].TableName = "Cust"; Tip
It is important that you change the TableName since it will otherwise keep the original name of
Customers , which is a little confusing when you've already specified the mapping from Customers to
Cust earlier.
Next, to alias the CustomerID column as MyCustomer, you call the Add() method through the
ColumnMappings property of myDataTableMapping:

Part 2: Fundamental Database Programming with ADO.NET 199

© 2004 ... Your company

myDataTableMapping.ColumnMappings.Add("CustomerID", "MyCustomer");
The ColumnMappings property returns an object of the DataColumnMappingCollection class. This
object is a collection of DataColumnMapping objects. You use a DataColumnMapping object to map a
column name from the database to a different DataColumn name, therefore, the previous example
maps the CustomerID column name from the database to the DataColumn name MyCustomer.
Listing 10.13 illustrates how to map table and column names using the code shown in this
section.Listing 10.13: MAPPINGS.CS /* Mappings.cs illustrates how to map table and column
names */ using System; using System.Data; using System.Data.SqlClient; using
System.Data.Common; class Mappings { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT CustomerID
AS MyCustomer, CompanyName, Address " + "FROM Customers AS Cust " + "WHERE
CustomerID = 'ALFKI'"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close(); // create a DataTableMapping object DataTableMapping
myDataTableMapping = mySqlDataAdapter.TableMappings.Add("Customers", "Cust"); //
change the TableName property of the DataTable object
myDataSet.Tables["Customers"].TableName = "Cust"; // display the DataSetTable and
SourceTable properties Console.WriteLine("myDataTableMapping.DataSetTable = " +
myDataTableMapping.DataSetTable); Console.WriteLine("myDataTableMapping.SourceTable = "
+ myDataTableMapping.SourceTable); // map the CustomerID column to MyCustomer
myDataTableMapping.ColumnMappings.Add("CustomerID", "MyCustomer"); DataTable
myDataTable = myDataSet.Tables["Cust"]; foreach (DataRow myDataRow in myDataTable.Rows)
{ Console.WriteLine("CustomerID = " + myDataRow["MyCustomer"]);
Console.WriteLine("CompanyName = " + myDataRow["CompanyName"]);
Console.WriteLine("Address = " + myDataRow["Address"]); } } }
The output from this program is as follows: myDataTableMapping.DataSetTable = Cust
myDataTableMapping.SourceTable = Customers CustomerID = ALFKI CompanyName = Alfreds
Futterkiste Address = Obere Str. 57

6.4.5 Reading a Column Value Using Strongly Typed DataSet Classes

Reading a Column Value Using Strongly Typed DataSet Classes
A strongly typed DataSet object allows you read a column value using a property with the same name
as the column. For example, to read the CustomerID of a column, you can use
myDataRow.CustomerID rather than myDataRow["CustomerID"]. This is a nice feature because the
compiler can then catch any errors in column spellings at compile time rather than runtime. For
example, if you incorrectly spelled CustomerID as CustimerID, then the mistake would be caught by
the compiler.
Another feature of a strongly typed DataSet is that when you work with it in VS .NET, IntelliSense
automatically pops up the properties and methods of the DataSet when you are typing. You can then
pick the property or method from the list, rather than have to type it all in.
The downside to using a strongly typed DataSet is that you must do some initial work to generate it
before you can use it. If the columns in your database tables don't change very often, then you should
consider using strongly typed DataSet objects. On the other hand, if your database tables change a
lot, you should probably avoid them because you'll need to regenerate the strongly typed DataSet to
keep it synchronized with the definition of the database table.Note
You'll find a completed VS .NET example project for this section in the StronglyTypedDataSet
directory. You can open this project in VS .NET by selecting File £ Open £ Project and opening the
WindowsApplication4.csproj file. You'll need to change the ConnectionString property of the
sqlConnection1 object to connect to your SQL Server Northwind database. You can also follow along
with the instructions in this section by copying the DataReader directory to another directory and
using that project as your starting point. Creating a Strongly Typed DataSet Class

Mastering C# Database Programming @Team LiB200

© 2004 ... Your company

In this section, you'll create a strongly typed DataSet class that is used to access the Customers
table. If you're following along with these instructions, open the DataReader project in VS .NET and
double-click Form1.cs in the Solution Explorer window. You open the Solution Explorer window by
selecting View £ Solution Explorer.
Next, select File £ Add New Item. Select Data Set from the Templates area and enter MyDataSet.xsd,

as shown in Figure 10.3.
Figure 10.3: Adding a new Data Set
Click the Open button to continue.
VS .NET will add MyDataSet.xsd to your project, as shown in Figure

10.4.
Figure 10.4: MyDataSet.xsd
At the bottom left of Figure 10.4, you'll notice two tabs: DataSet and XML. The DataSet tab is
displayed by default and you use it to see the visual view of your DataSet. The XML tab allows you to
see the XML file of your DataSet.
Next, make sure you've opened the Server Explorer window; to open the window, select View £
Server Explorer. Open the Data Connections node and either use an existing connection to your
Northwind database or create a new one by right-clicking on the Data Connections node and
selecting Add Connection from the pop-up menu.
Double-click your connection and drill down to the table, view, or stored procedure you want use, and
then drag it onto your form. Go ahead and drag the Customers table onto your form. Figure 10.5
shows the form once the Customers table has been

Part 2: Fundamental Database Programming with ADO.NET 201

© 2004 ... Your company

added.
Figure 10.5: Customers table added to form Note
You can add multiple tables to your form and define relations between them.
Next, save your work by selecting File £ Save All or press Ctrl+S on your keyboard.
Your project now contains a XSD file named MyDataSet.xsd, as shown in Listing 10.14. You can view
this file by clicking the XML tab at the bottom of the XML Designer window.Listing 10.14:
MYDATASET.XSD <?xml version="1.0" encoding="utf-8" ?> <xs:schema id="MyDataSet"
targetNamespace="http://tempuri.org/MyDataSet.xsd" elementFormDefault="qualified"
attributeFormDefault="qualified" xmlns="http://tempuri.org/MyDataSet.xsd"
xmlns:mstns="http://tempuri.org/MyDataSet.xsd" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"> <xs:element name="MyDataSet"
msdata:IsDataSet="true"> <xs:complexType> <xs:choice maxOccurs="unbounded">
<xs:element name="Customers"> <xs:complexType> <xs:sequence>
<xs:element name="CustomerID" type="xs:string" /> <xs:element name="CompanyName"
type="xs:string" /> <xs:element name="ContactName" type="xs:string" minOccurs="0" />
<xs:element name="ContactTitle" type="xs:string" minOccurs="0" /> <xs:element
name="Address" type="xs:string" minOccurs="0" /> <xs:element name="City" type="xs:string"
minOccurs="0" /> <xs:element name="Region" type="xs:string" minOccurs="0" />
<xs:element name="PostalCode" type="xs:string" minOccurs="0" /> <xs:element
name="Country" type="xs:string" minOccurs="0" /> <xs:element name="Phone"
type="xs:string" minOccurs="0" /> <xs:element name="Fax" type="xs:string" minOccurs="0"
/> </xs:sequence> </xs:complexType> </xs:element> </xs:choice>
</xs:complexType> <xs:unique name="MyDataSetKey1" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Customers" /> <xs:field xpath="mstns:CustomerID" /> </xs:unique>
</xs:element> </xs:schema>
Notice that this file contains the details of the columns in the Customers table.
Your project also contains a new class file named MyDataSet.cs, which contains your strongly typed
DataSet class. You can view the contents of this file using the Solution Explorer window. You open
the Solution Explorer window by selecting View £ Solution Explorer.Note
To view the MyDataSet.cs file, click the Show All Files button in the Solution Explorer window.
Next, expand the node beneath MyDataSet.xsd. You'll see MyDataSet.cs, as shown in Figure 10.6,
and a file named MyDataSet.xsx, which contains layout information for the visual view of your

Mastering C# Database Programming @Team LiB202

© 2004 ... Your company

DataSet.
Figure 10.6: Viewing all the files using the Solution Explorer window
Go ahead and open MyDataSet.cs by double-clicking it in the Solution Explorer window. View the
code for this form by selecting View £ Code. One of the classes declared in that file is MyDataSet.
This class is derived from the DataSet class. You'll use it in the next section to create a strongly typed
DataSet object to access the Customers table. Using a Strongly Typed DataSet Class
Once you have your strongly typed MyDataSet class, you can create an object of that class using the
following code: MyDataSet myDataSet = new MyDataSet();
You can also create a strongly typed DataTable table object using the
MyDataSet.CustomersDataTable class and populate it with rows from the Customers table. For
example, you can set the Form1_Load() method of your form to retrieve the CustomerID,
CompanyName, and Address column values from the Customers table and add them to a ListView
control named listView1. To do this, double-click Form1.cs in the Solution Explorer windows, view the
code, and set the Form1_Load() method as follows: private void Form1_Load(object sender,
System.EventArgs e) { System.Data.SqlClient.SqlCommand mySqlCommand =
sqlConnection1.CreateCommand(); mySqlCommand.CommandText = "SELECT CustomerID,
CompanyName, Address " + "FROM Customers " + "WHERE CustomerID = 'ALFKI'";
System.Data.SqlClient.SqlDataAdapter mySqlDataAdapter = new
System.Data.SqlClient.SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
MyDataSet myDataSet = new MyDataSet(); sqlConnection1.Open();
mySqlDataAdapter.Fill(myDataSet, "Customers"); sqlConnection1.Close();
MyDataSet.CustomersDataTable myDataTable = myDataSet.Customers; foreach
(MyDataSet.CustomersRow myDataRow in myDataTable.Rows) {
listView1.Items.Add(myDataRow.CustomerID); listView1.Items.Add(myDataRow.CompanyName);
listView1.Items.Add(myDataRow.Address); } }
The myDataRow.CustomerID property returns the value for the CustomerID column, and so on.
Compile and run your form in one step by selecting Debug £ Start Without Debugging. Figure 10.7

Part 2: Fundamental Database Programming with ADO.NET 203

© 2004 ... Your company

shows the running form.
Figure 10.7: The running form Note
The MyDataSet class contains a number of methods that allow you to modify the rows stored in a
MyDataSet object. These methods include NewCustomersRow() , AddCustomersRow() ,
FindByCustomerID() , and RemoveCustomersRow() . You can also check if a column value contains
a null value using methods such as IsContactNameNull() , and you can set a column to null using
methods such as SetContactNameNull() . You'll learn how to use these methods in Chapter 11.

6.4.6 Creating a DataAdapter Object Using Visual Studio .NET

Creating a DataAdapter Object Using Visual Studio .NET
In this section, you'll learn how to create a DataAdapter using Visual Studio .NET.Note
You'll find a completed VS .NET project for this section in the DataAdapter directory. You can open
this project in VS .NET by selecting File £ Open £ Project and opening the
WindowsApplication4.csproj file. You'll need to change the ConnectionString property of the
sqlConnection1 object to connect to your database. You can also follow along with the instructions in
this section by copying the DataReader directory to another directory and using that project as your
starting point.
Open your form by double-clicking Form1.cs in the Solution Explorer window. Next, create a
SqlDataAdapter object by dragging a SqlDataAdapter object from the Data tab of the Toolbox to your
form. When you drag a SqlDataAdapter object to your form, you start the Data Adapter Configuration

Mastering C# Database Programming @Team LiB204

© 2004 ... Your company

Wizard, as shown in Figure 10.8.
Figure 10.8: The Data Adapter Configuration Wizard
Click the Next button to continue.
You now select the database connection you want to use, or you can create a new one. Pick your
connection to the Northwind database (or create a new connection if you don't have an existing one),

as shown in Figure 10.9.
Figure 10.9: Choosing your data connection
Click the Next button to continue.
Next, you set your query type to "Use SQL statements." As you can see from Figure 10.10, you set
your query type to use SQL statements, create new stored procedures, or use existing stored
procedures. The SQL statements or stored procedures are then used in the SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand properties of your SqlDataAdapter object.
You'll learn about the latter three properties in Chapter 11; they are used to insert, update, and delete

Part 2: Fundamental Database Programming with ADO.NET 205

© 2004 ... Your company

rows.
Figure 10.10: Choosing your query type
Make sure you've picked Use SQL statements, and click the Next button to continue.
You now generate the SQL statements for your SqlDataAdapter. You can either enter a SELECT
statement directly by typing it or you can press the Query Builder button to build your SELECT
statement visually. Enter the SELECT statement, as shown in Figure 10.11, and click the Next button

to continue.
Figure 10.11: Generating the SQL statements
The SELECT statement you entered is now used to generate the INSERT, UPDATE, and DELETE
statements along with the table mappings. Figure 10.12 shows the final dialog box for the Data

Mastering C# Database Programming @Team LiB206

© 2004 ... Your company

Adapter Configuration Wizard.
Figure 10.12: Final dialog box for the Data Adapter Configuration Wizard
Click the Finish button to complete the Wizard. A SqlDataAdapter object named sqlDataAdapter1 is
now added to the tray beneath your form, as shown in Figure

10.13.
Figure 10.13: The new SqlDataAdapter object in the trayWarning
You need to set the Connection property of the SelectCommand in your sqlDataAdapter1 object to
your Connection object before the DataAdapter can access the database. You do this using the
Properties window by drilling down from SelectCommand to Connection . You then click the drop-
down list, select Existing, and select your SqlConnection object, which should be named
sqlConnection1 . Also check the ConnectionString property of your SqlConnection object to make
sure it is set to connect to your Northwind database. If you don't do this step, you'll get an error
stating that your SqlDataAdapter object hasn't been configured properly.
Notice the three links at the bottom of the Properties window for sqlDataAdapter1:
Configure Data Adapter This link allows you to re-enter the Wizard to configure your DataAdapter.
Generate Dataset This link allows you to generate a DataSet object using the information set for
your DataAdapter. You'll use this link in the next section to generate a new DataSet.
Preview Data This link allows you to preview the data returned by the SelectCommand of your
DataAdapter.
Feel free to examine the code generated by the Wizard in your form for the sqlDataAdapter1 object.
When you're ready, select File £ Save All.Note
Don't bother running your project yet because you'll add a DataSet that will be populated using your
DataAdapter in the next section.

Part 2: Fundamental Database Programming with ADO.NET 207

© 2004 ... Your company

6.4.7 Creating a DataSet Object Using Visual Studio .NET

Creating a DataSet Object Using Visual Studio .NET
In this section, you'll learn how to create a DataSet using Visual Studio .NET.Note
You'll find a completed VS .NET example project for this section in the DataSet directory. You can
open this project in VS .NET by selecting File £ Open £ Project and opening the
WindowsApplication4.csproj file. You can also follow along with the instructions in this section by
continuing to modify the copy of the DataReader project you used in the previous section.
If you're following along with these instructions, open your copy of the DataReader project you
modified in the previous section, and open Form1.cs by double-clicking it in the Solution Explorer
window. To create a DataSet object, you can perform either one of the following:
Drag a DataSet object from the Data tab of the Toolbox to your form, and add code to your form to fill
it using the Fill() method of a DataAdapter object.
Click the Generate Dataset link at the bottom of the Properties window of your DataAdapter. You can
see this link in Figure 10.13.
You'll use the second step, so go ahead and click the Generate Dataset link. The Generate Dataset

dialog box is then displayed, as shown in Figure 10.14.
Figure 10.14: The Generate Dataset dialog box
Click the OK button to continue. The new DataSet object named dataSet11 is added to the tray
beneath your form, as shown in Figure

10.15.
Figure 10.15: The new DataSet object in the tray
Your next step is to set the Form1_Load() method of your form as follows: private void
Form1_Load(object sender, System.EventArgs e) { sqlConnection1.Open();
sqlDataAdapter1.Fill(dataSet11, "Products"); sqlConnection1.Close(); System.Data.DataTable

Mastering C# Database Programming @Team LiB208

© 2004 ... Your company

myDataTable = dataSet11.Tables["Products"]; foreach (System.Data.DataRow myDataRow in
myDataTable.Rows) { listView1.Items.Add(myDataRow["ProductID"].ToString());
listView1.Items.Add(myDataRow["ProductName"].ToString());
listView1.Items.Add(myDataRow["UnitPrice"].ToString()); } } Note
Remember, to view the code of your form, you select View £ Code. You then replace the
Form1_Load() method with the previous code.
You can then compile and run your form. Figure 10.16 shows the running

form.
Figure 10.16: The running form

6.4.8 Summary

Summary
In this chapter, you learned the details of using DataSet objects to store results returned from the
database. DataSet objects allow you to store a copy of the tables and rows from the database, and
you can work with that local copy while disconnected from the database. Unlike managed provider
objects such as SqlDataReader objects, DataSet objects are generic and therefore work with any
database. DataSet objects also allow you to read rows in any order and modify rows.
You also learned the details of using a DataAdapter object to read rows from the database into a
DataSet object. The DataAdapter is part of the managed provider classes, and there are three
DataAdapter classes: SqlDataAdapter, OleDbDataAdapter, and OdbcDataAdapter.
You use a DataAdapter object to move rows between your DataSet object and the database, and to
synchronize any changes you make to your locally stored rows with the database. For example, you
can read rows from the database into a DataSet through a DataAdapter, modify those rows in your
DataSet, and then push those changes to the database through your DataAdapter object.
In Chapter 11, you'll see how to make changes to the rows in a DataSet and then push those
changes to the database.

6.5 Chapter 11: Using DataSet Objects to Modify Data

Chapter 11: Using DataSet Objects to Modify DataOverview
In chapter 10, you saw how to use a DataSet to store a copy of the rows retrieved from the database.
In this chapter, you'll learn how to modify the rows in a DataSet, and then push those changes to the
database via a DataAdapter.
Featured in this chapter:

Part 2: Fundamental Database Programming with ADO.NET 209

© 2004 ... Your company

The DataTable, DataRow, and DataColumn classes
Adding restrictions to DataTable and DataColumn objects
Finding, filtering, and sorting DataRow objects in a DataTable
Modifying rows in a DataTable and pushing those changes to the database
Using stored procedures to add, modify, and remove rows from the database
Using a CommandBuilder object to automatically generate SQL statements
Exploring the DataAdapter and DataTable events
Dealing with update failures
Using transactions with a DataSet
Modifying data using a strongly typed DataSet

6.5.1 The DataTable Class

The DataTable Class
You use an object of the DataTable class to represent a table. You can also store multiple DataTable
objects in a DataSet. Table 11.1 shows some of the DataTable properties. Table 11.1: DataTable
PROPERTIES
PROPERTY
TYPE
DESCRIPTION
CaseSensitive
bool
Gets or sets a bool value that indicates whether string comparisons within DataTable objects are
case-sensitive.
ChildRelations
DataRelationCollection
Gets the collection of relations (DataRelationCollection) that allows navigation from a parent table to
a child table. A DataRelationCollection consists of DataRelation objects.
Columns
DataColumnCollection
Gets the collection of columns (DataColumnCollection) that contains DataColumn objects that
represent the columns in the DataTable object.
Constraints
ConstraintCollection
Gets the collection of constraints (ConstraintCollection) that contains Constraint objects that
represent primary key (UniqueConstraint) or foreign key constraints (ForeignKeyConstraint) in the
DataTable object.
DataSet
DataSet
Gets the DataSet to which the DataTable belongs.
HasErrors
bool
Returns a bool value that indicates whether any of the rows in the DataTable have errors.
PrimaryKey
DataColumn[]
Gets or sets an array of DataColumn objects that are the primary keys for the DataTable.
Rows
DataRowCollection
Gets the collection of rows (DataRowCollection) that contains the DataRow objects stored in the
DataTable.
TableName
string
Gets or sets the name of the DataTable object.
Table 11.2 shows some of the DataTable methods. Table 11.2: DataTable METHODS
METHOD

Mastering C# Database Programming @Team LiB210

© 2004 ... Your company

RETURN TYPE
DESCRIPTION
AcceptChanges()
void
Commits all the changes made to the DataTable object since it was loaded or since the last time the
AcceptChanges() method was called.
Clear()
void
Removes all rows from the DataTable object.
Clone()
DataTable
Clones the structure of the DataTable object and returns that clone.
Compute()
object
Computes the given expression on the current rows that pass the filter criteria.
GetChanges()
DataTable
Overloaded. Returns a copy of the DataTable object since it was last loaded or since the last time the
AcceptChanges() method was called.
GetErrors()
DataRow[]
Overloaded. Gets a copy of all the DataRow objects that have errors.
LoadDataRow()
DataRow
Finds and updates a specified DataRow object. If no matching object is found, a new row is created
using the specified values.
NewRow()
DataRow
Creates a new DataRow object in the DataTable.
RejectChanges()
void
Undoes all the changes made to the DataTable object since it was created or since the last time the
AcceptChanges() method was called.
Select()
DataRow[]
Overloaded. Returns the array of DataRow objects stored in the DataTable that match the specified
filter string. You can also pass a string containing details on how to sort the DataRow objects.
Table 11.3 shows some of the DataTable events. Table 11.3: DataTable EVENTS
EVENT
EVENT HANDLER
DESCRIPTION
ColumnChanging
DataColumnChangeEventHandler
Fires before a changed DataColumn value is committed in a DataRow.
ColumnChanged
DataColumnChangeEventHandler
Fires after a changed DataColumn value is committed in a DataRow.
RowChanging
DataRowChangeEventHandler
Fires before a changed DataRow is committed in a DataTable.
RowChanged
DataRowChangeEventHandler
Fires after a changed DataRow is committed in a DataTable.
RowDeleting
DataRowChangeEventHandler
Fires before a DataRow is deleted from a DataTable.

Part 2: Fundamental Database Programming with ADO.NET 211

© 2004 ... Your company

RowDeleted
DataRowChangeEventHandler
Fires after a DataRow is deleted from a DataTable.

6.5.2 The DataRow Class

The DataRow Class
You use an object of the DataRow class to represent a row. You can also store multiple DataRow
objects in a DataTable. Table 11.4 shows some of the DataRow properties. Table 11.4: DataRow
PROPERTIES
PROPERTY
TYPE
DESCRIPTION
HasErrors
bool
Returns a bool value that indicates whether any of the DataColumn objects in the DataRow have
errors.
ItemArray
object[]
Gets or sets all the DataColumn objects in the DataRow.
RowState
DataRowState
Gets the current state of the DataRow. The state can be Added, Deleted, Detached~FT, Modified, or
Unchanged. The state depends in the operation performed on the DataRow and whether the
AcceptChanges() method has been called to commit the changes.
Table
DataTable
Gets the DataTable object to which the DataRow belongs.
The row has been created but isn't part of a DataRowCollectionobject; a DataRowis in this state
immediately after it has been created and before it is added to a collection, or if it has been removed
from a collection.
Table 11.5 shows some of the DataRow methods. Table 11.5: DataRow METHODS
METHOD
RETURN TYPE
DESCRIPTION
AcceptChanges()
void
Commits all the changes made to the DataRow object since it was loaded or since the last time the
AcceptChanges() method was called.
BeginEdit()
void
Starts an edit for the DataRow object.
CancelEdit()
void
Cancels an edit for the DataRow object and restores it to the original state.
ClearErrors()
void
Clears any errors for the DataRow object.
Delete()
void
Deletes the DataRow object.
EndEdit()
void
Stops an edit for the DataRow object and commits the change.
GetChildRows()

Mastering C# Database Programming @Team LiB212

© 2004 ... Your company

DataRow[]
Overloaded. Returns an array of DataRow objects that contain the child rows using the specified
DataRelation object.
GetColumnError()
string
Overloaded. Returns the description of the error for the specified DataColumn object.
GetColumnsInError()
DataColumn[]
Returns an array of DataColumn objects that have errors.
GetParentRow()
DataRow
Overloaded. Returns a DataRow object that contains the parent row using the specified DataRelation
object.
GetParentRows()
DataRow[]
Overloaded. Returns an array of DataRow objects that contain the parent rows using the specified
DataRelation object.
IsNull()
bool
Overloaded. Returns a bool value that indicates whether the specified DataColumn object contains a
null value.
RejectChanges()
void
Undoes all changes made to the DataRow object since the AcceptChanges() method was called.
SetNull()
void
Sets the specified DataColumn object to a null value.
SetParentRow()
void
Overloaded. Sets the parent row to the specified DataRow object.

6.5.3 The DataColumn Class

The DataColumn Class
You use an object of the DataColumn class to represent a column. You can also store multiple
DataColumn objects in a DataRow. Table 11.6 shows some of the DataColumn properties. Table 11.6:
DataColumn PROPERTIES
PROPERTY
TYPE
DESCRIPTION
AllowDBNull
bool
Gets or sets a bool value that indicates whether null values are allowed in this DataColumn object.
The default is true.
AutoIncrement
bool
Gets or sets a bool value that indicates whether the DataColumn object automatically increments the
value of the column for new rows. The default is false.
AutoIncrementSeed
long
Gets or sets the starting value for the DataColumn object. Applies only when the AutoIncrement
property is set to true. The default is 0.
AutoIncrementStep
long
Gets or sets the increment used. Applies only when the AutoIncrement property is set to true. The

Part 2: Fundamental Database Programming with ADO.NET 213

© 2004 ... Your company

default is 1.
Caption
string
Gets or sets the caption for the column. The caption for the column is shown in Windows forms. The
default is null.
ColumnName
string
Gets or sets the name of the DataColumn object.
ColumnMapping
MappingType
Gets or sets the MappingType of the DataColumn object. This determines how a DataColumn is
saved in an XML document using the WriteXml() method.
DataType
Type
Gets or sets the .NET data type used to represent the column value stored in the DataColumn object.
This can be Boolean, Byte, Char, DateTime, Decimal, Double, Int16, Int32, Int64, SByte, Single,
String, TimeSpan, UInt16, or UInt64.
DafaultValue
object
Gets or sets the default value for the DataColumn when new rows are created. When AutoIncrement
is set to true, DefaultValue is not used.
MaxLength
int
Gets or sets the maximum length of text that may be stored in a DataColumn object. The default is -1.
Ordinal
int
Gets the numeric position of the DataColumn object (0 is the first object).
ReadOnly
bool
Gets or sets a bool value that indicates whether the DataColumn object can be changed once it has
been added to a DataRow. The default is false.
Table
DataTable
Gets the DataTable to which the DataColumn object belongs.
Unique
bool
Gets or sets a bool value that indicates whether the DataColumn values in each DataRow object must
be unique. The default is false.
You'll see the use of some of these properties, methods, and events later in this chapter.

6.5.4 Adding Restrictions to DataTable and DataColumn Objects

Adding Restrictions to DataTable and DataColumn Objects
As you know, a DataSet object is used to store a copy of a subset of the database. For example, you
can store a copy of the rows from database tables into a DataSet, with each table represented by a
DataTable object. A DataTable stores columns in DataColumn objects.
In addition to storing rows retrieved from a database table, you can also add restrictions to a
DataTable and its DataColumn objects. This allows you to model the same restrictions placed on the
database tables and columns in your DataTable and DataColumn objects. For example, you can add
the following constraints to a DataTable:
Unique
Primary key
Foreign key
In addition, you can add the following restrictions to a DataColumn:
Whether the column can accept a null value-which you store in the AllowDBNull property of the

Mastering C# Database Programming @Team LiB214

© 2004 ... Your company

DataColumn.
Any auto-increment information-which you store in the AutoIncrement, AutoIncrementSeed, and
AutoIncrementStep properties of the DataColumn. You set these properties when adding rows to a
DataTable with a corresponding database table that contains an identity column. The ProductID
column of the Products table is an example of an identity column.Note
ADO.NET will not automatically generate values for identity columns in a new row. Only the database
can do that. You must read the generated identity value for the column from the database. You'll see
how to do that later in the sections "Retrieving New Identity Column Values" and
"Using Stored Procedures to Add, Modify, and Remove Rows from the Database." Also, if your
database table contains columns that are assigned a default value, you should read that value from
the database. This is better than setting the DefaultValue property of a DataColumn because if the
default value set in the database table definition changes, you can pick up the new value from the
database rather than having to change your code.
The maximum length of a string or character column value-which you store in the MaxLength property
of the DataColumn.
Whether the column is read-only-which you store in the ReadOnly property of the DataColumn.
Whether the column is unique-which you store in the Unique property of the DataColumn.
By adding these restrictions up front, you prevent bad data from being added to your DataSet to begin
with. This helps reduce the errors when attempting to push changes in your DataSet to the database.
If a user of your program attempts to add data that violates a restriction, they'll cause an exception to
be thrown. You can then catch the exception in your program and display a message with the details.
The user can then change the data they were trying to add and fix the problem.
You also need to define a primary key before you can find, filter, and sort DataRow objects in a
DataTable. You'll learn how to do that later in the section
"Finding, Filtering, and Sorting Rows in a DataTable."Tip
Adding constraints causes a performance degradation when you call the Fill() method of a
DataAdapter . This is because the retrieved rows are checked against your constraints before they
are added to your DataSet . You should therefore set the EnforceConstraints property of your
DataSet to false before calling the Fill() method. You then set EnforceConstraints back to the
default of true after the call to Fill() .
You can use one of following ways to add restrictions to DataTable and DataColumn objects:
Add the restrictions yourself by setting the properties of your DataTable and DataColumn objects.
This results in the fastest executing code.
Call the FillSchema() method of your DataAdapter to copy the schema information from the database
to your DataSet. This populates the properties of the DataTable objects and their DataColumn objects
automatically. Although simple to call, the FillSchema() method takes a relatively long time to read the
schema information from the database and you should avoid using it.
You'll learn the details of both these techniques in the following sections. Adding the Restrictions
Yourself
You can add restrictions to your DataTable and DataColumn objects yourself using the properties of
the DataTable and DataColumn objects.
For example, assume you have a DataSet object named myDataSet that contains three DataTable
objects named Products, Orders, and Order Details that have been populated using the following
code: SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT ProductID, ProductName " + "FROM Products;" +
"SELECT OrderID " + "FROM Orders;" + "SELECT OrderID, ProductID, UnitPrice " + "FROM
[Order Details];"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Products"; myDataSet.Tables["Table1"].TableName =
"Orders"; myDataSet.Tables["Table2"].TableName = "Order Details";
The primary key for the Products table is the ProductID column; the primary key for the Orders table
is the OrderID column; and the primary key for the Order Details table is made up of both the OrderID
and ProductID columns.Note
You must include all the columns of a database table's primary key in your query if you want to define
a primary key on those columns in your DataTable .

Part 2: Fundamental Database Programming with ADO.NET 215

© 2004 ... Your company

In the following sections, you'll see how to
Add constraints to the Products, Orders, and Order Details DataTable objects.
Restrict the values placed in the DataColumn objects of the Products DataTable.Adding Constraints
to DataTable Objects
In this section, you'll see how to add constraints to DataTable objects. Specifically, you'll see how to
add primary key constraints to the Products, Orders, and Order Details DataTable objects. A primary
key constraint is actually implemented as a unique constraint. You'll also see how to add foreign key
constraints from the Order Details to the Products and Orders DataTable objects.
Constraints are stored in a ConstraintCollection object that stores Constraint objects. You access the
ConstraintCollection using the DataTable object's Constraints property. To add a new Constraint
object to ConstraintCollection, you call the Add() method through the Constraints property. The Add()
method allows you to add unique constraints and foreign key constraints to a DataTable. Since a
primary key constraint is implemented as a unique constraint, you can also use the Add() method to
add a primary constraint to a DataTable. You'll see how to use the Add() method shortly.
You can also add a primary key constraint to a DataTable object by setting its PrimaryKey property,
which you set to an array of DataColumn objects that make up the primary key. An array is required
because the primary key of a database table can be made up of multiple columns. As you'll see in the
examples, this is simpler than using the Add() method to add a primary key constraint. CALLING
THE Fill() METHOD OF A DataAdapter MORE THAN ONCE
The Fill() method retrieves all of the rows from the database table, as specified in your DataAdapter
object's SelectCommand property. If you add a primary key to your DataTable, then calling the Fill()
method more than once will put the retrieved rows in your DataTable and throw away any existing
rows with matching primary key column values already in your DataTable.
If you don't add a primary key to your DataTable, then calling the Fill() method more than once will
simply add all the retrieved rows to your DataTable again, duplicating the rows already there.
This is another reason for adding a primary key constraint to your DataTable because you don't want
duplicate rows. Adding a Primary Key to the Products DataTable
Let's take a look at adding a primary key to the Products DataTable. First, the following example
creates a DataTable object named productsDataTable and sets it to the Products DataTable retrieved
from myDataSet: DataTable productsDataTable = myDataSet.Tables["Products"];
Now, the primary key for the Products database table is the ProductID column; therefore, you need to
set the PrimaryKey property of productsDataTable to an array containing the ProductIDDataColumn
object. The following example shows how you do this. It creates an array of DataColumn objects
named productsPrimaryKey and initializes it to the ProductID column of productsDataTable, then sets
the PrimaryKey property of productsDataTable to the array: DataColumn[] productsPrimaryKey =
new DataColumn[] { productsDataTable.Columns["ProductID"] }; productsDataTable.PrimaryKey
= productsPrimaryKey;
When you set the PrimaryKey property of a DataTable, the AllowDBNull and Unique properties of the
DataColumn object are automatically changed as follows:
The AllowDBNull property is changed to false and indicates that the DataColumn cannot accept a null
value.
The Unique property is changed to true and indicates that the DataColumn value in each DataRow
must be unique.
In the previous example, therefore, the AllowDBNull and Unique properties of the
ProductIDDataColumn are automatically changed to false and true, respectively.Adding a Primary
Key to the Orders DataTable
The following example sets the PrimaryKey property of the Orders DataTable to the
OrderIDDataColumn: myDataSet.Tables["Orders"].PrimaryKey = new DataColumn[] {
myDataSet.Tables["Orders"].Columns["OrderID"] };
Notice I've used just one statement in this example to make it more concise than the previous
example.
You can also use the Add() method to add a unique, primary key, or foreign key constraint to a
DataTable. The Add() method is overloaded as follows: void Add(Constraint myConstraint) // adds
any constraint void Add(string constraintName , DataColumn myDataColumn , bool isPrimaryKey) //
adds a primary key or unique constraint void Add(string constraintName , DataColumn parentColumn
, DataColumn childColumn) // adds a foreign key constraint void Add(string constraintName ,

Mastering C# Database Programming @Team LiB216

© 2004 ... Your company

DataColumn[] myDataColumn , bool isPrimaryKey) // adds a primary key or unique constraint void
Add(string cosntraintName , DataColumn[] parentColumns , DataColumn[] childColumns) // adds a
foreign key constraint
where
constraintName is the name you want to assign to your constraint.
isPrimaryKey indicates whether the constraint is a primary key constraint or just a regular unique
constraint.
The following example uses the Add() method to add a primary key constraint to the
ProductsDataTable: myDataSet.Tables["Orders"].Constraints.Add("Primary key constraint",
myDataSet.Tables["Orders"].Columns["OrderID"], true);
This example does the same thing as the previous example that added the primary key constraint
using the PrimaryKey property. Notice the last parameter to the Add() method is set to true, which
indicates the constraint is for a primary key.
Just as an aside, if you have a column that isn't a primary key but is unique, you can add a
UniqueConstraint object to the ConstraintsCollection. For example: UniqueConstraint myUC = new
UniqueConstraint(myDataTable.Columns["myColumn"]); myDataTable.Constraints.Add(myUC);
Adding a Primary Key to the OrderDetails DataTable
Let's consider an example of setting the PrimaryKey property for the Order Details DataTable. The
primary for the Order Details table is made up of the OrderID and ProductID columns, and the
following example sets the PrimaryKey property of the Order Details DataTable to these two columns:
myDataSet.Tables["Order Details"].PrimaryKey = new DataColumn[] { myDataSet.Tables["Order
Details"].Columns["OrderID"], myDataSet.Tables["Order Details"].Columns["ProductID"] };
The following example uses the Add() method to do the same thing: myDataSet.Tables["Order
Details"].Constraints.Add("Primary key constraint", new DataColumn[] {
myDataSet.Tables["Order Details"].Columns["OrderID"], myDataSet.Tables["Order
Details"].Columns["ProductID"] }, true);
One thing to keep in mind when adding constraints to a DataTable is that it knows only about the
rows you store in it; it doesn't know about any other rows stored in the actual database table. To see
why this is an issue, consider the following scenario that involves primary keys:
You add a primary key constraint to a DataTable.
You retrieve a subset of the rows from a database table and store them in your DataTable.
You add a new DataRow to your DataTable with a primary key value not used in the subset of rows
retrieved into your DataTable in the previous step-but that primary key value is already used in a row
in the database table. Your new DataRow is added without any problem to the DataTable even
though you added a primary key constraint to your DataTable in step 1. Your new DataRow is added
successfully because the DataTable knows only about the rows stored in it, not the other rows
stored in the database table that were not retrieved in step 2.
You attempt to push the new DataRow to the database, but you get a SqlException that states you've
violated the primary key constraint in the database table. This is because a row in the database table
already uses the primary key value.
You need to keep this issue in mind when adding rows to a DataTable, which you'll see how to do
shortly.
That wraps up adding the primary key constraints to the DataTable objects. Next, you'll see how to
add foreign key constraints.Adding Foreign Key Constraints to the Order Details DataTable
In this section, you'll see how to add a foreign key constraint to the Order Details DataTable. To do
this, you use the Add() method through the Constraints property of the DataTable.
The following example adds a foreign key constraint from the OrderID DataColumn of the
OrderDetails DataTable to the OrderID DataColumn of the Orders DataTable: ForeignKeyConstraint
myFKC = new ForeignKeyConstraint(myDataSet.Tables["Orders"].Columns["OrderID"],
myDataSet.Tables["Order Details"].Columns["OrderID"]); myDataSet.Tables["Order
Details"].Constraints.Add(myFKC); Note
Notice that the parent DataColumn (OrderID of Orders) is specified before the child DataColumn
(OrderID of Order Details).
The next example adds a foreign key constraint from the ProductID DataColumn of the OrderDetails
DataTable to the ProductID DataColumn of the Products DataTable: myDataSet.Tables["Order
Details"].Constraints.Add("Foreign key constraint to ProductID DataColumn of the " + "Products

Part 2: Fundamental Database Programming with ADO.NET 217

© 2004 ... Your company

DataTable", myDataSet.Tables["Order Details"].Columns["ProductID"],
myDataSet.Tables["Products"].Columns["ProductID"]);
That wraps up adding constraints to the DataTable objects. Next, you'll see how to add restrictions to
DataColumn objects.Adding Restrictions to DataColumn Objects
In this section, you'll see how to add restrictions to the DataColumn objects stored in a DataTable.
Specifically, you'll see how to set the AllowDBNull, AutoIncrement, AutoIncrementSeed,
AutoIncrementStep, ReadOnly, and Unique properties of the ProductID DataColumn of the Products
DataTable. You'll also see how to set the MaxLength property of the ProductName DataColumn of the
ProductsDataTable.
The ProductID column of the Products database table is an identity column. The seed is the initial
value and the step is the increment added to the last number and they are both set to 1 for ProductID.
The ProductID identity values are therefore 1, 2, 3, and so on.Tip
When you set the AutoIncrementSeed and AutoIncrementStep properties for a DataColumn that
corresponds to a database identity column, you should always set them both to -1. That way, when
you call the Fill() method, ADO.NET will automatically figure out what values to set the
AutoIncrementSeed and AutoIncrementStep to, based on the values retrieved from the database,
and you don't have to figure out these values yourself.
The following code sets the properties of the ProductID DataColumn: DataColumn
productIDDataColumn = myDataSet.Tables["Products"].Columns["ProductID"];
productIDDataColumn.AllowDBNull = false; productIDDataColumn.AutoIncrement = true;
productIDDataColumn.AutoIncrementSeed = -1; productIDDataColumn.AutoIncrementStep = -1;
productIDDataColumn.ReadOnly = true; productIDDataColumn.Unique = true;
The next example sets the MaxLength property of the ProductName DataColumn to 40. This stops
you from setting the column value for ProductName to a string greater than 40 characters in length:
myDataSet.Tables["Products"].Columns["ProductName"].MaxLength = 40;
Listing 11.1 uses the code examples shown in this section and the previous one. Notice this program
also displays the ColumnName and DataType properties of the DataColumn objects in each
DataTable. The ColumnName property contains the name of the DataColumn, and the DataType
contains the .NET data type used to represent the column value stored in the DataColumn.Listing
11.1: ADDRESTRICTIONS.CS /* AddRestrictions.cs illustrates how to add constraints to
DataTable objects and add restrictions to DataColumn objects */ using System; using System.Data;
using System.Data.SqlClient; class AddRestrictions { public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT ProductID,
ProductName " + "FROM Products;" + "SELECT OrderID " + "FROM Orders;" +
"SELECT OrderID, ProductID, UnitPrice " + "FROM [Order Details];"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand =
mySqlCommand; DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Products"; myDataSet.Tables["Table1"].TableName =
"Orders"; myDataSet.Tables["Table2"].TableName = "Order Details"; // set the PrimaryKey
property for the Products DataTable // to the ProductID column DataTable productsDataTable =
myDataSet.Tables["Products"]; DataColumn[] productsPrimaryKey = new DataColumn[] {
productsDataTable.Columns["ProductID"] }; productsDataTable.PrimaryKey =
productsPrimaryKey; // set the PrimaryKey property for the Orders DataTable // to the OrderID
column myDataSet.Tables["Orders"].PrimaryKey = new DataColumn[] {
myDataSet.Tables["Orders"].Columns["OrderID"] }; // set the PrimaryKey property for the Order
Details DataTable // to the OrderID and ProductID columns myDataSet.Tables["Order
Details"].Constraints.Add("Primary key constraint on the OrderID and ProductID columns",
new DataColumn[] { myDataSet.Tables["Order Details"].Columns["OrderID"],
myDataSet.Tables["Order Details"].Columns["ProductID"] }, true); // add a foreign key
constraint on the OrderID column // of Order Details to the OrderID column of Orders
ForeignKeyConstraint myFKC = new ForeignKeyConstraint(
myDataSet.Tables["Orders"].Columns["OrderID"], myDataSet.Tables["Order
Details"].Columns["OrderID"]); myDataSet.Tables["Order Details"].Constraints.Add(myFKC);

Mastering C# Database Programming @Team LiB218

© 2004 ... Your company

// add a foreign key constraint on the ProductID column // of Order Details to the ProductID column
of Products myDataSet.Tables["Order Details"].Constraints.Add("Foreign key constraint to
ProductID DataColumn of the " + "Products DataTable",
myDataSet.Tables["Products"].Columns["ProductID"], myDataSet.Tables["Order
Details"].Columns["ProductID"]); // set the AllowDBNull, AutoIncrement, AutoIncrementSeed,
// AutoIncrementStep, ReadOnly, and Unique properties for // the ProductID DataColumn of the
Products DataTable DataColumn productIDDataColumn =
myDataSet.Tables["Products"].Columns["ProductID"]; productIDDataColumn.AllowDBNull = false;
productIDDataColumn.AutoIncrement = true; productIDDataColumn.AutoIncrementSeed = -1;
productIDDataColumn.AutoIncrementStep = -1; productIDDataColumn.ReadOnly = true;
productIDDataColumn.Unique = true; // set the MaxLength property for the ProductName
DataColumn // of the Products DataTable
myDataSet.Tables["Products"].Columns["ProductName"].MaxLength = 40; // display the details of
the DataColumn objects for // the DataTable objects foreach (DataTable myDataTable in
myDataSet.Tables) { Console.WriteLine("\n\nReading from the " + myDataTable +
"DataTable:\n"); // display the primary key foreach (DataColumn myPrimaryKey in
myDataTable.PrimaryKey) { Console.WriteLine("myPrimaryKey = " + myPrimaryKey); }
// display some of the details for each column foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine("\nmyDataColumn.ColumnName = " +
myDataColumn.ColumnName); Console.WriteLine("myDataColumn.DataType = " +
myDataColumn.DataType); Console.WriteLine("myDataColumn.AllowDBNull = " +
myDataColumn.AllowDBNull); Console.WriteLine("myDataColumn.AutoIncrement = " +
myDataColumn.AutoIncrement); Console.WriteLine("myDataColumn.AutoIncrementSeed = " +
myDataColumn.AutoIncrementSeed); Console.WriteLine("myDataColumn.AutoIncrementStep = "
+ myDataColumn.AutoIncrementStep); Console.WriteLine("myDataColumn.MaxLength = "
+ myDataColumn.MaxLength); Console.WriteLine("myDataColumn.ReadOnly = " +
myDataColumn.ReadOnly); Console.WriteLine("myDataColumn.Unique = " +
myDataColumn.Unique); } } } }
The output from this program is as follows: Reading from the Products DataTable: myPrimaryKey =
ProductID myDataColumn.ColumnName = ProductID myDataColumn.DataType = System.Int32
myDataColumn.AllowDBNull = False myDataColumn.AutoIncrement = True
myDataColumn.AutoIncrementSeed = -1 myDataColumn.AutoIncrementStep = -1
myDataColumn.MaxLength = -1 myDataColumn.ReadOnly = True myDataColumn.Unique = True
myDataColumn.ColumnName = ProductName myDataColumn.DataType = System.String
myDataColumn.AllowDBNull = True myDataColumn.AutoIncrement = False
myDataColumn.AutoIncrementSeed = 0 myDataColumn.AutoIncrementStep = 1
myDataColumn.MaxLength = 40 myDataColumn.ReadOnly = False myDataColumn.Unique = False
Reading from the Orders DataTable: myPrimaryKey = OrderID myDataColumn.ColumnName =
OrderID myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = True Reading from the Order Details DataTable: myPrimaryKey =
OrderID myPrimaryKey = ProductID myDataColumn.ColumnName = OrderID
myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False myDataColumn.ColumnName = ProductID
myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False myDataColumn.ColumnName = UnitPrice
myDataColumn.DataType = System.Decimal myDataColumn.AllowDBNull = True
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False Adding Restrictions by Calling the DataAdapter Object's
FillSchema() Method

Part 2: Fundamental Database Programming with ADO.NET 219

© 2004 ... Your company

Instead of adding restrictions yourself, you can add them by calling the FillSchema() method of your
DataAdapter. The FillSchema() method does the following:
Copies the schema information from the database.
Creates DataTable objects in your DataSet if they don't already exist.
Adds the constraints to the DataTable objects.
Sets the properties of the DataColumn objects appropriately.
The properties of the DataColumn objects set by FillSchema() include the following:
The DataColumn name-which is stored in the ColumnName property.
The DataColumn .NET data type-which is stored in the DataType property.
The maximum length of a variable length data type-which is stored in the MaxLength property.
Whether the DataColumn can accept a null value-which is stored in the AllowDBNull property.
Whether the DataColumn value must be unique-which is stored in the Unique property.
Any auto-increment information-which is stored in the AutoIncrement, AutoIncrementSeed, and
AutoIncrementStep properties.
The FillSchema() method will also determine whether the DataColumn is part of a primary key and
store that information in the PrimaryKey property of the DataTable.Warning
FillSchema() does not automatically add ForeignKeyConstraint objects to the DataTable objects.
Neither does it retrieve the actual rows from the database; it retrieves only the schema information.
The FillSchema() method is overloaded, with the most commonly used version of this method being
the following: DataTable[] FillSchema(DataSet myDataSet , SchemaType mySchemaType)
where mySchemaType specifies how you want to handle any existing schema mappings.
You set mySchemaType to one of the constants defined in the System.Data.SchemaType
enumeration. Table 11.7 shows the constants defined in the SchemaType enumeration. Table 11.7:
SchemaType ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Mapped
Apply any existing table mappings to the incoming schema and configure the DataSet with the
transformed schema. This is the constant you should typically use.
Source
Ignore any table mappings and configure the DataSet without any transformations.
Let's take a look at an example that contains a call to the FillSchema() method. Notice the call uses
the SchemaType.Mapped constant to apply any existing table mappings: SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT ProductID, ProductName " + "FROM Products;" + "SELECT OrderID " + "FROM
Orders;" + "SELECT OrderID, ProductID, UnitPrice " + "FROM [Order Details];"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.FillSchema(myDataSet, SchemaType.Mapped); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Products"; myDataSet.Tables["Table1"].TableName =
"Orders"; myDataSet.Tables["Table2"].TableName = "Order Details";
The call to FillSchema() copies the schema information from the Products, Orders, and OrderDetails
tables to myDataSet, setting the PrimaryKey property of each DataTable and the properties of the
DataColumn objects appropriately.
Listing 11.2 shows the use of the FillSchema() method.Listing 11.2: FILLSCHEMA.CS /*
FillSchema.cs illustrates how to read schema information using the FillSchema() method of a
DataAdapter object */ using System; using System.Data; using System.Data.SqlClient; class
FillSchema { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT ProductID, ProductName " + "FROM Products;" + "SELECT OrderID " + "FROM
Orders;" + "SELECT OrderID, ProductID, UnitPrice " + "FROM [Order Details];";
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand
= mySqlCommand; DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.FillSchema(myDataSet, SchemaType.Mapped); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Products"; myDataSet.Tables["Table1"].TableName =

Mastering C# Database Programming @Team LiB220

© 2004 ... Your company

"Orders"; myDataSet.Tables["Table2"].TableName = "Order Details"; // display the details of the
DataColumn objects for // the DataTable objects foreach (DataTable myDataTable in
myDataSet.Tables) { Console.WriteLine("\n\nReading from the " + myDataTable +
"DataTable:\n"); // display the primary key foreach (DataColumn myPrimaryKey in
myDataTable.PrimaryKey) { Console.WriteLine("myPrimaryKey = " + myPrimaryKey); }
// display the constraints foreach (Constraint myConstraint in myDataTable.Constraints) {
Console.WriteLine("myConstraint.IsPrimaryKey = " + ((UniqueConstraint)
myConstraint).IsPrimaryKey); foreach (DataColumn myDataColumn in ((UniqueConstraint)
myConstraint).Columns) { Console.WriteLine("myDataColumn.ColumnName = " +
myDataColumn.ColumnName); } } // display some of the details for each column
foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine("\nmyDataColumn.ColumnName = " + myDataColumn.ColumnName);
Console.WriteLine("myDataColumn.DataType = " + myDataColumn.DataType);
Console.WriteLine("myDataColumn.AllowDBNull = " + myDataColumn.AllowDBNull);
Console.WriteLine("myDataColumn.AutoIncrement = " + myDataColumn.AutoIncrement);
Console.WriteLine("myDataColumn.AutoIncrementSeed = " +
myDataColumn.AutoIncrementSeed); Console.WriteLine("myDataColumn.AutoIncrementStep = "
+ myDataColumn.AutoIncrementStep); Console.WriteLine("myDataColumn.MaxLength = "
+ myDataColumn.MaxLength); Console.WriteLine("myDataColumn.ReadOnly = " +
myDataColumn.ReadOnly); Console.WriteLine("myDataColumn.Unique = " +
myDataColumn.Unique); } } } }
The output from this program is as follows: Reading from the Products DataTable: myPrimaryKey =
ProductID myConstraint.IsPrimaryKey = True myDataColumn.ColumnName = ProductID
myDataColumn.ColumnName = ProductID myDataColumn.DataType = System.Int32
myDataColumn.AllowDBNull = False myDataColumn.AutoIncrement = True
myDataColumn.AutoIncrementSeed = 0 myDataColumn.AutoIncrementStep = 1
myDataColumn.MaxLength = -1 myDataColumn.ReadOnly = True myDataColumn.Unique = True
myDataColumn.ColumnName = ProductName myDataColumn.DataType = System.String
myDataColumn.AllowDBNull = False myDataColumn.AutoIncrement = False
myDataColumn.AutoIncrementSeed = 0 myDataColumn.AutoIncrementStep = 1
myDataColumn.MaxLength = 40 myDataColumn.ReadOnly = False myDataColumn.Unique = False
Reading from the Orders DataTable: myPrimaryKey = OrderID myConstraint.IsPrimaryKey = True
myDataColumn.ColumnName = OrderID myDataColumn.ColumnName = OrderID
myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = True myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
True myDataColumn.Unique = True Reading from the Order Details DataTable: myPrimaryKey =
OrderID myPrimaryKey = ProductID myConstraint.IsPrimaryKey = True myDataColumn.ColumnName
= OrderID myDataColumn.ColumnName = ProductID myDataColumn.ColumnName = OrderID
myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False myDataColumn.ColumnName = ProductID
myDataColumn.DataType = System.Int32 myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False myDataColumn.ColumnName = UnitPrice
myDataColumn.DataType = System.Decimal myDataColumn.AllowDBNull = False
myDataColumn.AutoIncrement = False myDataColumn.AutoIncrementSeed = 0
myDataColumn.AutoIncrementStep = 1 myDataColumn.MaxLength = -1 myDataColumn.ReadOnly =
False myDataColumn.Unique = False

Part 2: Fundamental Database Programming with ADO.NET 221

© 2004 ... Your company

6.5.5 Finding, Filtering, and Sorting Rows in a DataTable

Finding, Filtering, and Sorting Rows in a DataTable
Each row in a DataTable is stored in a DataRow object, and in this section you'll learn how to find,
filter, and sort the DataRow objects in a DataTable. Finding a DataRow in a DataTable
To find a DataRow in a DataTable, you follow these steps:
Retrieve the rows from the database into your DataTable.
Set the PrimaryKey property of your DataTable.
Call the Find() method of your DataTable, passing the primary key column value of the DataRow you
want.
For example, the following code performs steps 1 and 2 in this list, retrieving the top 10 rows from the
Products table and setting the PrimaryKey property to the ProductID DataColumn: SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT TOP 10 ProductID, ProductName " + "FROM Products " + "ORDER BY ProductID";
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand =
mySqlCommand; DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet, "Products"); mySqlConnection.Close(); DataTable
productsDataTable = myDataSet.Tables["Products"]; productsDataTable.PrimaryKey = new
DataColumn[] { productsDataTable.Columns["ProductID"] };
Next, the following example performs step 3, calling the Find() method to retrieve the DataRow from
productsDataTable that has a ProductID of 3: DataRow productDataRow =
productsDataTable.Rows.Find("3");
Notice that the Find() method is called through the Rows property of productsDataTable. The Rows
property returns an object of the DataRowCollection class.
If the primary key for the database table consists of more than one column, then you can pass an
array of objects to the Find() method. For example, the Order Details table's primary key is made up
of the OrderID and ProductID columns. Assuming you've already performed steps 1 and 2 and
retrieved the rows from the Order Details table into a DataTable object named orderDetailsDataTable,
then the following example retrieves the DataRow with an OrderID and ProductID of 10248 and 11,
respectively: object[] orderDetails = new object[] { 10248, 11 }; DataRow orderDetailDataRow
= orderDetailsDataTable.Rows.Find(orderDetails); Filtering and Sorting DataRow Objects in a
DataTable
To filter and sort the DataRow objects in a DataTable, you use the Select() method of your
DataTable. The Select() method is overloaded as follows: DataRow[] Select() DataRow[] Select(string
filterExpression) DataRow[] Select(string filterExpression , string sortExpression) DataRow[]
Select(string filterExpression , string sortExpression , DataViewRowState myDataViewRowState)
where
filterExpression specifies the rows to select.
sortExpression specifies how the selected rows are to be ordered.
myDataViewRowState specifies the state of the rows to select. You set myDataViewRowState to
one of the constants defined in the System.Data.DataViewRowState enumeration. Table 11.8 shows
these constants. Table 11.8: DataViewRowState ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Added
A new row.
CurrentRows
The current rows, which include Unchanged, Added, and ModifiedCurrent rows.
Deleted
A deleted row.
ModifiedCurrent
A current row that has been modified.
ModifiedOriginal
The original row before it was modified.
None
Doesn't match any of the rows in the DataTable.

Mastering C# Database Programming @Team LiB222

© 2004 ... Your company

OriginalRows
The original rows, which include Unchanged and Deleted rows.
Unchanged
A row that hasn't been changed.
Let's take a look at some examples that use the Select() method.
The following example calls the Select() method with no parameters, which returns all rows in the
DataTable without any filtering or sorting: DataRow[] productDataRows = productsDataTable.Select();
The next example supplies a filter expression to Sort(), which returns only the DataRow objects with
ProductID DataColumn values that are less than or equal to 5: DataRow[] productDataRows =
productsDataTable.Select("ProductID <= 5");
The following example supplies both a filter expression and a sort expression that orders the
DataRow objects by descending ProductID values: DataRow[] productDataRows =
productsDataTable.Select("ProductID <= 5", "ProductID DESC");
The next example supplies a DataViewRowState of OriginalRows to the previous Select() call:
DataRow[] productDataRows = productsDataTable.Select("ProductID <= 5", "ProductID DESC",
DataViewRowState.OriginalRows);
As you can see from the previous examples, the filter and sort expressions are similar to WHERE and
ORDER BY clauses in a SELECT statement. You can therefore use very powerful expressions in your
calls to the Sort() method. For example, you can use AND, OR, NOT, IN, LIKE, comparison operators,
arithmetic operators, wildcard characters, and aggregate functions in your filter expressions.Note
For full details on how to use such filter expressions, refer to the DataColumn.Expression property in
the .NET online documentation.
The following example that uses the LIKE operator and the percent wildcard character (%)-which
matches any number of characters-to filter rows with a ProductName that start with Cha. The example
also sorts the rows by descending ProductID and ascending ProductName values: productDataRows
= productsDataTable.Select("ProductName LIKE 'Cha%'", "ProductID DESC, ProductName
ASC");
Notice that the string Cha% is placed in single quotes, which you must do for all string literals. Note
You can also use a DataView object to filter and sort rows, and you'll learn how to do that in
Chapter 13, "Using DataView Objects."
Listing 11.3 shows a program that finds, filters, and sorts DataRow objects.Listing 11.3:
FINDFILTERANDSORTDATAROWS.CS /* FindFilterAndSortDataRows.cs illustrates how to find,
filter, and sort DataRow objects */ using System; using System.Data; using System.Data.SqlClient;
class FindFilterAndSortDataRows { public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT TOP 10 ProductID, ProductName " + "FROM
Products " + "ORDER BY ProductID;" + "SELECT TOP 10 OrderID, ProductID, UnitPrice,
Quantity " + "FROM [Order Details] " + "ORDER BY OrderID"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand =
mySqlCommand; DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Products"; myDataSet.Tables["Table1"].TableName =
"Order Details"; // set the PrimaryKey property for the Products DataTable // to the ProductID
column DataTable productsDataTable = myDataSet.Tables["Products"];
productsDataTable.PrimaryKey = new DataColumn[] {
productsDataTable.Columns["ProductID"] }; // set the PrimaryKey property for the Order
Details DataTable // to the OrderID and ProductID columns DataTable orderDetailsDataTable =
myDataSet.Tables["Order Details"]; orderDetailsDataTable.Constraints.Add("Primary key
constraint on the OrderID and ProductID columns", new DataColumn[] {
orderDetailsDataTable.Columns["OrderID"], orderDetailsDataTable.Columns["ProductID"] },
true); // find product with ProductID of 3 using the Find() method // to locate the DataRow
using its primary key value Console.WriteLine("Using the Find() method to locate DataRow object "
+ "with a ProductID of 3"); DataRow productDataRow = productsDataTable.Rows.Find("3");
foreach (DataColumn myDataColumn in productsDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + productDataRow[myDataColumn]); } // find order

Part 2: Fundamental Database Programming with ADO.NET 223

© 2004 ... Your company

with OrderID of 10248 and ProductID of 11 using // the Find() method Console.WriteLine("Using
the Find() method to locate DataRow object " + "with an OrderID of 10248 and a ProductID of
11"); object[] orderDetails = new object[] { 10248, 11 }; DataRow
orderDetailDataRow = orderDetailsDataTable.Rows.Find(orderDetails); foreach (DataColumn
myDataColumn in orderDetailsDataTable.Columns) { Console.WriteLine(myDataColumn + "= "
+ orderDetailDataRow[myDataColumn]); } // filter and sort the DataRow objects in
productsDataTable // using the Select() method Console.WriteLine("Using the Select() method
to filter and sort DataRow objects"); DataRow[] productDataRows =
productsDataTable.Select("ProductID <= 5", "ProductID DESC",
DataViewRowState.OriginalRows); foreach (DataRow myDataRow in productDataRows) {
foreach (DataColumn myDataColumn in productsDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } } // filter and sort
the DataRow objects in productsDataTable // using the Select() method
Console.WriteLine("Using the Select() method to filter and sort DataRow objects");
productDataRows = productsDataTable.Select("ProductName LIKE 'Cha*'", "ProductID ASC,
ProductName DESC"); foreach (DataRow myDataRow in productDataRows) { foreach
(DataColumn myDataColumn in productsDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } } } }
The output from this program is as follows: Using the Find() method to locate DataRow object with a
ProductID of 3 ProductID = 3 ProductName = Aniseed Syrup Using the Find() method to locate
DataRow object with an OrderID of 10248 and a ProductID of 11 OrderID = 10248 ProductID = 11
UnitPrice = 14 Quantity = 12 Using the Select() method to filter and sort DataRow objects ProductID =
5 ProductName = Chef Anton's Gumbo Mix ProductID = 4 ProductName = Chef Anton's Cajun
Seasoning ProductID = 3 ProductName = Aniseed Syrup ProductID = 2 ProductName = Chang
ProductID = 1 ProductName = Chai Using the Select() method to filter and sort DataRow objects
ProductID = 1 ProductName = Chai ProductID = 2 ProductName = Chang

6.5.6 Modifying Rows in a DataTable

Modifying Rows in a DataTable
In this section, you'll see the steps required to add, modify, and remove DataRow objects from a
DataTable and then push those changes to the database. The examples in this section show how to
add, modify, and delete rows in the Customers database table.Note
You'll find a complete program named AddModifyAndRemoveDataRows.cs in the ch11 directory that
illustrates the use of the methods shown in this section. This program listing is omitted from this book
for brevity. Setting up a DataAdapter to Push Changes to the Database
In Chapter 10, you saw that before you call the Fill() method of your DataAdapter to read rows from
the database, you first need to set the SelectCommand property of your DataAdapter. For example:
SqlCommand mySelectCommand = mySqlConnection.CreateCommand();
mySelectCommand.CommandText = "SELECT CustomerID, CompanyName, Address " + "FROM
Customers " + "ORDER BY CustomerID"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySelectCommand;
The SELECT statement is then run when you call the mySqlDataAdapter object's Fill() method to
retrieve rows from the Customers table into a DataSet.
Similarly, before you can push changes to the database, you must first set up your DataAdapter with
Command objects containing appropriate SQL INSERT, UPDATE, and DELETE statements. You
store these Command objects in your DataAdapter object's InsertCommand, UpdateCommand, and
DeleteCommand properties.
You push changes from your DataSet to the database using the Update() method of your
DataAdapter. When you add, modify, or remove DataRow objects from your DataSet and then call the
Update() method of your DataAdapter, the appropriate InsertCommand, UpdateCommand, or
DeleteCommand is run to push your changes to the database.
Let's take a look at how to set the InsertCommand, UpdateCommand, and DeleteCommand
properties of a DataAdapter.Setting the InsertCommand Property of a DataAdapter
The following example creates a SqlCommand object named myInsertCommand that contains an

Mastering C# Database Programming @Team LiB224

© 2004 ... Your company

INSERT statement: SqlCommand myInsertCommand = mySqlConnection.CreateCommand();
myInsertCommand.CommandText = "INSERT INTO Customers (" + " CustomerID,
CompanyName, Address" + ") VALUES (" + " @CustomerID, @CompanyName, @Address" + ")";
myInsertCommand.Parameters.Add("@CustomerID", SqlDbType.NChar, 5, "CustomerID");
myInsertCommand.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 40,
"CompanyName"); myInsertCommand.Parameters.Add("@Address", SqlDbType.NVarChar, 60,
"Address");
The four parameters to the Add() method are as follows:
The name of the parameter
The .NET type of the parameter
The maximum length of the string that may be assigned to the parameter's value
The name of the corresponding database column that the parameter is bound toNote
Commands and parameters are covered in Chapter 8, "Executing Database Commands."
As you can see from the previous code, the @CustomerID, @CompanyName, and @Address
parameters are bound to the CustomerID, CompanyName, and Address columns in the database.
Next, the following example sets the InsertCommand property of mySqlDataAdapter to
myInsertCommand: mySqlDataAdapter.InsertCommand = myInsertCommand; Setting the
UpdateCommand Property of a DataAdapter
The following example creates a SqlCommand object named myUpdateCommand that contains an
UPDATE statement and sets the UpdateCommand property of mySqlDataAdapter to
myUpdateCommand: myUpdateCommand.CommandText = "UPDATE Customers " + "SET " + "
CompanyName = @NewCompanyName, " + " Address = @NewAddress " + "WHERE CustomerID
= @OldCustomerID " + "AND CompanyName = @OldCompanyName " + "AND Address =
@OldAddress"; myUpdateCommand.Parameters.Add("@NewCompanyName", SqlDbType.NVarChar,
40, "CompanyName"); myUpdateCommand.Parameters.Add("@NewAddress", SqlDbType.NVarChar,
60, "Address"); myUpdateCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); myUpdateCommand.Parameters.Add("@OldCompanyName", SqlDbType.NVarChar,
40, "CompanyName"); myUpdateCommand.Parameters.Add("@OldAddress", SqlDbType.NVarChar,
60, "Address"); myUpdateCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original; myUpdateCommand.Parameters["@OldCompanyName"].SourceVersion =
DataRowVersion.Original; myUpdateCommand.Parameters["@OldAddress"].SourceVersion =
DataRowVersion.Original; mySqlDataAdapter.UpdateCommand = myUpdateCommand;
There are two things to notice about this code:
The UPDATE statement's WHERE clause specifies parameters for CompanyID, CompanyName, and
Address columns. This uses optimistic concurrency, which you'll learn about shortly.
A property named SourceVersion for the @OldCustomerID, @OldCompanyName and @OldAddress
parameters is set to DataRowVersion.Original. This causes the values for these parameters to be set
to the original DataRow column values before you change them.
These items determine the concurrency of the UPDATE, which you'll now learn about.Concurrency
Concurrency determines how multiple users' modifications to the same row are handled. There are
two types of concurrency that apply to a DataSet:
Optimistic Concurrency With optimistic concurrency, you can modify a row in a database table
only if no one else has modified that same row since you loaded it into your DataSet. This is typically
the best type of concurrency to use because you don't want to overwrite someone else's changes.
"Last One Wins" Concurrency With "last one wins" concurrency, you can always modify a row-
and your changes overwrite anyone else's changes. You typically want to avoid using "last one wins"
concurrency.
To use optimistic concurrency, you have to do the following in your UPDATE or DELETE statement's
WHERE clause:
Include all the columns used in the original SELECT.
Set these column values to original values retrieved from the row in the table before you changed the
values.
When you do these two things in your UPDATE or DELETE statement's WHERE clause, your
statement first checks that the original row still exists before updating or deleting the row. That way,
you can be sure your changes don't overwrite anyone else's changes. Of course, if the original row
has been deleted by another user, then your UPDATE or DELETE statement will fail.

Part 2: Fundamental Database Programming with ADO.NET 225

© 2004 ... Your company

To use "last one wins" concurrency, you just include the primary key and its value in the WHERE
clause of your UPDATE or DELETE statement. Since your UPDATE statement doesn't check the
original values, it simply overwrites anyone else's changes if the row still exists. Also, a DELETE
statement simply deletes the row-even if another user has modified the row.
Returning to the previous code example that set the UpdateCommand property of mySqlDataAdapter,
you can see that all the columns are included in the WHERE clause of the UPDATE. That satisfies
the first requirement of using optimistic concurrency shown earlier.
The second requirement is that you set the column in the WHERE clause to the original row values.
You do this by setting the SourceVersion property of the @OldCustomerID, @OldCompanyName,
and @OldAddress parameters to DataRowVersion.Original. At runtime, this pulls the original values
from the DataColumn objects in the DataRow before you changed them and puts them in the
UPDATE statement's WHERE clause.
Original is just one of the members of the System.Data.DataRowVersion enumeration; the others are
shown in Table 11.9. Table 11.9: DataRowVersion ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Current
The current column value.
Default
The default column value.
Original
The original column value.
Proposed
The proposed column value, which is set when you edit a DataRow using the BeginEdit()
method.Setting the DeleteCommand Property of a DataAdapter
The following example creates a SqlCommand object named myDeleteCommand that contains a
DELETE statement and sets the DeleteCommand property of mySqlDataAdapter to
myDeleteCommand: SqlCommand myDeleteCommand = mySqlConnection.CreateCommand();
myDeleteCommand.CommandText = "DELETE FROM Customers " + "WHERE CustomerID =
@OldCustomerID " + "AND CompanyName = @OldCompanyName " + "AND Address =
@OldAddress"; myDeleteCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); myDeleteCommand.Parameters.Add("@OldCompanyName", SqlDbType.NVarChar,
40, "CompanyName"); myDeleteCommand.Parameters.Add("@OldAddress", SqlDbType.NVarChar,
60, "Address"); myDeleteCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original; myDeleteCommand.Parameters["@OldCompanyName"].SourceVersion =
DataRowVersion.Original; myDeleteCommand.Parameters["@OldAddress"].SourceVersion =
DataRowVersion.Original; mySqlDataAdapter.DeleteCommand = myDeleteCommand;
Notice that the DELETE statement also uses optimistic concurrency.
This completes the setup of the DataAdapter object. Adding a DataRow to a DataTable
In this section, you'll learn how to add a DataRow to a DataTable. Before you see this, let's populate
a DataSet with the rows from the Customers table. The following code creates a DataSet object
named myDataSet and populates it by calling mySqlDataAdapter.Fill(): DataSet myDataSet = new
DataSet(); mySqlConnection.Open(); int numOfRows = mySqlDataAdapter.Fill(myDataSet,
"Customers"); mySqlConnection.Close();
The int returned by the Fill() method is the number of rows retrieved from the database. The
myDataSet object now contains a DataTable named Customers, which contains the rows retrieved by
the following SELECT statement set earlier in the SelectCommand property of mySqlDataAdapter:
SELECT CustomerID, CompanyName, Address FROM Customers ORDER BY CustomerID
To add a new row to a DataTable object, you use the following steps:
Use the NewRow() method of your DataTable to create a new DataRow.
Set the values for the DataColumn objects of your new DataRow. Note: you can set a DataColumn
value to null using the SetNull() method of a DataRow. You can also check if a DataColumn contains
null using the IsNull() method of a DataRow.
Use the Add() method through the Rows property of your DataTable to add your new DataRow to the
DataTable.
Use the Update() method of your DataAdapter to push the new row to the database.

Mastering C# Database Programming @Team LiB226

© 2004 ... Your company

The following method, named AddDataRow(), uses these steps to add a new row to a DataTable:
public static void AddDataRow(DataTable myDataTable, SqlDataAdapter mySqlDataAdapter,
SqlConnection mySqlConnection) { Console.WriteLine("\nIn AddDataRow()"); // step 1: use the
NewRow() method of the DataTable to // create a new DataRow Console.WriteLine("Calling
myDataTable.NewRow()"); DataRow myNewDataRow = myDataTable.NewRow();
Console.WriteLine("myNewDataRow.RowState = " + myNewDataRow.RowState); // step 2: set
the values for the DataColumn objects of // the new DataRow myNewDataRow["CustomerID"] =
"J5COM"; myNewDataRow["CompanyName"] = "J5 Company"; myNewDataRow["Address"] = "1
Main Street"; // step 3: use the Add() method through the Rows property // to add the new
DataRow to the DataTable Console.WriteLine("Calling myDataTable.Rows.Add()");
myDataTable.Rows.Add(myNewDataRow); Console.WriteLine("myNewDataRow.RowState = " +
myNewDataRow.RowState); // step 4: use the Update() method to push the new // row to the
database Console.WriteLine("Calling mySqlDataAdapter.Update()"); mySqlConnection.Open(); int
numOfRows = mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows); Console.WriteLine("myNewDataRow.RowState
= " + myNewDataRow.RowState); DisplayDataRow(myNewDataRow, myDataTable); }
You'll notice I call the Open() and Close() methods of mySqlConnection around the call to the
Update() method. You don't have to do this because the Update() method-like the Fill() method-will
automatically open and then close mySqlConnection if it is currently closed. It is good programming
practice, however, to explicitly include the Open() and Close() calls so that you can see exactly what
is going on.Note
In the ADO.NET disconnected model of data access, you should typically keep the connection to the
database open for as short a period as possible. Of course, if you're making a lot of calls to the
Update() or the Fill() method over a short time, you could keep the connection open and then close it
when you're finished. That way, your code will have better performance. You might need to
experiment with your own programs to find the right balance.
The Update() method is overloaded as follows: int Update(DataRow[] myDataRows) int
Update(DataSet myDataSet) int Update(DataTable myDataTable) int Update(DataRow[]
myDataRows, DataTableMapping myDataTableMapping) int Update(DataSet myDataSet, string
dataTableName)
where dataTableName is a string containing the name of the DataTable to update. The int returned
by the Update() method is the number of rows successfully updated in the database.
Going back to the previous AddDataRow() method, you'll also notice the inclusion of
Console.WriteLine() calls that display the RowState property of myNewDataRow. The RowState
property is set to one of the constants defined in the System.Data.DataViewRowState enumeration.
Table 11.10 shows the constants defined in the DataRowState enumeration. Table 11.10:
DataRowState ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Added
The DataRow has been added to the DataRowCollection of the DataTable.
Deleted
The DataRow has been removed from the DataTable.
Detached
The DataRow isn't part of the DataTable.
Modified
The DataRow has been modified.
Unchanged
The DataRow hasn't been modified.
AddDataRow() calls a method named DisplayDataRow(), which displays the DataColumn values for
the DataRow passed as the first parameter. DisplayDataRow() is defined as follows: public static void
DisplayDataRow(DataRow myDataRow, DataTable myDataTable) { Console.WriteLine("\nIn
DisplayDataRow()"); foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "= " + myDataRow[myDataColumn]); } }
In the previous AddDataRow() method, you saw that it displays the RowState property of
myNewDataRow at various points. The output from AddDataRow() and its call to DisplayDataRow() is

Part 2: Fundamental Database Programming with ADO.NET 227

© 2004 ... Your company

as follows: In AddDataRow() Calling myDataTable.NewRow() myNewDataRow.RowState = Detached
Calling myDataTable.Rows.Add() myNewDataRow.RowState = Added Calling
mySqlDataAdapter.Update() numOfRows = 1 myNewDataRow.RowState = Unchanged In
DisplayDataRow() CustomerID = J5COM CompanyName = J5 Company Address = 1 Main Street
Let's examine this run in detail:
After myDataTable.NewRow() is called to create myNewDataRow, its RowState is Detached, which
indicates myNewDataRow isn't yet part of myDataTable.
Next, myDataTable.Rows.Add() is called to add myNewDataRow to myDataTable. This causes the
RowState of myNewDataRow to change to Added, which indicates myNewDataRow is now part of
myDataTable.
Finally, mySqlDataAdapter.Update() is called to push the new row to the database. This causes the
RowState of myNewDataRow to change to Unchanged.
Behind the scenes, the Update() method runs the INSERT statement in the
mySqlDataAdapter.InsertCommand property to add the new row to the Customers table. The int
returned by the Update() statement is the number of rows affected by the method call. In this
example, one is returned since one row was added. Modifying a DataRow in a DataTable
To modify a DataRow in a DataTable, you use the following steps:
Set the PrimaryKey property of your DataTable. You need to set this to find the DataRow in the next
step.
Use the Find() method to locate the DataRow that you want to modify in your DataTable. You locate
the DataRow using the value of its primary key column.
Change the DataColumn values for your DataRow.
Use the Update() method of your DataAdapter object to push the modified row to the database.
The following method, named ModifyDataRow(), uses these steps to modify the row that was
previously added by the AddDataRow() method: public static void ModifyDataRow(DataTable
myDataTable, SqlDataAdapter mySqlDataAdapter, SqlConnection mySqlConnection) {
Console.WriteLine("\nIn ModifyDataRow()"); // step 1: set the PrimaryKey property of the DataTable
myDataTable.PrimaryKey = new DataColumn[] { myDataTable.Columns["CustomerID"] };
// step 2: use the Find() method to locate the DataRow // in the DataTable using the primary key
value DataRow myEditDataRow = myDataTable.Rows.Find("J5COM"); // step 3: change the
DataColumn values of the DataRow myEditDataRow["CompanyName"] = "Widgets Inc.";
myEditDataRow["Address"] = "1 Any Street"; Console.WriteLine("myEditDataRow.RowState = " +
myEditDataRow.RowState); Console.WriteLine("myEditDataRow[\" CustomerID\", " +
"DataRowVersion.Original] = " + myEditDataRow["CustomerID", DataRowVersion.Original]);
Console.WriteLine("myEditDataRow[\" CompanyName\", " + "DataRowVersion.Original] = " +
myEditDataRow["CompanyName", DataRowVersion.Original]);
Console.WriteLine("myEditDataRow[\" Address\", " + "DataRowVersion.Original] = " +
myEditDataRow["Address", DataRowVersion.Original]); Console.WriteLine("myEditDataRow[\"
CompanyName\", " + "DataRowVersion.Current] = " + myEditDataRow["CompanyName",
DataRowVersion.Current]); Console.WriteLine("myEditDataRow[\" Address\", " +
"DataRowVersion.Current] = " + myEditDataRow["Address", DataRowVersion.Current]); // step 4:
use the Update() method to push the modified // row to the database Console.WriteLine("Calling
mySqlDataAdapter.Update()"); mySqlConnection.Open(); int numOfRows =
mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows); Console.WriteLine("myEditDataRow.RowState
= " + myEditDataRow.RowState); DisplayDataRow(myEditDataRow, myDataTable); }
Setting the primary key in step 1 doesn't have to be done inside the ModifyDataRow() method. You
could, for example, set the primary key immediately after calling the Fill() method in the Main()
method of the AddModifyAndRemoveDataRows.cs program. The reason I set the primary key in
ModifyDataRow() is that you can see all the steps together in this method.
Notice in step 3 of this method the original values for the CustomerID, CompanyName, and Address
DataColumn objects are displayed using the DataRowVersion.Original constant. These are the
DataColumn values before they are changed. The current values for the CompanyName and Address
DataColumn objects are also displayed using the DataRowVersion.Current constant. These are the
DataColumn values after they are changed.
The output from ModifyDataRow() and its call to DisplayDataRow() is as follows: In ModifyDataRow()

Mastering C# Database Programming @Team LiB228

© 2004 ... Your company

myEditDataRow.RowState = Modified myEditDataRow["CustomerID", DataRowVersion.Original] =
J5COM myEditDataRow["CompanyName", DataRowVersion.Original] = J5 Company
myEditDataRow["Address", DataRowVersion.Original] = 1 Main Street
myEditDataRow["CompanyName", DataRowVersion.Current] = Widgets Inc.
myEditDataRow["Address", DataRowVersion.Current] = 1 Any Street Calling
mySqlDataAdapter.Update() numOfRows = 1 myEditDataRow.RowState = Unchanged In
DisplayDataRow() CustomerID = J5COM CompanyName = Widgets Inc. Address = 1 Any Street
Notice that the CompanyName and Address DataColumn objects of myEditDataRow are changed.
The RowState property of myEditDataRow changes to Modified after its CompanyName and Address
are changed, and then to Unchanged after mySqlDataAdapter.Update() is called.Marking Your
Modifications
You can use the BeginEdit() method to mark the beginning of a modification to a DataRow. For
example: myEditDataRow.BeginEdit(); myEditDataRow["CompanyName"] = "Widgets Inc.";
myEditDataRow["Address"] = "1 Any Street";
You then use either the EndEdit() or CancelEdit() methods to mark the end of the modification to the
DataRow. EndEdit() commits the modification; CancelEdit() rejects the modification and restores the
DataRow to its original state before the edit began.
The following example calls the EndEdit() method of myEditDataRow to commit the changes made in
the previous example: myEditDataRow.EndEdit(); Removing a DataRow from a DataTable
To remove a DataRow from a DataTable, you use the following steps:
Set the PrimaryKey property for your DataTable object.
Use the Find() method to locate your DataRow.
Use the Delete() method to remove your DataRow.
Use the Update() method to push the delete to the database.
The following method, named RemoveDataRow(), uses these steps to remove the DataRow that was
previously modified by the ModifyDataRow() method: public static void RemoveDataRow(DataTable
myDataTable, SqlDataAdapter mySqlDataAdapter, SqlConnection mySqlConnection) {
Console.WriteLine("\nIn RemoveDataRow()"); // step 1: set the PrimaryKey property of the
DataTable myDataTable.PrimaryKey = new DataColumn[] {
myDataTable.Columns["CustomerID"] }; // step 2: use the Find() method to locate the DataRow
DataRow myRemoveDataRow = myDataTable.Rows.Find("J5COM"); // step 3: use the Delete()
method to remove the DataRow Console.WriteLine("Calling myRemoveDataRow.Delete()");
myRemoveDataRow.Delete(); Console.WriteLine("myRemoveDataRow.RowState = " +
myRemoveDataRow.RowState); // step 4: use the Update() method to remove the deleted // row
from the database Console.WriteLine("Calling mySqlDataAdapter.Update()");
mySqlConnection.Open(); int numOfRows = mySqlDataAdapter.Update(myDataTable);
mySqlConnection.Close(); Console.WriteLine("numOfRows = " + numOfRows);
Console.WriteLine("myRemoveDataRow.RowState = " + myRemoveDataRow.RowState); }
The output from RemoveDataRow() is as follows: In RemoveDataRow() Calling
myRemoveDataRow.Delete() myRemoveDataRow.RowState = Deleted Calling
mySqlDataAdapter.Update() numOfRows = 1 myRemoveDataRow.RowState = Detached
Notice that the RowState property of myRemoveDataRow is set to Deleted after myRemoveData
.Delete() is called, and then to Detached after mySqlDataAdapter.Update() is called-meaning that
myRemoveDataRow is no longer part of the DataTable. Note
You'll find a complete program named AddModifyAndRemoveDataRows.cs in the ch11 directory that
illustrates the use of the AddDataRow() , ModifyDataRow() , and RemoveDataRow() methods. This
program listing is omitted from this book for brevity.

6.5.7 Retrieving New Identity Column Values

Retrieving New Identity Column Values
The ProductID column of the Products table is an identity column. In this section, you'll see how to
insert a new row into to Products table and retrieve the new value generated by the database for the
ProductID identity column.Note
You'll find a complete program named UsingIdentityColumn.cs in the ch11 directory that illustrates

Part 2: Fundamental Database Programming with ADO.NET 229

© 2004 ... Your company

the use of the methods shown in this section. This program listing is omitted from this book for brevity.
In the examples, assume you have a DataTable named productsDataTable that is populated with the
rows retrieved by the following SELECT statement: SELECT ProductID, ProductName, UnitPrice
FROM Products ORDER BY ProductID
The following example sets the PrimaryKey property of productsDataTable:
productsDataTable.PrimaryKey = new DataColumn[] { productsDataTable.Columns["ProductID"]
};
The next example sets the AllowDBNull, AutoIncrement, AutoIncrementSeed, AutoIncrementStep,
ReadOnly, and Unique properties for the ProductID DataColumn of productsDataTable: DataColumn
productIDDataColumn = productsDataTable.Columns["ProductID"];
productIDDataColumn.AllowDBNull = false; productIDDataColumn.AutoIncrement = true;
productIDDataColumn.AutoIncrementSeed = -1; productIDDataColumn.AutoIncrementStep = -1;
productIDDataColumn.ReadOnly = true; productIDDataColumn.Unique = true;
Because of these settings, when you add a new DataRow to productsDataTable the
ProductIDDataColumn of your new DataRow will initially have the value -1.
As in the earlier section, "Modifying Rows in a DataTable," you need to set your DataAdapter object's
InsertCommand, UpdateCommand, and DeleteCommand properties with appropriate Command
objects. The CommandText property of the Command object used in the UpdateCommand property is
as follows: myUpdateCommand.CommandText = "UPDATE Products " + "SET " + " ProductName
= @NewProductName, " + " UnitPrice = @NewUnitPrice " + "WHERE ProductID =
@OldProductID " + "AND ProductName = @OldProductName " + "AND UnitPrice =
@OldUnitPrice";
The CommandText property of the Command object used in the DeleteCommand property is as
follows: myDeleteCommand.CommandText = "DELETE FROM Products " + "WHERE ProductID =
@OldProductID " + "AND ProductName = @OldProductName " + "AND UnitPrice =
@OldUnitPrice";
Notice the CommandText of these two Command objects isn't substantially different from those shown
in the previous section, except that it goes against the Products table rather than the Customers
table.
The real difference is in the CommandText of the Command object used in the InsertCommand
property, which must retrieve the ProductID value generated by the database for the new row. To do
this, you can use the following code that contains an INSERT statement that adds a new row, along
with a SELECT statement that retrieves the ProductID value using a call to the SQL Server
SCOPE_IDENTITY() function: myInsertCommand.CommandText = "INSERT INTO Products (" + "
ProductName, UnitPrice " + ") VALUES (" + " @MyProductName, @MyUnitPrice" + ");" +
"SELECT @MyProductID = SCOPE_IDENTITY();"; myInsertCommand.Parameters.Add(
"@MyProductName", SqlDbType.NVarChar, 40, "ProductName");
myInsertCommand.Parameters.Add("@MyUnitPrice", SqlDbType.Money, 0, "UnitPrice");
myInsertCommand.Parameters.Add("@MyProductID", SqlDbType.Int, 0, "ProductID");
myInsertCommand.Parameters["@MyProductID"].Direction = ParameterDirection.Output;
The SCOPE_IDENTITY() function returns the last inserted identity value into any table performed
within the current database session and stored procedure, trigger, function, or batch. For example,
calling SCOPE_IDENTITY() in the previous example returns the last identity value inserted into the
Products table, which is the ProductID of the new row.Note
For details on the SCOPE_IDENTITY() function, refer to Chapter 4, "Introduction to Transact-SQL
Programming."
When you add a new DataRow to productsDataTable, the ProductID DataColumn of your new
DataRow will initially have the value -1. When you call the Update() method of your SqlDataAdapter
to push the new row to the database, the following steps occur:
Your new DataRow is pushed to the database using the INSERT statement set in myInsertCommand,
with the ProductID column of the Products table being set to a new identity value generated by the
database.
The ProductID identity value is retrieved by the SELECT statement set in myInsertCommand.
The ProductID DataColumn in your DataRow is set to the retrieved identity value.
Feel free to examine, compile, and run the UsingIdentityColumn.cs program located in the ch11
directory. This program performs the following high-level actions:

Mastering C# Database Programming @Team LiB230

© 2004 ... Your company

Retrieves rows from the Products table into a DataTable named productsDataTable.
Adds a DataRow to productsDataTable.
Modifies the new DataRow.
Deletes the new DataRow.
When you run this program you'll notice the change in the ProductID DataColumn value for a newly
added DataRow from -1 to an actual value retrieved from the database.

6.5.8 Using Stored Procedures to Add, Modify, and Remove Rows from the
Database

Using Stored Procedures to Add, Modify, and Remove Rows from the
Database
You can get a DataAdapter object to call stored procedures to add, modify, and remove rows from the
database. These procedures are called instead of the INSERT, UPDATE, and DELETE statements
you've seen how to set in a DataAdapter object's InsertCommand, UpdateCommand, and
DeleteCommand properties.
The ability to call stored procedures using a DataAdapter is a very powerful addition to ADO.NET. For
example, you can use a stored procedure to add a row to a table containing an identity column, and
then retrieve the new value for that column generated by the database. You can also do additional
work in a stored procedure such as inserting a row into an audit table when a row is modified. You'll
see examples of both these scenarios in this section.Tip
Using stored procedures instead of INSERT , UPDATE , and DELETE statements can also improve
performance. You should use stored procedures if your database supports them. SQL Server and
Oracle support stored procedures. Oracle stored-procedures are written in PL/SQL.
The ProductID column of the Products table is an identity column, and you saw a number of stored
procedures in Chapter 4, "Introduction to Transact-SQL Programming," that added a row to the
Products table and returned the ProductID.
In this section, you'll see how to
Create the required stored procedures in the Northwind database.
Set up a DataAdapter to call the stored procedures.
Add, modify, and remove a DataRow to from a DataTable.
The C# methods shown in this section follow the same steps as shown in the earlier section,
"Modifying Rows in a DataTable."Note
You'll find a complete program named PushChangesUsingProcedures.cs in the ch11 directory that
illustrates the use of the methods shown in this section. The listing for this program is omitted from
this book for brevity. Creating the Stored Procedures in the Database
You'll create the following three stored procedures in the Northwind database:
AddProduct4(), which adds a row to the Products table.
UpdateProduct(), which updates a row in the Products table.
DeleteProduct(), which deletes a row from the Products table.
Let's take a look at these procedures.The AddProduct4() Procedure
AddProduct4() adds a row to the Products table. It uses the number 4 because previous chapters
featured procedures named AddProduct(), AddProduct2(), and AddProduct3().
Listing 11.4 shows the AddProduct4.sql file that you use to create the AddProduct4() procedure.
Refer to Chapter 4 if you need a refresher on the Transact-SQL language or if you need to find out
how to run this script to create the procedure in the database.Listing 11.4: ADDPRODUCT4.SQL /*
AddProduct4.sql creates a procedure that adds a row to the Products table using values passed as
parameters to the procedure. The procedure returns the ProductID of the new row using a
RETURN statement */ CREATE PROCEDURE AddProduct4 @MyProductName nvarchar(40),
@MyUnitPrice money AS -- declare the @MyProductID variable DECLARE @MyProductID int --
insert a row into the Products table INSERT INTO Products (ProductName, UnitPrice) VALUES
(@MyProductName, @MyUnitPrice) -- use the SCOPE_IDENTITY() function to get the last --
identity value inserted into a table performed within -- the current database session and stored
procedure, -- so SCOPE_IDENTITY returns the ProductID for the new row -- in the Products table
in this case SET @MyProductID = SCOPE_IDENTITY() RETURN @MyProductID Note

Part 2: Fundamental Database Programming with ADO.NET 231

© 2004 ... Your company

You'll find the AddProduct4.sql file in the ch11 directory.The UpdateProduct() Procedure
UpdateProduct() updates a row in the Products table. Listing 11.5 shows the UpdateProduct.sql file
that you use to create the UpdateProduct() procedure.Listing 11.5: UPDATEPRODUCT.SQL /*
UpdateProduct.sql creates a procedure that modifies a row in the Products table using values
passed as parameters to the procedure */ CREATE PROCEDURE UpdateProduct @OldProductID
int, @NewProductName nvarchar(40), @NewUnitPrice money, @OldProductName nvarchar(40),
@OldUnitPrice money AS -- update the row in the Products table UPDATE Products SET
ProductName = @NewProductName, UnitPrice = @NewUnitPrice WHERE ProductID =
@OldProductID AND ProductName = @OldProductName AND UnitPrice = @OldUnitPrice
Because the WHERE clause contains the old column values in the UPDATE statement of this
procedure, the UPDATE uses optimistic concurrency described earlier. This means that one user
doesn't overwrite another user's changes.The DeleteProduct() Procedure
DeleteProduct() deletes a row from the Products table. Listing 11.6 shows the DeleteProduct.sql file
that you use to create the DeleteProduct() procedure.Listing 11.6: DELETEPRODUCT.SQL /*
DeleteProduct.sql creates a procedure that removes a row from the Products table */ CREATE
PROCEDURE DeleteProduct @OldProductID int, @OldProductName nvarchar(40),
@OldUnitPrice money AS -- delete the row from the Products table DELETE FROM Products
WHERE ProductID = @OldProductID AND ProductName = @OldProductName AND UnitPrice =
@OldUnitPrice Using SET NOCOUNT ON in Stored Procedures
In Chapter 4, "Introduction to Transact-SQL Programming," you saw that you use the SET NOCOUNT
ON command to prevent Transact-SQL from returning the number of rows affected. Typically, you
must avoid using this command in your stored procedures because the DataAdapter uses the
returned number of rows affected to know whether the update succeeded.
There is one situation when you must use SET NOCOUNT ON: when your stored procedure performs
an INSERT, UPDATE, or DELETE statement that affects another table besides the main one you are
pushing a change to. For example, say the DeleteProduct() procedure also performed an INSERT
statement to add a row to the ProductAudit table (described in Chapter 4) to record the attempt to
delete the row from the Products table. In this example, you must use SET NOCOUNT ONbefore
performing the INSERT into the ProductAudit table, as shown in Listing 11.7.Listing 11.7:
DELETEPRODUCT2.SQL /* DeleteProduct2.sql creates a procedure that removes a row from the
Products table */ CREATE PROCEDURE DeleteProduct2 @OldProductID int, @OldProductName
nvarchar(40), @OldUnitPrice money AS -- delete the row from the Products table DELETE FROM
Products WHERE ProductID = @OldProductID AND ProductName = @OldProductName AND
UnitPrice = @OldUnitPrice -- use SET NOCOUNT ON to suppress the return of the -- number of
rows affected by the INSERT statement SET NOCOUNT ON -- add a row to the Audit table IF
@@ROWCOUNT = 1 INSERT INTO ProductAudit (Action) VALUES ('Product deleted
with ProductID of ' + CONVERT(nvarchar, @OldProductID)) ELSE INSERT INTO
ProductAudit (Action) VALUES ('Product with ProductID of ' + CONVERT(nvarchar,
@OldProductID) + ' was not deleted')
By using SET NOCOUNT ON before the INSERT, only the number of rows affected by the DELETE
statement is returned, and the DataAdapter therefore gets the correct value.
Transact-SQL also has a SET NOCOUNT ON command to turn on the number of rows affected. You
can use a combination of SET NOCOUNT OFF and SET NOCOUNT ON if you need to perform an
INSERT, UPDATE, or DELETE statement before the main SQL statement in your stored
procedure. Setting Up a DataAdapter to Call Stored Procedures
As mentioned in the earlier section "Modifying Rows in a DataTable," you need to create a
DataAdapter object and set its SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand properties with appropriate Command objects. This time, however, the
InsertCommand, UpdateCommand, and DeleteCommand properties will contain Command objects
that call the stored procedures shown earlier.
First, the following example creates a SqlCommand object containing a SELECT statement and sets
the SelectCommand property of a SqlDataAdapter to that SqlCommand: SqlCommand
mySelectCommand = mySqlConnection.CreateCommand(); mySelectCommand.CommandText =
"SELECT " + " ProductID, ProductName, UnitPrice " + "FROM Products " + "ORDER BY
ProductID"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySelectCommand;

Mastering C# Database Programming @Team LiB232

© 2004 ... Your company

The SELECT statement is then run when you call the mySqlDataAdapter object's Fill() method to
retrieve rows from the Products table into a DataSet.
Before you can push changes to the database, you must set the InsertCommand, UpdateCommand,
and DeleteCommand properties of your DataAdapter with Command objects. These Command
objects will contain calls to the AddProduct4(), UpdateProduct(), and DeleteProduct() stored
procedures that you created earlier. When you then add, modify, or remove DataRow objects from
your DataSet, and then call the Update() method of your DataAdapter, the appropriate stored
procedure is run to push your changes to the database.
Let's take a look at how to set the InsertCommand, UpdateCommand, and DeleteCommand
properties of your DataAdapter.Setting the InsertCommand Property of a DataAdapter
The following example creates a SqlCommand object named myInsertCommand that contains a call
to the AddProduct4() stored procedure: SqlCommand myInsertCommand =
mySqlConnection.CreateCommand(); myInsertCommand.CommandText = "EXECUTE
@MyProductID = AddProduct4 @MyProductName, @MyUnitPrice";
myInsertCommand.Parameters.Add("@MyProductID", SqlDbType.Int, 0, "ProductID");
myInsertCommand.Parameters["@MyProductID"].Direction = ParameterDirection.Output;
myInsertCommand.Parameters.Add("@MyProductName", SqlDbType.NVarChar, 40,
"ProductName"); myInsertCommand.Parameters.Add("@MyUnitPrice", SqlDbType.Money, 0,
"UnitPrice");
As you can see from the previous code, the direction of the @MyProductID parameter is set to
ParameterDirection.Output, which indicates that this parameter is an output parameter. Also, the
maximum length of the @MyProductID and @MyUnitPrice parameters is set to 0 in the third
parameter to the Add() method. Setting them to 0 is fine because the maximum length doesn't apply
to fixed length types such as numbers, only to types such as strings.
Next, the following example sets the InsertCommand property of mySqlDataAdapter to
myInsertCommand: mySqlDataAdapter.InsertCommand = myInsertCommand; Setting the
UpdateCommand Property of a DataAdapter
The following example creates a SqlCommand object named myUpdateCommand that contains a call
to the UpdateProduct() stored procedure and sets the UpdateCommand property of
mySqlDataAdapter to myUpdateCommand: SqlCommand myUpdateCommand =
mySqlConnection.CreateCommand(); myUpdateCommand.CommandText = "EXECUTE
UpdateProduct @OldProductID, @NewProductName, " + "@NewUnitPrice, @OldProductName,
@OldUnitPrice"; myUpdateCommand.Parameters.Add("@OldProductID", SqlDbType.Int, 0,
"ProductID"); myUpdateCommand.Parameters.Add("@NewProductName", SqlDbType.NVarChar,
40, "ProductName"); myUpdateCommand.Parameters.Add("@NewUnitPrice", SqlDbType.Money, 0,
"UnitPrice"); myUpdateCommand.Parameters.Add("@OldProductName", SqlDbType.NVarChar, 40,
"ProductName"); myUpdateCommand.Parameters.Add("@OldUnitPrice", SqlDbType.Money, 0,
"UnitPrice"); myUpdateCommand.Parameters["@OldProductID"].SourceVersion =
DataRowVersion.Original; myUpdateCommand.Parameters["@OldProductName"].SourceVersion =
DataRowVersion.Original; myUpdateCommand.Parameters["@OldUnitPrice"].SourceVersion =
DataRowVersion.Original; mySqlDataAdapter.UpdateCommand = myUpdateCommand; Setting the
DeleteCommand Property of a DataAdapter
The following example creates a SqlCommand object named myDeleteCommand that contains a call
to the DeleteProduct() stored procedure and sets the DeleteCommand property of mySqlDataAdapter
to myDeleteCommand: SqlCommand myDeleteCommand = mySqlConnection.CreateCommand();
myDeleteCommand.CommandText = "EXECUTE DeleteProduct @OldProductID,
@OldProductName, @OldUnitPrice"; myDeleteCommand.Parameters.Add("@OldProductID",
SqlDbType.Int, 0, "ProductID"); myDeleteCommand.Parameters.Add("@OldProductName",
SqlDbType.NVarChar, 40, "ProductName"); myDeleteCommand.Parameters.Add("@OldUnitPrice",
SqlDbType.Money, 0, "UnitPrice"); myDeleteCommand.Parameters["@OldProductID"].SourceVersion
= DataRowVersion.Original; myDeleteCommand.Parameters["@OldProductName"].SourceVersion =
DataRowVersion.Original; myDeleteCommand.Parameters["@OldUnitPrice"].SourceVersion =
DataRowVersion.Original; mySqlDataAdapter.DeleteCommand = myDeleteCommand;
This completes the setup of the DataAdapter object. Adding a DataRow to a DataTable
In this section, you'll learn how to add a DataRow to a DataTable. First, the following code creates a
DataSet object named myDataSet and populates it by calling mySqlDataAdapter.Fill(): DataSet

Part 2: Fundamental Database Programming with ADO.NET 233

© 2004 ... Your company

myDataSet = new DataSet(); mySqlConnection.Open(); int numOfRows =
mySqlDataAdapter.Fill(myDataSet, "Products"); mySqlConnection.Close();
The int returned by the Fill() method is the number of rows retrieved from the database and copied to
myDataSet. The myDataSet object now contains a DataTable named Products, which contains the
rows retrieved by the following SELECT statement set earlier in the SelectCommand property of
mySqlDataAdapter: SELECT ProductID, ProductName, UnitPrice FROM Products ORDER BY
ProductID
To add a new row to a DataTable object, you use the same four steps as shown earlier in the section
"Modifying a DataRow in a DataTable." The following method, named AddDataRow(), uses those
steps to add a new row to a DataTable: public static int AddDataRow(DataTable myDataTable,
SqlDataAdapter mySqlDataAdapter, SqlConnection mySqlConnection) { Console.WriteLine("\nIn
AddDataRow()"); // step 1: use the NewRow() method of the DataTable to // create a new DataRow
Console.WriteLine("Calling myDataTable.NewRow()"); DataRow myNewDataRow =
myDataTable.NewRow(); Console.WriteLine("myNewDataRow.RowState = " +
myNewDataRow.RowState); // step 2: set the values for the DataColumn objects of // the new
DataRow myNewDataRow["ProductName"] = "Widget"; myNewDataRow["UnitPrice"] = 10.99; //
step 3: use the Add() method through the Rows property // to add the new DataRow to the
DataTable Console.WriteLine("Calling myDataTable.Rows.Add()");
myDataTable.Rows.Add(myNewDataRow); Console.WriteLine("myNewDataRow.RowState = " +
myNewDataRow.RowState); // step 4: use the Update() method to push the new // row to the
database Console.WriteLine("Calling mySqlDataAdapter.Update()"); mySqlConnection.Open();
int numOfRows = mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows);
Console.WriteLine("myNewDataRow.RowState = " + myNewDataRow.RowState);
DisplayDataRow(myNewDataRow, myDataTable); // return the ProductID of the new DataRow
return (int) myNewDataRow["ProductID"]; }
Notice that no value for the ProductID DataColumn is set in step 2. This is because the ProductID is
automatically generated by the database when the new row is pushed to the database by the
Update() method in step 4.
When the Update() method is called, the AddProduct4() stored procedure is run to add the new row to
the Products table. The database then generates a new ProductID for the row, which is then returned
by the AddProduct4() stored procedure. You can then read the new ProductID using
myNewDataRow["ProductID"], which now contains the new ProductID. This ProductID is then
returned at the end of the AddDataRow() method.
The output from AddDataRow() and its call to DisplayDataRow() are as follows: In AddDataRow()
Calling myDataTable.NewRow() myNewDataRow.RowState = Detached Calling
myDataTable.Rows.Add() myNewDataRow.RowState = Added Calling mySqlDataAdapter.Update()
numOfRows = 1 myNewDataRow.RowState = Unchanged In DisplayDataRow() ProductID = 180
ProductName = Widget UnitPrice = 10.99
As you can see, after myDataTable.NewRow() is called to create myNewDataRow its RowState is
Detached, which indicates myNewDataRow isn't yet part of myDataTable.
Next, myDataTable.Rows.Add() is called to add myNewDataRow to myDataTable. This causes the
RowState of myNewDataRow to change to Added, which indicates myNewDataRow has been added
to myDataTable.
Finally, mySqlDataAdapter.Update() is called to push the new row to the database. The
AddProduct4() stored procedure is run to add the new row to the Products table, and the RowState of
myNewDataRow changes to Unchanged. Modifying a DataRow in a DataTable
The following method, named ModifyDataRow(), uses four steps to modify a DataRow in a DataTable
object. Notice that the ProductID to modify is passed as a parameter: public static void
ModifyDataRow(DataTable myDataTable, int productID, SqlDataAdapter mySqlDataAdapter,
SqlConnection mySqlConnection) { Console.WriteLine("\nIn ModifyDataRow()"); // step 1: set the
PrimaryKey property of the DataTable myDataTable.PrimaryKey = new DataColumn[] {
myDataTable.Columns["ProductID"] }; // step 2: use the Find() method to locate the DataRow //
in the DataTable using the primary key value DataRow myEditDataRow =
myDataTable.Rows.Find(productID); // step 3: change the DataColumn values of the DataRow
myEditDataRow["ProductName"] = "Advanced Widget"; myEditDataRow["UnitPrice"] = 24.99;

Mastering C# Database Programming @Team LiB234

© 2004 ... Your company

Console.WriteLine("myEditDataRow.RowState = " + myEditDataRow.RowState);
Console.WriteLine("myEditDataRow[\" ProductID\", " + "DataRowVersion.Original] = " +
myEditDataRow["ProductID", DataRowVersion.Original]); Console.WriteLine("myEditDataRow[\"
ProductName\", " + "DataRowVersion.Original] = " + myEditDataRow["ProductName",
DataRowVersion.Original]); Console.WriteLine("myEditDataRow[\" UnitPrice\", " +
"DataRowVersion.Original] = " + myEditDataRow["UnitPrice", DataRowVersion.Original]);
Console.WriteLine("myEditDataRow[\" ProductName\", " + "DataRowVersion.Current] = " +
myEditDataRow["ProductName", DataRowVersion.Current]); Console.WriteLine("myEditDataRow[\"
UnitPrice\", " + "DataRowVersion.Current] = " + myEditDataRow["UnitPrice",
DataRowVersion.Current]); // step 4: use the Update() method to push the update // to the
database Console.WriteLine("Calling mySqlDataAdapter.Update()"); mySqlConnection.Open();
int numOfRows = mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows); Console.WriteLine("myEditDataRow.RowState
= " + myEditDataRow.RowState); DisplayDataRow(myEditDataRow, myDataTable); }
Notice this method displays the original values for the ProductID, ProductName, and UnitPrice
DataColumn objects using the DataRowVersion.Original constant. These are the DataColumn values
before they are changed. The method also displays the current values for the ProductName and
UnitPrice DataColumn objects using the DataRowVersion.Current constant. These are the
DataColumn values after they are changed. When the Update() method is called in step 4, the
UpdateProduct() stored procedure is run behind the scenes to perform the update.
The output from ModifyDataRow() and its call to DisplayDataRow() is as follows: In ModifyDataRow()
myEditDataRow.RowState = Modified myEditDataRow["ProductID", DataRowVersion.Original] = 180
myEditDataRow["ProductName", DataRowVersion.Original] = Widget myEditDataRow["UnitPrice",
DataRowVersion.Original] = 10.99 myEditDataRow["ProductName", DataRowVersion.Current] =
Advanced Widget myEditDataRow["UnitPrice", DataRowVersion.Current] = 24.99 Calling
mySqlDataAdapter.Update() numOfRows = 1 myEditDataRow.RowState = Unchanged In
DisplayDataRow() ProductID = 180 ProductName = Advanced Widget UnitPrice = 24.99
Notice that the RowState property of myEditDataRow changes to Modified after it is changed, and
then to Unchanged after mySqlDataAdapter.Update() is called. Removing a DataRow from a
DataTable
The following method, named RemoveDataRow(), uses four steps to remove a DataRow from a
DataTable. Notice that the ProductID to modify is passed as a parameter: public static void
RemoveDataRow(DataTable myDataTable, int productID, SqlDataAdapter mySqlDataAdapter,
SqlConnection mySqlConnection) { Console.WriteLine("\nIn RemoveDataRow()"); // step 1: set
the PrimaryKey property of the DataTable myDataTable.PrimaryKey = new DataColumn[] {
myDataTable.Columns["ProductID"] }; // step 2: use the Find() method to locate the DataRow
DataRow myRemoveDataRow = myDataTable.Rows.Find(productID); // step 3: use the Delete()
method to remove the DataRow Console.WriteLine("Calling myRemoveDataRow.Delete()");
myRemoveDataRow.Delete(); Console.WriteLine("myRemoveDataRow.RowState = " +
myRemoveDataRow.RowState); // step 4: use the Update() method to push the delete // to the
database Console.WriteLine("Calling mySqlDataAdapter.Update()"); mySqlConnection.Open(); int
numOfRows = mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows);
Console.WriteLine("myRemoveDataRow.RowState = " + myRemoveDataRow.RowState); }
The output from RemoveDataRow() is as follows: In RemoveDataRow() Calling
myRemoveDataRow.Delete() myRemoveDataRow.RowState = Deleted Calling
mySqlDataAdapter.Update() numOfRows = 1 myRemoveDataRow.RowState = Detached
Notice that the RowState property of myRemoveDataRow is set to Deleted after myRemoveData
.Delete() is called, and then to Detached after mySqlDataAdapter.Update() is called. When the
Update() method is called in step 4, the DeleteProduct() stored procedure is run behind the scenes to
perform the delete.Note
You'll find a complete program named PushChangesUsingProcedures.cs in the ch11 directory that
illustrates the use of the AddDataRow() , ModifyDataRow() , and RemoveDataRow() methods. This
listing is omitted from this book for brevity.

Part 2: Fundamental Database Programming with ADO.NET 235

© 2004 ... Your company

6.5.9 Automatically Generating SQL Statements

Automatically Generating SQL Statements
As you've seen in the previous sections, supplying your own INSERT, UPDATE, and DELETE
statements or stored procedures to push changes from your DataSet to the database means you have
to write a lot of code. You can avoid writing this code by using a CommandBuilder object, which can
automatically generate single-table INSERT, UPDATE, and DELETE commands that push the
changes you make to a DataSet object to the database. These commands are then set in the
InsertCommand, UpdateCommand, and DeleteCommand properties of your DataAdapter object.
When you then make changes to your DataSet and call the Update() method of your DataAdapter, the
automatically generated command is run to push the changes to the database.
Although you can save writing some code using a CommandBuilder, you must remember the
following limitations when using a CommandBuilder:
The SelectCommand property of your DataAdapter can retrieve rows from only a single table.
The database table used in your SelectCommand must contain a primary key.
The primary key of the table must be included in your SelectCommand.
The CommandBuilder takes a certain amount of time to generate the commands because it has to
examine the database.Warning
Because a CommandBuilder lowers the performance of your program, you should try to avoid using
them. They are intended for use by developers who aren't familiar with SQL or stored procedures. For
best performance, use stored procedures.
There are three CommandBuilder managed provider classes: SqlCommandBuilder,
OleDbCommandBuilder, and OdbcCommandBuilder. You'll see the use of a SqlCommandBuilder
object in this section that works with a SQL Server database. The other types of objects work in the
same way.
First, you need to set the SelectCommand property of a SqlDataAdapter object. The SELECT
statement used in this command can retrieve rows from only a single table, and in the following
example the Customers table is used: SqlCommand mySelectCommand =
mySqlConnection.CreateCommand(); mySelectCommand.CommandText = "SELECT CustomerID,
CompanyName, Address " + "FROM Customers " + "ORDER BY CustomerID"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand =
mySelectCommand;
Next, the following example creates a SqlCommandBuilder object, passing mySqlDataAdapter to the
constructor: SqlCommandBuilder mySqlCommandBuilder = new
SqlCommandBuilder(mySqlDataAdapter);
The SqlCommandBuilder will generate the commands containing INSERT, UPDATE, and DELETE
statements based on the SELECT statement previously set in the mySqlDataAdapter object's
SelectCommand property.
You can obtain the generated commands using the GetInsertCommand(), GetUpdateCommand(), and
GetDeleteCommand() methods of mySqlCommandBuilder. For example: Console.WriteLine(
"mySqlCommandBuilder.GetInsertCommand().CommandText =\n" +
mySqlCommandBuilder.GetInsertCommand().CommandText); Console.WriteLine(
"mySqlCommandBuilder.GetUpdateCommand().CommandText =\n" +
mySqlCommandBuilder.GetUpdateCommand().CommandText); Console.WriteLine(
"mySqlCommandBuilder.GetDeleteCommand().CommandText =\n" +
mySqlCommandBuilder.GetDeleteCommand().CommandText);
This code displays the following output (I've added some white space to make it easier to read):
mySqlCommandBuilder.GetInsertCommand().CommandText = INSERT INTO
Customers(CustomerID , CompanyName , Address) VALUES (@p1 , @p2 , @p3)
mySqlCommandBuilder.GetUpdateCommand().CommandText = UPDATE Customers SET
CustomerID = @p1 , CompanyName = @p2 , Address = @p3 WHERE (CustomerID = @p4 AND
CompanyName = @p5 AND Address = @p6)
mySqlCommandBuilder.GetDeleteCommand().CommandText = DELETE FROM Customers
WHERE (CustomerID = @p1 AND CompanyName = @p2 AND Address = @p3)
As you can see, these commands are similar to those shown earlier in the section
"Modifying Rows in a DataTable." The SQL statements used in these commands use optimistic

Mastering C# Database Programming @Team LiB236

© 2004 ... Your company

concurrency.
You can now populate and make changes to a DataTable containing rows from the Customers table,
and then push those changes to the database using the Update() method. You can use the same
AddDataRow(), ModifyDataRow(), and RemoveDataRow() methods as shown in the earlier section,
"Modifying Rows in a DataTable."Note
You'll find a complete program named UsingCommandBuilder.cs in the ch11 directory that illustrates
the use of the CommandBuilder object shown in this section. This listing is omitted from this book for
brevity.

6.5.10 Exploring the DataAdapter and DataTable Events

Exploring the DataAdapter and DataTable Events
You'll find all the code examples shown in this section in the program UsingEvents.cs located in the
ch11 directory. The listing for this program is omitted from this book for brevity. If you compile and run
that program, you'll see the order in which the events fire when you add, modify, and remove a row
from a DataTable that contains rows retrieved from the Customers table. The DataAdapter Events
The events exposed by a SqlDataAdapter object are shown in Table 11.11. Table 11.11:
SqlDataAdapter EVENTS
EVENT
EVENT HANDLER
DESCRIPTION
FillError
FillErrorEventHandler
Fires when an error occurs during a call to the Fill() method.
RowUpdating
RowUpdatingEventHandler
Fires before a row is added, modified, or deleted in the database as a result of calling the Update()
method.
RowUpdated
RowUpdatedEventHandler
Fires after a row is added, modified, or deleted in the database as a result of calling the Update()
method.The FillError Event
The FillError event fires when you call the Fill() method and an error occurred. The following are a
couple of scenarios that would cause an error:
An attempt is made to add a number from the database to a DataColumn that couldn't be converted to
the .NET type of that DataColumn without losing precision.
An attempt is made to add a row from the database to a DataTable that violates a constraint in that
DataTable.
The following example event handler, named FillErrorEventHandler(), checks for the precision
conversion error: public static void FillErrorEventHandler(object sender, FillErrorEventArgs
myFEEA) { if (myFEEA.Errors.GetType() == typeof(System.OverflowException)) {
Console.WriteLine("A loss of precision occurred"); myFEEA.Continue = true; } }
The first parameter is an object of the System.Object class, and it represents the object that raises the
event. The second parameter is an object of the FillErrorEventArgs class, which like all the EventArgs
classes, is derived from the System.EventArgs class. The EventArgs class is the base class for event
data and represents the details of the event. Table 11.12 shows the FillErrorEventArgs
properties. Table 11.12: FillErrorEventArgs PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Continue
bool
Gets or sets a bool that indicates whether you want to continue filling your DataSet even though an
error has occurred. The default is false.
DataTable

Part 2: Fundamental Database Programming with ADO.NET 237

© 2004 ... Your company

DataTable
Gets the DataTable that was being filled when the error occurred.
Errors
Exception
Gets the Exception containing the error that occurred.
Values
object[]
Gets the DataColumn values of the DataRow in which the error occurred. These values are returned
in an object array.
You indicate that mySqlDataAdapter is to call the FillErrorEventHandler() method when the FillError
event fires using the following code: mySqlDataAdapter.FillError += new
FillErrorEventHandler(FillErrorEventHandler); The RowUpdating Event
The RowUpdating event fires before a row is updated in the database as a result of you calling the
Update() method of your DataAdapter. This event fires once for each DataRow you've added,
modified, or deleted in a DataTable.
The following actions are performed behind the scenes for each DataRow when you call the Update()
method of your DataAdapter:
The values in your DataRow are copied to the parameter values of the appropriate Command in the
InsertCommand, UpdateCommand, or DeleteCommand property of your DataAdapter.
The RowUpdating event of your DataAdapter fires.
The Command is run to push the change to the database.
Any output parameters from the Command are returned.
The RowUpdated event of your DataAdapter fires.
The AcceptChanges() method of your DataRow is called.
The second parameter to any event handler method you write to handle the RowUpdating event of a
SqlDataAdapter object is of the SqlRowUpdatingEventArgs class, and Table 11.13 shows the
properties of this class. Table 11.13: SqlRowUpdatingEventArgs PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Command
SqlCommand
Gets or sets the SqlCommand that is run when the Update() method is called.
Errors
Exception
Gets the Exception for any error that occurred.
Row
DataRow
Gets the DataRow to send to the database through the Update() method.
StatementType
StatementType
Gets the type of the SQL statement that is to be run. StatementType is an enumeration in the
System.Data namespace that contains the following members:
Delete
Insert
Select
Update
Status
UpdateStatus
Gets or sets the UpdateStatus of the Command object. UpdateStatus is an enumeration in the
System.Data namespace that contains the following members:
Continue, which indicates that the DataAdapter is to continue processing rows.
ErrorsOccurred, which indicates that the update is to be treated as an error.
SkipAllRemainingRows, which indicates that the current row and all remaining rows are to be skipped
and not updated.
SkipCurrentRow, which indicates that the current row is to be skipped and not updated. The default is

Mastering C# Database Programming @Team LiB238

© 2004 ... Your company

Continue.
TableMapping
DataTableMapping
Gets the DataTableMapping object that is sent to the Update() method. A DataTableMapping object
contains a description of a mapped relationship between a source table and a DataTable (see
Chapter 10, "Using DataSet Objects to Store Data").
The following example event handler, named RowUpdatingEventHandler(), prevents any new rows
from being added to the database with a CustomerID of J5COM: public static void
RowUpdatingEventHandler(object sender, SqlRowUpdatingEventArgs mySRUEA) {
Console.WriteLine("\nIn RowUpdatingEventHandler()"); if ((mySRUEA.StatementType ==
StatementType.Insert) && (mySRUEA.Row["CustomerID"] == "J5COM")) {
Console.WriteLine("Skipping current row"); mySRUEA.Status = UpdateStatus.SkipCurrentRow; } }
You indicate that mySqlDataAdapter is to call the RowUpdatingEventHandler() method when the
RowUpdating event fires using the following code: mySqlDataAdapter.RowUpdating += new
SqlRowUpdatingEventHandler(RowUpdatingEventHandler);
If you then call the AddDataRow() method shown earlier to attempt to add a row to the Customers
table, the RowUpdating event will fire and call the RowUpdatingEventHandler() method. This method
causes the new row to be skipped and prevents it from being added to the Customers database
table.The RowUpdated Event
The RowUpdated event fires after a row is updated in the database as a result of you calling the
Update() method of your DataAdapter. This event fires once for each DataRow you've added,
modified, or deleted in a DataTable.
The second parameter to any method you write to handle the RowUpdated event of a SqlDataAdapter
object is of the SqlRowUpdatedEventArgs class. The properties of this class are the same as those
shown earlier in Table 11.13, plus one additional property shown in Table 11.14. Table 11.14:
ADDITIONAL SqlRowUpdatedEventArgs PROPERTY
PROPERTY
TYPE
DESCRIPTION
RecordsAffected
int
Gets an int containing the number of rows added, modified, or removed when the appropriate
Command is run by the Update() method.
The following example event handler, named RowUpdatedEventHandler(), displays the number of
records affected by the following Command: public static void RowUpdatedEventHandler(object
sender, SqlRowUpdatedEventArgs mySRUEA) { Console.WriteLine("\nIn
RowUpdatedEventHandler()"); Console.WriteLine("mySRUEA.RecordsAffected = " +
mySRUEA.RecordsAffected); }
You indicate that mySqlDataAdapter is to call the RowUpdatedEventHandler() method when the
RowUpdated event fires using the following code: mySqlDataAdapter.RowUpdated += new
SqlRowUpdatedEventHandler(RowUpdatedEventHandler); The DataTable Events
The events exposed by a DataTable object are shown in Table 11.15. Table 11.15: DataTable
EVENTS
EVENT
EVENT HANDLER
DESCRIPTION
ColumnChanging
DataColumnChangeEventHandler
Fires before a changed DataColumn value is committed in a DataRow.
ColumnChanged
DataColumnChangeEventHandler
Fires after a changed DataColumn value is committed in a DataRow.
RowChanging
DataRowChangeEventHandler
Fires before a changed DataRow is committed in a DataTable.
RowChanged

Part 2: Fundamental Database Programming with ADO.NET 239

© 2004 ... Your company

DataRowChangeEventHandler
Fires after a changed DataRow is committed in a DataTable.
RowDeleting
DataRowChangeEventHandler
Fires before a DataRow is deleted from a DataTable.
RowDeleted
DataRowChangeEventHandler
Fires after a DataRow is deleted from a DataTable.The ColumnChanging and ColumnChanged
Events
The ColumnChanging event fires before a change to a DataColumn value is committed in a DataRow.
Similarly, the ColumnChanged event fires after a change to a DataColumn value is committed in a
DataRow. These two events are always fired before the RowChanging and RowChanged events.
What is meant by "commit" in this context? If you simply set a new value for a DataColumn, then the
change is automatically committed in the DataRow. However, if you start the change to the DataRow
using the BeginEdit() method, then the change is committed only when you call the EndEdit() method
of that DataRow. You can also reject the change to the DataRow using the CancelEdit() method.
The second parameter to any event handler you write to handle the ColumnChanging or
ColumnChanged events of a DataTable object is of the DataColumnChangeEventArgs class. Table
11.16 shows the properties of this class. Table 11.16: DataColumnChangeEventArgs PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Column
DataColumn
Gets the DataColumn with the value that is changing.
ProposedValue
object
Gets or sets the new value for the DataColumn.
Row
DataRow
Gets the DataRow that contains the DataColumn with the value that is changing.
The following example method handlers, named ColumnChangingEventHandler() and
ColumnChangedEventHandler(), display the Column and ProposedValue properties: public static void
ColumnChangingEventHandler(object sender, DataColumnChangeEventArgs myDCCEA) {
Console.WriteLine("\nIn ColumnChangingEventHandler()"); Console.WriteLine("myDCCEA.Column
= " + myDCCEA.Column); Console.WriteLine("myDCCEA.ProposedValue = " +
myDCCEA.ProposedValue); } public static void ColumnChangedEventHandler(object sender,
DataColumnChangeEventArgs myDCCEA) { Console.WriteLine("\nIn
ColumnChangedEventHandler()"); Console.WriteLine("myDCCEA.Column = " +
myDCCEA.Column); Console.WriteLine("myDCCEA.ProposedValue = " +
myDCCEA.ProposedValue); }
The next example creates a DataTable named customersDataTable and adds the previous two
methods to the ColumnChanging and ColumnChanged events of customersDataTable: DataTable
customersDataTable = myDataSet.Tables["Customers"]; customersDataTable.ColumnChanging +=
new DataColumnChangeEventHandler(ColumnChangingEventHandler);
customersDataTable.ColumnChanged += new
DataColumnChangeEventHandler(ColumnChangedEventHandler); The RowChanging and
RowChanged Events
The RowChanging event fires before a change to a DataRow is committed in a DataTable. Similarly,
the RowChanged event fires after a change to a DataRow value is committed in a DataTable.
The second parameter to any event handler you write to handle the RowChanging or RowChanged
events of a DataTable object is of the DataRowChangeEventArgs class. Table 11.17 shows the
properties of this class. Table 11.17: DataRowChangeEventArgs PROPERTIES
PROPERTY
TYPE
DESCRIPTION

Mastering C# Database Programming @Team LiB240

© 2004 ... Your company

Action
DataRowAction
Gets the DataRowAction that has occurred for the DataRow. The DataRowAction enumeration is
defined in the System.Data namespace and contains the following members:
Add, which indicates the DataRow has been added to the DataTable.
Change, which indicates the DataRow has been modified.
Commit, which indicates the DataRow has been committed in the DataTable.
Delete, which indicates the DataRow has been removed from the DataTable.
Nothing, which indicates the DataRow has not changed.
Rollback, which indicates the change to the DataRow has been rolled back.
Row
DataRow
Gets the DataRow that contains the DataColumn with the value that is changing.
The following example event handlers, named RowChangingEventHandler() and
RowChangedEventHandler(), display the Action property: public static void
RowChangingEventHandler(object sender, DataRowChangeEventArgs myDRCEA) {
Console.WriteLine("\nIn RowChangingEventHandler()"); Console.WriteLine("myDRCEA.Action = " +
myDRCEA.Action); } public static void RowChangedEventHandler(object sender,
DataRowChangeEventArgs myDRCEA) { Console.WriteLine("\nIn RowChangedEventHandler()");
Console.WriteLine("myDRCEA.Action = " + myDRCEA.Action); }
The next example adds the previous two methods to the RowChanging and RowChanged events of
customersDataTable: customersDataTable.RowChanging += new
DataRowChangeEventHandler(RowChangingEventHandler); customersDataTable.RowChanged +=
new DataRowChangeEventHandler(RowChangedEventHandler); The RowDeleting and RowDeleted
Events
The RowDeleting event fires before a DataRow is deleted from a DataTable. Similarly, the
RowDeleted event fires after a DataRow is deleted from a DataTable.
The second parameter to any event handler you write to handle the RowDeleting or RowDeleted
events of a DataTable is of the DataRowChangeEventArgs class, and Table 11.17 shown earlier
shows the properties of this class.
The following example method handlers, named RowDeletingEventHandler() and RowDeleted-
EventHandler(), display the Action property: public static void RowDeletingEventHandler(object
sender, DataRowChangeEventArgs myDRCEA) { Console.WriteLine("\nIn
RowDeletingEventHandler()"); Console.WriteLine("myDRCEA.Action = " + myDRCEA.Action); }
public static void RowDeletedEventHandler(object sender, DataRowChangeEventArgs myDRCEA
) { Console.WriteLine("\nIn RowDeletedEventHandler()"); Console.WriteLine("myDRCEA.Action = "
+ myDRCEA.Action); }
The next example adds the previous two methods to the RowDeleting and RowDeleted events of
customersDataTable: customersDataTable.RowDeleting += new
DataRowChangeEventHandler(RowDeletingEventHandler); customersDataTable.RowDeleted +=
new DataRowChangeEventHandler(RowDeletedEventHandler); Note
You'll find all the code examples shown in this section in the program UsingEvents.cs located in the
ch11 directory. This program listing is omitted from this book for brevity.

6.5.11 Dealing with Update Failures

Dealing with Update Failures
So far, the examples you've seen have assumed that the updates pushed to the database by the
Update() have succeeded. In this section, you see what happens when updates fail-and what you can
do about it.Note
You'll find all the code examples shown in this section in the HandlingUpdateFailures.cs file located
in the ch11 directory. This program listing is omitted from this book for brevity.
In the examples in this section, assume that the CommandText property of a SqlDataAdapter object's
UpdateCommand is set as follows: UPDATE Customers SET CompanyName =
@NewCompanyName, Address = @NewAddress WHERE CustomerID = @OldCustomerID AND

Part 2: Fundamental Database Programming with ADO.NET 241

© 2004 ... Your company

CompanyName = @OldCompanyName AND Address = @OldAddress
This UPDATE statement uses optimistic concurrency because the updated columns are included in
the WHERE clause. An Update Failure Scenario
Consider the following scenario that shows an update failure:
User 1 retrieves the rows from the Customers table into a DataTable named customersDataTable.
User 2 retrieves the same rows.
User 1 updates the CustomerName DataColumn of the DataRow with the CustomerID DataColumn of
J5COM and pushes the change to the database. Let's say User 1 changes the CustomerName from
J5 Company to Updated Company.
User 2 updates the same DataRow and changes the CompanyName from J5 Company to Widgets
Inc. and attempts to push the change to the database. User 2 then causes a DBConcurrecy-Exception
object to be thrown and their update fails. (The same exception occurs if User 2 tries to update or
delete a row that has already been deleted by User 1.)
Why does the update fail in step 4? The reason is that with optimistic concurrency, the
CompanyName column is used in the WHERE clause of the UPDATE statement. Because of this, the
original row loaded by User 2 cannot be found anymore-and therefore the UPDATE statement fails.
The row cannot be found because User 1 has already changed the CompanyName column from J5
Company to Updated Company in step 2.
That's the problem with optimistic concurrency, but what can you as a developer do about it? You can
report the problem to User 2, refresh their rows using the Fill() method, and they can make their
change again-however, if User 2 has already made a large number of changes and they can't save
any of them, they'll probably be very annoyed at your program.
Fortunately, you can set the ContinueUpdateOnError property of your DataAdapter to true to continue
updating any DataRow objects even if an error occurs. That way, when User 2 saves their changes
they can at least save the rows that don't cause any errors. Let's take a look at how to set the
ContinueUpdateOnError property. Setting the ContinueUpdateOnError Property
The following example sets the ContinueUpdateOnError property to true for mySqlDataAdapter:
mySqlDataAdapter.ContinueUpdateOnError = true;
When you call mySqlDataAdapter.Update(), it will push all the changes that don't cause errors to the
database. You can then check for errors afterward using the HasErrors property of a DataSet or the
HasErrors property of individual DataTable objects, which you'll see how to shortly in the section
"Checking for Errors." Programming a Failed Update Example
Let's program an example of a failed update. This example will simulate the updates made by User 1
and User 2 described earlier. I'll use the following method, named ModifyRowsUsingUPDATE(), to
simulate the update made by User 1 in step 3 described earlier: public static void
ModifyRowUsingUPDATE(SqlConnection mySqlConnection) { Console.WriteLine("\nIn
ModifyDataRowUsingUPDATE()"); Console.WriteLine("Updating CompanyName to 'Updated
Company' for J5COM"); SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "UPDATE Customers " + "SET CompanyName = 'Updated
Company' " + "WHERE CustomerID = 'J5COM'"; mySqlConnection.Open(); int numberOfRows =
mySqlCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = " +
numberOfRows); mySqlConnection.Close(); }
Notice that the CompanyName is set to Updated Company for the row with the CustomerID of
J5COM.
I'll use the following ModifyDataRow() method to simulate the update made by User 2 in step 4. This
is similar to the other ModifyDataRow() methods you've seen earlier in this chapter. Notice that the
CompanyName is set to Widgets Inc. for the row with the CustomerID of J5COM: public static void
ModifyDataRow(DataTable myDataTable, SqlDataAdapter mySqlDataAdapter, SqlConnection
mySqlConnection) { Console.WriteLine("\nIn ModifyDataRow()"); // step 1: set the PrimaryKey
property of the DataTable myDataTable.PrimaryKey = new DataColumn[] {
myDataTable.Columns["CustomerID"] }; // step 2: use the Find() method to locate the DataRow
// in the DataTable using the primary key value DataRow myDataRow =
myDataTable.Rows.Find("J5COM"); // step 3: change the DataColumn values of the DataRow
myDataRow["CompanyName"] = "Widgets Inc."; Console.WriteLine("myDataRow.RowState = " +
myDataRow.RowState); // step 4: use the Update() method to push the modified // row to the
database Console.WriteLine("Calling mySqlDataAdapter.Update()"); mySqlConnection.Open(); int

Mastering C# Database Programming @Team LiB242

© 2004 ... Your company

numOfRows = mySqlDataAdapter.Update(myDataTable); mySqlConnection.Close();
Console.WriteLine("numOfRows = " + numOfRows); Console.WriteLine("myDataRow.RowState = "
+ myDataRow.RowState); DisplayDataRow(myDataRow, myDataTable); }
The next example calls ModifyRowUsingUPDATE() to perform the first update of the row with the
CustomerID of J5COM: ModifyRowUsingUPDATE(mySqlConnection);
Next, the ContinueUpdateOnError property of mySqlDataAdapter is set to true to continue updating
any DataRow objects even if an error occurs: mySqlDataAdapter.ContinueUpdateOnError = true;
Next, ModifyDataRow() is called to attempt to modify the same row as ModifyRowsUsingUPDATE():
ModifyDataRow(customersDataTable, mySqlDataAdapter, mySqlConnection);
Normally, this will throw an exception since the row cannot be found, but since the
ContinueUpdateOnError property of mySqlDataAdapter has been set to true, no exception will be
thrown. That way, if myDataTable had other updated rows, they would still be pushed to the database
by the call to the Update() method. Checking for Errors
Having set the ContinueUpdateOnError property of mySqlDataAdapter to true, no exception will be
thrown when an error occurs. Instead, you can check for errors in a DataSet or individual DataTable
or DataRow using the HasErrors property. You can then show the user the details of the error using
the RowError property of the DataRow, along with the original and current values for the DataColumn
objects in that DataRow. For example: if (myDataSet.HasErrors) { Console.WriteLine("\nDataSet has
errors!"); foreach (DataTable myDataTable in myDataSet.Tables) { // check the HasErrors
property of myDataTable if (myDataTable.HasErrors) { foreach (DataRow myDataRow in
myDataTable.Rows) { // check the HasErrors property of myDataRow if
(myDataRow.HasErrors) { Console.WriteLine("Here is the row error:");
Console.WriteLine(myDataRow.RowError); Console.WriteLine("Here are the column details in
the DataSet:"); foreach (DataColumn myDataColumn in myDataTable.Columns) {
Console.WriteLine(myDataColumn + "original value = " + myDataRow[myDataColumn,
DataRowVersion.Original]); Console.WriteLine(myDataColumn + "current value = " +
myDataRow[myDataColumn, DataRowVersion.Current]); } } } } } } Fixing the Error
Showing the user the error is only half the story. What can you do to fix the problem? One solution is
to call the Fill() method again to synchronize the rows in your DataSet with the database. That way,
the row updated by ModifyRowsUsingUPDATE() in the Customers table will be pulled from the
Customers table and replace the original J5COM row in the DataSet. For example:
mySqlConnection.Open(); numOfRows = mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close();
You might expect numOfRows to be 1 because you're replacing only one row, right? Wrong:
numOfRows will contain the total number of rows in the Customers table. The reason for this is that
the Fill() method actually pulls all of the rows from the Customers table and puts them in the
CustomersDataTable of myDataSet, throwing away any existing rows with matching primary key
column values already in the Customers DataTable.Warning
If you didn't add a primary key to your Customers DataTable , then the call to the Fill() method would
simply add all the rows from the Customers table to the Customers DataTable again-duplicating the
rows already there.
Next, you call ModifyDataRow() again to modify the J5COM row:
ModifyDataRow(customersDataTable, mySqlDataAdapter, mySqlConnection);
This time the update succeeds because ModifyDataRow() finds the J5COM row in
customersDataTable that was just pulled from the Customers table.Note
If a user tries to update a row that has already been deleted from the database table, the only thing
you can do is refresh the rows and ask the user to enter their row again.

6.5.12 Using Transactions with a DataSet (SQL)

Using Transactions with a DataSet (SQL)
In Chapter 3, "Introduction to Structured Query Language," you saw how you can group SQL
statements together into transactions. The transaction is then committed or rolled back as one unit.
For example, in the case of a banking transaction, you might want to withdraw money from one
account and deposit it into another account. You would then commit both of these changes as one

Part 2: Fundamental Database Programming with ADO.NET 243

© 2004 ... Your company

unit, or if there's a problem, rollback both changes. In Chapter 8, "Executing Database Commands,"
you saw how to use a Transaction object to represent a transaction.
As you know, a DataSet doesn't have a direct connection to the database. Instead, you use the Fill()
and Update() methods of a DataAdapter to pull and push rows from and to the database to your
DataSet respectively. In fact, a DataSet has no "knowledge" of the database at all. A DataSet simply
stores a disconnected copy of the data. Because of this, a DataSet doesn't have any built-in
functionality to handle transactions.
How then do you use transactions with a DataSet? The answer is you must use the Transaction
property of the Command objects stored in a DataAdapter. Using the DataAdapter Command
Object's Transaction Property
A DataAdapter stores four Command objects that you access using the SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand properties. When you call the Update()
method of a DataAdapter, it runs the appropriate InsertCommand, UpdateCommand, or
DeleteCommand.
You can create a Transaction object and set the Transaction property of the Command objects in your
DataAdapter to this Transaction object. When you then modify your DataSet and push the changes to
the database using the Update() method of your DataAdapter, the changes will use the same
Transaction.
The following example creates a SqlTransaction object named mySqlTransaction and sets the
Transaction property of each of the Command objects in mySqlDataAdapter to mySqlTransaction:
SqlTransaction mySqlTransaction = mySqlConnection.BeginTransaction();
mySqlDataAdapter.SelectCommand.Transaction = mySqlTransaction;
mySqlDataAdapter.InsertCommand.Transaction = mySqlTransaction;
mySqlDataAdapter.UpdateCommand.Transaction = mySqlTransaction;
mySqlDataAdapter.DeleteCommand.Transaction = mySqlTransaction;
Each of the Command objects in mySqlDataAdapter will now use mySqlTransaction.
Let's say you added, modified, and removed some rows from a DataTable contained in a DataSet
named myDataSet. You can push these changes to the database using the following example:
mySqlDataAdapter.Update(myDataSet);
All your changes to myDataSet are pushed to the database as part of the transaction in
mySqlTransaction. You can commit those changes using the Commit() method of mySqlTransaction:
mySqlTransaction.Commit();
You could also roll back those changes using the Rollback() method of mySqlTransaction.Note
A transaction is rolled back by default; therefore, you should always explicitly commit or roll back your
transaction using Commit() or Rollback() to make it clear what your program is intended to do.

6.5.13 Modifying Data Using a Strongly Typed DataSet

Modifying Data Using a Strongly Typed DataSet
In Chapter 10, you saw how to create and use a strongly typed DataSet class named MyDataSet. You
can use objects of this class to represent the Customers table and rows from that table. In this
section, you'll see how to modify data using a strongly typed object of the MyDataSet class.Note
One of the features of a strongly typed DataSet object allows you to read a column value using a
property with the same name as the column. For example, to read the CustomerID of a column you
can use myDataRow.CustomerID rather than myDataRow["CustomerID"] . See Chapter 10 for more
details on reading column values.
The following methods in the MyDataSet class allow you to modify the rows stored in a MyDataSet
object: NewCustomersRow(), AddCustomersRow(), and RemoveCustomersRow(). You can find a row
using the FindByCustomerID() method. You can check if a column value contains a null value using
methods such as IsContactNameNull(), and you can set a column to null using methods such as
SetContactNameNull(). You'll see these methods used shortly.Note
You'll find a completed VS .NET example project for this section in the StronglyTypedDataSet2
directory. You can open this project in VS .NET by selecting File £ Open £ Project and opening the
WindowsApplication4.csproj file. You'll need to change the ConnectionString property of the
sqlConnection1 object to connect to your Northwind database.

Mastering C# Database Programming @Team LiB244

© 2004 ... Your company

The Form1_Load() method of the form in the example project shows how to add, modify, and remove
a row to a strongly typed DataSet object named myDataSet1. You can see the steps that accomplish
these tasks in the following Form1_Load() method: private void Form1_Load(object sender,
System.EventArgs e) { // populate the DataSet with the CustomerID, CompanyName, // and
Address columns from the Customers table sqlConnection1.Open();
sqlDataAdapter1.Fill(myDataSet1, "Customers"); // get the Customers DataTable
MyDataSet.CustomersDataTable myDataTable = myDataSet1.Customers; // create a new
DataRow in myDataTable using the // NewCustomersRow() method of myDataTable
MyDataSet.CustomersRow myDataRow = myDataTable.NewCustomersRow(); // set the
CustomerID, CompanyName, and Address of myDataRow myDataRow.CustomerID = "J5COM";
myDataRow.CompanyName = "J5 Company"; myDataRow.Address = "1 Main Street"; // add the
new row to myDataTable using the // AddCustomersRow() method
myDataTable.AddCustomersRow(myDataRow); // push the new row to the database using // the
Update() method of sqlDataAdapter1 sqlDataAdapter1.Update(myDataTable); // find the row using
the FindByCustomerID() // method of myDataTable myDataRow =
myDataTable.FindByCustomerID("J5COM"); // modify the CompanyName and Address of
myDataRow myDataRow.CompanyName = "Widgets Inc."; myDataRow.Address = "1 Any Street";
// push the modification to the database sqlDataAdapter1.Update(myDataTable); // display the
DataRow objects in myDataTable // in the listView1 object foreach (MyDataSet.CustomersRow
myDataRow2 in myDataTable.Rows) { listView1.Items.Add(myDataRow2.CustomerID);
listView1.Items.Add(myDataRow2.CompanyName); // if the Address is null, set Address to
"Unknown" if (myDataRow2.IsAddressNull() == true) { myDataRow2.Address = "Unknown";
} listView1.Items.Add(myDataRow2.Address); } // find and remove the new row using the //
FindByCustomerID() and RemoveCustomersRow() methods // of myDataTable myDataRow =
myDataTable.FindByCustomerID("J5COM"); myDataTable.RemoveCustomersRow(myDataRow);
// push the delete to the database sqlDataAdapter1.Update(myDataTable);
sqlConnection1.Close(); }
Feel free to compile and run the example form.

6.5.14 Summary

Summary
In this chapter, you learned how to modify the rows in a DataSet and then push those changes to the
database via a DataAdapter.
You saw how to add restrictions to a DataTable and its DataColumn objects. This allows you to model
the same restrictions placed on the database tables and columns in your DataTable and DataColumn
objects. By adding restrictions up front, you prevent bad data from being added to your DataSet to
begin with, and this helps reduce the errors when attempting to push changes in your DataSet to the
database.
Each row in a DataTable is stored in a DataRow object, and you saw how to find, filter, and sort the
DataRow objects in a DataTable using the Find() method of a DataTable. You also learned how to
filter and sort the DataRow objects in a DataTable using the Select() method.
You saw the steps required to add, modify, and remove DataRow objects from a DataTable and then
push those changes to the database. To do this you must first set up your DataAdapter with
Command objects containing appropriate SQL INSERT, UPDATE, and DELETE statements. You
store these Command objects in your DataAdapter object's InsertCommand, UpdateCommand, and
DeleteCommand properties. You push changes from your DataSet to the database using the Update()
method of your DataAdapter. When you add, modify, or remove DataRow objects from your DataSet
and then call the Update() method of your DataAdapter, the appropriate InsertCommand,
UpdateCommand, or DeleteCommand is run to push your changes to the database.
Concurrency determines how multiple users' modifications to the same row are handled. With
optimistic concurrency , you can modify a row in a database table only if no one else has modified
that same row since you loaded it into your DataSet. This is typically the best type of concurrency to
use because you don't want to overwrite someone else's changes. With "last one wins" concurrency,
you can always modify a row-and your changes overwrite anyone else's changes. You typically want

Part 2: Fundamental Database Programming with ADO.NET 245

© 2004 ... Your company

to avoid using "last one wins" concurrency.
You can get a DataAdapter object to call stored procedures to add, modify, and remove rows from the
database. These procedures are called instead of the INSERT, UPDATE, and DELETE statements
you've seen how to set in a DataAdapter object's InsertCommand, UpdateCommand, and
DeleteCommand properties.
Supplying your own INSERT, UPDATE, and DELETE statements or stored procedures to push
changes from your DataSet to the database means you have to write a lot of code. You can avoid
writing this code by using a CommandBuilder object, which can automatically generate single-table
INSERT, UPDATE, and DELETE commands that push the changes you make to a DataSet object to
the database. These commands are then set in the InsertCommand, UpdateCommand, and
DeleteCommand properties of your DataAdapter object. When you then make changes to your
DataSet and call the Update() method of your DataAdapter, the automatically generated command is
run to push the changes to the database.
You also saw how to handle update failures and use transactions with a DataSet, and in the final
section of this chapter you saw how to update the rows stored in a strongly typed data set.
In Chapter 12, you'll learn how to navigate and modify related data.

6.6 Chapter 12: Navigating and Modifying Related Data

Chapter 12: Navigating and Modifying Related DataOverview
In chapter 2, "Introduction to Databases," you saw how database tables can be related to each other
through foreign keys. For example, the OrderID column of the Orders table is related to the
CustomerID column of the Customers table through a foreign key. Because the Orders table depends
on the Customers table, the Orders table is known as the child table and the Customers table as the
parent table . The foreign key is said to define a parent-child relationship between the two tables.
Similarly, you can relate parent and child DataTable objects using a ForeignKeyConstraint or a
DataRelation object. By default, when you add a DataRelation object to a DataSet, it actually adds a
UniqueConstraint object to your parent DataTable along with a ForeignKeyConstraint to your child
DataTable. The ForeignKeyConstraint ensures that each DataRow in your child DataTable has a
matching DataRow in your parent DataTable.
In this chapter, you'll delve into the details of UniqueConstraint, ForeignKeyConstraint, and
DataRelation objects. You'll also see how to navigate rows in related DataTable objects, make
changes in related DataTable objects, and finally push those changes to the database.Tip
To improve performance when loading a DataTable with large numbers of DataRow objects, you
should set the EnforceConstraints property of your DataSet to false for the duration of the load. This
stops the constraints from being enforced. Remember to set EnforceConstraints back to the default
of true at the end of the load.
Featured in this chapter:
The UniqueConstraint class
Creating a UniqueConstraint object
The ForeignKeyConstraint class
Creating a ForeignKeyConstraint object
The DataRelation class
Creating and using a DataRelation object
Adding, updating, and deleting related rows
Issues when updating the primary key of a parent row
Nested XML
Defining a relationship using Visual Studio .NET

6.6.1 The UniqueConstraint Class

The UniqueConstraint Class
You use an object of the UniqueConstraint class to ensure that a DataColumn value, or combination

Mastering C# Database Programming @Team LiB246

© 2004 ... Your company

of DataColumn values, is unique for each DataRow in a DataTable. The UniqueConstraint class is
derived from the System.Data.Constraint class. Table 12.1 shows the UniqueConstraint
properties. Table 12.1: UniqueConstraint PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Columns
DataColumn[]
Gets the array of DataColumn objects for the UniqueConstraint.
ConstraintName
string
Gets the name of the UniqueConstraint.
ExtendedProperties
PropertyCollection
Gets the PropertyCollection object that you can use to store strings of additional information.
IsPrimaryKey
bool
Gets a bool that indicates whether the UniqueConstraint is a primary key.
Table
DataTable
Gets the DataTable on which the UniqueConstraint was created.

6.6.2 Creating a UniqueConstraint Object

Creating a UniqueConstraint Object
In this section, you'll learn how to create a UniqueConstraint object. The UniqueConstraint
constructor is overloaded as follows: UniqueConstraint(DataColumn myDataColumn)
UniqueConstraint(DataColumn[] myDataColumns) UniqueConstraint(DataColumn myDataColumn ,
bool isPrimaryKey) UniqueConstraint(DataColumn[] myDataColumns , bool isPrimaryKey)
UniqueConstraint(string constraintName , DataColumn myDataColumn) UniqueConstraint(string
constraintName, DataColumn[] myDataColumns) UniqueConstraint(string constraintName ,
DataColumn myDataColumn , bool isPrimaryKey) UniqueConstraint(string constraintName ,
DataColumn[] myDataColumns , bool isPrimaryKey) UniqueConstraint(string constraintName ,
string[] columnNames, bool isPrimaryKey)
where
myDataColumn and myDataColumns are the DataColumn objects that you want to ensure are
unique.
constraintName is the name you want to assign to the ConstraintName property of your
UniqueConstraint.
isPrimaryKey indicates whether your UniqueConstraint is for a primary key.
Before creating and adding a UniqueConstraint to a DataTable, you first need a DataTable. The
following example creates and populates two DataTable objects named customersDT and ordersDT
(the ordersDT object will be used later in the section "Creating a ForeignKeyConstraint Object"):
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT CustomerID, CompanyName " + "FROM Customers " +
"WHERE CustomerID = 'ALFKI'" + "SELECT OrderID, CustomerID " + "FROM Orders " +
"WHERE CustomerID = 'ALFKI';"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Customers"; myDataSet.Tables["Table1"].TableName =
"Orders"; DataTable customersDT = myDataSet.Tables["Customers"]; DataTable ordersDT =
myDataSet.Tables["Orders"];
The following example creates a UniqueConstraint object on the CustomerID DataColumn of the
customersDT DataTable, and then adds this UniqueConstraint to customersDT; notice that the third
parameter to the UniqueConstraint constructor is set to true, indicating that the constraint is for a

Part 2: Fundamental Database Programming with ADO.NET 247

© 2004 ... Your company

primary key: UniqueConstraint myUC = new UniqueConstraint("UniqueConstraintCustomerID",
customersDT.Columns["CustomerID"], true); customersDT.Constraints.Add(myUC); Note
To successfully add a UniqueConstraint to the DataColumn of a DataTable , the DataColumn value
in each DataRow object in the DataTable must be unique.
The final example retrieves the constraint just added to customersDT and displays its properties:
myUC = (UniqueConstraint) customersDT.Constraints["UniqueConstraintCustomerID"];
Console.WriteLine("Columns:"); foreach (DataColumn myDataColumn in myUC.Columns) {
Console.WriteLine("" + myDataColumn); } Console.WriteLine("myUC.ConstraintName = " +
myUC.ConstraintName); Console.WriteLine("myUC.IsPrimaryKey = " + myUC.IsPrimaryKey);
Console.WriteLine("myUC.Table = " + myUC.Table);
This example displays the following output: Columns: CustomerID myUC.ConstraintName =
UniqueConstraintCustomerID myUC.IsPrimaryKey = True myUC.Table = Customers
The IsPrimaryKey property is true because the constraint is for a primary key; this was specified in
the constructor when the constraint was created earlier.

6.6.3 The ForeignKeyConstraint Class

The ForeignKeyConstraint Class
You use an object of the ForeignKeyConstraint class to represent a foreign key constraint between
two DataTable objects. This ensures that each DataRow in your child DataTable has a matching
DataRow in your parent DataTable. The ForeignKeyConstraint class is derived from the
System.Data.Constraint class. Table 12.2 shows the ForeignKeyConstraint properties. Table 12.2:
ForeignKeyConstraint PROPERTIES
PROPERTY
TYPE
DESCRIPTION
AcceptRejectRule
AcceptRejectRule
Gets or sets the AcceptRejectRule that indicates the action that is to take place when the
AcceptChanges() method of the DataTable is called.
The members of the System.Data.AcceptRejectRule enumeration are
Cascade, which indicates that the changes to the DataRow objects in the parent DataTable are also
made in the child DataTable.
None, which indicates that no action takes place.
The default is None.
Columns
DataColumn[]
Gets the array of DataColumn objects from the child DataTable.
ConstraintName
string
Gets the name of the UniqueConstraint object.
DeleteRule
Rule
Gets or sets the Rule that indicates the action that is to take place when a DataRow in the parent
DataTable is deleted.
The members of the System.Data.Rule enumeration are
Cascade, which indicates that the delete or update to the DataRow objects in the parent DataTable is
also made in the child DataTable.
None, which indicates that no action takes place.
SetDefault, which indicates that the DataColumn values in the child DataTable are to be set to the
value in the DefaultValue property of the DataColumn.
SetNull, which indicates that the DataColumn values in the child DataTable are to be set to DBNull.
The default is Cascade.
ExtendedProperties
PropertyCollection

Mastering C# Database Programming @Team LiB248

© 2004 ... Your company

Gets the PropertyCollection object that you can use to store strings of additional information.
RelatedColumns
DataColumn[]
Gets the array of DataColumn objects in the parent DataTable for the UniqueConstraint.
RelatedTable
DataTable
Gets the parent DataTable for the UniqueConstraint.
Table
DataTable
Gets the child DataTable to which the UniqueConstraint belongs.
UpdateRule
Rule
Gets or sets the Rule that indicates the action that is to take place when a DataRow in the parent
DataTable is updated. See the DeleteRule property for the members of the Rule enumeration.
The default is Cascade.

6.6.4 Creating a ForeignKeyConstraint Object

Creating a ForeignKeyConstraint Object
The ForeignKeyConstraint constructor is overloaded as follows: ForeignKeyConstraint(DataColumn
parentDataColumn , DataColumn childDataColumn) ForeignKeyConstraint(DataColumn[]
parentDataColumns , DataColumn[] childDataColumns) ForeignKeyConstraint(string constraintName
, DataColumn parentDataColumn , DataColumn childDataColumn) ForeignKeyConstraint(string
constraintName , DataColumn[] parentDataColumns , DataColumn[] childDataColumns)
ForeignKeyConstraint(string constraintName , string parentDataTableName , string[]
parentDataColumnNames , string[] childDataColumnNames , AcceptRejectRule acceptRejectRule ,
Rule deleteRule , Rule updateRule)
where
parentDataColumn and parentDataColumns are the DataColumn objects in the parent
DataTable.
childDataColumn and childDataColumns are the DataColumn objects in the child DataTable.
constraintName is the name you want to assign to the ConstraintName property of your
ForeignKeyConstraint.
parentDataTableName is the name of the parent DataTable.
parentDataColumnNames and childDataColumnNames contain the names of the DataColumn
objects in the parent and child DataTable objects.
acceptRejectRule , deleteRule , and updateRule are the various rules for the ForeignKey-
Constraint.
Earlier in the section "Creating a UniqueConstraint Object," you saw a code example that created two
DataTable objects named customersDT and ordersDT. The following example creates a
ForeignKeyConstraint object on the CustomerID DataColumn of ordersDT to the CustomerID
DataColumn of customersDT: ForeignKeyConstraint myFKC = new ForeignKeyConstraint(
"ForeignKeyConstraintCustomersOrders", customersDT.Columns["CustomerID"],
ordersDT.Columns["CustomerID"]); ordersDT.Constraints.Add(myFKC);
Notice that the ForeignKeyConstraint is added to ordersDT using the Add() method.Note
To successfully add a ForeignKeyConstraint to a DataTable , each DataColumn value in the child
DataTable must have a matching DataColumn value in the parent DataTable .
The next example retrieves the constraint just added to ordersDT and displays its properties: myFKC
= (ForeignKeyConstraint) ordersDT.Constraints["ForeignKeyConstraintCustomersOrders"];
Console.WriteLine("myFKC.AcceptRejectRule = " + myFKC.AcceptRejectRule);
Console.WriteLine("Columns:"); foreach (DataColumn myDataColumn in myFKC.Columns) {
Console.WriteLine("" + myDataColumn); } Console.WriteLine("myFKC.ConstraintName = " +
myFKC.ConstraintName); Console.WriteLine("myFKC.DeleteRule = " + myFKC.DeleteRule);
Console.WriteLine("RelatedColumns:"); foreach (DataColumn relatedDataColumn in
myFKC.RelatedColumns) { Console.WriteLine(""+ relatedDataColumn); }

Part 2: Fundamental Database Programming with ADO.NET 249

© 2004 ... Your company

Console.WriteLine("myFKC.RelatedTable = " + myFKC.RelatedTable);
Console.WriteLine("myFKC.Table = " + myFKC.Table); Console.WriteLine("myFKC.UpdateRule = " +
myFKC.UpdateRule);
This example displays the following output: myFKC.AcceptRejectRule = None Columns: CustomerID
myFKC.ConstraintName = ForeignKeyConstraintCustomersOrders myFKC.DeleteRule = Cascade
RelatedColumns: CustomerID myFKC.RelatedTable = Customers myFKC.Table = Orders
myFKC.UpdateRule = Cascade Note
You'll find all the code examples shown in this section and the previous section, "Creating a
UniqueConstraint Object," in the AddConstraints.cs program. The listing is omitted from this book for
brevity.

6.6.5 The DataRelation Class

The DataRelation Class
You use an object of the DataRelation class to represent a relationship between two DataTable
objects. You use a DataRelation object to model parent-child relationships between two database
tables. By default, when you create a DataRelation, a UniqueConstraint and ForeignKeyConstraint
are automatically added to your parent and child DataTable objects. Table 12.3 shows the
DataRelation properties. Table 12.3: DataRelation PROPERTIES
PROPERTY
TYPE
DESCRIPTION
ChildColumns
DataColumn[]
Gets the array of child DataColumn objects.
ChildKeyConstraint
ForeignKeyConstraint
Gets the ForeignKeyConstraint object for the DataRelation.
ChildTable
DataTable
Gets the child DataTable object.
DataSet
DataSet
Gets the DataSet to which the DataRelation belongs.
ExtendedProperties
PropertyCollection
Gets the PropertyCollection object that you can use to store strings of additional information.
Nested
bool
Gets or sets a bool value that indicates whether the DataRelation objects are nested. This is useful
when defining hierarchical relationships in XML. The default is false.
ParentColumns
DataColumn[]
Gets the array of parent DataColumn objects.
ParentKeyConstraint
UniqueConstraint
Gets the UniqueConstraint object that ensures that DataColumn values in the parent DataTable are
unique.
ParentTable
DataTable
Gets the parent DataTable object.
RelationName
string
Gets the name of the DataRelation object.

Mastering C# Database Programming @Team LiB250

© 2004 ... Your company

6.6.6 Creating and Using a DataRelation Object

Creating and Using a DataRelation Object
In this section, you'll learn how to create a DataRelation object to define a relationship between two
DataTable objects that hold some rows from the Customers and Orders tables. As you know, the
CustomerID column of the child Orders table is a foreign key that links to the CustomerID column of
the parent Customers table.
Once you've created a DataRelation, you can use the GetChildRows() method of a DataRow object in
the parent DataTable to obtain the corresponding DataRow objects from the child DataTable. By
"corresponding," I mean the rows that have matching values in the foreign key DataColumn objects.
You can also use the GetParentRow() method of a DataRow in the child DataTable to obtain the
corresponding DataRow in the parent DataTable.
Before creating and adding a DataRelation to a DataSet, you first need a DataSet. The following
example creates and populates a DataSet with two DataTable objects named customersDT and
ordersDT; notice that the top two rows from the Customers table along with the corresponding rows
from the Orders table are retrieved: SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
CustomerID, CompanyName " + "FROM Customers " + "ORDER BY CustomerID;" + "SELECT
OrderID, CustomerID " + "FROM Orders " + "WHERE CustomerID IN (" + " SELECT TOP 2
CustomerID " + " FROM Customers " + " ORDER BY CustomerID" + ")"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet);
mySqlConnection.Close(); myDataSet.Tables["Table"].TableName = "Customers";
myDataSet.Tables["Table1"].TableName = "Orders"; DataTable customersDT =
myDataSet.Tables["Customers"]; DataTable ordersDT = myDataSet.Tables["Orders"];
You'll see how to create a DataRelation that defines a relationship between the customersDT and
ordersDT DataTable objects next.Note
You'll find all the code examples shown in this section in the CreateDataRelation.cs
program. Creating the DataRelation
The DataRelation constructor is overloaded as follows: DataRelation(string dataRelationName ,
DataColumn parentDataColumn , DataColumn childDataColumn) DataRelation(string
dataRelationName , DataColumn[] parentDataColumns , DataColumn[] childDataColumns)
DataRelation(string dataRelationName , DataColumn parentDataColumn , DataColumn
childDataColumn , bool createConstraints) DataRelation(string dataRelationName , DataColumn[]
parentDataColumns , DataColumn[] childDataColumns , bool createConstraints) DataRelation(string
dataRelationName , string parentDataTableName , string childDataTableName , string[]
parentDataColumnNames , string[] childDataColumnNames , bool nested)
where
dataRelationName is the name you want to assign to the RelationName property of your
DataRelation.
parentDataColumn and parentDataColumns are the DataColumn objects in the parent
DataTable.
childDataColumn and childDataColumns are the DataColumn objects in the child DataTable .
createConstraints indicates whether you want a UniqueConstraint added to the parent DataTable
and a ForeignKeyConstraint added to the child DataTable automatically (the default is true).
parentDataTableName and childDataTableName are the names of the parent and child
DataTable objects.
parentDataColumnNames and childDataColumnNames contain the names of the DataColumn
objects in the parent and child DataTable objects.
nested indicates whether the relationships are nested.
The following example creates a DataRelation object named customersOrdersDataRel: DataRelation
customersOrdersDataRel = new DataRelation("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
The name assigned to the RelationName property of customersOrdersDataRel is CustomersOrders,
the parent DataColumn is customersDT.Columns["CustomerID"], and the child DataColumn is
ordersDT.Columns["CustomerID"].

Part 2: Fundamental Database Programming with ADO.NET 251

© 2004 ... Your company

Next, customersOrdersDataRel must be added to myDataSet. You access the DataRelation objects in
a DataSet object through its Relationships property. The Relationships property returns an object of
the DataRelationCollection class, which is a collection of DataRelation objects. To add a
DataRelation object to the DataRelationCollection object of a DataSet, you call the Add() method
through the Relationships property of your DataSet.
The following example uses the Add() method to add customersOrdersDataRel to myDataSet:
myDataSet.Relations.Add(customersOrdersDataRel);
The Add() method is overloaded, and you can also use the following version of the Add() method to
create and add a DataRelation object to myDataSet: myDataSet.Relations.Add("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
This example does the same thing as the two earlier examples. The first parameter to the Add()
method is a string containing the name you want to assign to the RelationName property of the
DataRelation. The second and third parameters of the relationship are the DataColumn objects from
the parent and child DataTable objects. Examining the Constraints Created by the DataRelation
By default, when you create a DataRelation, a UniqueConstraint and ForeignKeyConstraint are
automatically added to your parent and child DataTable objects. You can get the UniqueConstraint
from a DataRelation using its ParentKeyConstraint property. For example: UniqueConstraint myUC =
customersOrdersDataRel.ParentKeyConstraint;
You can view the properties of the myUC UniqueConstraint object using the following code:
Console.WriteLine("Columns:"); foreach (DataColumn myDataColumn in myUC.Columns) {
Console.WriteLine("" + myDataColumn); } Console.WriteLine("myUC.ConstraintName = " +
myUC.ConstraintName); Console.WriteLine("myUC.IsPrimaryKey = " + myUC.IsPrimaryKey);
Console.WriteLine("myUC.Table = " + myUC.Table);
The output from this code is as follows: Columns: CustomerID myUC.ConstraintName = Constraint1
myUC.IsPrimaryKey = False myUC.Table = Customers
You can get the ForeignKeyConstraint from a DataRelation using its ChildKeyConstraint property. For
example: ForeignKeyConstraint myFKC = customersOrdersDataRel.ChildKeyConstraint;
You can view the properties of myFKC using the following code:
Console.WriteLine("myFKC.AcceptRejectRule = " + myFKC.AcceptRejectRule);
Console.WriteLine("Columns:"); foreach (DataColumn myDataColumn in myFKC.Columns) {
Console.WriteLine(""+ myDataColumn); } Console.WriteLine("myFKC.ConstraintName = " +
myFKC.ConstraintName); Console.WriteLine("myFKC.DeleteRule = " + myFKC.DeleteRule);
Console.WriteLine("RelatedColumns:"); foreach (DataColumn relatedDataColumn in
myFKC.RelatedColumns) { Console.WriteLine("" + relatedDataColumn); }
Console.WriteLine("myFKC.RelatedTable = " + myFKC.RelatedTable);
Console.WriteLine("myFKC.Table = " + myFKC.Table); Console.WriteLine("myFKC.UpdateRule = " +
myFKC.UpdateRule);
The output from this code is as follows: myFKC.AcceptRejectRule = None Columns: CustomerID
myFKC.ConstraintName = CustomersOrders myFKC.DeleteRule = Cascade RelatedColumns:
CustomerID myFKC.RelatedTable = Customers myFKC.Table = Orders myFKC.UpdateRule =
Cascade
The DeleteRule and UpdateRule properties are set to Cascade by default. Because DeleteRule is set
to Cascade, when you delete a DataRow in the parent DataTable, then any corresponding DataRow
objects in the child DataTable are also deleted. Because UpdateRule is set to Cascade, when you
change the DataColumn in the parent DataTable on which the ForeignKeyConstraint was created,
then the same change is also made in any corresponding DataRow objects in the child DataTable.
You'll learn more about this later in the section "Issues When Updating the Primary Key of a Parent
Row." Navigating DataRow Objects in the Parent and Child DataTable Objects
To navigate the DataRow objects in related DataTable objects, you use the GetChildRows() and
GetParentRows() methods of a DataRow.Using the GetChildRows() Method
You use the GetChildRows() method to get the related child DataRow objects from the parent
DataRow. For example, the following code displays the parent DataRow objects from the
customersDT DataTable and their related child DataRow objects from the ordersDT DataTable:
foreach (DataRow customerDR in customersDT.Rows) { Console.WriteLine("\nCustomerID = " +
customerDR["CustomerID"]); Console.WriteLine("CompanyName = " +
customerDR["CompanyName"]); DataRow[] ordersDRs =

Mastering C# Database Programming @Team LiB252

© 2004 ... Your company

customerDR.GetChildRows("CustomersOrders"); Console.WriteLine("This customer placed the
following orders:"); foreach (DataRow orderDR in ordersDRs) { Console.WriteLine("OrderID = "
+ orderDR["OrderID"]); } }
The output from this code is as follows: CustomerID = ALFKI CompanyName = Alfreds Futterkiste
This customer placed the following orders: OrderID = 10643 OrderID = 10692 OrderID = 10702
OrderID = 10835 OrderID = 10952 OrderID = 11011 CustomerID = ANATR CompanyName = Ana
Trujillo Emparedados y helados This customer placed the following orders: OrderID = 10308
OrderID = 10625 OrderID = 10759 OrderID = 10926 Using the GetParentRow() Method
You use the GetParentRow() method to get the parent DataRow from the child DataRow. For
example, the following code displays the first child DataRow from ordersDT and its related parent
DataRow from customersDT: DataRow parentCustomerDR =
ordersDT.Rows[0].GetParentRow("CustomersOrders"); Console.WriteLine("\nOrder with OrderID of "
+ ordersDT.Rows[0]["OrderID"] + " was placed by the following customer:");
Console.WriteLine("CustomerID = " + parentCustomerDR["CustomerID"]);
The output from this code is as follows: Order with OrderID of 10643 was placed by the following
customer: CustomerID = ALFKI

6.6.7 Adding, Updating, and Deleting Related Rows

Adding, Updating, and Deleting Related Rows
In this section, you'll learn how to make changes in DataTable objects that store rows from the
Customers and Orders tables. These tables are related through the CustomerID foreign key. As you'll
see, you must push changes to the underlying database tables in a specific order. If you don't, your
program will throw an exception.Note
You'll find all the code examples shown in this section in the ModifyingRelatedData.cs
program. Setting Up the DataAdapter Objects
You'll need two DataAdapter objects:
One to work with the Customers table, which will be named customersDA.
One to work with the Orders table, which will be named ordersDA.
Let's take a look at setting up these two DataAdapter objects. Setting Up the customersDA
DataAdapter
The following code creates and sets up a DataAdapter named customersDA that contains the
necessary SELECT, INSERT, UPDATE, and DELETE statements to access the Customers table:
SqlDataAdapter customersDA = new SqlDataAdapter(); // create a SqlCommand object to hold the
SELECT SqlCommand customersSelectCommand = mySqlConnection.CreateCommand();
customersSelectCommand.CommandText = "SELECT CustomerID, CompanyName " + "FROM
Customers"; // create a SqlCommand object to hold the INSERT SqlCommand
customersInsertCommand = mySqlConnection.CreateCommand();
customersInsertCommand.CommandText = "INSERT INTO Customers (" + " CustomerID,
CompanyName " + ") VALUES (" + " @CustomerID, @CompanyName" + ")";
customersInsertCommand.Parameters.Add("@CustomerID", SqlDbType.NChar, 5, "CustomerID");
customersInsertCommand.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 40,
"CompanyName"); // create a SqlCommand object to hold the UPDATE SqlCommand
customersUpdateCommand = mySqlConnection.CreateCommand();
customersUpdateCommand.CommandText = "UPDATE Customers " + "SET " + " CompanyName
= @NewCompanyName " + "WHERE CustomerID = @OldCustomerID " + "AND CompanyName =
@OldCompanyName"; customersUpdateCommand.Parameters.Add("@NewCompanyName",
SqlDbType.NVarChar, 40, "CompanyName");
customersUpdateCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); customersUpdateCommand.Parameters.Add("@OldCompanyName",
SqlDbType.NVarChar, 40, "CompanyName");
customersUpdateCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original;
customersUpdateCommand.Parameters["@OldCompanyName"].SourceVersion =
DataRowVersion.Original; // create a SqlCommand object to hold the DELETE SqlCommand

Part 2: Fundamental Database Programming with ADO.NET 253

© 2004 ... Your company

customersDeleteCommand = mySqlConnection.CreateCommand();
customersDeleteCommand.CommandText = "DELETE FROM Customers " + "WHERE CustomerID
= @OldCustomerID " + "AND CompanyName = @OldCompanyName";
customersDeleteCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); customersDeleteCommand.Parameters.Add("@OldCompanyName",
SqlDbType.NVarChar, 40, "CompanyName");
customersDeleteCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original;
customersDeleteCommand.Parameters["@OldCompanyName"].SourceVersion =
DataRowVersion.Original; // set the customersDA properties // to the SqlCommand objects previously
created customersDA.SelectCommand = customersSelectCommand; customersDA.InsertCommand =
customersInsertCommand; customersDA.UpdateCommand = customersUpdateCommand;
customersDA.DeleteCommand = customersDeleteCommand;
Notice that the UPDATE statement modifies only the CompanyName column value; it doesn't modify
the CustomerID primary key column value. You'll learn about the issues involved with updating a
primary key column value later in the section "Issues When Updating the Primary Key of a Parent
Row."
The ModifyingRelatedData.cs program contains a method named SetupCustomersDA() that performs
the previous code. Setting Up the ordersDA DataAdapter
The following code creates and sets up a DataAdapter object named ordersDA that contains the
necessary SELECT, INSERT, UPDATE, and DELETE statements to access the Orders table; notice
that the ordersInsertCommand contains both an INSERT statement and a SELECT statement to
retrieve the new OrderID column, which is an identity column that has a value automatically
generated by the database: SqlDataAdapter ordersDA = new SqlDataAdapter(); // create a
SqlCommand object to hold the SELECT SqlCommand ordersSelectCommand =
mySqlConnection.CreateCommand(); ordersSelectCommand.CommandText = "SELECT OrderID,
CustomerID, ShipCountry " + "FROM Orders"; // create a SqlCommand object to hold the INSERT
SqlCommand ordersInsertCommand = mySqlConnection.CreateCommand();
ordersInsertCommand.CommandText = "INSERT INTO Orders (" + " CustomerID, ShipCountry " +
") VALUES (" + " @CustomerID, @ShipCountry" + ");" + "SELECT @OrderID =
SCOPE_IDENTITY();"; ordersInsertCommand.Parameters.Add("@CustomerID", SqlDbType.NChar,
5, "CustomerID"); ordersInsertCommand.Parameters.Add("@ShipCountry", SqlDbType.NVarChar,
15, "ShipCountry"); ordersInsertCommand.Parameters.Add("@OrderID", SqlDbType.Int, 0,
"OrderID"); ordersInsertCommand.Parameters["@OrderID"].Direction = ParameterDirection.Output;
// create a SqlCommand object to hold the UPDATE SqlCommand ordersUpdateCommand =
mySqlConnection.CreateCommand(); ordersUpdateCommand.CommandText = "UPDATE Orders " +
"SET " + " ShipCountry = @NewShipCountry " + "WHERE OrderID = @OldOrderID " + "AND
CustomerID = @OldCustomerID " + "AND ShipCountry = @OldShipCountry";
ordersUpdateCommand.Parameters.Add("@NewShipCountry", SqlDbType.NVarChar, 15,
"ShipCountry"); ordersUpdateCommand.Parameters.Add("@OldOrderID", SqlDbType.Int, 0,
"OrderID"); ordersUpdateCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); ordersUpdateCommand.Parameters.Add("@OldShipCountry",
SqlDbType.NVarChar, 15, "ShipCountry");
ordersUpdateCommand.Parameters["@OldOrderID"].SourceVersion = DataRowVersion.Original;
ordersUpdateCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original; ordersUpdateCommand.Parameters["@OldShipCountry"].SourceVersion =
DataRowVersion.Original; // create a SqlCommand object to hold the DELETE SqlCommand
ordersDeleteCommand = mySqlConnection.CreateCommand();
ordersDeleteCommand.CommandText = "DELETE FROM Orders " + "WHERE OrderID =
@OldOrderID " + "AND CustomerID = @OldCustomerID " + "AND ShipCountry =
@OldShipCountry"; ordersDeleteCommand.Parameters.Add("@OldOrderID", SqlDbType.Int, 0,
"OrderID"); ordersDeleteCommand.Parameters.Add("@OldCustomerID", SqlDbType.NChar, 5,
"CustomerID"); ordersDeleteCommand.Parameters.Add("@OldShipCountry", SqlDbType.NVarChar,
15, "ShipCountry"); ordersDeleteCommand.Parameters["@OldOrderID"].SourceVersion =
DataRowVersion.Original; ordersDeleteCommand.Parameters["@OldCustomerID"].SourceVersion =
DataRowVersion.Original; ordersDeleteCommand.Parameters["@OldShipCountry"].SourceVersion =

Mastering C# Database Programming @Team LiB254

© 2004 ... Your company

DataRowVersion.Original; // set the ordersDA properties // to the SqlCommand objects previously
created ordersDA.SelectCommand = ordersSelectCommand; ordersDA.InsertCommand =
ordersInsertCommand; ordersDA.UpdateCommand = ordersUpdateCommand;
ordersDA.DeleteCommand = ordersDeleteCommand;
The ModifyingRelatedData.cs program contains a method named SetupOrdersDA() that performs the
previous code. Creating and Populating a DataSet
Next, the following example creates and populates a DataSet named myDataSet with the rows from
the Customers and Orders tables using customersDA and ordersDA: DataSet myDataSet = new
DataSet(); mySqlConnection.Open(); customersDA.Fill(myDataSet, "Customers");
ordersDA.Fill(myDataSet, "Orders"); mySqlConnection.Close(); DataTable customersDT =
myDataSet.Tables["Customers"]; DataTable ordersDT = myDataSet.Tables["Orders"];
Notice that the DataTable objects are named customersDT and ordersDT.
The following examples set the PrimaryKey properties of customersDT and ordersDT:
customersDT.PrimaryKey = new DataColumn[] { customersDT.Columns["CustomerID"] };
ordersDT.PrimaryKey = new DataColumn[] { ordersDT.Columns["OrderID"] };
The following example sets up the OrderID DataColumn of ordersDT as an identity:
ordersDT.Columns["OrderID"].AllowDBNull = false; ordersDT.Columns["OrderID"].AutoIncrement =
true; ordersDT.Columns["OrderID"].AutoIncrementSeed = -1;
ordersDT.Columns["OrderID"].AutoIncrementStep = -1; ordersDT.Columns["OrderID"].ReadOnly =
true; ordersDT.Columns["OrderID"].Unique = true;
The final example adds a DataRelation to myDataSet that specifies a relationship between
customersDT and ordersDT using the CustomerID DataColumn: DataRelation
customersOrdersDataRel = new DataRelation("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
myDataSet.Relations.Add(customersOrdersDataRel);
The ModifyingRelatedData.cs program performs the previous code in the Main() method. Adding
DataRow Objects to customersDT and ordersDT
The following example adds a DataRow named customerDR to customersDT; notice that the
CustomerID is set to J6COM: DataRow customerDR = customersDT.NewRow();
customerDR["CustomerID"] = "J6COM"; customerDR["CompanyName"] = "J6 Company";
customersDT.Rows.Add(customerDR);
The next example adds a DataRow named orderDR to ordersDT; notice that the CustomerID is also
set to J6COM, indicating that this is the child DataRow for the previous DataRow in customersDT:
DataRow orderDR = ordersDT.NewRow(); orderDR["CustomerID"] = "J6COM";
orderDR["ShipCountry"] = "England"; ordersDT.Rows.Add(orderDR);
Because the OrderID DataColumn of ordersDT is set up as an identity, it will automatically be
assigned the initial value of -1. When this DataRow is pushed to the database, the SELECT
statement in ordersDA will set the OrderID to the identity value generated by the database for the new
row in the Orders table. You'll see how to push the changes to the database shortly in the section
"Pushing Changes in customersDT and ordersDT to the Database."
The ModifyingRelatedData.cs program performs the previous code in the Main() method. Updating
DataRow Objects in customersDT and ordersDT
The following example updates the CompanyName in customerDR to Widgets Inc.:
customerDR["CompanyName"] = "Widgets Inc.";
The next example updates the ShipCountry in orderDR to USA: orderDR["ShipCountry"] = "USA";
The ModifyingRelatedData.cs program performs the previous code in the Main() method. Deleting
DataRow Objects from customersDT and ordersDT
The following example deletes the customerDR DataRow from the customersDT DataTable:
customerDR.Delete();
Earlier in the section "Examining the Constraints Created by the DataRelation," you saw that a
ForeignKeyConstraint is added to the child DataTable by default when a DataRelation object is added
to a DataSet. You also saw that this ForeignKeyConstraint object's DeleteRule property is set to
Cascade by default. This means that when the DataRow in the parent DataTable is deleted, so are
the corresponding DataRow objects in the child DataTable. Therefore, in the previous example, when
customerDR is deleted from customersDT, so is orderDR in ordersDT.
The ModifyingRelatedData.cs program performs the previous code in the Main() method. Pushing

Part 2: Fundamental Database Programming with ADO.NET 255

© 2004 ... Your company

Changes in customersDT and ordersDT to the Database
In this section, you'll learn how to push the changes previously made in the customersDT and
ordersDTDataTable objects to the database. When pushing changes to the database, you have to
apply them in an order that satisfies the foreign key constraints in the related tables.
For example, a row in the Customers table with a CustomerID of J6COM must exist before a row with
that CustomerID can be added to the Orders table. Similarly, you can't delete the row with a
CustomerID of J6COM while there are rows with that CustomerID in the Orders table. Finally, of
course, you can update only rows that already exist in a table.
Follow these steps when pushing the changes from customersDT and ordersDT to the database:
Push the DataRow objects added to customersDT to the Customers table.
Push the DataRow objects added to ordersDT to the Orders table.
Push the DataRow objects updated in customersDT to the Customers table.
Push the DataRow objects updated in ordersDT to the Orders table.
Delete the DataRow objects removed from ordersDT from the Orders table.
Delete the DataRow objects removed from customersDT from the Customers table.
To get the DataRow objects that have been added, updated, or deleted, you use the Select() method
of a DataTable. The Select() method was covered in the previous chapter, and one of the overloaded
versions of this method is DataRow[] Select(string filterExpression , string sortExpression ,
DataViewRowState myDataViewRowState)
where
filterExpression specifies the rows to select.
sortExpression specifies how the selected rows are to be ordered.
myDataViewRowState specifies the row state of the rows to select. You can see the members of
the DataViewRowState enumeration in Table 11.8 of the previous chapter.
To get the DataRow objects that have been added to the customersDT DataTable, you can use the
following code that calls the Select() method: DataRow[] newCustomersDRArray =
customersDT.Select("", "", DataViewRowState.Added);
Notice the use of the Added constant from the DataViewRowState enumeration. This indicates that
only the newly added DataRow objects in customersDT are to be returned and stored in
newCustomersDRArray.
You can then push the DataRow objects in newCustomersDRArray to the Customers table in the
database using the following call to the Update() method of the customersDA DataAdapter: int
numOfRows = customersDA.Update(newCustomersDRArray);
The numOfRows int is the number of rows added to the Customers table.
The following code uses the six steps shown earlier to push all the changes to the database; notice
the different constants used from the DataViewRowState enumerator to get the required DataRow
objects: mySqlConnection.Open(); // push the new rows in customersDT to the database
Console.WriteLine("Pushing new rows in customersDT to database"); DataRow[]
newCustomersDRArray = customersDT.Select("", "", DataViewRowState.Added); int numOfRows =
customersDA.Update(newCustomersDRArray); Console.WriteLine("numOfRows = " + numOfRows);
// push the new rows in ordersDT to the database Console.WriteLine("Pushing new rows in ordersDT
to database"); DataRow[] newOrdersDRArray = ordersDT.Select("", "", DataViewRowState.Added);
numOfRows = ordersDA.Update(newOrdersDRArray); Console.WriteLine("numOfRows = "+
numOfRows); // push the modified rows in customersDT to the database Console.WriteLine("Pushing
modified rows in customersDT to database"); DataRow[] modifiedCustomersDRArray =
customersDT.Select("", "", DataViewRowState.ModifiedCurrent); numOfRows =
customersDA.Update(modifiedCustomersDRArray); Console.WriteLine("numOfRows = " +
numOfRows); // push the modified rows in ordersDT to the database Console.WriteLine("Pushing
modified rows in ordersDT to database"); DataRow[] modifiedOrdersDRArray = ordersDT.Select("",
"", DataViewRowState.ModifiedCurrent); numOfRows = ordersDA.Update(modifiedOrdersDRArray);
Console.WriteLine("numOfRows = " + numOfRows); // push the deletes in ordersDT to the database
Console.WriteLine("Pushing deletes in ordersDT to database"); DataRow[] deletedOrdersDRArray =
ordersDT.Select("", "", DataViewRowState.Deleted); numOfRows =
ordersDA.Update(deletedOrdersDRArray); Console.WriteLine("numOfRows = " + numOfRows); //
push the deletes in customersDT to the database Console.WriteLine("Pushing deletes in
customersDT to database"); DataRow[] deletedCustomersDRArray = customersDT.Select("", "",

Mastering C# Database Programming @Team LiB256

© 2004 ... Your company

DataViewRowState.Deleted); numOfRows = customersDA.Update(deletedCustomersDRArray);
Console.WriteLine("numOfRows = " + numOfRows); mySqlConnection.Close();
The ModifyingRelatedData.cs program contains a method named PushChangesToDatabase() that
uses the previous code.
One thing you'll notice about ModifyingRelatedData.cs is that it calls PushChangesToDatabase()
immediately after performing the following steps in the Main() method:
Adding DataRow objects to customersDT and ordersDT.
Updating the new DataRow objects.
Deleting the new DataRow objects.
PushChangesToDatabase() is immediately called after each of these steps so that you can see the
database activity as the program progresses. I could have simply called PushChangesToDatabase()
once at the end of the three steps-but then you wouldn't see any changes to the database, because
the new rows would have been deleted in step 3 prior to PushChangesToDatabase() being called.Tip
In your own programs, you're likely add, update, and delete many different rows in your DataTable
objects, and so pushing the changes once at the end will be more efficient.

6.6.8 Issues Involved When Updating the Primary Key of a Parent Row

Issues Involved When Updating the Primary Key of a Parent Row
In this section, you'll learn about the issues involved when attempting to update the primary key in a
parent DataTable, and then pushing the update to the underlying database table. The issues occur
when the child database table already contains rows that use the primary key you want to change in
the parent table.
The examples in this section will use the Customers and Orders table, which are related through the
foreign key on the CustomerID column of the Orders table to the CustomerID column of the
Customers table.
As you'll learn, you're much better off not allowing changes to the primary key column of a table. If
you allow changes to the primary key column, then as you'll see shortly, you can run into problems
when pushing the change to the database. Instead, you should set the ReadOnly property to true for
the primary key DataColumn in your parent DataTable, and also set ReadOnly to true for the foreign
key DataColumn in your child DataTable. That prevents changes to the values in these DataColumn
objects.
If you really need to change the primary key and foreign key values, you should delete and then
recreate the rows in the database with the new primary key and foreign key values.
You can control how updates and deletes are performed using the properties of the foreign key in the
SQL Server database and also the UpdateRule and DeleteRule properties of a ForeignKeyConstraint
object. You'll explore both of these items in the following sections. Controlling Updates and Deletes
Using SQL Server
You can control how updates and deletes are performed using SQL Server by setting the properties
of the foreign key. You set these properties using the Relationships tab of a database table's
Properties dialog box. You open this dialog box in Enterprise Manager for the Orders table by
performing the following steps:
Right-click the Orders table in the Tables node of Enterprise Manager.
Select Design Table from the pop-up list.
Press the Manage Relationships button in the toolbar of the Design Table dialog box.
Select the foreign key you want to examine in the Select relationship drop-down list.
Figure 12.1 shows the Relationships tab for the foreign key named FK_Orders_Customers that
contains the details of the foreign key between the Orders and Customers tables. As you can see,
these two tables are related through a foreign key on the CustomerID

Part 2: Fundamental Database Programming with ADO.NET 257

© 2004 ... Your company

column.
Figure 12.1: The Relationships tab for FK_Orders_Customers
The Cascade Update Related Fields check box indicates whether a change to a value in the primary
key column of the primary key table (the parent table) is also made to the foreign key column of the
corresponding rows of the foreign key table (the child table). For example, assume this box is
checked and you changed the CustomerID in the row of the Customers table from ALFKI to ANATR;
this would also cause the CustomerID column to change from ALFKI to ANATR in the rows of the
Orders table.
Similarly, the Cascade Delete Related Records check box indicates whether deleting a row in the
primary key table also deletes any related rows from the foreign key table. For example, assume this
box is checked and you deleted the row with the CustomerID of ANTON from the Customers table;
this would cause the rows with the CustomerID of ANTON to also be deleted from the Orders
table.Note
Typically, you should leave both check boxes in their default unchecked state. If you check them, the
database will make changes to the rows in the child table behind the scenes and as you'll see shortly,
you'll run into problems when pushing changes from your DataSet to the database. Controlling
Updates and Deletes Using the UpdateRule and DeleteRule Properties of a ForeignKeyConstraint
Object
You can also control updates and deletes using the UpdateRule and DeleteRule properties of a
ForeignKeyConstraint object. These properties are of the System.Data.Rule enumeration type;
members of this type are shown in Table 12.4. Table 12.4: Rule ENUMERATION MEMBERS
CONSTANT
DESCRIPTION
Cascade
Indicates that the delete or update to the DataRow objects in the parent DataTable are also made in
the child DataTable. This is the default.
None
Indicates that no action takes place.
SetDefault
Indicates that the DataColumn values in the child DataTable are to be set to the value in the
DefaultValue property of the DataColumn.
SetNull
Indicates that the DataColumn values in the child DataTable are to be set to DBNull.
By default, UpdateRule is set to Cascade; therefore, when you change the DataColumn in the parent
DataTable on which the ForeignKeyConstraint was created, then the same change is also made in
any corresponding DataRow objects in the child DataTable. You should set UpdateRule to None in
your program; otherwise, as you'll learn in the next section, you'll run into problems when pushing
changes from your DataSet to the database.
By default, DeleteRule is set to Cascade; therefore, when you delete a DataRow in the parent

Mastering C# Database Programming @Team LiB258

© 2004 ... Your company

DataTable, any corresponding DataRow objects in the child DataTable are also deleted. This is fine,
as long as you remember to push the deletes to the child table before you push the deletes to the
parent table. Updating the Primary Key of a Parent Table and Pushing the Change to the Database
In this section you'll learn what happens if you attempt to update the primary key in a parent table
when there are corresponding rows in the child table. Assume the following:
There is a row in the Customers table with a CustomerID of J6COM. A copy of this row is stored in a
DataTable named customersDT.
There is a row in the Orders table that also has a CustomerID of J6COM. A copy of this row is stored
in a DataTable named ordersDT.
The customersDT and ordersDT DataTable objects are related to each other using the following
DataRelation: DataRelation customersOrdersDataRel = new DataRelation("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
myDataSet.Relations.Add(customersOrdersDataRel);
Now, the two settings for the Cascade Update Related Fields check box for FK_Orders_Customers
are
Unchecked, meaning that changes to the CustomerID primary key value in the Customers table are
not cascaded to the Orders table. This is the default.
Checked, meaning that changes to the CustomerID primary key value in the Customers table are
cascaded to the Orders table.
In addition, the settings of interest for the UpdateRule property of the ForeignKeyConstraint object
added when the earlier DataRelation was created are
Cascade, meaning that changes to the CustomerID DataColumn of customersDT are cascaded to
ordersDT. This is the default.
None, meaning that changes to the CustomerID DataColumn of customersDT are not cascaded to
ordersDT.
Let's examine the three most important cases that vary the checking of the Cascade Update Related
Fields box and setting of the UpdateRule property to Cascade and then None.Note
You can use the ModifyingRelatedData2.cs program as the basis for trying out the three cases
described in this section.First Case
Assume the following:
Cascade Update Related Fields box is checked.
UpdateRule is set to Cascade.
If you change to the CustomerID DataColumn from J6COM to J7COM and push the change to the
database, then the change is made successfully in the customersDT and ordersDT DataTable objects
and also in the Customers and Orders database tables.
This works as long as you use only the OrderID column in the WHERE clause of the Command object
in the UpdateCommand property of your DataAdapter. For example:
ordersUpdateCommand.CommandText = "UPDATE Orders " + "SET " + " CustomerID =
@NewCustomerID " + "WHERE OrderID = @OldOrderID";
This UPDATE uses "last one wins" concurrency since only the OrderID primary key column is used in
the WHERE clause (the old CustomerID column is left out of the WHERE clause). As mentioned in
the previous chapter, "last one wins" concurrency is bad because one user might overwrite a change
made by another user.
If instead you also include the old CustomerID column value in the WHERE clause of the UPDATE,
as shown in the following example, ordersUpdateCommand.CommandText = "UPDATE Orders " +
"SET " + " CustomerID = @NewCustomerID " + "WHERE OrderID = @OldOrderID " + "AND
CustomerID = @OldCustomerID";
then pushing the change to the database would fail because the original row in the orders table
wouldn't be found. The original row wouldn't be found since the CustomerID has already been
changed from J6COM to J7COM in the Orders table automatically by the database because Cascade
Update Related Fields is checked for the foreign key in the Orders table, but in ordersDT the old
CustomerID is set to J6COM. Therefore, the addition of OrderID = @OldOrderID in the WHERE
clause prevents the row from being found. Instead, the UPDATE causes a DBConcurrencyException
to be thrown. Second Case
Assume the following:
Cascade Update Related Fields is unchecked.

Part 2: Fundamental Database Programming with ADO.NET 259

© 2004 ... Your company

UpdateRule is set to Cascade.
The CommandText property of the Command object in the UpdateCommand property of the
DataAdapter is set as follows: ordersUpdateCommand.CommandText = "UPDATE Orders " + "SET
" + " CustomerID = @NewCustomerID " + "WHERE OrderID = @OldOrderID";
If you change the CustomerID from J6COM to J7COM in customersDT and push the change to the
database, then the UPDATE will throw a SqlException. This is because the child Orders table
currently contains a row with the CustomerID of J6COM, and because of the foreign key you can't
change the CustomerID in the parent Customers table. Even if you tried to change the CustomerID in
ordersDT first and attempted to push the change to the database, you'd run into the same
exception.Third Case
Assume the following:
Cascade Update Related Fields is unchecked.
UpdateRule is set to None.
The CommandText of the Command object in the UpdateCommand of the DataAdapter is the same
as in the second case.
The following code sets the UpdateRule of the ChildKeyConstraint to None:
myDataSet.Relations["CustomersOrders"].ChildKeyConstraint.UpdateRule = Rule.None;
If you try to change the CustomerID from J6COM to J7COM in customersDT, then you'll throw an
InvalidConstraintException. This is because the child ordersDT DataTable currently contains a
DataRow with the CustomerID of J6COM, and because of the foreign key you can't change the
CustomerID in the parent customersDT DataTable. Even if you tried to change the CustomerID in
ordersDT first, you'd run into the same exception.Conclusion
The enforcement of the constraints in the previous three examples is correct, and they show what a
headache changing the primary key column values can be. The first case is the only one that works,
and even then you have to resort to using "last one wins" concurrency in the UPDATE statement,
which you should typically avoid.
What do you do if you want to change the primary key column value and apply the same change to
the child rows? The easiest way is to simply delete the rows in the child table first, change the primary
key value in the parent table, and recreate the rows in the child table with the new primary key value.

6.6.9 Nested XML

Nested XML
As mentioned in Chapter 10, "Using DataSet Objects to Store Data," a DataSet contains two methods
that output the contents of the DataRow objects as XML:
GetXml() returns the XML representation of the data stored in the DataSet object as a string.
WriteXml() writes the data from the DataSet object out to an XML file.
A DataRelation contains a property named Nested that gets or sets a bool value that indicates
whether the DataRelation objects are nested. This is useful when defining hierarchical relationships in
XML.
Specifically, when you set Nested to true, the child rows are nested within the parent rows in any XML
that you output using the GetXml() and WriteXml() methods. Similarly, you can read the nested rows
when calling the ReadXml() method of a DataSet to read an XML file.
The following example sets a DataRelation object's Nested property to true:
myDataSet.Relations["CustomersOrders"].Nested = true;
This is shown in Listing 12.1. Notice that this program writes two XML files named
nonNestedXmlFile.xml and nestedXmlFile.xml. The nonNestedXmlFile.xml contains the default non-
nested rows, and nestedXmlFile.xml contains the nested rows after the DataRelation object's Nested
property is set to true.Listing 12.1: NESTEDXML.CS /* NestedXml.cs illustrates how setting the
Nested property of a DataRelation to true causes the the child rows to be nested within the parent
rows in the output XML */ using System; using System.Data; using System.Data.SqlClient; class
NestedXml { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT TOP 2 CustomerID, CompanyName " + "FROM Customers " + "ORDER BY

Mastering C# Database Programming @Team LiB260

© 2004 ... Your company

CustomerID;" + "SELECT OrderID, CustomerID, ShipCountry " + "FROM Orders " +
"WHERE CustomerID IN (" + " SELECT TOP 2 CustomerID " + " FROM Customers " + "
ORDER BY CustomerID " + ")"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); int numberOfRows = mySqlDataAdapter.Fill(myDataSet);
Console.WriteLine("numberOfRows = " + numberOfRows); mySqlConnection.Close(); DataTable
customersDT = myDataSet.Tables["Table"]; DataTable ordersDT = myDataSet.Tables["Table1"];
// create a DataRelation object named customersOrdersDataRel DataRelation
customersOrdersDataRel = new DataRelation("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
myDataSet.Relations.Add(customersOrdersDataRel); // write the XML out to a file
Console.WriteLine("Writing XML out to file nonNestedXmlFile.xml");
myDataSet.WriteXml("nonNestedXmlFile.xml"); // set the DataRelation object's Nested property to
true // (causes child rows to be nested in the parent rows of the // XML output)
myDataSet.Relations["CustomersOrders"].Nested = true; // write the XML out again (this time the
child rows are nested // within the parent rows) Console.WriteLine("Writing XML out to file
nestedXmlFile.xml"); myDataSet.WriteXml("nestedXmlFile.xml"); } }
Listing 12.2 shows the nonNestedXmlFile.xml file produced by the program. Notice that the parent
rows from the Customers table are listed first, followed by the child rows from the Orders table. The
child rows are not nested within the parent rows.Listing 12.2: NONNESTEDXMLFILE.XML <?xml
version="1.0" standalone="yes"?> <NewDataSet> <Table> <CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName> </Table> <Table>
<CustomerID>ANATR</CustomerID> <CompanyName>Ana Trujillo Emparedados y
helados</CompanyName> </Table> <Table1> <OrderID>10308</OrderID>
<CustomerID>ANATR</CustomerID> <ShipCountry>Mexico</ShipCountry> </Table1> <Table1>
<OrderID>10625</OrderID> <CustomerID>ANATR</CustomerID>
<ShipCountry>Mexico</ShipCountry> </Table1> <Table1> <OrderID>10643</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>10692</OrderID> <CustomerID>ALFKI</CustomerID>
<ShipCountry>Germany</ShipCountry> </Table1> <Table1> <OrderID>10702</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>10759</OrderID> <CustomerID>ANATR</CustomerID>
<ShipCountry>Mexico</ShipCountry> </Table1> <Table1> <OrderID>10835</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>10926</OrderID> <CustomerID>ANATR</CustomerID>
<ShipCountry>Mexico</ShipCountry> </Table1> <Table1> <OrderID>10952</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>11011</OrderID> <CustomerID>ALFKI</CustomerID>
<ShipCountry>Germany</ShipCountry> </Table1> </NewDataSet>
Listing 12.3 shows the nestedXmlFile.xml file produced by the program. Notice that this time the child
rows from the Orders table are nested within the parent rows from the Customers table.Listing 12.3:
NESTEDXMLFILEL.CS <?xml version="1.0" standalone="yes"?> <NewDataSet> <Table>
<CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds Futterkiste</CompanyName>
<Table1> <OrderID>10643</OrderID> <CustomerID>ALFKI</CustomerID>
<ShipCountry>Germany</ShipCountry> </Table1> <Table1> <OrderID>10692</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>10702</OrderID> <CustomerID>ALFKI</CustomerID>
<ShipCountry>Germany</ShipCountry> </Table1> <Table1> <OrderID>10835</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
<Table1> <OrderID>10952</OrderID> <CustomerID>ALFKI</CustomerID>
<ShipCountry>Germany</ShipCountry> </Table1> <Table1> <OrderID>11011</OrderID>
<CustomerID>ALFKI</CustomerID> <ShipCountry>Germany</ShipCountry> </Table1>
</Table> <Table> <CustomerID>ANATR</CustomerID> <CompanyName>Ana Trujillo
Emparedados y helados</CompanyName> <Table1> <OrderID>10308</OrderID>
<CustomerID>ANATR</CustomerID> <ShipCountry>Mexico</ShipCountry> </Table1>
<Table1> <OrderID>10625</OrderID> <CustomerID>ANATR</CustomerID>

Part 2: Fundamental Database Programming with ADO.NET 261

© 2004 ... Your company

<ShipCountry>Mexico</ShipCountry> </Table1> <Table1> <OrderID>10759</OrderID>
<CustomerID>ANATR</CustomerID> <ShipCountry>Mexico</ShipCountry> </Table1>
<Table1> <OrderID>10926</OrderID> <CustomerID>ANATR</CustomerID>
<ShipCountry>Mexico</ShipCountry> </Table1> </Table> </NewDataSet>

6.6.10 Defining a Relationship Using Visual Studio .NET

Defining a Relationship Using Visual Studio .NET
In this section, you'll see how to create a Windows application in Visual Studio .NET (VS .NET) with a
DataSet containing two DataTable objects. These DataTable objects will reference the Customers
and Orders database tables. You'll then learn how to define a relationship between the two DataTable
objects in the XML schema. Create the Windows Application
Perform the following steps to create the Windows application:
Open VS .NET and select File £ New £ Project and create a new Windows Application. Enter the
name of the project as DataRelation, as shown in Figure 12.2.

Figure 12.2: Creating the Windows application
Click the OK button to continue.
Open Server Explorer and connect to the Northwind database using the connection you used in the
previous chapters. You can open Server Explorer by selecting View £ Server Explorer. Expand the
Tables node in the tree and select both the Customers and Orders tables by Ctrl +left-clicking each
table, as shown in Figure 12.3.

Figure 12.3: Selecting both the Customers and Orders tables from Server Explorer
Drag the Customers and Orders tables to your form. VS .NET then creates three objects in the tray
beneath your form. These objects are named sqlConnection1 (used to access the Northwind
database), sqlDataAdapter1 (used to handle access to the Customers table), and sqlDataAdapter2
(used to handle access to the Orders table). These objects are shown in Figure 12.4.

Mastering C# Database Programming @Team LiB262

© 2004 ... Your company

Figure 12.4: The new objects in the tray beneath the form
Next, you need a DataSet object that contains DataTable objects to store the rows from the
Customers and Orders tables. To create a DataSet object, click your blank form and then click the
Generate Dataset link at the bottom of the Properties window for the form shown earlier in Figure
12.4.
This displays the Generate Dataset dialog box, as shown in Figure 12.5. Leave all the settings in this

dialog in their default state.
Figure 12.5: The Generate Dataset dialog box
Notice that a new DataSet is to be created, and the Customers and Orders tables are used in the new
DataSet. The new DataSet will also be added to the designer, as indicated by the check box in the
dialog box. Click the OK button to continue.
A new DataSet named dataSet11 will be added to the tray beneath your form. Adding a Relation to
the XML Schema of the DataSet
Perform the following steps to add a relation to the XML schema of your DataSet:
Select your new DataSet in the tray and click the View Schema link in the Properties window. This

Part 2: Fundamental Database Programming with ADO.NET 263

© 2004 ... Your company

displays the Schema Editor, as shown in Figure 12.6.

Figure 12.6: The Schema Editor
Drag a relation from the XML Schema tab in the Toolbox to the Orders table entity. This opens the
Edit Relation dialog box, as shown in Figure 12.7.

Figure 12.7: The Edit Relation dialog box
As you can see from Figure 12.7, you can set the parent and child tables, the primary key and foreign
keys, along with other details for the relation.
Leave the settings in the Edit Relation dialog box in their default state and click the OK button to
continue.
This adds the new relation to the Customers and Orders entities in the XML schema. You can click
the diamond between the Customers and Orders entities to view the properties of the relation, as

Mastering C# Database Programming @Team LiB264

© 2004 ... Your company

shown in Figure 12.8.
Figure 12.8: The properties of the new relationNote
You can add a relation to a strongly typed DataSet in the same way as described in this section.

6.6.11 Summary

Summary
In this chapter, you delved into the details of UniqueConstraint and ForeignKeyConstraint objects.
You also learned how to define a relationship between DataTable objects using a DataRelation
object, which by default automatically creates a UniqueConstraint and a ForeignKeyConstraint object
for you. The UniqueConstraint object is added to your parent DataTable and the
ForeignKeyConstraint is added to your child DataTable.
You also saw how to navigate rows in related DataTable objects, make changes in related DataTable
objects, and finally push those changes to the database. You also saw how to use VS .NET to define
a relationship.
In the next chapter, you'll learn how to use DataView objects.

6.7 Chapter 13: Using DataView Objects

Chapter 13: Using DataView ObjectsOverview
In chapter 11, "Using DataSet Objects to Modify Data," you saw that you can filter and sort the
DataRow objects in a DataTable using the Select() method. In this chapter, you'll learn how to use
DataView objects to also filter and sort rows. The advantage of a DataView is that you can bind it to a
visual component such as a DataGrid control, and you'll also see how to do that in this chapter.
A DataView stores copies of the rows in a DataTable as DataRowView objects. The DataRowView
objects provide access to the underlying DataRow objects in a DataTable. Therefore, when you
examine and edit the contents of a DataRowView, you are actually working with the underlying
DataRow. Keep that in mind when reading this chapter.
Featured in this chapter:
The DataView class
Creating and using a DataView object
Using the default sort algorithm
Performing advanced filtering
The DataRowView class
Finding DataRowView objects in a DataView
Adding, modifying, and removing DataRowView objects from a DataView
Creating child DataView objects
The DataViewManager class

Part 2: Fundamental Database Programming with ADO.NET 265

© 2004 ... Your company

Creating and using a DataViewManager object
Creating a DataView using Visual Studio .NET

6.7.1 The DataView Class

The DataView Class
You use an object of the DataView class to view only specific rows in a DataTable object using a
filter. You can also sort the rows viewed by a DataView. You can add, modify, and remove rows from
a DataView, and those changes will also be applied to the underlying DataTable that the DataView
reads from; you'll learn more about this later in the section
"Adding, Modifying, and Removing DataRowView Objects from a DataView." Table 13.1 shows some
of the DataView properties, and Table 13.2 shows some of the DataView methods. Table 13.1:
DataView PROPERTIES
PROPERTY
TYPE
DESCRIPTION
AllowDelete
bool
Gets or sets a bool that indicates whether deletion of DataRowView objects from your DataView is
permitted. The default is true .
AllowEdit
bool
Gets or sets a bool that indicates whether editing of DataRowView objects in your DataView is
permitted. The default is true.
AllowNew
bool
Gets or sets a bool that indicates whether adding new DataRowView objects to your DataView is
permitted. The default is true.
ApplyDefaultSort
bool
Gets or sets a bool that indicates whether to use the default sorting algorithm to sort rows in your
DataView. When set to true, the default sort is used and is set to the ascending order of the
PrimaryKey property of the underlying DataTable (if the PrimaryKey is set). The default is false.
Count
int
Gets the number of rows visible to your DataView.
DataViewManager
DataViewManager
Gets the DataViewManager associated with your DataView. You'll learn about DataViewManager
objects later in the section "Creating and Using a DataViewManager Object."
RowFilter
string
Gets or sets the expression used to filter rows in your DataView.
RowStateFilter
DataViewRowState
Gets or sets the expression used to filter rows based on constants from the DataViewRowState
enumeration. Values are shown in Table 13.3.
Sort
string
Gets or sets an expression that specifies the columns to sort by and optional sort order for the rows in
your DataView. This string expression contains the column name followed by ASC (for ascending
sort) or DESC (for descending sort). A column is sorted in ascending order by default. You separate
multiple columns by commas in the string. For example: CustomerID ASC, CompanyName DESC.
Table
DataTable

Mastering C# Database Programming @Team LiB266

© 2004 ... Your company

Gets or sets the underlying DataTable that your DataView is associated with. Table 13.2: DataView
METHODS
METHOD
RETURN TYPE
DESCRIPTION
AddNew()
DataViewRow
Adds a new DataRowView to your DataView, and therefore adds a new DataRow to the underlying
DataTable.
BeginInit()
void
Begins the runtime initialization of your DataView in a form or component.
CopyTo()
void
Copies the rows from your DataView into an array. This method is for Web Forms Interfaces only.
Delete()
void
Deletes the DataRowView at the specified index from your DataView. The deletion of the underlying
DataRow isn't permanent until you call the AcceptChanges() method of your DataTable. You can
undo the delete by calling the RejectChanges() method of your DataTable.
EndInit()
void
Ends the runtime initialization of your DataView in a form or component.
Find()
int
Overloaded. Finds and returns the index of the DataRowView with the specified primary key in your
DataView. The int returned by this method is the index of the DataRowView if found; otherwise -1 is
returned. You must first set the Sort property of your DataView to sort on the primary key. For
example, if you want to find a DataRowView based on the CustomerID, you must set Sort to
CustomerID, CustomerID ASC, or CustomerID DESC.
FindRows()
DataRowView[]
Overloaded. Finds and returns an array of DataRowView objects that have columns matching the
specified primary key. As with the Find() method, you must set the Sort property of your DataView to
sort on the primary key before calling the FindRows() method.
GetEnumerator()
IEnumerator
Returns an enumerator for your DataView.
ToString()
string
Returns a string that represents your DataView. Table 13.3: DataViewRowState ENUMERATION
MEMBERS
CONSTANT
DESCRIPTION
Added
A new row.
CurrentRows
The current rows, which include Unchanged, Added, and ModifiedCurrent rows.
Deleted
A deleted row.
ModifiedCurrent
A current row that has been modified.
ModifiedOriginal
The original row before it was modified.
None
Doesn't match any of the rows in the DataTable.

Part 2: Fundamental Database Programming with ADO.NET 267

© 2004 ... Your company

OriginalRows
The original rows, which include Unchanged and Deleted rows.
Unchanged
A row that hasn't been changed.
One of the DataView events is ListChanged. It fires when the list managed by your DataView
changes. Its event handler is ListChangedEventHandler.
Table 13.3 shows the members of the System.Data.DataViewRowState enumeration. This
enumeration is used with the RowState property of a DataTable; this property is used to specify that
the rows viewed by the DataView are filtered by their DataViewRowState.

6.7.2 Creating and Using a DataView Object

Creating and Using a DataView Object
In this section, you'll learn how to filter and sort rows with a DataView object. You create a DataView
object using one of the following constructors: DataView() DataView(DataTable myDataTable)
DataView(DataTable myDataTable , string filterExpression , string sortExpression ,
DataViewRowState rowState)
where
myDataTable specifies the DataTable that your DataView is associated with. Your DataView will
read the rows from this DataTable. The Table property of your DataView is set to myDataTable .
filterExpression specifies a string containing the expression you want to filter the rows by. The
RowFilter property of your DataView is set to filterExpression .
sortExpression specifies a string containing the expression you want to sort the rows by. The Sort
property of your DataView is set to sortExpression .
rowState specifies an additional filter to apply to the rows; rowState filters by the DataRowView-
State of the DataViewRow objects in your DataView. The RowStateFilter of your DataView is set to
rowState .
Before you create a DataView, you first need a DataTable from which to read rows. The following
example creates and populates a DataTable named customersDT that contains rows from the
Customers table: SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT CustomerID, CompanyName, Country " + "FROM
Customers"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close(); DataTable customersDT = myDataSet.Tables["Customers"];
Let's say you want to filter the rows in CustomersDT to view just the customers in the UK. Your filter
string expression would be string filterExpression = "Country = 'UK'"; Note
Notice that UK is placed within single quotes. This is because UK is a string literal.
Also, let's say you want to sort those rows by ascending CustomerID column values and descending
CompanyName column values. Therefore, your sort expression would be string sortExpression =
"CustomerID ASC, CompanyName DESC"; Note
ASC sorts in ascending order. DESC sorts in descending order.
Finally, let's say you wanted to view only the original rows in the DataView; you therefore set your row
state filter to DataViewRowState.OriginalRows: DataViewRowState rowStateFilter =
DataViewRowState.OriginalRows; Note
The default is DataViewRowState.CurrentRows , which includes rows in your DataView for which the
DataViewRowState is Unchanged , Added , and ModifiedCurrent .
The following example creates a DataView object named customersDV and passes customersDT,
filterExpression, sortExpression, and rowStateFilter to the DataView constructor: DataView
customersDV = new DataView(customersDT, filterExpression, sortExpression, rowStateFilter);
You can also create a DataView and set the Table, RowFilter, Sort, and RowStateFilter properties
individually. For example: DataView customersDV = new DataView(); customersDV.Table =
customersDT; customersDV.RowFilter = filterExpression; customersDV.Sort = sortExpression;
customersDV.RowStateFilter = rowStateFilter;
A DataView stores rows as DataRowView objects, and the rows are read from the DataRow objects

Mastering C# Database Programming @Team LiB268

© 2004 ... Your company

stored in the underlying DataTable. The following example uses a foreach loop to display the
DataRowView objects in the customersDV DataView: foreach (DataRowView myDataRowView in
customersDV) { for (int count = 0; count < customersDV.Table.Columns.Count; count++) {
Console.WriteLine(myDataRowView[count]); } Console.WriteLine(""); }
Note that myDataRowView[count] returns the value of the column at the numeric position specified by
count. For example, myDataRowView[0] returns the value of the CustomerID column. You'll learn
more about the DataRowView class later in the section "The DataRowView Class."
Listing 13.1 shows a program that uses the previous code examples.Listing 13.1:
USINGDATAVIEW.CS /* UsingDataView.cs illustrates the use of a DataView object to filter and
sort rows */ using System; using System.Data; using System.Data.SqlClient; class UsingDataView {
public static void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT CustomerID,
CompanyName, Country " + "FROM Customers"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet =
new DataSet(); mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close(); DataTable customersDT = myDataSet.Tables["Customers"]; // set up
the filter and sort expressions string filterExpression = "Country = 'UK'"; string sortExpression =
"CustomerID ASC, CompanyName DESC"; DataViewRowState rowStateFilter =
DataViewRowState.OriginalRows; // create a DataView object named customersDV DataView
customersDV = new DataView(); customersDV.Table = customersDT; customersDV.RowFilter =
filterExpression; customersDV.Sort = sortExpression; customersDV.RowStateFilter =
rowStateFilter; // display the rows in the customersDV DataView object foreach (DataRowView
myDataRowView in customersDV) { for (int count = 0; count <
customersDV.Table.Columns.Count; count++) { Console.WriteLine(myDataRowView[count]);
} Console.WriteLine(""); } } }
Notice that the rows in customersDV are filtered to those for which the Country is UK, and the
resulting rows are then sorted by CustomerID. The output from this program is as follows: AROUT
Around the Horn UK BSBEV B's Beverages UK CONSH Consolidated Holdings UK EASTC Eastern
Connection UK ISLAT Island Trading UK NORTS North/South UK SEVES Seven Seas Imports UK

6.7.3 Using the Default Sort Algorithm

Using the Default Sort Algorithm
If you want to sort the DataRowView objects in your DataView based on the primary key of your
DataTable, you can use a shortcut. Instead of setting the Sort property of your DataView, you set the
PrimaryKey property of your DataTable and then set the ApplyDefaultSort property of your DataView
to true.
The Sort property of your DataView is then automatically set to the primary key of your DataTable.
This causes the DataRowView objects in your DataView to be sorted in ascending order based on the
primary key column values.
Let's take a look at an example. The following code sets the PrimaryKey property of the customersDT
DataTable to the CustomerID DataColumn: customersDT.PrimaryKey = new DataColumn[] {
customersDT.Columns["CustomerID"] };
The next example sets the ApplyDefaultSort property of customersDV to true:
customersDV.ApplyDefaultSort = true;
The Sort property of customersDV is then set to CustomerID, which causes the DataRowView objects
to be sorted by the ascending CustomerID values.Note
You'll find the code examples in this section in the UsingDefaultSort.cs program. The listing is
omitted from this book for brevity.

Part 2: Fundamental Database Programming with ADO.NET 269

© 2004 ... Your company

6.7.4 Performing Advanced Filtering

Performing Advanced Filtering
The RowFilter property of a DataView is similar to a WHERE clause in a SELECT statement. You can
therefore use very powerful filter expressions in your DataView. For example, you can use AND, OR,
NOT, IN, LIKE, comparison operators, arithmetic operators, wildcard characters (* and %), and
aggregate functions.Note
For full details on how to use such filter expressions in your DataView objects, refer to the
DataColumn .Expression property in the .NET online documentation.
Here's a simple example that uses the LIKE operator and the percent (%) wildcard character to filter
rows with a CustomerName that starts with Fr: string filterExpression = "CompanyName LIKE 'Fr%'";
customersDV.RowFilter = filterExpression;
Notice that the string Fr% is placed in single quotes-which you must do for all string literals. When
this code replaces the existing code in the UsingDataView.cs program shown earlier in Listing 13.1,
the output is as follows: FRANK Frankenversand Germany FRANR France restauration France
FRANS Franchi S.p.A. Italy Note
I've made this change in the UsingDataView2.cs program (the listing is omitted from this book for
brevity). Feel free to examine and run this program.

6.7.5 The DataRowView Class

The DataRowView Class
Rows in a DataView object are stored as objects of the DataRowView class. A DataRowView object
provides access to the underlying DataRow object in a DataTable. When you examine and edit the
contents of a DataRowView, you are actually working with the underlying DataRow. Keep this in mind
when working with DataRowView objects. Table 13.4 shows some of the DataRowView properties,
and Table 13.5 shows some of the DataRowView methods. Table 13.4: DataRowView PROPERTIES
PROPERTY
TYPE
DESCRIPTION
DataView
DataView
Gets the DataView that the DataRowView belongs to.
IsEdit
bool
Gets a bool that indicates whether the DataRowView (and therefore the underlying DataRow) is in
edit mode.
IsNew
bool
Gets a bool that indicates whether the DataRowView has just been added.
Row
DataRow
Gets the underlying DataRow that is being viewed from the DataTable.
RowVersion
DataRowVersion
Gets the DataRowVersion of the underlying DataRow. Members of the System.Data.DataRowVersion
enumeration are
Current, which indicates the DataRow contains the current values.
Default, which indicates the DataRow contains the default values.
Original, which indicates the DataRow contains the original values.
Proposed, which indicates the DataRow contains proposed values. Table 13.5: DataRowView
METHODS
METHOD
RETURN TYPE
DESCRIPTION

Mastering C# Database Programming @Team LiB270

© 2004 ... Your company

BeginEdit()
void
Begins editing of the DataRowView in your DataView, and therefore begins the editing of the
underlying DataRow in your DataTable. You then edit this DataRow through the DataRowView.
CancelEdit()
void
Cancels editing of the DataRowView in your DataView, and therefore cancels editing of the
underlying DataRow.
CreateChildView()
DataView
Overloaded. Returns a DataView for a child DataTable, if present.
Delete()
void
Deletes the DataRowView in your DataView. The deletion of the underlying DataRow isn't committed
in the DataTable until you call the AcceptChanges() method of your DataTable. You can undo the
deletion by calling the RejectChanges() method of your DataTable, which also undoes any
uncommitted additions or modifications.
EndEdit()
void
Ends the editing of a DataRowView.

6.7.6 Finding DataRowView Objects in a DataView

Finding DataRowView Objects in a DataView
You can find the index of a DataRowView in a DataView using the Find() method of a DataView. You
can also get an array of DataRowView objects using the FindRows() method of a DataView. You'll
learn how to use the Find() and FindRows() methods in this section. Finding the Index of a
DataRowView Using the Find() Method
The Find() method returns the index of the DataRowView with the specified primary key in your
DataView. The int returned by this method is the index of the DataRowView if found; otherwise -1 is
returned.
To find the correct index, you must first set the Sort property of your DataView to sort on the primary
key. For example, if you want to find a DataRowView based on the CustomerID, you must set the Sort
property of your DataView to CustomerID, CustomerID ASC, or CustomerID DESC: string
sortExpression = "CustomerID"; customersDV.Sort = sortExpression;
Assume that the sorted DataRowView objects in customersDV are as follows: AROUT Around the
Horn UK BSBEV B's Beverages UK CONSH Consolidated Holdings UK EASTC Eastern Connection
UK ISLAT Island Trading UK NORTS North/South UK SEVES Seven Seas Imports UK
The following example calls the Find() method to find the index of the DataRowView in customersDV
with a CustomerID of BSBEV: int index = customersDV.Find("BSBEV");
Because BSBEV occurs at index 1, the Find() method returns 1.Note
DataRowView objects in a DataView start at index 0. Therefore, BSBEV occurs at index 1. Finding
DataRowView Objects Using the FindRows() Method
The FindRows() method of a DataView finds and returns an array of DataRowView objects for which
the primary key column matches the primary key in your DataView. If no rows were found, then the
returned array will have zero elements, and the Length property of the array will be 0.
To find DataRowView objects using the FindRows() method, you must first set the Sort property of
your DataView to sort on the primary key. For example, if you want to find DataRowView objects
based on the CustomerID, you must set the Sort property of your DataView to CustomerID,
CustomerIDASC, or CustomerID DESC: string sortExpression = "CustomerID"; customersDV.Sort =
sortExpression;
The following example calls the FindRows() method to find the DataRowView that has the
CustomerID of BSBEV: DataRowView[] customersDRVs = customersDV.FindRows("BSBEV");
Since there is only one match, the customersDRVs array will contain one DataRowView.
Listing 13.2 shows a program that uses the Find() and FindRows() methods.Listing 13.2:

Part 2: Fundamental Database Programming with ADO.NET 271

© 2004 ... Your company

FINDINGDATAROWVIEWS.CS /* FindingDataRowViews.cs illustrates the use of the Find() and
FindRows() methods of a DataView to find DataRowView objects */ using System; using
System.Data; using System.Data.SqlClient; class FindingDataRowViews { public static void Main()
{ SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT CustomerID,
CompanyName, Country " + "FROM Customers"; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet =
new DataSet(); mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close(); DataTable customersDT = myDataSet.Tables["Customers"]; // set up
the filter and sort expressions string filterExpression = "Country = 'UK'"; string sortExpression =
"CustomerID"; DataViewRowState rowStateFilter = DataViewRowState.OriginalRows; // create a
DataView object named customersDV DataView customersDV = new DataView();
customersDV.Table = customersDT; customersDV.RowFilter = filterExpression;
customersDV.Sort = sortExpression; customersDV.RowStateFilter = rowStateFilter; // display
the rows in the customersDV DataView object foreach (DataRowView myDataRowView in
customersDV) { for (int count = 0; count < customersDV.Table.Columns.Count; count++) {
Console.WriteLine(myDataRowView[count]); } Console.WriteLine(""); } // use the Find()
method of customersDV to find the index of // the DataRowView whose CustomerID is BSBEV int
index = customersDV.Find("BSBEV"); Console.WriteLine("BSBEV found at index " + index + "\n");
// use the FindRows() method of customersDV to find the DataRowView // whose CustomerID is
BSBEV DataRowView[] customersDRVs = customersDV.FindRows("BSBEV"); foreach
(DataRowView myDataRowView in customersDRVs) { for (int count = 0; count <
customersDV.Table.Columns.Count; count++) { Console.WriteLine(myDataRowView[count]);
} Console.WriteLine(""); } } } Tip
If you are using an early version of the .NET SDK, you might encounter the following compilation error
when compiling this program:FindingDataRowViews.cs(59,35): error CS0117:
'System.Data.DataView' does not contain a definition for 'FindRows'
If you get this error, compile the program with Visual Studio .NET.
The output from this program is as follows: AROUT Around the Horn UK BSBEV B's Beverages UK
CONSH Consolidated Holdings UK EASTC Eastern Connection UK ISLAT Island Trading UK
NORTS North/South UK SEVES Seven Seas Imports UK BSBEV found at index 1 BSBEV B's
Beverages UK

6.7.7 Adding, Modifying, and Removing DataRowView Objects from a DataView

Adding, Modifying, and Removing DataRowView Objects from a
DataView
It's important to understand that DataRowView objects in a DataView provide access to the underlying
DataRow objects in a DataTable. Therefore, when you examine and edit the contents of a
DataRowView, you're actually working with the underlying DataRow. Similarly, when you remove a
DataRowView, you are removing the underlying DataRow. Adding a DataRowView to a DataView
To add a new DataRowView to a DataView, you call the AddNew() method of your DataView. The
AddNew() method returns a DataRowView object that you use to set the column values for the new
row.The following example calls the AddNew() method of the customersDV DataView: DataRowView
customerDRV = customersDV.AddNew(); customerDRV["CustomerID"] = "J7COM";
customerDRV["CompanyName"] = "J7 Company"; customerDRV["Country"] = "UK";
customerDRV.EndEdit();
Notice the use of the EndEdit() method of the customerDRV DataRowView to end the editing. The
EndEdit() method creates a new DataRow in the underlying DataTable. The DataColumn objects in
the new DataRow will contain the column values specified in the previous code.Note
You can undo the addition by calling the CancelEdit() method of a DataRowView .
You can get the underlying DataRow added to the DataTable using the Row property of a
DataRowView. For example: DataRow customerDR = customerDRV.Row; Modifying an Existing
DataRowView

Mastering C# Database Programming @Team LiB272

© 2004 ... Your company

To begin modifying an existing DataRowView in a DataView, you call the BeginEdit() method of the
DataRowView in your DataView. The following example calls the BeginEdit() method for the first
DataRowView in customersDV: customersDV[0].BeginEdit(); Note
Remember that DataRowView objects in a DataView start at index 0, and therefore customersDV[0]
is the first DataRowView in customersDV .
You can then modify a DataColumn in the underlying DataRow through the DataRowView. The
following example sets the CompanyName DataColumn to Widgets Inc.:
customersDV[0]["CompanyName"] = "Widgets Inc.";
Once you've finished making your modifications, you call the EndEdit() method to make your
modifications permanent in the underlying DataTable. For example: customersDV[0].EndEdit(); Note
You can undo the modification by calling the CancelEdit() method of a DataRowView . Removing an
Existing DataRowView
To remove an existing DataRowView from a DataView, you can call the Delete() method of either the
DataView or the DataRowView. When calling the Delete() method of a DataView, you pass the index
of the DataRowView you want to remove. The following example removes the second DataRowView
from customersDV: customersDV.Delete(1);
When calling the Delete() method of a DataRowView, you simply call that method of the
DataRowView in your DataView. The following example removes the third DataRowView from
customersDV: customersDV[2].Delete();
With either of these Delete() methods, the deletion isn't committed in the underlying DataTable until
you call the AcceptChanges() method of your DataTable. For example:
customersDT.AcceptChanges(); Note
You can call the RejectChanges() method of a DataTable to undo the deletions. This method will
also undo any uncommitted additions and modifications of rows.
Listing 13.3 shows a program that adds, modifies, and removes DataRowView objects from a
DataView. This program also displays the IsNew and IsEdit properties of the DataRowView objects,
which indicate whether the DataRowView is new and is being edited.Listing 13.3:
ADDMODIFYANDREMOVEDATAROWVIEWS.CS /* AddModifyAndRemoveDataRowViews.cs
illustrates how to add, modify, and remove DataRowView objects from a DataView */ using System;
using System.Data; using System.Data.SqlClient; class AddModifyAndRemoveDataRowViews {
public static void DisplayDataRow(DataRow myDataRow, DataTable myDataTable) {
Console.WriteLine("\nIn DisplayDataRow()"); foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine(myDataColumn + "= " +
myDataRow[myDataColumn]); } } public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand
mySqlCommand = mySqlConnection.CreateCommand(); mySqlCommand.CommandText =
"SELECT CustomerID, CompanyName, Country " + "FROM Customers"; SqlDataAdapter
mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand;
DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close(); DataTable
customersDT = myDataSet.Tables["Customers"]; // set up the filter expression string
filterExpression = "Country = 'UK'"; // create a DataView object named customersDV DataView
customersDV = new DataView(); customersDV.Table = customersDT; customersDV.RowFilter =
filterExpression; // add a new DataRowView (adds a DataRow to the DataTable)
Console.WriteLine("\nCalling customersDV.AddNew()"); DataRowView customerDRV =
customersDV.AddNew(); customerDRV["CustomerID"] = "J7COM"; customerDRV["CompanyName"]
= "J7 Company"; customerDRV["Country"] = "UK"; Console.WriteLine("customerDRV[\"
CustomerID\"] = " + customerDRV["CustomerID"]); Console.WriteLine("customerDRV[\"
CompanyName\"] = " + customerDRV["CompanyName"]); Console.WriteLine("customerDRV[\"
Country\"] = " + customerDRV["Country"]); Console.WriteLine("customerDRV.IsNew = " +
customerDRV.IsNew); Console.WriteLine("customerDRV.IsEdit = " + customerDRV.IsEdit);
customerDRV.EndEdit(); // get and display the underlying DataRow DataRow customerDR =
customerDRV.Row; DisplayDataRow(customerDR, customersDT); // modify the CompanyName of
customerDRV Console.WriteLine("\nSetting customersDV[0][\" CompanyName\"] to Widgets Inc.");
customersDV[0].BeginEdit(); customersDV[0]["CompanyName"] = "Widgets Inc.";
Console.WriteLine("customersDV[0][\" CustomerID\"] = " + customersDV[0]["CustomerID"]);

Part 2: Fundamental Database Programming with ADO.NET 273

© 2004 ... Your company

Console.WriteLine("customersDV[0][\" CompanyName\"] = " + customersDV[0]["CompanyName"]);
Console.WriteLine("customersDV[0].IsNew = " + customersDV[0].IsNew);
Console.WriteLine("customersDV[0].IsEdit = " + customersDV[0].IsEdit); customersDV[0].EndEdit();
// display the underlying DataRow DisplayDataRow(customersDV[0].Row, customersDT); //
remove the second DataRowView from customersDV Console.WriteLine("\ncustomersDV[1][\"
CustomerID\"] = " + customersDV[1]["CustomerID"]); Console.WriteLine("\nCalling
customersDV.Delete(1)"); customersDV.Delete(1); Console.WriteLine("customersDV[1].IsNew = " +
customersDV[1].IsNew); Console.WriteLine("customersDV[1].IsEdit = " + customersDV[1].IsEdit); //
remove the third DataRowView from customersDV Console.WriteLine("\ncustomersDV[2][\"
CustomerID\"] = " + customersDV[2]["CustomerID"]); Console.WriteLine("\nCalling
customersDV[2].Delete()"); customersDV[2].Delete(); // call the AcceptChanges() method of
customersDT to // make the deletes permanent in customersDT customersDT.AcceptChanges();
// display the rows in the customersDV DataView object Console.WriteLine("\nDataRowView objects
in customersDV:\n"); foreach (DataRowView myDataRowView in customersDV) { for (int count =
0; count < customersDV.Table.Columns.Count; count++) {
Console.WriteLine(myDataRowView[count]); } Console.WriteLine(""); } } }
The output from this program is as follows: Calling customersDV.AddNew()
customerDRV["CustomerID"] = J7COM customerDRV["CompanyName"] = J7 Company
customerDRV["Country"] = UK customerDRV.IsNew = True customerDRV.IsEdit = True In
DisplayDataRow() CustomerID = J7COM CompanyName = J7 Company Country = UK Setting
customersDV[0]["CompanyName"] to Widgets Inc. customersDV[0]["CustomerID"] = AROUT
customersDV[0]["CompanyName"] = Widgets Inc. customersDV[0].IsNew = False
customersDV[0].IsEdit = True In DisplayDataRow() CustomerID = AROUT CompanyName = Widgets
Inc. Country = UK customersDV[1]["CustomerID"] = BSBEV Calling customersDV.Delete(1)
customersDV[1].IsNew = False customersDV[1].IsEdit = False customersDV[2]["CustomerID"] =
EASTC Calling customersDV[2].Delete() DataRowView objects in customersDV: AROUT Widgets
Inc. UK CONSH Consolidated Holdings UK ISLAT Island Trading UK NORTS North/South UK
SEVES Seven Seas Imports UK J7COM J7 Company UK

6.7.8 Creating Child DataView Objects

Creating Child DataView Objects
You can create a child DataView from a parent DataRowView using the CreateChildView() method.
You can then view the DataRowView objects from the child DataView. To call the CreateChildView()
method, you must first add a DataRelation to the DataSet that defines a relationship between the two
underlying DataTable objects. (See Chapter 12, "Navigating and Modifying Related Data," for
information about DataRelation objects.)
Let's take a look at an example. Assume you have two DataTable objects named customersDT and
ordersDT. Also assume you've added the following DataRelation to the DataSet that defines a
relationship between customersDT and ordersDT: DataRelation customersOrdersDataRel = new
DataRelation("CustomersOrders", customersDT.Columns["CustomerID"],
ordersDT.Columns["CustomerID"]); myDataSet.Relations.Add(customersOrdersDataRel);
Finally, assume you have a DataView named customersDV that views the customers that have a
Country column of UK. You can then call the CreateChildView() method from a DataRowView in
customersDV to create a child DataView; notice that the name of the DataRelation
(CustomersOrders) is passed to the CreateChildView() method: DataView ordersDV =
customersDV[0].CreateChildView("CustomersOrders");
The ordersDV DataView allows you to access the child rows from the ordersDT DataTable. The
parent in this example is the first DataRowView from customersDV with a CustomerID of AROUT. The
child ordersDV DataView contains DataRowView objects with the details of the orders for the AROUT
customer.Note
The CreateChildView() method is overloaded. The other version of this method accepts a
DataRelation object as the parameter.
Listing 13.4 shows a complete example program.Listing 13.4: CREATECHILDDATAVIEW.CS /*
CreateChildDataView.cs illustrates how to create a child DataView */ using System; using

Mastering C# Database Programming @Team LiB274

© 2004 ... Your company

System.Data; using System.Data.SqlClient; class CreateChildDataView { public static void Main() {
SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT CustomerID,
CompanyName, Country " + "FROM Customers;" + "SELECT OrderID, CustomerID " +
"FROM Orders;"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet); mySqlConnection.Close();
myDataSet.Tables["Table"].TableName = "Customers"; myDataSet.Tables["Table1"].TableName =
"Orders"; DataTable customersDT = myDataSet.Tables["Customers"]; DataTable ordersDT =
myDataSet.Tables["Orders"]; // add a DataRelation object to myDataSet DataRelation
customersOrdersDataRel = new DataRelation("CustomersOrders",
customersDT.Columns["CustomerID"], ordersDT.Columns["CustomerID"]);
myDataSet.Relations.Add(customersOrdersDataRel); // create a DataView object named
customersDV DataView customersDV = new DataView(); customersDV.Table = customersDT;
customersDV.RowFilter = "Country = 'UK'"; customersDV.Sort = "CustomerID"; // display the first
row in the customersDV DataView object Console.WriteLine("Customer:"); for (int count = 0;
count < customersDV.Table.Columns.Count; count++) {
Console.WriteLine(customersDV[0][count]); } // create a child DataView named ordersDV that
views // the child rows for the first customer in customersDV DataView ordersDV =
customersDV[0].CreateChildView("CustomersOrders"); // display the child rows in the
customersDV DataView object Console.WriteLine("\nOrderID's of the orders placed by this
customer:"); foreach (DataRowView ordersDRV in ordersDV) {
Console.WriteLine(ordersDRV["OrderID"]); } } }
The output from this program is as follows: Customer: AROUT Around the Horn UK OrderID's of the
orders placed by this customer: 10355 10383 10453 10558 10707 10741 10743 10768 10793 10864
10920 10953 11016

6.7.9 The DataViewManager Class

The DataViewManager Class
A DataViewManager allows you to centrally manage multiple DataView objects in a DataSet. A
DataViewManager also allows you to create DataView objects on the fly at runtime. Table 13.6 shows
some of the DataViewManager properties. Table 13.6: DataViewManager PROPERTIES
PROPERTY
TYPE
DESCRIPTION
DataSet
DataSet
Gets or sets the DataSet used by your DataViewManager.
DataViewSettings
DataViewSettingCollection
Gets the DataViewSettingCollection for each DataTable in your DataSet. A
DataViewSettingCollection gives you access to the properties of the DataView for each DataTable.
One of the DataViewManager methods is CreateDataView(). It creates a new DataView for the
specified DataTable. The DataTable is passed as a parameter to the CreateDataView() method. Its
return type is DataView.
One of the DataViewManager events is ListChanged. It fires when the list managed by a DataView in
your DataViewManager changes. Its event handler is ListChangedEventHandler.

6.7.10 Creating and Using a DataViewManager Object

Creating and Using a DataViewManager Object
To create a DataViewManager, you use one of the following constructors: DataViewManager()

Part 2: Fundamental Database Programming with ADO.NET 275

© 2004 ... Your company

DataViewManager(DataSet myDataSet)
where myDataSet specifies the DataSet used by the DataViewManager object. This sets the DataSet
property of the new DataViewManager object to myDataSet .
Let's take a look at an example of creating and using a DataViewManager. Assume you have a
DataSet named myDataSet, which contains a DataTable populated with rows from the Customers
table. The following example creates a DataViewManager object named myDVM, passing myDataSet
to the constructor: DataViewManager myDVM = new DataViewManager(myDataSet);
The next example sets the Sort and RowFilter properties that will be used later when a DataView for
the Customers DataTable is created: myDVM.DataViewSettings["Customers"].Sort = "CustomerID";
myDVM.DataViewSettings["Customers"].RowFilter = "Country = 'UK'"; Note
The previous code doesn't actually create a DataView ; it merely sets the properties of any DataView
created in the future that views rows from the Customers DataTable .
The following example actually creates a DataView by calling the CreateDataView() method of the
myDVM DataViewManager, passing the customersDT DataTable to CreateDataView(): DataView
customersDV = myDVM.CreateDataView(customersDT);
The Sort and RowFilter properties of the customersDV DataView are set to CustomerID and Country
= 'UK' respectively. These are the same settings as those set earlier in the DataViewSettings
property.
Listing 13.4A shows a complete example that creates and uses the DataViewManager shown in this
section.Listing 13.4A: USINGDATAVIEWMANAGER.CS /* UsingDataViewManager.cs illustrates the
use of a DataViewManager object */ using System; using System.Data; using System.Data.SqlClient;
class UsingDataViewManager { public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = "SELECT CustomerID, CompanyName, Country " + "FROM
Customers"; SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter();
mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet = new DataSet();
mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");
mySqlConnection.Close(); DataTable customersDT = myDataSet.Tables["Customers"]; // create
a DataViewManager object named myDVM DataViewManager myDVM = new
DataViewManager(myDataSet); // set the Sort and RowFilter properties for the Customers
DataTable myDVM.DataViewSettings["Customers"].Sort = "CustomerID";
myDVM.DataViewSettings["Customers"].RowFilter = "Country = 'UK'"; // display the
DataViewSettingCollectionString property of myDVM
Console.WriteLine("myDVM.DataViewSettingCollectionString = " +
myDVM.DataViewSettingCollectionString + "\n"); // call the CreateDataView() method of myDVM to
create a DataView // named customersDV for the customersDT DataTable DataView
customersDV = myDVM.CreateDataView(customersDT); // display the rows in the customersDV
DataView object foreach (DataRowView myDataRowView in customersDV) { for (int count =
0; count < customersDV.Table.Columns.Count; count++) {
Console.WriteLine(myDataRowView[count]); } Console.WriteLine(""); } } }
The output from this program is as follows: myDVM.DataViewSettingCollectionString =
<DataViewSettingCollectionString> <Customers Sort="CustomerID" RowFilter="Country = 'UK'"
RowStateFilter="CurrentRows"/> </DataViewSettingCollectionString> AROUT Around the Horn UK
BSBEV B's Beverages UK CONSH Consolidated Holdings UK EASTC Eastern Connection UK
ISLAT Island Trading UK NORTS North/South UK SEVES Seven Seas Imports UK

6.7.11 Creating a DataView Using Visual Studio .NET

Creating a DataView Using Visual Studio .NET
In this section, you'll learn how to create a DataView using Visual Studio .NET (VS .NET). You can
follow along with the steps described in this section:
Open VS .NET and create a new Windows application named myDataView.
Display Server Explorer, connect to your Northwind database, and drag the Customers table to your
form. This creates a SqlConnection object named sqlConnection1 and a SqlDataAdapter object

Mastering C# Database Programming @Team LiB276

© 2004 ... Your company

named sqlDataAdapter1. These objects are placed in the tray beneath your form.
Alter the ConnectionString property of sqlConnection1 to connect to your Northwind database.
Remember to add a substring containing the password (pwd=sa, or similar).
Click on the sqlDataAdapter1 object in your form, and then click the Generate Dataset link at the
bottom of the Properties window for sqlDataAdapter1. Accept the defaults in the dialog box, and click
the OK button to create a DataSet object named dataSet11.
Drag a DataView object from the Data tab of the Toolbox to your form. This creates a DataView object
named dataView1.
Set the Table property of your dataView1 object to dataSet11.Customers using the drop-down list to
the right of the Table property; set the RowFilter property to Country='UK'; and set the Sort property
to CustomerID. See Figure 13.1.

Figure 13.1: Setting the Properties of dataView1
Drag a DataGrid control from the Windows Forms tab of the Toolbox to your form. This creates a
DataGrid object named dataGrid1.
Set the DataSource property of dataGrid1 to dataView1 using the drop-down list to the right of the
DataSource property, as shown in Figure 13.2. This binds the data stored in dataView1 to dataGrid1
and allows dataGrid1 to access any data stored in dataView1.

Figure 13.2: Setting the Properties of dataGrid1
Select View £ Code and set the Form1() method of your form to public Form1() { // // Required for
Windows Form Designer support // InitializeComponent(); // call the Fill() method of
sqlDataAdapter1 // to populate dataSet11 with a DataTable named // Customers
sqlDataAdapter1.Fill(dataSet11, "Customers"); }
Compile and run your form by pressing Ctrl+F5. Figure 13.3 shows the running form. Notice that the

Part 2: Fundamental Database Programming with ADO.NET 277

© 2004 ... Your company

information in the form comes from the DataView you

created.
Figure 13.3: The running form

6.7.12 Summary

Summary
In this chapter, you learned how the use DataView objects to filter and sort rows. The advantage of a
DataView is that you can bind it to a visual component such as a DataGrid control.
A DataView stores copies of the rows in a DataTable as DataRowView objects. The DataRowView
objects provide access to the underlying DataRow objects in a DataTable. Therefore, when you
examine and edit the contents of a DataRowView, you are actually working with the underlying
DataRow.
The RowFilter property of a DataView is similar to a WHERE clause in a SELECT statement. You can
therefore use very powerful filter expressions in your DataView. For example, you can use AND, OR,
NOT, IN, LIKE, comparison operators, arithmetic operators, wildcard characters (* and %), and
aggregate functions.
You can find the index of a DataRowView in a DataView using the Find() method of a DataView. You
can also get an array of DataRowView objects using the FindRows() method of a DataView.
A DataViewManager allows you to centrally manage multiple DataView objects in a DataSet. A
DataViewManager also allows you to create DataView objects on the fly at runtime.

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

VII

Part 3: Advanced Database Programming with ADO.NET 279

© 2004 ... Your company

7 Part 3: Advanced Database Programming with ADO.NET

Part 3: Advanced Database Programming with ADO.NETChapter
List Chapter 14: Advanced Transaction ControlChapter 15: Introducing Web Applications-
ASP.NETChapter 16: Using SQL Server's XML SupportChapter 17: Web Services

7.1 Chapter 14: Advanced Transaction Control

Chapter 14: Advanced Transaction ControlOverview
In Chapter 3, "Introduction to the Structured Query Language," you saw how you can group SQL
statements into transactions. These SQL statements are considered a logical unit of work. One
example of this is a transfer of money from one bank account to another using two UPDATE
statements, one that takes money out of one account, and another that puts that money into a
different account. Both UPDATE statements may be considered to be a single transaction because
both statements must be either committed or rolled back together, otherwise money might be lost.
Today's databases can handle many users and programs accessing the database at the same time,
each potentially running their own transactions in the database. These are known as concurrent
transactions because they are run at the same time. The database software must be able to satisfy
the needs of all these concurrent transactions, as well as maintain the integrity of rows stored in the
database tables. You can control the level of isolation that exists between your transactions and other
transactions that might be running in the database.
In Chapter 8, "Executing Database Commands," you saw how to use a transaction with a Command
object. In Chapter 11, "Using DataSet Objects to Modify Data," you saw how to use a transaction with
a DataAdapter. In this chapter, you'll delve into advanced transaction control using SQL Server and
ADO.NET.
Featured in this chapter:
The SqlTransaction class
ACID transaction properties
Setting a savepoint
Setting the transaction isolation level
Understanding SQL Server locks

7.1.1 The SqlTransaction Class

The SqlTransaction Class
There are three Transaction classes: SqlTransaction, OleDbTransaction, and OdbcTransaction. You
use a Transaction object to represent a database transaction, and an object of the SqlTransaction
class to represent a database transaction in a SQL Server database. Table 14.1 shows some of the
SqlTransaction properties, and Table 14.2 shows some of the SqlTransaction methods. You'll see the
use of some of these properties and methods in this chapter. Table 14.1: SqlTransaction
PROPERTIES
PROPERTY
TYPE
DESCRIPTION
Connection
SqlConnection
Gets the connection for the transaction.
IsolationLevel
IsolationLevel
Gets the isolation level for the transaction (see "Setting the Transaction Isolation Level"). Table 14.2:
SqlTransaction METHODS
METHOD

Mastering C# Database Programming @Team LiB280

© 2004 ... Your company

RETURN TYPE
DESCRIPTION
Commit()
void
Performs a commit to permanently record the SQL statements in the transaction.
Rollback()
void
Overloaded. Performs a rollback to undo the SQL statements in the transaction.
Save()
void
Creates a savepoint in the transaction that can be used to undo a portion of that transaction. The
string passed to this method specifies the savepoint name. You can then roll back the transaction to
that savepoint (see "Setting a Savepoint").

7.1.2 Setting a Savepoint

Setting a Savepoint
You can set a savepoint anywhere within a transaction. This allows you to roll back any changes
made to database rows after your savepoint. This might be useful if you have a very long transaction
because if you make a mistake after you've set a savepoint, you don't have to roll back the
transaction all the way to the start. Setting a Savepoint Using T-SQL
You set a savepoint in T-SQL using the SAVE TRANSACTION statement, or the shorthand version,
SAVETRANS. The syntax for this statement is as follows: SAVE TRANS[ACTION] { savepointName |
@savepointVariable }
where
savepointName specifies a string containing the name you want to assign to your savepoint.
savepointVariable specifies a T-SQL variable that contains your savepoint name. Your variable
must be of the char, varchar, nchar, or nvarchar data type.
The following example sets a savepoint named SaveCustomer: SAVE TRANSACTION SaveCustomer
Let's look at a complete T-SQL example script that sets a savepoint within a transaction. Listing 14.1
shows a T-SQL script that performs the following steps:
Begins a transaction.
Inserts a row into the Customers table with a CustomerID of J8COM.
Sets a savepoint.
Inserts a row into the Orders table with a CustomerID of J8COM.
Performs a rollback to the savepoint, which undoes the previous insert performed in step 4, but
preserves the insert performed in step 2.
Commits the transaction, which commits the row inserted into the Customers table in step 2.
Selects the new row from the Customers table.
Attempts to select the from the Orders table that was rolled back in step 5.
Deletes the new row from the Customers table.Listing 14.1: SAVEPOINT.SQL /* Savepoint.sql
illustrates how to use a savepoint */ USE Northwind - step 1: begin the transaction BEGIN
TRANSACTION - step 2: insert a row into the Customers table INSERT INTO Customers (
CustomerID, CompanyName) VALUES ('J8COM', 'J8 Company') - step 3: set a savepoint SAVE
TRANSACTION SaveCustomer - step 4: insert a row into the Orders table INSERT INTO Orders (
CustomerID) VALUES ('J8COM'); - step 5: rollback to the savepoint set in step 3 ROLLBACK
TRANSACTION SaveCustomer - step 6: commit the transaction COMMIT TRANSACTION - step 7:
select the new row from the Customers table SELECT CustomerID, CompanyName FROM Customers
WHERE CustomerID = 'J8COM' - step 8: attempt to select the row from the Orders table - that was
rolled back in step 5 SELECT OrderID, CustomerID FROM Orders WHERE CustomerID = 'J8COM' -
step 9: delete the new row from the Customers table DELETE FROM Customers WHERE CustomerID
= 'J8COM'
To run the Savepoint.sql script using Query Analyzer, you select File £ Open, open the script from the
sql directory, and then press F5 on the keyboard or select Query £ Execute from the menu. Figure
14.1 shows the Savepoint.sql script being run in Query

Part 3: Advanced Database Programming with ADO.NET 281

© 2004 ... Your company

Analyzer.
Figure 14.1: Running the Savepoint.sql script in Query Analyzer Setting a Savepoint Using a
SqlTransaction Object
You set a savepoint in a SqlTransaction object by calling its Save() method, passing a string
containing the name you wish to assign to your savepoint. Assume you have a SqlTransaction object
named mySqlTransaction; the following example sets a savepoint named SaveCustomer by calling
the Save() method of mySqlTransaction: mySqlTransaction.Save("SaveCustomer");
You can then roll back any subsequent changes made to the rows in the database by calling the
Rollback() method of mySqlTransaction, passing the savepoint name to the Rollback() method. For
example: mySqlTransaction.Rollback("SaveCustomer");
Let's look at a complete C# program that sets a savepoint within a transaction. Listing 14.2 shows a
program that performs the following steps:
Creates a SqlTransaction object named mySqlTransaction.
Creates a SqlCommand and sets its Transaction property to mySqlTransaction.
Inserts a row into the Customers table.
Sets a savepoint by calling the Save() method of mySqlTransaction, passing the name SaveCustomer
to the Save() method.
Inserts a row into the Orders table.
Performs a rollback to the savepoint set in step 4, which undoes the previous insert performed in step
5, but preserves the insert performed in step 3.
Displays the new row added to the Customers table.
Deletes the new row from the Customers table.
Commits the transaction.Listing 14.2: SAVEPOINT.CS /* Savepoint.cs illustrates how to set a
savepoint in a transaction */ using System; using System.Data; using System.Data.SqlClient; class
Savepoint { public static void Main() { SqlConnection mySqlConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
mySqlConnection.Open(); // step 1: create a SqlTransaction object SqlTransaction
mySqlTransaction = mySqlConnection.BeginTransaction(); // step 2: create a SqlCommand
and set its Transaction property // to mySqlTransaction SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.Transaction = mySqlTransaction; // step
3: insert a row into the Customers table Console.WriteLine("Inserting a row into the Customers
table "+ "with a CustomerID of J8COM"); mySqlCommand.CommandText = "INSERT INTO
Customers (" + " CustomerID, CompanyName " + ") VALUES (" + " 'J8COM', 'J8
Company' "+ ")"; int numberOfRows = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("Number of rows inserted = "+ numberOfRows); // step 4: set a savepoint by
calling the Save() method of // mySqlTransaction, passing the name "SaveCustomer" to // the
Save() method mySqlTransaction.Save("SaveCustomer"); // step 5: insert a row into the Orders
table Console.WriteLine("Inserting a row into the Orders table "+ "with a CustomerID of
J8COM"); mySqlCommand.CommandText = "INSERT INTO Orders (" + " CustomerID " +

Mastering C# Database Programming @Team LiB282

© 2004 ... Your company

") VALUES (" + "'J8COM' "+ ")"; numberOfRows = mySqlCommand.ExecuteNonQuery();
Console.WriteLine("Number of rows inserted = "+ numberOfRows); // step 6: rollback to the
savepoint set in step 4 Console.WriteLine("Performing a rollback to the savepoint");
mySqlTransaction.Rollback("SaveCustomer"); // step 7: display the new row added to the Customers
table mySqlCommand.CommandText = "SELECT CustomerID, CompanyName "+ "FROM
Customers "+ "WHERE CustomerID = 'J8COM'"; SqlDataReader mySqlDataReader =
mySqlCommand.ExecuteReader(); while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+ mySqlDataReader["CustomerID"]);
Console.WriteLine("mySqlDataReader[\" CompanyName\"] = "+
mySqlDataReader["CompanyName"]); } mySqlDataReader.Close(); // step 8: delete the new
row from the Customers table Console.WriteLine("Deleting row with CustomerID of J8COM");
mySqlCommand.CommandText = "DELETE FROM Customers "+ "WHERE CustomerID =
'J8COM'"; numberOfRows = mySqlCommand.ExecuteNonQuery(); Console.WriteLine("Number
of rows deleted = "+ numberOfRows); // step 9: commit the transaction
Console.WriteLine("Committing the transaction"); mySqlTransaction.Commit();
mySqlConnection.Close(); } }
The output from this program is as follows: Inserting a row into the Customers table with a
CustomerID of J8COM Number of rows inserted = 1 Inserting a row into the Orders table with a
CustomerID of J8COM Number of rows inserted = 1 Performing a rollback to the savepoint
mySqlDataReader["CustomerID"] = J8COM mySqlDataReader["CompanyName"] = J8 Company
Deleting row with CustomerID of J8COM Number of rows deleted = 1 Committing the transaction

7.1.3 Setting the Transaction Isolation Level

Setting the Transaction Isolation Level
The transaction isolation level is the degree to which the changes made by one transaction are
separated from other concurrent transactions. Before I get into the details of the various transaction
isolation levels, you need to understand the types of problems that might occur when current
transactions attempt to access the same rows in a table. In the following list, I'll use examples of two
concurrent transactions that are accessing the same rows to illustrate the three types of potential
transaction processing problems:
Phantoms Transaction 1 reads a set of rows returned by a specified WHERE clause. Transaction 2
then inserts a new row, which also happens to satisfy the WHERE clause of the query previously
used byTransaction 1. Transaction 1 then reads the rows again using the same query but now sees
the additional row just inserted by Transaction 2. This new row is known as a "phantom," because to
Transaction 1, this row seems to have magically appeared.
Nonrepeatable reads Transaction 1 reads a row, and Transaction 2 updates the same row just read
by Transaction 1. Transaction 1 then reads the same row again and discovers that the row it read
earlier is now different. This is known as a "nonrepeatable read," because the row originally read by
Transaction 1 has been changed.
Dirty reads Transaction 1 updates a row but doesn't commit the update. Transaction 2 reads the
updated row. Transaction 1 then performs a rollback, undoing the previous update. Now the row just
read by Transaction 2 is no longer valid (or it's "dirty") because the update made by Transaction 1
wasn't committed when the row was read by Transaction 2.
To deal with these potential problems, databases implement various levels of transaction isolation to
prevent concurrent transactions from interfering with each other. The SQL standard defines four
isolation levels, which are shown in Table 14.3. These levels are shown in order of increasing
isolation. Table 14.3: SQL Standard Isolation Levels
ISOLATION LEVEL
DESCRIPTION
READ UNCOMMITTED
Phantoms, nonrepeatable reads, and dirty reads are permitted.
READ COMMITTED
Phantoms and nonrepeatable reads are permitted, but dirty reads are not. This is the default for SQL
Server.

Part 3: Advanced Database Programming with ADO.NET 283

© 2004 ... Your company

REPEATABLE READ
Phantoms are permitted, but nonrepeatable and dirty reads are not.
SERIALIZABLE
Phantoms, nonrepeatable reads, and dirty reads are not permitted. This is the default for the SQL
standard.
SQL Server supports all of these transaction isolation levels. The default transaction isolation level
defined by the SQL standard is SERIALIZABLE, but the default used by SQL Server is READ
COMMITTED, which is acceptable for most applications.Warning
When you set the transaction isolation level to SERIALIZABLE , any rows you access within a
subsequent transaction will be "locked," meaning that no other transaction can modify those rows.
Even rows you retrieve using a SELECT statement will be locked. You must commit or roll back the
transaction to release the locks and allow other transactions to access the same rows. Use
SERIALIZABLE only when you must ensure that your transaction is isolated from other transactions.
You'll learn more about this later in the section "Understanding SQL Server Locks."
In addition, ADO.NET supports a number of transaction isolation levels, which are defined in the
System.Data.IsolationLevel enumeration. Table 14.4 shows the members of this enumeration. Table
14.4: IsolationLevel Enumeration Members
ISOLATION LEVEL
DESCRIPTION
Chaos
Pending changes from more isolated transactions cannot be overwritten. SQL Server doesn't support
this isolation level.
ReadCommitted
Phantoms and nonrepeatable reads are permitted, but dirty reads are not. This is the default.
ReadUncommitted
Phantoms, nonrepeatable reads, and dirty reads are permitted.
RepeatableRead
Phantoms are permitted, but nonrepeatable and dirty reads are not.
Serializable
Phantoms, nonrepeatable reads, and dirty reads are not permitted.
Unspecified
A different isolation level than the one specified is being used, but the level cannot be determined.
SQL Server doesn't support this isolation level.
In the next two sections, you'll learn how to set the transaction isolation level using T-SQL and a
SqlTransaction object. Setting the Transaction Isolation Level Using T-SQL
As well as learning to set the transaction isolation level using T-SQL, you'll see an example that
shows the effect of setting different transaction isolation levels in SQL Server using the Query
Analyzer tool.
To set the transaction isolation level in T-SQL, you use the SET TRANSACTION ISOLATION LEVEL
command. The syntax for this command is as follows: SET TRANSACTION ISOLATION LEVEL {
READ COMMITTED | READ UNCOMMITTED | REPEATABLE READ | SERIALIZABLE }
As you can see from the previous syntax, you can set the transaction isolation to any of the levels
shown earlier in Table 14.3.
The following example sets the transaction isolation level to SERIALIZABLE: SET TRANSACTION
ISOLATION LEVEL SERIALIZABLE Note
The transaction isolation level is set for your session. Therefore, if you perform multiple transactions
in a session, all your transactions will use the same level. If you want to change the level in your
session, you simply execute another SET TRANSACTION ISOLATION LEVEL command with your
new level. All subsequent transactions in your session will use the new level.
The following example sets the transaction isolation level to READ COMMITTED: SET
TRANSACTION ISOLATION LEVEL READ COMMITTED
Let's look at a complete example that sets the transaction isolation level using T-SQL. Listing 14.3
shows an example T-SQL script that sets the transaction isolation level first to SERIALIZABLE and
executes a transaction, and then sets the level to READ COMMITTED and executes another
transaction.Listing 14.3: TransactionIsolation.sql /* TransactionIsolation.sql illustrates how to set
the transaction isolation level */ USE Northwind SET TRANSACTION ISOLATION LEVEL

Mastering C# Database Programming @Team LiB284

© 2004 ... Your company

SERIALIZABLE BEGIN TRANSACTION SELECT CustomerID, CompanyName FROM
Customers WHERE CustomerID IN ('ALFKI', 'J8COM') INSERT INTO Customers (
CustomerID, CompanyName) VALUES ('J8COM', 'J8 Company') UPDATE Customers
SET CompanyName = 'Widgets Inc.' WHERE CustomerID = 'ALFKI' SELECT CustomerID,
CompanyName FROM Customers WHERE CustomerID IN ('ALFKI', 'J8COM') COMMIT
TRANSACTION SET TRANSACTION ISOLATION LEVEL READ COMMITTED BEGIN
TRANSACTION UPDATE Customers SET CompanyName = 'Alfreds Futterkiste' WHERE
CustomerID = 'ALFKI' DELETE FROM Customers WHERE CustomerID = 'J8COM' SELECT
CustomerID, CompanyName FROM Customers WHERE CustomerID IN ('ALFKI', 'J8COM')
COMMIT TRANSACTION
Figure 14.2 shows the TransactionIsolation.sql script being run in Query Analyzer. In the results pane
in the lower half of Query Analyzer, the first two sets of rows are generated by the first transaction,
and the final single row is generated by the second

transaction.
Figure 14.2: Running the TransactionIsolation.sql script in Query Analyzer Setting the Transaction
Isolation Level of a SqlTransaction Object
Along with setting the transaction isolation level of a SqlTransaction object, you'll see an example that
shows the effect of setting different levels in a C# program.
You create a SqlTransaction object by calling the BeginTransaction() method of the SqlConnection
object. This method is overloaded as follows: SqlTransaction BeginTransaction() SqlTransaction
BeginTransaction(IsolationLevel myIsolationLevel) SqlTransaction BeginTransaction(string
transactionName) SqlTransaction BeginTransaction(IsolationLevel myIsolationLevel , string
transactionName)
where
myIsolationLevel specifies the isolation level of your transaction. This is a constant from the
System.Data.IsolationLevel enumeration, for which members were shown earlier in Table 14.4.
transactionName specifies a string containing the name you want to assign to your transaction.
In the examples in this section, assume you have an open SqlConnection named mySqlConnection
that is connected to the SQL Server Northwind database. The following example creates a
SqlTransaction named serializableTrans by calling the BeginTransaction() method of
mySqlConnection; notice that the IsolationLevel of Serializable is passed to BeginTransaction():
SqlTransaction serializableTrans = mySqlConnection.BeginTransaction(IsolationLevel.Serializable);
The next example creates a SqlCommand named serializableCommand, and sets its Transaction
property to serializableTrans: SqlCommand serializableCommand =
mySqlConnection.CreateCommand(); serializableCommand.Transaction = serializableTrans;
Any SQL statements performed using serializableCommand will now use serializableTrans, and will
therefore be performed in a serializable transaction. The following example performs an INSERT
statement that adds a row to the Customers table: serializableCommand.CommandText = "INSERT

Part 3: Advanced Database Programming with ADO.NET 285

© 2004 ... Your company

INTO Customers ("+ "CustomerID, CompanyName "+ ") VALUES ("+ "'J8COM', 'J8 Company' "+
")"; int numberOfRows = serializableCommand.ExecuteNonQuery();
The next example performs an UPDATE statement: serializableCommand.CommandText =
"UPDATE Customers "+ "SET CompanyName = 'Widgets Inc.' "+ "WHERE CustomerID = 'ALFKI'";
numberOfRows = serializableCommand.ExecuteNonQuery();
Finally, the following example commits the INSERT and UPDATE statements by calling the Commit()
method of serializableTrans: serializableTrans.Commit();
Listing 14.4 shows a program that contains the following methods:
DisplayRows() Selects and displays any rows from the Customers table with a CustomerID of ALFKI
or J8COM.
PerformSerializableTransaction() Performs the code shown earlier in this section to create a
SqlTransaction object with an isolation level of Serializable, and uses it to perform an INSERT and
UPDATE statement.
PerformReadCommittedTransaction() Creates a SqlTransaction object with an isolation level of
ReadCommitted, and uses it to perform UPDATE and DELETE statements.Listing 14.4:
TransactionIsolation.cs /* TransactionIsolation.cs illustrates how to set the transaction isolation
level */ using System; using System.Data; using System.Data.SqlClient; class TransactionIsolation {
public static void DisplayRows(SqlCommand mySqlCommand) {
mySqlCommand.CommandText = "SELECT CustomerID, CompanyName "+ "FROM
Customers "+ "WHERE CustomerID IN ('ALFKI', 'J8COM')"; SqlDataReader mySqlDataReader
= mySqlCommand.ExecuteReader(); while (mySqlDataReader.Read()) {
Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+ mySqlDataReader["CustomerID"]);
Console.WriteLine("mySqlDataReader[\" CompanyName\"] = "+
mySqlDataReader["CompanyName"]); } mySqlDataReader.Close(); } public static void
PerformSerializableTransaction(SqlConnection mySqlConnection) { Console.WriteLine("\nIn
PerformSerializableTransaction()"); // create a SqlTransaction object and start the transaction //
by calling the BeginTransaction() method of the SqlConnection // object, passing the IsolationLevel
of Serializable to the method SqlTransaction serializableTrans =
mySqlConnection.BeginTransaction(IsolationLevel.Serializable); // create a SqlCommand and set
its Transaction property // to serializableTrans SqlCommand serializableCommand =
mySqlConnection.CreateCommand(); serializableCommand.Transaction = serializableTrans; //
call the DisplayRows() method to display rows from // the Customers table
DisplayRows(serializableCommand); // insert a new row into the Customers table
Console.WriteLine("Inserting new row into Customers table "+ "with CustomerID of J8COM");
serializableCommand.CommandText = "INSERT INTO Customers ("+ "CustomerID,
CompanyName "+ ") VALUES ("+ "'J8COM', 'J8 Company' "+ ")"; int numberOfRows =
serializableCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows inserted = "+
numberOfRows); // update a row in the Customers table Console.WriteLine("Setting
CompanyName to 'Widgets Inc.' for "+ "row with CustomerID of ALFKI");
serializableCommand.CommandText = "UPDATE Customers "+ "SET CompanyName =
'Widgets Inc.' "+ "WHERE CustomerID = 'ALFKI'"; numberOfRows =
serializableCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = "+
numberOfRows); DisplayRows(serializableCommand); // commit the transaction
serializableTrans.Commit(); } public static void PerformReadCommittedTransaction(
SqlConnection mySqlConnection) { Console.WriteLine("\nIn
PerformReadCommittedTransaction()"); // create a SqlTransaction object and start the transaction
// by calling the BeginTransaction() method of the SqlConnection // object, passing the
IsolationLevel of ReadCommitted to the method // (ReadCommitted is actually the default)
SqlTransaction readCommittedTrans =
mySqlConnection.BeginTransaction(IsolationLevel.ReadCommitted); // create a SqlCommand and
set its Transaction property // to readCommittedTrans SqlCommand readCommittedCommand =
mySqlConnection.CreateCommand(); readCommittedCommand.Transaction =
readCommittedTrans; // update a row in the Customers table Console.WriteLine("Setting
CompanyName to 'Alfreds Futterkiste' "+ "for row with CustomerID of ALFKI");
readCommittedCommand.CommandText = "UPDATE Customers "+ "SET CompanyName =
'Alfreds Futterkiste' "+ "WHERE CustomerID = 'ALFKI'"; int numberOfRows =

Mastering C# Database Programming @Team LiB286

© 2004 ... Your company

readCommittedCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = "+
numberOfRows); // delete the new row from the Customers table Console.WriteLine("Deleting
row with CustomerID of J8COM"); readCommittedCommand.CommandText = "DELETE FROM
Customers "+ "WHERE CustomerID = 'J8COM'"; numberOfRows =
readCommittedCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows deleted = "+
numberOfRows); DisplayRows(readCommittedCommand); // commit the transaction
readCommittedTrans.Commit(); } public static void Main() { SqlConnection mySqlConnection =
new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
mySqlConnection.Open(); PerformSerializableTransaction(mySqlConnection);
PerformReadCommittedTransaction(mySqlConnection); mySqlConnection.Close(); } }
The output from this program is as follows: In PerformSerializableTransaction()
mySqlDataReader["CustomerID"] = ALFKI mySqlDataReader["CompanyName"] = Alfreds Futterkiste
Inserting new row into Customers table with CustomerID of J8COM Number of rows inserted = 1
Setting CompanyName to 'Widgets Inc.' for row with CustomerID of ALFKI Number of rows updated =
1 mySqlDataReader["CustomerID"] = ALFKI mySqlDataReader["CompanyName"] = Widgets Inc.
mySqlDataReader["CustomerID"] = J8COM mySqlDataReader["CompanyName"] = J8 Company In
PerformReadCommittedTransaction() Setting CompanyName to 'Alfreds Futterkiste' for row with
CustomerID of ALFKI Number of rows updated = 1 Deleting row with CustomerID of J8COM Number
of rows deleted = 1 mySqlDataReader["CustomerID"] = ALFKI mySqlDataReader["CompanyName"] =
Alfreds Futterkiste

7.1.4 Understanding SQL Server Locks

Understanding SQL Server Locks
SQL Server uses locks to implement transaction isolation and to ensure the information stored in a
database is consistent. Locks prevent one user from reading or changing a row that is being changed
by another user. For example, when you update a row, a row lock is placed on that row to prevent
another user from updating the row at the same time. Types of SQL Server Locks
SQL Server uses many types of locks, some of which are shown in Table 14.5. This table shows the
locks in ascending order of locking granularity, which refers to the size of the resource being locked.
For example, a row lock has a finer granularity than a page lock. Table 14.5: SQL Server Lock Types
LOCK TYPE
DESCRIPTION
Row (RID)
Placed on a row in a table. Stands for row identifier. Used to uniquely identify a row.
Key (KEY)
Placed on a row within an index. Used to protect key ranges in serializable transactions.
Page (PAG)
Placed on a page, which contains 8KB of row or index data.
Extent (EXT)
Placed on an extent, which is a contiguous group of 8 data or index pages.
Table (TAB)
Placed on a table and locks all the rows and indexes in that table.
Database (DB)
Used to lock the whole database when the database administrator puts it into single user mode for
maintenance. SQL Server Locking Modes
SQL Server uses different locking modes that determine the level of locking placed on the resource.
These locking modes are shown in Table 14.6. You'll see these locking modes in the next
section. Table 14.6: SQL Server Locking Modes
LOCKING MODE
DESCRIPTION
Shared (S)
Indicates that a transaction is going to read from the resource using a SELECT statement. Prevents
other transactions from modifying the locked resource. A shared lock is released as soon as the data
has been read-unless the transaction isolation level is set to REPEATABLE READ or SERIALIZABLE.

Part 3: Advanced Database Programming with ADO.NET 287

© 2004 ... Your company

Update (U)
Indicates that a transaction intends to modify a resource using an INSERT, UPDATE, or DELETE
statement. The lock must be escalated to an exclusive lock before the transaction actually performs
the modification.
Exclusive (X)
Allows the transaction to modify the resource using an INSERT, UPDATE, or DELETE statement. No
other transactions can read from or write to a resource on which an exclusive lock has been placed.
Intent shared (IS)
Indicates that the transaction intends to place a shared lock on some of the resources with a finer
level of granularity within that resource. For example, placing an IS lock on a table indicates that the
transaction intends to place a shared lock on some of the pages or rows within that table. No other
transactions may place an exclusive lock on a resource that already has an IS lock on it.
Intent exclusive (IX)
Indicates that the transaction intends to place an exclusive lock on a resource with a finer level of
granularity. No other transactions may place an exclusive lock on a resource that already has an IX
lock on it.
Shared with intent exclusive (SIX)
Indicates that the transaction intends to read all of the resources that have a finer level of granularity
and modify some of those resources. For example, placing a SIX lock on a table indicates that the
transaction intends to read all the rows in that table and modify some of those rows. No other
transactions may place an exclusive lock on a resource that already has a SIX lock on it.
Schema modification (Sch-M)
Indicates that a Data Definition Language (DDL) statement is going to be performed on a schema
resource, for example, DROP TABLE. No other transactions may place a lock on a resource that
already has a Sch-M lock on it.
Schema stability (Sch-S)
Indicates that a SQL statement that uses the resource is about to be performed, such as a SELECT
statement for example. Other transactions may place a lock on a resource that already has a Sch-S
lock on it; only a schema modification lock is prevented.
Bulk update (BU)
Indicates that a bulk copy operation to load rows into a table is to be performed. A bulk update lock
allows other processes to bulk-copy data concurrently into the same table, but prevents other
processes that are not bulk-copying data from accessing the table. For further information on bulk-
copying data to a table, see the SQL Server Books Online documentation. Viewing SQL Server Lock
Information
You can view the lock information in a database using SQL Server Enterprise Manager. You open the
Management folder, open the Current Activity node, and then open either the Locks/Process ID node
or the Locks/Object node. The Locks/Process ID node shows you the locks placed by each process;
each process has a SPID number that is assigned by SQL Server to identify the process. The
Locks/Object node shows you the locks placed on each resource by all processes.Tip
You can also view lock information by executing the sp_lock stored procedure, although Enterprise
Manager organizes the information in a more readable format.
Assume you've started the following transaction (using Query Analyzer, for example) with the
following T-SQL statements: USE Northwind BEGIN TRANSACTION UPDATE Customers SET
CompanyName = 'Widgets Inc.' WHERE CustomerID = 'ALFKI'
This places a shared lock on the Northwind database and a number of locks on the Customers table,
which you can view using Enterprise Manager. Figure 14.3 shows these locks using the Locks/
Process ID node of Enterprise Manager. The SPID of 51 corresponds to Query Analyzer where I ran
the previous T-SQL statements. As you can see from this figure, a number of locks are placed by the

Mastering C# Database Programming @Team LiB288

© 2004 ... Your company

previous T-SQL statements.
Figure 14.3: Viewing the locks using the Locks/ Process ID node of Enterprise Manager
To roll back the previous transaction, perform the following T-SQL statement: ROLLBACK
TRANSACTION
To release the locks, perform the following T-SQL statement: COMMIT TRANSACTION
The information in the right pane of Figure 14.3 shows the locks, and this information is divided into
the following columns:
Object The object being locked.
Lock Type The type of lock, which corresponds to one of the types shown earlier in Table 14.5.
Mode The locking mode, which corresponds to one of the modes shown earlier in Table 14.6.
Status The lock status, which is either GRANT (lock was successfully granted), CNVT (lock was
converted), or WAIT (waiting for lock).
Owner The owner type of the lock, which is either Sess (session lock) or Xact (transaction lock).
Index The name of the index being locked (if any).
Resource The resource identifier of the object being locked (if any). Transaction Blocking
One transaction may block another transaction from obtaining a lock on a resource. For example,
let's say you start a transaction using the following T-SQL, which is identical to the T-SQL in the
previous section: USE Northwind BEGIN TRANSACTION UPDATE Customers SET
CompanyName = 'Widgets Inc.' WHERE CustomerID = 'ALFKI'
As you saw in the previous section, this places a number of locks on the Customers object.
If you then attempt to update the same row-without ending the previous transaction-using the
following T-SQL statements: USE Northwind UPDATE Customers SET CompanyName = 'Alfreds
Futterkiste' WHERE CustomerID = 'ALFKI'
then this UPDATE will wait until the first transaction has been committed or rolled back. Figure 14.4
shows these two transactions being started in Query Analyzer. The first transaction, which is shown in
the upper part of Figure 14.4, is blocking the transaction on the

Part 3: Advanced Database Programming with ADO.NET 289

© 2004 ... Your company

bottom.
Figure 14.4: The transaction on the top part is blocking the transaction on the bottom.
To commit the previous transaction and release the locks for the first transaction, you may perform
the following T-SQL statement: COMMIT TRANSACTION
This allows the second UPDATE shown at the bottom of Query Analyzer to get the appropriate lock to
update the row and proceed, as shown in Figure

14.5.
Figure 14.5: Once the top transaction is committed, the bottom UPDATE proceeds. Setting the Lock
Timeout
By default, a SQL statement will wait indefinitely to get a lock. You can change this by executing the
SET LOCK_TIMEOUT command. For example, the following command sets the lock timeout to 1
second (1,000 milliseconds): SET LOCK_TIMEOUT 1000
If a SQL statement has to wait longer than 1 second, SQL Server will return an error and cancel the
SQL statement.
You can execute the SET LOCK_TIMEOUT command in C# code also. For example:
mySqlCommand.CommandText = "SET LOCK_TIMEOUT 1000";
mySqlCommand.ExecuteNonQuery();
You'll see the use of the SET LOCK_TIMEOUT command in the next section. Blocking and
Serializable/Repeatable Read Transactions
Serializable and repeatable read transactions lock the rows they are retrieving so that other
transactions cannot update those rows. Serializable and repeatable read transactions do this so that
the rows aren't changed after they've been read.

Mastering C# Database Programming @Team LiB290

© 2004 ... Your company

For example, if you select the row from the Customers table with a CustomerID of ALFKI using a
serializable transaction, and then attempt to update that row using a second transaction, then the
second transaction will be blocked. It is blocked because the serializable transaction locks the
retrieved row and the second transaction is unable to get a lock on that row.
Listing 14.5 shows an example of this. The second transaction sets the lock timeout to 1 second. This
means the program throws a SqlException rather than simply hanging when the second transaction is
unable to get a lock on the ALFKI row in the Customers table.Listing 14.5: Block.cs /* Block.cs
illustrates how a serializable command locks the rows it retrieves so that a second transaction
cannot get a lock to update one of these retrieved rows that has already been locked */ using
System; using System.Data; using System.Data.SqlClient; class Block { public static void
DisplayRows(SqlCommand mySqlCommand) { mySqlCommand.CommandText =
"SELECT CustomerID, CompanyName "+ "FROM Customers "+ "WHERE CustomerID IN
('ALFKI', 'J8COM')"; SqlDataReader mySqlDataReader = mySqlCommand.ExecuteReader();
while (mySqlDataReader.Read()) { Console.WriteLine("mySqlDataReader[\" CustomerID\"] = "+
mySqlDataReader["CustomerID"]); Console.WriteLine("mySqlDataReader[\" CompanyName\"] =
"+ mySqlDataReader["CompanyName"]); } mySqlDataReader.Close(); } public static void
Main() { // create and open two SqlConnection objects SqlConnection serConnection = new
SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlConnection
rcConnection = new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"
); serConnection.Open(); rcConnection.Open(); // create the first SqlTransaction object and
start the transaction // by calling the BeginTransaction() method of the SqlConnection // object,
passing the IsolationLevel of Serializable to the method SqlTransaction serializableTrans =
serConnection.BeginTransaction(IsolationLevel.Serializable); // create a SqlCommand and set its
Transaction property // to serializableTrans SqlCommand serializableCommand =
serConnection.CreateCommand(); serializableCommand.Transaction = serializableTrans; // call
the DisplayRows() method to display rows from // the Customers table; // this causes the rows to
be locked, if you comment // out the following line then the INSERT and UPDATE // performed
later by the second transaction will succeed DisplayRows(serializableCommand); // * // create
the second SqlTransaction object SqlTransaction readCommittedTrans =
rcConnection.BeginTransaction(IsolationLevel.ReadCommitted); // create a SqlCommand and set
its Transaction property // to readCommittedTrans SqlCommand readCommittedCommand =
rcConnection.CreateCommand(); readCommittedCommand.Transaction = readCommittedTrans;
// set the lock timeout to 1 second using the // SET LOCK_TIMEOUT command
readCommittedCommand.CommandText = "SET LOCK_TIMEOUT 1000";
readCommittedCommand.ExecuteNonQuery(); try { // insert a new row into the Customers
table Console.WriteLine("Inserting new row into Customers table "+ "with CustomerID of
J8COM"); readCommittedCommand.CommandText = "INSERT INTO Customers ("+
"CustomerID, CompanyName "+ ") VALUES (" + " 'J8COM', 'J8 Company' "+ ")";
int numberOfRows = readCommittedCommand.ExecuteNonQuery(); Console.WriteLine("Number
of rows inserted = "+ numberOfRows); // update the ALFKI row in the Customers table
Console.WriteLine("Setting CompanyName to 'Widgets Inc.' for "+ "for row with CustomerID of
ALFKI"); readCommittedCommand.CommandText = "UPDATE Customers "+ "SET
CompanyName = 'Widgets Inc.' "+ "WHERE CustomerID = 'ALFKI'"; numberOfRows =
readCommittedCommand.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = "+
numberOfRows); // display the new rows and rollback the changes
DisplayRows(readCommittedCommand); Console.WriteLine("Rolling back changes");
readCommittedTrans.Rollback(); } catch (SqlException e) { Console.WriteLine(e); }
finally { serConnection.Close(); rcConnection.Close(); } } } Warning
If you compile and run this program as is, then it will throw a SqlException . This is intentional, as it
shows you that the attempt to get a lock timed out. If you comment out the first call to the
DisplayRows() method in this program [marked with an asterisk (*)], then the program doesn't throw
a SqlException . This is because commenting out the first call to DisplayRows() stops the serializable
transaction from retrieving and therefore locking the rows. The second transaction is then able to get
the lock on the ALFKI row.
The output from this program is as follows (notice it throws a SqlException when the lock timeout
period is exceeded): mySqlDataReader["CustomerID"] = ALFKI mySqlDataReader["CompanyName"]

Part 3: Advanced Database Programming with ADO.NET 291

© 2004 ... Your company

= Alfreds Futterkiste Inserting new row into Customers table with CustomerID of J8COM
System.Data.SqlClient.SqlException: Lock request time out period exceeded. at
System.Data.SqlClient.SqlConnection.OnError(SqlException exception, TdsParserState state) at
System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, TdsParserState
state) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning() at
System.Data.SqlClient.TdsParser.Run(RunBehavior run, SqlCommand cmdHandler, SqlDataReader
dataStream) at System.Data.SqlClient.SqlCommand.ExecuteNonQuery() at Block.Main()
Try commenting out the first call to DisplayRows() in the program, and then recompile and run it
again. This time the second transaction will be able to get the lock on the row and
proceed. Deadlocks
A deadlock occurs when two transactions are waiting for locks that the other transaction currently
has. Consider the following two transactions:
Transaction 1 (T1): BEGIN TRANSACTION UPDATE Customers SET CompanyName = 'Widgets Inc.'
WHERE CustomerID = 'ALFKI' UPDATE Products SET ProductName = 'Widget' WHERE ProductID =
1 COMMIT TRANSACTION
Transaction 2 (T2): BEGIN TRANSACTION UPDATE Products SET ProductName = ' Chai' WHERE
ProductID = 1 UPDATE Customers SET CompanyName = ' Alfreds Futterkiste' WHERE CustomerID
= 'ALFKI' COMMIT TRANSACTION
Notice that T1 and T2 both update the same rows in the Customers and Products table. If T1 and T2
are executed in series at different times, T1 is executed and completed, followed by T2, then there's
no problem. However, if T1 and T2 are executed at the same time with their UPDATE statements
intermeshed, then a deadlock occurs. Let's take a look at an example of this using the following steps:
T1 is started.
T2 is started.
T1 locks the Customers row and updates the row.
T2 locks the Products row and updates the row.
T2 waits for the lock on the Products row, which is currently held by T1.
T1 waits for the lock the Customers row, which is currently held by T2.
In step 5, T2 is waiting for a lock held by T1. In step 6, T1 is waiting for a lock held by T2. Thus, a
deadlock occurs since both transactions are waiting for each other. Both transactions hold mutually
required locks. SQL Server will detect the deadlock and roll back one of the transactions. SQL Server
rolls back the transaction that is the least expensive to undo, and also returns an error indicating that
a deadlock occurred.
You can also choose the transaction that is to be rolled back using the T-SQL SET
DEADLOCK_PRIORITY command, which uses the following syntax: SET DEADLOCK_PRIORITY {
LOW | NORMAL | @variable }
where
LOW indicates the transaction has a low priority and is the one to roll back in the event of a
deadlock.
NORMAL indicates that the default rule is to be applied, meaning the least expensive transaction is
rolled back.
@variable is a T-SQL character variable that you set to 3 for LOW or 6 for NORMAL.
For example, the following command sets DEADLOCK_PRIORITY to LOW: SET
DEADLOCK_PRIORITY LOW
You can also execute the SET DEADLOCK_PRIORITY command in C# code. For example:
t2Command.CommandText = "SET DEADLOCK_PRIORITY LOW"; t2Command.ExecuteNonQuery();
Tip
You can reduce the risk of a deadlock occurring in your program by keeping your transactions as
short as possible; that way, the locks are held on the database objects for as short a period as
possible. You should also access tables in the same order when executing multiple transactions at
the same time; that way, you reduce the risk of transactions holding mutually required locks.
Listing 14.6 shows a program that illustrates the T1 and T2 transaction deadlock scenario described
earlier. Each UPDATE is executed using a separate thread to simulate the interleaved updates shown
earlier in the six steps.Listing 14.6: Deadlock.cs /* Deadlock.cs illustrates how two transactions can
deadlock each other */ using System; using System.Data; using System.Data.SqlClient; using
System.Threading; class Deadlock { // create two SqlConnection objects public static

Mastering C# Database Programming @Team LiB292

© 2004 ... Your company

SqlConnection t1Connection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); public static SqlConnection
t2Connection = new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa"
); // declare two SqlTransaction objects public static SqlTransaction t1Trans; public static
SqlTransaction t2Trans; // declare two SqlCommand objects public static SqlCommand
t1Command; public static SqlCommand t2Command; public static void UpdateCustomerT1() {
// update the row with a CustomerID of ALFKI // in the Customers table using t1Command
Console.WriteLine("Setting CompanyName to 'Widgets Inc.' "+ "for row with CustomerID of ALFKI
using t1Command"); t1Command.CommandText = "UPDATE Customers "+ "SET
CompanyName = 'Widgets Inc.' "+ "WHERE CustomerID = 'ALFKI'"; int numberOfRows =
t1Command.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = "+
numberOfRows); } public static void UpdateProductT2() { // update the row with a ProductID of
1 // in the Products table using t2Command Console.WriteLine("Setting ProductName to 'Widget'
"+ "for the row with ProductID of 1 using t2Command"); t2Command.CommandText =
"UPDATE Products "+ "SET ProductName = 'Widget' "+ "WHERE ProductID = 1"; int
numberOfRows = t2Command.ExecuteNonQuery(); Console.WriteLine("Number of rows updated =
"+ numberOfRows); } public static void UpdateProductT1() { // update the row with a ProductID
of 1 // in the Products table using t1Command Console.WriteLine("Setting ProductName to 'Chai'
"+ "for the row with ProductID of 1 using t1Command"); t1Command.CommandText =
"UPDATE Products "+ "SET ProductName = 'Chai' "+ "WHERE ProductID = 1"; int
numberOfRows = t1Command.ExecuteNonQuery(); Console.WriteLine("Number of rows updated =
"+ numberOfRows); } public static void UpdateCustomerT2() { // update the row with a
CustomerID of ALFKI // in the Customers table using t2Command Console.WriteLine("Setting
CompanyName to 'Alfreds Futterkiste' "+ "for row with CustomerID of ALFKI using t2Command");
t2Command.CommandText = "UPDATE Customers "+ "SET CompanyName = 'Alfreds
Futterkiste' "+ "WHERE CustomerID = 'ALFKI'"; int numberOfRows =
t2Command.ExecuteNonQuery(); Console.WriteLine("Number of rows updated = "+
numberOfRows); } public static void Main() { // open the first connection, begin the first
transaction, // and set the lock timeout to 5 seconds t1Connection.Open(); t1Trans =
t1Connection.BeginTransaction(); t1Command = t1Connection.CreateCommand();
t1Command.Transaction = t1Trans; t1Command.CommandText = "SET LOCK_TIMEOUT 5000";
t1Command.ExecuteNonQuery(); // open the second connection, begin the second transaction,
// and set the lock timeout to 5 seconds t2Connection.Open(); t2Trans =
t2Connection.BeginTransaction(); t2Command = t2Connection.CreateCommand();
t2Command.Transaction = t2Trans; t2Command.CommandText = "SET LOCK_TIMEOUT 5000";
t2Command.ExecuteNonQuery(); // set DEADLOCK_PRIORITY to LOW for the second transaction
// so that it is the transaction that is rolled back t2Command.CommandText = "SET
DEADLOCK_PRIORITY LOW"; t2Command.ExecuteNonQuery(); // create four threads that will
perform the interleaved updates Thread updateCustThreadT1 = new Thread(new
ThreadStart(UpdateCustomerT1)); Thread updateProdThreadT2 = new Thread(new
ThreadStart(UpdateProductT2)); Thread updateProdThreadT1 = new Thread(new
ThreadStart(UpdateProductT1)); Thread updateCustThreadT2 = new Thread(new
ThreadStart(UpdateCustomerT2)); // start the threads to actually perform the interleaved updates
updateCustThreadT1.Start(); updateProdThreadT2.Start(); updateProdThreadT1.Start();
updateCustThreadT2.Start(); } } Note
You can think of a thread as a separate process in your program, and each thread appears to execute
in parallel with the other threads. For a detailed discussion of threads, see the book Mastering Visual
C# .NET by Jason Price and Mike Gunderloy (Sybex, 2002).
The program shown in Listing 14.6 contains the following methods:
UpdateCustomerT1() Updates the row with a CustomerID of ALFKI in the Customers table using the
first transaction. Specifically, it sets the CompanyName to Widgets Inc.
UpdateProductT2() Updates the row with a ProductID of 1 in the Products table using the second
transaction. Specifically, it sets the ProductName to Widget.
UpdateProductT1() Updates the row with a ProductID of 1 in the Products table using the first
transaction. Specifically, it sets the ProductName to Chai.
UpdateCustomerT2() Updates the row with a CustomerID of ALFKI in the Customers table using the

Part 3: Advanced Database Programming with ADO.NET 293

© 2004 ... Your company

second transaction. Specifically, it sets the CompanyName to Alfreds Futterkiste.
These methods will be called by the threads to perform the interleaved updates.Note
This program indicates that the second transaction is to be rolled back when deadlock occurs using
the SET DEADLOCK_PRIORITY LOW command.
The output from this program is as follows: Setting CompanyName to 'Widgets Inc.' for row with
CustomerID of ALFKI using t1Command Number of rows updated = 1 Setting ProductName to
'Widget' for the row with ProductID of 1 using t2Command Number of rows updated = 1 Setting
ProductName to 'Chai' for the row with ProductID of 1 using t1Command Setting CompanyName to
'Alfreds Futterkiste' for row with CustomerID of ALFKI using t2Command Unhandled Exception:
System.Data.SqlClient.SqlException: Transaction (Process ID 53) was deadlocked on {lock}
resources with another process and has been chosen as the deadlock victim. Rerun the transaction.
at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, TdsParserState state) at
System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, TdsParserState
state) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning() at
System.Data.SqlClient.TdsParser.Run(RunBehavior run, SqlCommand cmdHandler, SqlDataReader
dataStream) at System.Data.SqlClient.SqlCommand.ExecuteNonQuery() at
Deadlock.UpdateCustomerT2() Number of rows updated = 1

7.1.5 Summary

Summary
Today's databases can handle many users and programs accessing the database at the same time,
each potentially running their own transactions in the database. The database software must be able
to satisfy the needs of all these concurrent transactions, as well as maintain the integrity of rows
stored in the database tables. You can control the level of isolation that exists between your
transactions and other transactions that might be running in the database.
In this chapter, you delved into advanced transaction control using SQL Server and ADO.NET.
Specifically, you saw how to set a savepoint, roll back a transaction to that savepoint, and set the
transaction isolation level. You also learned about SQL Server locks and how transactions can block
and deadlock each other.
In the next chapter, you'll learn about XML.

7.2 Chapter 15: Introducing Web Applications-ASP.NET

Chapter 15: Introducing Web Applications-ASP.NETOverview
Active Server Pages for .NET (ASP.NET) enables you to create dynamic Web pages with content that
can change at runtime and to develop applications that are accessed using a Web browser. For
example, you could develop an e-commerce application that allows users to order products over the
Web, or a stock-trading application that allows users to place trades for shares in companies.
ASP.NET is conceptually similar to its rival JavaServer Pages (JSP) in that you request a page from a
server using a Web browser, and the server responds by running the ASP.NET page. The server then
sends back HTML that is displayed in your browser.
In this chapter, you'll learn the basics of ASP.NET, and you'll see how to use Visual Studio .NET (VS
.NET) to create ASP.NET applications using C# as the programming language. Featured in this
chapter:
Creating ASP.NET Web applications
The Web form controls
Using DataGrid and DataList controls to access a database
Maintaining state in a Web application
Creating a simple shopping-cart application

Mastering C# Database Programming @Team LiB294

© 2004 ... Your company

7.2.1 Creating a Simple ASP.NET Web Application Using VS .NET

Creating a Simple ASP.NET Web Application Using VS .NET
In this section, you'll see how to create a simple ASP.NET Web application that contains a text box
and a button using VS .NET. When you press the button, a string of text will appear in your text box.
You'll learn how to deploy this application to Microsoft's Internet Information Server (IIS). You'll also
see how to run the example Web application from Internet Explorer. Note
IIS is software that allows you to run ASP.NET Web applications and display HTML pages. To deploy
the ASP.NET applications shown in this chapter, you'll need access to a computer that runs IIS, along
with the FrontPage Server Extensions. These extensions allow you to deploy an ASP.NET Web
application from Visual Studio .NET. You can find full information on installing IIS and the FrontPage
Server Extensions in the Windows online help documentation; to access this documentation, select
Start £ Help.
Perform the following steps:
Start Visual Studio .NET (VS .NET) and select File £ New Project. Select Visual C# Projects from the
Project Types area on the left of the New Project dialog box, and select ASP .NET Web Application
from the Templates area on the right. Enter http://localhost/MyWeb-Application in the Location
field, as shown in Figure 15.1.

Figure 15.1: Creating an ASP.NET Web application in Visual Studio .NETNote
The name localhost represents your local computer on which you are developing your Web
application. If you're using IIS that is running on a computer other than your local computer, you
should replace localhost with the name of the remote computer.
Click the OK button to continue. VS .NET will create a new directory named MyWebApplication in the
wwwroot directory; this is the directory where IIS stores published Web pages and applications. After
you click the OK button, you'll see the new application being sent to IIS.
Once your application has been deployed to IIS, VS .NET will display a blank Web form. You can
think of the Web form as the canvas on which you can place controls, such as text boxes and buttons.
When you later run your form, you'll see that the page displayed by the Web browser is laid out in a
similar manner to your form.
Add a TextBox control to your form. The default value for the ID property of your TextBox control is
TextBox1. Note
You use the ID property when referencing a Web control in C# code. You'll see an example of code
that does this shortly.
Set the TextMode property for TextBox1 to MultiLine; this allows the text to be displayed on more than
one line. Next, add a Button control to your form. The default ID for your Button control is Button1. Set
the Text property for Button1 to Press Me!Figure 15.2 shows the form with the TextBox and Button
controls.

Part 3: Advanced Database Programming with ADO.NET 295

© 2004 ... Your company

Figure 15.2: Adding TextBox and Button controls to the form
Next, you'll add a line of code to the Button1_Click() method. This method is executed when Button1
is pressed in your running form. The statement you'll add to Button1_Click() will set the Text property
of TextBox1 to a string. This string will contain a line from Shakespeare's Romeo and Juliet . To add
the code, double-click Button1 and enter the following code in the Button1_Click() method:
TextBox1.Text = "But, soft! what light through yonder window breaks?\n" + "It is the east, and Juliet
is the sun.\n" + "Arise, fair sun, and kill the envious moon,\n" + "Who is already sick and pale with
grief,\n" + "That thou her maid art far more fair than she"; Note
If you're a Shakespeare fan, you'll recognize these lines from the magnificent balcony scene in which
Romeo professes his true love for Juliet.
You're now ready to run your form. Select Debug £ Start Without Debugging, or press Ctrl+F5 on the
keyboard to run your form (see Figure 15.3).

Figure 15.3: The running form
Now that you've created and run the form, let's examine the code generated by VS .NET. There are
two main parts to the code:
The WebForm1.aspx file, which contains HTML and ASP.NET code.
The WebForm1.aspx.cs file, which contains C# code that supports the Web form. You can think of
this C# code as running behind the form, and for this reason the WebForm1.aspx.cs file is known as
the code-behind file .Note
The extension .aspx identifies ASP.NET files.
You'll examine the details of the WebForm1.aspx and WebForm1.aspx.cs files in the following
sections. The WebForm1.aspx File
You can view the HTML containing the ASP.NET tags for your form by clicking the HTML link at the
bottom of the form designer. Click the HTML link to view the code for your form. Listing 15.1 shows
the contents of the WebForm1.aspx file.Listing 15.1: WebForm1.aspx <%@ Page language="c#"

Mastering C# Database Programming @Team LiB296

© 2004 ... Your company

Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="MyWebApplication.WebForm1" %> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN" > <HTML> <HEAD> <title>WebForm1</title> <meta content="Microsoft
Visual Studio 7.0" name="GENERATOR"> <meta content="C#" name="CODE_LANGUAGE">
<meta content="JavaScript" name="vs_defaultClientScript"> <meta
content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema"> </HEAD>
<body MS_POSITIONING="GridLayout"> <form id="Form1" method="post" runat="server">
<asp:TextBox id="TextBox1" style="Z-INDEX: 101; LEFT: 13px; POSITION: absolute; TOP: 11px"
runat="server" Width="386px" Height="212px" TextMode="MultiLine"></asp:TextBox>
<asp:Button id="Button1" style="Z-INDEX: 102; LEFT: 17px; POSITION: absolute; TOP: 231px"
runat="server" Width="82px" Height="22px" Text="Press Me!"></asp:Button> </form>
</body> </HTML> Note
The exact values for the positions and sizes of the controls in your own code might differ slightly from
those shown in Listing 15.1.
Let's examine the lines in this file. The first lines are <%@ Page language="c#"
Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="MyWebApplication.WebForm1" %>
The language attribute indicates that the file uses the C# language. The Codebehind attribute
specifies the code-behind file that supports the form, and in this case, the code-behind file is Web-
Form1.aspx.cs. The AutoEventWireUp attribute indicates whether the ASP.NET framework
automatically calls the Page_Init() and Page_Load() event handler methods. These methods are
defined in the WebForm1.aspx.cs; you'll learn more about these event handler methods shortly. The
Inherits attribute specifies the name of the class in the WebForm1.aspx.cs file from which the form
inherits.
The next few lines are standard HTML that specifies the header and some meta-information
describing the file: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML>
<HEAD> <title>WebForm1</title> <meta content="Microsoft Visual Studio 7.0"
name="GENERATOR"> <meta content="C#" name="CODE_LANGUAGE"> <meta
content="JavaScript" name="vs_defaultClientScript"> <meta
content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema"> </HEAD>
The next line starts the body of the file: <body MS_POSITIONING="GridLayout">
The MS_POSITIONING attribute indicates that the form controls are laid out in a grid. The alternative
to GridLayout is LinearLayout, which specifies that the form controls are to be laid out one after
another in the browser.
The next line starts a form: <form id="Form1" method="post" runat="server">
The ID attribute specifies that the name of the form is Form1. The method attribute indicates that the
form uses an HTTP post request to send information to the server. The runat attribute specifies that
the form is executed on the server.
The next lines contain the details of the TextBox control that you added to your form: <asp:TextBox
id="TextBox1" style="Z-INDEX: 101; LEFT: 13px; POSITION: absolute; TOP: 11px" runat="server"
Width="386px" Height="212px" TextMode="MultiLine"></asp:TextBox>
The next lines contain the details of the Button control that you added to your form: <asp:Button
id="Button1" style="Z-INDEX: 102; LEFT: 17px; POSITION: absolute; TOP: 231px" runat="server"
Width="82px" Height="22px" Text="Press Me!"></asp:Button>
The remaining lines in the WebForm1.aspx file end the form, the body, and the file: </form>
</body> </HTML> The WebForm1.aspx.cs File
The WebForm1.aspx.cs file contains the code behind your form. You can view this code by selecting
View £ Code, or you can press F7 on your keyboard.
Listing 15.2 shows the contents of the WebForm1.aspx.cs file.Listing 15.2: WebForm1.aspx.cs using
System; using System.Collections; using System.ComponentModel; using System.Data; using
System.Drawing; using System.Web; using System.Web.SessionState; using System.Web.UI; using
System.Web.UI.WebControls; using System.Web.UI.HtmlControls; namespace MyWebApplication {
/// <summary> /// Summary description for WebForm1. /// </summary> public class WebForm1 :
System.Web.UI.Page { protected System.Web.UI.WebControls.TextBox TextBox1; protected
System.Web.UI.WebControls.Button Button1; private void Page_Load(object sender,
System.EventArgs e) { // Put user code to initialize the page here } #region Web Form

Part 3: Advanced Database Programming with ADO.NET 297

© 2004 ... Your company

Designer generated code override protected void OnInit(EventArgs e) { // // CODEGEN:
This call is required by the ASP.NET Web Form Designer. // InitializeComponent();
base.OnInit(e); } /// <summary> /// Required method for Designer support - do not modify ///
the contents of this method with the code editor. /// </summary> private void
InitializeComponent() { this.Button1.Click += new System.EventHandler(this.Button1_Click);
this.Load += new System.EventHandler(this.Page_Load); } #endregion private void
Button1_Click(object sender, System.EventArgs e) { TextBox1.Text = "But, soft! what light
through yonder window breaks?\n" + "It is the east, and Juliet is the sun.\n" + "Arise, fair
sun, and kill the envious moon,\n" + "Who is already sick and pale with grief,\n" + "That
thou her maid art far more fair than she"; } } }
As you can see, the WebForm1 class is derived from the System.Web.UI.Page class. In fact, when
you run your form, .NET actually creates an object of the Page class that represents your form.
The WebForm1 class declares two protected objects named TextBox1 and Button1, which represent
the TextBox and Button controls you added to your form.
The Page_Load() event handler method is called when the Page_Load event is raised. The
Page_Load event is raised whenever the Web form is loaded by a browser. Typically, you'll place any
initialization code in the Page_Load() method. For example, if you wanted to access a database, you
would open the database connection in the Page_Load() method.
The OnInit() and InitializeComponent() methods are placed within #region and #endregion
preprocessor directives. These directives enclose an area of code that may then be collapsed in VS
.NET's code editor, leaving only the text that immediately follows #region visible.
The OnInit() method is called when the form is initialized. This method calls the InitializeComponent()
method and adds the button Click and the form Load events to the System.EventHandler object. This
informs the system that these two events are to be handled by the Button1_Click() and Page_Load()
methods, respectively.
The Button1_Click() method is the method you modified earlier with code that sets the Text property
of your TextBox1 control to a string containing the quote from Romeo and Juliet .
In the next section, you'll be introduced to some of the other controls you can add to a Web form.

7.2.2 The Web Form Controls

The Web Form Controls
In this section, you'll see a summary of the various Web form controls that you can pick from the
Toolbox's Web Forms Section. Table 15.1 summarizes the controls. Table 15.1: WEB FORM
CONTROLS
CONTROL
DESCRIPTION
Label
Displays text. You set the text that you want to display using the Text property.
TextBox
A box containing text that the user of your form may edit at runtime. The TextMode property may be
set to SingleLine (text appears on one line), MultiLine (text appears over multiple lines), and
Password (text appears as asterisk characters). The Text property contains the TextBox text.
Button
A clickable button. The Text property determines the text shown on the button.
LinkButton
Similar to a Button, except that a LinkButton appears as a hypertext link. You set the link using the
Text property.
ImageButton
Similar to a Button, except that an ImageButton shows an image. You set the image using the
ImageUrl property.
HyperLink
A hyperlink. You set the hyperlink using the NavigateUrl property.
DropDownList
A list of options that drops down when clicked. You set the list of options using the Items property.

Mastering C# Database Programming @Team LiB298

© 2004 ... Your company

The user can select only one option from the DropDownList when the form is run.
ListBox
A list of options. You set the list of options using the Items property. The user can select multiple
options from the ListBox if the SelectionMode property is set to Multiple. The other value is Single, in
which case the user can select only one option.
DataGrid
A grid containing data retrieved from a data source, such as a database. You set the data source
using the DataSource property.
DataList
A list containing data retrieved from a data source. You set the data source using the DataSource
property.
Repeater
A list containing data retrieved from a data source that you set using the DataSource property. Each
item in the list may be displayed using a template. A template defines the content and layout of the
items in the list.
CheckBox
A check box contains a Boolean true/false value that is set to true by the user if they check the box.
The Checked property indicates the Boolean value currently set in the check box.
CheckBoxList
A multiple-selection check box. You set the list of check boxes using the Items property.
RadioButton
A radio button contains a Boolean true/false value that is set to true by the user if they press the
button. The Checked property indicates the Boolean value currently set in the radio button.
RadioButtonList
A group of radio buttons. You set the list of radio buttons using the Items property.
Image
Displays an image that you set using the ImageUrl property.
Panel
A container for other controls.
PlaceHolder
A container for controls that you can create at runtime; these are known as dynamic controls .
Calendar
Displays a calendar for a month and allows a user to select a date and navigate to the previous and
next month. You use the SelectedDate property to get or set the selected date, and you use the
VisibleDate property to get or set the month currently displayed.
AdRotator
Displays banner advertisements. Details on the advertisements, such as the image, URL when
clicked, and frequency of display, are set in an XML file that you set using the AdvertisementFile
property.
Table
Displays a table of rows, which you set using the Rows property.
RequiredFieldValidator
Used to ensure that the user has specified some input for a control. You set the control to validate
using the ControlToValidate property. You'll see an example that uses a validation control shortly.
CompareValidator
Used to compare an entry made by a user in one control with another control or a constant value. You
set the control to validate using the ControlToValidate property (this control contains the value
entered by the user). You set the control to compare against using the ControlToCompare property or
the ValueToCompare property. You set the operator for the comparison using the Operator property.
RangeValidator
Used to ensure that the user has entered a value within a specified range in a control. You set the
control to validate using the ControlToValidate property, and the range of values using the
MinimumValue and MaximumValue properties.
RegularExpressionValidator
Used to ensure that the user has entered a value that satisfies a specified regular expression. You
set the control to validate using the ControlToValidate property, and the regular expression using the

Part 3: Advanced Database Programming with ADO.NET 299

© 2004 ... Your company

ValidationExpression property.
CustomValidator
Used to perform your own custom validation for the value entered by a user. You set the control to
validate using the ControlToValidate property, and your function to use in the validation using the
ClientValidationFunction property.
ValidationSummary
Used to display a summary of all validation errors on the Web form and/or a message box. You set
whether you want to show the errors on your Web form using the ShowSummary property and
whether you want to show the errors in a message box using the ShowMessageBox property.
XML
Displays the contents of an XML file. You set the XML file to display using the DocumentSource
property.
Literal
Displays static text. You set the text to display using the Text property.
You'll see how to use some of these controls in the rest of this chapter.

7.2.3 Building a More Complex Application

Building a More Complex Application
In this section, you'll see a more complex Web form that uses Label, TextBox, RadioButtonList,
DropDownList, and RequiredFieldValidator controls. The form will prompt the user for their name (a
required field), favorite season (spring, summer, fall, or winter), and gender (male or female). The
form will also feature a Button control, which when pressed will set the Text property of one of the
Label controls to a string containing the user's name, gender, and favorite season. Figure 15.4 shows

how your final form will appear.
Figure 15.4: The appearance of the final form
Perform the following steps:
To create the new project, select File £ New Project in VS .NET. Select Visual C# Projects from the
Project Types area on the left of the New Project dialog box, and select ASP .NET Web Application
from the Templates area on the right. Enter http://localhost/MyWeb-Application2 in the Location
field. VS .NET will display a blank form to which you can add controls.
Now, add the four Label controls listed in Table 15.2 to your blank form. This table shows the ID and
Text property to set for each of your Label controls. Table 15.2: Label CONTROLS
ID PROPERTY
Text PROPERTY
HelloLabel
Hello
NameLabel
Enter your name

Mastering C# Database Programming @Team LiB300

© 2004 ... Your company

SeasonLabel
Favorite season
SexLabel
Sex
Next, add a TextBox control to the right of NameLabel. Set the ID property for your TextBox control to
NameTextBox. The user will enter their name in NameTextBox when the form is run.
We want the user to have to enter their name; if they don't, we want to display a message prompting
them to do so. To achieve this, you use a RequiredFieldValidator control. Add a
RequiredFieldValidator control below NameTextBox. Set the ID property for your Required-
FieldValidator control to NameRequiredFieldValidator. Set the Text property to You mustenter your
name! Finally, set the ControlToValidate property to NameTextBox.
Next, add a RadioButtonList control to the right of SeasonLabel. The user will select their favorite
season from this control. Set the ID property for your RadioButtonList control to
SeasonRadioButtonList. To add radio buttons to SeasonRadioButtonList, click the ellipsis (...) button
in the Items property. This displays the ListItem Collection Editor, which you use to add, modify, or
remove items in the Items collection for the control. When the form is run, any items you add to the
collection are displayed as radio buttons. Figure 15.5 shows the ListItem Collection Editor with the
required entries for your form.

Figure 15.5: The ListItem Collection Editor
The Selected property indicates whether the item is initially selected in the running form. The Text
property contains the text displayed with the item. The Value property is the returned value when the
item is selected.
Now click the Add button to add the first item to your RadioButtonList control. Set the Selected
property for the item to True-this causes the radio button to be initially selected. Set the Text property
for the item to Spring; this is the text displayed in the radio button. Set the Value property to 0; this is
the actual value selected. Table 15.3 shows the Selected, Text, and Value properties for this radio
button, along with the three other radio buttons to add to your RadioButtonList control. Table 15.3:
RadioButtonList ITEMS
Selected PROPERTY
Text PROPERTY
Value PROPERTY
True
Spring
0
False
Summer
1
False
Fall

Part 3: Advanced Database Programming with ADO.NET 301

© 2004 ... Your company

2
False
Winter
3
Next, add a DropDownList control to your form. This control will allow a user to select their gender
(male or female). Set the ID property for your DropDownList control to SexDropDown-List. You add
items to a DropDownList control using the ListItem Collection Editor, which you access using the
ellipsis button through the Items property. Open the ListItem Collection Editor and add the items
shown in Table 15.4. Table 15.4: DropDownList ITEMS
Selected PROPERTY
Text PROPERTY
Value PROPERTY
True
Male
0
False
Female
1
Finally, add a Button control to your form. Set the ID property for your Button control to OkButton, and
set the Text property to Ok. Double-click OkButton to edit the code for the OkButton_Click() method,
and add the following lines of code to this method: HelloLabel.Text = "Hello "+ NameTextBox.Text +
", you are "+ SexDropDownList.SelectedItem.Text + "and your favorite season is " +
SeasonRadioButtonList.SelectedItem.Text;
As you can see, this line sets the Text property for the HelloLabel control to a string containing the
user's entry in the NameTextBox, SexDropDownList, and SeasonRadioButton controls.
Run your completed form by pressing Ctrl+F5. Press the OK button without entering a name, and
you'll see the message "You must enter your name!", as shown in Figure 15.6. This message comes

from the NameRequiredFieldValidator control.
Figure 15.6: Message from the NameRequired-FieldValidator control
When you've finished running your form, close it and return to the VS .NET form designer. You can
view the HTML containing the ASP.NET tags for your form by clicking the HTML link at the bottom of
the form designer. Click the HTML link to view the code for your form. Listing 15.3 shows the
WebForm1.aspx file for the form. You'll notice that this file contains the various controls that were
added to the form.Listing 15.3: THE WebForm1.aspx FILE <%@ Page language="c#"
Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="WebApplication2.WebForm1" %> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN" > <HTML> <HEAD> <title>WebForm1</title> <meta name="GENERATOR"
Content="Microsoft Visual Studio 7.0"> <meta name="CODE_LANGUAGE" Content="C#">
<meta name="vs_defaultClientScript" content="JavaScript"> <meta name="vs_targetSchema"

Mastering C# Database Programming @Team LiB302

© 2004 ... Your company

content="http://schemas.microsoft.com/intellisense/ie5"> </HEAD> <body
MS_POSITIONING="GridLayout"> <form id="Form1" method="post" runat="server">
<asp:Label id="HelloLabel" style="Z-INDEX: 101; LEFT: 17px; POSITION: absolute; TOP: 16px"
runat="server" Width="322px" Height="23px">Hello</asp:Label> <asp:Label id="NameLabel"
style="Z-INDEX: 102; LEFT: 17px; POSITION: absolute; TOP: 54px" runat="server"
Width="114px" Height="22px">Enter your name</asp:Label> <asp:Label id="SeasonLabel"
style="Z-INDEX: 103; LEFT: 17px; POSITION: absolute; TOP: 107px" runat="server"
Width="101px" Height="32px">Favorite season</asp:Label> <asp:Label id="SexLabel" style="Z-
INDEX: 104; LEFT: 17px; POSITION: absolute; TOP: 221px" runat="server" Width="33px"
Height="15px">Sex</asp:Label> <asp:TextBox id="NameTextBox" style="Z-INDEX: 105; LEFT:
130px; POSITION: absolute; TOP: 51px" runat="server" Width="135px"
Height="30px"></asp:TextBox> <asp:RequiredFieldValidator id="NameRequiredFieldValidator"
style="Z-INDEX: 106; LEFT: 130px; POSITION: absolute; TOP: 84px" runat="server"
ErrorMessage="RequiredFieldValidator" ControlToValidate="NameTextBox">You must enter
your name! </asp:RequiredFieldValidator> <asp:RadioButtonList id="SeasonRadioButtonList"
style="Z-INDEX: 107; LEFT: 130px; POSITION: absolute; TOP: 107px" runat="server"
Width="152px" Height="107px"> <asp:ListItem Value="0"
Selected="True">Spring</asp:ListItem> <asp:ListItem Value="1">Summer</asp:ListItem>
<asp:ListItem Value="2">Fall</asp:ListItem> <asp:ListItem Value="3">Winter</asp:ListItem>
</asp:RadioButtonList> <asp:DropDownList id="SexDropDownList" style="Z-INDEX: 108;
LEFT: 130px; POSITION: absolute; TOP: 220px" runat="server" Width="90px" Height="27px">
<asp:ListItem Value="0" Selected="True">Male</asp:ListItem> <asp:ListItem
Value="1">Female</asp:ListItem> </asp:DropDownList> <asp:Button id="OkButton" style="Z-
INDEX: 109; LEFT: 17px; POSITION: absolute; TOP: 261px" runat="server" Width="83px"
Height="27px" Text="Ok"></asp:Button> </form> </body> </HTML>
The WebForm1.aspx.cs file contains the code behind your form. You can view this code by selecting
View £ Code, or you can press F7 on your keyboard.

7.2.4 Using a DataGrid Control to Access a Database

Using a DataGrid Control to Access a Database
A DataGrid allows you to access rows in a database table. In the following sections, you'll learn how
to create an ASP.NET Web application that uses a DataGrid control to access the rows in a database
table. The DataGrid you'll create will display the rows from the Products table of the Northwind
database. Creating the Web Application
Perform the following steps:
To create the new project, select File £ New Project in VS .NET. Select Visual C# Projects from the
Project Types area on the left of the New Project dialog box, and select ASP.NET Web Application
from the Templates area on the right. Enter http://localhost/DataGrid-WebApplication in the
Location field. Click OK to continue. Your new project will contain a blank form.
Next, you'll add a DataGrid control to your form. To do this, select the DataGrid from the Toolbox and
drag it to your form. Figure 15.7 shows the form with the DataGrid.

Part 3: Advanced Database Programming with ADO.NET 303

© 2004 ... Your company

Figure 15.7: Form with a DataGrid
Next, you'll add a SqlConnection object and a SqlDataAdapter object to your form. To add these
objects, select the Products table in Server Explorer and drag it to your form. (Adding a
SqlConnection object to a form was discussed in Chapter 6, "Introducing Windows Applications and
ADO.NET," and in Chapter 7, "Connecting to a Database.")Note
To display Server Explorer, select View £ Server Explorer, or press Ctrl+Alt+S on your keyboard.
After you drag the Products table to your form, VS .NET creates a SqlConnection object named
sqlConnection1 and a SqlDataAdapter object named sqlDataAdapter1. Click your sqlConnection1
object to display the properties for this object in the Properties window. To enable sqlConnection1 to
access the database, you need to set the password for the connection. To do this, you need to add a
substring containing pwd to the ConnectionString property of sqlConnection1. Add pwd=sa; to the
ConnectionString property.Note
If you don't have the password for the sa user, you'll need to get it from your database administrator.
Next, you'll modify the SQL SELECT statement used to retrieve the rows from the Products table.
Click the sqlDataAdapter1 object to display the properties for this object. Click the addition icon to the
left of the SelectCommand property to display the dynamic properties. One of the dynamic properties
is the CommandText property, which contains the SELECT statement.
Click CommandText and then click the ellipsis button to display the Query Builder. You use Query
Builder to define SQL statements. You can type in the SQL statement, or you can build it visually.
Uncheck all the columns except the following: ProductID, ProductName, QuantityPerUnit, and
UnitPrice. This results in the SQL SELECT statement being set to the following: SELECT ProductID,
ProductName, QuantityPerUnit, UnitPrice FROM Products
Click the OK button to save your SELECT statement and close Query Builder.
Next, you need to create a DataSet object. You use a DataSet object to store a local copy of the
information stored in the database. A DataSet object can represent database structures such as
tables, rows, and columns. In the example in this section, you'll use a DataSet object to store the rows
from the Products table.
Click an area of your form outside the DataGrid. Next, click the Generate Dataset link near the bottom
of the Properties window. This displays the Generate Dataset dialog box. Select the New radio button
and make sure the text field to the right of this radio button contains DataSet1. Also, make sure the
Add This Dataset To The Designer checkbox is checked. Click the OK button to continue. This adds a
new DataSet object named dataSet11 to your form.
Next, you'll need to set the DataSource property of your DataGrid to your DataSet object. This sets
the source of the data for your DataGrid and allows the rows from your DataSet to be displayed in
your DataGrid. To set the DataSource property, click your DataGrid object and set the DataSource
property to dataSet11. Also, set the DataMember property to Products; this is the table with rows that
are to be displayed by your DataGrid.
Next, you'll need to add code to populate sqlDataAdapter1 with the rows retrieved by your SELECT
statement. Typically, the best place to place this code is in the Page_Load() method of your form. The

Mastering C# Database Programming @Team LiB304

© 2004 ... Your company

Page_Load() method is called when the Web page containing your form is initially loaded or
refreshed. The IsPostBack property of a page is false the first time the page is loaded and true when
the submit button of a form is pressed. For performance, you'll generally want to retrieve rows only
when the IsPostBack property is false; otherwise you might needlessly reload the rows from the
database. To view the code for your form, open the code for your form by selecting View £ Code or by
pressing F7 on your keyboard. Set your Page_Load() method to the following: private void
Page_Load(object sender, System.EventArgs e) { // Put user code to initialize the page here if
(!this.IsPostBack) { sqlDataAdapter1.Fill(dataSet11, "Products"); this.DataBind(); } }
The Fill() method retrieves the rows from the Products table and populates dataSet11 with those
rows. The DataBind() method then fills the Products DataTable in dataSet11 with the rows retrieved
from the Products table. This causes the rows to be displayed in the DataGrid of your form.
To run your form, select Debug £ Start Without Debugging, or press Ctl+F5 on your keyboard (see

Figure 15.8).
Figure 15.8: The running form
As you can see, a vertical scroll bar is displayed because of the number of rows retrieved from the
Products table. In the next section, you'll learn how to customize your DataGrid. You'll see how you
can control the number of rows displayed in your DataGrid so that no scroll bar appears, as well as
control other aspects of your DataGrid. Customizing the DataGrid
You customize your DataGrid by first selecting the DataGrid control and then clicking the Property
Builder link at the bottom of the Properties window. This displays the Properties dialog box for your
DataGrid. The Properties dialog box is divided into five areas: General, Columns, Paging, Format,
and Borders.General Properties
You use the General properties to set the data source for your DataGrid and whether you want a
header and footer to displayed, among other properties. Set your General properties as shown in

Part 3: Advanced Database Programming with ADO.NET 305

© 2004 ... Your company

Figure 15.9.
Figure 15.9: The General properties
The General properties are as follows:
DataSource The DataSource is the source of the data for your DataGrid. In this example, the
DataSource is dataSet11.
DataMember The DataMember is the name of the table to which your DataGrid is bound. In this
example, the DataMember is Products.
Data Key Field The Data Key Field is the name of a column or expression that is associated with
each row in your DataGrid but isn't actually shown. You typically use it to specify the primary key.
Header and Footer The header displays the name of the columns at the top of the DataGrid. Select
Show Header and Show Footer.
Behavior You can sort columns in the header of your DataGrid. Select Allow Sorting so that your
columns can be sorted.Columns Properties
You use the Columns properties to select the columns to be displayed in your DataGrid and the
header and footer text to be displayed for each column, among other properties. Click the Columns
link of the Properties dialog box and set your Columns properties as shown in Figure

15.10.
Figure 15.10: The Columns properties
The Columns properties are as follows:
Create Columns Automatically At Run Time The Create Columns Automatically At Run Time
check box specifies whether to automatically include all the columns for the DataSet in your DataGrid.

Mastering C# Database Programming @Team LiB306

© 2004 ... Your company

When this check box is unselected, you can then set the other properties for each column
individually. Unselect this check box.
Column List The Column List allows you to select columns from your DataSet for display in your
DataGrid. You select columns from the Available Columns area on the left and add them to Selected
Columns area on the right using the button containing the right arrow. Select (All Fields) from
Available Columns, and add them to the Selected Columns.
BoundColumn Properties The BoundColumn properties allow you to set the properties for each
column. You select the column you want to set in the Selected Columns area, and then you set the
properties for that column. The fields you can set for each column are as follows:
Header Text The text you want to display in the header for a column.
Footer Text The text you want to display in the footer for a column.
Header Image The image you want to display in the header for a column.
Sort Expression The column or expression you want to use to sort the column by. Select UnitPrice
as the Sort expression.
Data Field The name of column.
Data Formatting Expression Allows you to format a column value. You can use a formatting
expression to format dates and numbers, among others. For example, {0:$##.00} formats a number,
adds a dollar sign at the front, and displays two digits after the decimal point; thus, 19 is formatted as
$19.00. Set the formatting expression for the UnitPrice column to {0:$##.00}.Paging Properties
Next, click on the Paging link of the Properties dialog box. Normally, all the rows retrieved by a
SELECT statement are displayed on a single page for the DataGrid. You can use the Paging
properties to split all the rows into separate pages, with a fixed number of rows on each page in your
DataGrid. You can then select the buttons to navigate between these pages of rows. You'll set your
page size to five rows with Next and Previous buttons to navigate between the pages of rows. Set
your Paging properties as shown in Figure

15.11.
Figure 15.11: The Paging properties
The Paging properties are as follows:
Allow Paging Controls whether paging is enabled. Check the Allow Paging box.
Page Size Controls the number of rows displayed on each page. Set your Page Size to 5.
Show Navigation Buttons The Show Navigation Buttons check box controls whether navigation
buttons are displayed. These buttons allow you to navigate between pages of rows. Check the Show
Navigation Buttons box.
Position Allows you to set the position of the navigation buttons. Set the Position to Bottom.
Mode Controls the type of navigation buttons displayed. You can use Next and Previous buttons or
page numbers to navigate between pages. Set the Mode to Next, Previous Buttons.
Next Page Button Text Sets the text displayed on the Next page button. Leave this as > so that
a greater-than character (>) is displayed.

Part 3: Advanced Database Programming with ADO.NET 307

© 2004 ... Your company

Previous Page Button Text Sets the text displayed on the Previous page button. Leave this as <
so that a less-than character (<) is displayed.
Numeric Buttons Control whether numbers are displayed for each page when you set the Mode to
Page Numbers. For example, 1 navigates to the first page, 2 to the second page, and so on.
In addition to enabling paging, you'll also need to add some code to your DataGrid to make
navigation work, and you'll do this shortly.Format Properties
Next, click the Format link of the Properties dialog box. You use the Format properties to control how
each element on your DataGrid appears. You can set features such as the color of your DataGrid, as
well as the font. You can also set the display properties of each column. You'll set the foreground and
background color to black and white, respectively. You'll also set the font of the text displayed in your
DataGrid to Arial. Set your Format properties as shown in Figure

15.12.
Figure 15.12: The Format properties
The Format properties are as follows:
Forecolor The Forecolor option specifies the text color. Set the Forecolor to Black.
Back Color The Back Color option specifies the color behind the text. Set the Back Color to White.
Font Name The Font Name option specifies the font used to display the text. Set the Font Name to
Arial.
Font Size The Font Size option controls the size of the font used to display the text.
Bold, Italic, Underline, Strikeout, Overline The Bold, Italic, Underline, Strikeout, and Overline
options control the character formatting for the text.
Horizontal Alignment The Horizontal Alignment option specifies the position of the text in the
cell. Borders Properties
Next, click on the Borders link of the Properties dialog box. You use the Borders properties to control
the padding, spacing, and appearance of the grid lines in your DataGrid. You'll set the border color of
the grid lines in your DataGrid to blue. Set your Borders properties as shown in Figure

Mastering C# Database Programming @Team LiB308

© 2004 ... Your company

15.13.
Figure 15.13: The Borders properties
The Borders properties are as follows:
Cell Padding Controls the amount of space (in pixels) between the edge of a cell and the cell
contents in your DataGrid.
Cell Spacing Controls the amount of space (in pixels) between each element in your DataGrid.
Grid Lines Specifies the direction of the grid lines in your DataGrid.
Border Color Specifies the color of the grid lines in your DataGrid. Set this to blue.
Border Width Controls the width and units of the grid lines in your DataGrid.
Once you've set your properties, click the OK button to continue. Next, you'll code the
PageIndexChanged() event handler to allow navigation of the rows in your DataGrid.Coding the
PageIndexChanged() Event Handler
As mentioned earlier, in addition to enabling paging in the Paging properties window, you'll also need
to add some code to your DataGrid, specifically, to the PageIndexChanged() event handler method.
This method is called whenever you change the page in the DataGrid on your running Web page.
Before you add the required code, you first select your DataGrid, and then you click the Events button
in the Properties window to display the events for your DataGrid, as shown in Figure

Part 3: Advanced Database Programming with ADO.NET 309

© 2004 ... Your company

15.14.
Figure 15.14: Displaying the DataGrid events
Double-click the PageIndexChanged event and set your DataGrid1_PageIndexChanged() method as
follows: private void DataGrid1_PageIndexChanged(object source,
System.Web.UI.WebControls.DataGridPageChangedEventArgs e) { DataGrid1.CurrentPageIndex =
e.NewPageIndex; sqlDataAdapter1.Fill(dataSet11, "Products"); DataGrid1.DataBind(); }
The first statement inside the method body is as follows: DataGrid1.CurrentPageIndex =
e.NewPageIndex;
This statement sets the current page displayed in DataGrid1 to the new page that is selected using
the navigation buttons in the running form. You set the current page for DataGrid1 using the
CurrentPageIndex property, and you get the new page from the NewPageIndex property of the
DataGridPageChangedEventArgs object. By setting DataGrid1.CurrentPageIndex equal to
e.NewPageIndex, the navigation to the new page of rows is performed.
The second statement is as follows: sqlDataAdapter1.Fill(dataSet11, "Products");
This statement calls the Fill() method of sqlDataAdapter1 to populate dataSet11 with the next set of
rows from the Products table.
The third statement is as follows: DataGrid1.DataBind();
This statement calls the DataBind() method of DataGrid1, causing the new set of rows to be
displayed.Note
With VS .NET, you can also go to the code view and use the top drop-down menus to create the
signature for events. This applies to any events that you add. Of course, double-clicking on events to
get the "default" event is easier, but there are other events for each control.
Run your form by pressing Ctrl+F5 on your keyboard. Figure 15.15 shows the running

Mastering C# Database Programming @Team LiB310

© 2004 ... Your company

form.
Figure 15.15: The running form
Use the navigation buttons to move between pages of rows. Once you've finished running your form,
close it and return to the VS .NET form designer. Click the HTML link to view the code for your form.
Listing 15.4 shows the WebForm1.aspx file for the form. You'll notice that this file contains a DataGrid
control with the appropriate columns.Listing 15.4: THE WebForm1.aspx FILE <%@ Page
language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="DataGridWebApplication.WebForm1" %> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.0 Transitional//EN" > <HTML> <HEAD> <title>WebForm1</title> <meta content="Microsoft
Visual Studio 7.0" name="GENERATOR"> <meta content="C#" name="CODE_LANGUAGE">
<meta content="JavaScript" name="vs_defaultClientScript"> <meta
content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema"> </HEAD>
<body MS_POSITIONING="GridLayout"> <form id="Form1" method="post" runat="server">
<asp:datagrid id=DataGrid1 style="Z-INDEX: 101; LEFT: 16px; POSITION: absolute; TOP: 11px"
runat="server" AutoGenerateColumns="False" BorderColor="Blue" Font-Bold="True" Font-
Names="Arial" ForeColor="Black" BackColor="White" AllowPaging="True" PageSize="5"
ShowFooter="True" DataMember="Products" AllowSorting="True" DataSource="<%#
dataSet11 %>" Height="333px" Width="352px"> <Columns> <asp:BoundColumn
DataField="ProductID" HeaderText="ProductID"> </asp:BoundColumn>
<asp:BoundColumn DataField="ProductName" HeaderText="ProductName">
</asp:BoundColumn> <asp:BoundColumn DataField="QuantityPerUnit"
HeaderText="QuantityPerUnit"> </asp:BoundColumn> <asp:BoundColumn
DataField="UnitPrice" SortExpression="UnitPrice" HeaderText="UnitPrice"
DataFormatString="{0:$##.00}"> </asp:BoundColumn> </Columns>
</asp:datagrid></form> </body> </HTML>
In the next section, you'll learn how to use a DataList control to access a database.

7.2.5 Using a DataList Control to Access a Database

Using a DataList Control to Access a Database
In this section, you'll learn how to use a DataList control to access the rows in the Products table.Tip
A DataList offers you a lot more flexibility in the presentation of column values than that offered by a
DataGrid.
Perform the following steps:
To create the new project, select File £ New Project in VS .NET. Select Visual C# Projects from the
Project Types area on the left of the New Project dialog box, and select ASP .NET Web Application
from the Templates area on the right. Enter http://localhost/DataList-WebApplication in the

Part 3: Advanced Database Programming with ADO.NET 311

© 2004 ... Your company

Location field. Click OK to continue. Your new project will contain a blank form.
Next, you'll add a SqlConnection object and a SqlDataAdapter object to your form. Select the
Products table in Server Explorer and drag it to your form.
After you drag the Products table to your form, VS .NET creates a SqlConnection object named
sqlConnection1 and a SqlDataAdapter object named sqlDataAdapter1.
Click your sqlConnection1 object to display the properties for this object in the Properties window. To
enable sqlConnection1 to access the database, you need to set the password for the connection. Add
pwd=sa; to the ConnectionString property.
Next, you'll modify the SQL SELECT statement used to retrieve the rows from the Products table.
Click your sqlDataAdapter1 object to display the properties for this object. Click the addition icon to
the left of the SelectCommand property to display the dynamic properties; one of the dynamic
properties is the CommandText property, which contains the SELECT statement. Next, click
CommandText and then click the ellipsis button to display the Query Builder. You can type in the SQL
statement, or you can build it up visually. Uncheck all the columns except ProductID, ProductName,
QuantityPerUnit, and UnitPrice. This results in the SQL SELECT statement being set to the following:
SELECT ProductID, ProductName, QuantityPerUnit, UnitPrice FROM Products
Click OK to continue.
Next, you need to create a DataSet object. Click an area of your form. Next, click the Generate-
Dataset link near the bottom of the Properties window. This displays the Generate Dataset dialog box.
Select the New radio button and make sure the field to the right of this radio button contains
DataSet1. Click the OK button to continue. This adds a new DataSet object named dataSet11 to your
form.
Next, you'll add a DataList control to your form. To do this, select the DataList from the Toolbox and
drag it to your form. Figure 15.16 shows the form with the new DataList.

Figure 15.16: Form with a DataList
Next, you'll need to set the DataSource property of your DataList to your DataSet object created
earlier. This sets the source of the data for your DataList and allows the rows from your DataSet to be
displayed in your DataList. To set the DataSource property, click your DataList object and set its
DataSource property to dataSet11. Also, set the DataMember property of your DataList to Products;
this is the table with rows that are displayed by the DataList.
A DataList uses templates that define how its contents are laid out, and your next task is to set up
those templates.Tip
It is the DataList templates that give you the flexibility for laying out controls that display column
values.
You'll edit the template that defines the header and footer for the DataList, along with the template
that defines the actual items displayed within your DataList:
To edit the header and footer template, right-click your DataList and select Edit Template £ Header
And Footer Templates.
You can add controls to the areas within the HeaderTemplate and FooterTemplate areas. Any

Mastering C# Database Programming @Team LiB312

© 2004 ... Your company

controls you add will be displayed at the start and end of the DataList, respectively. Add a label in
HeaderTemplate; you do this by dragging a Label control from the Toolbox to the empty area below
HeaderTemplate. Set the Text property for this Label to Products. Also, add a Label in the
FooterTemplate area and set its Text property to End of list. Figure 15.17 shows the modified header
and footer templates with the Label controls.

Figure 15.17: The modified header and footer templates with Label controls Note
You can end editing a template at any time by right-clicking your DataList and selecting End
Template Editing.
Next, you'll edit the item template and add Label controls to display the ProductID, ProductName,
QuantityPerUnit, and UnitPrice columns. Right-click your DataList and select Edit Template £ Item
Templates. Figure 15.18 shows the Item Templates editor.

Figure 15.18: The Item Templates editor
As you can see from Figure 15.18, the Item Templates editor is divided into the following four areas:
ItemTemplate Contains controls that you typically use to display column values.
AlternatingItemTemplate Contains controls that are shown after the controls in the ItemTemplate.
SelectedItemTemplate Contains controls that are shown when you select an item.
EditItemTemplate Contains controls that are shown when you edit an item.
You'll add a table to the ItemTemplate area, and then you'll add four Label controls in the cells of your
table. The four Label controls will display the values for the ProductID, ProductName,
QuantityPerUnit, and UnitPrice columns. To add a table:
Click anywhere in the ItemTemplate area and select Table £ Insert Table. Set the properties for the
table as shown in Figure 15.19.

Part 3: Advanced Database Programming with ADO.NET 313

© 2004 ... Your company

Figure 15.19: Setting the properties of the table
Next, drag a Label to the first cell in the table. You'll use this first Label to display the ProductID
column. Set the ID property of your Label to ProductID, as shown in Figure 15.20.

Figure 15.20: Adding the Label
To get the Label to display the ProductID column, you'll need to bind it to that column. To do this,
click the ellipsis button in the DataBindings property. You'll then see the DataBindings dialog box.
Open the Container node by clicking the addition icon, and then open the DataItem node; finally,
select the ProductID column, as shown in Figure 15.21.

Mastering C# Database Programming @Team LiB314

© 2004 ... Your company

Figure 15.21: Binding the Label to the ProductID column
Next, add three more Label controls in the remaining cells of your table. Set the ID property for your
three Label controls to ProductName, QuantityPerUnit, and UnitPrice, respectively. Also, bind each of
your Label controls to the ProductName, QuantityPerUnit, and UnitPrice columns,
respectively.Warning
As you add your Label controls to the cells, you'll notice that the remaining cells shrink. Watch out for
that as it can make adding the other Label controls a little tricky.
Next, you'll modify the HTML for your form to make the table a little easier to read. You'll change the
width and border attributes of the TABLE tag and setting the width attribute of the TD tags.Note
The TABLE tag defines a table, and the TD tag defines an element in a row.
To view the HTML code for your form, click the HTML link under the form designer to view the code
for your form. Set the width and border attributes of your TABLE tag to 320 and 1, respectively, and
set the width attributes of the four TD tags to 20, 100, 100, and 100, respectively. The following HTML
shows these changes: <TABLE id="Table5" cellSpacing="1" cellPadding="1" width="320"
border="1" > <TR> <TD width="20" > <asp:Label id=ProductID runat="server" Text='
<%# DataBinder.Eval(Container, "DataItem.ProductID") %>'> </asp:Label></TD> <TD
width="100" > <asp:Label id=ProductName runat="server" Text=' <%#
DataBinder.Eval(Container, "DataItem.ProductName") %>'> </asp:Label></TD> <TD
width="100" > <asp:Label id=QuantityPerUnit runat="server" Text=' <%#
DataBinder.Eval(Container, "DataItem.QuantityPerUnit") %>'> </asp:Label></TD> <TD
width="100" > <asp:Label id=UnitPrice runat="server" Text=' <%#
DataBinder.Eval(Container, "DataItem.UnitPrice") %>'> </asp:Label></TD> </TR> </TABLE>
Note
The ID attribute of your TABLE tag might differ from that shown in the previous code. Don't worry
about changing the ID attribute for your TABLE tag.
Next, you'll need to add code to populate sqlDataAdapter1 with the rows retrieved by your SELECT
statement. Typically, the best place to place this code is in the Page_Load() method of your form. The
Page_Load() method is called when the Web page containing your form is initially loaded or
refreshed. Open the code for your form by selecting View £ Code, or press F7 on your keyboard. Set
your Page_Load() method to the following: private void Page_Load(object sender, System.EventArgs
e) { // Put user code to initialize the page here if (!this.IsPostBack) {
sqlDataAdapter1.Fill(dataSet11, "Products"); this.DataBind(); } }
The Fill() method retrieves the rows from the Products table and populates the dataSet11 object with
those rows. The DataBind() method then causes the rows to be displayed in the DataList of your
form.
To run your form, select Debug £ Start Without Debugging, or press Ctrl+F5 on your keyboard. Figure

Part 3: Advanced Database Programming with ADO.NET 315

© 2004 ... Your company

15.22 shows the running form.
Figure 15.22: The running form
Once you've finished running your form, close it and return to the form designer. Click the HTML link
to view the code for your form. Listing 15.5 shows the WebForm1.aspx file for the form. You'll notice
that this file contains a DataList control with the appropriate columns.Listing 15.5: THE
WebForm1.aspx FILE <%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="DataListWebApplication.WebForm1" %> <!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> <title>WebForm1</title>
<meta content="Microsoft Visual Studio 7.0" name="GENERATOR"> <meta content="C#"
name="CODE_LANGUAGE"> <meta content="JavaScript" name="vs_defaultClientScript">
<meta content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema">
</HEAD> <body MS_POSITIONING="GridLayout"> <form id="Form1" method="post"
runat="server"> <asp:datalist id=DataList1 style="Z-INDEX: 101; LEFT: 33px; POSITION:
absolute; TOP: 28px" runat="server" DataMember="Products" Height="140" Width="297"
DataSource=" <%# dataSet11 %>"> <HeaderTemplate> <asp:Label id="Label1"
runat="server">Products</asp:Label> </HeaderTemplate> <FooterTemplate>
<asp:Label id="Label2" runat="server">End of list</asp:Label> </FooterTemplate>
<ItemTemplate> <TABLE id="Table5" cellSpacing="1" cellPadding="1" width="320"
border="1"> <TR> <TD width="20"> <asp:Label id=ProductID
runat="server" Text=' <%# DataBinder.Eval(Container, "DataItem.ProductID") %>'>
</asp:Label></TD> <TD width="100"> <asp:Label id=ProductName runat="server"
Text=' <%# DataBinder.Eval(Container, "DataItem.ProductName") %>'>
</asp:Label></TD> <TD width="100"> <asp:Label id=QuantityPerUnit
runat="server" Text=' <%# DataBinder.Eval(Container, "DataItem.QuantityPerUnit") %>'>
</asp:Label></TD> <TD width="100"> <asp:Label id=UnitPrice runat="server"
Text=' <%# DataBinder.Eval(Container, "DataItem.UnitPrice") %>'>
</asp:Label></TD> </TR> </TABLE> </ItemTemplate> </asp:datalist></form>
</body> </HTML>

7.2.6 Maintaining State in a Web Application

Maintaining State in a Web Application
The Hypertext Transport Protocol (HTTP) doesn't maintain state between pages served by your Web
server during each round-trip. This means that any information you provided in a form is for-gotten
when you get a new page. If you're simply receiving static HTML Web pages, then this isn't a

Mastering C# Database Programming @Team LiB316

© 2004 ... Your company

problem. If you're placing an order for a product, however, then the server needs to remember what
you ordered.
To get the Web server to remember what you did during the last round-trip, you can store information
on the server or on the client computer the browser is running on.
Storing information on the client means you don't use up any resources on the server to store that
information, and your Web application can potentially handle many more users. Storing information
on the server gives you more control of the stored information, but since this consumes server
resources, you need to be careful not to store too much; otherwise your Web application won't be
able to handle many users. Storing Information on the Client
To store information on the client, you can use cookies or the Page object's ViewState property. Let's
take a look at how you use cookies and the ViewState property.Storing Information using Cookies
A cookie is a name and value pair that is stored in a small file that resides on the hard drive of the
client computer. You use the name to identify the value being stored; both the name and value are
string objects.Warning
Cookies are potentially problematic because the user can configure their browser to prevent cookies
from being stored. Also, a browser stores only a limited number of cookies: 300 in total and no more
than 20 per Web server. You should therefore use cookies sparingly-if at all.
The following example creates an int variable named myInt that is set to 1 and creates an HttpCookie
object that stores myInt under the name count: int myInt = 1; HttpCookie myHttpCookie = new
HttpCookie("count", myInt.ToString());
Because a cookie stores the value as a string, you use the ToString() method to convert myInt to a
string before storing it in myHttpCookie.
To store the cookie on the client, you call the AppendCookie() method of the Page object's Response:
Response.AppendCookie(myHttpCookie);
The Response object is the HTTP response sent by the Web server to the browser. When this code
is run, it causes the browser to store the cookie on the client computer's hard disk in the directory
specified in the settings for the browser.
You can retrieve the count value from the Cookies collection of the Request object: myInt =
Int32.Parse(Request.Cookies["count"].Value);
The Request object is sent by the browser to the Web server and contains the cookie previously set.
Because the count value is stored as a string, you use the static Parse() method of the Int32 structure
to convert the string to an int.
Listing 15.6 shows an example ASP.NET application that uses a cookie to keep track of the number
of times the page has been viewed.Listing 15.6: CookieTest.aspx <!-- CookieTest.aspx illustrates
the use of a cookie to store information on the client --> <html> <head> <script language="C#"
runat="server"> void Page_Load(Object sender, EventArgs e) { int myInt; // check if count is
null if (Request.Cookies["count"] == null) { // count is null, so initialize myInt to 1 myInt =
1; // create an HttpCookie object HttpCookie myHttpCookie = new HttpCookie("count",
myInt.ToString()); // add HttpCookie object to Response
Response.AppendCookie(myHttpCookie); } else { // retrieve count and increment myInt by
1 myInt = Int32.Parse(Request.Cookies["count"].Value) + 1; } // set count value to myInt
Response.Cookies["count"].Value = myInt.ToString(); // display myInt in myLabel
myLabel.Text = "This page has been viewed "+ myInt.ToString() + " times."; } </script>
</head> <body> <asp:Label id="myLabel" runat="server"/> <form runat="server"> <asp:Button
text="Press the Button!" runat="server"/> </form> </body> </html> Note
Notice that you can embed C# code directly into an .aspx file. The CookieTest.aspx file was created
using Microsoft Notepad.
To run CookieText.aspx, simply copy this file into your Inetpub\wwwroot directory and point your
browser to http://localhost/CookieTest.aspx. Figure 15.23 shows the page generated by
CookieTest.aspx-assuming that the button on the page has been repeatedly

Part 3: Advanced Database Programming with ADO.NET 317

© 2004 ... Your company

pressed.
Figure 15.23: The running CookieTest.aspx pageStoring Information using the ViewState Property
You use the Page object's ViewState property to access a StateBag object, which stores a collection
of name and value pairs on the client computer. You use the name to identify the value being stored.
The name is a string and the value is an object. Unlike a cookie, a user cannot prevent values from
being stored using the ViewState property. One use for the ViewState property would be to store a
user's name. Tip
Since the values are sent back and forth between the client and the server, you should store only a
small amount of information using the ViewState property. This is still a better solution than using
cookies because the user can always prevent cookies from being stored.
The following example stores myInt under the name count: int myInt = 1; ViewState["count"] = myInt;
You can then retrieve the count value using the following code: myInt = (int) ViewState["count"];
Because a value is stored as an object, you must cast it to the specific type you want to use. In this
example, the count value is cast to an int.
Listing 15.7 shows an example ASP.NET page that uses the ViewState property to keep track of the
number of times the page has been viewed.Listing 15.7: ViewStateTest.aspx <!--
ViewStateTest.aspx illustrates the use of ViewState to store information on the client --> <html>
<head> <script language="C#" runat="server"> void Page_Load(Object sender, EventArgs e) {
int myInt; // check if count is null if (ViewState["count"] == null) { // count is null, so
initialize myInt to 1 myInt = 1; } else { // retrieve count and increment myInt by 1
myInt = (int) ViewState["count"] + 1; } // set count value to myInt ViewState["count"] = myInt;
// display myInt in myLabel myLabel.Text = "This page has been viewed "+ myInt.ToString() + "
times."; } </script> </head> <body> <asp:Label id="myLabel" runat="server"/> <form
runat="server"> <asp:Button text="Press the Button!" runat="server"/> </form> </body> </html>
Storing Information on the Server
To store information on the server, you can use the Page object's Session, Application, or Cache
object. These objects all store information in the form of name and value pairs, where the name is a
string and the value is an object. You can also store information in the database itself, which is the
best solution if you need to store a lot of information about a user or the application. Finally, you can
of course always store information in static variables or objects.
You'll learn about the Session, Application, and Cache objects in the next sections. I'll also discuss
storing information about a Web application in the database.Storing Information Using a Session
Object
A Session object allows you to store separate information for each user. The information stored in the
Session object remains on the server up to a default time of 20 minutes, after which the information is
thrown away. One use for the Session object might be to store the user's name.Tip
Because each Session object stores information for a single user, store the absolute minimum
information for each user. Otherwise, your Web server could be swamped with Session objects and
run out of memory, and your application wouldn't support large numbers of users.
The information is stored in name and value pairs, where the name is a string and the value is an
object. The following example stores myInt under the name count: int myInt = 1; Session["count"] =
myInt;
You can then retrieve the count value using the following code: myInt = (int) Session["count"];

Mastering C# Database Programming @Team LiB318

© 2004 ... Your company

Because a value is stored as an object, you must cast it to the specific type you want to use. In this
example, the count value is cast to an int.
Listing 15.8 shows an example ASP.NET page that uses the Session object to keep track of the
number of times the page has been viewed. This information is specific to each user, and therefore
shows the total number of times the page has been viewed by the current user.Listing 15.8:
SessionObjectTest.aspx <!-- SessionObjectTest.aspx illustrates the use of the Session object to
store information on the server. This information is specific for each user. --> <html> <head>
<script language="C#" runat="server"> void Page_Load(Object sender, EventArgs e) { int myInt;
// check if count is null if (Session["count"] == null) { // count is null, so initialize myInt to 1
myInt = 1; } else { // retrieve count and increment myInt by 1 myInt = (int)
Session["count"] + 1; } // set count value to myInt Session["count"] = myInt; // display myInt
in myLabel myLabel.Text = "This page has been viewed "+ myInt.ToString() + " times."; }
</script> </head> <body> <asp:Label id="myLabel" runat="server"/> <form runat="server">
<asp:Button text="Press the Button!" runat="server"/> </form> </body> </html> Storing Information
using the Application Object
The Application object allows you to store information that is shared for all users. One use for the
Application object might be to store a DataSet object containing a product catalog. The information is
stored in name and value pairs, where the name is a string and the value is an object.
The following example stores myInt under the name count: int myInt = 1; Application["count"] = myInt;
You can then retrieve the count value using the following code: myInt = (int) Application["count"];
Listing 15.9 shows an example ASP.NET page that uses the Application object to keep track of the
number of times the page has been viewed. This information is shared by all users, and therefore
shows the total number of times the page has been viewed by all users.Listing 15.9:
ApplicationObjectTest.aspx <!-- ApplicationObjectTest.aspx illustrates the use of the Application
object to store information on the server. This information is shared for all users. --> <html> <head>
<script language="C#" runat="server"> void Page_Load(Object sender, EventArgs e) { int myInt;
// check if count is null if (Application["count"] == null) { // count is null, so initialize myInt to 1
myInt = 1; } else { // retrieve count and increment myInt by 1 myInt = (int)
Application["count"] + 1; } // set count value to myInt Application["count"] = myInt; // display
myInt in myLabel myLabel.Text = "This page has been viewed "+ myInt.ToString() + " times."; }
</script> </head> <body> <asp:Label id="myLabel" runat="server"/> <form runat="server">
<asp:Button text="Press the Button!" runat="server"/> </form> </body> </html> Storing Information
using the Cache Object
Like the Application object, the Cache object is also shared for all users, but it provides more
functionality than the Application object. For example, you can control when the stored information is
removed. For more information about the Cache object, consult the .NET online documentation as
described in Chapter 1, "Introduction to Database Programming with ADO.NET." Look up "Cache
class" in the index of the online documentation.Storing Information using the Database
If you have a large amount of information to store about a user, store it in the database rather than
the Session object. For example, if you're building a Web site that a user can order products from,
store their shopping cart in the database.

7.2.7 Creating a Simple Shopping Cart Application

Creating a Simple Shopping Cart Application
In this section, you'll modify your DataGridWebApplication you created earlier to turn it into a simple
shopping cart. You'll store the shopping cart in a Session object.Note
As mentioned in the previous section, in a real application you'll probably want to store the shopping
cart in the database rather than in a Session object.
Figure 15.24 shows the final running form that you'll build. You use the Buy button to add a product to
the shopping cart shown on the right of the form. As you can see from Figure 15.24, I've added three
products to the shopping cart by pressing the Buy button for each product in the grid on the

Part 3: Advanced Database Programming with ADO.NET 319

© 2004 ... Your company

left.
Figure 15.24: The running form
You can either follow the steps shown in the following sections to add the Buy button and the
shopping cart to your form, or you can replace the ASP.NET code in your form with the code in the
WebForm1.aspx file contained in the VS .NET Projects\DataGridWebApplication directory. You
replace the code in your form by selecting and deleting the existing code in your form and pasting in
the code from the WebForm1.aspx file. You'll also need to replace the code behind your form with the
code in the WebForm1.aspx.cs file contained in the VS .NET Projects\DataGridWebApplication
directory. Adding the Buy Button
In this section, you'll add the Buy button to the DataGrid1 object of the DataGridWebApplication.
Perform the following steps:
Open DataGridWebApplication by selecting File £ Open £ Project, double-click the Data-
GridWebApplication folder, and double-click the DataGridWebApplication.sln file.
Open the WebForm1.aspx file in Design mode by double-clicking this file in the Solution Explorer
window. Click on the DataGrid1 control in the form. Figure 15.25 shows the properties for DataGrid1.

Figure 15.25: DataGrid1 properties
Next, click the Property Builder link near the bottom of the Properties window. Do the following to add
the Buy button:
Click Columns on the left of the DataGrid1 Properties dialog box.
Expand the Button Column node of the Available Columns section.
Add a Select button to the Selected Columns area.
Set Text to Buy. This is the text that is shown on the button.
Set Command Name to AddToCart. This is the method that is called when the button is pressed.
(You'll create this method later.)
Set Button Type to PushButton.
Figure 15.26 shows the final properties of the Buy button.

Mastering C# Database Programming @Team LiB320

© 2004 ... Your company

Figure 15.26: Buy button properties
Click OK to add the button to DataGrid1. Figure 15.27 shows DataGrid1 with the newly added Buy
button.

Figure 15.27: DataGrid1 with Buy button Adding the Shopping Cart
In this section, you'll add a DataGrid to store the shopping cart. Drag a DataGrid control from the
Toolbox to the right of DataGrid1 on your form. Set the ID of this new DataGrid to ShoppingCart, as

Part 3: Advanced Database Programming with ADO.NET 321

© 2004 ... Your company

shown in Figure 15.28.
Figure 15.28: ShoppingCart DataGridNote
You might have to close all windows except the form designer so that you have enough screen space
to add the new DataGrid to your form. Adding Code to the WebForm1.aspx.cs File
Your next task is to add some additional code to the WebForm1.aspx.cs file to support the shopping
cart. As mentioned earlier, either you can follow the steps shown in this section or you can replace
the code behind your form with the code in the WebForm1.aspx.cs file contained in the VS
.NETProjects\DataGridWebApplication directory. You replace the code in your form by selecting and
deleting the existing code in your form and pasting in the code from the WebForm1.aspx.cs file.
Perform the following steps if you want to modify the code yourself:
Select View £ Code, or press F7 on your keyboard to view the code. Add a DataTable object named
Cart and a DataView object named CartView to the WebForm1 class, as shown in the following code:
public class WebForm1 : System.Web.UI.Page { protected DataTable Cart; protected DataView
CartView;
Your Cart object is used to store the shopping cart and will be populated with the products selected
using the Buy button. Your CartView object is used to view the shopping cart.
Next, set your Page_Load() method to the following code; notice that this method creates a
DataTable to store the shopping cart, and that this DataTable is stored in the Session object: private
void Page_Load(object sender, System.EventArgs e) { // Put user code to initialize the page here //
populate the Session object with the shopping cart if (Session["ShoppingCart"] == null) { Cart =
new DataTable(); Cart.Columns.Add(new DataColumn("Product Name", typeof(string)));
Cart.Columns.Add(new DataColumn("Unit Price", typeof(string))); Session["ShoppingCart"] = Cart;
} else { Cart = (DataTable) Session["ShoppingCart"]; } CartView = new DataView(Cart);
ShoppingCart.DataSource = CartView; ShoppingCart.DataBind(); if (!this.IsPostBack) { //
populate dataSet11 with the rows from the Products DataTable sqlDataAdapter1.Fill(dataSet11,
"Products"); this.DataBind(); } }
Next, you need to add the following AddToCart() method to your WebForm1 class. This method is
called when the user presses the Buy button. Notice this method creates a DataRow object and
populates it with TableCell objects to store the product name and unit price in the Shopping-Cart
DataTable that you previously added to your form. protected void AddToCart(Object sender,
DataGridCommandEventArgs e) { DataRow product = Cart.NewRow(); // e.Item is the row of the
table where the command is raised. // For bound columns the value is stored in the Text property of
TableCell TableCell productNameCell = e.Item.Cells[1]; TableCell unitPriceCell = e.Item.Cells[3];
string productName = productNameCell.Text; string unitPrice = unitPriceCell.Text; if
(((Button)e.CommandSource).CommandName == "AddToCart") { product[0] = productName;
product[1] = unitPrice; Cart.Rows.Add(product); } ShoppingCart.DataBind(); }
The only thing left to do is to run your form. To do this, select Debug £ Start Without Debugging, or
press Ctrl+F5 on your keyboard.
Click the Buy button for different products in the grid to add them to your shopping cart.

Mastering C# Database Programming @Team LiB322

© 2004 ... Your company

7.2.8 Summary

Summary
HTML creates static Web pages with content that doesn't change. If you want the information to be
dynamic, however, then you can use ASP.NET. It enables you to create Web pages with content that
can change at runtime, and to develop applications that are accessed using a Web browser. In this
chapter, you saw how to use Visual Studio .NET and the C# programming language to create some
simple ASP.NET Web applications. This chapter gave you a brief introduction to the large subject of
ASP.NET. For thorough coverage of the topic, see Russell Jones's Mastering ASP .NET with C#
(Sybex, 2002).
There are two main parts to an ASP.NET form: the .aspx file, which contains HTML and ASP.NET
code, and the .aspx.cs file, which contains C# code that supports the Web form. You can think of this
C# code as running behind the form, and for this reason the .aspx.cs file is known as the code-behind
file . You can view the HTML containing the ASP.NET code for your form by clicking the HTML link at
the bottom of the form designer. You can view the code-behind file by selecting View £ Code, or you
can press F7 on your keyboard.
A DataGrid allows you to access rows in a database table. In the following sections, you'll learn how
to create an ASP.NET Web application that uses a DataGrid control to access the rows in a database
table. You customize your DataGrid by first selecting the DataGrid control and then clicking the
Property Builder link at the bottom of the Properties window. This displays the Properties dialog box
for your DataGrid. The Properties dialog box is divided into five areas: General, Columns, Paging,
Format, and Borders. A DataList offers you a lot more flexibility in the presentation of column values
than that offered by a DataGrid, such as the ability to add headers and footers to the data.
The Hypertext Transport Protocol (HTTP) doesn't maintain state between pages served by your Web
server during each round-trip. This means that any information you provided in a form is for-gotten
when you get a new page. To get the Web server to remember what you did during the last round-
trip, you can store information on the server or on the client computer on which the browser is
running. Storing information on the client means you don't use up any resources on the server to
store that information and your Web application can handle many more users. Storing information on
the server gives you more control of the stored information, but since this consumes server resources,
you need to be careful not to store too much; otherwise your Web application won't be able to handle
many users.

7.3 Chapter 16: Using SQL Server's XML Support

Chapter 16: Using SQL Server's XML SupportOverview
XML has become the lingua franca of the Web because it is such an ideal format for exchanging
information. Already, many companies exchange information with each other using XML sent over the
Web.
In this chapter, you'll learn about SQL Server's extensive support for XML. You'll also see how to
store XML in a C# program using the XmlDocument and XmlDataDocument objects.
Featured in this chapter:
Using the SQL Server FOR XML clause
Introducing XPath and XSLT
Accessing SQL Server using HTTP
Using the SQL Server OPENXML() function
Using an XmlDocument object to store an XML document
Using an XmlDataDocument object to store an XML document

7.3.1 Using the SQL Server FOR XML Clause

Using the SQL Server FOR XML Clause
With a standard SQL SELECT statement, you submit your SELECT statement to the database for

Part 3: Advanced Database Programming with ADO.NET 323

© 2004 ... Your company

execution and get results back in the form of rows. SQL Server extends the SELECT statement to
allow you to query the database and get results back as XML. To do this, you add a FOR XML clause
to the end of your SELECT statement. The FOR XML clause specifies that SQL Server is to return
results as XML.
The FOR XML clause has the following syntax: FOR XML {RAW | AUTO | EXPLICIT} [, XMLDATA] [,
ELEMENTS] [, BINARY BASE64]
The RAW, AUTO, and EXPLICIT keywords indicate the XML mode . Table 16.1 shows a description
of the keywords used in the FOR XML clause. In the next sections, you'll examine some examples of
the use of the FOR XML clause. Table 16.1: FOR XML KEYWORDS
KEYWORD
DESCRIPTION
RAW
Specifies that each row in your result set is returned as an XML <row> element. The column values
for each row in the result set become attributes of the <row> element.
AUTO
Specifies that each row in the result set is returned as an XML element The name of the table is used
as the name of the tag in the row elements.
EXPLICIT
Indicates your SELECT statement specifies a parent-child relationship. This relationship is then used
by SQL Server to generate XML with the appropriate nested hierarchy.
XMLDATA
Specifies that the XML schema is to be included in the returned XML.
ELEMENTS
Specifies that the column values are returned as subelements of the row; otherwise the columns are
returned as attributes of the row. You can use this option only with the AUTO mode.
BINARY BASE64
Specifies that any binary data returned by your SELECT statement is encoded in base 64. If you want
to retrieve binary data using either the RAW or EXPLICIT mode, then you must use the BINARY
BASE64 option. Using the RAW Mode
You use the RAW mode to specify that each row in the result set returned by your SELECT statement
is returned as an XML <row> element. The column values for each row in the result set become
attributes of the <row> element.
Listing 16.1 shows an example SELECT statement that retrieves the top three rows from the
Customers table. The results of the SELECT are returned as XML using the FOR XML RAW
clause.Listing 16.1: FORXMLRAW.SQL USE Northwind SELECT TOP 3 CustomerID,
CompanyName, ContactName FROM Customers ORDER BY CustomerID FOR XML RAW Note
This SELECT statement is contained in a T-SQL script named ForXmlRaw.sql , which is located in
the sql directory for this chapter.
You can load the ForXmlRaw.sql T-SQL script into Query Analyzer by selecting File £ Open from the
menu. You then run the script by selecting Query £ Execute, or by pressing the F5 key. Figure 16.1
shows the result of running the script in Query Analyzer. You'll notice that the XML is shown on one

line, and that the line is truncated.
Figure 16.1: Running a SELECT statement containing a FOR XML RAW clause in Query

Mastering C# Database Programming @Team LiB324

© 2004 ... Your company

AnalyzerNote
By default, the maximum number of characters displayed by Query Analyzer per column is 256. Any
results longer than 256 characters will be truncated. For the examples in this section, you'll need to
increase the maximum number of characters to 8,192. To do this, you select Tools £ Options in Query
Analyzer and set the Maximum Characters Per Column field to 8,192.
Here's the XML line returned by the example, which I copied from Query Analyzer and added some
return characters to make it easier to read: <row CustomerID="ALFKI" CompanyName="Alfreds
Futterkiste" ContactName="Maria Anders"/> <row CustomerID="ANATR" CompanyName="Ana
Trujillo Emparedados y helados" ContactName="Ana Trujillo"/> <row CustomerID="ANTON"
CompanyName="Antonio Moreno Taquería" ContactName="Antonio Moreno"/>
Notice that each customer is placed within a <row> tag. Also, the column values appear as attributes
within each row; for example, in the first row, the CustomerID attribute is ALFKI. Using the AUTO
Mode
You use the AUTO mode to specify that each row in the result set is returned as an XML element.
The name of the table is used as the name of the tag in the row elements.
Listing 16.2 shows an example SELECT statement that retrieves the top three rows from the
Customers table. The results are returned as XML using the FOR XML AUTO clause.Listing 16.2:
FORXMLAUTO.SQL USE Northwind SELECT TOP 3 CustomerID, CompanyName, ContactName
FROM Customers ORDER BY CustomerID FOR XML AUTO
The XML returned by this example is as follows: <Customers CustomerID="ALFKI"
CompanyName="Alfreds Futterkiste" ContactName="Maria Anders"/> <Customers
CustomerID="ANATR" CompanyName="Ana Trujillo Emparedados y helados" ContactName="Ana
Trujillo"/> <Customers CustomerID="ANTON" CompanyName="Antonio Moreno Taquería"
ContactName="Antonio Moreno"/>
Notice that each customer appears within a <Customer> tag instead of a generic <row> tag, as was
the case in the previous RAW mode example. Using the EXPLICIT Mode
You use the EXPLICIT mode to indicate that your SELECT statement specifies a parent-child
relationship. This relationship is then used by SQL Server to generate XML with the appropriate
nested hierarchy.
When using the EXPLICIT mode, you must provide at least two SELECT statements. The first
SELECT specifies the parent row (or rows), and the second specifies the child rows. The rows
retrieved by the two SELECT statements are related through special columns named Tag and Parent.
Tag specifies the numeric position of the element, and Parent specifies the Tag number of the parent
element (if any).
Let's consider an example that uses two SELECT statements. The first SELECT retrieves the
CustomerID, CompanyName, and ContactName for the row from the Customers table that has a
CustomerID of ALFKI. The second SELECT additionally retrieves the OrderID and OrderDate from
the row in the Orders table that also has a CustomerID of ALFKI. The first SELECT statement is as
follows: SELECT 1 AS Tag, 0 AS Parent, CustomerID AS [Customer!1!CustomerID],
CompanyName AS [Customer!1!CompanyName], ContactName AS [Customer!1!ContactName],
NULL AS [Order!2!OrderID!element], NULL AS [Order!2!OrderDate!element] FROM Customers
WHERE CustomerID = 'ALFKI'
The Tag column specifies the numeric position of the row in the XML hierarchy. The Parent column
identifies the parent, which is 0 in the previous SELECT statement; that's because this row is the
parent, or root, in the XML hierarchy.Note
You can also use a Tag value of NULL to indicate the root.
The CustomerID, CompanyName, and ContactName columns in the previous SELECT are supplied
an alias using the AS keyword, followed by a string that uses the following format: [elementName !tag
!attributeName !directive]
where
elementName specifies the name of the row element in the returned XML.
tag specifies the Tag number.
attributeName specifies the name of the column elements in the returned XML.
directive (optional) specifies how the element is to be treated in the XML. The directives are shown
in Table 16.2. Table 16.2: DIRECTIVES
DIRECTIVE

Part 3: Advanced Database Programming with ADO.NET 325

© 2004 ... Your company

DESCRIPTION
element
Indicates that the column value appears as a contained row element within the outer row element,
rather than an embedded attribute of the outer row element. The element directive may be combined
with ID, IDREF, or IDREFS.
hide
Indicates that the column value doesn't appear in the returned XML.
xml
Similar to the element directive except that the column value isn't coded as an entity in the returned
XML. This means that the special characters &, ', >, <, and "are left as is. These characters would
otherwise be coded as &, ', >, <, and " respectively. The xml directive may be
combined with hide.
xmltext
Indicates that the column value is contained in a single tag. To use the xmltext directive, your column
type must be varchar, nvarchar, char, nchar, text, or ntext.
cdata
Indicates that the column value is contained within a CDATA section. CDATA sections are used to
escape blocks of text containing special characters that would otherwise be interpreted as markup;
these characters include &, ', >, <, and ". To use the cdata directive, your column type must be
varchar, nvarchar, text, or ntext.
ID
Indicates that the column value is an ID attribute. An IDREF and IDREFS attribute can point to an ID
attribute, allowing you to create links within the XML.
IDREF
Indicates that the column value is an IDREF attribute.
IDREFS
Indicates that the column value is an IDREFS attribute.
Let's consider an example: CustomerID AS [Customer!1!CustomerID] specifies that the CustomerID
column value will appear within the Customer row element with the attribute name of CustomerID.
After the ContactName in the previous SELECT clause, appear two NULL columns; these are used as
placeholders for the OrderID and OrderDate columns that are retrieved by the second SELECT
statement, which you'll see next. These two columns use the element directive, which indicates that
the column values are to appear as contained elements within the Customer row element.
The second SELECT statement retrieves the rows from the Orders table that has a CustomerID of
ALFKI: SELECT 2 AS Tag, 1 AS Parent, C.CustomerID, C.CompanyName, C.ContactName,
O.OrderID, O.OrderDate FROM Customers C, Orders O WHERE C.CustomerID = O.CustomerID
AND C.CustomerID = 'ALFKI'
Notice that the Parent column is set to 1, which indicates that the parent is the row previously
retrieved by the first SELECT statement shown earlier.
Listing 16.3 shows a complete example that uses the two SELECT statements shown in this
section.Listing 16.3: FORXMLEXPLICIT.SQL USE Northwind SELECT 1 AS Tag, 0 AS Parent,
CustomerID AS [Customer!1!CustomerID], CompanyName AS [Customer!1!CompanyName],
ContactName AS [Customer!1!ContactName], NULL AS [Order!2!OrderID!element], NULL AS
[Order!2!OrderDate!element] FROM Customers WHERE CustomerID = 'ALFKI' UNION ALL
SELECT 2 AS Tag, 1 AS Parent, C.CustomerID, C.CompanyName, C.ContactName,
O.OrderID, O.OrderDate FROM Customers C, Orders O WHERE C.CustomerID = O.CustomerID
AND C.CustomerID = 'ALFKI' FOR XML EXPLICIT Note
The UNION ALL clause causes the results retrieved by the two SELECT statements to be merged
into one result set.
The combined result set produced by the UNION ALL clause is then converted to XML by the FOR
XML EXPLICIT clause.
The XML returned by the example is as follows: <Customer CustomerID="ALFKI"
CompanyName="Alfreds Futterkiste" ContactName="Maria Anders"> <Order>
<OrderID>10643</OrderID> <OrderDate>1997-08-25T00:00:00</OrderDate> </Order> <Order>
<OrderID>10692</OrderID> <OrderDate>1997-10-03T00:00:00</OrderDate> </Order> <Order>
<OrderID>10702</OrderID> <OrderDate>1997-10-13T00:00:00</OrderDate> </Order> <Order>

Mastering C# Database Programming @Team LiB326

© 2004 ... Your company

<OrderID>10835</OrderID> <OrderDate>1998-01-15T00:00:00</OrderDate> </Order> <Order>
<OrderID>10952</OrderID> <OrderDate>1998-03-16T00:00:00</OrderDate> </Order> <Order>
<OrderID>11011</OrderID> <OrderDate>1998-04-09T00:00:00</OrderDate> </Order> </Customer>
Notice that the OrderID and OrderDate elements appear as row elements contained in the outer
Order element. That's because the element directive was specified for the OrderID and OrderDate
elements in the first SELECT statement. If the element directive is omitted from the OrderID and
OrderDate elements, then the returned XML is as follows: <Customer CustomerID="ALFKI"
CompanyName="Alfreds Futterkiste" ContactName="Maria Anders"> <Order OrderID="10643"
OrderDate="1997-08-25T00:00:00"/> <Order OrderID="10692" OrderDate="1997-10-03T00:00:00"/>
<Order OrderID="10702" OrderDate="1997-10-13T00:00:00"/> <Order OrderID="10835"
OrderDate="1998-01-15T00:00:00"/> <Order OrderID="10952" OrderDate="1998-03-16T00:00:00"/>
<Order OrderID="11011" OrderDate="1998-04-09T00:00:00"/> </Customer>
Notice that the OrderID and OrderDate elements are embedded as attributes of the outer Order
element. Using the XMLDATA Option
You use the XMLDATA option to specify that the XML schema document type definition (DTD) is to
be included in the returned XML. The XML schema contains the name and type of the column
attributes.
Listing 16.4 shows an example that uses the XMLDATA option to return the XML schema along with
the ProductID, ProductName, and UnitPrice columns for the top two rows from the Products
table.Listing 16.4: FORXMLAUTOXMLDATA.SQL USE Northwind SELECT TOP 2 ProductID,
ProductName, UnitPrice FROM Products ORDER BY ProductID FOR XML AUTO, XMLDATA Note
In this example, I use columns from the Products table rather than the Customers table because the
Customers table contains only string column values, and I want you to see some of the different
types returned in an XML schema. The Products table contains column values that consist of both
strings and numbers.
The ProductID column is of the SQL Server int type, ProductName is of the nvarchar type, and
UnitPrice is of the money type. The XML returned by this example is as follows: <Schema
name="Schema3" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-
com:datatypes"> <ElementType name="Products" content="empty" model="closed"> <AttributeType
name="ProductID" dt:type="i4"/> <AttributeType name="ProductName" dt:type="string"/>
<AttributeType name="UnitPrice" dt:type="fixed.14.4"/> <attribute type="ProductID"/> <attribute
type="ProductName"/> <attribute type="UnitPrice"/> </ElementType> </Schema> <Products
xmlns="x-schema:#Schema3" ProductID="1" ProductName="Chai" UnitPrice="18.0000"/>
<Products xmlns="x-schema:#Schema3" ProductID="2" ProductName="Chang"
UnitPrice="19.0000"/>
Notice the different XML types of the ProductID, ProductName, and UnitPrice attributes specified in
the AttributeType tag near the start of the previous XML.
For more information, see XML Schemas by Chelsea Valentine, Lucinda Dykes, and Ed Tittel
(Sybex, 2002). Using the ELEMENTS Option
You use the ELEMENTS option to indicate that the column values are returned as subelements of the
row; otherwise the column values are returned as attributes of the row.Tip
You can use the ELEMENTS option only with the AUTO mode .
Listing 16.5 shows an example that uses the ELEMENTS option when retrieving the top two rows
from the Customers table.Listing 16.5: FORXMLAUTOELEMENTS.SQL USE Northwind SELECT
TOP 2 CustomerID, CompanyName, ContactName FROM Customers ORDER BY CustomerID FOR
XML AUTO, ELEMENTS
The XML returned by this example is as follows: <Customers> <CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName> <ContactName>Maria
Anders</ContactName> </Customers> <Customers> <CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados</CompanyName> <ContactName>Ana
Trujillo</ContactName> </Customers>
Notice that the column values are returned as subelements within the Customers rows. Using the
BINARY BASE64 Option
You use the BINARY BASE64 option to specify that any binary data returned by your SELECT
statement is encoded in base 64.Note
If you want to retrieve binary data using either the RAW or EXPLICIT mode, then you must use the

Part 3: Advanced Database Programming with ADO.NET 327

© 2004 ... Your company

BINARY BASE64 option.
In the examples in this section, I'll use the Employees table of the Northwind database. This table
contains details of the employees that work for the fictional Northwind Company and contains a
column named Photo. The Photo column is of the SQL Server image type and contains binary data
with an image of the employee.
Figure 16.2 shows a SELECT statement run in Query Analyzer that retrieves the EmployeeID (the
primary key), FirstName, LastName, and Photo columns from the Employees table. Notice that the
binary data is retrieved as hexadecimal digits (base

16).
Figure 16.2: Retrieving rows from the Employees table
In AUTO mode, binary data is returned by default as a reference to the data rather than the actual
data itself. The following example retrieves the EmployeeID and Photo columns for the top two rows
from the Employees table using the AUTO mode: USE Northwind SELECT TOP 2 EmployeeID, Photo
FROM Employees ORDER BY EmployeeID FOR XML AUTO
This example returns the following XML: <Employees EmployeeID="1"
Photo="dbobject/Employees[@EmployeeID='1']/@Photo"/> <Employees EmployeeID="2"
Photo="dbobject/Employees[@EmployeeID='2']/@Photo"/>
The reference to the binary data contained in the Photo column is actually an XPath expression.
(You'll learn about XPath in the next section.)
To get the binary data itself, rather than the reference to it, you need to use the BINARY BASE64
option. Listing 16.6 shows an example that uses the BINARY BASE64 option when retrieving the
EmployeeID and Photo columns for the top two rows from the Employees table.Listing 16.6:
FORXMLAUTOBINARYBASE64.SQL USE Northwind SELECT TOP 2 EmployeeID, Photo FROM
Employees ORDER BY EmployeeID FOR XML AUTO, BINARY BASE64
The XML returned by this example is as follows: <Employees EmployeeID="1"
Photo="FRwvAAIAAA..."/> <Employees EmployeeID="2" Photo="FRwvAAIAAA..."/> Note
I've shown only the first 10 digits of binary data. To view the binary data in Query Analyzer, you'll
need to set the Default results target to Results To Text in the Options dialog box. You select Tools £
Options from the menu to get to this dialog box.

7.3.2 Introducing XPath

Introducing XPath
The Extensible Markup Language Path (XPath) is a language that allows you to search and navigate
an XML document, and you can use XPath with SQL Server. In this section, you'll explore the
structure of an XML document and how to navigate and search an XML document using XPath. In
later sections, you'll see how to use XPath with SQL Server. XML Document Structure
An XML document file is divided into nodes, with the topmost node being referred to as the root node
. The easiest way to understand how the structure works is to consider an example XML document;
Listing 16.7 shows an XML document contained in the file Customers.xml.Listing 16.7:
CUSTOMERS.XML <?xml version="1.0"?> <NorthwindCustomers> <Customers>
<CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds Futterkiste</CompanyName>

Mastering C# Database Programming @Team LiB328

© 2004 ... Your company

<PostalCode>12209</PostalCode> <Country>Germany</Country> <Phone>030-
0074321</Phone> </Customers> <Customers> <CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
<PostalCode>05021</PostalCode> <Country>Mexico</Country> <Phone>(5) 555-
4729</Phone> </Customers> </NorthwindCustomers> Note
You'll find all the XML files in the xml directory for this chapter .Note
The line <?xml version="1.0"?> indicates that Customers.xml is an XML file that uses the 1.0
standard.
Figure 16.3 shows a visual representation of the Customers.xml document

structure.
Figure 16.3: Customers.xml document structure
As you can see from Figure 16.3, an XML document is structured like an inverted tree.
NorthwindCustomers is the root node . The two Customers nodes beneath the root node are known
as a node set . The CustomerID, CompanyName, PostalCode, Country, and Phone are known as
elements . Each Customers node and its CustomerID, CompanyName, PostalCode , Country, and
Phone elements are known as a node subtree . A node located beneath another node is known as a
child node, and the node above is known as the parent node; for example, the NorthwindCustomers
node is the parent node of the child Customers nodes.
You can view an XML file using Microsoft Internet Explorer, as shown in Figure

16.4.
Figure 16.4: Viewing Customers.xml in Internet ExplorerTip
To open the XML file, right-click Customers.xml in Windows Explorer and select Open With £
Internet Explorer from the pop-up menu. XPath Expressions
To search or navigate an XML document file you supply an expression to XPath. These expressions
work within a context, which is the current node being accessed within the XML file. The most
commonly used ways of specifying the context are shown in Table 16.3. Table 16.3: SPECIFYING
THE CONTEXT
CHARACTERS
DESCRIPTION
/

Part 3: Advanced Database Programming with ADO.NET 329

© 2004 ... Your company

Specifies the root node as the context.
./
Specifies the current node as the context.
../
Specifies the parent node as the context.
//
Specifies the whole XML document as the context.
.//
Specifies the whole XML document starting at the current node as the context.
Let's take a look at some example XPath expressions. The following example returns the Customers
nodes: /NorthwindCustomers/Customers
As you can see from this example, you specify the path down the tree structure to specify the nodes,
separating each node with a forward slash (/) character.
You can also get all the Customers nodes using the following example, which uses // to specify the
whole XML document as the context: //Customers
The next example returns the Customers nodes and all their elements:
/NorthwindCustomers/Customers/* Note
The asterisk (*) specifies all the elements.
The next example returns just the CustomerID element of the Customers nodes:
/NorthwindCustomers/Customers/CustomerID
You can find elements in a node by specifying a search within square brackets []. The following
example returns all the elements of the customer with a CustomerID of ALFKI:
/NorthwindCustomers/Customers[CustomerID="ALFKI"]/*
The following example returns the CompanyName of the customer with a CustomerID of ALFKI:
/NorthwindCustomers/Customers[CustomerID="ALFKI"]/CompanyName
You can also use square brackets to indicate the index of a node, starting at index 1. The following
example returns the first Customers node: /NorthwindCustomers/Customers[1]
You can use the last() function to get the last node. The following example returns the last Customers
node: /NorthwindCustomers/Customers[last()]
If your XML file contains embedded attributes rather than elements to hold values, then your XPath
search expression is slightly different. Listing 16.8 shows an XML file named
CustomersWithAttributes.xml that uses attributes.Listing 16.8:
CUSTOMERSWITHATTRIBUTES.XML <?xml version="1.0"?> <NorthwindCustomers>
<Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste" PostalCode="12209"
Country="Germany" Phone="030-0074321" /> <Customers CustomerID="ANATR"
CompanyName="Ana Trujillo Emparedados y helados" PostalCode="05021" Country="Mexico"
Phone="(5) 555-4729" /> </NorthwindCustomers>
To access an attribute you place an at (@) character at the start of the attribute name. The following
example returns the CustomerID attribute of the Customers nodes:
/NorthwindCustomers/Customers/@CustomerID
The next example returns all the attributes of the customer with a CustomerID of ALFKI:
/NorthwindCustomers/Customers[@CustomerID="ALFKI"]/*
The following example returns the CompanyName of the customer with a CustomerID of ALFKI:
/NorthwindCustomers/Customers[@CustomerID="ALFKI"]/@CompanyName Note
I've only touched on XPath expressions in this section. You can use many other mathematical
operators, Boolean expressions, and much more. You can learn more about XPath in the SQL Server
Books Online documentation and at the World Wide Web Consortium's (WC3) Web site at
www.w3.org ; just look for XPath in the table of contents.

7.3.3 Introducing XSLT

Introducing XSLT
XML is a great way to represent data in a portable format, but XML doesn't contain information on
how to format that data for display. The Extensible Stylesheet Language Transformation (XSLT)
allows you to control the formatting of XML data, and may be used to transform XML data to a format

Mastering C# Database Programming @Team LiB330

© 2004 ... Your company

suitable for displaying it as a document.
An XSL stylesheet-also known as an XSLT file-is a template that contains the rules that describe how
the data in the XML file is to be formatted for viewing.
The XML and XSLT files are processed together by an XSLT processor. The rules defined in the
XSLT file are applied to the data in the XML file, and the final result is output by the XSLT processor.
Microsoft Internet Explorer contains an XSLT processor, and you'll see examples in this section that
display the results of processing an XML and XSLT file in Internet Explorer.Note
Internet Explorer actually comes with a default XSLT file, which causes XML files to use different
colors for the parts of the XML document and to be displayed with + and - icons to expand and
collapse nested XML data.
Listing 16.9 shows an example XSLT file named CustomersStylesheet.xsl, which you'll find in the xml
directory. Later, you'll see how to apply this XLST file to an XML file containing customer data.Listing
16.9: CUSTOMERSSTYLESHEET.XSL <?xml version="1.0"?> <xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:template match="/">
<HTML> <HEAD> <TITLE>Customers</TITLE> </HEAD> <BODY> <xsl:for-each
select="/NorthwindCustomers/Customers"> <p> Customer:
<xsl:value-of
select="CustomerID"/></br>
<xsl:value-of select="CompanyName"/></br>
<xsl:value-of
select="PostalCode"/></br>
<xsl:value-of select="Country"/></br>
<xsl:value-of
select="Phone"/></br> </p> </xsl:for-each> </BODY> </HTML> </xsl:template> </xsl:stylesheet>

As you can see, the CustomersStylesheet.xsl file contains HTML tags and xsl tags. The xsl tags are
instructions that indicate how XML is to be transformed. You can reference this XSLT file in an XML
file; the rules in the XSLT file are then applied to the data in the XML file. You'll see how to do that
later in this section.
Let's take a closer look at the lines in the CustomersStylesheet.xsl file. This file starts with the
following line, which indicates that the file uses XML version 1.0: <?xml version="1.0"?>
The next lines are xsl tags: <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"> <xsl:template match="/">
The first line uses the xsl:stylesheet tag and specifies that the http://www.w3.org/1999/XSL/Transform
namespace is to be used. The second line uses the xsl:template tag and sets the match attribute to /,
which specifies that the entire XML document is to be selected and used by the XSLT processor,
starting at the root node.Note
You can set the match attribute to any XPath expression. For example, if you set match to
//Customers , then all the Customers nodes would be selected.
The next lines are HTML tags, which start the HTML part of the file, define a header, and start the
body: <HTML> <HEAD> <TITLE>Customers</TITLE> </HEAD> <BODY>
The next lines are the real meat of the XSLT file and use the xsl:for-each tag to iterate over the
Customers nodes: <xsl:for-each select="/NorthwindCustomers/Customers"> <p>
Customer:
<xsl:value-of select="CustomerID"/></br>
<xsl:value-of
select="CompanyName"/></br>
<xsl:value-of select="PostalCode"/></br>
<xsl:value-of
select="Country"/></br>
<xsl:value-of select="Phone"/></br> </p> </xsl:for-each>
The xsl:value-of tag is used to retrieve the element values from the XML file. For example, <xsl:value-
of select="CustomerID"/> retrieves the CustomerID element.
The remaining lines close up the HTML and the xsl parts of the file: </BODY> </HTML>
</xsl:template> </xsl:stylesheet>
The XSLT file contains only the rules to transform XML data; we still need to provide the XML data
itself. Listing 16.10 shows an XML file named CustomersUsingStylesheet.xml, which contains XML
data for two customers.Listing 16.10: CUSTOMERSUSINGSTYLESHEET.XML <?xml
version="1.0"?> <?xml-stylesheet type="text/xsl" href="CustomersStylesheet.xsl"?>
<NorthwindCustomers> <Customers> <CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName> <PostalCode>12209</PostalCode>
<Country>Germany</Country> <Phone>030-0074321</Phone> </Customers> <Customers>
<CustomerID>ANATR</CustomerID> <CompanyName>Ana Trujillo Emparedados y
helados</CompanyName> <PostalCode>05021</PostalCode> <Country>Mexico</Country>
<Phone>(5) 555-4729</Phone> </Customers> </NorthwindCustomers>
This listing is identical to the Customers.xml file shown earlier in Listing 16.7 but with the addition of

Part 3: Advanced Database Programming with ADO.NET 331

© 2004 ... Your company

the following line that references the CustomersStylesheet.xsl file: <?xml-stylesheet type="text/xsl"
href="CustomersStylesheet.xsl"?>
This line causes the XSLT processor to read and apply the rules in the CustomersStylesheet.xsl file
to the XML data in the CustomersUsingStylesheet.xml file. Figure 16.5 shows how
CustomersUsingStylesheet.xml looks when viewed with Internet Explorer. To view this file, right-click
on CustomersUsingStylesheet.xml in Windows Explorer and select Open With £ Internet

Explorer.
Figure 16.5: Viewing CustomersUsing-Stylesheet.xml in Internet Explorer
When you open CustomersUsingStylesheet.xml, Internet Explorer's XSLT processor opens the
CustomersStylesheet.xsl file and applies the rules in it to the XML data in
CustomersUsingStylesheet.xml. The output generated by the XSLT processor is then displayed in
Internet Explorer.
I've only touched on using XSLT in this section. XSLT is a very powerful language that contains many
functions you can use to format your XML data. For more information, see Mastering XSLT by Chuck
White (Sybex, 2002). You can also learn more at the World Wide Web Consortium's Web site at
www.w3.org; just look for XSLT in the table of contents.

7.3.4 Accessing SQL Server Using HTTP

Accessing SQL Server Using HTTP
You can access SQL Server using HTTP (Hypertext Transfer Protocol). This allows you to run SQL
statements from a browser. For example, you can run a SELECT statement that returns XML, and
SQL Server will display the results in your browser. You can use XPath statements to locate data in
the returned XML, and use XSL stylesheets to format the returned XML. I'll show you how to do all of
these things in this section.Warning
You can even run INSERT , UPDATE , and DELETE statements-but you'll need to be careful about
restricting the ability to run these types of statements because an errant user could easily wreck your
database.
Before you can access SQL Server using HTTP, you'll need to configure SQL XML support for IIS
(Internet Information Server). Configuring SQL XML Support for IIS
To configure SQL XML support for IIS, select Start £ Programs £ Microsoft SQL Server £ Configure
SQL XML Support in IIS. This starts the IIS Virtual Directory Management for SQL Server console, as
shown in Figure 16.6. You use this console to define a virtual directory through which you access

Mastering C# Database Programming @Team LiB332

© 2004 ... Your company

SQL Server via HTTP.
Figure 16.6: The IIS Virtual Directory Management for SQL Server console
To define a virtual directory, expand the node for your computer using the + icon (I've expanded the
node for my computer-which is named JMPRICE-DT1-in Figure 16.6).
Next, right-click on Default Web Site and select New £ Virtual Directory from the pop-up menu. You'll
need to set the properties for your virtual directory using the New Virtual Directory Properties window.
This window contains six tabs, the first of which is named General, which you use to set your Virtual
Directory Name (the name through which you access SQL Server) and Local Path (the actual
directory in your computer's file system where you store files, such as XML and XSLT files). I've set
my Virtual Directory Name to Northwind and my Local Path to F:\Northwind, as shown in Figure

16.7.

Part 3: Advanced Database Programming with ADO.NET 333

© 2004 ... Your company

Figure 16.7: Setting the Virtual Directory Name and Local PathWarning
The directory you specify for your Local Path must already exist in your computer's file system.
Create it using Windows Explorer, and then browse to that directory using the Browse button.
Next, you use the Security tab to set the details of how to authenticate the user when accessing SQL
Server. I've used the sa SQL Server account, as shown in Figure

16.8.
Figure 16.8: Setting the authentication detailsWarning
In a production system, you'll want to use an account that has limited permissions in the database.
For example, you'll probably want to grant read access only to tables.
Next, you use the Data Source tab to set which SQL Server you want to use, along with the database
you want to access. I've picked the local SQL Server and the Northwind database, as shown in Figure

Mastering C# Database Programming @Team LiB334

© 2004 ... Your company

16.9.
Figure 16.9: Setting the data source
Next, you use the Settings tab to specify the type of access to SQL Server you want to provide. Check
the following boxes: Allow URL Queries (allows direct execution of SQL statements), Allow Template
Queries (allows the use of XML and XSLT files to retrieve and format results from the database), and
Allow XPath Queries (allows execution of queries with XPath expressions), as shown in Figure

Part 3: Advanced Database Programming with ADO.NET 335

© 2004 ... Your company

16.10.
Figure 16.10: Setting the type of accessWarning
In a production system, you'll want to restrict access to Allow Template Queries only. That way, users
can execute only queries defined in an XML template file.
Next, you use the Virtual Names tab to map a database schema, a template directory containing XML
and XSLT files, or a database object (dbobject) to a path relative to your virtual directory. Click the
New button and set your Virtual Name to Templates, the Type to template, and your Path to a
subdirectory named Templates in your Northwind directory , as shown in Figure 16.11. You'll need to

create the Templates folder first.
Figure 16.11: Setting the virtual name configurationWarning
The Templates subdirectory you specify in your Path must already exist in your computer's file
system. Create it using Windows Explorer, and then browse to that directory using the ellipsis (...)
button to the right of the Path field.
Click Save to continue. You won't be changing anything in the Advanced tab, but feel free to examine
it if you want to. Click OK to save your settings across all the tabs. Your new virtual directory is then
created and will appear in the IIS Virtual Directory Management for SQL Server console. Running
Direct SQL Statements Using a Browser

Mastering C# Database Programming @Team LiB336

© 2004 ... Your company

In this section, you'll learn how to run direct SQL statements using a browser. I'll be using Internet
Explorer in the examples, but you can use whatever browser you wish. Running SELECT Statements
In this section, you'll see how to run a SELECT statement. For example, point your browser to the
following URL, which contains an embedded SELECT statement:
http://localhost/Northwind?sql=SELECT+*+FROM+Customers+WHERE+CustomerID+IN+('ALFKI'
,'ANATR')+FOR+XML+AUTO&root=ROOT
As you can see, the SELECT statement in this URL retrieves two rows from the Customers table. The
first part of the URL is http://localhost/Northwind
This contains the name of the server (localhost) and the virtual directory (Northwind). The second part
of the URL is
?sql=SELECT+*+FROM+Customers+WHERE+CustomerID+IN+('ALFKI','ANATR')+FOR+XML+
AUTO&root=ROOT
This contains the embedded SELECT statement. Because URLs don't allow spaces, you use plus (+)
characters instead. The root parameter at the end of the URL supplies a name for the root element in
the XML returned by the SELECT statement; I've supplied a root name of ROOT in the previous
example, but you can use whatever name you want. Figure 16.12 shows the result of running the

SELECT statement in Internet Explorer.
Figure 16.12: Selecting customers and displaying resultsWarning
If you omit the root parameter in your URL, then you'll get the following error: Only one top level
element is allowed in an XML document .
Spaces aren't the only characters you'll need to replace in your URL. Table 16.4 shows some of the
special characters you might use in a SQL statement and the replacement you use in your URL. Table
16.4: SPECIAL CHARACTERS IN A SQL STATEMENT AND THEIR REPLACEMENTS IN A URL
CHARACTER IN SQL STATEMENT
REPLACEMENT IN URL
Space
+
/
%2F
?
%3F
%
%25
#
%23
&
%26
For example, if you wanted to use LIKE 'C%' in your SELECT statement, then you would use
LIKE+'C%25', as shown in the following URL:
http://localhost/Northwind?sql=SELECT+*+FROM+Customers+WHERE+CompanyName+LIKE+'C%2

Part 3: Advanced Database Programming with ADO.NET 337

© 2004 ... Your company

5 '+FOR+XML+AUTO&root=ROOT
The SELECT statement in this URL retrieves the rows from the Customers table that has a
CompanyName starting with C. Running INSERT , UPDATE , and DELETE Statements
You can embed SQL INSERT, UPDATE, and DELETE statements in a URL. The following example
uses an INSERT statement to add a new row to the Customers table:
http://localhost/Northwind?sql=INSERT+INTO+Customers(CustomerID,CompanyName)+VALUES
+('J9COM','J9+Company')&root=ROOT
Figure 16.13 shows the result of running this INSERT statement in Internet

Explorer.
Figure 16.13: Adding a new row to the Customers table
The next example uses a DELETE statement to remove the new row:
http://localhost/Northwind?sql=DELETE+FROM+Customers+WHERE+CustomerID=
'J9COM'&root=ROOT Warning
You'll almost certainly want to prevent users from running INSERT , UPDATE , and DELETE
statements over HTTP on your production server. You can do this by preventing users from running
direct SQL statements, as described in the previous section, or by restricting the permissions
assigned to the database user. You could also allow access to the database using only stored
procedures; you'll see how to run a stored procedure using a URL in the next section. Running Stored
Procedures
You can also run stored procedures from a URL. Listing 16.11 contains a script that creates a stored
procedure named CustomersFromCountry(). This procedure retrieves the rows from the Customers
table with a Country matching the @MyCountry parameter that is passed to
CustomersFromCountry().Listing 16.11: CUSTOMERSFROMCOUNTRY.SQL /*
CustomersFromCountry.sql creates a procedure that retrieves rows from the Customers table whose
Country matches the @MyCountry parameter */ CREATE PROCEDURE CustomersFromCountry
@MyCountry nvarchar(15) AS SELECT * FROM Customers WHERE Country = @MyCountry
FOR XML AUTO
You run this stored procedure using the following URL:
http://localhost/Northwind?sql=EXECUTE+CustomersFromCountry+@MyCountry='UK' &root=ROOT
Figure 16.14 shows the result of running the stored

Mastering C# Database Programming @Team LiB338

© 2004 ... Your company

procedure.
Figure 16.14: Running a stored procedure Running SQL Statements Using an XML Template
You can also execute SQL statements using an XML template, which is just an XML file containing
your embedded SQL statement. Listing 16.12 shows an example file named Customers.xml that
contains an embedded SELECT statement.Listing 16.12: CUSTOMERS.XML <?xml version="1.0"?>
<Northwind xmlns:sql="urn:schemas-microsoft-com:xml-sql"> <sql:query> SELECT TOP 2
CustomerID, CompanyName, City, Country FROM Customers ORDER BY CustomerID FOR
XML AUTO, ELEMENTS </sql:query> </Northwind> Note
You'll find the Customers.xml file-and the other XML and XSLT files used in the next section-in the
xml\Northwind\Templates directory. You'll need to copy these files into the Templates directory you
set up earlier for your SQL Server virtual directory.
Notice that the SELECT statement is placed within sql:query and /sql:query tags. The outer Northwind
tag is the root node for the XML.
To run the Customers.xml file, point your browser to the following URL:
http://localhost/Northwind/Templates/Customers.xml
Figure 16.15 shows the result of running the Customers.xml file in Internet

Explorer.
Figure 16.15: Running the Customers.xml file Formatting XML Output Using an XSL Stylesheet
As you'll learn in this section, you can format the XML output generated by SQL Server using an XSL
stylesheet. Specifically, you'll see how to format the XML shown earlier in Figure 16.14. Listing 16.13
shows an XSL stylesheet file named CustomersStylesheet.xsl.Listing 16.13:
CUSTOMERSSTYLESHEET.XSL <?xml version="1.0"?> <xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:template match="/">
<HTML> <HEAD> <TITLE>Customers</TITLE> </HEAD> <BODY> <xsl:for-each
select="Northwind/Customers"> <p> Customer:
<xsl:value-of

Part 3: Advanced Database Programming with ADO.NET 339

© 2004 ... Your company

select="CustomerID"/></br>
<xsl:value-of select="CompanyName"/></br>
<xsl:value-of
select="PostalCode"/></br>
<xsl:value-of select="Country"/></br>
<xsl:value-of
select="Phone"/></br> </p> </xsl:for-each> </BODY> </HTML> </xsl:template> </xsl:stylesheet>

Notice that the select XPath expression in the xsl:for-each tag is set to Northwind/Customers.
Northwind is the root node from the generated XML, and Customers are the child nodes from the root.
Therefore, this XPath expression selects all the Customers nodes from any XML generated by SQL
Server.
Listing 16.14 shows an XML file named CustomersUsingStylesheet.xml, which uses the
CustomersStylesheet.xsl file. CustomersUsingStylesheet.xml retrieves the top two rows from the
Customers table.Listing 16.14: CUSTOMERSUSINGSTYLESHEET.XML <?xml version="1.0"?>
<Northwind xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:xsl="CustomersStylesheet.xsl">
<sql:query> SELECT TOP 2 CustomerID, CompanyName, PostalCode, Country, Phone FROM
Customers ORDER BY CustomerID FOR XML AUTO, ELEMENTS </sql:query> </Northwind>
To run the CustomersUsingStylesheet.xml file, point your browser to the following URL:
http://localhost/Northwind/Templates/CustomersUsingStylesheet.xml?contenttype= text/html
Notice that the contenttype parameter at the end of this URL is set to text/html, which indicates that
the content is to be interpreted as HTML.Warning
If you omit the contenttype parameter, then you'll get the following error: End tag 'HEAD' does not
match the start tag 'META' .
Figure 16.16 shows the result of running the CustomersUsingStylesheet.xml file in IE. Notice that the
output is formatted using the rules defined in the CustomersStylesheet.xsl

file.
Figure 16.16: Running the CustomersUsing-Stylesheet .xml file

7.3.5 Using the SQL Server OPENXML() Function

Using the SQL Server OPENXML() Function
SQL Server contains a function named OPENXML() that allows you to read XML data as if it were a
result set of rows. One use of OPENXML() is to read XML data as rows, and then insert those rows
into a table.

Mastering C# Database Programming @Team LiB340

© 2004 ... Your company

In this section, you'll explore the syntax of OPENXML(). You'll also see an example that reads XML
data containing details of two customers using OPENXML(), and then you'll insert two new rows into
the Customers table using the values from that XML data. OPENXML() Syntax
The OPENXML() function uses the following syntax OPENXML(XmlDocumentHandle int [IN],
RowPattern nvarchar [IN], [Flags byte[IN]]) [WITH (SchemaDeclaration | TableName)]
where
XmlDocumentHandle specifies an int handle to your XML document. You use this handle as a
reference to your XML document.
RowPattern specifies an XPath expression to select the data you require from your XML document.
Flags specifies an optional byte value that you use to indicate the mapping between your XML data
and the database column values. A value of 1 indicates that your XML data being read stores column
values in embedded attributes of the nodes (Listing 16.8, shown earlier, illustrates embedded
attributes); this is the default. A value of 2 indicates that your XML data stores column values as
separate nested elements (Listing 16.7, shown earlier, illustrates nested elements). The values from
your XML file are then used as column values in the rows returned by OPENXML().
SchemaDeclaration specifies the definition of the database schema you want to use to return rows
as. An example definition is CustomerID nvarchar(5), CompanyName nvarchar(40). You use either
SchemaDeclaration or TableName .
TableName specifies the name of the database table you want to use. You'll typically use
TableName rather than SchemaDeclaration when you're working with a table that already exists in
the database. Using OPENXML()
Before calling OPENXML(), you must first call the sp_xml_preparedocument() procedure. This
procedure parses your XML document and prepares a copy of that document in memory. You then
use that copy of the XML document with OPENXML(). Once you've completed your call to
OPENXML() you call the sp_xml_removedocument() procedure to remove the XML document from
memory.
The example in this section uses a stored procedure named AddCustomersXml() to read the XML
data containing details of two customers using OPENXML() and to insert two new rows into the
Customers table using the values from that XML data. Listing 16.15 shows a script named
AddCustomersXml.sql that creates the AddCustomersXml() stored procedure.Listing 16.15:
ADDCUSTOMERSXML.SQL /* AddCustomersXml.sql creates a procedure that uses OPENXML()
to read customers from an XML document and then inserts them into the Customers table */
CREATE PROCEDURE AddCustomersXml @MyCustomersXmlDoc nvarchar(4000) AS - declare
the XmlDocumentId handle DECLARE @XmlDocumentId int - prepare the XML document
EXECUTE sp_xml_preparedocument @XmlDocumentId OUTPUT, @MyCustomersXmlDoc - read
the customers from the XML document using OPENXML() - and insert them into the Customers table
INSERT INTO Customers SELECT * FROM OPENXML(@XmlDocumentId,
N'/Northwind/Customers', 2) WITH Customers - remove the XML document from memory
EXECUTE sp_xml_removedocument @XmlDocumentId
OPENXML() reads the XML from the document specified by the handle @XmlDocumentId and returns
the rows to the INSERT statement. These rows are then added to the Customers table by the INSERT
statement.
Listing 16.16 shows a script named RunAddCustomers.sql that runs the AddCustomersXml()
procedure.Listing 16.16: RUNADDCUSTOMERS.SQL /* RunAddCustomersXml.sql runs the
AddCustomersXml() procedure */ - define the XML document DECLARE @NewCustomers
nvarchar(4000) SET @NewCustomers = N' <Northwind> <Customers>
<CustomerID>T1COM</CustomerID> <CompanyName>Test 1 Company</CompanyName>
</Customers> <Customers> <CustomerID>T2COM</CustomerID> <CompanyName>Test 2
Company</CompanyName> </Customers> </Northwind>' - run the AddCustomersXml() procedure
EXECUTE AddCustomersXml @MyCustomersXmlDoc=@NewCustomers - display the new rows
SELECT CustomerID, CompanyName FROM Customers WHERE CustomerID IN ('T1COM',
'T2COM') - delete the new rows DELETE FROM Customers WHERE CustomerID IN ('T1COM',
'T2COM')
Figure 16.17 shows the result of running the RunAddCustomers.sql script in Query

Part 3: Advanced Database Programming with ADO.NET 341

© 2004 ... Your company

Analyzer.
Figure 16.17: Running the RunAddCustomers .sql script

7.3.6 Using an XmlDocument Object to Store an XML Document

Using an XmlDocument Object to Store an XML Document
You use an object of the XmlDocument class to represent an XML document in a C# program. An
XmlDocument object stores the nodes of the XML document in objects of the XmlNode class. You
can, for example, load rows from the database into a DataSet object, and then load an XML
representation of those rows into an XmlDocument object. Table 16.5 shows some of the
XmlDocument properties; Table 16.6 shows some of the XmlDocument methods; and Table 16.7
shows the XmlDocument events. Table 16.5: XmlDocument Properties
Property
Type
Description
Attributes
XmlAttributeCollection
Gets the XmlAttributeCollection object that contains the attributes of the current node.
BaseURI
string
Gets the base URI of the current node.
ChildNodes
XmlNodeList
Gets all the child nodes of the node.
DocumentElement
XmlElement
Gets the root XmlElement object for the XML document.
DocumentType
XmlDocumentType
Gets the node containing the DOCTYPE declaration.
FirstChild
XmlNode
Gets the first child of the node.
HasChildNodes
bool
Gets a bool that indicates whether this node has any child nodes.
Implementation

Mastering C# Database Programming @Team LiB342

© 2004 ... Your company

XmlImplementation
Gets the XmlImplementation object for the XML document.
InnerText
string
Gets or sets the concatenated values of the node and all of its children.
InnerXml
string
Gets or sets the XML that represents the children of the current node.
IsReadOnly
bool
Gets a bool value that indicates whether the current node is read-only.
LastChild
XmlNode
Gets the last child of the node.
LocalName
string
Gets the local name of the node.
Name
string
Gets the qualified name of the node.
NamespaceURI
string
Gets the namespace URI of the node.
NameTable
XmlNameTable
Gets the XmlNameTable object associated with the XML implementation.
NextSibling
XmlNode
Gets the node immediately following the current node.
NodeType
XmlNodeType
Gets the type of the current node.
OuterXml
string
Gets the XML that represents the current node and all of its children.
OwnerDocument
XmlDocument
Gets the XmlDocument object that the current node belongs to.
ParentNode
XmlNode
Gets the parent of the current node.
Prefix
string
Gets or sets the namespace prefix of the current node.
PreserveWhitespace
bool
Gets or sets a bool value that indicates whether white space is to be preserved when XML is loaded
or saved. The default is false.
PreviousSibling
XmlNode
Gets the node immediately preceding the current node.
Value
string
Gets or sets the value of the current node.
XmlResolver
XmlResolver

Part 3: Advanced Database Programming with ADO.NET 343

© 2004 ... Your company

Sets the XmlResolver object to use for resolving external resources. Table 16.6: XmlDocument
Methods
Method
Return Type
Description
AppendChild()
XmlNode
Adds the specified node to the end of child nodes.
CloneNode()
XmlNode
Creates a duplicate of the node.
CreateAttribute()
XmlAttribute
Creates an XmlAttribute object of the specified name.
CreateCDataSection()
XmlCDataSection
Creates an XmlCDataSection object with the specified data.
CreateComment()
XmlComment
Creates an XmlComment object with the specified data.
CreateDocumentFragment()
XmlDocumentFragment
Creates an XmlDocumentFragment object with the specified data.
CreateDocumentType()
XmlDocumentType
Creates a new XmlDocumentType object with the specified data.
CreateElement()
XmlElement
Overloaded. Creates an XmlElement object.
CreateEntityReference()
XmlEntityReference
Creates an XmlEntityReference object with the specified name.
CreateNavigator()
XpathNavigator
Creates an XpathNavigator object that you can use to navigate the XML document.
CreateNode()
XmlNode
Overloaded. Creates an XmlNode object.
CreateTextNode()
XmlText
Creates an XmlText object with the specified text.
CreateWhitespace()
XmlWhitespace
Creates an XmlWhitespace object.
CreateXmlDeclaration()
XmlDeclaration
Creates an XmlDeclaration object.
GetElementById()
XmlElement
Gets the XmlElement object with the specified ID.
GetElementsByTagName()
XmlNodeList
Overloaded. Returns an XmlNodeList object that contains a list of all descendant elements that match
the specified name.
GetNamespaceOfPrefix()
string

Mastering C# Database Programming @Team LiB344

© 2004 ... Your company

Looks up the closest xmlns declaration with the specified prefix that is in scope for the current node,
and then returns the namespace URI.
GetPrefixOfNamespace()
string
Looks up the closest xmlns declaration with the specified namespace URI that is in scope for the
current node, and then returns the prefix.
ImportNode()
XmlNode
Imports a node from another XML document into the current XML document.
InsertAfter()
XmlNode
Inserts the specified node immediately after the specified reference node.
InsertBefore()
XmlNode
Inserts the specified node immediately before the specified reference node.
Load()
void
Overloaded. Loads XML data into your XmlDocument object.
LoadXml()
void
Loads the XML document from the specified string into your XmlDocument object.
PrependChild()
XmlNode
Adds the specified node to the beginning of the child nodes.
ReadNode()
XmlNode
Creates an XmlNode object based on the information in a specified XmlReader object. Your
XmlReader must be positioned on a node or attribute.
RemoveAll()
void
Removes all the children and attributes of the current node.
RemoveChild()
XmlNode
Removes the specified child node.
ReplaceChild()
XmlNode
Replaces one child node with another.
Save()
void
Overloaded. Saves the XML document to the specified location.
SelectNodes()
XmlNodeList
Overloaded. Selects a list of nodes matching the specified XPath expression.
SelectSingleNode()
XmlNode
Overloaded. Selects the first XmlNode that matches the specified XPath expression.
WriteContentTo()
void
Saves all the children of the XML document to the specified XmlWriter object.
WriteTo()
void
Saves the XML document to the specified XmlWriter object. Table 16.7: XmlDocument Events
Event
Event Handler
Description
NodeChanging

Part 3: Advanced Database Programming with ADO.NET 345

© 2004 ... Your company

XmlNodeChangedEventHandler
Fires before a value in a node is changed.
NodeChanged
XmlNodeChangedEventHandler
Fires after a value in a node is changed.
NodeInserting
XmlNodeChangedEventHandler
Fires before a node is inserted.
NodeInserted
XmlNodeChangedEventHandler
Fires after a node is inserted.
NodeRemoving
XmlNodeChangedEventHandler
Fires before a node is removed.
NodeRemoved
XmlNodeChangedEventHandler
Fires after a node is removed.
Listing 16.17 shows a program that illustrates the use of an XmlDocument object. This program
performs the following steps:
Creates a DataSet object named myDataSet and fills it with the top two rows from the Customers
table.
Creates an XmlDocument object named myXmlDocument, and then loads it with the XML from
myDataSet. You can use the GetXml() method to return the customer rows in myDataSet as a string
containing a complete XML document. You can then use the output string from GetXml() as the input
to the LoadXml() method of myXmlDocument; this loads myXmlDocument with the XML document
containing the customer details.
Displays the XML in myXmlDocument using the Save() method, passing Console.Out to the Save()
method. This results in the XML document being displayed on the screen.
Retrieves the XmlNode objects in myXmlDocument using the SelectNodes() method, and then
displays the text contained in the child nodes of each XmlNode using the InnerText property. You
pass an XPath expression to SelectNodes() to retrieve the required nodes.
Retrieves the XmlNode for the ANATR customer using the SelectSingleNode() method, and displays
the text contained in the child nodes of this XmlNode. You pass an XPath expression to
SelectSingleNode() to retrieve the required node.Listing 16.17: USINGXMLDOCUMENT.CS /*
UsingXmlDocument.cs illustrates the use of an XmlDocument object */ using System; using
System.Data; using System.Data.SqlClient; using System.Xml; class UsingXmlDocument { public
static void Main() { SqlConnection mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
CustomerID, CompanyName, Country "+ "FROM Customers "+ "ORDER BY CustomerID";
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand
= mySqlCommand; // step 1: create a DataSet object and fill it with the top 2 rows // from the
Customers table DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close(); // step 2: create an
XmlDocument object and load it with the XML from // the DataSet; the GetXml() method returns the
rows in // myDataSet as a string containing a complete XML document; and // the LoadXml()
method loads myXmlDocument with the XML document // string returned by GetXml()
XmlDocument myXmlDocument = new XmlDocument();
myXmlDocument.LoadXml(myDataSet.GetXml()); // step 3: display the XML in myXmlDocument
using the Save() method Console.WriteLine("Contents of myXmlDocument:");
myXmlDocument.Save(Console.Out); // step 4: retrieve the XmlNode objects in myXmlDocument
using the // SelectNodes() method; you pass an XPath expression to SelectNodes()
Console.WriteLine("\n\nCustomers:"); foreach (XmlNode myXmlNode in
myXmlDocument.SelectNodes("/NewDataSet/Customers")) { Console.WriteLine("CustomerID =
"+ myXmlNode.ChildNodes[0].InnerText); Console.WriteLine("CompanyName = "+
myXmlNode.ChildNodes[1].InnerText); Console.WriteLine("Country = "+

Mastering C# Database Programming @Team LiB346

© 2004 ... Your company

myXmlNode.ChildNodes[2].InnerText); } // step 5: retrieve the XmlNode for the ANATR customer
using // the SelectSingleNode() method; you pass an XPath // expression to SelectSingleNode
Console.WriteLine("\nRetrieving node with CustomerID of ANATR"); XmlNode myXmlNode2 =
myXmlDocument.SelectSingleNode("/NewDataSet/Customers[CustomerID=\" ANATR\"]");
Console.WriteLine("CustomerID = "+ myXmlNode2.ChildNodes[0].InnerText);
Console.WriteLine("CompanyName = "+ myXmlNode2.ChildNodes[1].InnerText);
Console.WriteLine("Country = "+ myXmlNode2.ChildNodes[2].InnerText); } }
Remember, you'll need to change the connection string for your SqlConnection object to connect to
your database near the start of this program.
The output from this program is as follows: Contents of myXmlDocument: <?xml version="1.0"
encoding="IBM437"?> <NewDataSet> <Customers> <CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName> <Country>Germany</Country>
</Customers> <Customers> <CustomerID>ANATR</CustomerID> <CompanyName>Ana
Trujillo Emparedados y helados</CompanyName> <Country>Mexico</Country> </Customers>
</NewDataSet> Customers: CustomerID = ALFKI CompanyName = Alfreds Futterkiste Country =
Germany CustomerID = ANATR CompanyName = Ana Trujillo Emparedados y helados Country =
Mexico Retrieving node with CustomerID of ANATR CustomerID = ANATR CompanyName = Ana
Trujillo Emparedados y helados Country = Mexico

7.3.7 Using an XmlDataDocument Object to Store an XML Document

Using an XmlDataDocument Object to Store an XML Document
In the previous section, you saw how you use an XmlDocument object to store an XML document
containing customer details retrieved from a DataSet. That's fine, but wouldn't it be great if you could
combine the power of an XmlDocument with a DataSet? Well, you can! That's where the
XmlDataDocument class comes in.
You use an object of the XmlDataDocument class to access rows as both XmlNode objects and
relational DataRow objects. You associate a DataSet with your XmlDataDocument by passing your
DataSet to the XmlDataDocument constructor.
An XmlDataDocument object provides synchronization between the DataSet and the XML document.
For example, if you add a new customer as an XmlNode object to your XmlDataDocument, then that
customer is also added as a DataRow to your associated DataSet. Similarly, if you add a new
customer as a DataRow to your DataSet, then that customer is also added as an XmlNode object in
the XML document of the XmlDataDocument. Also, if you update or delete a customer, then that
change is made in both the DataSet and the XmlDataDocument. You'll see examples of
synchronization shortly.
The XmlDataDocument class is derived from the XmlDocument class; therefore the
XmlDataDocument class inherits all the public properties, methods, and events shown in the
previous section for the XmlDocument class. The DataSet property (type DataSet) is the property
added to the XmlDataDocument class. It gets the DataSet object, which stored the relational
representation of the data. You associate a DataSet with your XmlDataDocument by passing the
DataSet to the XmlDataDocument constructor. Table 16.8 shows the additional XmlDataDocument
methods. Table 16.8: XmlDataDocument Methods
Method
Return Type
Description
GetElementFromRow()
XmlElement
Returns the XmlElement object associated with the specified DataRow object.
GetRowFromElement()
DataRow
Returns the DataRow object associated with the specified XmlElement object.
Load()
void
Overloaded. Loads information from the specified data source into the XmlDataDocument object and

Part 3: Advanced Database Programming with ADO.NET 347

© 2004 ... Your company

synchronizes the loaded data with the DataSet.
Listing 16.18 shows a program that illustrates the use of an XmlDataDocument. This program
performs the following steps:
Creates a DataSet object named myDataSet and fills it with a DataTable named customersDT that
contains the top two rows from the Customers table.
Display the DataRow objects in customersDT using the DisplayDataRows() method, which is defined
near the start of the program.
Creates an XmlDataDocument object named myXDD, passing myDataSet to the constructor; this
associates myDataSet with the XmlDataDocument.
Displays the XML document in myXDD by passing Console.Out to the Save() method.
Adds a customer DataRow with a CustomerID of J9COM to customersDT.
Retrieves the J9COM node using the GetElementFromRow() method. This method accepts a
DataRow as a parameter and returns the associated XmlNode.
Sets the J9COM node's Country to USA, first setting the myDataSet object's EnforceConstraints
property to false-which you must do before making any changes to nodes.
Retrieves the ANATR XmlNode using SelectSingleNode().
Retrieves the ANATR DataRow using GetRowFromElement(). This method accepts an XmlElement
as a parameter and returns the associated DataRow.
Removes the ANATR node using RemoveAll().
Display the XML document in myXDD using Save().
Display the DataRow objects in customersDT using DisplayDataRows().Listing 16.18:
USINGXMLDATADOCUMENT.CS /* UsingXmlDataDocument.cs illustrates how to use an
XmlDataDocument object */ using System; using System.Data; using System.Data.SqlClient; using
System.Xml; class UsingXmlDataDocument { public static void DisplayDataRows(DataTable
myDataTable) { Console.WriteLine("\n\nCustomer DataRow objects in customersDT:"); foreach
(DataRow myDataRow in myDataTable.Rows) { foreach (DataColumn myDataColumn in
myDataTable.Columns) { Console.WriteLine(myDataColumn + "= "+
myDataRow[myDataColumn]); } } } public static void Main() { SqlConnection
mySqlConnection = new SqlConnection(
"server=localhost;database=Northwind;uid=sa;pwd=sa"); SqlCommand mySqlCommand =
mySqlConnection.CreateCommand(); mySqlCommand.CommandText = "SELECT TOP 2
CustomerID, CompanyName, Country "+ "FROM Customers "+ "ORDER BY CustomerID";
SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter(); mySqlDataAdapter.SelectCommand
= mySqlCommand; // step 1: create a DataSet object and fill it with the top 2 rows // from the
Customers table DataSet myDataSet = new DataSet(); mySqlConnection.Open();
mySqlDataAdapter.Fill(myDataSet, "Customers"); mySqlConnection.Close(); DataTable
customersDT = myDataSet.Tables["Customers"]; // step 2: display the DataRow objects in
customersDT using // DisplayDataRows() DisplayDataRows(customersDT); // step 3: create
an XmlDataDocument object, passing myDataSet // to the constructor; this associates myDataSet
with the // XmlDataDocument XmlDataDocument myXDD = new XmlDataDocument(myDataSet);
// step 4: display the XML document in myXDD Console.WriteLine("\nXML document in myXDD:");
myXDD.Save(Console.Out); // step 5: add a customer DataRow to customersDT with a
CustomerID // of J9COM Console.WriteLine("\n\nAdding new DataRow to customersDT with
CustomerID of J9COM"); DataRow myDataRow = customersDT.NewRow();
myDataRow["CustomerID"] = "J9COM"; myDataRow["CompanyName"] = "J9 Company";
myDataRow["Country"] = "UK"; customersDT.Rows.Add(myDataRow); // step 6: retrieve the
J9COM node using GetElementFromRow() Console.WriteLine("\nRetrieving J9COM node using
GetElementFromRow()"); XmlNode myXmlNode = myXDD.GetElementFromRow(myDataRow);
Console.WriteLine("CustomerID = "+ myXmlNode.ChildNodes[0].InnerText);
Console.WriteLine("CompanyName = "+ myXmlNode.ChildNodes[1].InnerText);
Console.WriteLine("Country = "+ myXmlNode.ChildNodes[2].InnerText); // step 7: set J9COM
node's Country to USA, first setting // EnforceConstraints to false Console.WriteLine("\nSetting
J9COM node's Country to USA"); myDataSet.EnforceConstraints = false;
myXmlNode.ChildNodes[2].InnerText = "USA"; // step 8: retrieve the ANATR XmlNode using
SelectSingleNode() Console.WriteLine("\nRetrieving ANATR node using SelectSingleNode()");
myXmlNode = myXDD.SelectSingleNode("/NewDataSet/Customers[CustomerID=\"

Mastering C# Database Programming @Team LiB348

© 2004 ... Your company

ANATR\"]"); // step 9: retrieve the ANATR DataRow using GetRowFromElement()
Console.WriteLine("\nRetrieving ANATR DataRow using GetRowFromElement()"); myDataRow =
myXDD.GetRowFromElement((XmlElement) myXmlNode); foreach (DataColumn myDataColumn in
customersDT.Columns) { Console.WriteLine(myDataColumn + "= "+
myDataRow[myDataColumn]); } // step 10: remove the ANATR node using RemoveAll()
Console.WriteLine("\nRemoving ANATR node"); myXmlNode.RemoveAll(); // step 11: display
the XML document in myXDD using Save() Console.WriteLine("\nXML document in myXDD:");
myXDD.Save(Console.Out); // step 12: display the DataRow objects in customersDT using //
DisplayDataRows() DisplayDataRows(customersDT); } }
The output from this program is as follows: Customer DataRow objects in customersDT: CustomerID
= ALFKI CompanyName = Alfreds Futterkiste Country = Germany CustomerID = ANATR
CompanyName = Ana Trujillo Emparedados y helados Country = Mexico XML document in myXDD:
<?xml version="1.0" encoding="IBM437"?> <NewDataSet> <Customers>
<CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds Futterkiste</CompanyName>
<Country>Germany</Country> </Customers> <Customers>
<CustomerID>ANATR</CustomerID> <CompanyName>Ana Trujillo Emparedados y
helados</CompanyName> <Country>Mexico</Country> </Customers> </NewDataSet> Adding
new DataRow to customersDT with CustomerID of J9COM Retrieving J9COM node using
GetElementFromRow() CustomerID = J9COM CompanyName = J9 Company Country = UK Setting
J9COM node's Country to USA Retrieving ANATR node using SelectSingleNode() Retrieving
ANATR DataRow using GetRowFromElement() CustomerID = ANATR CompanyName = Ana Trujillo
Emparedados y helados Country = Mexico Removing ANATR node XML document in myXDD:
<?xml version="1.0" encoding="IBM437"?> <NewDataSet> <Customers>
<CustomerID>ALFKI</CustomerID> <CompanyName>Alfreds Futterkiste</CompanyName>
<Country>Germany</Country> </Customers> <Customers> </Customers> <Customers>
<CustomerID>J9COM</CustomerID> <CompanyName>J9 Company</CompanyName>
<Country>USA</Country> </Customers> </NewDataSet> Customer DataRow objects in
customersDT: CustomerID = ALFKI CompanyName = Alfreds Futterkiste Country = Germany
CustomerID = CompanyName = Country = CustomerID = J9COM CompanyName = J9 Company
Country = USA

7.3.8 Summary

Summary
In this chapter, you learned about SQL Server's extensive support for XML. You also saw how to
store XML in a C# program using the XmlDocument and XmlDataDocument objects.
SQL Server extends the SELECT statement to allow you to query the database and get results back
as XML. Specifically, you can add a FOR XML clause to the end of a SELECT statement, which
specifies that SQL Server is to return results as XML.
You examined the Extensible Markup Language Path (XPath) and the Extensible Stylesheet
Language Transformation (XSLT). XPath is a language that allows you to search and navigate an
XML document using expressions. XML is a great way to represent data in a portable format, but XML
doesn't contain information on how to format that data for display. XSLT allows you to control the
formatting of XML data, and may be used to transform XML data to a format suitable for display.
You can access SQL Server using HTTP (Hypertext Transfer Protocol). This allows you to run SQL
statements from a browser; for example, you can run a SELECT statement that returns XML, and SQL
Server will display the results in you browser. You can use XPath statements to locate data in the
returned XML, and use XSLT stylesheets to format the returned XML.
SQL Server contains a function named OPENXML() that allows you to read XML data as if it were a
result set of rows. One use of OPENXML() is to read XML data as rows and then insert those rows
into a table.
You use an object of the XmlDocument class to represent an XML document in a C# program. An
XmlDocument object stores the nodes of the XML document in objects of the XmlNode class. You
can, for example, load rows from the database into a DataSet, and then load an XML representation
of those rows into an XmlDocument object.

Part 3: Advanced Database Programming with ADO.NET 349

© 2004 ... Your company

You use an object of the XmlDataDocument class to access rows as both XmlNode objects and
relational DataRow objects. You associate a DataSet with your XmlDataDocument by passing your
DataSet to the XmlDataDocument constructor. An XmlDataDocument object provides synchronization
between the DataSet and the XML document. For example, if you add a new customer as an
XmlNode object to your XmlDataDocument, then that customer is also added as a DataRow to your
associated DataSet.
In the next chapter, you'll learn about Web services.

7.4 Chapter 17: Web Services

Chapter 17: Web ServicesOverview
A web service is a software component that you can call over the Web, and one of the key features of
.NET is the ability to easily create Web services.
Companies can create Web services to allow customer interaction. For example, a shipping company
might create a Web service that allows other companies to pass an XML document across the Web
containing a list of items that need to be shipped. The shipping company could accept that file and
schedule a pickup for those items, returning an XML document from the Web service containing a list
of tracking numbers for each item to be shipped.
Because Web services return and accept data in the form of XML documents, Web services are truly
platform independent. For example, you could have a Web service written in C# communicate with
another Web service written in Java, passing data in the form of XML documents.
In this chapter, you'll see how to create a Web service using VS .NET and use it in a Windows
application. You'll also see how to register a Web service so that other organizations can use your
service. For comprehensive coverage of Web services, see .NET Web Services Solutions by Kris
Jamsa (Sybex, 2003).
Featured in this chapter:
Creating a Web service
Viewing a WSDL file and testing a Web service
Using a Web service
Registering a Web service

7.4.1 Creating a Web Service

Creating a Web Service
In this section, you'll create a Web service that contains a method that returns a DataSet containing
rows from the Customers table.
Start VS .NET and select File £ New£ Project. In the New Project dialog box, select Visual C#
Projects in the Project Types pane on the left, and select ASP.NET Web Service in the Templates
pane on the right. Enter http://localhost/NorthwindWebService in the Location field (see Figure

17.1). Click OK to continue.
Figure 17.1: Creating a Web service in VS .NETNote
If you have installed IIS on a computer other than your local machine, then replace localhost with the

Mastering C# Database Programming @Team LiB350

© 2004 ... Your company

name of your remote computer in the Location field.
After VS .NET has created the new project, open Solution Explorer and delete the Service1.asmx file
from your project; you'll be adding your own .asmx file next, and it's easier to simply delete the initial
Service1.asmx file.
Select Project £ Add Web Service, and enter Customers.asmx in the Name field of the Add New Item
dialog box (see Figure 17.2). Click Open to continue. VS .NET adds a file named Customers.asmx to

your project.
Figure 17.2: Adding a new Web service
Select View £ Code to view the C# code in the Customers.asmx.cs file. Listing 17.1 shows my
example Customers.asmx.cs file.Listing 17.1: CUSTOMERS.ASMX.CS using System; using
System.Collections; using System.ComponentModel; using System.Data; using System.Diagnostics;
using System.Web; using System.Web.Services; namespace NorthwindWebService { ///
<summary> /// Summary description for Customers. /// </summary> ///
[WebService(Namespace="http://DbProgramming/NorthwindWebService")] public class Customers :
System.Web.Services.WebService { public Customers() { //CODEGEN: This call is required
by the ASP.NET Web Services Designer InitializeComponent(); } #region Component
Designer generated code //Required by the Web Services Designer private IContainer
components = null; /// <summary> /// Required method for Designer support - do not modify ///
the contents of this method with the code editor. /// </summary> private void
InitializeComponent() { } /// <summary> /// Clean up any resources being used. ///
</summary> protected override void Dispose(bool disposing) { if(disposing && components
!= null) { components.Dispose(); } base.Dispose(disposing); } #endregion //
WEB SERVICE EXAMPLE // The HelloWorld() example service returns the string Hello World //
To build, uncomment the following lines then save and build the project // To test this web service,
press F5 // [WebMethod] // public string HelloWorld() // { // return "Hello World"; // } }
Notice that the Customers class is derived from the System.Web.Services.WebService class, which
indicates that the Customers class forms part of a Web service.
Near the end of Listing 1.1, you'll notice a method named HelloWorld() that is commented out. This
commented code shows you how to write a method that is exposed by your Web service. You'll notice
that a line containing [WebMethod] is placed before the method, which indicates that the method
would be exposed by the Web service. Of course, because the HelloWorld() method is commented
out, the method isn't compiled and therefore isn't actually exposed by the Web service.
Replace the example HelloWorld() method in your code with the RetrieveCustomers() method shown
in Listing 17.2. RetrieveCustomers() connects to the Northwind database and returns a DataSet
containing rows from the Customers table. You pass a WHERE clause to the RetrieveCustomers()
method in the whereClause parameter; this WHERE clause is then used in the SELECT statement to
limit the rows retrieved from the Customers table.Listing 17.2: CUSTOMERSWEBSERVICE.CS
[WebMethod] public DataSet RetrieveCustomers(string whereClause) { SqlConnection
mySqlConnection = new SqlConnection("server=localhost;database=Northwind;uid=sa;pwd=sa");
string selectString = "SELECT CustomerID, CompanyName, Country "+ "FROM Customers "+
"WHERE "+ whereClause; SqlCommand mySqlCommand = mySqlConnection.CreateCommand();
mySqlCommand.CommandText = selectString; SqlDataAdapter mySqlDataAdapter = new
SqlDataAdapter(); mySqlDataAdapter.SelectCommand = mySqlCommand; DataSet myDataSet =
new DataSet(); mySqlConnection.Open(); mySqlDataAdapter.Fill(myDataSet, "Customers");

Part 3: Advanced Database Programming with ADO.NET 351

© 2004 ... Your company

mySqlConnection.Close(); return myDataSet; } Note
You'll need to change the string used to create the mySqlConnection object in your code to connect
to your Northwind database.
Because the code uses classes in the System.Data.SqlClient namespace, you'll also need to add the
following line near the top of your Customers.asmx.cs file: using System.Data.SqlClient;
By default, a Web service uses a namespace of http://tempuri.org, and you should change that to the
URL used by your organization. The following example sets the namespace for the Web service to
http://DbProgramming/NorthwindWebService:
[WebService(Namespace="http://DbProgramming/NorthwindWebService")] public class Customers :
System.Web.Services.WebService
Notice that you set the Namespace in a line placed before the Customers class. Go ahead and add a
line similar to the previous one to your own code.
Build your Web service by selecting Build £ Build Solution.
That's it! You've built your Web service.

7.4.2 Viewing a WSDL File and Testing a Web Service

Viewing a WSDL File and Testing a Web Service
WSDL stands for Web Services Description Language, and a WSDL file contains a complete
description of your Web service, including the information required to call your service's methods. A
WSDL file is written in XML and specifies the following information:
Web service methods
Data types used by the methods
Request and response message formats for communication with the methods Note
For comprehensive information on WSDL, visit www.w3.org/TR/wsdl .
You access your Web service by pointing your browser to the following URL:
http://localhost/NorthwindWebService/Customers.asmx
As you can see from Figure 17.3, the resulting page displayed in your browser contains two links

named Service Description and Retrieve Customers.
Figure 17.3: Accessing a Web serviceNote
You can also access your Web service by right-clicking on the Customers.asmx file in the Solution
Explorer window in VS .NET and selecting Set As Start Page from the pop-up menu. You then select
Debug £ Start Without Debugging to test your service. VS .NET will start Internet Explorer and display
the same test page as was shown in Figure 17.3. Viewing the WSDL File for the Web Service
If you click the Service Description link, you'll see the description of your Web service in the form of a
WSDL file, which is shown in Listing 17.3. Notice that this WSDL file is written in XML and contains
the details on how to call the methods exposed by the example Web service. The WSDL file also
contains the data types of the parameters used and the calls you can make to your methods.Listing
17.3: WEB SERVICE WSDL FILE <?xml version="1.0" encoding="utf-8"?> <definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://DbProgramming/NorthwindWebService"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://DbProgramming/NorthwindWebService"

Mastering C# Database Programming @Team LiB352

© 2004 ... Your company

xmlns="http://schemas.xmlsoap.org/wsdl/"> <types> <s:schema elementFormDefault="qualified"
targetNamespace="http://DbProgramming/NorthwindWebService"> <s:import
namespace="http://www.w3.org/2001/XMLSchema" /> <s:element name="RetrieveCustomers">
<s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1"
name="whereClause" type="s:string" /> </s:sequence> </s:complexType>
</s:element> <s:element name="RetrieveCustomersResponse"> <s:complexType>
<s:sequence> <s:element minOccurs="0" maxOccurs="1"
name="RetrieveCustomersResult"> <s:complexType> <s:sequence>
<s:element ref="s:schema" /> <s:any /> </s:sequence>
</s:complexType> </s:element> </s:sequence> </s:complexType> </s:element>
<s:element name="DataSet" nillable="true"> <s:complexType> <s:sequence>
<s:element ref="s:schema" /> <s:any /> </s:sequence> </s:complexType>
</s:element> </s:schema> </types> <message name="RetrieveCustomersSoapIn"> <part
name="parameters" element="s0:RetrieveCustomers" /> </message> <message
name="RetrieveCustomersSoapOut"> <part name="parameters"
element="s0:RetrieveCustomersResponse" /> </message> <message
name="RetrieveCustomersHttpGetIn"> <part name="whereClause" type="s:string" /> </message>
<message name="RetrieveCustomersHttpGetOut"> <part name="Body" element="s0:DataSet" />
</message> <message name="RetrieveCustomersHttpPostIn"> <part name="whereClause"
type="s:string" /> </message> <message name="RetrieveCustomersHttpPostOut"> <part
name="Body" element="s0:DataSet" /> </message> <portType name="CustomersSoap">
<operation name="RetrieveCustomers"> <input message="s0:RetrieveCustomersSoapIn" />
<output message="s0:RetrieveCustomersSoapOut" /> </operation> </portType> <portType
name="CustomersHttpGet"> <operation name="RetrieveCustomers"> <input
message="s0:RetrieveCustomersHttpGetIn" /> <output
message="s0:RetrieveCustomersHttpGetOut" /> </operation> </portType> <portType
name="CustomersHttpPost"> <operation name="RetrieveCustomers"> <input
message="s0:RetrieveCustomersHttpPostIn" /> <output
message="s0:RetrieveCustomersHttpPostOut" /> </operation> </portType> <binding
name="CustomersSoap" type="s0:CustomersSoap"> <soap:binding
transport="http://schemas.xmlsoap.org/soap/http" style="document" /> <operation
name="RetrieveCustomers"> <soap:operation
soapAction="http://DbProgramming/NorthwindWebService/RetrieveCustomers" style="document"
/> <input> <soap:body use="literal" /> </input> <output> <soap:body
use="literal" /> </output> </operation> </binding> <binding name="CustomersHttpGet"
type="s0:CustomersHttpGet"> <http:binding verb="GET" /> <operation
name="RetrieveCustomers"> <http:operation location="/RetrieveCustomers" /> <input>
<http:urlEncoded /> </input> <output> <mime:mimeXml part="Body" /> </output>
</operation> </binding> <binding name="CustomersHttpPost" type="s0:CustomersHttpPost">
<http:binding verb="POST" /> <operation name="RetrieveCustomers"> <http:operation
location="/RetrieveCustomers" /> <input> <mime:content type="application/x-www-form-
urlencoded" /> </input> <output> <mime:mimeXml part="Body" /> </output>
</operation> </binding> <service name="Customers"> <port name="CustomersSoap"
binding="s0:CustomersSoap"> <soap:address
location="http://localhost/NorthwindWebService/Customers.asmx" /> </port> <port
name="CustomersHttpGet" binding="s0:CustomersHttpGet"> <http:address
location="http://localhost/NorthwindWebService/Customers.asmx" /> </port> <port
name="CustomersHttpPost" binding="s0:CustomersHttpPost"> <http:address
location="http://localhost/NorthwindWebService/Customers.asmx" /> </port> </service>
</definitions>
Next, you'll see how to test your Web service. Testing a Web Service
To test your Web service, point your browser to the following URL:
http://localhost/NorthwindWebService/Customers.asmx
Click the Retrieve Customers link. Your browser displays a page (see Figure 17.4) that you can use
to test the RetrieveCustomers() method exposed by your Web

Part 3: Advanced Database Programming with ADO.NET 353

© 2004 ... Your company

service.
Figure 17.4: The Web service test page
The test page contains a text box with a label of whereClause where you can enter values for the
whereClause parameter of your RetrieveCustomers() method. The text you enter for your
whereClause is passed to the RetrieveCustomers() method when you click the Invoke button on the
page. Enter the following text as your whereClause: CustomerID='ALFKI'
Click the Invoke button to run the RetrieveCustomers() method. With this whereClause, the
RetrieveCustomers() method returns a DataSet with a DataTable containing the one row from the
Customers table with a CustomerID of ALFKI, as shown in Figure 17.5. Notice that the equals (=) and
single quote (') characters in the whereClause parameter value of the URL have been converted to

the codes %3D and %27 respectively.
Figure 17.5: Running the RetrieveCustomers() method with a whereClause of CustomerID= 'ALFKI'
As you can see from Figure 17.5, the DataSet is returned as an XML document. You can use this
XML in your client programs that use the Web service. You'll see how to write a client program in the
next section.
Let's take a look at another example; enter the following string as your whereClause and click the
Invoke button: CustomerID IS NOT NULL
This causes the RetrieveCustomers() method to return a DataSet with a DataTable containing all the
rows from the Customers table (see Figure 17.6). Notice that the space characters in the
whereClause parameter value have been converted to plus (+) characters. You'll need to scroll down

Mastering C# Database Programming @Team LiB354

© 2004 ... Your company

the page to see the other customers.
Figure 17.6: Running the RetrieveCustomers() method with a whereClause of CustomerID IS NOT
NULL
Next, you'll see how to use your Web service in a Windows application.

7.4.3 Using a Web Service

Using a Web Service
In this section, you'll see how to use a Web service in a Windows application.
Start VS .NET and select File £ New £ Project. Create a new Windows application named
UseWebServiceInWindows. Drag a DataGrid, TextBox, and Button control to your form. Set the Name
property of your DataGrid to customersDataGrid. Set the Name property of your TextBox to
whereClauseTextBox, and remove the text textBox1 from the Text property. Set the Name property of
your Button to getCustomersButton, and set the Text property to Get Customers. These controls are

shown in Figure 17.7.
Figure 17.7: Form with controls
Open the Solution Explorer window and right-click the References node. Select Add Web References
from the pop-up menu. This displays the Add Web Reference dialog box, which allows you to search
for Web services. Enter the following URL in the Address box, and press the Enter key on your

Part 3: Advanced Database Programming with ADO.NET 355

© 2004 ... Your company

keyboard: http://localhost/NorthwindWebService/Customers.asmx Note
If your Web service is not deployed on the local computer, then replace localhost with the name of
your remote computer.
Your Web service will be located and a test page displayed (see Figure

17.8).
Figure 17.8: Northwind Web Service
You can view the WSDL file for your Web service by clicking the Service Description link, and you
can test your Web service by clicking the Retrieve Customers link.
Click the Add Reference button to add the reference to your Web service to your project and
continue. You can see the new reference in the Solution Explorer window (see Figure

17.9).
Figure 17.9: The new Web reference in Solution Explorer
Double-click the Button on your form to open the code editor, and add the following code to your
button's click method: localhost.Customers myCustomersService = new localhost.Customers();
customersDataGrid.DataSource =
myCustomersService.RetrieveCustomers(whereClauseTextBox.Text);
customersDataGrid.DataMember = "Customers"; Note
Once again, if your Web service is not deployed on the local computer, then replace localhost in this
code with the name of your remote computer.
This code creates an object named myCustomersService to call your Web service, and displays the
returned results from the RetrieveCustomers() method in customersDataGrid.
Compile and run your Windows application by selecting Debug £ Start Without Debugging. Enter
CustomerID='ALFKI' in the text box, and click the Get Customers button; the retrieved results are

Mastering C# Database Programming @Team LiB356

© 2004 ... Your company

shown in Figure 17.10.
Figure 17.10: The running form
Next, you'll see how to register your Web service.

7.4.4 Registering a Web Service

Registering a Web Service
In this section, you'll see how to register a Web service using Microsoft's Universal Description,
Discovery, and Integration (UDDI) service. You can think of UDDI as a distributed directory of Web
services that you can use to register and locate Web services published by organizations. UDDI is an
industry standard developed by Microsoft, IBM, Sun Microsystems, and other software and hardware
companies.Note
For comprehensive information on UDDI, visit www.uddi.org and uddi.microsoft.com .
Once you've registered your Web service, anyone can use your service as a software component in
their own system; similarly, you could use other people's Web services in your system. You can even
register Web services for your own organization's intranet and build an internal system made up of
Web services written internally.
In this section, you'll register the NorthwindWebService you created earlier in this chapter. To do that,
follow these steps:
From VS .NET, click the Start Page tab, click the XML Web Services link, and then click the Register
Your XML Web Service Today link (see Figure 17.11). You can search for Web services using the

Find A Service page.
Figure 17.11: The XML Web Services page
From the UDDI Web Service Registration page, you can register your Web service with either the test

Part 3: Advanced Database Programming with ADO.NET 357

© 2004 ... Your company

or production environment. Since your Web service is an example, click the UDDI Test Environment
radio button and click the Submit button (see Figure 17.12). If you create a really useful Web service
that you believe other organizations will want to use, you can register your Web service with the

production environment.
Figure 17.12: The UDDI Web Service Registration page
Read the text in the UDDI Business Registry Node page (see Figure 17.13). This page explains the
next steps you follow. Click the Sign In button when you've finished reading the

text.
Figure 17.13: The UDDI Business Registry Node page
You'll need a Microsoft Passport account to continue. If you have such an account, enter your details
(see Figure 17.14). Click the Continue button to

Mastering C# Database Programming @Team LiB358

© 2004 ... Your company

proceed.
Figure 17.14: Logging in using a Microsoft Passport accountNote
If you don't have a Passport account, click the Get One Now link and sign up for a Passport account.
Enter your email address, name, and phone number in the UDDI Business Registry Node page (see
Figure 17.15). The name and phone number are near the bottom of the page and you'll need to scroll
down to see them. Click the Save button to

continue.
Figure 17.15: Entering your email address, name, and phone number
Read the Terms Of Use page and click Accept if you want to

continue.

Part 3: Advanced Database Programming with ADO.NET 359

© 2004 ... Your company

Figure 17.16: The terms of use page
Enter your business name and an optional description (see Figure 17.17). Click Save to

continue.
Figure 17.17: Setting the business name and description
You'll be asked to select the UDDI environment again, so make sure the UDDI Test Environment
radio button is selected, and click Submit to continue.
Make sure your organization is selected, and click Submit to continue.
Next, enter the details for your Web service. Enter a name for your Web service, along with a
description. The .asmx URL for your NorthwindWebService will be similar to the following URL:
http://localhost/NorthwindWebService/Customers.asmx
Your .wsdl URL will be similar to the following URL:
http://localhost/NorthwindWebService/Customers.asmx?WSDL
Select Miscellaneous for your Service Category. These settings are shown in Figure 17.18. Click

Submit to register your Web service.
Figure 17.18: Setting the Web service details
That's it. You've successfully registered your Web service. Feel free to search for and examine the
Web services currently registered using the Find A Service page.

7.4.5 Summary

Summary
A Web service is a software component that you can call over the Web, and one of the key features
of .NET is the ability to easily create Web services. Companies can create Web services to allow
their customers to interact with them.

Mastering C# Database Programming @Team LiB360

© 2004 ... Your company

Because Web services return and accept data in the form of XML documents, Web services are truly
platform independent. For example, you could have a Web service written in C# communicate with
another Web service written in Java, passing data in the form of XML documents.
In this chapter, you saw how to create a Web service using VS .NET and use it in a Windows
application. You also saw how to register a Web service so that other organizations can use your
service.
I hope you found this book informative and useful, and I hope I've held your interest! Database
programming with C# is a very large subject, but armed with this book, I have every confidence you
will master it.

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

VIII

Mastering C# Database Programming @Team LiB362

© 2004 ... Your company

8 Index

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

8.1 Index_B

Index

8.2 Index_C

Index

8.3 Index_D

Index

8.4 Index_E

Index

8.5 Index_F

Index

8.6 Index_G

Index

8.7 Index_H

Index

8.8 Index_I

Index

8.9 Index_J

Index

8.10 Index_K

Index

8.11 Index_L

Index

Index 363

© 2004 ... Your company

8.12 Index_M

Index

8.13 Index_N

Index

8.14 Index_O

Index

8.15 Index_P

Index

8.16 Index_Q

Index

8.17 Index_R

Index

8.18 Index_S

Index

8.19 Index_T

Index

8.20 Index_U

Index

8.21 Index_V

Index

8.22 Index_W

Index

8.23 Index_X

Index

8.24 Index_Y

Index

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

IX

List of Figures 365

© 2004 ... Your company

9 List of Figures

List of Figures Chapter 1: Introduction to Database Programming with
ADO.NETFigure 1.1: The Start pageFigure 1.2: The New Project dialog box with the appropriate
settings for a C# console applicationFigure 1.3: The VS .NET environmentFigure 1.4: The running
programFigure 1.5: The documentation home pageFigure 1.6: Searching the index for the word
consoleFigure 1.7: Searching all of the documentation for the word WriteLineFigure 1.8: The
documentation contents viewed in VS .NETFigure 1.9: SQL Server documentation home
pageFigure 1.10:SELECT examples documentation Chapter 2: Introduction to DatabasesFigure 2.1:
The Service ManagerFigure 2.2: The Enterprise ManagerFigure 2.3: The Customers, Orders, Order
Details, and Products tablesFigure 2.4: The tables of the Northwind databaseFigure 2.5: The
Customers table propertiesFigure 2.6: The alphabetical list of products view propertiesFigure 2.7:
The CustOrdHist stored procedure propertiesFigure 2.8: The dbo user propertiesFigure 2.9: The
public role propertiesFigure 2.10: The public role permissionsFigure 2.11: Relationships between the
Customers, Orders, Order Details, and Products tablesFigure 2.12: Relationship between the
Customers and Orders tableFigure 2.13: Indexes for the Customers tableFigure 2.14: Rows from the
Customers tableFigure 2.15: Rows from the Orders tableFigure 2.16: Restricted rows from the Order
Details tableFigure 2.17: Restricted rows from the Products tableFigure 2.18: The query
builderFigure 2.19: Building and running a queryFigure 2.20: Adding a new tableFigure 2.21:
Entering the name of the tableFigure 2.22: Setting the permissionsFigure 2.23: Creating the
relationshipFigure 2.24: Creating an indexFigure 2.25: Creating a constraint Chapter 3: Introduction
to Structured Query Language (SQL)Figure 3.1: Connecting to a SQL Server databaseFigure 3.2:
Viewing database items using the Object Browser and executing a SELECT statement using the
Query windowFigure 3.3: Using a SELECT statement to retrieve rows from the Customers
tableFigure 3.4: Using a WHERE clause to restrict rows from the Customers table to those where
Country is equal to 'UK'Figure 3.5: Products where ProductName is like 'Cha_'Figure 3.6: Products
where ProductName is like 'Cha%'Figure 3.7: Products where ProductName is like
'[ABC]%'Figure 3.8: Products where ProductName is like '[^ABC]%'Figure 3.9: Products where
ProductName is like '[A-E]%'Figure 3.10: Using the IS NULL operator to retrieve customers where
Fax contains a null valueFigure 3.11: Using the AND operator to retrieve products where
UnitsInStock is less than 10 and ReorderLevel is less than or equal to 20Figure 3.12: Using the OR
operator to retrieve products where either UnitsInStock is less than 10 or ReorderLevel is less than or
equal to 20Figure 3.13: Using the ORDER BY clause to order products by ascending
ProductNameFigure 3.14: Using the DESC and ASC keywords to order products by descending
UnitsInStock and ascending ReorderLevelFigure 3.15: Using the TOP keyword to retrieve the top 10
products by ProductIDFigure 3.16: Using the DISTINCT keyword to retrieve distinct Country column
valuesFigure 3.17: Using the UNION operator to combine retrieved rows from two SELECT
statementsFigure 3.18: Using the GROUP BY clause to divide rows into blocksFigure 3.19: Using the
HAVING clause to restrict retrieved groups of rowsFigure 3.20: Using the AS clause to specify the
display name for columnsFigure 3.21: Using a multitable SELECT statement to retrieve orders placed
by a specific customerFigure 3.22: Using an INSERT statement to add a new row to the Customers
tableFigure 3.23: Using an UPDATE statement to modify the Address column of a row in the
Customers tableFigure 3.24: Using an UPDATE statement to remove a row from the Customers
tableFigure 3.25: Using a transactionFigure 3.26: Entering database details using the Data Link
Properties dialog boxFigure 3.27: Viewing the rows in the Customers table using the Server
ExplorerFigure 3.28: Entering a SQL statementFigure 3.29: Building a SQL statement
visuallyFigure 3.30: Properties of the CustomerID columns Chapter 4: Introduction to Transact-SQL
ProgrammingFigure 4.1: Executing T-SQL using Query AnalyzerFigure 4.2: Using the AVG() function
to compute the average value of the UnitPrice columnFigure 4.3: Using the SUM() function to
compute the total of the UnitPrice columnFigure 4.4: Using Enterprise Manager to define a
functionFigure 4.5: Using an inline table-valued functionFigure 4.6: Using a multistatement table-
valued functionFigure 4.7: Using Enterprise Manager to define a procedureFigure 4.8: Using
Enterprise Manager to view a trigger Chapter 5: Overview of the ADO.NET ClassesFigure 5.1: Some
of the managed provider objectsFigure 5.2: Some of the generic data set objects Chapter 6:
Introducing Windows Applications and ADO.NETFigure 6.1: Creating a C# Windows application in

Mastering C# Database Programming @Team LiB366

© 2004 ... Your company

Visual Studio .NETFigure 6.2: A blank formFigure 6.3: The form with a label and button
controlFigure 6.4: The running formFigure 6.5: Hiding code in VS .NET using the #region
directiveFigure 6.6: Viewing hidden code in VS .NETFigure 6.7: The Solution ExplorerFigure 6.8: The
Class ViewFigure 6.9: Form with a DataGridFigure 6.10: Form with SqlConnection and
SqlDataAdapter objectsFigure 6.11: Setting the ConnectionString property for the sqlConnection1
objectFigure 6.12:SelectCommand property for the sqlDataAdapter1 objectFigure 6.13: The Query
BuilderFigure 6.14: Previewing the rows retrieved by the SELECT statementFigure 6.15: Entering the
DataSet details in the Generate Dataset dialog boxFigure 6.16: The running formFigure 6.17: The
running formFigure 6.18: Adding a data form using the Data Form WizardFigure 6.19: Entering the
name of the new DataSetFigure 6.20: Choosing the data connectionFigure 6.21: Logging in to the
SQL Server Northwind databaseFigure 6.22: Selecting the Customers and Orders tables for use in
the formFigure 6.23: Creating a relationship between two tablesFigure 6.24: Selecting the columns to
display from each tableFigure 6.25: Choosing the display styleFigure 6.26: The completed
formFigure 6.27: The editCustomerID text box is bound to the CustomerID columnFigure 6.28:
Binding the City column to the editCity text boxFigure 6.29: Setting the ConnectionString
propertyFigure 6.30: The running form Chapter 7: Connecting to a DatabaseFigure 7.1: Creating a
SqlConnection object with Visual Studio .NETFigure 7.2: Selecting the providerFigure 7.3: Entering
the connection detailsFigure 7.4: Entering the advanced connection detailsFigure 7.5: Viewing all the
connection detailsFigure 7.6:sqlConnection1 object's eventsFigure 7.7: The beginning StateChange
event handler methodFigure 7.8: The completed StateChange event handler method Chapter 8:
Executing Database CommandsFigure 8.1: A SqlCommand object in a formFigure 8.2: Adding the
Customers table to the query using the Add Table dialogFigure 8.3: Adding the CustomerID,
CompanyName, and ContactName columns to the query using Query Builder Chapter 9: Using
DataReader Objects to Read ResultsFigure 9.1: Obtaining the type of a column using Visual Studio
.NET's Server ExplorerFigure 9.2: Adding a ListView control to the formFigure 9.3: The completed
Form1_Load() methodFigure 9.4: The running form Chapter 10: Using Dataset Objects to Store
DataFigure 10.1: Some of the DataSet objectsFigure 10.2: Using the AS keywordFigure 10.3: Adding
a new Data SetFigure 10.4:MyDataSet.xsdFigure 10.5:Customers table added to formFigure 10.6:
Viewing all the files using the Solution Explorer windowFigure 10.7: The running formFigure 10.8:
The Data Adapter Configuration WizardFigure 10.9: Choosing your data connectionFigure 10.10:
Choosing your query typeFigure 10.11: Generating the SQL statementsFigure 10.12: Final dialog box
for the Data Adapter Configuration WizardFigure 10.13: The new SqlDataAdapter object in the
trayFigure 10.14: The Generate Dataset dialog boxFigure 10.15: The new DataSet object in the
trayFigure 10.16: The running form Chapter 12: Navigating and Modifying Related DataFigure 12.1:
The Relationships tab for FK_Orders_CustomersFigure 12.2: Creating the Windows
applicationFigure 12.3: Selecting both the Customers and Orders tables from Server
ExplorerFigure 12.4: The new objects in the tray beneath the formFigure 12.5: The Generate Dataset
dialog boxFigure 12.6: The Schema EditorFigure 12.7: The Edit Relation dialog boxFigure 12.8: The
properties of the new relation Chapter 13: Using DataView ObjectsFigure 13.1: Setting the Properties
of dataView1Figure 13.2: Setting the Properties of dataGrid1Figure 13.3: The running
form Chapter 14: Advanced Transaction ControlFigure 14.1: Running the Savepoint.sql script in
Query AnalyzerFigure 14.2: Running the TransactionIsolation.sql script in Query
AnalyzerFigure 14.3: Viewing the locks using the Locks/ Process ID node of Enterprise
ManagerFigure 14.4: The transaction on the top part is blocking the transaction on the
bottom.Figure 14.5: Once the top transaction is committed, the bottom UPDATE
proceeds. Chapter 15: Introducing Web Applications-ASP.NETFigure 15.1: Creating an ASP.NET
Web application in Visual Studio .NETFigure 15.2: Adding TextBox and Button controls to the
formFigure 15.3: The running formFigure 15.4: The appearance of the final formFigure 15.5: The
ListItem Collection EditorFigure 15.6: Message from the NameRequired-FieldValidator
controlFigure 15.7: Form with a DataGridFigure 15.8: The running formFigure 15.9: The General
propertiesFigure 15.10: The Columns propertiesFigure 15.11: The Paging propertiesFigure 15.12:
The Format propertiesFigure 15.13: The Borders propertiesFigure 15.14: Displaying the DataGrid
eventsFigure 15.15: The running formFigure 15.16: Form with a DataListFigure 15.17: The modified
header and footer templates with Label controlsFigure 15.18: The Item Templates editorFigure 15.19:
Setting the properties of the tableFigure 15.20: Adding the LabelFigure 15.21: Binding the Label to
the ProductID columnFigure 15.22: The running formFigure 15.23: The running CookieTest.aspx

List of Figures 367

© 2004 ... Your company

pageFigure 15.24: The running formFigure 15.25:DataGrid1 propertiesFigure 15.26: Buy button
propertiesFigure 15.27:DataGrid1 with Buy buttonFigure 15.28:ShoppingCart DataGrid Chapter 16:
Using SQL Server's XML SupportFigure 16.1: Running a SELECT statement containing a FOR XML
RAW clause in Query AnalyzerFigure 16.2: Retrieving rows from the Employees
tableFigure 16.3:Customers.xml document structureFigure 16.4: Viewing Customers.xml in Internet
ExplorerFigure 16.5: Viewing CustomersUsing-Stylesheet.xml in Internet ExplorerFigure 16.6: The IIS
Virtual Directory Management for SQL Server consoleFigure 16.7: Setting the Virtual Directory Name
and Local PathFigure 16.8: Setting the authentication detailsFigure 16.9: Setting the data
sourceFigure 16.10: Setting the type of accessFigure 16.11: Setting the virtual name
configurationFigure 16.12: Selecting customers and displaying resultsFigure 16.13: Adding a new
row to the Customers tableFigure 16.14: Running a stored procedureFigure 16.15: Running the
Customers.xml fileFigure 16.16: Running the CustomersUsing-Stylesheet .xml fileFigure 16.17:
Running the RunAddCustomers .sql script Chapter 17: Web ServicesFigure 17.1: Creating a Web
service in VS .NETFigure 17.2: Adding a new Web serviceFigure 17.3: Accessing a Web
serviceFigure 17.4: The Web service test pageFigure 17.5: Running the RetrieveCustomers() method
with a whereClause of CustomerID= 'ALFKI'Figure 17.6: Running the RetrieveCustomers() method
with a whereClause of CustomerID IS NOT NULLFigure 17.7: Form with controlsFigure 17.8:
Northwind Web ServiceFigure 17.9: The new Web reference in Solution ExplorerFigure 17.10: The
running formFigure 17.11: The XML Web Services pageFigure 17.12: The UDDI Web Service
Registration pageFigure 17.13: The UDDI Business Registry Node pageFigure 17.14: Logging in
using a Microsoft Passport accountFigure 17.15: Entering your email address, name, and phone
numberFigure 17.16: The terms of use pageFigure 17.17: Setting the business name and
descriptionFigure 17.18: Setting the Web service details

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

X

List of Tables 369

© 2004 ... Your company

10 List of Tables

List of Tables Chapter 2: Introduction to DatabasesTable 2.1: SOME
ROWS FROM THE PRODUCTS TABLETable 2.2: MEANING OF THE AVAILABLE
PERMISSIONSTable 2.3: SQL SERVER DATABASE TYPESTable 2.4: DEFINITION FOR THE
COLUMNS OF THE Customers TABLETable 2.5: DEFINITION FOR THE COLUMNS OF THE Orders
TABLETable 2.6: DEFINITION FOR THE COLUMNS OF THE Order Details TABLETable 2.7:
DEFINITION FOR THE COLUMNS OF THE Products TABLETable 2.8: DEFINITION FOR THE
COLUMNS OF THE Persons TABLE Chapter 3: Introduction to Structured Query Language
(SQL)Table 3.1: SQL MATHEMATICAL OPERATORSTable 3.2: WILDCARD
CHARACTERSTable 3.3: LOGICAL OPERATORS Chapter 4: Introduction to Transact-SQL
ProgrammingTable 4.1: RETURN VALUES FROM THE @@FETCH_STATUS FUNCTIONTable 4.2:
FUNCTIONSTable 4.3: AGGREGATE FUNCTIONSTable 4.4: MATHEMATICAL
FUNCTIONSTable 4.5: STRING FUNCTIONSTable 4.6: DATE AND TIME FUNCTIONSTable 4.7:
SYSTEM FUNCTIONSTable 4.8: ROW ADDED TO THE ProductAudit TABLE BY
InsertProductTriggerTable 4.9: ROW ADDED TO THE ProductAudit TABLE BY
UpdateUnitPriceProductTriggerTable 4.10: ROW ADDED TO THE ProductAudit TABLE BY
DeleteProductTrigger Chapter 6: Introducing Windows Applications and ADO.NETTable 6.1:
ACCESS MODIFIERSTable 6.2: COMMONLY USED WINDOWS FORM CONTROLS Chapter 7:
Connecting to a DatabaseTable 7.1:SqlConnection PROPERTIESTable 7.2:SqlConnection
METHODSTable 7.3:SqlConnection EVENTSTable 7.4:ConnectionState CONSTANTS Chapter 8:
Executing Database CommandsTable 8.1:SqlCommand PROPERTIESTable 8.2:SqlCommand
METHODSTable 8.3:CommandType ENUMERATION VALUESTable 8.4: METHODS THAT
RETRIEVE INFORMATION FROM THE DATABASETable 8.5:CommandBehavior ENUMERATION
VALUESTable 8.6: SCHEMA COLUMN VALUESTable 8.7:FOR XML KEYWORDSTable 8.8: THE
ExecuteNonQuery() METHODTable 8.9:SqlDbType ENUMERATION MEMBERS Chapter 9: Using
DataReader Objects to Read ResultsTable 9.1:SqlDataReader
PROPERTIESTable 9.2:SqlDataReader METHODSTable 9.3: STANDARD C# AND .NET
TYPESTable 9.4: SQL SERVER TYPES, COMPATIBLE STANDARD C# TYPES, AND GET*
METHODSTable 9.5:Products TABLE COLUMNS, TYPES, AND METHODSTable 9.6:Sql*
TYPESTable 9.7: SQL SERVER TYPES, COMPATIBLE Sql* TYPES, AND GetSql*
METHODSTable 9.8:Products TABLE COLUMNS, TYPES, AND GetSql* METHODS Chapter 10:
Using Dataset Objects to Store DataTable 10.1:SqlDataAdapter
PROPERTIESTable 10.2:SqlDataAdapter METHODSTable 10.3:SqlDataAdapter
EVENTSTable 10.4:DataSet PROPERTIESTable 10.5:DataSet METHODSTable 10.6:DataSet
EVENTTable 10.7:MissingSchemaAction ENUMERATION MEMBERSTable 10.8:XmlWriteMode
ENUMERATION MEMBERSTable 10.9:XmlReadMode ENUMERATION MEMBERS Chapter 11:
Using DataSet Objects to Modify DataTable 11.1:DataTable PROPERTIESTable 11.2:DataTable
METHODSTable 11.3:DataTable EVENTSTable 11.4:DataRow PROPERTIESTable 11.5:DataRow
METHODSTable 11.6:DataColumn PROPERTIESTable 11.7:SchemaType ENUMERATION
MEMBERSTable 11.8:DataViewRowState ENUMERATION MEMBERSTable 11.9:DataRowVersion
ENUMERATION MEMBERSTable 11.10:DataRowState ENUMERATION
MEMBERSTable 11.11:SqlDataAdapter EVENTSTable 11.12:FillErrorEventArgs
PROPERTIESTable 11.13:SqlRowUpdatingEventArgs PROPERTIESTable 11.14: ADDITIONAL
SqlRowUpdatedEventArgs PROPERTYTable 11.15:DataTable
EVENTSTable 11.16:DataColumnChangeEventArgs
PROPERTIESTable 11.17:DataRowChangeEventArgs PROPERTIES Chapter 12: Navigating and
Modifying Related DataTable 12.1:UniqueConstraint PROPERTIESTable 12.2:ForeignKeyConstraint
PROPERTIESTable 12.3:DataRelation PROPERTIESTable 12.4:Rule ENUMERATION
MEMBERS Chapter 13: Using DataView ObjectsTable 13.1:DataView
PROPERTIESTable 13.2:DataView METHODSTable 13.3:DataViewRowState ENUMERATION
MEMBERSTable 13.4:DataRowView PROPERTIESTable 13.5:DataRowView
METHODSTable 13.6:DataViewManager PROPERTIES Chapter 14: Advanced Transaction
ControlTable 14.1:SqlTransaction PROPERTIESTable 14.2:SqlTransaction METHODSTable 14.3:
SQL Standard Isolation LevelsTable 14.4:IsolationLevel Enumeration MembersTable 14.5: SQL

Mastering C# Database Programming @Team LiB370

© 2004 ... Your company

Server Lock TypesTable 14.6: SQL Server Locking Modes Chapter 15: Introducing Web Applications-
ASP.NETTable 15.1: WEB FORM CONTROLSTable 15.2:Label
CONTROLSTable 15.3:RadioButtonList ITEMSTable 15.4:DropDownList ITEMS Chapter 16: Using
SQL Server's XML SupportTable 16.1:FOR XML KEYWORDSTable 16.2: DIRECTIVESTable 16.3:
SPECIFYING THE CONTEXTTable 16.4: SPECIAL CHARACTERS IN A SQL STATEMENT AND
THEIR REPLACEMENTS IN A URLTable 16.5:XmlDocument PropertiesTable 16.6:XmlDocument
MethodsTable 16.7:XmlDocument EventsTable 16.8:XmlDataDocument Methods

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

XI

Mastering C# Database Programming @Team LiB372

© 2004 ... Your company

11 List of Listings

List of Listings Chapter 1: Introduction to Database Programming with
ADO.NETListing 1.1: FIRSTEXAMPLE.CSListing 1.2: OLEDBCONNECTIONACCESS.CSListing 1.3:
OLEDBCONNECTIONORACLE.CS Chapter 4: Introduction to Transact-SQL ProgrammingListing 4.1:
USING CURSORSListing 4.2: DISCOUNTPRICE.SQLListing 4.3:
PRODUCTSTOBEREORDERED.SQLListing 4.4: PRODUCTSTOBEREORDERED2.SQLListing 4.5:
ADDPRODUCT.SQLListing 4.6: PRODUCTAUDIT.SQLListing 4.7:
INSERTPRODUCTTRIGGER.SQLListing 4.8:
UPDATEUNITPRICEPRODUCTTRIGGER.SQLListing 4.9:
DELETEPRODUCTTRIGGER.SQL Chapter 5: Overview of the ADO.NET ClassesListing 5.1:
SELECTINTODATASET.CS Chapter 6: Introducing Windows Applications and
ADO.NETListing 6.1:Form1.cs Chapter 7: Connecting to a DatabaseListing 7.1:
MYSQLCONNECTION.CSListing 7.2: CONNECTIONPOOLING.CSListing 7.3:
STATECHANGE.CSListing 7.4: INFOMESSAGE.CS Chapter 8: Executing Database
CommandsListing 8.1: EXECUTESELECT.CSListing 8.2:
SINGLEROWCOMMANDBEHAVIOR.CSListing 8.3:
SCHEMAONLYCOMMANDBEHAVIOR.CSListing 8.4: EXECUTETABLEDIRECT.CSListing 8.5:
EXECUTESCALAR.CSListing 8.6: EXECUTEXMLREADER.CSListing 8.7:
EXECUTEINSERTUPDATEDELETE.CSListing 8.8: EXECUTEDDL.CSListing 8.9:
EXECUTETRANSACTION.CSListing 8.10: USINGPARAMETERS.CSListing 8.11:
ADDPRODUCT.SQLListing 8.12: EXECUTEADDPRODUCT.CSListing 8.13:
ADDPRODUCT2.SQLListing 8.14: ADDPRODUCT3.SQLListing 8.15:
EXECUTEADDPRODUCT3.CS Chapter 9: Using DataReader Objects to Read ResultsListing 9.1:
USINGCOLUMNORDINALS.CSListing 9.2: STRONGLYTYPEDCOLUMNVALUES.CSListing 9.3:
STRONGLYTYPEDCOLUMNVALUESSQL.CSListing 9.4:
EXECUTEMULTIPLESELECTS.CSListing 9.5: EXECUTEMULTIPLESQL.CS Chapter 10: Using
Dataset Objects to Store DataListing 10.1: POPULATEDATASETUSINGSELECT.CSListing 10.2:
POPULATEDATASETUSINGRANGE.CSListing 10.3: CUSTORDERHIST() STORED
PROCEDUREListing 10.4: POPULATEDATASETUSINGPROCEDURE.CSListing 10.5:
MULTIPLEDATATABLES.CSListing 10.6: MULTIPLEDATATABLES2.CSListing 10.7:
MULTIPLEDATATABLES3.CSListing 10.8: MERGE.CSListing 10.9: MYXMLFILE.XMLListing 10.10:
MYXMLFILE2.XMLListing 10.11: MYXMLSCHEMAFILE.XMLListing 10.12:
WRITEANDREADXML.CSListing 10.13: MAPPINGS.CSListing 10.14: MYDATASET.XSD Chapter 11:
Using DataSet Objects to Modify DataListing 11.1: ADDRESTRICTIONS.CSListing 11.2:
FILLSCHEMA.CSListing 11.3: FINDFILTERANDSORTDATAROWS.CSListing 11.4:
ADDPRODUCT4.SQLListing 11.5: UPDATEPRODUCT.SQLListing 11.6:
DELETEPRODUCT.SQLListing 11.7: DELETEPRODUCT2.SQL Chapter 12: Navigating and
Modifying Related DataListing 12.1: NESTEDXML.CSListing 12.2:
NONNESTEDXMLFILE.XMLListing 12.3: NESTEDXMLFILEL.CS Chapter 13: Using DataView
ObjectsListing 13.1: USINGDATAVIEW.CSListing 13.2: FINDINGDATAROWVIEWS.CSListing 13.3:
ADDMODIFYANDREMOVEDATAROWVIEWS.CSListing 13.4:
CREATECHILDDATAVIEW.CSListing 13.4A: USINGDATAVIEWMANAGER.CS Chapter 14:
Advanced Transaction ControlListing 14.1: SAVEPOINT.SQLListing 14.2:
SAVEPOINT.CSListing 14.3: TransactionIsolation.sqlListing 14.4:
TransactionIsolation.csListing 14.5: Block.csListing 14.6: Deadlock.cs Chapter 15: Introducing Web
Applications-ASP.NETListing 15.1:WebForm1.aspxListing 15.2:WebForm1.aspx.csListing 15.3: THE
WebForm1.aspx FILEListing 15.4: THE WebForm1.aspx FILEListing 15.5: THE WebForm1.aspx
FILEListing 15.6:CookieTest.aspxListing 15.7:ViewStateTest.aspxListing 15.8:SessionObjectTest.as
pxListing 15.9:ApplicationObjectTest.aspx Chapter 16: Using SQL Server's XML SupportListing 16.1:
FORXMLRAW.SQLListing 16.2: FORXMLAUTO.SQLListing 16.3:
FORXMLEXPLICIT.SQLListing 16.4: FORXMLAUTOXMLDATA.SQLListing 16.5:
FORXMLAUTOELEMENTS.SQLListing 16.6: FORXMLAUTOBINARYBASE64.SQLListing 16.7:
CUSTOMERS.XMLListing 16.8: CUSTOMERSWITHATTRIBUTES.XMLListing 16.9:
CUSTOMERSSTYLESHEET.XSLListing 16.10:

List of Listings 373

© 2004 ... Your company

CUSTOMERSUSINGSTYLESHEET.XMLListing 16.11:
CUSTOMERSFROMCOUNTRY.SQLListing 16.12: CUSTOMERS.XMLListing 16.13:
CUSTOMERSSTYLESHEET.XSLListing 16.14:
CUSTOMERSUSINGSTYLESHEET.XMLListing 16.15: ADDCUSTOMERSXML.SQLListing 16.16:
RUNADDCUSTOMERS.SQLListing 16.17: USINGXMLDOCUMENT.CSListing 16.18:
USINGXMLDATADOCUMENT.CS Chapter 17: Web ServicesListing 17.1:
CUSTOMERS.ASMX.CSListing 17.2: CUSTOMERSWEBSERVICE.CSListing 17.3: WEB SERVICE
WSDL FILE

Top Level Intro
This page is printed before a
new top-level chapter starts

Part

XII

List of Sidebars 375

© 2004 ... Your company

12 List of Sidebars

List of Sidebars Chapter 9: Using DataReader Objects to Read
ResultsUsing Table Joins Chapter 10: Using Dataset Objects to Store
DataRETRIEVING FROM MULTIPLE TABLES Chapter 11: Using DataSet Objects to Modify
DataCALLING THE Fill() METHOD OF A DataAdapter MORE THAN ONCE

Endnotes 2... (after index)

Mastering C# Database Programming @Team LiB376

© 2004 ... Your company

Back Cover

	Table of Contents
	BackCover
	Mastering C# Database Programming
	Introduction
	How to Use This Book
	Downloading the Example Programs

	Part 1: Introduction to ADO.NET and Databases
	Chapter 1: Introduction to Database Programming with ADO.NET
	Obtaining the Required Software
	Developing Your First ADO.NET Program
	Connecting to Access and Oracle Databases
	Introducing Visual Studio .NET
	Using the .NET Documentation
	Using the SQL Server Documentation
	Summary

	Chapter 2: Introduction to Databases
	Introducing Databases
	Using SQL Server
	Exploring the Northwind Database
	Building Queries Using Enterprise Manager
	Creating a Table
	Summary

	Chapter 3: Introduction to Structured Query Language (SQL)
	Using SQL
	Accessing a Database Using Visual Studio .NET
	Summary

	Chapter 4: Introduction to Transact-SQL Programming
	Fundamentals of Transact-SQL
	Using Cursors
	Using Functions
	Creating User-Defined Functions
	Introducing Stored Procedures
	Introducing Triggers
	Summary

	Chapter 5: Overview of the ADO.NET Classes
	The Managed Provider and Generic Data Set Classes
	Performing a SQL SELECT Statement and Storing the Rows Locally
	Summary

	Chapter 6: Introducing Windows Applications and ADO.NET
	Developing a Simple Windows Application
	Using Windows Controls
	Using a DataGrid Control to Access a Database
	Using the Data Form Wizard to Create a Windows Form
	Summary

	Part 2: Fundamental Database Programming with ADO.NET
	Chapter 7: Connecting to a Database
	Understanding the SqlConnection Class
	Using a SqlConnection Object to Connect to a SQL Server Database
	Creating a Connection Object Using Visual Studio .NET
	Summary

	Chapter 8: Executing Database Commands
	The SqlCommand Class
	Creating a SqlCommand Object
	Executing SELECT Statements and TableDirect Commands
	Executing Commands that Modify Information in the Database
	Introducing Transactions
	Supplying Parameters to Commands
	Executing SQL Server Stored Procedures
	Creating a Command Object Using Visual Studio .NET
	Summary

	Chapter 9: Using DataReader Objects to Read Results
	The SqlDataReader Class
	Creating a SqlDataReader Object
	Reading Rows from a SqlDataReader Object
	Returning Strongly Typed Column Values
	Using the Get* Methods to Read Column Values
	An Example of Using the Get* Methods
	Reading Null Values
	Executing Multiple SQL Statements
	Using a DataReader Object in Visual Studio .NET
	Summary

	Chapter 10: Using Dataset Objects to Store Data
	The SqlDataAdapter Class
	The DataSet Class
	Writing and Reading XML Using a DataSet Object
	Mapping Tables and Columns
	Reading a Column Value Using Strongly Typed DataSet Classes
	Creating a DataAdapter Object Using Visual Studio .NET
	Creating a DataSet Object Using Visual Studio .NET
	Summary

	Chapter 11: Using DataSet Objects to Modify Data
	The DataTable Class
	The DataRow Class
	The DataColumn Class
	Adding Restrictions to DataTable and DataColumn Objects
	Finding, Filtering, and Sorting Rows in a DataTable
	Modifying Rows in a DataTable
	Retrieving New Identity Column Values
	Using Stored Procedures to Add, Modify, and Remove Rows from the Database
	Automatically Generating SQL Statements
	Exploring the DataAdapter and DataTable Events
	Dealing with Update Failures
	Using Transactions with a DataSet (SQL)
	Modifying Data Using a Strongly Typed DataSet
	Summary

	Chapter 12: Navigating and Modifying Related Data
	The UniqueConstraint Class
	Creating a UniqueConstraint Object
	The ForeignKeyConstraint Class
	Creating a ForeignKeyConstraint Object
	The DataRelation Class
	Creating and Using a DataRelation Object
	Adding, Updating, and Deleting Related Rows
	Issues Involved When Updating the Primary Key of a Parent Row
	Nested XML
	Defining a Relationship Using Visual Studio .NET
	Summary

	Chapter 13: Using DataView Objects
	The DataView Class
	Creating and Using a DataView Object
	Using the Default Sort Algorithm
	Performing Advanced Filtering
	The DataRowView Class
	Finding DataRowView Objects in a DataView
	Adding, Modifying, and Removing DataRowView Objects from a DataView
	Creating Child DataView Objects
	The DataViewManager Class
	Creating and Using a DataViewManager Object
	Creating a DataView Using Visual Studio .NET
	Summary

	Part 3: Advanced Database Programming with ADO.NET
	Chapter 14: Advanced Transaction Control
	The SqlTransaction Class
	Setting a Savepoint
	Setting the Transaction Isolation Level
	Understanding SQL Server Locks
	Summary

	Chapter 15: Introducing Web Applications-ASP.NET
	Creating a Simple ASP.NET Web Application Using VS .NET
	The Web Form Controls
	Building a More Complex Application
	Using a DataGrid Control to Access a Database
	Using a DataList Control to Access a Database
	Maintaining State in a Web Application
	Creating a Simple Shopping Cart Application
	Summary

	Chapter 16: Using SQL Server's XML Support
	Using the SQL Server FOR XML Clause
	Introducing XPath
	Introducing XSLT
	Accessing SQL Server Using HTTP
	Using the SQL Server OPENXML() Function
	Using an XmlDocument Object to Store an XML Document
	Using an XmlDataDocument Object to Store an XML Document
	Summary

	Chapter 17: Web Services
	Creating a Web Service
	Viewing a WSDL File and Testing a Web Service
	Using a Web Service
	Registering a Web Service
	Summary

	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Y

	List of Figures
	List of Tables
	List of Listings
	List of Sidebars

