

Part Number: X08-82469

Course Number: 2555A

Released: 05/2002

Delivery Guide

Developing Microsoft® .NET
Applications for Windows®
(Visual C#™ .NET).

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Course Number: 2555A
Part Number: X08-82469
Released: 05/2002

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). iii

Contents
Introduction
Course Materials ..2
Prerequisites...3
Course Outline ...4
Demonstration: Expense Report Application...6
Demonstration: Purchase Order Application ...9
Microsoft Certified Professional Program ...15
Facilities...17
Module 1: Introducing Windows Forms
Overview..1
Lesson: Creating a Form..2
Lesson: Adding Controls to a Form...17
Lesson: Creating an Inherited Form...26
Lesson: Organizing Controls on a Form..35
Lesson: Creating MDI Applications ..43
Review ...52
Lab 1.1: Creating Windows Forms ..54
Module 2: Working with Controls
Overview..1
Lesson: Creating an Event Handler for a Control..2
Lesson: Using Windows Forms Controls ..12
Lesson: Using Dialog Boxes in a Windows Forms Application............................33
Lesson: Adding Controls at Run Time ..43
Lesson: Creating Menus ..49
Lesson: Validating User Input ...59
Review ...67
Lab 2.1: Working with Controls ..69
Module 3: Building Controls
Overview..1
Lesson: Extending and Creating Controls..2
Lesson: Adding Design-Time Support for Controls ..19
Lesson: Licensing a Control ..27
Review ...38
Lab 3.1: Building Controls ..40
Module 4: Using Data in Windows Forms Applications
Overview..1
Lesson: Adding ADO.NET Objects to and Configuring ADO.NET Objects in a
Windows Forms Application ...2
Lesson: Accessing and Modifying Data by Using DataSets..................................14
Lesson: Binding Data to Controls..33
Lab 4.1: Accessing Data by Using ADO.NET ..47
Lesson: Overview of XML Web Services ...59
Lesson: Creating a Simple XML Web Services Client..65
Lesson: Persisting Data..72
Lab 4.2: Calling an XML Web Service ...83
Review ...87

iv Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET).

Module 5: Interoperating with Managed Objects
Overview... 1
Lesson: Using .NET and COM Components in a Windows Forms Application.... 2
Lesson: Calling Win32 APIs from Windows Forms Applications 17
Review .. 28
Lab 5.1: Interoperating with COM and Calling Win32 APIs 30
Module 6: Printing and Reporting in Windows Forms Applications
Overview... 1
Lesson: Printing from a Windows Forms Application.. 2
Lesson: Using the Print Preview, Page Setup, and Print Dialogs 16
Lesson: Constructing Print Document Content by Using GDI+........................... 32
Lesson: Creating Reports by Using Crystal Reports... 47
Review .. 56
Lab 6.1: Printing Formatted Documents... 58
Module 7: Asynchronous Programming
Overview... 1
Lesson: The .NET Asynchronous Programming Model ... 2
Lesson: The Asynchronous Programming Model Design Pattern 7
Lesson: How to Make Asynchronous Calls to Any Method................................. 19
Lesson: Protecting State and Data in a Multithreaded Environment 27
Review .. 34
Lab 7.1: Making Asynchronous Calls to an XML Web Service........................... 36
Module 8: Enhancing the Usability of Applications
Overview... 1
Lesson: Adding Accessibility Features ... 2
Lesson: Adding Help to an Application.. 9
Lesson: Localizing an Application.. 21
Review .. 34
Lab 8.1: Enhancing the Usability of an Application... 37
Course Evaluation... 53
Module 9: Deploying Windows Forms Applications
Overview... 1
Lesson: .NET Assemblies ... 2
Lesson: Deploying Windows Forms Applications.. 24
Review .. 46
Lab 9.1: Deploying an Application... 48
Module 10: Securing Windows Forms Applications
Overview... 1
Lesson: Security in the .NET Framework... 2
Lesson: Using Code Access Security.. 14
Lesson: Using Role-Based Security.. 29
Review .. 40
Lab 10.1: Adding and Testing Permission Requests... 42
Course Evaluation... 46

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). v

Appendix A: Using Filled Shapes and Images
Overview..1
Lesson: Creating Brushes and Filled Shapes ...2
Lesson: Working with Bitmap Images...14

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). vii

About This Course
This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

Windows Forms is the new platform for Microsoft® Windows® application
development, based on the Microsoft .NET Framework. The .NET Framework
provides a clear, object-oriented, extensible set of classes that enables
developers to develop rich Windows Forms applications. Additionally,
Windows Forms can act as the local user interface in a multi-tier distributed
solution.

This three-day instructor-led course provides students with the skills required to
build Windows Forms applications by using the .NET Framework.

This course is intended for the intermediate programmer who is responsible for
designing and building Windows Forms applications by using the .NET
Framework. It is designed for developers who have Microsoft Visual C#™ .NET
development skills.

Typically, these individuals perform the following key activities:

� Help with creation of functional specifications
� Design and develop user interfaces
� Create and test prototypes
� Write Windows Forms applications

This course requires that students meet the following prerequisites:

� Experience with a .NET Framework language such as Visual C# .NET
Microsoft MSDN® Training Course 2609A: Introduction to C#
Programming with Microsoft .NET and Course 2124C: Programming with
C# will help students gain skills in Visual C# .NET programming
techniques and meet the prerequisites for this course.

� Experience developing applications

After completing this course, the student will be able to:

� Create and populate Windows Forms.
� Organize controls on Windows Forms.
� Create menus in a Windows Forms application.
� Add code to form and control event procedures in a Windows Forms

application.
� Create Multiple Document Interface (MDI) applications.
� Use dialog boxes in Windows Forms applications.
� Validate user input in a Windows Forms application.
� Create and use user controls in a Windows Forms application.
� Create licenses for controls.
� Bind Windows Forms applications to various data sources by using

Microsoft ADO.NET.

Description

Audience

Student prerequisites

Course objectives

viii Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET).

� Consume XML Web services from Windows Forms applications.
� Use .NET and COM components in a Windows Forms application.
� Call Microsoft Win32® APIs from a Windows Forms application.
� Print documents in a Windows Forms application.
� Make asynchronous calls to methods from a Windows Forms application.
� Debug a Windows Forms application.
� Incorporate accessibility features in a Windows Forms application.
� Localize a Windows Forms application.
� Add support for help to localize a Windows Forms application.
� Create help files in a Windows Forms application.
� Deploy a Windows Forms application.
� Implement code access and role-based security in a Windows Forms

application.
� Add deployment flexibility to applications by using shared assemblies.

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). ix

Course Timing
The following schedule is an estimate of the course timing. Your timing may
vary.

Day 1
Start End Module

9:00 9:30 Introduction

9:30 11:00 Module 1: Introducing Windows Forms

11:00 11:10 Break

11:10 11:40 Lab 1.1: Creating Windows Forms

11:40 12:30 Lunch

12:30 2:30 Module 2: Working with Controls

2:30 2:45 Break

2:45 3:15 Lab 2.1: Working with Controls

3:15 4:15 Module 3: Building Controls

4:15 4:45 Lab 3.1: Building Controls

Day 2
Start End Module

8:30 9:00 Day 1 review

9:00 11:00 Module 4: Using Data in Windows Forms Applications

11:00 11:15 Break

11:15 11:45 Module 4: Using Data in Windows Forms Applications
(continued)

11:45 12:30 Lab 4.1: Accessing Data by Using ADO.NET

12:30 1:00 Lunch

1:00 1:30 Module 4: Using Data in Windows Forms Applications
(continued)

1:30 1:45 Lab 4.2: Calling an XML Web Service

1:45 2:00 Break

2:00 3:00 Module 5: Interoperating with Managed Objects

3:00 3:30 Lab 5.1: Interoperating with COM and Calling Win32 APIs

3:30 5:00 Module 6: Printing and Reporting in Windows Forms
Applications

5:00 5:45 Lab 6.1: Printing Formatted Documents

x Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET).

Day 3
Start End Module

8:30 10:00 Module 7: Asynchronous Programming

10:00 10:15 Lab 7.1: Making Asynchronous Calls to an XML Web Service

10:15 10:30 Break

10:30 11:30 Module 8: Enhancing the Usability of Applications

11:30 12:15 Lunch

12:15 12:45 Lab 8.1: Enhancing the Usability of an Application

12:45 2:45 Module 9: Deploying Windows Forms Applications

2:45 3:00 Break

3:00 3:30 Lab 9.1: Deploying an Application

3:30 4:45 Module 10: Securing Windows Forms Applications

4:45 5:15 Lab 10.1: Adding and Testing Permission Requests

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). xi

Trainer Materials Compact Disc Contents
The Trainer Materials compact disc contains the following files and folders:

� Autorun.exe. When the compact disc is inserted into the compact disc drive,
or when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials or Trainer Materials
compact disc.

� Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

� Default.htm. This file opens the Trainer Materials Web page.
� Readme.txt. This file explains how to install the software for viewing the

Trainer Materials compact disc and its contents and how to open the Trainer
Materials Web page.

� 2555A_ms.doc. This file is the Manual Classroom Setup Guide. It contains
the steps for manually setting up the classroom computers.

� 2555A_sg.doc. This file is the Automated Classroom Setup Guide. It
contains a description of classroom requirements, classroom configuration,
instructions for using the automated classroom setup scripts, and the
Classroom Setup Checklist.

� Powerpnt. This folder contains the Microsoft PowerPoint® slides that are
used in this course.

� Ppview. This folder contains the Microsoft PowerPoint Viewer 97, which
can be used to display the PowerPoint slides if Microsoft PowerPoint 2002
is not available. Do not use this version in the classroom.

� Setup. This folder contains the files that install the course and related
software to computers in a classroom setting.

� StudentCD. This folder contains the Web page that provides students with
links to resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

� Tools. This folder contains files and utilities used to complete the setup of
the instructor computer.

� Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

xii Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET).

Student Materials Compact Disc Contents
The Student Materials compact disc contains the following files and folders:

� Autorun.exe. When the compact disc is inserted into the CD-ROM drive, or
when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials compact disc.

� Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

� Default.htm. This file opens the Student Materials Web page. It provides
you with resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

� Readme.txt. This file explains how to install the software for viewing the
Student Materials compact disc and its contents and how to open the
Student Materials Web page.

� 2555A_ms.doc. This file is the Manual Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

� Democode. This folder contains files that are used in the instructor
demonstrations.

� Flash. This folder contains the installer for the Macromedia Flash 5.0
browser plug-in.

� Fonts. This folder contains fonts that may be required to view Microsoft
Word documents that are included with this course.

� Inetpubs. This folder contains files used by the sample Web-based
applications in this course.

� Labfiles. This folder contains files that are used in the hands-on labs. These
files may be used to prepare the student computers for the hands-on labs.

� Media. This folder contains files that are used in multimedia presentations
for this course.

� Mplayer. This folder contains the setup file to install Microsoft Windows
Media™ Player.

� Practices. This folder contains files that are used in the hands-on practices.
� Sampapps. This folder contains the sample applications associated with this

course.
� Sampcode. This folder contains sample code that is accessible through the

Web pages on the Student Materials compact disc.
� Webfiles. This folder contains the files that are required to view the course

Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

� Wordview. This folder contains the Word Viewer that is used to view any
Microsoft Word document (.doc) files that are included on the compact disc.

 Developing Microsoft® .NET Applications for Windows® (Visual C#™ .NET). xiii

Document Conventions
The following conventions are used in course materials to distinguish elements
of the text.

Convention Use

Bold Represents commands, command options, and syntax that must

be typed exactly as shown. It also indicates commands on menus
and buttons, dialog box titles and options, and icon and menu
names.

Italic In syntax statements or descriptive text, indicates argument
names or placeholders for variable information. Italic is also
used for introducing new terms, for book titles, and for emphasis
in the text.

Title Capitals Indicate domain names, user names, computer names, directory
names, and folder and file names, except when specifically
referring to case-sensitive names. Unless otherwise indicated,
you can use lowercase letters when you type a directory name or
file name in a dialog box or at a command prompt.

ALL CAPITALS Indicate the names of keys, key sequences, and key
combinations — for example, ALT+SPACEBAR.

monospace Represents code samples or examples of screen text.

[] In syntax statements, enclose optional items. For example,
[filename] in command syntax indicates that you can choose to
type a file name with the command. Type only the information
within the brackets, not the brackets themselves.

{ } In syntax statements, enclose required items. Type only the
information within the braces, not the braces themselves.

| In syntax statements, separates an either/or choice.

� Indicates a procedure with sequential steps.

... In syntax statements, specifies that the preceding item may be
repeated.

.

.

.

Represents an omitted portion of a code sample.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Introduction 1

Course Materials 2

Prerequisites 3

Course Outline 4

Demonstration: Expense Report Application 6

Demonstration: Purchase Order Application 9

Microsoft Certified Professional Program 15

Facilities 17

Introduction

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Introduction iii

Instructor Notes
The Introduction module provides students with an overview of the course
content, materials, and logistics for Course 2555A, Developing Microsoft .NET
Applications for Windows® (Visual C#™ .NET).

To teach this course, you need the following materials:

� Delivery Guide
� Trainer Materials compact disc

Presentation:
30 minutes

Required materials

iv Introduction

How to Teach This Module
This section contains information that will help you to teach this module.

Welcome students to the course and introduce yourself. Provide a brief
overview of your background to establish credibility.

Ask students to introduce themselves and provide their background, product
experience, and expectations of the course.

Record student expectations on a whiteboard or flip chart that you can reference
later in class.

Tell students that everything they will need for this course is provided at their
desk.

Have students write their names on both sides of the name card.

Describe the contents of the student workbook and the Student Materials
compact disc.

Tell students where they can send comments and feedback on this course.

Demonstrate how to open the Web page provided on the Student Materials
compact disc by double-clicking Autorun.exe or Default.htm in the
StudentCD folder on the Trainer Materials compact disc.

Describe prerequisites for this course. This is an opportunity for you to identify
students who may not have the appropriate background or experience to attend
this course.

Briefly describe each module and what students will learn.

Explain how this course will meet students’ expectations by relating the
information covered in individual modules to their expectations.

It is very important that you go through this demonstration before teaching the
rest of the course. The Expense Report application is one of two primary
scenarios for practices and labs throughout the course. Demonstrating the
Expense Report application is also a good way to introduce students to the
skills that they will acquire in the course. If a student arrives after you have
done the demonstration, have the student review the steps for this
demonstration before doing any of the labs.

It is very important that you go through this demonstration before teaching the
rest of the course. The Purchase Order application is one of two primary
scenarios for practices and labs throughout the course. Demonstrating the
Purchase Order application is also a good way to introduce students to the skills
that they will acquire in the course. If a student arrives after you have done the
demonstration, have the student review the steps for this demonstration before
doing any of the labs.

Inform students about the Microsoft Certified Professional (MCP) program and
the various certification options.

Introduction

Course materials

Prerequisites

Course outline

Demonstration: Expense
Report Application

Demonstration:
Purchase Order
Application

Microsoft Certified
Professional program

 Introduction v

Explain the class hours, extended building hours for labs, parking, restroom
location, meals, phones, message posting, and where smoking is or is not
allowed.

Let students know if your facility has Internet access that is available for them
to use during class breaks.

Also, make sure that the students are aware of the recycling program if one is
available.

Facilities

 Introduction 1

Introduction

� Name

� Company affiliation

� Title/function

� Job responsibility

� Programming and database experience

� Microsoft® Visual C#™ and .NET experience

� Expectations for the course

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your instructor will ask you to introduce yourself and provide a brief overview
of your background, addressing the bulleted items on the slide as appropriate.

2 Introduction

Course Materials

� Name card

� Student workbook

� Student Materials compact disc

� Course evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following materials are included with your kit:

� Name card. Write your name on both sides of the name card.
� Student workbook. The student workbook contains the material covered in

class, in addition to the hands-on lab exercises.
� Student Materials compact disc. The Student Materials compact disc

contains the Web page that provides you with links to resources pertaining
to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course-related Web sites.

To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

There are starter and solution files associated with the labs in
this course. If you perform a default installation, the starter and the solution
files install to C:\Program Files\Msdntrain\2555. However, if you install to a
different location, you must reset the assembly references in the starter and
solution projects.

� Course evaluation. To provide feedback on the course, training facility, and
instructor, you will have the opportunity to complete an online evaluation
near the end of the course.
To provide additional comments or inquire about the Microsoft Certified
Professional program, send e-mail to mcphelp@microsoft.com.

Note

Important

 Introduction 3

Prerequisites

� Experience programming with Microsoft Visual C#

� An understanding of the Microsoft .NET Framework

� Experience developing applications

� Recommended prerequisite course

� Course 2609A: Introduction to C# Programming with Microsoft
.NET

-or-

� Course 2124C: Programming with C#

-or-

� Equivalent knowledge

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This course requires that you meet the following prerequisites:

� Experience programming with Microsoft Visual C#
� An understanding of the Microsoft .NET Framework
� Experience developing applications

– and –
� Completion of Microsoft MSDN® Training Course 2609A, Introduction to

C# Programming with Microsoft .NET
– or –

� Completion of MSDN Training Course 2124C, Programming with C#
– or –

� Equivalent knowledge

4 Introduction

Course Outline

� Module 1: Introducing Windows Forms

� Module 2: Working with Controls

� Module 3: Building Controls

� Module 4: Using Data in Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 1, “Introducing Windows Forms,” introduces Windows Forms and
controls, which are part of the Microsoft .NET framework. It explains how to
create and populate base forms and inherited forms by using Microsoft
Visual Studio® .NET. It also covers organizing controls on a form and creating
Multiple Document Interface (MDI) applications. This module is meant mainly
to be a review of concepts that you are familiar with but also presents some new
concepts, such as how to use Visual Studio .NET tools for organizing controls
on a Windows form.

Module 2, “Working with Controls,” explains how to code for event procedures
associated with different controls. The module covers how to use some of the
Windows Forms intrinsic controls in an application. It also explains how to use
dialogs, validation controls, and menus in a Windows Forms application. The
module also includes a section on the controls collection and how to add
controls at run time.

Module 3, “Building Controls,” describes the options for building your own
controls. It explains how to extend the functionality of an existing
Windows Forms control, combine multiple existing controls into a composite
control, and build a new custom control. It also covers how to add design-time
attributes and licensing support to a control.

Module 4, “Using Data in Windows Forms Applications,” describes how to
bind Windows Forms to various data sources by using Microsoft ADO.NET
and the Bindings collection. The module also provides an overview of the XML
Web services programming model and covers how to create applications that
use XML Web services. The module also provides an overview of how to
persist data to and read data from files and isolated storage.

 Introduction 5

Course Outline (continued)

� Module 5: Interoperating with Managed Objects

� Module 6: Reporting and Printing in Windows Forms
Applications

� Module 7: Asynchronous Programming

� Module 8: Enhancing the Usability of Applications

� Module 9: Deploying Windows Forms Applications

� Module 10: Securing Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 5, “Interoperating with Managed Objects,” explains how to use .NET
and COM components in your Windows Forms application. You will also learn
how to call Microsoft Win32® APIs in your Windows Forms application.

Module 6, “Reporting and Printing in Windows Forms Applications,” explains
how to create reports in a Windows Forms application by using Crystal
Reports. The module also covers how to implement printing in a
Windows Forms application.

Module 7, “Asynchronous Programming,” explains how to use the techniques
of asynchronous programming and multithreading to avoid blocking the user
interface of an application.

Module 8, “Enhancing the Usability of Applications,” explains how to use the
accessibility, Help, and localization features available in the .NET Framework.

Module 9, “Deploying Windows Forms Applications,” explains assemblies and
the use of strong-named assemblies and the global assembly cache in the .NET
Framework. It also covers how to configure and deploy your Windows Forms
applications.

Module 10, “Securing Windows Forms Applications,” explains how to use
these security features in the .NET Framework in Windows Forms applications.

6 Introduction

Demonstration: Expense Report Application

In this demonstration, you will see how to use
the Expense Report application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Expense Report application.

If you performed a default installation of the course files, install_folder
corresponds to C:\Program Files\Msdntrain\2555.

� To run the demonstration
1. Open the InternalBusinessApp.sln solution file from

install_folder\Sampapps\Business Application Shell.
2. Mention that the business expense reporting application consists of two

major parts:

• A Windows Forms-based client application that resides on the user’s
local computer.

• An XML Web services component that returns information about
existing expense reports and receives and stores information for newly
submitted expense reports.

All users of the application can create, submit, and view their own expense
reports. Users who are managers can also view expense reports for their
reporting employees and approve or disapprove those reports.
While disconnected from the network, users can create new reports or view
saved reports. Users must be connected to the network to submit reports or
retrieve information about reports that do not reside on their local computer.

Introduction

Note

Instructions

 Introduction 7

3. Describe the user interface.
The user interface of the client application consists of several forms.
The main control panel form for the Business application will display a
Logon form in its Load event handler.

4. Log on to the application. Specify mario for the user name and P@ssw0rd
for the password.
After the user has successfully logged on, the main control panel form for
the Business application appears.

5. Describe the buttons on the main page.
The Make Travel Plans and Procurement buttons are just stubs with no
real functionality. Students will work on implementing various parts of the
Expense Reporting functionality. The Exit button closes the application.

6. Click Expense Reporting. Also demonstrate the multithreading feature of
the application.
When the user clicks the Expense Reporting button, an Expense Report
control panel form appears.

8 Introduction

An Expense Report summary form displays a list of reports and summary
information.

7. Double-click a given expense report in the list.
When the user double-clicks a given expense report in the list, an Expense
Report Details screen appears and shows the details for that report.

 Introduction 9

Demonstration: Purchase Order Application

In this demonstration, you will see how to use
the Purchase Order application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Purchase Order application.

� To run the demonstration
1. Open the Purchase Order application from

install_folder\Sampapps\OrderApplication.
2. Mention that the Purchase Order application consists of:

• A Windows Forms-based client application.

• A DataSet containing customer, product, and order information from the
Northwind database. The DataSet is stored as a local XML file, and the
user can choose to refresh this file when connected to the database. The
DataSet is bound to controls in the main form and to a custom composite
control.

• A DataSet containing new order and order detail information that is
stored as a local XML file and is used to update the database when
connected.

• A custom composite control that displays product information and
exposes properties, methods, and events implemented in the main form.

• A Crystal Report, bound to the local DataSet, that displays the history of
customer orders.

• Printing abilities that allow users to preview a print document, specify
page settings, and print a document.

Introduction

Instructions

10 Introduction

3. Describe the user interface.
The user interface of the client application consists of several screens.
The Logon form is displayed when an employee chooses to refresh data and
the EmployeeID is unknown. The form is also displayed when the user
chooses to change their identity by using the Option menu on MainForm.

4. Open the Options form.

 Introduction 11

Users can change the employee information of the Purchase Order
application and can also turn the sound effects on or off. The Options form
includes two tabs: the first is used to change the EmployeeID, and the
second is used to turn the sound on or off.

5. On the View menu, click View Unsubmitted Orders to open the Pending
Orders form.

12 Introduction

The Pending Orders form allows users to view and edit orders that have not
been submitted. Clicking the OrdersOrderDetails link for an order
displays the individual order items of a particular order.

You can navigate from the parent and child tables by using the navigational
controls provided by the datagrid control. Modifications can be made and
are persisted when the Pending Orders form is closed.
In both views, some of the data columns are set to ReadOnly to maintain
data integrity.

6. On the View menu, click Submitted Orders to open the Report History
form.

 Introduction 13

This form uses a Crystal Report Viewer to display all order history for a
given employee. Order information is displayed by CustomerName and by
OrderDate. You can also click each order in the report to display order
details.

14 Introduction

7. Show the print features by clicking the PrintPreview button on the toolbar.

 Introduction 15

Microsoft Certified Professional Program

http://www.microsoft.com/traincert/

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft Certified Professional program is a leading certification program
that validates your experience and skills to keep you competitive in today's
changing business environment. The following table describes each certification
in more detail.

Certification Description

MCSA on Microsoft
Windows 2000

The Microsoft Certified Systems Administrator (MCSA) certification is designed for
professionals who implement, manage, and troubleshoot existing network and system
environments based on Microsoft Windows 2000 platforms, including the Windows
.NET Server family. Implementation responsibilities include installing and configuring
parts of the systems. Management responsibilities include administering and supporting
the systems.

MCSE on Microsoft
Windows 2000

The Microsoft Certified Systems Engineer (MCSE) credential is the premier
certification for professionals who analyze the business requirements and design and
implement the infrastructure for business solutions based on the Microsoft
Windows 2000 platform and Microsoft server software, including the Windows .NET
Server family. Implementation responsibilities include installing, configuring, and
troubleshooting network systems.

MCSD The Microsoft Certified Solution Developer (MCSD) credential is the premier
certification for professionals who design and develop leading-edge business solutions
with Microsoft development tools, technologies, platforms, and the Microsoft Windows
DNA architecture. The types of applications MCSDs can develop include desktop
applications and multi-user, Web-based, N-tier, and transaction-based applications. The
credential covers job tasks ranging from analyzing business requirements to maintaining
solutions.

16 Introduction

(continued)
Certification Description

MCDBA on Microsoft
SQL Server™ 2000

The Microsoft Certified Database Administrator (MCDBA) credential is the premier
certification for professionals who implement and administer Microsoft SQL Server
databases. The certification is appropriate for individuals who derive physical database
designs, develop logical data models, create physical databases, create data services by
using Transact-SQL, manage and maintain databases, configure and manage security,
monitor and optimize databases, and install and configure SQL Server.

MCP The Microsoft Certified Professional (MCP) credential is for individuals who have the
skills to successfully implement a Microsoft product or technology as part of a business
solution in an organization. Hands-on experience with the product is necessary to
successfully achieve certification.

MCT Microsoft Certified Trainers (MCTs) demonstrate the instructional and technical skills
that qualify them to deliver Microsoft Official Curriculum through Microsoft Certified
Technical Education Centers (Microsoft CTECs).

Certification Requirements
The certification requirements differ for each certification category and are
specific to the products and job functions addressed by the certification. To
become a Microsoft Certified Professional, you must pass rigorous certification
exams that provide a valid and reliable measure of technical proficiency and
expertise.

See the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert/.

You can also send e-mail to mcphelp@microsoft.com if you have specific
certification questions.

Acquiring the Skills Tested by an MCP Exam
Microsoft Official Curriculum (MOC) and MSDN® Training Curriculum can
help you develop the skills that you need to do your job. They also complement
the experience that you gain while working with Microsoft products and
technologies. However, no one-to-one correlation exists between MOC and
MSDN Training courses and MCP exams. Microsoft does not expect or intend
for the courses to be the sole preparation method for passing MCP exams.
Practical product knowledge and experience is also necessary to pass the MCP
exams.

To help prepare for the MCP exams, use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as a list of the topics on which you will be tested. These
guides are available on the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert/.

For More Information

 Introduction 17

Facilities

� Class hours
� Building hours
� Parking
� Restrooms
� Meals
� Phones
� Messages
� Smoking
� Recycling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Creating a Form 2

Lesson: Adding Controls to a Form 17

Lesson: Creating an Inherited Form 26

Lesson: Organizing Controls on a Form 35

Lesson: Creating MDI Applications 43

Review 52

Lab 1.1: Creating Windows Forms 54

Module 1: Introducing
Windows Forms

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 1: Introducing Windows Forms iii

Instructor Notes
This module provides students with an overview of using Windows Forms,
which is part of the new Microsoft® .NET Framework. Students will create
Windows Forms and set their properties and controls to them. They will create
inherited forms and also learn how to organize controls on a form. In the
module, students also learn how to create Multiple Document Interface (MDI)
applications.

After completing this module, students will be able to:

� Create a form and add controls to it.
� Create an inherited form by using Visual Inheritance.
� Organize controls on a form.
� Create MDI applications.

To teach this module, you need the following materials: Microsoft PowerPoint®
file 2555A_01.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the demonstration, practices, and lab.

Presentation:
90 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 1: Introducing Windows Forms

How to Teach This Module
This section contains information that will help you to teach this module. The
following are some tips on how to teach this module:

� If students are interested in referencing code in other languages, point them
to “Language Equivalents” in the Help documentation for the Microsoft
Visual Studio® .NET development system. This section provides examples
in languages such as Microsoft Visual Basic® .NET, Microsoft Visual C# ™,
and Java.

� Lab 1.1: Creating Windows Forms is based on the Expense Report
application in Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET) and is intended to simulate a real-world
environment in which students will demonstrate what they learned during
the lecture and practice portions of the module. The lab does not provide
step-by-step detailed instructions; instead, the students are given tasks to
complete in the left column and a list of resources that they can use (if they
need help) in the right column. Students get the hands-on experience that
they need by completing the practice activities at the end of each lesson.

Lesson: Creating a Form
This section describes the instructional methods for teaching this lesson.

Although the course is about Windows Forms, students often have the question
in their minds as to which is better—Windows Forms or Web Forms. This topic
explains the differences between Windows Forms and Web Forms. Do not get
too much into the details about Web Forms.

In this topic, demonstrate how to create a new form in Visual Studio .NET.

In this topic, demonstrate a few properties that can be set by using the
Properties window.

This topic introduces students to how to create event handlers. Do not get into
the details of event handlers. Event handlers are covered in greater detail in
Module 2, “Using Windows Forms Controls” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

This topic shows the default code generated by the Windows Forms Designer.
The main purpose of this topic is to show the code generated by the Designer
and to advise students against modifying or deleting this code.

Windows Forms vs. Web
Forms

How to Create a Form

How to Set Form
Properties

How to Handle Form
Events

Windows Forms
Designer-Generated
Code

 Module 1: Introducing Windows Forms v

Lesson: Adding Controls to a Form
This section describes the instructional methods for teaching this lesson.

This topic covers how to use the Toolbox to add controls to a form.
Demonstrate how to drag and drop controls (buttons, labels, text boxes, and so
on) from the Toolbox to a form.

Explain why students will need to customize the Toolbox. Demonstrate how to
customize the Toolbox by adding a control that is not present in the Toolbox.
Show students how they can remove controls from the Toolbox.

Lab 1.1: Creating Windows Forms
� Make sure that you have demonstrated the two lab applications—the

Expense Report application and the Purchase Order application—in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET) before students begin the lab. To see how to demonstrate
lab scenarios, see the Introduction module in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

� Practice exercises will enable students to successfully complete the lab
exercises. Therefore, make sure that students have completed all practice
exercises before they begin the lab.

How to Add Controls to
a Form

How to Customize the
Controls Toolbox

 Module 1: Introducing Windows Forms 1

Overview

� Creating a Form

� Adding Controls to a Form

� Creating an Inherited Form

� Organizing Controls on a Form

� Creating MDI Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows Forms is part of the new Microsoft® .NET Framework, and it uses
many new technologies including a common application framework, managed
execution environment, integrated security, and object-oriented design
principles. In addition, Windows Forms offers full support for quickly and
easily connecting to Extensible Markup Language (XML) Web services and
building rich, data-aware applications based on the ADO.NET data model.
With the new shared development environment in the Microsoft
Visual Studio® .NET development system, developers are able to create
Windows Forms applications by using any of the languages supporting the
.NET platform, including the Microsoft Visual C#™ .NET and Microsoft
Visual Basic® .NET development systems.

After completing this module, you will be able to:

� Create a form and add controls to it.
� Create an inherited form by using Visual Inheritance.
� Organize controls on a form.
� Create Multiple Document Interface (MDI) applications.

Introduction

Objectives

2 Module 1: Introducing Windows Forms

Lesson: Creating a Form

� Windows Forms vs. Web Forms

� How to Create a Form

� How to Set Form Properties

� Form Life Cycle

� How to Handle Form Events

� Windows Form Designer-Generated Code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Forms are the basic element of the user interface (UI) in applications created for
the Microsoft Windows® operating system. They provide a framework that you
can use throughout your application to give it a consistent look and feel. A form
in Windows-based applications is used to present information to the user and to
accept input from the user.

Forms expose properties that define their appearance, methods that define their
behavior, and events that define their interaction with the user. By setting the
properties of the form and writing code to respond to its events, you customize
the form to meet the requirements of your application. A form is a control
derived from the Form class, which in turn derives from the Control class. The
framework also allows you to inherit from existing forms to add functionality or
modify existing behavior. When you add a form to your project, you can choose
whether it inherits from the Form class provided by the .NET Framework or
from a form you created previously.

This lesson covers the basic concepts of forms and how to add controls to
forms.

After completing this lesson, you will be able to:

� Describe a form.
� Determine whether to use Windows Forms or Web Forms in a scenario.
� Create a form.
� Set the properties of a form.
� Describe the events and methods in the forms life cycle.

Introduction

Lesson objectives

 Module 1: Introducing Windows Forms 3

Windows Forms vs. Web Forms

FeatureFeatureFeature

DeploymentDeployment

Graphics Graphics

Responsiveness Responsiveness

PlatformPlatform

Programming
model
Programming
model

Security Security

Windows FormsWindows FormsWindows Forms Web FormsWeb FormsWeb Forms

Can be run without
altering the registry
Can be run without
altering the registry No download requiredNo download required

Includes GDI+Includes GDI+
Interactive or dynamic
graphics require round
trips to the server for
updates

Interactive or dynamic
graphics require round
trips to the server for
updates

Provide the quickest
response speed for
interactive applications

Provide the quickest
response speed for
interactive applications
Requires .NET
Framework running on
the client computer

Requires .NET
Framework running on
the client computer
Based on a client-side,
Win32-based message-
pump mode

Based on a client-side,
Win32-based message-
pump mode

Code-based and role-
based security
Code-based and role-
based security

Can take advantage of
the browser's dynamic
HTML to create rich UI

Can take advantage of
the browser's dynamic
HTML to create rich UI

Require only a browser Require only a browser

Applications components
are invoked via HTTP
Applications components
are invoked via HTTP

Role-based security Role-based security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When designing applications that involve a user interface, you have two
choices: Windows Forms and Web Forms. Both have full design-time support
in the development environment and can provide a rich user interface and
advanced application functionality to solve business problems. When you have
multiple options, it is important for you to know which option to use when.

Windows Forms are used to develop applications where the client is expected to
shoulder a significant amount of the processing burden in an application. These
include classic desktop applications for the Microsoft Win32® application
programming interface. Examples include drawing or graphics applications,
data-entry systems, point-of-sale systems, and games. All of these applications
rely on the power of the desktop computer for processing and high-performance
content display.

ASP.NET Web Forms are used to create applications in which the primary user
interface is a browser. This includes applications intended to be available
publicly on the World Wide Web, such as e-commerce applications.

Introduction

Windows Forms

Web Forms

4 Module 1: Introducing Windows Forms

The following table provides a comparison of different application criteria and
how Windows Forms and Web Forms technologies address these criteria.

Feature/criterion Windows Forms Web Forms

Deployment Applications can be

downloaded, installed, and
run directly on the users’
computers without any
alteration of the registry.

Have no client
deployment; the client
requires only a browser.
The server must be running
Microsoft .NET
Framework. Updates to the
application are made by
updating code on the
server.

Graphics Windows Forms include
GDI+, which allows
sophisticated graphics to
be used for games and
other extremely rich
graphical environments.

Interactive or dynamic
graphics require round
trips to the server for
updates when used on Web
Forms. GDI+ can be used
on the server to create
custom graphics.

Responsiveness Windows Forms can run
entirely on the client
computer; they can provide
the quickest response
speed for applications
requiring a high degree of
interactivity.

If you know that users will
have Microsoft
Internet Explorer 5 or later,
a Web Forms application
can take advantage of the
browser’s dynamic HTML
(DHTML) capabilities to
create a rich, responsive
UI. If users have other
browsers, most processing
(including UI-related tasks
such as validation) requires
a round trip to the Web
server, which can affect
responsiveness.

Platform Windows Forms require
the .NET Framework to be
running on the client
computer.

Web Forms require only a
browser. DHTML-capable
browsers can take
advantage of extra
features, but Web Forms
can be designed to work
with all browsers. The
Web server must be
running .NET Framework.

Windows Forms vs. Web
Forms

 Module 1: Introducing Windows Forms 5

(continued)
Feature/criterion Windows Forms Web Forms

Programming model Windows Forms are based

on a client-side, Win32-
based message-pump
mode, in which instances
of components are created,
used, and discarded by the
developer.

Web Forms rely on a
largely asynchronous,
disconnected model, in
which components are
loosely coupled to the
application front end.
Typically, application
components are invoked
by HTTP. This model may
not be suitable for
applications that require
extreme throughput from
the user end or for those
with high-volume
transactions. Similarly,
Web Forms applications
may not be suitable for
database applications that
require high levels of
concurrency control (for
example, pessimistic
locking).

Security Windows Forms use
granular permissions in its
implementation of code
access security to protect
computer resources and
sensitive information. This
allows careful exposure of
functionality, while
retaining security.

Web Forms allow you to
control the identity under
which server application
code is executed.
Applications can execute
code by using the identity
of the requesting entity,
which is known as
impersonation.
Applications can also
dynamically tailor content
based on the requestor’s
identity or role. For
example, a manager could
receive access to a site or
to content that requires a
higher level of security
than someone with lesser
credentials.

6 Module 1: Introducing Windows Forms

How to Create a Form

� A base form is created
when you create a new
project

� To create a new form

1. Right-click the project
in Solution Explorer

2. Click Add

3. Click Add Windows
Forms

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In a Windows-based application, the form is the primary element for user
interaction. By combining controls and your own actions, you can request
information from the user and respond to it.

In Visual Studio .NET, a form is a window used in your application. When you
create a new Windows Application project, Visual Studio .NET provides a
Designer view that contains a form. The default form contains the minimum
elements used by most forms: a title bar, a control box, and Minimize,
Maximize, and Close buttons.

Most applications require more than one window. You must add a form to your
project for every window that your application requires.

To add additional forms to your project:

1. If Solution Explorer is not open, on the View menu, click Solution
Explorer.

2. In Solution Explorer, right-click the project name, point to Add, and then
click Add Windows Form.

3. In the Add New Item dialog box, in the Name box, type an appropriate
name for the form, and then click Open.

Introduction

Procedure: Creating
forms

 Module 1: Introducing Windows Forms 7

How to Set Form Properties

Form NameForm Name

Categorized ButtonCategorized Button

Alphabetic ButtonAlphabetic Button

Description PaneDescription Pane

Events ButtonEvents Button

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you are building the user interface of a Windows-based application, you
must set the properties for the objects that you create.

The following table describes some common form properties that you typically
set at design time.

Property Description Default setting

(Name) Sets the name of the form in your

project. (This is not the name that
is displayed to the user in the
caption bar but rather the name that
you will use in your code to
reference the form.)

Important: If you change the
(Name) property of your form, you
must set the startup object for your
project to the new name or the
project will not start correctly. For
information about how to change
the startup object, see Form Life
Cycle in this lesson in this module.

Form1 (Form2, Form3,
and so on)

AcceptButton Sets which button is clicked when
the user presses the ENTER key.

Note: You must have at least one
button on your form to use this
property.

None

CancelButton Sets which button is clicked when
the user presses the ESC key.

Note: You must have at least one
button on your form to use this
property.

None

Introduction

Common form
properties

8 Module 1: Introducing Windows Forms

(continued)
Property Description Default setting

ControlBox Determines whether a form

displays a control box in the
caption bar. The control box can
contain the Minimize button,
Maximize button, Help button,
and the Close button.

True

FormBorderStyle Controls the appearance of the
border for the form. This will also
affect how the caption bar appears
and what buttons appear on it.

Sizable

MaximizeBox Determines whether a form has a
Maximize button in the upper right
corner of its caption bar.

True

MinimizeBox Determines whether a form has a
Minimize button in the upper right
corner of its caption bar.

True

StartPosition Determines the position of a form
on the screen when it first appears.

WindowsDefaultLocation

Text Sets the text displayed in the
caption bar of the control.

Form1 (Form2, Form3,
and so on)

You can set form properties either by writing code or by using the Properties
window. Any property settings that you establish at design time are used as the
initial settings each time your application runs.

To set form properties at design time:

1. If the Properties window is not open, on the View menu, click Properties
Window.

2. In Design view, click the form for which you want to set a property. The
name of the form appears in the Object list at the top of the Properties
window.

3. Use the Alphabetic and Categorized buttons in the Properties
window to choose whether to view the form properties alphabetically or by
category.

4. In the Properties window, click the property that you want to set.

When you select a property, a description of the property appears at the
bottom of the Properties window, in the Description pane.

5. Type or select the property setting that you want.

Procedure: Setting form
properties

Note

 Module 1: Introducing Windows Forms 9

Form Life Cycle

1. Form1 Show1. Form1 Show

2. Form1 Load2. Form1 Load

3. Form1 Activated3. Form1 Activated

6. Form1 Deactivate6. Form1 Deactivate

12. Form1 Activated12. Form1 Activated

14. Form1 Deactivate14. Form1 Deactivate

21. Form1 Activated21. Form1 Activated

24. Form1 Closing24. Form1 Closing

25. Form1 Closed25. Form1 Closed

26. Form1 LostFocus26. Form1 LostFocus

27. Form1 Deactivate27. Form1 Deactivate

4. Form2 Show4. Form2 Show

9. Focus shifts
back to Form1
9. Focus shifts
back to Form1

13. Close Form213. Close Form2

23. Exit
Application

23. Exit
Application

5. Form2 Load5. Form2 Load

7. Form2 GotFocus7. Form2 GotFocus

8. Form2 Activated8. Form2 Activated

10. Form2 LostFocus10. Form2 LostFocus

11. Form2 Deactivate11. Form2 Deactivate

15. Form2 GotFocus15. Form2 GotFocus

16. Form2 Activated16. Form2 Activated

17. Form2 Closing17. Form2 Closing

18. Form2 Closed18. Form2 Closed

19. Form2 LostFocus19. Form2 LostFocus

20. Form2 Deactivate20. Form2 Deactivate

22. Form2 Disposed22. Form2 Disposed28. Form1 Disposed28. Form1 Disposed

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After adding the necessary forms to your project and setting the startup form,
you must determine which events and methods to use. The entire life cycle of a
form uses several methods and events.

When the Show() method is called, the form events and methods are generally
triggered in the following order:

1. Load
2. GotFocus
3. Activated
4. Closing
5. Closed
6. Deactivate
7. LostFocus
8. Dispose()

Introduction

Form events and
methods

10 Module 1: Introducing Windows Forms

The Initialize event is typically used to prepare an application for use.
Variables are assigned to initial values, and controls may be moved or resized
to accommodate initialization data.

In .NET, initialization code must be added to the form constructor after the call
to InitializeComponent() as shown in the following example:

public CalcUI()
{
 //
 // Required for Windows Form Designer support
 //

 InitializeComponent();

 //
 // Add your initialization code here
 //
}

The Show method includes an implied Load; this means that if the specified
form is not already loaded when the Show method is called, the application
automatically loads the form into memory and then displays it to the user. The
Show method can display forms as modal or modeless.

FrmSplash.Show();

You can use the ShowDialog() method to show a form as a dialog box.

The Load event is used to perform actions that must occur before the form
displays. It is also used to assign default values to the form and its controls.

The Load event occurs each time that a form is loaded into memory. A form’s
Load event can run multiple times during an application’s life. Load fires when
a form starts as the result of the Load statement, Show statement, or when a
reference is made to an unloaded form’s properties, methods, or controls.

When the user moves among two or more forms, you can use the Activated and
Deactivate events to define the forms’ behaviors. The Activated event occurs
when the form is activated in code or by the user. To activate a form at run time
by using code, call the Activate method. You can use this event for tasks such
as updating the contents of the form based on changes made to the form’s data
when the form was not activated.

The Activated event fires when the form receives focus from another form in
the same project. This event fires only when the form is visible. For example, a
form loaded by using the Load statement isn’t visible unless you use the Show
method, or set the form’s Visible property to True. The Activated event fires
before the GotFocus event.

Use the following code to set the focus to a form.

FrmSplash.Focus();

New

Show

Load

Activated/Deactivate

 Module 1: Introducing Windows Forms 11

Deactivate fires when the form loses focus to another form. This event fires
after the LostFocus event.

Both the Activated and Deactivate events fire only when focus is changing
within the same application. If you switch to a different application and then
return to the program, neither event fires.

If you need to add code that executes either when the form is being
displayed or when the form is being hidden, add the code to the Activated and
Deactivate event handlers instead of to the GotFocus and LostFocus event
handlers.

The Closing event is useful when you need to know how the user is closing the
form. The Closing event occurs when the form receives a request to close. Data
validation can occur at this time. If there is a need to keep the form open (for
example, if data validation fails), the closing event can be canceled.

The Closed event occurs when the form is closed and before the Dispose event.
Use the Closed event procedure to verify that the form should be closed or to
specify actions that take place when closing the form. You can also include
form-level validation code for closing the form or saving data to a file.

The .NET framework does not support the Terminate event. Termination code
must execute inside the Dispose method, before the call to base.Dispose().

protected override void Dispose(bool disposing)
{
 // Termination code goes here.
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

The Dispose method is called automatically for the main form in an application;
you must call it explicitly for any other form.

The Hide method removes a form from the screen without removing it from
memory. A hidden form’s controls are not accessible to the user, but they are
available to the running application. When a form is hidden, the user cannot
interact with the application until all code in the event procedure that caused the
form to be hidden has finished executing.

If the form is not already loaded into memory when the Hide method is called,
the Hide method loads the form but doesn’t display it.

frmMyForm.Hide();

Important

Closing

Closed

Dispose

Hide

12 Module 1: Introducing Windows Forms

How to Handle Form Events

Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An event handler is a segment of code that is called when a corresponding
event occurs. For example, you can write code in an event handler for the
Activated event of a form to perform operations such as updating the data
displayed in the controls of the form when the form is activated.

Introduction

 Module 1: Introducing Windows Forms 13

The .NET Framework uses a standard naming convention for event handlers.
The convention is to combine the name of the object that sends the event, an
underscore, and the name of the event. For example, the Click event of a form
named Form1 would be named Form1_Click.

To add an event handler:

1. Open the Properties windows for the form for which you want to add an
event handler.

2. Click the Event icon in the Properties window to view the events.

3. Double-click the event to add an event handler.

Procedure

14 Module 1: Introducing Windows Forms

You will learn more about using events and event handlers in the .NET
Framework in Module 2, “Working with Controls” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C# .NET).

 Module 1: Introducing Windows Forms 15

Windows Forms Designer-Generated Code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a form by using Windows Forms Designer, the Designer
generates a lot of code that you would have to write if you were creating a form
on your own.

If you look at the default code for the form, you will find the following code
generated by the Designer.

#region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5,
13);
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Name = "Form1";
 this.Text = "Form1";
 this.Load += new
System.EventHandler(this.Form1_Load);

 }
 #endregion

Notice the InitializeComponent section. This code is used by the development
environment to persist the property values you set in the Windows Forms
Designer.

Introduction

Designer-generated
code

16 Module 1: Introducing Windows Forms

Avoid modifying or deleting the Windows Forms Designer-
generated code. Modifying or deleting this code can result in errors in your
project.

Important

 Module 1: Introducing Windows Forms 17

Lesson: Adding Controls to a Form

� How to Add Controls to a Form

� How to Add Menus to a Form

� How to Customize the Controls Toolbox

� Practice: Creating a Form and Adding Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To create a user interface for an application, you must add controls to a form.
This lesson covers adding controls to a form.

After completing this lesson, you will be able to:

� Add controls to a form.
� Add menus to a form.
� Customize the Controls Toolbox.

Introduction

Lesson objectives

18 Module 1: Introducing Windows Forms

How to Add Controls to a Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Controls are objects that are contained in form objects. Buttons, text boxes, and
labels are examples of controls.

There are two ways to add controls to a form. The first way allows you to add
several controls quickly and then size and position them individually. The
second way gives you more initial control over the size and position of the
control.

To add controls to a form and then size and position them:

1. If the Toolbox is not open, on the View menu, click Toolbox.
2. In the Toolbox, double-click the control that you want to add. This places an

instance of the control at the default size in the upper left corner of the
active object. When adding multiple controls in this manner, they are placed
on top of each other.

3. After the controls are added, you can reposition and resize them:
a. To reposition the control, click the control to select it, and then drag the

control to the correct position.
b. To resize the control, click the control to select it, drag one of the eight

sizing handles until the control is properly sized.

Introduction

Procedure: Adding
controls to a form

 Module 1: Introducing Windows Forms 19

To size and position controls while you add them to a form:

1. If the Toolbox is not open, on the View menu, click Toolbox.
2. In the Toolbox, click the control that you want to add.
3. Move the mouse pointer over the form. The pointer symbol changes to a

crosshair.
4. Position the crosshair where you want the upper left corner of the control.
5. Click and drag the crosshair where you want the lower right corner. A

rectangle that indicates the control’s size and location is drawn on the
screen.

6. When the control is correctly sized, release the mouse button. The sized
control appears in the correct location on the form.

7. You can reposition or resize the control after you have released the mouse
button:
a. To reposition the control, click the control to select it, and then drag the

control to the correct position.
b. To resize the control, click the control to select it, and drag one of the

eight sizing handles until the control is properly sized.

20 Module 1: Introducing Windows Forms

How to Add Menus to a Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Menus provide a structured way for users to access the commands and tools
contained in an application. Proper planning and design of menus and toolbars
is essential and ensures proper functionality and accessibility of your
application to users.

A menu control has many properties such as Name, Caption, and Index.

� The Name property identifies the menu control in code.
� The Index property identifies controls that share the same name.
� The Caption property is the text that appears on the menu bar at run time.

To add menus to a form:

1. If the Toolbox is not open, on the View menu, click Toolbox.
2. In the Toolbox, double-click the MainMenu control.
3. In the Caption box, on the newly created menu, type the text for the first

menu’s title. This title will appear on the menu bar.
4. In the Name box, in the Properties window, type the name that you will use

to refer to the menu control in code.

Introduction

Procedure: Adding
menus to a form

 Module 1: Introducing Windows Forms 21

How to Customize the Controls Toolbox

Right-click the
Toolbox
Right-click the
Toolbox

Click Customize
Toolbox
Click Customize
Toolbox

Select the required
control on the .NET
Framework
Components page

Select the required
control on the .NET
Framework
Components page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Toolbox displays a variety of items for use in Visual Studio .NET projects.
The items available include .NET components, Component Object Model
(COM) components, Hypertext Markup Language (HTML) objects, code
fragments, and text. The Toolbox contains a variety of controls that you can use
to add art work, labels, buttons, list boxes, scroll bars, menus, and geometric
shapes to a user interface.

Each control that you add to a form becomes a programmable user interface
object in your application. These objects are visible to the user when the
application runs, and they operate like the standard objects in any Windows-
based application. However, there are some controls that are visible on the
Toolbox by default. You must customize the Toolbox to display such controls
on the Toolbox. For example, the StatusBarPanel control is not visible on the
Toolbox by default.

You can customize the Toolbox by adding and removing items from it. The
Customize Toolbox dialog box displays tabbed lists of components that are
recognized on your machine. Use the Customize Toolbox dialog box to add
controls to the Toolbox or remove controls from it.

The Customize Toolbox dialog box replaces the Customize dialog box
in previous versions of Microsoft Visual C++®.

Introduction

Note

22 Module 1: Introducing Windows Forms

To customize the Controls Toolbox:

1. Right-click the Toolbox.
2. Click Customize Toolbox.
3. Click the .NET Framework Components tab or the COM Components

tab, and select the required controls.

You can add code fragments to the Toolbox by selecting the code
fragment or text and dragging it to the Toolbox. A new entry beginning with
text will appear in the Controls Toolbox.

Procedure: Customizing
the Controls Toolbox

Note

 Module 1: Introducing Windows Forms 23

Practice: Creating a Form and Adding Controls

In this practice, you will

� Set the properties of the form

� Add controls to the form

� Set the properties of the controls

� Implement the button Click event handler

Begin reviewing the objectives for
this practice activity

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will open an existing project and modify the properties on
the default form. You will also add controls to the form and implement the
Click event for two buttons.

� Open the practice project
1. Use Windows Explorer and browse to

install_folder\Practices\Mod01\Mod01_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the CreatingForms.sln solution file to open the project.

� Set the properties of a form
1. Open the CreatingForms.cs file in Design view.
2. If the Properties window is not visible, on the View menu, click Properties

Window.
3. Set the remaining form properties to the indicated values.

Property Value

ControlBox false

Font Trebuchet MS, 10pt

FormBorderStyle Fixed3D

Size 300, 175

Text Hello World

Introduction

Instructions

Note

24 Module 1: Introducing Windows Forms

� Add controls to the form
1. If the Toolbox is not visible, on the View menu, click Toolbox.
2. In the Toolbox, double-click the Label control to add it to the form.
3. Double-click the Button control to add it to the form.
4. Double-click the Button control again to add a second button to the form.
5. Position the Label control near the top center of the form.
6. Position the buttons next to each other near the bottom of the form—with

button1 on the left and button2 on the right.

� Set the properties of the controls
1. Click the Label1 control.
2. Set the following properties for the Label1 control to the values provided.

Property Value

(Name) OutputLabel

BorderStyle Fixed3D

Font Trebuchet MS, 10pt, Bold

ForeColor ActiveCaption

Location 14,30

Size 264, 23

Text (Delete existing text and leave it
blank)

TextAlign MiddleCenter

3. Click Button1.
4. Set the following properties for the Button1 control to the values provided

in the following table.

Property Value

(Name) HelloButton

Location 57, 87

Size 75,25

Text &Say Hello

5. Click Button2.
6. Set the following properties for the Button2 control to the values provided

in the following table.

Property Value

(Name) ExitButton

Location 161, 87

Size 75,25

Text E&xit

 Module 1: Introducing Windows Forms 25

7. Double-click the Say Hello button to create the Click event handler.
8. In the Click event handler for HelloButton, add the following line of code:

OutputLabel.Text = "Hello, World!";
9. Switch back to Design view of the form.
10. Double click the Exit button to create the Click event handler.
11. In the Click event handler for ExitButton, add the following line of code:

this.Close();
12. Switch back to Design view of the form.
13. Set the AcceptButton property to HelloButton and the CancelButton

property to ExitButton.

� Build and run the application
1. To build the application, click the Build menu, and then click Build

Solution.
2. Run the application by pressing F5.

26 Module 1: Introducing Windows Forms

Lesson: Creating an Inherited Form

� Access Modifiers

� How to Create an Inherited Form

� Practice: Creating an Inherited Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Creating new Windows Forms by inheriting from base forms is an efficient way
to duplicate your best efforts without going through the process of entirely
recreating a form every time you require it. The process of inheriting a form
from an existing one is called Visual Inheritance. This lesson covers how to
inherit from an existing form by using Visual Inheritance.

After completing this lesson, you will be able to create an inherited form.

Introduction

Lesson objective

 Module 1: Introducing Windows Forms 27

Access Modifiers

Access ModifierAccess ModifierAccess Modifier

PrivatePrivate

ProtectedProtected

PublicPublic

DescriptionDescriptionDescription

Read-only to a child form, all of its
property values in the property
browser are disabled

Read-only to a child form, all of its
property values in the property
browser are disabled

Accessible within the class and from
any class that inherits from the class
that declared this member

Accessible within the class and from
any class that inherits from the class
that declared this member

Most permissive level. Public controls
have full accessibility
Most permissive level. Public controls
have full accessibility

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Not only can you inherit controls and properties from a base form, you can also
inherit code. This means that a code library can be built to enhance code reuse.
The major advantage of using Inheritance is that you can override the code if it
is not applicable in a particular circumstance.

To be able to override an event in the child form, you must make it visible to
the child. This means that it must be defined as Public or Protected (protected
is the default for events), and its Modifiers keyword cannot be private.

The Modifiers property determines the accessibility level of a control, such as
how a control behaves and what functionality it has when its form is used as a
base form. An inherited form displays the controls in a different shade of grey
depending upon the value of this property. Some of the values of the Modifiers
property include Public, Private, and Protected.

Introduction

Access modifiers

28 Module 1: Introducing Windows Forms

The values of the control’s properties are the same as those on the parent object,
and when they are altered on the child form, that property becomes bold in the
Properties window. To reset all values to those held by the parent, right-click
the Properties window, and then click Reset.

� Private
A Private control is read-only to a child form. Because a Private control
cannot be modified, all of its property values in the Properties window are
disabled. Copying this control elsewhere on the form or project produces a
fully editable version.

� Protected
A protected member is accessible within the class and from any class that
inherits from the class that declared this member. If a change is made to a
Protected control on a child form, then those changes will remain even if a
change is made to the parent form. For the other types of controls, changes
to the parent form will override those made to the child.

� Public
Public is the most permissive level. Public controls have full accessibility.

The Public, Protected, and Private property values are the three
property values that are common across all the .NET Language projects. C#
supports two other values, Internal and Protected Internal.

Note

 Module 1: Introducing Windows Forms 29

How to Create an Inherited Form

Create an inherited form by using
the Inheritance Picker dialog box
Create an inherited form by using
the Inheritance Picker dialog box

Create an inherited form
programmatically
Create an inherited form
programmatically

public class Form2 : Namespace1.Form1public class Form2 : Namespace1.Form1

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Inheritance offers many advantages to developers. If you already have
designed a form for a different project that is similar to the one you need in the
current project, you can inherit from the earlier form. It also means that you can
create a base form as a template to use later. It is a useful way of duplicating the
main functionality of particular forms without having to recreate them from the
beginning. Changes to the base form will be reflected in those forms that are
inherited from it; so changes to the underlying template form will change all
forms based on it.

There are two ways of implementing Visual Inheritance in a
Visual Studio .NET project.

To create an inherited form programmatically:

1. Create a new project in Visual Studio .NET.
2. Add another form, or view the code of Form1, which is created by default.
3. In the class definition, add a reference to the form to inherit from. The

reference should include the namespace that contains the form, followed by
a period, and then the name of the base form itself.
public class Form2 : Namespace1.Form1

The form now takes on the characteristics of the inherited form. It contains
the controls that were on the inherited form, the code, and the properties.

Introduction

Procedure: Inheriting
from an existing form

30 Module 1: Introducing Windows Forms

To create an inherited form by using the Inheritance Picker dialog box:

Make sure that you build the solution before you inherit from an
existing form in the project.

1. On the Project menu, click Add Inherited Form. The dialog box is
identical for C# and for Visual Basic.

2. In the Categories pane, click Local Project Items, and in the Templates
pane, click Inherited Form. In the Name box, type a name, and then click
Open. This will open the Inheritance Picker dialog box.

3. Click Browse, and locate the compiled executable of the project that
contains your form. Click OK.
The new form should now be added into the project and be based on your
inherited form. It contains the controls on the base form.

Note

 Module 1: Introducing Windows Forms 31

After the new form has been added and has been inherited from the
base form, the project must be rebuilt to complete the inheritance relationship.
The new form can then be displayed in Design view.

Important

32 Module 1: Introducing Windows Forms

Practice: Creating an Inherited Form

In this practice, you will

� Set the properties of the controls on the
base form to prepare them for inheritance

� Add a new form to the project inheriting it
from the base form

� Set the properties on the inherited form
and the controls

Begin reviewing the objectives for
this practice activity

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will modify an existing form to allow it to be inherited by
other forms. You will create a new form and inherit it from the base form. You
will then modify the inherited form to customize it for a particular application.

� Open the project file for this practice activity
1. Use Windows Explorer, and browse to

install_folder\Practices\Mod01\Mod01_02\Starter.
2. Double-click the WindowsCalculator.sln solution file to open the project.

� Modify a form’s properties
1. If Solution Explorer is not visible, on the View menu, click Solution

Explorer.
2. If the Properties window is not visible, on the View menu, click Properties

Window.
3. Open BaseAboutForm.cs in Design view.
4. Click the Product Name label, and ensure that the Modifiers property is set

to Protected.
5. Ensure that the Modifiers property is set to the given values for the

following controls.

Control Modifiers Property

Version <1.0.0000> Label Protected

Copyright © yyyy Contoso, Ltd. Label Protected

All Rights Reserved Label Protected

OK button Protected

6. Save the project.

Introduction

Instructions

 Module 1: Introducing Windows Forms 33

� Add an inherited form
1. From the Project menu, click Add New Item.
2. In the Categories pane, click Local Project Items.
3. In the Templates pane, click Inherited Form.
4. In the Name field, type AboutForm.cs and then click Open to open the

form.
5. In the Inheritance Picker dialog box, select BaseAboutForm.
6. Build the project.

This creates the inheritance relationship between the two forms, including
the access modifiers for the forms and controls.

7. Open AboutForm.cs and switch to Design view.
8. Set the form’s Size property to 504,216.
9. Set the BackColor property of the form to Control.
10. Set the Text property to About Simple Windows Calculator.
11. Click the Product Name label. Set the Text property to Simple Windows

Calculator.
12. Set the properties for the following controls.

Control Properties

Version <1.0.0000> Label Text: Version 2.53.1892

Copyright © yyyy Contoso, Ltd. Label Text: Copyright © 2002 Contoso, Ltd.

34 Module 1: Introducing Windows Forms

� Implement the About menu item and test the application
1. Open the source code for CalcUI.cs.
2. On the View menu, click Show Tasks, and then click Comment.
3. In the Task List window, locate the TODO comment. Add code to show the

About window when the menu item is clicked:
AboutForm aboutForm = new AboutForm();
aboutForm.ShowDialog();

4. Build and run the application.
5. When the Simple Calculator window appears, on the Help menu, click

About. The inherited About box will appear. Notice that the background of
the System Info button is still the background set on the base form, but the
other controls have the background color set in the inherited form.

 Module 1: Introducing Windows Forms 35

Lesson: Organizing Controls on a Form

� How to Arrange Controls on a Form by Using the
Format Menu

� How to Set the Tab Order for Controls

� How to Anchor a Control in Windows Forms

� How to Dock a Control in Windows Forms

� Demonstration: Organizing Controls on a Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Often you want to change the position and dimensions of controls at run time.
Currently, you handle the resize event (WM_SIZE for Application
Programming Interface [API] programmers), calculate the new position, width,
and height, and call some methods like Move or SetWindowPos. The
Windows Forms library offers two very helpful concepts to simplify these
proceedings: anchoring and docking. In addition, Visual Studio .NET provides
the Format menu, which allows you to arrange controls on a form.

This lesson covers the Format menu and how to anchor and dock controls on a
form. The lesson also covers setting the tab order for controls.

After completing this lesson, you will be able to:

� Arrange controls on a form by using the Format menu.
� Set the tab order for the controls on a form.
� Anchor controls to a form.
� Dock controls on a form.

Introduction

Lesson objectives

36 Module 1: Introducing Windows Forms

How to Arrange Controls on a Form by Using the Format Menu

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the Format menu or the Layout Toolbar in the Visual Studio
Integrated Development Environment (IDE) to align, layer, and lock controls
on a form.

The Format menu provides many options for organizing controls. When you
use the Format menu options for organizing controls, select controls so that the
last control that you select is the primary control to which the others are
aligned. The primary control has dark sizing handles whereas other controls
have light sizing handles around them.

The choices and their functions are listed in the following table.

Choice Description

Align Aligns all the controls with respect to the

primary control

Make Same Size Resizes multiple controls on a form

Horizontal Spacing Increases horizontal spacing between
controls

Vertical Spacing Increases vertical spacing between
controls

Center in Form Centers the controls on a form

Order Layers controls on a form

Lock Controls Locks all controls on a form

Introduction

Format menu options

 Module 1: Introducing Windows Forms 37

To align multiple controls:

1. In the Windows Forms Designer, open the form that contains the controls
that you want to position.

2. Select the controls that you want to align so that the last control that you
select is the primary control to which the others are aligned.

• On the Format menu, point to Align, and then click any of the seven
choices available.

When creating complex user interfaces, you may want to layer controls on a
form. To layer controls on a form:

1. Select a control.
2. On the Format menu, point to Order, and then click Bring To Front or

Send To Back.

You can lock all controls on a form. This prevents any accidental moving or
resizing of controls if you are setting other properties for controls. To lock all
controls on a form, on the Format menu, click Lock Controls.

Procedure: Arranging
controls on a form

38 Module 1: Introducing Windows Forms

How to Set the Tab Order for Controls

� To set the tab order for
controls

� On the View menu,
select Tab Order

� Click a control to
change its tab order

-- OR --

� Set the TabIndex property

� Set the TabStop property
to True

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The tab order is the order in which a user moves focus from one control to
another by pressing the TAB key. Each form has its own tab order. By default,
the tab order is the same as the order in which you created the controls. Tab
order numbering begins with zero.

You can set tab order in the Properties window by using the TabIndex
property. The TabIndex property of a control determines where it is positioned
in the tab order. By default, the first control drawn has a TabIndex value of 0,
the second has a TabIndex of 1, and so on.

To set the tab order by using the View menu:

1. On the View menu, click Tab Order.
2. Click the controls sequentially to establish the tab order that you want.
3. When you are finished, on the View menu, click Tab Order.

To set the tab order by using the TabIndex property:

1. Select the control.
2. Set the TabIndex property to the required value.
3. Set the TabStop property to True.

By turning off the TabStop property, you enable a control be passed over in
the tab order of the form. A control in which the TabStop property has been
set to False still maintains its position in the tab order, even though the
control is skipped when you cycle through the controls with the TAB key.

Introduction

Procedure: Setting the
tab order

 Module 1: Introducing Windows Forms 39

How to Anchor a Control in Windows Forms

� Anchoring
� Ensures that the edges of

the control remain in the
same position with
respect to the parent
container

� To anchor a control to the
form
� Set its Anchor property
� Default value: Top, Left
� Other Styles: Bottom,

Right

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If you are designing a form that the user can resize at run time, the controls on
the form should resize and reposition properly. When a control is anchored to a
form (or another container) and the form is resized, the control maintains the
distance between the control and the anchor positions (which is the initial
position). You use the Anchor property editor to anchor.

To anchor a control on a form:

1. Select the control that you want to anchor.
2. In the Properties window, click the Anchor property, and then click the

Anchor arrow.
The Anchor property editor is displayed; it contains a top bar, left bar, right
bar, and bottom bar.

3. To set an anchor, click the top, left, right, or bottom bar in the Anchor
property editor. Controls are anchored to the top and left by default. To clear
a side of the control that has been anchored, click the bar on that side.

Introduction

Procedure: Anchoring a
control on a form

40 Module 1: Introducing Windows Forms

How to Dock a Control in Windows Forms

� Docking

� Enables you to glue the edges of a control to
the edges of its parent control

� To dock a control

� Set the Dock property

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can dock controls to the edges of your form. For example,
Windows Explorer docks the TreeView control to the left side of the window
and the ListView control to the right side of the window. Use the Dock
property for all visible Windows Forms controls to define the docking mode.

If you use the Dock property, a control is coupled with two edges of the
container. Then, the control is horizontally or vertically resized when the
container is resized. In real life, you do not indicate the edges, you indicate a
border. If you dock a control to the left border, it is connected with the top left
and bottom left edge. The value of the Dock property is one of the DockStyle
values.

A special case is DockStyle.Fill. This value docks the control to all edges. The
control fills in the complete client area of the container.

To dock a control on a form:

1. Select the control that you want to dock.
2. In the Properties window, click the arrow to the right of the Dock property.

The Dock property editor is displayed; it contains a series of buttons that
represent the edges and the center of the form.

3. Click the button that represents the edge of the form where you want to
dock the control. To fill the contents of the control’s form or container
control, click the Fill (center) button. Click None to disable docking.
The control is automatically resized to fit the boundaries of the docked edge.

Introduction

Procedure: Docking a
control on a form

 Module 1: Introducing Windows Forms 41

Demonstration: Organizing Controls on a Form

In this demonstration, you will see how to

� Align controls on a form

� Layer controls on a form

� Anchor controls to a form

� Dock controls on a form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to organize controls on a form.

� Organizing controls by using the Format menu
1. Open the WorkingWithControls.sln solution in Visual Studio .NET from

install_folder\Democode\ Mod01\Mod01_01\Starter.
2. If the WorkingWithControls form is not visible, display it in Design view.

You will notice that the controls on the forms are not organized very well.
3. Organize the buttons on the form so that the Display button is positioned to

the left of the Exit button.
4. Click the Exit button, hold down CTRL, and click the Display button. Both

buttons are selected.
5. On the Format menu, click Align, and then click Tops. The Exit button

aligns with the top of the Display button.
6. While the two buttons are selected, on the Format menu, click Center in

Form, and then click Horizontally.
7. Select the Choose Output group box.
8. On the Format menu, click Center in Form, and then click Horizontally.
9. While the group box is selected, press the up arrow key twice to move the

group box up.
10. Select the Display Current Time option button, hold down CTRL, and then

click the Display Current Date option button.
11. On the Format menu, click Align, and then click Lefts.

Introduction

Instructions

42 Module 1: Introducing Windows Forms

12. While the two option buttons are selected, on the Format menu, click
Vertical spacing, and then click Increase. Perform this step a second time
further to increase the space between the two controls.

13. While the option buttons are selected, on the Format menu, click Center in
Form, and then click Horizontally.

14. While the option buttons are selected, on the Format menu, click Center in
Form, and then click Vertically.

� Set the tab order
1. On the View menu, click Tab Order.
2. Change the tab order by clicking each of the controls. Click the controls in

the following order: Label, Display button, Exit button, Choose Output
group box, Display Current Date option button, and Display Current
Time option button. The resulting tab order will look like this.

3. On the View menu, click Tab Order.

� Anchor and dock the controls
1. Click the Label control, and then set the Dock property to Top.
2. Click the Exit button, and then set the Anchor property to Top, Right.
3. Click the Groupbox control, and then set the Anchor property to Bottom,

Left, Right.
4. Click the Display Current Date option button, and then set the Anchor

property to Top.
5. Click the Display Current Time button, and then set the Anchor property

to Bottom.
6. Build and run the application.
7. When the form appears, resize it to see how the controls behave with regard

to their positioning.

 Module 1: Introducing Windows Forms 43

Lesson: Creating MDI Applications

� SDI vs. MDI Applications

� How to Create MDI Applications

� How Parent and Child Forms Interact

� Practice: Creating an MDI Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When creating Windows-based applications, you can use different styles for the
user interface. Your application can have a single-document interface (SDI) or a
multiple-document interface (MDI), or you can create an explorer-style
interface. For more information about different types of application interfaces,
see the .NET Framework software development kit (SDK).

This lesson covers how to create and use MDI applications.

After completing this lesson, you will be able to:

� List the differences between SDI and MDI applications.
� Create MDI applications.
� Explain how parent and child forms interact.

Introduction

Lesson objectives

44 Module 1: Introducing Windows Forms

SDI vs. MDI Applications

SDISDISDI

Only one document is visibleOnly one document is visible

You must close one
document before you open
another

You must close one
document before you open
another

MDIMDIMDI

Displays multiple documents
at the same time
Displays multiple documents
at the same time

Each document is displayed
in its own window
Each document is displayed
in its own window

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you create a Windows-based application, you must determine the style
of user interface for the application.

As the name suggests, single-document interface (SDI) applications can support
only one document at a time, whereas a multiple-document interface (MDI)
application can support several documents simultaneously. The following table
lists the differences between SDI and MDI applications and also provides
examples of which interface style to use for which scenario.

SDI MDI

Only one document is visible at a time. Several documents are visible at the same time.

Must close one document before opening another. Each document is displayed in its own window.

Example: Microsoft WordPad

Example: Microsoft Excel

Scenario: A calendar application (because you may not
need more than one instance of a calendar open at a
time).

Scenario: An insurance application in which the user
needs to work with multiple application forms.

Introduction

SDI vs. MDI

 Module 1: Introducing Windows Forms 45

How to Create MDI Applications

� To create a parent form
� Create a new project
� Set the IsMdiContainer property to True
� Add a menu item to invoke the child form

� To create a child form
� Add a new form to the project

� To call a child form from a parent form

protected void MenuItem2_OnClick(object sender, System.EventArgs e)
{

Form2 NewMdiChild = new Form2();
// Set the Parent Form of the Child window.
NewMdiChild.MdiParent = this;
// Display the new form.
NewMdiChild.Show();

}

protected void MenuItem2_OnClick(object sender, System.EventArgs e)
{

Form2 NewMdiChild = new Form2();
// Set the Parent Form of the Child window.
NewMdiChild.MdiParent = this;
// Display the new form.
NewMdiChild.Show();

}
*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are three main steps involved in creating an MDI application: creating a
parent form, creating a child form, and calling the child form from a parent
form.

To create the parent form at design time:

The Parent form in an MDI application is the form that contains the MDI child
windows. Child windows are used for interacting with users in an MDI
application.

1. Create a new project.
2. In the Properties window, set the IsMdiContainer property to True.

This designates the form as an MDI container for child windows.

When you are setting properties in the Properties window, you can
also set the WindowState property to Maximized. This allows you to easily
manipulate MDI child windows when the parent form is maximized.

3. From the Toolbox, drag a MainMenu component to the form.
You need a menu to invoke the child forms from the parent form. As an
example, create a top-level menu item with the Text property set to &File
with submenu items called &New and &Close. Also, create a top-level
menu item called &Window.

4. Set the MdiList property of the Windows menu item to True.

MDI child forms are critical for MDI applications because users interact with
the application through child forms.

To create the child form at design time:

• In the same project that contains the parent form, create a new form.

Introduction

Procedure: Creating MDI
applications

Note

46 Module 1: Introducing Windows Forms

To call the child form from the parent form:

1. Create a Click event handler for the New menu item on the parent form.
2. Insert code similar to the following code to create a new MDI child form

when the user clicks the New menu item.
protected void MenuItem2_OnClick(object sender,
System.EventArgs e)
{
 Form2 NewMdiChild = new Form2();
 // Set the Parent Form of the Child window.
 NewMdiChild.MdiParent = this;
 // Display the new form.
 NewMdiChild.Show();
}

 Module 1: Introducing Windows Forms 47

How Parent and Child Forms Interact

� To list the available child windows that are owned by
the parent

� Create a menu item (Windows) and set its MdiList
property to True

� To determine the active MDI child

� Use the ActiveMdiChild property

� To arrange child windows on the parent form

� Call the LayoutMdi method

Form activeChild = this.ActiveMdiChild;Form activeChild = this.ActiveMdiChild;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In an MDI application, a parent form has several child forms, and each of the
child forms interacts with the parent form. Visual Studio .NET includes several
properties that allow parent and child forms in an MDI application to interact.

An easy way to keep track of the different MDI child windows an application
has open is to use a Window list. The functionality to keep track of all the open
MDI child forms as well as which child form has focus is part of
Visual Studio .NET and is set with the MdiList property of a menu item.

To list the child windows of a parent form by using the Window list:

1. Add a MainMenu component to the parent form.
2. Add the following top-level menu items to the MainMenu component by

using the Menu Designer.

Menu item Text

MenuItem1 &File

MenuItem2 &Window

3. Set the MdiList property of the Windows menu item to True.

When you are completing certain procedures in an application, it is important to
determine the active form.

Because an MDI application can have many instances of the same child form,
the procedure must know which form to use. To specify the correct form, use
the ActiveMdiChild property, which returns the child form that has the focus
or that was most recently active.

Use the following code to determine the active child form.

Form activeChild = this.ActiveMdiChild;

Introduction

Procedure: Listing the
child windows of a
parent form

Procedure: Determining
the active child form

48 Module 1: Introducing Windows Forms

To arrange child windows on a parent form, you can use the LayoutMdi
method with the MdiLayout enumeration to rearrange the child forms in an
MDI parent form.

There are four different MdiLayout enumeration values that can be used by the
LayoutMdi method. These values help you display the form as cascading,
horizontally or vertically tiled, or as child form icons arranged along the lower
portion of the MDI form.

To arrange child forms, in an event, use the LayoutMdi method to set the
MdiLayout enumeration for the MDI parent form.

You can use the following members of the MdiLayout enumeration when
calling the LayoutMdi method of the Form class.

Member Description

ArrangeIcons

All MDI child icons are arranged in the
client region of the MDI parent form.

Cascade All MDI child windows are cascaded in
the client region of the MDI parent form.

TileHorizontal All MDI child windows are tiled
horizontally in the client region of the
MDI parent form.

TileVertical All MDI child windows are tiled vertically
in the client region of the MDI parent
form.

The following example uses the Cascade setting of the MdiLayout
enumeration for the child windows of the MDI parent form (Form1).

protected void CascadeWindows_Click(object sender,
 System.EventArgs e)
{
 Form1.LayoutMdi(System.Windows.Forms.MdiLayout.Cascade);
}

Procedure: Arranging
child windows on the
parent form

 Module 1: Introducing Windows Forms 49

Practice: Creating an MDI Application

In this practice, you will

� Create the parent form

� Create the child form

� Display the child form from the parent form

Begin reviewing the objectives for
this practice activity

15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create an MDI application.

� Open the practice project
1. Use Windows Explorer, and browse to

install_folder\Practices\Mod01\Mod01_03\Starter.
2. Double-click the MdiApplication.sln solution file to open the project.

� Create the parent form
1. Open ParentForm.cs in Design view.
2. Set the IsMdiContainer property to True.

� Create the File menu
1. Open the Toolbox, add the MainMenu control to the form, and set its

Name property to MdiMenu.
2. Click the menu at the top of the form and set the name of the first menu item

to &File.
3. Set the Name property of the File menu to FileMenuItem and the

MergeOrder property to 0.
4. Open the File menu.
5. Click the menu item that appears under File, and set its Text property to

&New.
6. Set the Name property of the New menu to NewMenuItem.
7. Click the menu item that appears under New, and set its Text property to

&Exit.

Introduction

Instructions

50 Module 1: Introducing Windows Forms

8. Set the Name property of the Exit menu to ExitMenuItem.
9. Double-click the Exit menu item to create the Click event handler.
10. In the exit event handler, add the following code:

this.Close();

� Create the Window menu
1. Switch to Design view.
2. Click the second menu item to the right of File, and set its Text property to

&Window.
3. Set the Name property of the Window menu to WindowMenuItem and the

MergeOrder property to 2.
4. Set the MdiList property of the Window menu item to True.
5. Open the Window menu.
6. Click the menu item that appears under Window, and set its Text property

to &Cascade.
7. Set the Name property of the Cascade menu to

WindowCascadeMenuItem.
8. Click the menu item that appears under Cascade, and set its Text property

name to &Tile.
9. Set the Name property of the Tile menu to WindowTileMenuItem.
10. Double-click the Cascade menu, and add the following code to the Click

event handler:
this.LayoutMdi (System.Windows.Forms.MdiLayout.Cascade);

11. Return to Design view and double-click the Tile menu item.
12. Add the following code to the Click event handler for the Tile menu item:

this.LayoutMdi
 (System.Windows.Forms.MdiLayout.TileHorizontal);

� Create the child form
1. Open the Project menu, and click Add Windows Form.
2. Set the name of the form to ChildForm.cs.
3. Set the Text property of the form to Child Form.
4. From the Toolbox, drag a RichTextBox control to the form, and set its

Name property to ChildTextBox.
5. Set the Dock property of the RichTextBox to Fill.
6. Delete the existing value of the Text property of the RichTextBox and

leave it blank.
7. From the Toolbox, drag a MainMenu control to the form.
8. Set the Name property of the MainMenu control to ChildWindowMenu.
9. Click the menu at the top of the form, and set the text to F&ormat.
10. Set the Name property of the Format menu to FormatMenuItem, and set

the MergeOrder property to 1.

 Module 1: Introducing Windows Forms 51

11. Click the entry below the Format menu, and set the text to &Toggle
Foreground.

12. Set the Name property of the Toggle Foreground menu item to
ToggleMenuItem.

13. Double-click the Toggle Foreground menu, and add the following code to
the Click event handler:
if (ToggleMenuItem.Checked)
{
 ToggleMenuItem.Checked = false;
 ChildTextBox.ForeColor = System.Drawing.Color.Black;
}
else
{
 ToggleMenuItem.Checked = true;
 ChildTextBox.ForeColor = System.Drawing.Color.Blue;
}

� Display the child form from the parent form
1. View ParentForm in Design view.
2. Double-click the New menu item on the File menu to create the Click event

handler.
3. Add the following code to the Click event for the New menu item:

ChildForm newChild = new ChildForm();
newChild.MdiParent = this;
newChild.Show();

� Build and run the application
1. Build the application and run it.
2. When the parent form appears, on the File menu, click New.

A new child window appears inside the parent window. Notice how the
menu from the child window merges with the menu of the parent window
and orders the menu according to the MergeOrder properties set in the
Display the child form from the parent form procedure.

3. Type some text in the child form and use the Format menu to change the
color of the text.

4. Open a few more child windows.
5. Click the Window menu, and select Tile. Notice how the child windows are

reorganized in a tiled manner.
6. Close all the child windows.

Notice that when the last child window is closed, the menu in the parent
form changes and does not display the Format menu.

7. On the File menu, click Exit to end the application.

52 Module 1: Introducing Windows Forms

Review

� Creating a Form

� Adding Controls to a Form

� Creating an Inherited Form

� Organizing Controls on a Form

� Creating MDI Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. List some reasons why you would use Windows Forms as opposed to Web
Forms.
Richer user interface
Faster response time
Better support for offline scenario

2. What is Visual Inheritance?
The process of inheriting a form from an existing one is called Visual
Inheritance.
It means that if you already have designed a form for a different project
that is similar to the one you need now, you can inherit from it. It also
means that you can create a base form as a template for later use. It is a
useful way of duplicating the main functionality of particular forms
without having to recreate them from the beginning.

3. What is the difference between anchoring and docking a control to a form?
When a control is anchored to a form (or another container) and the
form is resized, the control maintains the distance between the control
and the anchor positions (which is the initial position).
In docking, a control is coupled with two edges of the container. The
control is horizontally or vertically resized when the container is
resized.

 Module 1: Introducing Windows Forms 53

4. What are the differences between SDI and MDI applications?
In an SDI application, only one document can be open at a time. You
must close one document before opening another.
In an MDI application, several documents can be open at the same
time. Each document is displayed in its own window.

5. When creating a form, what class must the form inherit from to make it a
Windows Form?
System.Windows.Forms.Form

6. You want to perform some totaling of numbers as a form is being dismissed.
Into which event handler should you add the code?
The code should be added to the Deactivated event handler.

7. When creating a form that inherits from a base form, what must be available
to override the base version of the methods of a control on the base form?
The Modifier property of the control on the base form must be set to
either protected or public to override its functionality in the derived
form.

54 Module 1: Introducing Windows Forms

Lab 1.1: Creating Windows Forms

� Exercise 1: Creating a New Windows Form

� Exercise 2: Inheriting a New Form from an
Existing Windows Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Create a new form.
� Inherit a new form from an existing form.
� Add controls to a form.
� Set form and control properties.

This lab focuses on the concepts in Module 1, “Introducing Windows
Forms,” in Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET). As a result, this lab may not comply with Microsoft
security recommendations.

Before working on this lab, you must have the knowledge and skills to develop
a simple Windows Forms application by using a Visual Studio .NET–
compatible programming language.

The Internal Business Application shell provides a common access point to
various internal business applications. To ensure that the information provided
by the application is viewed by the appropriate user, the application requires a
logon form.

The logon form will prompt the user for his or her user name and password.
The logon form will then attempt to authenticate the user’s credentials to
determine if the user is permitted to access various internal applications.

In this lab, you will add a new form to the Internal Business Application shell
and populate it with controls. You will also implement the Click event handler
for the buttons on the logon form. In addition, you will create the About dialog
box by inheriting a new form from an existing form.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 1: Introducing Windows Forms 55

Exercise 1
Creating a New Windows Form
In this exercise, you will update the Internal Business Application shell by adding a logon form and
populating it with controls. You will also set form and control properties and implement the Click
event handlers for the buttons on the logon form.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab01_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab01_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in Visual
Studio .NET. Browse to
install_folder\Labfiles\Lab01_1\Ex01\Starter to
find this project.

Note: The project will not build until you complete
this exercise.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application from within Designer, in Index,
search by using the phrase Debugging
Windows Applications.

2. Add a new form to the project. Use the form
name LoginForm, and use the file name
LoginForm.cs.

a. For more information about Windows Forms, see
the following resources:

• Practice: Creating a Form in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This practice contains information about how
to add a new form to a project.

• Lesson: Creating a Form in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This lesson contains information about how to
create a form.

• The Windows Forms section of the .NET
Framework SDK documentation.

56 Module 1: Introducing Windows Forms

Tasks Additional information

3. Set form properties. Use the following table to set
the properties of the form.

Property Value

(Name) LoginForm
ControlBox False
FormBorderStyle Fixed3D
MaximizeBox False
MinimizeBox False
Size 322, 210
Text Internal Business
 Application Logon

a. For more information about form properties and
Windows Forms, see the following resources:

• Practice: Creating a Form in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This practice contains information about how
to set form properties.

• Lesson: Creating a Form in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK documentation.

4. Add controls to the form. Add two labels, two
text boxes, and two buttons to the form.

a. For more information about adding controls to a
form and Windows Forms, see the following
resources:

• Practice: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

 Module 1: Introducing Windows Forms 57

Tasks Additional information

5. Set the control properties. Use the following
tables to set the properties of the controls.

Label1 Property Value

(Name) UserNameLabel
Location 64, 31
Size 63, 14
Text User name:

Label2 Property Value

(Name) PasswordLabel
Location 64, 71
Size 64, 14
Text Password:

Textbox1 Property Value

(Name) UserNameTextBox
Location 128, 29
Size 120, 20
Text (Delete existing text and
 leave it blank)

Textbox2 Property Value

(Name) PasswordTextBox
Location 128, 64
PasswordChar *
Size 120, 20
Text

Button1 Property Value

(Name) LogonButton
Location 67, 116
Size 75, 30
Text &Log On

Button2 Property Value

(Name) CancelAppButton
Location 171, 116
Size 75, 30
Text &Cancel

a. For more information about control properties
and Windows Forms, see the following resources:

• Practice: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This practice contains information about how
to set control properties.

• Lesson: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

58 Module 1: Introducing Windows Forms

Tasks Additional information

6. Set the tab order for the controls on the form. The
tab order should resemble the following diagram.

a. For more information about setting tab order on a
form and Windows Forms, see the following
resources:

• Lesson: Organizing Controls on a Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section in the .NET
Framework SDK.

7. Complete the form properties. Use the following
table to set the remaining properties of the form.

Property Value

AcceptButton LogonButton
CancelButton CancelAppButton

a. For more information about setting form
properties and Windows Forms, see the following
resources:

• Practice: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

The following four steps (Steps 8, 9, 10, and 11) are not required to meet the objectives of the labs but are
required to run the application and view results.

8. Declare class member fields in the LoginForm
class. Open the LoginFormCode.txt file, and copy
the code under the heading Declare these class
members in the LoginForm class.

Additional information is not necessary for this task.

9. Implement properties for the class. Open the
LoginFormCode.txt file, and copy the code under
the heading Add these properties to the
LoginForm class.

Additional information is not necessary for this task.

10. Implement the Click event handler for the Cancel
button. Open the LoginFormCode.txt file, and
copy the required code under the heading Create
a Click event handler for the Cancel button and
add the following code to the event handler.

Additional information is not necessary for this task.

 Module 1: Introducing Windows Forms 59

Tasks Additional information

11. Implement the Click event handler for the Log
On button. Open the LoginFormCode.txt file, and
copy the required code under the heading Create
a Click event handler for the Log On button and
add the following code to the event handler.

Additional information is not necessary for this task.

12. Build and run the application. Specify mario for
the user name and P@ssw0rd for the password.

a. For more information about working with forms
and Windows Forms, see the following resources:

• Practice: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating a Form, in Module 1,
“Introducing Windows Forms,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

60 Module 1: Introducing Windows Forms

Exercise 2
Inheriting a New Form from an Existing Windows Form
In this exercise, you will update the Internal Business Application shell by adding an About dialog
by inheriting from a generic Windows Form.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab01_1\Ex02\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab01_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Important In the InternalBusinessApp.sln project in \install_folder\Labfiles\Lab01_1\Ex02\Solution,
because the About Internal Business Application dialog box for the project is an inherited form, you
must build the solution before you can view the AppControlAboutForm form in Windows Forms
Designer.

Tasks Additional information

1. Open the InternalBusinessApp project in Visual
Studio .NET. Browse to install_folder\Labfiles\
Lab01_1\Ex02\Starter to find this project.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application from within Designer, in Index,
search by using the phrase Debugging
Windows Applications.

2. Open the BaseAboutForm form in Design view. a. For more information about adding new forms to
a project and Windows Forms, see the following
resources:

• Practice: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

 Module 1: Introducing Windows Forms 61

Tasks Additional information

3. Use the following table to set the Modifier
property of each control. To set a property for
multiple controls simultaneously, use the CTRL
key to select the controls.

Control Modifier Property Value

ProductNameLabel protected
VersionNumber protected
CopyrightLabel protected
AllRightsReservedLabel protected
AboutOkButton protected

a. For more information about adding new forms to
a project and Windows Forms, see the following
resources:

• Practice: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

4. Save the BaseAboutForm, and build the project. Additional information is not necessary for this task.

5. Add a new form to the project by using the
Inheritance Picker dialog box. Use the form
name AppControlAboutForm. Inherit the form
from the BaseAboutForm form. Save the new
form, and build the project.

a. For more information about adding new forms to
a project and Windows Forms, see the following
resources:

• Practice: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Windows Forms section of the .NET
Framework SDK.

6. Complete the properties on the
AppControlAboutForm form. Use the following
table to set the properties of the form.

Form Value

BackColor Control
Size 500, 212
Text About Internal Business
 Application

Use the following table to set the properties of the
controls.

Control Property Value

ProductNameLabel.Text Internal Business
 Application
VersionNumber.Text Version 1.0.3153
CopyrightLabel.Text Copyright © 2002
 Contoso, Ltd.

a. For more information about working with
inherited forms and Windows Forms, see the
following resources:

• Practice: Creating an Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This practice contains information about how
to set inherited form and control properties.

• Lesson: Creating and Inherited Form, in
Module 1, “Introducing Windows Forms,” in
Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This lesson contains information about how to
work with inherited forms.

• The Windows Forms section of the .NET
Framework SDK.

62 Module 1: Introducing Windows Forms

Tasks Additional information

7. In AppControlForm, implement click event
handler for the About menu item.

a. For more detailed information about the tasks that
you must perform, see the TODO comments in
the code.

b. For more information about Windows Forms, see
the following resource:

• The Windows Forms section of the .NET
Framework SDK.

8. Run the application to test the inherited About
dialog box.

a. For more information about Windows Forms, see
the following resources:

• The Windows Forms section of the .NET
Framework SDK.

Contents

Overview 1

Lesson: Creating an Event Handler for a
Control 2

Lesson: Using Windows Forms Controls 12

Lesson: Using Dialog Boxes in a Windows
Forms Application 33

Lesson: Adding Controls at Run Time 43

Lesson: Creating Menus 49

Lesson: Validating User Input 59

Review 67

Lab 2.1: Working with Controls 69

Module 2: Working with
Controls

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: Working with Controls iii

Instructor Notes
This module provides students with an overview of using Windows Controls to
create Microsoft® .NET Framework Windows Forms applications. In the
module, students will create event handlers for controls and use some of the
controls in a Windows Forms application. They will also learn how to use
dialog boxes and menus in a Windows Forms application. Students will then
create controls at run time and validate user input in an application.

After completing this module, students will be able to:

� Create an event handler for a control.
� Select and use the appropriate controls in a Windows Forms application.
� Use dialog boxes in a Windows Forms application.
� Add controls to a form at run time.
� Create and use menus in a Windows Forms application.
� Validate user input in a Windows Forms application.

To teach this module, you need Microsoft® PowerPoint® file 2555A_02.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices, demonstrations, and lab.

Presentation:
120 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 2: Working with Controls

How to Teach This Module
This section contains information that will help you to teach this module. The
following are some tips on how to teach this module:

� To compress the time spent on this module, find out if you have a class
consisting entirely of advanced students (students that are comfortable
programming in an object-oriented programming environment and who are
familiar with the Microsoft .NET Framework and event handling in
Windows Forms). If yes, then you can try moving quickly through the slides
and get the students started on practice activities as soon as possible. The
practices include step-by-step instructions, so an advanced class should be
able to do the practices very easily.

� Lab 2.1, “Working with Controls” is based on the Purchase Order
application in Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual Visual C#™ .NET) and is intended to simulate a real-world
environment in which students will demonstrate what they learned during
the lecture and practice portions of the module. The lab does not provide
step-by-step detailed instructions; instead, the students are given tasks to
complete in the left column and a list of resources that they can use (if they
need help) in the right column. Students get the hands-on experience that
they need by completing the practice activities at the end of each lesson.

� In addition to the demonstration project that covers using a drag-and-drop
operation to move data between controls, there are three demonstration
projects that can be used to help you teach the content of this module. The
following list identifies the design goal for each of the four demonstration
projects. Only the demonstration that covers implementing simple drag-and-
drop appears in the module content. The following are some demonstrations
that do not appear in the module but will help you demonstrate some
concepts:

• Mod02_01\DelegateSample\DelegateSample.sln. This project
demonstrates how to use a class to define a delegate and two methods
that can be used to format a variable of type float. Two radio buttons are
used to simulate different situations, each requiring a different method of
handling the same event. When you click a button on the form, a text
box is filled by using the currently assigned method.
The DelegateSample project uses RadioButton, Button, and TextBox
controls.

• Mod02_02\EventHandlers\EventHandlers.sln. This project provides a
general overview of event handlers. It covers adding an event to a
handler at design time, using the event arguments (e) parameter, and
adding and removing handlers at run time.
The EventHandlers project uses MainMenu, RadioButton, and Button
controls.

• Mod02_03\ControlCollection\ControlCollection.sln. This project
demonstrates how the Controls property of a container control can be
used to affect the properties of the controls which it contains. As a side
note, the SelectedIndexChanged event and SelectedItem property of a
ComboBox are also demonstrated.
The ControlCollection project uses ComboBox and GroupBox controls.

 Module 2: Working with Controls v

Lesson: Creating an Event Handler for a Control
This section describes the instructional methods for teaching this lesson. The
following are some tips on how to teach this lesson:

� Make sure that your students understand delegates in the generic sense
before you introduce the Delegate class. Be sure that students understand
when the Delegate keyword is used (and when it is not used).

� If students have any confusion regarding delegates, try running the
DelegateSample demonstration to help explain how and when to create and
use delegates.

� There are two additional demonstrations that can help you teach the content
in this lesson. To run the first demonstration, open DelegateSample.sln from
install_folder\Democode\Mod02\Mod02_01\Starter. To run the second
demonstration, open EventHandlers.sln from
install_folder\Democode\Mod02\Mod02_02\Starter.

Lesson: Using Windows Forms Controls
This section describes the instructional methods for teaching this lesson. The
following are some tips on how to teach this lesson:

� There is a practice exercise on Toolbars at the end of this lesson. However,
to show how other controls are used, show simple demonstrations of using
StatusBar, ListBox, GroupBoxes, and Panels in a Windows Forms
application.

� This lesson includes a demonstration on how to use a drag-and-drop
operation to move and copy between controls on a form. The first example
shows how the contents of a TextBox control can be copied to another
TextBox, and covers the AllowDrop property, DragEnter event,
DragDrop event, and DragEventArgs class. The second example uses two
TreeView controls to show that some controls include events specific to
drag-and-drop operations (in this case, the DragItem event). While
observing how to use a drag-and-drop operation to copy data from one
TreeView control to another, the concept of adding and removing nodes
(TreeNode objects) from a TreeView control is also covered in this
demonstration.
The SimpleDragDrop project uses TextBox and TreeView controls.

Lab 2.1: Working with Controls
� Make sure that you have demonstrated the two lab applications—the

Expense Report application and the Purchase Order application—in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual Visual C# .NET) before students begin the lab. To see how to
demonstrate lab scenarios, see the Introduction module in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual Visual C#
.NET).

� Practice exercises will enable students to successfully complete the lab
exercises. Therefore, make sure that students have completed all practice
exercises before they begin the lab.

 Module 2: Working with Controls 1

Overview

� Creating an Event Handler for a Control

� Using Windows Forms Controls

� Using Dialog Boxes in a Windows Forms Application

� Adding Controls at Run Time

� Creating Menus

� Validating User Input

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you design the user interface (UI) and develop the code that operates
behind the UI of an application, you will need to work with controls and their
events, properties, and methods to meet the design requirements that you have
been given.

This module covers how to create event procedures (or handlers) in your
application that will run in response to user actions. You will learn how to add
programming logic to the event procedures of a control, how to use the
Microsoft® .NET Framework Windows Forms intrinsic controls, dialog boxes,
and menus, and how to validate the data entered by users of your application.

After completing this module, you will be able to:

� Create an event handler for a control.
� Select and use the appropriate controls in a Windows Forms application.
� Use dialog boxes in a Windows Forms application.
� Add controls to a form at run time.
� Create and use menus in a Windows Forms application.
� Validate user input in a Windows Forms application.

Introduction

Objectives

2 Module 2: Working with Controls

Lesson: Creating an Event Handler for a Control

� Event Model in the .NET Framework

� What Are Delegates?

� What Is an Event Handler?

� How to Create Event Handlers for Control Events

� How to Add and Remove Event Handlers at Run Time

� Practice: Creating an Event Handler for a Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the Microsoft® .NET Framework, an event is a message sent by an object to
signal the occurrence of an action that is either invoked by a user or
programmatically. Each event has a sender that raises the event and a receiver
that handles the event.

In this lesson, you will learn about events and the ways in which events can be
handled in your application. You will then learn how to create procedures that
handle events and how to add and remove event handlers at run time.

After completing this lesson, you will be able to:

� Describe the event model in the .NET Framework.
� Create and use event handlers.
� Create event procedures.
� Add and remove event handlers from event procedures at run time.

Introduction

Lesson objectives

 Module 2: Working with Controls 3

Event Model in the .NET Framework

Button1

Invokes the
delegate

this.button1.Click += new
System.EventHandler(this.button1_Click);

private void button1_Click(object
sender, System.EventArgs e)

{
…
}

Delegate calls the
associated procedureDelegateDelegateDelegate

this.button1.Click += new
System.EventHandler(this.button1_Click);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the .NET Framework, an event is used to signal the occurrence of an action.
For example, this action could be user invoked, such as the Click event of a
Button control, or the event could be raised programmatically to signal the end
of a long computation.

The object that raises (triggers) the event is referred to as the event sender. The
procedure that handles the event is referred to as the event receiver. In either
case, the sender does not know which object or method will respond to the
events that it raises. Therefore, it is necessary to have a component that links
the event sender with the event receiver. The .NET Framework uses a delegate
type to work as a function pointer between the sender and the event receiver. In
most cases, the .NET Framework creates the delegate and takes care of the
details for you. However, you can create your own delegates for cases when
you want an event to use different event handlers under different circumstances.

Delegates are objects that you can use to call the methods of other objects. You
can use the Delegate keyword in a declaration statement to create your own
delegate that derives from the MulticastDelegate class. Creating your own
delegates can be useful in situations where you need an intermediary between a
calling procedure and the procedure being called. For more information about
creating and using delegates, search by using the phrase Delegate Class in the
Microsoft Visual Studio® .NET Help documentation.

Introduction

Event and delegates

Creating Delegates

4 Module 2: Working with Controls

What Are Delegates?

public delegate void AlarmEventHandler(object
sender, AlarmEventArgs e);

public delegate void AlarmEventHandler(object
sender, AlarmEventArgs e);

� Delegate

� Binds events to methods

� Can be bound to single or multiple methods

� When an event is recorded by an application

� The control raises the event by invoking the delegate
for the event

� The delegate in turn calls the bound method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the .NET Framework, delegates are used to hold a reference to the method
that will handle an event. For example, an event occurs when a user clicks a
button. The button raises a click event but does not know what behavior you,
the programmer, want to occur when the button is clicked, so the button has a
delegate member to which you assign your own method for handling the event.
You can use the same infrastructure that is used by the .NET Framework to
create your own delegates.

A delegate is a data structure, derived from the Delegate Class, which refers to
a static method or to a class instance and an instance method of that class.
Delegates are useful when your application must perform an action by calling a
method but you do not know what that action will be.

Delegates allow you to specify at run time the method to be invoked. Delegates
are object-oriented, type-safe, and secure.

By convention, event delegates in the .NET Framework have two parameters,
the source that raised the event and the data for the event. The following
example shows an event delegate declaration:

public delegate void AlarmEventHandler(object sender,
AlarmEventArgs e);

Event delegates are multicast, which means that they can hold references to
more than one event handling method. Delegates allow for flexibility and fine-
grain control in event handling. A delegate acts as an event dispatcher for the
class that raises the event by maintaining a list of registered event handlers for
the event. For more information on Delegates, see “Delegate Class” in the
Visual Studio .NET Help documentation.

Introduction

Definition

Event delegate
declaration

 Module 2: Working with Controls 5

What Is an Event Handler?

� Event Handlers

� Methods bound to an event

� When the event is raised, the code within the event
handler is executed

� Two Event Arguments with Event Handlers

� An object representing the object that raised the event

� An event object containing any event-specific
information

private void button1_Click(object sender,
System.EventArgs e)

{

}

private void button1_Click(object sender,
System.EventArgs e)

{

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Functionality is added to controls by raising and consuming events. Before your
application can respond to an event, you must create an event handler. The
event handler (event procedure) contains the program logic that runs when the
event is raised.

An event handler is a method that is bound to an event. When the event is
raised, the code in the event handler runs. You can use the same event handler
to handle more than one event. For example, you can create a single event
handler to handle events of a button and a menu item that are used for the same
purpose. Similarly, if you have a group of RadioButton controls on a form, you
could create a single event handler and have each control’s Click event bound
to the single event handler.

The following code example is an event handler for the Click event of a button.

private void button1_Click(object sender, System.EventArgs e)
{

}

Introduction

Definition

Example of event
handler

6 Module 2: Working with Controls

The following code example shows how you can use a single event handler to
handle events for multiple controls.

// inside the Windows Form Designer generated code region
…
this.button1.Click += new

 System.EventHandler(this.button1_Click);

// add the button2.click event to button1_click handler
this.button2.Click += new

 System.EventHandler(this.button1_Click);

private void button1_Click(object sender, System.EventArgs e)
{

}

Each event handler provides two parameters that allow you to handle the event
properly.
� The first parameter (Sender in the previous code example) provides a

reference to the object that raised the event. It specifies the source that
raised the event.

� The second parameter (e in the previous code example) passes an object
specific to the event being handled. This parameter contains all of the data
that is required to handle the event.

Event handler
parameters

 Module 2: Working with Controls 7

How to Create Event Handlers for Control Events

private void button1_Click(object sender,

System.EventArgs e)
{

MessageBox.Show("MyHandler received the event");

}

private void button1_Click(object sender,

System.EventArgs e)
{

MessageBox.Show("MyHandler received the event");

}

� Use WithEvents keyword to declare object variables
that will be used with the Handles statement

� Use the Handles keyword at the end of the procedure
declaration

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Visual C#™ .NET uses the 'System.EventHandler += new …' syntax
to define an event handler. The standard way to create an event handler in
Visual C# .NET is through the Properties window of the control.

To create an event procedure for a control:

1. In Design view, click the control that you want to create an event handler
for.

2. In the Properties window, click Event (the button displaying the lightning
bolt).

3. Double-click the event that you want to handle. Code will be added to the
Code Editor.

4. Add program logic to the event handler procedure by using the supplied
arguments. The following code provides an example:
private void button1_Click(object sender,
 System.EventArgs e)
{
 MessageBox.Show("MyHandler received the event");

}

Introduction

Procedure

8 Module 2: Working with Controls

How to Add and Remove Event Handlers at Run Time

� To associate an event with an event handler at run time,
use the AddHandler statement

� To remove the association of an event with an event
handler at run time, use the RemoveHandler statement

this.button2.Click -= new
System.EventHandler(this.button1_Click);
this.button2.Click -= new
System.EventHandler(this.button1_Click);

this.button2.Click += new
System.EventHandler(this.button1_Click);

this.button2.Click += new
System.EventHandler(this.button1_Click);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In Visual C# .NET, you can add and remove event handlers at run time by
using the System.EventHandler += new … and System.EventHandler -=
new …syntax.

To add event handlers by using System.EventHandler += new … syntax:

• Use the System.EventHandler += new … syntax to specify the name of
the event sender and receiver, as shown in the following code example:
// inside the Windows Form Designer generated code region
…
this.button1.Click += new
 System.EventHandler(this.button1_Click);

// add the button2.click event to button1_click handler
this.button2.Click += new
 System.EventHandler(this.button1_Click);

private void button1_Click(object sender, System.EventArgs
e)
{

}

Introduction

Procedure: Adding
event handlers

 Module 2: Working with Controls 9

To remove event handlers by using System.EventHandler -= new …syntax:

• Use the System.EventHandler -= new …syntax to specify the name of the
event sender and receiver.
// remove the button2.click event from button1_click
handler
this.button2.Click -= new
System.EventHandler(this.button1_Click);

Procedure: Removing
event handlers

10 Module 2: Working with Controls

Practice: Creating an Event Handler for a Control

In this practice, you will

� Create an event handler for a MouseMove
event

� Create an event handler for a Click event

Begin reviewing the objectives for
this practice activity

5 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create an event handler for a control.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\Mod02\Mod02_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the EventHandlers.sln solution file to open the project.

� Create an event handler for a MouseMove event
1. Open Form1.cs in Design view, and then click the VB button.
2. In the Properties window, click the Events button (lightning bolt icon).
3. Scroll down until you see the MouseMove event, and then double-click

MouseMove.
4. Add the following code statements to the vbButton_MouseMove event

handler:
vbButton.Top -= e.Y;
vbButton.Left += e.X;

if (vbButton.Top < -16 || vbButton.Top > 160)
 vbButton.Top = 73;

if (vbButton.Left < -64 || vbButton.Left > 384)
 vbButton.Left = 160;

Introduction

Instructions

Note

 Module 2: Working with Controls 11

5. What is the purpose of the second parameter (e) that is passed to this event
handler?
The e parameter contains event data. It is either an EventArgs object
(the base class which actually contains no event data) or it is an instance
of a derived class like MouseEventArgs. To see a complete list of the
derived classes, search by using the phrase EventArgs Class in Visual
Studio .NET Help documentation and following the link to 'Derived
classes'.
__

__

__

6. Run the application and click each button on the form.
7. Close the application.

� Create an event handler for a Click event
1. Open Form1.cs in Design view.
2. Double-click the Close button control.
3. Why is a Click event handler created for you?

The IDE automatically creates a handler for the default event when you
double click a control while in Design view.
__

__

4. Add the following code statement to the closeButton_Click subroutine:
this.Close();

5. Run the application, and then click the Close button.
6. Save your project, and then close Visual Studio.

12 Module 2: Working with Controls

Lesson: Using Windows Forms Controls

� Selecting a Windows Forms Control Based on
Function

� How to Use the StatusBar Control

� How to Use the ListBox Control

� How to Use the GroupBox and Panel Controls

� How to Use the ToolBar and ImageList Controls

� Practice: Creating and Using a ToolBar Control

� Demonstration: Implementing Drag-and-Drop
Operations Between Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Windows Forms tab in the Visual Studio .NET Toolbox offers a variety of
very useful controls, such as the Button, StatusBar, ListBox, GroupBox,
ImageList, MainMenu, and OpenFileDialog controls. The controls listed in
the Toolbox can be categorized based on the way they are used in your
applications. In this lesson, you will learn about the different categories of
Windows Forms controls and you will then learn how to use a number of
controls from each category. This lesson focuses on the controls that are used in
the sample applications for Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET). Some of the controls will be
covered in greater detail in the Using Dialog Boxes in a Windows Forms
Application and the Creating Menus lessons in this module.

After completing this lesson, you will be able to:

� Select appropriate Windows Forms controls for adding the desired
functionality to a user interface.

� Use the StatusBar control in a Windows Forms application to display text
information.

� Use the ListBox control in a Windows Forms application to provide the
user with a predefined list of items.

� Use GroupBox and Panel controls in a Windows Forms application as
containers for other controls.

� Use the ToolBar and ImageList controls in a Windows Forms application
to display command buttons as an array of graphics images.

� Implement drag-and-drop operations between controls.

Introduction

Lesson objectives

 Module 2: Working with Controls 13

Selecting a Windows Forms Control Based on Function
Windows Forms Controls

Control
ButtonBase

Checkbox
RadioButton

TreeView
GroupBox
ListControls

ComboBox
ListBox

ListView

CommonDialog
ColorDialog
FontDialog
OpenDialog
SaveDialog
PrintDialog
PageSetupDialog
PrintPreviewDialog

StatusBar
TrackBar
ToolBar
Scrollbar
TextBoxBase

TextBox
RichTextBox

Progressbar
PictureBox
ScrollableControl

ContainerControl
Form

Panel
Data Controls

DataGrid

Splitter

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows Forms controls are reusable components that encapsulate user
interface functionality and are used in a Windows Forms application. Not only
does the .NET Framework Class Library provide many ready-to-use controls, it
also provides the infrastructure for developing your own controls.

The controls that appear on the Windows Forms tab of the Toolbox can be
categorized based on their functions. Depending on the functionality that you
want to provide in the user interface of your application, you will select a
control from one of the following categories: Commands, Text, Options,
Containers, Graphics, Menus, or Dialog Boxes. Notice that the class hierarchy
and the functional category for a control do not always match one another.
The following are the categories of command controls:

� Button
Used to start, stop, or interrupt a process.

� LinkLabel
Displays text as a Web-style link and triggers an event when the user clicks
the special text. Usually the text is a link to another window or a Web site.

� NotifyIcon
Displays an icon in the status notification area of the taskbar that represents
an application running in the background.

� ToolBar
Contains a collection of button controls.

Introduction

Commands category
controls

14 Module 2: Working with Controls

The following text controls are used to enable users to enter text and edit the
text contained in these controls at run time:

� Textbox
Displays text entered at design time that can be edited by users at run time,
or changed programmatically.

� RichTextBox
Enables text to be displayed with formatting in plain text or rich-text format
(RTF).

The following additional text controls can be used to display text but do not
allow application users to directly edit the text content that they display:

� Label
Displays text that users cannot directly edit.

� StatusBar
Displays information about the application’s current state by using a framed
window. A status bar is usually located at the bottom of a parent form.

The following selection controls allow users to select a value from a list:

� CheckedListBox
Displays a scrollable list of items, each accompanied by a check box.

� ComboBox
Displays a drop-down list of items.

� DomainUpDown
Displays a list of text items that users can scroll through by using up and
down buttons.

� ListBox
Displays a list of text and graphical items (icons).

� ListView
Displays items in one of four different views. Views include text only, text
with small icons, text with large icons, and a report view.

� NumericUpDown
Displays a list of numerals that users can scroll through by using up and
down buttons.

� TreeView
Displays a hierarchical collection of node objects, which can consist of text
with optional check boxes or icons.

Text category controls

Options category
controls

 Module 2: Working with Controls 15

Container controls can be used to group other controls on a form. Some
examples of container controls are:

� Panel
Groups a set of controls on an unlabeled, scrollable frame.

� GroupBox
Groups a set of controls (such as radio buttons) on a labeled, nonscrollable
frame.

� TabControl
Provides a tabbed page for organizing and accessing grouped objects
efficiently.

The following are the categories of graphic controls:

� ImageList
Serves as a repository for images. ImageList controls and the images they
contain can be reused from one application to the next.

� PictureBox
Displays graphical files, such as bitmaps and icons, in a frame.

Visual Studio .NET provides a set of common dialog boxes. These include
ColorDialog, FontDialog, PageSetupDialog, PrintDialog, OpenFileDialog,
and so on. You will learn more about dialog boxes in the lesson Using Dialog
Boxes in a Windows Forms Application in this module.

The following are the categories of menu controls:

� MainMenu
Provides a design-time interface for creating menus.

� ContextMenu
Implements a menu that appears when the user right-clicks an object.

Containers category
controls

Graphics category
controls

Dialog boxes category
controls

Menus category controls

16 Module 2: Working with Controls

How to Use the StatusBar Control

Click the Panels property and open the StatusBarPanel Collection
Editor
Click the Panels property and open the StatusBarPanel Collection
Editor

Add a StatusBar control to the formAdd a StatusBar control to the form

Use the Add and Remove buttons to add and remove panels from
the StatusBar control
Use the Add and Remove buttons to add and remove panels from
the StatusBar control

Configure the properties of the individual panels Configure the properties of the individual panels

Click OK to close the dialog box and create the panels you
specified
Click OK to close the dialog box and create the panels you
specified

In the Properties window, set the ShowPanels property to trueIn the Properties window, set the ShowPanels property to true

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The StatusBar control is an interesting example of a control taken from the text
category of controls. A status bar is a horizontal window at the bottom of a
parent window in which an application can display various kinds of status
information. The status bar can be divided into parts to display more than one
type of information. StatusBar controls can have status bar panels on them that
display text or icons to indicate state, or a series of icons in an animation that
indicate a process is working, such as the status bar in Microsoft Word
indicating that the document is being saved.

The .NET Framework offers the StatusBar control for the status bar. You can
create panels in the status bar by using the Add method of the Panels
collection. To display the panels, you must set the ShowPanels property to
True. You can indicate the size and alignment of each panel by setting
additional properties.

To create a status bar with panels:

1. Add a StatusBar control to the form.
2. In the Properties window, click the Panels property to select it. Then click

the ellipsis (…) button to open the StatusBarPanel Collection Editor.
3. Use the Add and Remove buttons to add and remove panels from the

StatusBar control at design time. You can use the Add and Remove
methods of the StatusBarPanels object to add and remove panels at run
time.

Introduction

Procedure: Using the
StatusBar control

 Module 2: Working with Controls 17

4. Configure the properties of the individual panels in the Properties window.
The following table lists the important properties and their descriptions.

Property Description

AutoSize Determines the resize behavior of the

panel.

Alignment Sets the alignment of the panel in the
StatusBar control.

BorderStyle The type of border displayed at the
edges of the panel.

Icon The icon (.ico file) displayed in the
panel.

Style Sets the style of the panel. It must be
one of the values of the
StatusBarPanelStyle enumeration.

Text The text string displayed in the panel.

MinWidth The minimum width of the panel in the
status bar.

5. Click OK to close the dialog box and create the panels you specified.
6. In the Properties window, set the ShowPanels property to True.

18 Module 2: Working with Controls

How to Use the ListBox Control

Add items to the ListBox
using the Items collection
Add items to the ListBox
using the Items collection

Add a ListBox control to the
form
Add a ListBox control to the
form

Configure the properties of
the ListBox control
Configure the properties of
the ListBox control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ListBox control is a good example of a control from the options category
of controls. A Windows Forms ListBox control displays a list of items from
which the user can select one or more. If the total number of items exceeds the
number that can be displayed, a scroll bar is automatically added to the ListBox
control.

The following table lists the important properties of the ListBox control.

Property Description

MultiColumn When set to True, the list box displays items in

multiple columns and a horizontal scroll bar
appears. When set to False, the list box displays
items in a single column and a vertical scroll bar
appears.

ScrollAlwaysVisible When set to True, the scroll bar appears regardless
of the number of items.

SelectionMode Determines how many list items can be selected at
a time.

SelectedIndex Returns an integer value that corresponds to the
first selected item in the list box. If no item is
selected, the SelectedIndex value is -1. If the first
item in the list is selected, then the SelectedIndex
value is 0.

Items.Count Reflects the number of items in the list.

Items.Add/Items.Insert Adds items to the ListBox control.

Items.Remove/Items.Clear Removes items from the ListBox control.

DataSource Binds the ListBox to a data source.

DisplayMember Binds the ListBox to a name of the column in the
Data source.

Introduction

ListBox properties

 Module 2: Working with Controls 19

To use a ListBox control:

1. Add a ListBox control to the form.
2. Add items to the ListBox by using the Items collection.

You can add multiple items to the ListBox at the same time by using the
AddRange method.
ListBox1.Items.Addrange(NewObject() {“Apples”, “Oranges”,
“Bananas”});

3. Configure the properties of the ListBox control.

Procedure: Using the
ListBox control

20 Module 2: Working with Controls

How to Use the GroupBox and Panel Controls

Add other controls to the container control, drawing each inside the
panel
Add other controls to the container control, drawing each inside the
panel

Drag a container (Panel or GroupBox) control from the Toolbox
onto a form
Drag a container (Panel or GroupBox) control from the Toolbox
onto a form

If you have existing controls that you want to enclose in the
container, drag them into the container
If you have existing controls that you want to enclose in the
container, drag them into the container

To display scroll bars for the Panel control, set its AutoScrollbar
property to True
To display scroll bars for the Panel control, set its AutoScrollbar
property to True

To display a caption on the GroupBox, set its Text property to an
appropriate caption
To display a caption on the GroupBox, set its Text property to an
appropriate caption

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you want the user to select one or more options from a group of available
options, you typically use check boxes (more than one selection) or radio
buttons (single selection) grouped inside a container control. All controls in a
container control function as a group. The following are three main reasons to
group controls:

� Visual grouping of related form elements for a clear user interface
� Moving the controls as a unit at design time
� Programmatic grouping of controls

Visual Studio .NET includes container controls such as GroupBox and Panel
that allow you to group radio buttons, check boxes, or any other controls that
you want to treat as part of a control collection. The Panel control is similar to
the GroupBox control; however, the Panel control can have scroll bars, and
only the GroupBox control displays a caption.

To create and populate a container control:

1. Drag a container (Panel or GroupBox) control from the Windows Forms
tab of the Toolbox onto a form.

2. Add other controls to the container control, drawing each inside the panel.
3. If you have existing controls that you want to enclose in the container, drag

them into the container.
4. To display scroll bars for the Panel control, set its AutoScrollbar property

to True.
5. To display a caption on the GroupBox, set its Text property to an

appropriate caption.

Introduction

Procedure: Creating and
populating container
controls

 Module 2: Working with Controls 21

The controls grouped in a container control can be accessed by using the
Controls property. Each control that is grouped inside a Panel or a GroupBox
is a member of the Control.ControlCollection object, which is assigned to the
Control property of the container. You will learn more about the
ControlCollection in the lesson, Adding Controls at Run Time, in this module.

22 Module 2: Working with Controls

How to Use the ToolBar and ImageList Controls

To use the Toolbar on a Windows FormTo use the Toolbar on a Windows Form

Add buttons to the toolbarAdd buttons to the toolbar

Add a Toolbar control from the Toolbox to the formAdd a Toolbar control from the Toolbox to the form

Add the buttons to the ToolbarButtonCollectionAdd the buttons to the ToolbarButtonCollection

Configure the buttons by setting the text and/or image Configure the buttons by setting the text and/or image

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ToolBar control is a good example of a control from the commands
category of controls. Toolbars are an alternative graphical user interface (GUI)
element to menus. A toolbar contains a set of buttons, which are represented by
the ToolBarButton class in the .NET Framework.

To use a ToolBar in a Windows Forms application:

1. Add a Toolbar from the Toolbox to the form.
2. Add buttons to the Toolbar.

You can use the Buttons property to add buttons to the Toolbar.

Introduction

Procedure: Using the
ToolBar

 Module 2: Working with Controls 23

3. Add the buttons to the ToolbarButtonCollection by using the Buttons
property.

4. Configure the buttons by setting the text, image, and so on.
Each button on the Toolbar can have its own look. The caption and the
image are optional. Similar to the ListView and TreeView control, toolbar
images are stored in an image list. The ToolBarButton class has an Index
property that refers to the image in this list.
Toolbar buttons can appear in different types. The Style property can be set
to one of the ToolBarButtonStyle values shown in the following table.

Value Description

DropDownButton A drop-down control that displays a

menu or other window when clicked.

PushButton A standard, three-dimensional button.

Separator A space or line between toolbar buttons.
The appearance depends on the value of
the Appearance property.

ToggleButton A toggle button that appears sunken
when clicked and retains the sunken
appearance until clicked again.

To display a tooltip for a button, set the ShowToolTips property to
True. You can define the content of a tooltip by setting the ToolTipText
property of the button.

Note

24 Module 2: Working with Controls

The Windows Forms ImageList control is used to store images, which can then
be displayed by controls, and is a good example of a control from the graphics
category of controls. For example, you can enable the button to display
different images by changing the ImageIndex property. You can also associate
the same image list with multiple controls. You can use an image list with any
control that has an ImageList property—or, in the case of the ListView control,
the SmallImageList and LargeImageList properties. The controls that can be
associated with an image list include the ListView, TreeView, ToolBar,
TabControl, Button, CheckBox, RadioButton, and Label controls.

To associate the image list with a control, set the control’s ImageList property
to the name of the ImageList control. The key property of the ImageList
control is Images, which contains the pictures to be used by the associated
control. Each individual image can be accessed by its index value. The
ColorDepth property determines the number of colors that the images are
rendered with. The images are all displayed at the same size; this is determined
by the ImageSize property. Images that are larger will be scaled to fit.

If your Windows Forms application features a ToolBar control with buttons,
you will want to know which button the user clicks. To determine which button
is clicked, add an event handler to the ButtonClick event of ToolBar control.
Use a Select Case statement and the ToolBarButtonClickEventArgs class to
determine the toolbar button that is clicked. The following example shows how
to use the Button property of the ToolBarButtonClickEventArgs object to
determine which button is clicked.

Procedure: Using the
ImageList

Procedure: Triggering
events for the toolbar
buttons

 Module 2: Working with Controls 25

The following code example uses the Tag property to determine the
control that is clicked, but you can also do this by using the index value of a
control. However, using the index value of controls makes it difficult to keep
track of controls and their corresponding index values. For example, if you have
a separator in your form, the separator will also use an index value, and you
need to take the separator into account when referencing the index value.

private void ToolBar1_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)
{
 switch(e.Button.Tag.ToString())
 {
 case "Cut":
 this.cutRadioButton.Checked = true;
 panelText = this.cutRadioButton.Text +
 " Radio Button is checked";
 break;
 case "Copy":
 this.copyRadioButton.Checked = true;
 panelText = this.copyRadioButton.Text +
 " Radio Button is checked";
 break;
 }

 MessageBox.Show("The " + e.Button.Tag
 + " button is index number "
 + ToolBar1.Buttons.IndexOf(e.Button));

}

Note

26 Module 2: Working with Controls

Practice: Creating and Using a ToolBar Control

In this practice, you will

� Add a ToolBar control and ImageList
control

� Add buttons to the ToolBar control

� Add images to a ToolBar control

� Assign values to the Tag and ToolTipText
properties of the ToolBar buttons

� Create an event handler for the
ButtonClick event

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create and use a ToolBar control.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\Mod02\Mod02_02\Starter.
2. Double-click the ToolBar.sln solution file to open the project.

� Add a ToolBar control and ImageList control to your project
1. Open Form1.cs in Design view.
2. In the Toolbox, double-click ImageList.
3. In the Toolbox, double-click ToolBar.

� Add buttons to the ToolBar control
1. On the form, click toolBar1.
2. In the toolBar1 Properties window, click Buttons.
3. In the value column for the Buttons property, click the ellipsis (…) button.
4. On the ToolBarButton Collection Editor window, click Add.
5. Use the Add button to add six more buttons to the ToolBar control.
6. Click toolBarButton5, and then, in the properties table, click Style.
7. In the Style property value list, click Separator.

Introduction

Instructions

 Module 2: Working with Controls 27

8. Why can’t you add images to the ToolBar buttons yet?
A ToolBar control uses an ImageList control as a source of images. You
specify which ImageList control the Toolbar will get images from by
using the ImageList property of the ToolBar control.
__

__

9. Click OK.

� Add images to a ToolBar control by using an ImageList control
1. In the toolBar1 Properties window, scroll down until you see the ImageList

property, and then click ImageList.
2. Open the list for the ImageList property, and then click imageList1.
3. In the component tray at the bottom of Design view, click imageList1.
4. In the imageList1 Properties window, click Images.
5. In the value column for the Images property, click the ellipsis (…) button.
6. In the Image Collection Editor dialog box, click Add.
7. In the Look in list, navigate to

install_folder\Practices\Mod02\Mod02_02\Starter\bin, click CUT.BMP,
and then click Open.

8. Repeat steps 6 and 7 to add the COPY.BMP, PASTE.BMP, DELETE.BMP,
NEW.BMP, and OPEN.BMP images to imageList1, and then click OK.

9. Open the ToolBarButton Collection Editor, and then click toolBarButton1.
10. In the ToolBarButton1 Properties window, click ImageIndex, and then, in

the ImageIndex property value list, click 0 (image index 0 is the scissors
icon).

11. Use the properties table for ToolBar buttons 2-4 and 6-7 to assign a value to
the ImageIndex property. When you have finished adding images to
toolBar1, it should appear as follows:

12. Click OK, and then save the changes to your application.
13. Run the application. Does anything happen when you click a ToolBar

button? What event must be handled to respond to ToolBar button clicks?
The ButtonClick event of the ToolBar is used to handle ToolBar button
clicks. ToolBarButtonClickEventArgs is used to determine which
button was clicked.
__

__

14. Close the application.

28 Module 2: Working with Controls

� Assign values to the Tag and ToolTipText properties of the ToolBar
buttons

1. Open the ToolBarButton Collection Editor, and then click toolBarButton1.
2. In the toolBarButton1 Properties table, double-click Tag, type Cut and

then press ENTER.
3. Use the properties table for toolBarButton2, toolBarButton3,

toolBarButton4, toolBarButton6, and toolBarButton7 to assign Tag
property values to the buttons in the following order: Copy, Paste, Delete,
New, and Open.

4. In the toolBarButton1 Properties table, double-click ToolTipText, type Cut
item and then press ENTER.

5. Optional: Use the Properties table for toolBarButton2, toolBarButton3,
toolBarButton4, toolBarButton6, and toolBarButton7 to assign
ToolTipText property values to the buttons in the following order: Copy
item, Paste item, Delete an existing item, Create a New item, and Open
an existing item.

6. Click OK, and then save the changes to your application.

� Create an event handler for the ButtonClick event
1. Open Form1.cs in Design view, and then click toolBar1.
2. In the toolBar1 Properties window, click Events, and then double-click

ButtonClick.
3. Add the following code statements to the toolBar1_ButtonClick procedure:

switch(e.Button.Tag.ToString())
{
 case "Cut";
 this.cutRadioButton.Checked = true;
 panelText = this.cutRadioButton.Text +
 " Radio Button is checked";
 break;
}

this.StatusBar1.Panels[0].Text = panelText;

MessageBox.Show("The " + e.Button.Tag
 + " button is index number "
 + toolBar1.Buttons.IndexOf(e.Button));

4. On the View menu, point to Show Tasks, and then click Comment.
5. In the Task List, double-click TODO: paste inside switch statement.
6. Use a cut-and-paste operation to move the commented code inside the

switch statement structure that you just created, and then uncomment the
code statements.

 Module 2: Working with Controls 29

7. What are some of the reasons for using the Tag property to determine which
ToolBar button was clicked?
You do not need to update code when the button order changes and you
do not need to consider button separators.
__

__

8. Run the application. Test the ToolTips for the ToolBar buttons by
positioning the mouse pointer over a button. Test the ButtonClick event
handler by clicking the ToolBar buttons.

9. If time permits, examine the code used to construct the StatusBar control.
10. Save your project and then close Visual Studio.

30 Module 2: Working with Controls

Demonstration: Implementing Drag-and-Drop Operations Between
Controls

In this demonstration, you will see how to
implement drag-and-drop operation between
ListView and TreeView controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Another way in which you can enhance the usefulness of the controls you add
to your application is to enable drag-and-drop operations. The concept of drag-
and-drop functionality is familiar to users, and in some cases, it is even
expected. The manner in which you implement drag-and-drop functionality
depends on the controls being used. The following demonstration walks you
through the code that must be added to an application to use drag-and-drop
operations to move data between two TextBox controls, and between two
TreeView controls.

� Open the SimpleDragDrop solution file
• Open the SimpleDragDrop.sln solution in Visual Studio .NET from

install_folder\Democode\ Mod02\Mod02_04\SimpleDragDrop.

� Run the application and demonstrate a drag-and-drop operation
between the TextBox controls

1. Run the application.
2. Position the mouse over the TextBox control on the left side of the form.
3. Use a left-click and drag operation to drag the contents of the left TextBox

control and position it over the upper-right TextBox.
4. Notice that the mouse pointer changes to indicate when a control has been

configured to accept dropped data. This control will not accept dropped
data.

5. With the mouse positioned over the upper-right TextBox, release the left
mouse button.

6. Use a left-click and drag operation to drag the contents of the left TextBox
control to a position over the lower-right TextBox control.

Introduction

Instructions

 Module 2: Working with Controls 31

7. Notice that the mouse pointer changes to indicate that this control will
accept dropped data.

8. With the mouse positioned over the lower-right TextBox control, release the
left mouse button.

9. Close the application.

� Walk through the code that is used to support drag-and-drop
operations between two TextBox controls

1. Open Form1.cs in Design view.
2. Click the upper-right TextBox control. Notice that the AllowDrop property

is set to False.
3. Click the lower-right TextBox control. Notice that the AllowDrop property

is set to True.
4. Open Form1.cs in the Code Editor.
5. Examine the TextBox1_MouseDown handler that is used to initiate this

drag-and-drop operation.
Notice that the DoDragDrop method is used to specify the data that will be
used in the drag-and-drop operation. The DoDragDrop method is also used
to specify the type, or types, of operations allowed. The information
associated with this operation is stored in the event arguments variable.

6. Examine the TextBox2_DragEnter handler.
Notice that the data type of the data being dragged is checked to ensure that
the data can be used as intended. The DragEventArgs parameter is used to
access the data, and, if the data is of an inappropriate type, the
DragEventArgs.Effect property is set to DragDropEffects.None.

7. Examine the TextBox2_DragDrop handler.
Notice that data contained in the GetData method of the
DragEventArgs.Data property is used to extract the data that will be placed
in the control.

� Run the application and demonstrate a drag-and-drop operation
between TreeView controls

1. Run the application.
2. Position the mouse over the Mustard node displayed on the left TreeView

control.
3. Use a left-click and drag operation to drag the Mustard node to a position

over the Garnishes node of the right TreeView control.
4. With the mouse positioned over the Garnishes node, release the left mouse

button.
5. Close the application.

32 Module 2: Working with Controls

� Walk through the code that is used to support drag-and-drop
operations between two TreeView controls

1. Open Form1.cs in the Code Editor.
2. Examine the TreeView_ItemDrag handler that is used to initiate this drag-

and-drop operation.
Notice the TreeView control includes a special event designed for initiating
a drag-and-drop operation. The DoDragDrop method is used again to
specify the data (in this case the currently selected item) that will be used in
the drag-and-drop operation if the type of operation is allowed.

3. Examine the TreeView_DragEnter handler.
Notice that the DragEnter event handler is used in the same way it was
used when performing a drag-and-drop operation between TextBox
controls.

4. Examine the TreeView_DragDrop handler.
Notice how TreeNodes are handled in this procedure.

5. Close Visual Studio .NET.

 Module 2: Working with Controls 33

Lesson: Using Dialog Boxes in a Windows Forms
Application

� Selecting Dialog Boxes in Visual Studio .NET

� How to Display Dialog Boxes in an Application

� DialogResult Property

� How to Use Input from Dialog Boxes

� Demonstration: Using the OpenFileDialog Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Dialog boxes are used to interact with the user and retrieve user input. Visual
Studio .NET provides some preconfigured dialog boxes that can be used in
Windows Forms applications to interact with users. This lesson introduces the
standard dialog boxes provided by Visual Studio .NET and also covers how to
use these dialog boxes to retrieve user input.

After completing this lesson, you will be able to:

� Select appropriate Visual Studio .NET dialog boxes for a Windows Forms
application.

� Use the dialog boxes available in Visual Studio .NET in a Windows Forms
application.

� Retrieve user input by using the DialogResult property.

Introduction

Lesson objectives

34 Module 2: Working with Controls

Selecting Dialog Boxes in Visual Studio .NET

PrintPreviewDialogPrintPreviewDialogPrintPreviewDialog Displays a document as it would appear when it is
printed
Displays a document as it would appear when it is
printed

PageSetupDialogPageSetupDialog Sets up page details for printingSets up page details for printing

PrintDialogPrintDialog Selects a printer and other printer-related settingsSelects a printer and other printer-related settings

FontDialogFontDialog Exposes the fonts that are currently installed on the
system
Exposes the fonts that are currently installed on the
system

ColorDialogColorDialog Allows users to select a color from the palette and add
colors to it
Allows users to select a color from the palette and add
colors to it

SaveFileDialogSaveFileDialogSaveFileDialog Selects files to save and the location where they are
saved
Selects files to save and the location where they are
saved

OpenFileDialogOpenFileDialogOpenFileDialog Allows users to open files through a preconfigured
dialog box
Allows users to open files through a preconfigured
dialog box

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET includes a set of preconfigured dialogs boxes, which you
can adapt for your own applications. Depending on the requirement of the
application, you can select an appropriate dialog box from any of the
preconfigured dialog boxes.

Use the OpenFileDialog control in a Windows Forms application as a simple
solution for file selection instead of configuring your own dialog box. When
using the OpenFileDialog control, you must write your own file-opening logic.
OpenFileDialog is the same File Open dialog box used in the Microsoft
Windows® operating system. When it is added to a form, the OpenFileDialog
control appears in the tray at the bottom of the Windows Forms Designer. It
inherits from the CommonDialog class.

The SaveFileDialog control enables users to save files in an application. As
with the other dialog boxes, when using the SaveFileDialog control, you must
write your own file-saving logic. SaveFileDialog is the same as the standard
Save File dialog box used by Windows. It inherits from the CommonDialog
class.

The Windows Forms ColorDialog control is a preconfigured dialog box that
allows the user to select a color from a palette and to add custom colors to that
palette. It is the same dialog box that you see in other Windows applications to
select colors.

The color selected in the dialog box is returned in the Color property. If the
AllowFullOpen property is set to False, the Define Custom Colors button is
disabled and the user is restricted to the predefined colors in the palette. If the
SolidColorOnly property is set to True, the user cannot select dithered colors.

The Windows Forms FontDialog control is the standard Windows Font dialog
box used to expose the fonts that are currently installed on the system. By
default, the dialog box includes options for Font, Font style, and Size. It also
includes check boxes for effects like Strikeout and Underline, and a drop-down
list for Script.

Introduction

OpenFileDialog

SaveFileDialog

ColorDialog

FontDialog

 Module 2: Working with Controls 35

The PrintDialog control is used to select a printer, choose the pages to print,
and determine other print-related settings in Windows applications. You can
provide users with options such as print all, print a specified page range, or
print a selection.

The PageSetupDialog control is used to set page details for printing in
Windows applications. You can enable users to set border and margin
adjustments, headers and footers, and portrait or landscape orientation.

The PageSetupDialog allows users to set properties that relate to either a single
page (PrintDocument class) or any document (PageSettings class).
Additionally, the PageSetupDialog control can be used to determine specific
printer settings, which are stored in the PrinterSettings class.

The PrintPreviewDialog control is used to display how a document will appear
when printed. The control contains buttons for printing, zooming in, displaying
one or multiple pages, and closing the dialog box.

PrintDialog

PageSetupDialog

PrintPreviewDialog

36 Module 2: Working with Controls

How to Display Dialog Boxes in an Application

� To display a preconfigured Visual Studio .NET dialog box

private void button1_Click(object sender,
System.EventArgs e)

{
OpenFileDialog1.ShowDialog();

}

private void button1_Click(object sender,
System.EventArgs e)

{
OpenFileDialog1.ShowDialog();

}

public void PerformCalculations()
{

MessageBox.Show ("The search is now complete",
"My Application",

MessageBoxButtons.OKCancel,
MessageBoxIcon.Asterisk);

}

public void PerformCalculations()
{

MessageBox.Show ("The search is now complete",
"My Application",

MessageBoxButtons.OKCancel,
MessageBoxIcon.Asterisk);

}

� To display a message dialog box

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You display dialog boxes in an application the same way you display a form.
To display any of the Visual Studio .NET dialog boxes in an application, you
need to write the code to load and display it, just the way you would display a
second form in the main form.

To display a preconfigured dialog box:

1. In the Code Editor, navigate to the event handler with which you want to
open the dialog box.
The first step is to locate the event handler that will be used to display the
dialog box. In an application, a dialog box is typically opened in response to
a button click or a menu command, but any event can be used.

2. Add the code to show the dialog box.
You use the ShowDialog method to display a dialog box in Windows Forms
applications.
private void button1_Click(object sender, System.EventArgs
e)
{
 openFileDialog1.ShowDialog();
}

Introduction

Procedure: Displaying a
preconfigured dialog
box

 Module 2: Working with Controls 37

You can display a message box by using the Show method of the MessageBox
class. The Show method requires that you supply the text of the message and
you can optionally specify the following: the dialog box caption, the buttons,
the icon, the default button, and options relating to how the message box and
the text that it contains will display.

public void PerformCalculations()
{
 MessageBox.Show ("The search is now complete",
 "My Application",
 MessageBoxButtons.OKCancel,
 MessageBoxIcon.Asterisk);
}

Procedure: Displaying a
message box

38 Module 2: Working with Controls

DialogResult Property

DialogResult Property

Use the value returned by this property to determine what action
the user has taken
Use the value returned by this property to determine what action
the user has taken

The value DialogResult.Cancel indicates that user clicked the
Cancel button
The value DialogResult.Cancel indicates that user clicked the
Cancel button

ExampleExampleExample

DialogResult property can be set at design time or run timeDialogResult property can be set at design time or run time

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you display a dialog box in an application, it is very important to know
the result input. For example, if you display a dialog box that prompts the user
to OK or Cancel an action, you need to know whether the user clicked the OK
or the Cancel button.

The user input in any dialog box is processed by the form that displays the
dialog box. You can use the DialogResult property of the form to determine the
result of the user input. Based on the value returned by the DialogResult
property, you can decide whether to discard or use the information returned by
the dialog box.

If a user clicks the Cancel button in a dialog box, the value of the DialogResult
property is set to DialogResult.Cancel. The parent form then retrieves this
value and discards the information in the dialog box.

You can set the DialogResult property at design time or run time. At design
time, you can set the DialogResult property for all the button controls in the
dialog box. Setting the DialogResult property at run time allows you to
dynamically handle user responses.

Introduction

DialogResult property

Example

Set DialogResult
property at design time
or run time

 Module 2: Working with Controls 39

How to Use Input from Dialog Boxes

public void DisplayValue()
{

DialogResult userResponse = openFileDialog1.ShowDialog();
{

if (userResponse == DialogResult.OK)
filePath = openFileDialog1.FileName.ToString();
MessageBox.Show("You successfully opened: '" + filePath
+ "'", "Success", MessageBoxButtons.OK,

MessageBoxIcon.Information,MessageBoxDefaultButton.Button1);
}
…
}

public void DisplayValue()
{

DialogResult userResponse = openFileDialog1.ShowDialog();
{

if (userResponse == DialogResult.OK)
filePath = openFileDialog1.FileName.ToString();
MessageBox.Show("You successfully opened: '" + filePath
+ "'", "Success", MessageBoxButtons.OK,

MessageBoxIcon.Information,MessageBoxDefaultButton.Button1);
}
…
}

To retrieve and use results from dialog boxesTo retrieve and use results from dialog boxes

Add code to retrieve DialogResult valueAdd code to retrieve DialogResult value

In the Code Editor, navigate to the event handler or the method for
which you want to set the DialogResult property
In the Code Editor, navigate to the event handler or the method for
which you want to set the DialogResult property

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After the dialog box is closed, the form that displayed the dialog box can
reference the values from the DialogResult property.

Introduction

40 Module 2: Working with Controls

To retrieve and use input from a dialog box:

1. In the Code Editor, navigate to the event handler or the method for which
you want to set the DialogResult property.

2. Add code to retrieve the DialogResult value.
The following code shows how user input is retrieved from an open file
dialog box.
public void DisplayValue()
{
 DialogResult userResponse =

 openFileDialog1.ShowDialog();
 if (userResponse == DialogResult.OK)
 {
 filePath = openFileDialog1.FileName.ToString();
 MessageBox.Show("You successfully opened: '" +

filePath + "'",
"Success",
MessageBoxButtons.OK,
MessageBoxIcon.Information,
MessageBoxDefaultButton.Button1);

 }
 else
 {
 MessageBox.Show("You canceled " +

"the open file operation.",
"Warning",
MessageBoxButtons.OK,
MessageBoxIcon.Warning,
MessageBoxDefaultButton.Button1,
MessageBoxOptions.RightAlign);

 }
}

Procedure

 Module 2: Working with Controls 41

Demonstration: Using the OpenFileDialog Control

In this demonstration, you will see how to

� Add an OpenFileDialog control to your
project

� Create the code to display the
OpenFileDialog

� Set the OpenFileDialog properties

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the OpenFileDialog control in a
Windows Forms application.

� Open the OpenFileDialog.sln file
• Open the OpenFileDialog.sln solution in Visual Studio .NET from

install_folder\Democode\Mod02\Mod02_05\Starter.

� Add an OpenFileDialog control to your project
1. Open Form1.cs in Design view.
2. In the Toolbox, double-click OpenFileDialog.

� Create the code to display the OpenFileDialog
1. Open Form1.cs in the Code Editor.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: show the OpenFileDialog and

check DialogResult.
4. Add the following code statement below the TODO line:

openFileDialog1.ShowDialog();
5. Run the application, and then click Use the OpenFileDialog Control.
6. Click Cancel, and then close the application.
7. What can you do to determine if the dialog box was closed by clicking

Open or by clicking Cancel?
You can use the DialogResult property of the parent form.
__

Introduction

Instructions

42 Module 2: Working with Controls

8. Replace the 'openFileDialog1.ShowDialog();' code statement with the
following code statements:
if (openFileDialog1.ShowDialog() == DialogResult.OK)
{
 filePath = openFileDialog1.FileName.ToString();
 MessageBox.Show("You successfully opened: '"
 + filePath + "'",
 "Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information,
 MessageBoxDefaultButton.Button1);
}
else
{
 MessageBox.Show("You canceled the operation.",
 "Warning",
 MessageBoxButtons.OK,
 MessageBoxIcon.Warning,
 MessageBoxDefaultButton.Button1,
 MessageBoxOptions.RightAlign);
}

9. Run the application, and then click Use the OpenFileDialog Control.
10. Click Cancel, and then close the application.

� Set the OpenFileDialog properties
1. In the Task List, double-click TODO: set the initial directory and filter

properties.
2. Add the following code statement below the TODO line:

openFileDialog1.InitialDirectory = Application.StartupPath;
openFileDialog1.Filter = "Text Files (*.txt)|*.txt";

3. Run the application, and then click Use the OpenFileDialog Control.
4. Use both Open and Cancel to close the dialog box, and then close the

application.
5. What happens when you select a file and click Open?

Properties of the OpenFileDialog are updated to reflect the file that you
selected. You can use this information to perform actions on the
selected file, such as displaying the contents of the file by using a
PrintPreviewDialog.
__

__

__

6. If time permits, experiment with additional OpenFileDialog properties,
such as Multiselect and CheckPathExists, and modify the appearance of
the message dialog boxes.

7. Save your project, and then close Visual Studio .NET.

 Module 2: Working with Controls 43

Lesson: Adding Controls at Run Time

� Controls Collection

� How to Add Controls at Run Time

� Practice: Adding and Removing Controls at Run Time

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides you with the flexibility of adding controls at run
time. This lesson introduces the controls collection and how controls can be
added at run time.

After completing this lesson, you will be able to:

� Use the Controls property to access the ControlCollection object of a
container.

� Add and remove controls from a container at run time.

Introduction

Lesson objectives

44 Module 2: Working with Controls

Controls Collection

� Controls Collection
� Represents a collection of Control objects
� Use the Add, Remove, and RemoveAt methods to add

and remove controls from the collection

Form1.Controls.Contains(textbox1);Form1.Controls.Contains(textbox1);

Form1.Controls.Remove(textbox1);Form1.Controls.Remove(textbox1);

Form1.Controls.Add(textbox1);Form1.Controls.Add(textbox1);

� Use the Contains method to determine whether or not
a control is a part of the collection

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides a collection object that contains all the controls on
a form or on a container control. This object is known as the ControlCollection
object and is accessed by using the Controls property of the form or control.
The controls collection represents a collection of Control objects. You can add
and remove controls from a container at run time by using the Controls
property. The ControlCollection Count property returns the number of
controls on the container and can be used to loop through the controls
collection.

The following table lists some of the methods of ControlCollection.

Method Description

Add Adds the specified control to the control collection.

AddRange Adds an array of control objects to the collection.

Clear Removes all controls from the collection.

Contains Determines whether the specified control is a
member of the collection.

Remove Removes the specified control from the control
collection.

RemoveAt Removes a control from the control collection at
the specified indexed location.

ToString (inherited from Object) Returns a String that represents the current Object.

IndexOf Retrieves the index of the specified control in the
control collection.

GetEnumerator Returns an enumerator that can be used to iterate
through the control collection.

Introduction

ControlCollection
Methods

 Module 2: Working with Controls 45

How to Add Controls at Run Time

To add controls at run timeTo add controls at run time

Create the control that will be added to your containerCreate the control that will be added to your container

CheckBox signatureCheckBox = new CheckBox();

// set properties

signatureCheckBox.Text = "Signature required";

signatureCheckBox.Left = 24;

signatureCheckBox.Top = 80;

CheckBox signatureCheckBox = new CheckBox();

// set properties

signatureCheckBox.Text = "Signature required";

signatureCheckBox.Left = 24;

signatureCheckBox.Top = 80;

Add the control to the container using the Add method of the
Controls property
Add the control to the container using the Add method of the
Controls property
// add the new control to the collection

GroupBox1.Controls.Add(signatureCheckBox);

// add the new control to the collection

GroupBox1.Controls.Add(signatureCheckBox);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can add and remove controls at run time by using the Controls property.
The ability to add controls at run time allows you to customize your application
based on user input. For example, you may want the application to display
additional menu items depending on the user input.

To add controls at run time:

1. Create a control that will be added to the form at run time.
The following code shows an example of how to create a CheckBox
control.
CheckBox signatureCheckBox = new CheckBox();

2. Add the control to the form or the container control by using the Add
method of the Controls property.
The following code adds the button control at a specific location in the
form.
signatureCheckBox.Name = "myCheckBox";
signatureCheckBox.Text = "Signature required";
signatureCheckBox.Width = 224;
signatureCheckBox.Left = 24;
signatureCheckBox.Top = 80;

GroupBox1.Controls.Add(signatureCheckBox);

When adding several controls to a parent control, it is recommended that
you call the SuspendLayout method before initializing the controls to be
added. After adding the controls to the parent control, call the ResumeLayout
method. This will increase the performance of applications with many controls.

Introduction

Procedure

Note

46 Module 2: Working with Controls

Practice: Adding and Removing Controls at Run Time

In this practice, you will

� Remove unwanted controls

� Add a new control

� Specify properties of the new control

8 min
Begin reviewing the objectives for

this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add and remove controls at run time.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\Mod02\Mod02_03\Starter.
2. Double-click the AddingAndRemovingControls.sln solution file to open the

project.

� Remove unwanted controls
1. Open Form1.cs in the Code Editor.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: remove controls from GroupBox1.
4. Add the following code statements below the TODO line:

lcv = GroupBox1.Controls.Count;
while (lcv > 2)
{
 GroupBox1.Controls.Remove(GroupBox1.Controls[lcv - 1]);
 lcv -= 1;
}

5. Run the application, click Use International Policies, and then click Use
Domestic Policies.

6. Close the application.

Introduction

Instructions

 Module 2: Working with Controls 47

� Add a new control
1. In the Task List, double-click TODO: create an instance of a CheckBox.
2. Add the following code statement below the TODO line:

CheckBox decimalCheckBox = new CheckBox();
3. In the Task List, double-click TODO: add a control to GroupBox1.
4. Add the following code statement below the TODO line:

GroupBox1.Controls.Add(decimalCheckBox);
5. Run the application, click Use International Policies, and then click Use

Domestic Policies.
6. Why does the decimalCheckBox appear in the upper-left corner of

GroupBox1?
The default values for the location property of a control are zero for
both the X and the Y coordinates.
__

__

7. Close the application.

� Specify properties of the new control
1. In the Task List, double-click TODO: specify the control properties.
2. Add the following code statement below the TODO line:

decimalCheckBox.Left = 24;
decimalCheckBox.Top =
GroupBox1.Controls[GroupBox1.Controls.Count - 1].Top
 + 32;
decimalCheckBox.Text = "Use comma seperated decimals";
decimalCheckBox.Name = "commaSeperatedDecimalsCheckBox";

3. Run the application, click Use International Policies, and then click Use
Domestic Policies.

4. Close the application.
5. In the Task List, double-click TODO: specify the control properties.
6. Add the following code statement below the TODO line:

decimalCheckBox.Width = 224;
7. Run the application, click Use International Policies, and then click Use

Domestic Policies.
8. Close the application.

48 Module 2: Working with Controls

9. If time permits, open Form1.cs in Design view and perform the following
steps:
a. Drag the Use local dataset when available CheckBox from

GroupBox1 to GroupBox2 and then drag it back to its original position
on GroupBox1.
This is now the last control added to GroupBox1.

b. Run the application and test your code by clicking the radio buttons.
c. Remove Print report automatically from GroupBox1 and then replace

it.
Print report automatically is now the last control in the
ControlCollection of GroupBox1.

d. Test your application again to see that your code now adds controls to
GroupBox1 in the desired locations.

10. Save your project, and then close Visual Studio .NET.

 Module 2: Working with Controls 49

Lesson: Creating Menus

� How to Add a Context Menu to a Form

� How to Add Menu Items at Run Time

� How to Create Event Handlers for Menu Items

� How to Use Menu Properties

� Practice: Updating Menus at Run Time

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Menus and context menus are ways of exposing functionality to your users or
alerting them to important information in your application. Menus hold
commands, grouped by a common theme. Context menus pop up in response to
a right-click of the mouse and hold commonly used commands for a particular
area of an application.

You can have multiple main menus for an application. If your application
is large, then you could use different menus for different parts of an application.

After completing this lesson, you will be able to:

� Create context menus.
� Add menu items at run time.
� Create shortcuts for menus.
� Enable the checked property for menu items.

Introduction

Note

Lesson objectives

50 Module 2: Working with Controls

How to Add a Context Menu to a Form

To add controls at run timeTo add controls at run time

Associate the context menu with a form or a control by setting that
object’s ContextMenu property
Associate the context menu with a form or a control by setting that
object’s ContextMenu property

In the Toolbox, double-click the ContextMenu controlIn the Toolbox, double-click the ContextMenu control

To add a context menu programmaticallyTo add a context menu programmatically

public void AddContextMenu()
{
ContextMenu mnuContextMenu = new ContextMenu();
this.ContextMenu = mnuContextMenu;

}

public void AddContextMenu()
{
ContextMenu mnuContextMenu = new ContextMenu();
this.ContextMenu = mnuContextMenu;

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Windows Forms ContextMenu control is used to provide users with an
easily accessible menu of frequently used commands that are associated with
the selected object. The items in a context menu are frequently a subset of the
items from main menus that appear elsewhere in the application. Context menus
are usually available by right-clicking the mouse. On Windows Forms they are
associated with controls.

To add a context menu at design time:

1. Add the context menu from the Toolbar to the form.
In the Toolbox, double-click the ContextMenu control.

2. Associate the context menu with a form or a control by setting that object’s
ContextMenu property.
You can associate a context menu with a control by setting the control’s
ContextMenu property to the ContextMenu control. You can associate a
single context menu with multiple controls, but each control can have only
one context menu.

To add a context menu at design time:

1. Create a new method that will include the code required to create a menu
item.
public void AddContextMenu()
{

}

2. Create an instance of the context menu.
Add the code as shown to create an instance of the context menu.
ContextMenu mnuContextMenu = new ContextMenu();
this.ContextMenu = mnuContextMenu;

Introduction

Procedure: Adding a
context menu at design
time

Procedure: Adding a
context menu at design
time

 Module 2: Working with Controls 51

How to Add Menu Items at Run Time

To add menu items to a context menu at run timeTo add menu items to a context menu at run time

Within the method, add menu items to the MenuItems collection of
the ContextMenu object
Within the method, add menu items to the MenuItems collection of
the ContextMenu object
contxMenu.MenuItems.Add(menuItemNew);contxMenu.MenuItems.Add(menuItemNew);

Within the method, set the Text property for each menu itemWithin the method, set the Text property for each menu item

menuItemNew.Text = "&New";menuItemNew.Text = "&New";

Within the method, create MenuItem objects to add to the Context
Menu Object collection
Within the method, create MenuItem objects to add to the Context
Menu Object collection
MenuItem menuItemNew = new MenuItem();MenuItem menuItemNew = new MenuItem();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you add a ContextMenu control to your form, you add menu items to it.
Menu contents are stored in a collection. You can add menu items to a context
menu at run time by adding MenuItem objects to this collection.

The key property of the ContextMenu control is the MenuItems property. You
can add menu items by programmatically creating MenuItem objects and
adding them to the MenuItems collection of the context menu. Because the
items in a context menu are usually drawn from other menus, you will most
frequently add items to a context menu by copying them. You can also disable,
hide, or delete menu items.

To add items to a context menu at run time:

1. In the method to create a context menu, create MenuItem objects which are
added to the Controls collection.
MenuItem menuItemNew = new MenuItem();

2. Set the Text property for each menu item.
menuItemNew.Text = "&New";

3. Add menu items to the MenuItems collection of the ContextMenu object.
contxMenu.MenuItems.Add(menuItemNew);

You can add images to menu items. To add images to menu items, create
an instance of the MenuItem class, override the OnPaint() method, and draw
an image to the left of the menu item text.

Introduction

Procedure

Note

52 Module 2: Working with Controls

How to Create Event Handlers for Menu Items

To add functionality to menu itemsTo add functionality to menu items

Create an event handler for the MenuItem.Click eventCreate an event handler for the MenuItem.Click event

private void menuItem1_Click(object sender,
System.EventArgs e)

{

}

private void menuItem1_Click(object sender,
System.EventArgs e)

{

}

Write the code to handle the eventWrite the code to handle the event

private void menuItem1_Click(object sender,
System.EventArgs e)

{

MessageBox.Show("You clicked the File
menu.","The Event Information");

}

private void menuItem1_Click(object sender,
System.EventArgs e)

{

MessageBox.Show("You clicked the File
menu.","The Event Information");

}
*****************************ILLEGAL FOR NON-TRAINER USE******************************

After a menu structure is established, you provide functionality to it. You
provide functionality to a menu by creating an event handler for the
MenuItem.Click event and writing code to handle the event.

To add functionality to menu items:

1. Create an event handler for the MenuItem.Click event.
private void menuItem1_Click(object sender,
 System.EventArgs e)
{

}

2. Write the code to handle the MenuItem.Click event.
private void menuItem1_Click(object sender,
 System.EventArgs e)
{
 MessageBox.Show("You clicked menuItem1",
 "Menu Event");
}

Introduction

Procedure

 Module 2: Working with Controls 53

How to Use Menu Properties

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Menu items include several properties that enable you to enhance the user
experience. These properties include properties for creating shortcut keys and
enabling and disabling menu items by using check marks, radio buttons, and so
on.

Shortcut keys provide a method for users to activate frequently used menu
items in the menu system and to provide keyboard access to the application.

For example, in Microsoft Word, you can open a file by using the Ctrl+O
shortcut or save a file by pressing Ctrl+S.

Introduction

Procedure: Creating
shortcut keys

54 Module 2: Working with Controls

To create a shortcut for menu items:

1. Select the menu item for which you need to create a shortcut.
2. In the Properties dialog box, select the Shortcut property.

3. Select the required shortcut in the shortcut list.
4. In the Properties dialog box, set the ShowShortcut property to True.

You can use the Checked and RadioCheck property to identify the selected
menu item in a group of mutually exclusive menu items. You can also place a
check mark on a menu item in a group of items to identify the size of the font to
be displayed for the text in an application.

For example, mutually exclusive items on the View menu in Windows Explorer
use a check or a radio button to show the selected option.

Procedure: Displaying
checked menu items

 Module 2: Working with Controls 55

To display checked menu items:

1. Select the menu item.
2. In the Properties dialog box, set the Checked property to True.

To display the radio check for menu items:

1. Select the menu item.
2. In the Properties dialog box, set the Checked property to True.
3. Set the RadioCheck property to True.

You may want to disable certain menu items for users depending on their roles,
permission, or their input. You can use the Enable property to enable or disable
menu item. If the value of the Enable property is set to True, the menu item is
enabled. However, if the value is set to False, the menu item is disabled.

To enable or disable menu items:

1. Select the menu item.
2. Set the Enabled property to True or False.

Procedure: Enabling and
disabling menu items

56 Module 2: Working with Controls

Practice: Updating Menus at Run Time

In this practice, you will

� Use a second MainMenu control

� Assign a context menu to a control

� Identify the control associated with a
context menu

� Add a menu item at run time

� Use the Checked property of a menu item

12 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will update the menus in an application at run time.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\Mod02\Mod02_04\Starter.
2. Double-click the RuntimeMenus.sln solution file to open the project.

� Use a second MainMenu
1. Run the application, open the File menu, and then open the View menu.
2. On the Reports tab, open the File menu, open the View menu, and then

close the application.
Notice that the menu items do not really match the requirements of the
Reports tab.

3. In Solution Explorer, click Form1, and then click View Code.
4. On the View menu, point to Show Tasks, and then click Comment.
5. In the Task List, double-click TODO: assign a different MainMenu to a

form.
6. Add the following code statement below the TODO line:

this.Menu = MainMenu2;
7. Run the application, open the File menu, and then open the View menu.

Introduction

Instructions

 Module 2: Working with Controls 57

8. Click the Reports tab, open the File menu, and then open the View menu
again.

9. When would you use more than one MainMenu control in an application?
It can be helpful to use (display) more than one MainMenu object when
the context of your application changes, or when your application has
multiple states.
__

__

10. Close the View menu, and then close the application.

� Assign a ContextMenu to a control
1. In the Task List, double-click TODO: create a control and assign a

context menu to it.
2. Add the following code statements below the TODO line:

Label fileLabel1 = new Label();
fileLabel1.Dock = DockStyle.Top;
fileLabel1.Text = Application.StartupPath & "\Chai.txt";
fileLabel1.ContextMenu = ContextMenu1;
this.Panel1.Controls.Add(fileLabel1);

3. Run the application, right-click the Label control displaying the Chai.txt file
path, and then click Open.

4. Click OK, and then close the application.
5. How can you identify which control is associated with a ContextMenu?

The ContextMenu.SourceControl property gets the control that
displayed the shortcut menu.
__

__

� Identify the control associated with a ContextMenu
1. In the Task List, double-click TODO: use the SourceControl property.
2. Add the following code statements below the TODO line:

Panel1.Controls.Remove(ContextMenu1.SourceControl);
3. Run the application, right-click the Label control displaying the Chai.txt file

path, and then click Remove from list.
4. On the View menu, click Show Previously Opened Files, and then open

the File menu.
5. Close the File menu, and then close the application.
6. What method of a MenuItem object is used to add a menu item at run time?

The Add method.
__

58 Module 2: Working with Controls

� Add a menu item at run time
1. In the Task List, double-click TODO: add a menu item to a menu.
2. Add the following code statements below the TODO line:

fileMenuItem.MenuItems.Add(previousFile1);
3. Run the application, and then, on the View menu, click Show Previously

Opened Files.
4. Open the File menu, and then open the View menu.

Notice that the item has been added to the File menu.
5. Close the application.
6. Is there any way to show the user that you are currently displaying the

previously opened file on the File menu?
You can use the Checked property of a menu item to indicate when a
menu item has been selected. By switching this property on and off each
time it is clicked and adding the appropriate code to your application,
you can make the menu item perform like a radio button.
__

__

__

� Use the Checked property of a menu item to signal the user
1. In the Task List, double-click TODO: display a menu item as checked.
2. Add the following code statements below the TODO line:

viewShowPreviousMenuItem.Checked = true;
3. Run the application, and then, on the View menu, click Show Previously

Opened Files.
4. Open the File menu, and then open the View menu.
5. On the View menu, click Show Previously Opened Files.
6. Open the File menu, and then open the View menu.
7. If time permits, examine the code used to remove a menu item from the File

menu and the code used to respond to the click events of the second context
menu.

8. Close the application, save your project files, and then close Visual Studio
.NET.

 Module 2: Working with Controls 59

Lesson: Validating User Input

� How to Validate Controls by Using the Validating Event

� ErrorProvider Control

� How to Use the ErrorProvider Control

� Demonstration: Validating Data in a Windows Forms
Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Whether you are writing a simple calculator application or an interface for a
complex database, you will need to validate information entered by a user. This
lesson describes how to validate user input in a Windows Forms application. It
also describes how to display an error message if the user input is invalid.

After completing this lesson, you will be able to:

� Validate user input by using the Validating event of a control.
� Use the ErrorProvider control to notify the user when an entered value

does not meet acceptance criteria.
� Display appropriate error messages when users enter invalid data.

Lesson objectives

60 Module 2: Working with Controls

How to Validate Controls by Using the Validating Event

� Use the Validating event of a control to validate user
input

� The Validated event fires after the validation of the
controls finishes running the validating events

� The CausesValidation property determines whether the
previous control will participate in validation. If set to
False for a control, the previous control does not fire
the validation event

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In most applications, a user enters information for the application to process.
Data validation ensures that every data value entered into your application is
accurate and of a valid data type.

Visual Studio .NET includes the Validating event for controls, which occurs
before a control loses focus. This event occurs only when the
CausesValidation property of the control that is about to receive the focus is
set to True (which is the default). Use both the Validating event and
CausesValidation property for a control to evaluate input before allowing the
user to move focus away from that control.

The simplest way to validate data in a Windows Forms application is to use the
Validating event. The Validating event also allows you to control when focus
can be moved to other controls. By using the Validating event, you can prevent
the focus from shifting to another control until all validation rules have been
met. Possible uses for the Validating event include:

� A data entry application must perform more sophisticated validation than is
provided by the Masked Edit control.

� A form must prevent users from moving off a control, by pressing TAB or a
shortcut key, until data has been entered in a field.

The CausesValidation property works with the Validating event to limit when
a control can lose focus. You can set the CausesValidation property to
determine whether the Validating event will occur on a second control from
which the focus is being shifted. If the Validating event is being handled for a
TextBox, and the user clicks a button that has its CausesValidation property
set to True, the Validating event for the text box will fire. However, if the
CausesValidation property for the button is set to False, the Validating event
will not fire. By default, the CausesValidation property is set to True for all
controls.

Introduction

Validating event

CausesValidation
property

 Module 2: Working with Controls 61

To use the Validating event of a TextBox control:

1. Add a TextBox control to a form.
2. In the Code Editor, in the procedure list, click the Validating event.
3. Type a validation code in the Validating event for the TextBox.

private void minValueTextBox_Validating(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 if (Convert.ToInt32(minValueTextBox.Text) >=
 Convert.ToInt32(maxValueTextBox.Text))
 {
 e.Cancel = true;
 MessageBox.Show("You must enter a minimum value " +
 "that is less than the maximum value");
 }
}

4. Set the CausesValidation property to False for any controls for which you
do not want the Validating event to fire, such as a Help button.

Procedure: Validating a
control

62 Module 2: Working with Controls

ErrorProvider Control

� ErrorProvider

� Displays errors when validating user input on a form

� Displays errors within a dataset

� Key Properties

� Key Method

DataSourceDataSource ContainerControlContainerControl IconIcon

SetErrorSetError

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Windows Forms ErrorProvider control allows you to display an error
message if the data entered by the user is invalid. It is used with validating user
input on a form or displaying errors in a dataset.

An error provider is a better alternative than displaying an error message in a
message box. If you display the error message in a message box, the error
message is no longer visible if the user dismisses the message box. In the case
of the ErrorProvider control, it displays an error icon next to the relevant
control. When the user positions the mouse pointer over the error icon, a
ToolTip appears, showing the error message string.

The key properties of the ErrorProvider control are:

� ContainerControl
You must set the ContainerControl property to the appropriate container
for the ErrorProvider control to display an error icon on the form. When
you add the control in the designer, the ContainerControl property is
automatically set to the containing form. If you add the control in code, you
must set it manually.

� DataSource
When the DataSource property is set, the ErrorProvider control displays
error messages for a dataset.

� Icon
The Icon property can be set to a custom error icon instead of the default.

The key method of the ErrorProvider control is the SetError method, which
specifies the control that the error icon should appear next to, and the value of
the error message string.

Introduction

Advantage of using
ErrorProvider

ErrorProvider properties

ErrorProvider methods

 Module 2: Working with Controls 63

How to Use the ErrorProvider Control

To use the To use the ErrorProviderErrorProvider controlcontrol

Add the ErrorProvider controlAdd the ErrorProvider control

Add controls to the formAdd controls to the form

Add code to the Validating event of the first controlAdd code to the Validating event of the first control

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use a Windows Forms ErrorProvider control to display an error icon
when the user enters invalid data.

To display an error icon by using the ErrorProvider control:

1. Add the controls to be validated to the form.
2. Add the ErrorProvider control.
3. Select the first control and add code to its Validating event handler.

The following code tests for integer values in a text box. If the data is
invalid, an error icon displays next to the text box.
protected void textBox1_Validating (object sender,
 CancelEventArgs e)
{
 try
 {
 int x = Int32.Parse(textBox1.Text);
 errorProvider1.SetError(textBox1, "");
 }
 catch
 {
 errorProvider1.SetError(textBox1,
 "Not an integer value.");
 }
}

Introduction

Procedure

64 Module 2: Working with Controls

Demonstration: Validating Data in a Windows Forms Application

In this demonstration, you will see how to

� Check user keystrokes

� Stop the focus from shifting away from the current
control

� Use a message box to provide feedback

� Use an ErrorProvider control to provide feedback

� Remove the ErrorProvider icon when the error no
longer exists

� Change the Icon displayed by the ErrorProvider

� Enable the user to get help

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration you will see how to validate user input in a Windows
Forms application.

� Open the ValidatingInput.sln file
1. Open the ValidatingInput.sln solution in Visual Studio .NET from

install_folder\Democode\Mod02\Mod02_06\Starter.
2. Open Form1.cs in Design view.
3. In the Toolbox, double-click ErrorProvider.

� Check user keystrokes
1. Open the Form1.cs in the Code Editor.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: check for valid characters.
4. Add the following code statements below the TODO line:

if (!char.IsDigit(e.KeyChar))
{
 e.Handled = true;
 MessageBox.Show("Integer numbers only");
}

5. Run the application, press a letter key on the keyboard, and then click OK.
6. Close the application.
7. What happens if you don’t include the code statement that sets the value of

the Handled property to true?
The character representing the key that was pressed will be added to
the text box.
__

Introduction

Instructions

 Module 2: Working with Controls 65

� Stop the focus from shifting away from the current control
1. In the Task List, double-click TODO: don’t let the focus shift.
2. Add the following code statement below the TODO line:

e.Cancel = true;
3. Run the application, type 15 and then click Submit Data and Exit.
4. Type 5 and then click Submit Data and Exit.
5. Close the application.

� Use a message box to provide feedback
1. In the Task List, double-click TODO: give the user feedback using a

messagebox.
2. Add the following code statement below the TODO line:

MessageBox.Show("You must enter a minimum value that " +
 "is less than the maximum value");

3. Run the application, type 15 and click Submit Data and Exit.
4. Type 5 and then click Submit Data and Exit.
5. Close the application.

� Use an ErrorProvider control to provide feedback
1. Open Form1.cs in the Code Editor.
2. In the Task List, double-click TODO: use the error provider to provide a

message.
3. Add the following code statement below the TODO line:

errorProvider1.SetError(epMinTextBox,
 "The minimum value must be smaller " +
 "than the maximum value");

4. Run the application, press TAB, press TAB again, type 15 and then click
Submit Data and Exit.

5. Position the mouse over the ErrorProvider icon that is displayed to the
right of the text box.

6. Type 5 and then click inside one of the other text boxes on the form.
7. What can you do to remove the ErrorProvider message?

Set the error description value of the SetError property to a zero length
string.
__

8. Close the application.

66 Module 2: Working with Controls

� Remove the ErrorProvider icon when the error no longer exists
1. In the Task List, double-click TODO: reset the error provider.
2. Add the following code statement below the TODO line:

errorProvider1.SetError(epMinTextBox, "");
3. Run the application, press TAB, press TAB again, type 15 and then click

Submit Data and Exit.
4. Type 5 and then click inside one of the other text boxes on the form.
5. Close the application.

� Change the icon displayed by the ErrorProvider
1. In the Task List, double-click TODO: change the icon displayed by the

error provider.
2. Add the following code statements below the TODO line:

Icon ico = new Icon(Application.StartupPath +
 @"\msgbox01.ico");
errorProvider1.Icon = ico;

3. Run the application, press TAB, press TAB again, type 6 and then press
TAB.

4. Type 4 and then click Submit Data and Exit.
5. Type 8 and then click Submit Data and Exit.

� Enable the user to get help
1. Run the application, press TAB, press TAB again, type 15 and then click

Help.
2. Type 4 and then click Submit Data and Exit.
3. Open Form1.cs in Design view.
4. Click Help, and then, in the Properties window, set the value of

CausesValidation to False.
5. Run the application, press TAB, press TAB again, type 15 and then click

Help.
6. Close the application.
7. Save your project, and then close Visual Studio .NET.

 Module 2: Working with Controls 67

Review

� Creating an Event Handler for a Control

� Using Windows Forms Controls

� Using Dialog Boxes in a Windows Forms Application

� Adding Controls at Run Time

� Creating Menus

� Validating User Input

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How are events raised and handled in the .NET Framework?
Events are raised by an event sender in response to either a user action
or an application-generated occurrence. A delegate is used to connect
the event sender with the event receiver that is used to handle the event.

2. In the user interface of a hotel room reservation application, you want to let
users choose a mode of payment (credit, cash, or check). What controls
could you use to create this feature in your application?
There are several ways to provide the user with several options and
restrict them to a single selection. Since there are only three options in
this example, one of the simplest solutions would be to provide three
RadioButton controls on the form. For situations involving a larger
number of options, one of the list controls would be a better choice (for
example, the ListBox control).

3. How do you display tooltips for the Toolbar buttons?
You can create tooltips for the buttons on a ToolBar control by opening
the ToolBarButton Collection Editor and specifying a value for the
ToolTipText property of a ToolBarButton.

68 Module 2: Working with Controls

4. How can you determine the action taken by a user when the user closes a
dialog box?
The DialogResult property of the parent form is used to capture the
action taken to close a dialog box. For example, DialogResult can be
used to determine whether the OpenFileDialog was closed by clicking
Open or by clicking Cancel.

5. How is an ErrorProvider control used?
The ErrorProvider control is used to associate an invalid-data error
message with the controls on a form. To use the ErrorProvider control,
open the Validating event handler for a control and use the SetError
method of the ErrorProvider control to specify the control and the
error message. At run time, an icon will appear next to the specified
control.

6. What property of a container control is used to access the
ControlCollection and what are the primary properties and methods of the
ControlCollection class that can be accessed using this property?
The Controls property of a container is used to access the
ControlCollection object. The primary properties and methods of the
ControlCollection that can be accessed through the Controls property
are Count, Add, and Remove.

 Module 2: Working with Controls 69

Lab 2.1: Working with Controls

� Exercise 1: Creating and Using Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Create an event handler for a control.
� Create and use a ToolBar control.
� Add and remove a control from ControlCollection at run time.
� Assign a context menu to a control at run time.

This lab focuses on the concepts in Module 2, “Working with Controls,”
in Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET). As a result, this lab may not comply with Microsoft security
recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to create and use a ToolBar control.
� The knowledge and skills to add and remove controls from

ControlCollection at run time.
� The knowledge and skills to use a context menu as a shortcut menu for a

control.

Objectives

Note

Prerequisites

70 Module 2: Working with Controls

You are an application developer at a trading company called Northwind
Traders. The department that you work in is developing a Purchase Order
application that will be used by the Northwind Traders sales force. You have
been assigned the task of completing the user interface and generating some of
the underlying code for the Purchase Order application.

To complete this task, you must add a toolbar to the project and assign
properties to the buttons of the toolbar, create an event handler that specifies
which toolbar button was clicked by a user, and call the appropriate procedure
for each button. You must also develop code that creates an instance of a
composite control at run time, assigns a context menu to the new control, and
adds the new control to the control collection of a Panel control that already
exists on the main form of the application. To finish this task, you will develop
code that handles the click event for a ContextMenu control, determines the
control that raised the event, and removes that control from a control collection.

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 2: Working with Controls 71

Exercise 1
Creating and Using Controls
In this exercise, you will begin by opening an existing Windows Forms application. You will add a
ToolBar control to the main form of the application, add the appropriate number of buttons to the
ToolBar control, and set values for each of the buttons. After the design for the toolbar is complete,
you will develop the code that handles the ButtonClick event of the toolbar and responds
appropriately for each of the different buttons. You will then develop the code statements required
to create an instance of a composite control, associate a context menu with the control, and then add
the control to the control collection of a Panel control that already exists on the form. You will
finish this exercise by creating the event handler for a ContextMenu control, developing the code
that determines which control raised the event, and removing that control from the controls
collection of the Panel control to which it belongs. This exercise assesses your knowledge of events
and event handlers as well as your ability to use Windows Forms controls and ContextMenus at
run time.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab02_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab02_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Scenario
You have been given the task of adding a toolbar to the Purchase Order application and completing
some code sections that are used to display purchase item data. You have been given the following
table that contains design specification data for the toolbar. You will use this design information to
construct the toolbar and the buttons that it contains.

Item Item property Property value

ToolBar Name POToolBar

POToolBar ImageList POImageList

POToolBar Member 0 Name RefreshToolBarButton

POToolBar Member 1 Name AddOrderItemToolBarButton

POToolBar Member 2 Name SaveOrderToolBarButton

POToolBar Member 3 Name PrintPreviewToolBarButton

POToolBar Member 4 Name SubmitToolBarButton

POToolBar Member 5 Name ViewUnsubmittedToolBarButton

POToolBar Member 6 Name ViewSubmittedToolBarButton

RefreshToolBarButton Tag Refresh

RefreshToolBarButton ImageIndex 0

RefreshToolBarButton ToolTipText Refresh product and customer data

AddOrderItemToolBarButton Tag Add

AddOrderItemToolBarButton ImageIndex 1

AddOrderItemToolBarButton ToolTipText Add a new order item to the purchase order

SaveOrderToolBarButton Tag Save

SaveOrderToolBarButton ImageIndex 2

SaveOrderToolBarButton ToolTipText Save the current purchase order

72 Module 2: Working with Controls

(continued)
Item Item property Property value

PrintPreviewToolBarButton Tag PrintPreview

PrintPreviewToolBarButton ImageIndex 3

PrintPreviewToolBarButton ToolTipText Print preview

SubmitToolBarButton Tag Submit

SubmitToolBarButton ImageIndex 4

SubmitToolBarButton ToolTipText Submit purchase order data to the NWTraders
database

ViewUnsubmittedToolBarButton Tag Unsubmitted

ViewUnsubmittedToolBarButton ImageIndex 5

ViewUnsubmittedToolBarButton ToolTipText View the unsubmitted orders

ViewSubmittedToolBarButton Tag Submitted

ViewSubmittedToolBarButton ImageIndex 6

ViewSubmittedToolBarButton ToolTipText View report of submitted orders

After you have created the toolbar, you will develop code for the ToolBar.ButtonClick event. The
following table identifies the actions that should be taken when each button is clicked.

Toolbar button name Action taken when this button is clicked

RefreshToolBarButton DataRefreshMenuItem.PerformClick()

AddOrderItemToolBarButton NewOrderItemButton.PerformClick()

SaveOrderToolBarButton SaveOrderButton.PerformClick()

PrintPreviewToolBarButton PrintPreview()

SubmitToolBarButton DataSubmitMenuItem.PerformClick()

ViewUnsubmittedToolBarButton ViewUnsubmittedOrdersMenuItem.PerformClick()

ViewSubmittedToolBarButton ViewSubmittedOrdersMenuItem.PerformClick()

 Module 2: Working with Controls 73

After the toolbar is complete, you will develop the code to add and remove an instance of a
composite control from the controls collection of a container control (the Panel control,
ProductOrderPanel, has already been added to the main form of the Purchase Order application).
Each composite control represents a single purchase item; together, these purchase items make up a
purchase order. Although users can add a new purchase item by using either
NewOrderItemButton or AddOrderItemToolBarButton, you will add your code to the event
handler for the NewOrderItemButton.Click event. You will add code to this event handler that
creates an instance of the composite control (PurchaseOrder.OrderItemControl), sets the
ContextMenu property of the new control (the context menu is used by the application user to
remove a purchase item from the Panel control), and adds the control to the controls collection. To
finish up this task, you will create an event handler that responds to a context menu click event, and
you will develop the code that removes a purchase item (the purchase item that raised the context
menu click event) from the controls collection of ProductOrderPanel.

Tasks Additional information

1. Open the
Lab02Application.sln file in
Visual Studio .NET. The
solution file is located in
install_folder\Labfiles\
Lab02_1\Ex01\Starter\
Lab02Application.

a. For more information about opening a project file and starting an
application, see the following resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box. For additional information about
starting an application from Designer, search the Index by using the
phrase Debugging Windows Applications.

2. In the Design view, add a
ToolBar control to
MainForm.cs. Configure the
toolbar as specified in the
scenario.

a. For more information about the ToolBar control, see the following
resources:

• Lesson, Using Windows Forms Controls, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice, Creating and Using a ToolBar Control, in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Introduction to the Windows Forms ToolBar Control.

3. Use the Task List to locate
the code section ‘TODO:
create an event handler for
the POToolBar.ButtonClick
event’, and then create an
event handler for the
POToolBar.ButtonClick
event. Develop the code that
will invoke the appropriate
action when a ToolBar
button is clicked.

a. For more information about the ToolBar.ButtonClick event and
determining which button on a toolbar caused the ButtonClick event to
be raised, see the following resources:

• Lesson, Using Windows Forms Controls, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice, Creating and Using a ToolBar Control, in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. For additional
information about handling the ButtonClick event of a ToolBar
control and to see an example demonstrating a method for
determining which button of a toolbar raised the ButtonClick
event, search by using the phrase ToolBar.ButtonClick Event.

74 Module 2: Working with Controls

Tasks Additional information

4. Run your application to test
the toolbar and the
ButtonClick event handler.
You can position the mouse
over the ToolBar buttons to
display ToolTips and click
the buttons to make sure that
your ButtonClick event
handler is working correctly.

a. For more information about the purchase order sample application, see
the following resources:

• Demonstration, Purchase Order Application, in Module 0,
“Introduction,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

5. Use the Task List to locate
the code section 'TODO:
create a purchase item', and
then create an instance of
the
PurchaseOrder.OrderItem
Control control named
tempProductOrder that
uses ProductContextMenu
as a context menu.

a. For more information about using a ContextMenu control at run time,
see the following resources:

• Lesson, Creating Menus, in Module 2, “Working with Controls,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice, Updating Menus at Run Time, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Adding Context Menus to Windows Forms.

6. Use the Task List to locate
the code section 'TODO:
add a purchase item to
ProductOrderPanel', and
then add the new purchase
item to the controls
collection of the
ProductOrderPanel
control.

a. For more information about adding controls to a control collection, see
the following resources:

• Lesson, Adding Controls at Run Time, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice, Adding and Removing Controls at Run Time, in Module
2, “Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Control.Controls Property.

7. Use the Task List to locate
the code section 'TODO:
determine the index number
of the control that will be
deleted', and then assign the
index number of the control
that displayed the context
menu to a variable named
currentControlIndex.

a. For more information about determining which control displayed a
context menu, see the following resources:

• Lesson, Creating Menus, in Module 2, “Working with Controls,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice, Updating Menus at Run Time, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase ContextMenu.SourceControl.

 Module 2: Working with Controls 75

Tasks Additional information

8. Use the Task List to locate
the code sections 'TODO:
remove a control from the
middle of the
ProductOrderPanel control
collection' and 'TODO:
remove a control from the
end of the
ProductOrderPanel control
collection' and then, in each
case, create a code statement
that will remove the control
that displayed the context
menu from the controls
collection of
ProductOrderPanel.

a. For more information about removing controls from
ControlCollection, see the following resources:

• Lesson, Adding Controls at Run Time, in Module 2, “Working
with Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice, Adding and Removing Controls at Run Time, in Module
2, “Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Control.ControlCollection.Remove Method.

9. Run your application to test
the code that you just
created. You should now be
able to add and remove
purchase items from the
controls collection of
ProductOrderPanel.

Additional information is not necessary for this task.

10. Save your changes, and then
close Visual Studio .NET.

Additional information is not necessary for this task.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Extending and Creating Controls 2

Lesson: Adding Design-Time Support for
Controls 19

Lesson: Licensing a Control 27

Review 38

Lab 3.1: Building Controls 40

Module 3: Building
Controls

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: Building Controls iii

Instructor Notes
This module provides students with an overview of developing and authoring
their own controls. In the module, students will learn about the various options
for authoring controls. Students learn how to extend existing controls and create
new controls. They also learn how to specify property attributes for controls.
Finally, they also learn how to license controls.

After completing this module, students will be able to:

� Extend an existing control.
� Create a composite control by combining functionality of several existing

Microsoft® .NET Framework Windows Forms controls.
� Describe the design-time support options for components provided by

Microsoft Visual Studio® .NET.
� Add attributes that provide information to the Visual Designer.
� Create and validate licenses for controls.

To teach this module, you need the Microsoft PowerPoint® file 2555A_03.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices, demonstrations, and lab.

Presentation:
60 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 3: Building Controls

How to Teach This Module
This section contains information that will help you to teach this module. The
following are some tips on how to teach this module:

� Lab 3.1, “Building Controls” is based on the Purchase Order application in
Course 2555A, Developing Microsoft .NET Applications for Windows®
(Visual C#™ .NET) and is intended to simulate a real-world environment in
which students will demonstrate what they learned during the lecture and
practice portions of the module. The lab does not provide step-by-step
detailed instructions; instead, the students are given tasks to complete in the
left column and a list of resources that they can use (if they need help) in the
right column. Students get the hands-on experience that they need by
completing the practice activities at the end of each lesson.

� Find out from students if they are interested in learning about licensing
controls. It students are not interested in learning about licensing controls,
you can skip the lesson, “Licensing a Control.”

Lab: Building Controls
� Make sure that you have demonstrated the two lab applications—the

Expense Report application and the Purchase Order application—in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET) before students begin the lab. For more information about
how to demonstrate lab scenarios, see the Introduction module in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET).

� Practice exercises will enable students to successfully complete the lab
exercises. Therefore, make sure that students have completed all practice
exercises before they begin the lab.

 Module 3: Building Controls 1

Overview

� Extending and Creating Controls

� Adding Design-Time Support for Controls

� Licensing a Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® .NET Framework Windows Forms controls are reusable
components that encapsulate user interface functionality and are used in client-
side Microsoft Windows® applications. Windows Forms provide many ready-
to-use controls, but they also provide the infrastructure for developing your own
controls.

After completing this module, you will be able to:

� Extend an existing control.
� Create a composite control by combining functionality of several existing

Windows Forms controls.
� Describe the design-time support options for components provided by

Microsoft Visual Studio® .NET.
� Add attributes that provide information to the Visual Designer.
� Create and validate licenses for controls.

Introduction

Objectives

2 Module 3: Building Controls

Lesson: Extending and Creating Controls

Custom
Control

Component
Standard IComponent Impl

Control
Basic HWND Wrapper

Scrollable Control

Container Control

UserControl

Textbox Button

Composite Controls

Extended Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows Forms provides several options for authoring controls. You can
combine existing controls, extend existing controls, or author your own custom
controls. This lesson provides background information about the various
options that are available for creating Windows Forms controls.

After completing this lesson, you will be able to:

� Extend an existing control.
� Create a composite control by combining functionality of several existing

Windows Forms controls.
� Describe the design-time support options for components provided by

Microsoft Visual Studio .NET.
� Add Attributes that provide information to the Visual Designer.
� Create and validate licenses for controls.

Introduction

Lesson objectives

 Module 3: Building Controls 3

Options for Building Controls

public class NumericTextBox :
System.Windows.Forms.TextBox

public class NumericTextBox :
System.Windows.Forms.TextBox

� Extended controls

� Composite controls

� Controls that are composed of other controls

� Designed to act as containers for other controls

� Custom controls

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the options for creating a Windows Forms control is to extend an
existing control. You can extend an existing control to customize it or add
additional functionality to it. Extend an existing control if the control that you
want to create is quite similar in functionality to an existing control.

You can customize any Windows Forms control by deriving from it and
overriding its properties, methods, and events. This entire procedure of creating
a customized control from an existing control is referred to as extending a
control. When you inherit from an existing a control, you have the options of
using the members of the inherited class, overriding the members of the
inherited class, or creating your own custom members.

Some examples of extended controls include a text box that can accept only
numeric values or a button that has some additional properties, such as a
property that can record how many times the button has been clicked.

The following code example shows a numeric text box that is inherited from the
Windows TextBox control. It also shows how the OnKeyPress event of the
base TextBox class is overridden to provide custom functionality.

public class NumericTextBox : System.Windows.Forms.TextBox
 protected override void
OnKeyPress(System.Windows.Forms.KeyPressEventArgs e)

Because this control inherits from TextBox, all the members associated with
the TextBox control are exposed in the extended control. For example, you can
use the functionality of the Clear() method of the of TextBox control from the
extended control.

myNumericControl = new NumericTextBox();
myNumericControl.Clear();

Introduction

Extended controls

Example of extending a
control

4 Module 3: Building Controls

Another way of creating your own controls is to combine existing controls to
create composite controls. Create composite controls when you need complex
functionality that requires the use of more than one control.

You can create new controls by using class composition to combine existing
controls. A composite control renders a user interface that reuses the
functionality of existing controls. A composite control can synthesize properties
from the properties of its child controls and handle events raised by its child
controls. It can also expose custom properties and events. All composite
controls derive from System.Windows.Forms.UserControl. There is full
design-time support for creating composite controls with the Visual Studio
.NET Windows Forms Designer.

Composite controls can act as containers for other controls because they extend
the ContainerControl class.

The ContainerControl class defines a logical boundary for controls that it
contains. This class provides focus management, which means that it is aware
of active controls and can change focus from one control to another. It also
supports methods for adding, removing, and retrieving child controls. The
Form class also inherits from the ContainerControl class.

For more information about the ContainerControl class, see
“ContainerControl Class” in the Visual Studio .NET Help documentation.

If you do not want to combine or extend existing controls, you have the option
of creating your own custom controls.

Custom controls display user interface (UI) elements by making calls to a GDI+
Graphics object in the OnPaint event. Custom controls are generally derived
from the base class System.Windows.Forms.Control.

public class VerticalLabel : System.Windows.Forms.Control

To create a custom control, you generally inherit from the Control class, which
draws a blank square on your form, override the OnPaint event of the Control
class and use GDI+ to draw your own UI. For more information about using
GDI+ in greater detail, see Module 6, “Printing and Reporting in Windows
Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C#™ .NET).

You can add as well as override properties, methods, and events of the base
class (Control). The base class provides the plumbing required for visual
display in client-side Windows applications. The Control class provides a
window handle, manages message routing, and provides mouse and keyboard
events as well as many other user interface events. It provides advanced layout
and has properties specific to visual display, such as ForeColor, BackColor,
Height, Width, and many others.

Composite controls

Custom controls

 Module 3: Building Controls 5

using System;
using System.Drawing;
using System.ComponentModel;
using System.Windows.Forms;

public class CustomControl : System.Windows.Forms.Control
{
 protected override void
OnPaint(System.Windows.Forms.PaintEventArgs e)
 {
 e.Graphics.DrawString("Written with GDI+ on OnPaint
event", new Font("Arial",12), new SolidBrush(Color.Red), 0,
0);
 }
}

Example of a Custom
control

6 Module 3: Building Controls

How to Expose and Override Properties for Controls

� Exposing properties of a control within a container

� Overriding properties

public ContextMenu QuantityTextBox_ContextMenu
{
get

{
return QuantityTextBox.ContextMenu;

}
set
{

QuantityTextBox.ContextMenu = value;
}

}

public ContextMenu QuantityTextBox_ContextMenu
{
get

{
return QuantityTextBox.ContextMenu;

}
set
{

QuantityTextBox.ContextMenu = value;
}

}

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A Windows Forms control inherits many properties form the base class
System.Windows.Forms.Control. These include properties such as Font,
ForeColor, BackColor, Bounds, ClientRectangle, DisplayRectangle,
Enabled, Focused, Height, Width, Visible, as well as many others. You can
override inherited properties in your control as well as define new properties.

A component should define properties instead of public fields because visual
designers such as Visual Studio .NET display properties, but not fields, in the
Properties window.

Property definitions include two parts: a private variable to hold the value of a
property for an instance of a control, and a property definition that exposes the
private variable.

While a property definition generally includes a private data member, this is not
required. The Get accessor can return a value without accessing a private data
member. An example is a property whose get method returns the system time.
Properties enable data hiding, in which the accessor methods hide the
implementation of the property.

The properties for controls contained by composite controls are not directly
exposed to developers. For example, to access the Text property of a text box in
a composite control, you may have to iterate through the Controls collection of
the composite control to access the property. A common practice with
composite controls is to expose properties of child controls as properties of the
composite control.

Introduction

Property definitions

Procedure: Exposing
properties of control in a
container

 Module 3: Building Controls 7

The following code example shows how to expose the ContextMenu property
of a control contained in a composite control.

public ContextMenu QuantityTextBox_ContextMenu
{
 get
 {
 return QuantityTextBox.ContextMenu;
 }
 set
 {
 QuantityTextBox.ContextMenu = value;
 }
}

The get and set methods are generally not different from other methods. They
can perform any program logic, throw exceptions, be overridden, and be
declared with any modifiers allowed by the programming language

When you extend an existing control, you can override the properties of the
base class to provide custom functionality. The following code overrides the
Text property of the TextBox control and allows only numeric characters to be
set on the property.

public class NumericTextBox : System.Windows.Forms.TextBox

public override string Text
{
 get
 {
 return base.Text;
 }
 set
 {
 try
 {
 int.Parse(value);
 base.Text = value;
 return;
 }
 catch
 {}
 if (value == null)
 {
 base.Text = value;
 return;
 }
 }
}

When overriding members of an extended class, use the base keyword to
implement the functionality of the base member. The previous example uses
base.Text to refer to the property in the derived class.

Procedure: Overriding
properties

8 Module 3: Building Controls

How to Raise and Override Events for Controls

� To raise events for a composite control

� To override events

public delegate void MyEvent(String
stringPassed);

public event MyEvent InvokeMyEvent
///to invoke the event
InvokeMyEvent("Pass this string to host")

public delegate void MyEvent(String
stringPassed);

public event MyEvent InvokeMyEvent
///to invoke the event
InvokeMyEvent("Pass this string to host")

protected override void
OnKeyPress(System.Windows.Forms.KeyPress
EventArgs e)

protected override void
OnKeyPress(System.Windows.Forms.KeyPress
EventArgs e)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When authoring controls, you can raise your own custom events or override the
events of the base class.

When creating controls, you use events to notify host applications when
something occurs in a control. To create an event, create a delegate and define
any parameters to be passed to the host when the event is invoked. Then declare
an event by using the event keyword and reference the delegate to invoke and
name the event. To invoke the event in the control, call the event and pass the
required parameters.

The following code defines an event called MyEvent that passes a string data
type when invoked.

public delegate void MyEvent(String stringPassed);

public event MyEvent InvokeMyEvent;
///to invoke the event
InvokeMyEvent("Pass this string to host");

The Control class provides a base set of events that allow you to monitor
activities such as property modifications and user actions. When you create
controls, you can access events exposed by the Control class and other base
classes and override them. Each base event provides event-specific information
with the EventArgs parameter. This parameter (and parameters that derive from
it such as KeyEventArgs and MouseEvtsArgs) provides event specific
information, such as which key was pressed or the X,Y position of the mouse
cursor.

Introduction

Procedure: Raising
events

Procedure: Overriding
an event

 Module 3: Building Controls 9

The following code shows how to override an event. The example overrides the
OnKeyPress event of a TextBox control. The event contains a
KeyPressEventArgs parameter that contains data about the keys that were
pressed (e.KeyChar) and a Boolean value (e.Handled) that allows you to
indicate if the event was handled (True) or if the event should be passed to
Windows for processing (False). If the event is handled in the procedure, then it
raises a custom event and passes an instance of the object along with the
KeyPressEventArgs passed to the event.

protected override void
OnKeyPress(System.Windows.Forms.KeyPressEventArgs e)
{
 int asciiInteger = Convert.ToInt32(e.KeyChar);
 if (asciiInteger >= 47 && asciiInteger <= 57)
 {
 e.Handled = false;
 return;
 }
 if (asciiInteger == 8)
 {
 e.Handled = false;
 return;
 }
 e.Handled = true;
 if (InvalidUserEntry != null)
 InvalidUserEntry(this, e);
}

10 Module 3: Building Controls

How to Test a Control

Create a new project within
the same window

Add UserControl to
the Toolbox

Add UserControl to the
form from the Toolbox

UserControl System.Windows.Forms System.Windows.Forms(1.0.3300.0)

UserControl1

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft .Net Framework eliminates many of the original problems with
versioning that existed with COM. For example, you can have more than one
version of a component supporting different applications without having to be
concerned with backwards compatibility.

When you create and compile a Windows Forms application by using the
Visual Studio .NET integrated development environment (IDE), any external
assemblies referenced in the application are built into the /Bin folder of the
application. Because the application has its own copy of the component, any
modification to the original component will not affect it. However, if you are
testing a component in an application, you must remove the previous
component and add the newer one every time you modify the component.

If you want to test a component without adding a new reference to the control
every time you modify the control, you can add a forms application to the
component solution. The Visual Studio .NET IDE is aware of the component
project and adds an implicit reference to the component. This reference is
automatically updated whenever you rebuild the component.

1. Create a new form in the same project.
2. Add UserControl to the Toolbox.
3. Add the UserControl to the form from the Toolbox.

After you add UserControl to the toolbox, it is visible on the Toolbox. To
add UserControl to the project, drag the control to the form, just as you do
with other controls.

Introduction

Procedure

 Module 3: Building Controls 11

Code Walkthrough: Creating Controls

In this walkthrough, you will see the code
that is involved in creating different controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this walkthrough, you will see examples of extended, composite, and custom
controls. The instructor will walk you through the code required to extend a
control, create a composite control, and build a custom control.

� Open the Controls.sln solution file
• Open the Controls.sln solution in Visual Studio .NET from

install_folder\Democode\ Mod03\Mod03_01\Starter\Controls.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

� Walkthrough the NumericTextBox control
1. Open NumericTextBox.cs in the Code Editor.
2. Point out the following line of code. Explain that to create an extended

control, you inherit directly from an existing control.
public class NumericTextBox : System.Windows.Forms.TextBox

3. Scroll to the following line of code. You can override the events of the base
control.
protected override void
OnKeyPress(System.Windows.Forms.KeyPressEventArgs e)

4. Scroll to the following line of code to explain that you can also override the
properties of the base control.
public override string Text

Introduction

Instructions

Note

12 Module 3: Building Controls

� Walkthrough the OrderItemControl
1. Open the Design view of OrderItemControl.cs.
2. Composite controls are composed of a UserControl and one or more

controls. Explain the significance of the controls contained in the
UserControl.

3. Open OrderItemControl.cs in the Code Editor.
4. A composite control inherits from the UserControl class. Point out the

following line of code.
public class OrderItemControl :
System.Windows.Forms.UserControl

5. To access the properties of constituent controls, you must expose them
explicitly. Scroll down to the following lines of code to show how the
properties of constituent controls are exposed.
public int OrderQuantity
{
 get
 {
 return Convert.ToInt32(QuantityNumericTextBox.Text);
 }
 set
 {
 QuantityNumericTextBox.Text = value.ToString();
 }
}

6. The OrderItemControl exposes a method that binds data to constituent
controls. Explain the significance of the following procedure.
public void GetProductData(System.Data.DataTable
dsproducts)

� Walkthrough the VerticalLabel control
1. Open VerticalLabel.cs in the Code Editor.
2. Custom controls generally inherit from the Control class. Explain the

significance of the following line of code.
public class VerticalLabel : System.Windows.Forms.Control

3. To implement a custom control you must override the OnPaint event and
use GDI+ to draw the control. Explain the following procedure to show how
to override the OnPaint event of the Control class.
protected override void
OnPaint(System.Windows.Forms.PaintEventArgs e)

4. The Control class exposes many properties, methods, and events that can be
overridden. These properties, methods, and events are shared by all controls.
Explain the significance of the following line of procedure.
public override string Text

 Module 3: Building Controls 13

� Display the controls at design time in the Controls_Host project
1. In Solution Explorer, right-click the Controls project, and then click Build.
2. In the Controls_Host project, open the Design view of Form1.cs.
3. On the Tools menu, click Customize Toolbox.
4. In the Customize Toolbox dialog box, click the .NET Frameworks

Components tab, and then click Browse.
5. In the Open dialog box, select Controls.dll from

install_folder\Democode\Mod03\Mod03_01\Starter\Controls\obj\Debug\,
click Open, and then click OK.

6. Add a NumericTextBox to Form1 under the designated label. Attempt to
set the Text property to a non-numeric value.
The control enforces the property logic at design time.

7. Add an OrderItemControl to Form1 under the designated label.
8. In the Properties window, display the OrderQuantity property.

The OrderItemControl property exposes the property of a constituent
control.

9. Add a VerticalLabel to Form1 under the designated label.
10. Set the ForeColor property to ActiveCaption and the Font property to

Italic.
The OnPaint event fires at design time as it will at run time.

� Display the controls at run time in the Controls_Host project
1. In Solution Explorer, right-click the Controls_Host project, and then click

Set as Startup Project.
2. Press F5 to run the application.
3. Attempt to enter non-numeric characters into the NumericTextBox control.

The control enforces property logic at run time.
4. Navigate through the products in the OrderItemControl.

The constituent controls are data bound.

14 Module 3: Building Controls

Practice: Creating a Composite Control
In this practice, you will

� Create a Windows Control Library Project
and add a UserControl

� Add controls to the UserControl

� Expose properties

� Raise events

� Test the design-time instance

� Test the run-time instance

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will build a composite control that displays the current
time. The composite control includes a Label to display the time and a Timer
control. The Timer control has a Tick event that fires repeatedly with a period
based on the Interval property. The default value of the Interval property is
100 milliseconds, meaning that the Tick event will fire every second.

You will create a composite control that exposes properties of the Label and
Timer controls and raises the Tick event to host applications.

� Create a Windows Control Library project and add a UserControl
1. Open Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the New Project dialog box, click Windows Control Library, name it

DigitalClock, and then click OK.
4. Delete UserControl1 from the project.

You can also rename UserControl1 to DigitalClock and skip step 5,
however you must remember to change the file name and the class name to
DigitalClock.

5. On the Project menu, click Add UserControl, name it DigitalClock.cs,
and then click Open.

Introduction

 Module 3: Building Controls 15

� Add controls to the UserControl
1. Add the following controls to the UserControl.

Control Name Text

Label LocalTimeLabel “”

Timer Timer1 N/A

2. Set BackColor of LocalTimeLabel to ControlDark.
3. Center LocalTimeLabel in the UserControl. Your UserControl should

look like the following.

� Add code to expose the properties of LocalTimeLabel and Timer1 to
the host application

1. Create a Public property named Timer1_Enabled that exposes the Boolean
Enabled property of Timer1. Your code should look like the following.
public bool Timer1_Enabled
{
 get
 {
 return Timer1.Enabled;
 }
 set
 {
 Timer1.Enabled = value;
 }
}

2. Create a Public property named LocalTimeLabel_BackColor that exposes
the BackColor property of LocalTimeLabel. Your code should look like
the following.
public Color LocalTimeLabel_BackColor
{
 get
 {
 return LocalTimeLabel.BackColor;
 }
 set
 {
 LocalTimeLabel.BackColor = value;
 }
}

16 Module 3: Building Controls

� Add code that raises the Timer1.Tick event to host applications
1. Declare a Public event named RaiseTimer1_Tick that passes uses the

EventHandler delegate.
2. Create the Timer1_Tick event procedure and update the Text property of

LocalTimeLabel to reflect the current time (use the Now.ToString
function).

3. In the Timer1_Tick event procedure, raise the RaiseTimer1_Tick event
and pass the sender and e event arguments.
Your code should look like the following.
public event System.EventHandler RaiseTimer1_Tick;

private void Timer1_Tick(object sender, System.EventArgs e)
{
 LocalTimeLabel.Text = System.DateTime.Now.ToString();
 if (RaiseTimer1_Tick != null)
 RaiseTimer1_Tick(sender, e);
}

� Test the design-time instance of your Composite Control in a host
application

1. On the Build menu, click Build Solution to compile the DigitalClock
control.

2. On the File menu, click Add Project, and then click New Project.
3. Create a new Windows Application and name it TestClock.
4. Add the DigitalClock control from the Toolbox to Form1 in TestClock.

Notice that two new controls are added to the Toolbox: UserControl1,
which was added with the new Windows Control Library project, and
DigitalClock.

5. In the Properties window, set the Timer1_Enabled property to True.
The DigitalClock control is running while the host application is in Design
view.

6. In the Properties window, set the LocalTimeLabel_Color property to
ControlLight.
This property would not be available to developers in the IDE if you did not
explicitly expose it by using a property procedure.

7. Add a Label to Form1 and name it UniversalTimeLabel.

Note

 Module 3: Building Controls 17

8. Create the DigitalClock1_RaiseTimer1_Tick event procedure and update
the Text property of UniversalTimeLabel to reflect the coordinated
universal time (use the Now.UtcNow function). Your code should look like
the following.
private void DigitalClock1_RaiseTimer1_Tick(object sender,
System.EventArgs e)
{
 UniversalTimeLabel.Text =
DateTime.Now.ToUniversalTime().ToString();
}

9. Add a Button to Form1 and name it StartStopButton.
10. Create the StartStopButton_Click event procedure and write the code to

switch the values of the Timer1_Enabled property of DigitalClock1 in the
procedure. (If the Timer1_Enabled property is true make it false and if it is
false make it true.) Your code should look like the following:
private void StartStopButton_Click(object sender,
System.EventArgs e)
{
 DigitalClock1.Timer1_Enabled =
!(DigitalClock1.Timer1_Enabled);
}

� Test the run-time instance of your control in a host application
1. Place a breakpoint on the Get and Set statements of the Timer1_Enabled

event procedure in the DigitalClock composite control.
2. In Project Explorer, right-click TestClock project, and then click Set as

Startup Project.
3. Press F5 to compile and run the application.
4. Step through each line of the code in the debug mode by pressing F11.
5. Click StartStopButton and step through each line of code in debug mode

by pressing F11.
By adding a test host project to the control project, you can easily debug the
control. In addition, you will not be required to refresh the reference to the
control every time you rebuild it.

� Test the DigitalClock in separate instances of Visual Studio .NET
1. Open a new instance of Visual Studio .NET.
2. On the File menu, click Add Project, and then click New Project.
3. Create a new Windows application and name it TestClock2.
4. On the Tools menu, click Customize Toolbox.
5. Click the .NET Framework Components tab, and then click Browse.
6. In the Open dialog box, navigate to the DigitalClock.dll located in the \bin

directory of the DigitalClock project, click Open, and then click OK.
7. Add a DigitalClock control to Form1.

If time permits

18 Module 3: Building Controls

8. Switch back to the Visual Studio .NET instance that includes the
DigitalClock source code and set the BackColor property of
LocalTimeLabel to ControlLightLight.

9. On the Build menu, click Rebuild Solution.
10. Switch back to the Visual Studio instance that includes the TestClock2

project and run it by pressing F5.
The control displays the original value (ControlDark) and not the most
recent one (ControlLightLight). To update the TestClock2 project to use
the most recent DigitalClock control, you must refresh the reference to the
control.

 Module 3: Building Controls 19

Lesson: Adding Design-Time Support for Controls

� Property Attributes

� How to Add Attributes That Provide Information to the
Visual Designer

� Design-Time Support Options Built into the .NET
Framework

� Practice: Adding Design-Time Support for Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Design-time attributes are essential to display a control and its members
correctly at design time because they provide valuable information to a visual
design tool. This lesson describes some of the design-time options that are built
into the .NET Framework. The lesson also describes how to add the attributes
that provide information to the visual design tool.

After completing this lesson, you will be able to:

� Describe property attributes.
� Add attributes that provide information to the Visual Designer.
� Describe the built-in design-time options for components in Visual Studio

.NET.

Introduction

Lesson objectives

20 Module 3: Building Controls

Property Attributes
� Property Attributes

� Allow you to specify the behavior of properties at
design time

� Property attributes allow you to specify
� Grouping options for custom properties in the Properties

window of the Visual Studio .NET environment
� Default values
� Custom editors for custom properties

� Examples of Property Attributes
� Browsable
� Category
� TypeConverter

� Description
� DefaultProperty
� Editor

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Attributes associate design-time functionality with a component. Design-time
attributes can be applied to properties, events, classes, and even assemblies.

Attributes are the glue that binds design-time functionality to a component.
Property attributes allow you to specify the behavior of properties at design
time. Attributes can also be applied at the control level and to events as well. In
the .NET Framework, design-time functionality is implemented not in a
component but outside the component, and it is associated with the component
through metadata supplied by custom attributes.
Property attributes allow you to specify:
� Grouping options for custom properties in the Properties window of Visual

Studio .NET.
� Default values.
� Custom editors for custom properties.

The following table lists some of the property attributes and their descriptions.

Property Attributes Description

Browsable Specifies whether a property or an event

should be displayed in the Properties
window.

Category Specifies the name of the category in
which to group a property or event. When
categories are used, component properties
and events can be displayed in logical
groupings in the Properties window.

Description Defines a small block of text to be
displayed at the bottom of the Properties
window when the user selects a property
or event.

Introduction

Definition

List of property
attributes

 Module 3: Building Controls 21

(continued)
Property Attributes Description

DefaultProperty Specifies the default property for the

component. This property is selected in
the Properties window when a user clicks
the control.

DefaultValue Sets a default value for a property.

TypeConverter Specifies the type converter to use for
converting the type of the property to
another data type.

Editor Specifies the editor to use for editing
(changing) a property in the Visual
Designer.

RefreshProperties Indicates how a designer refreshes when
the associated property value changes.
This class cannot be inherited.

In addition to property attributes, there are some control attributes, such as the
ToolBoxBitMap attribute, that allow you to specify control behavior. The
ToolBoxBitMap allows you to specify a bitmap or icon image to represent a
control in the Toolbox of the Visual Studio .NET IDE.

22 Module 3: Building Controls

How to Add Attributes That Provide Information to the Visual
Designer

To add attributes to your codeTo add attributes to your code

Define a new attribute or use an existing attribute by importing its
namespace from the .NET Framework class library

Initialize the attribute directly preceding the element to be
described

[Category(“Appearance”)]public
Color MyBackColor

[Category(“Appearance”)]public
Color MyBackColor

using System.ComponentModel;using System.ComponentModel;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Attributes associate design-time functionality with a component. Design-time
attributes can be applied to properties, events, classes, and even assemblies.

To add attributes:

1. Define a new attribute or use an existing attribute by importing its
namespace from the .NET Framework class library.
using System.ComponentModel;
When you derive a component or control from a base component that has
design-time attributes, your component inherits the design-time
functionality of the base class. If the base functionality is adequate for your
purposes, you do not have to reapply the attributes. However, you can
always override attributes or apply additional attributes to the derived
component. Only classes that directly or indirectly implement
System.ComponentModel.IComponent have design-time support in the
Visual Designer.

2. Initialize the attribute directly preceding the element to be described.
In the following code fragment, the Category attribute enables the
Properties window to display the Color property in the Appearance
category.
[Category(“Appearance”)]public Color MyBackColor

Introduction

Procedure

 Module 3: Building Controls 23

Design-Time Support Options Built into the .NET Framework

� Property Browser
� Associates property editors for different data types

� Type Converter
� Converts the value entered into the Properties window to

the correct data type within a control
� Custom UI Editors

� Chooses the correct UI editor for the Properties window
based on the type of property

� Custom Designers
� Allows you to modify the design-time appearance and

behavior of controls and objects
� Extenders

� Provide the ability to add or filter properties for controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Design-time functionality refers to the display and behavior of a component or
control in a visual designer. The .NET Framework includes several features that
support the development of design-time behavior for controls.

� Property browser
When a control exposes properties, the Visual Studio .NET IDE displays
them at design time in the Properties window. Most properties are modified
by typing string values into the property browser. The property browser then
converts the string values to the correct type. So, for example, if you expose
a property of type integer and attempt to enter a non-numeric value for it in
the property browser, it will raise an error.

The property browser is also capable of associating more advanced property
editors for different data types. For example, the property editor exposes a
color palette for Color types and a DateTimePicker control for Date types.

� Type converter
A type converter is used to convert the value entered into the Properties
window. A simple example is the conversion from a string to an integer and
back. Type converters are primarily used for string-to-value conversions and
for validation at design time and at run time. Most native data types (Int32,
String, enumeration types, and others) have default type converters. You can
create a custom type converter by inheriting from the
System.ComponentModel.TypeConverter class, if a custom property does
not have an associated type converter.
After you create a type converter, you can apply the TypeConverter
attribute to a property to associate the property with the type converter. For
example, you can use a TypeConverter to convert two strings entered in
the Properties window to a Point type.

Introduction

Design-time support
options

24 Module 3: Building Controls

� Custom UI editors
In some situations, a simple value-to-string conversion that allows a
property to be displayed as text in the Properties window might not be
adequate. For instance, in the case of a color property, a visual
representation is more desirable. A UI type editor allows such a
representation and is intended for use with property browsers and other
advanced design-time hosts.
To implement a custom UI type editor for Windows Forms, you define a
class that is derived from System.Drawing.Design.UITypeEditor. You
then apply the Editor attribute to a property to associate the property with
the UI editor.

� Custom Designers
Designers are classes that allow you to modify the design-time appearance
and behavior of components and controls. Although the usual goal of any
WYSIWYG form designer is to minimize differences between design-time
and run-time appearance, some special design-time cues are necessary. For
example, a System.Windows.Forms.Panel object might not have a visible
border at run time. However, without a border the panel is invisible to the
developer designing a form that contains the panel. Therefore, the designer
for the System.Windows.Forms.Panel object draws a dotted line border
around the panel.
To create a custom designer, create a class that implements the IDesigner
interface and apply the Designer attribute to the control.

� Extenders
Extender providers add properties to other controls. In the .NET
Framework, extender providers do not require any special support. At
design time, extender properties appear in the Properties window as
properties on the objects that they extend, rather than on the actual extender
object.
An example of an extender is the ToolTip control. The ToolTip property is
not available to controls on a form until you add the ToolTip control to the
form.
To create an extender control, create a class that implements the
System.ComponentModel.IExtenderProvider interface.

Controls support two modes of behavior, design-time and run-time. You
can use the DesignMode property to determine the behavior mode of a control.

Note

 Module 3: Building Controls 25

Practice: Adding Design-Time Support for Controls

In this practice, you will

� Add a ToolBox bitmap for a control

� Add attributes to the Text property

� Test the design-time support for the
control

� Explore custom designers and extenders

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will learn how to add design-time support for controls. The
exercises involve adding a special icon for a vertical label control on the
Toolbox. In addition, you will add an attribute to the Text property of the
vertical label.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod03\Mod03_02\Starter\VerticalLabel.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the VerticalLabel.sln solution file to open the project.
3. On the Build menu, click Build Solution.

� Add a ToolBox bitmap for a control
1. On the Project menu, click Add Existing Item, change the File Type filter

to All Files, select the VerticalLabel.ico file located in
install_folder\Practices\Mod03\Mod03_02\Starter\VerticalLabel, and then
click Open.

2. In Solution Explorer, click VerticalLabel.ico. In the Properties window, set
the Build Action property to Embedded Resource.
There are various options for associating an image with a control’s ToolBox
bitmap. In this exercise, you will embed the image in the compiled project.
In this case, the ToolBoxBitmap attribute requires two arguments, the Type
where the image is located and a String that represents the name of the
image.

Introduction

Instructions

Note

26 Module 3: Building Controls

3. Open VerticalLabel.cs in the Code Editor.
4. Add a ToolBoxBitmap attribute to the VerticalLabel class. Use the typeof

function to return a VerticalLabel type for the first argument and
VerticalLabel.ico as a string for the second argument. Your code should
look like the following.
[ToolBoxBitmap(typeof(VerticalLabel), "VerticalLabel.ico")]
 public class VerticalLabel :
System.Windows.Forms.Control

� Add attributes to the Text property
1. Import the System.ComponentModel namespace.
2. Add a Category attribute to the Text property and set it to VerticalLabel.
3. Add a Description attribute to the Text property and set it to Text is

displayed vertically in container. Your code should look like the
following.
using System.ComponentModel;
…
[Category("VerticalLabel"), Description("Text is displayed
in container")]
public override string Text

4. On the Build menu, click Build Solution.

� Test the design-time support for the control
1. On the File menu, click Add Project, and then click New Project.
2. Click the Windows Application template, name it Test, and then click OK.
3. On the Tools menu, click Customize Toolbox.
4. In the Customize Toolbox dialog box, click the .NET

FrameworksComponents tab, and then click Browse.
5. In the Open dialog box, click install_folder\Practices\Mod03\Mod03_02\

Starter\VerticalLabel\obj\Debug\VerticalLabel.dll, click Open, and then
click OK.

6. Ensure that the control is correctly represented by the VerticalLabel.ico in
the Toolbox.

7. Add a VerticalLabel control to Form1 from the Toolbox. View the Text
property in the Properties window to ensure that Category and Description
are displayed.

� Explore custom designers and extenders
1. Add a Panel control to Form1.

The Panel control displays an outline of its borders at design time. At run
time the outline is not displayed. This is an example of a custom designer.

2. Add a ToolTip control to Form1 and view the ToolTip on ToolTip1
property that is exposed on both the Panel control and the VerticalLabel
control.
The ToolTip control extends the ToolTip property to other controls. This is
an example of an extender control.

 Module 3: Building Controls 27

Lesson: Licensing a Control

� Files in Licensing

� How to Enable Licensing for a Control

� Demonstration: Creating and Validating a License for a
Control

� How LicFileLicenseProvider Works in .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides a licensing model that is identical for all
components including Windows Forms controls and ASP.NET server controls,
although the implementation is different.

Licensing allows control authors to protect their property by checking that a
user is authorized to use the control. This check is more important at design
time, when the control is incorporated into an application, than at run time.
When a licensed control is used legally at design time, the application gets a
run-time license that can be freely distributed.

Licensing is built into the .NET Framework, and developers use classes built
into the System.ComponentModel namespace to provides custom licensing
solutions. There are two components of the licensing model: the
LicenseManager and the LicenseProvider.

� The LicenseManager class is responsible for validating licensed controls at
both run time and design time. The LicenseManager class is part of the
runtime, and when a class is instantiated, LicenseManager uses the proper
validation mechanism for the control or component.

� The LicenseProvider class is the place to put custom validation code. You
can create unique licensing by extending the
System.ComponentModel.LicenseProvider class. By extending this class,
you can create unique licensing models. For example, you can create the
license for a control once and allow it to be reused as many times as
necessary, or you could create a licensing mechanism that expires after a
certain period of time.
Visual Studio .NET ships with the LicFile LicenseProvider, which is
derived from the System.ComponentModel.LicenseProvider object. The
LicFile LicenseProvider is built for demonstration purposes and is not
intended for production licensing behavior. You can build more advanced
licensing scenarios by building additional classes that derive from
System.ComponentModel.LicenseProvider.

Introduction

Components of the
licensing model

28 Module 3: Building Controls

There are two modes of consumption for licensed controls, design-time
and run-time. At design time, a license provider can obtain a valid license from
anywhere, such as a .LIC file from a hard disk or from an XML Web service.
Then at run time for client apps, this license is converted into a license key and
embedded into the executing assembly.

After completing this lesson, you will be able to:

� Describe the files needed for licensing a control.
� Enable licensing for a control.
� Explain how licensing works in the .NET Framework.

Note

Lesson objectives

 Module 3: Building Controls 29

Files in Licensing

� LIC file
� Design-time license file that exists anywhere that the

LicenseProvider class specifies

� LICX file
� Design-time license that resides with the assembly that

consumes a licensed component

� .Licenses file
� Binary run-time license file used at run time

“Namespace.ClassName, ClassName, Version,
Culture, PublicKeyToken“

“Namespace.ClassName, ClassName, Version,
Culture, PublicKeyToken“

“Namespace.ClassName is a licensed component”“Namespace.ClassName is a licensed component”

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Most controls should support design-time licensing and run-time licensing.
Design-time licensing ensures that a developer is building an application with a
legally purchased control; run-time licensing ensures that a user is running an
application that contains a legally purchased control. There are several licensing
options available, such as time-based expiration licensing, per-processor
licensing, or per-use licensing.

Visual Studio .NET uses several files that are required for design-time and run-
time licensing.

� .LIC file
This is the design-time license file. It can exist anywhere that the
LicenseProvider class specifies. So, for example, the .LIC file can exist
with the assembly, somewhere on the hard drive, or it can be retrieved by
using a Web service.
If you use the LicLicenseFileProvider file, the .LIC file is a text file that
resides in the same folder as the built assembly and has a specific format as
shown below.
“Namespace.ClassName is a licensed component”
Currently you have to manually add this text file to the assembly folder with
this correct format and the .LIC extension.

If the control is in the same solution project (like when you are
testing it) as the project that is using it, the .LIC file must reside in the
\obj\Debug folder.

Introduction

Files involved in
licensing

Note

30 Module 3: Building Controls

� .LICX file
This is a design-time file that resides with the assembly that consumes a
licensed component. It is a text file that resides in the Project folder of an
application. It lists all the licensed components used in an application. The
.LICX file has a specific format as shown below.
“Namespace.ClassName, ClassName, Version, Culture,
PublicKeyToken“
This file is created automatically when you add a licensed component to an
application.

� .Licenses file
This is the binary runtime license file used at run time. This file is created
automatically in Visual Studio .NET. It can be generated manually by using
the LC.exe utility. This file resides in the same folder as the built assembly.

 Module 3: Building Controls 31

How to Enable Licensing for a Control
To enable licensing for a controlTo enable licensing for a control

Include the System.ComponentModel namespace

Append the LicenseProvider attribute to the declaration of the
class you want to license

Declare a License object

Call the Validate or IsValid methods of the LicenseManger to
fill the License object with a valid license
Override the Dispose method of the licensed class and explicitly
call the Dispose method on the License object
Create a text file with a .LIC extension and the correct format
and save it to the assembly folder

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To enable licensing for a control, you need the licensing files as well as some
licensing objects and attributes such as LicenseProvider attribute, a class that
derives from System.ComponentModel.LicenseProvider, License object, and
LicenseManager object.

To enable licensing for a control:

1. Include the System.ComponentModel namespace.
All of the licensing mechanisms reside in the System.ComponentModel
namespace.
using System.ComponentModel;

2. Apply a LicenseProviderAttribute to the class.
The granting of licenses and the validation logic is performed by a license
provider, which is a class that derives from
System.ComponentModel.LicenseProvider. When you create a
component that you want to license, you must specify the type of
LicenseProvider by marking the component with a
LicenseProviderAttribute. Visual Studio .NET supplies the default
LicFileLicenseProvider LicenseProvider class. This
LicFileLicenseProvider is easy to use because it is built into the .NET
Framework, but its validation logic is not very interesting or secure. You
can extend this class to provide more robust licensing scenarios.
[LicenseProvider(typeof(LicFileLicenseProvider))] public
class MyControl

Introduction

Procedure

32 Module 3: Building Controls

3. Declare a license object.
The License object is used at run-time to hold the validated license. You use
the LicenseManager object to fill the License object with a validated
license.
private License validatedLicense = null;

4. Validate the license by using LicenseManager.Validate or
LicenseManager.IsValid in the constructor of the control.
LicenseManager provides properties and methods to add a license to a
component and to manage a LicenseProvider. Call Validate or IsValid in
the constructor of the component to validate a license. Validate throws a
LicenseException when it tries to create an instance without a valid license
and makes the control unavailable. The IsValid method returns a Boolean
value that identifies if a valid license was available. IsValid does not throw
an exception and the control can still be used. You could use this method to
modify the behavior of the control based on whether or not a license was
available. For example, you could limit features of the control if no license
is available.
//using the Validate method of the LicenseManager
private License validatedLicense = null;
validatedLicense =
LicenseManager.Validate(typeof(LicensedControl), this);

//using the IsValid method of LicenseManager
// private bool validatedLicense ;
validatedLicense =
LicenseManager.IsValid(typeof(LicensedControl));

5. Dispose of any license that is granted when the component is disposed or
finalized.
Call the Dispose method when you are finished by using the license. The
Dispose method leaves the license in an unusable state. After calling
Dispose, you must release all references to the license so that the memory it
was occupying can be reclaimed by garbage collection. This is an important
step to take so that your control does not leak licenses. Not doing this might
allow malicious code to get the license before the garbage collector does.

6. Create a text file with the .LIC extension and the correct format and save it
to the assembly folder.

 Module 3: Building Controls 33

The following code is a simple example of licensing a Windows Forms control.

using System;
using System.ComponentModel;
using System.Windows.Forms;
public class MyControl : Control
{
 private License license = null;
 public MyControl ()
 {
 license = LicenseManager.Validate(typeof(MyControl),
this);
 }
 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (license != null)
 {
 license.Dispose();
 license = null;
 }
 }
 base.Dispose(disposing);
 }
 ~MyControl()
 {
 Dispose();
 }

}

Example

34 Module 3: Building Controls

Demonstration: Creating and Validating a License for a Control

In this demonstration, you will see how to
create and validate a license for a control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to enable licensing for a control. The
demonstration uses the example of a NumericTextBox control, which is a
TextBox that accepts only numeric characters in the Text property.

� Open the NumericTextBox.sln solution file
• Open the NumericTextBox.sln solution in Visual Studio .NET from

install_folder\Democode\ Mod03\Mod03_02\Starter.

� Apply a LicenseProviderAttribute to the NumericTextBox class
1. Open the NumericTextBox.cs file in the Code Editor and import the

System.ComponentModel namespace.
2. Append the LicenseFileProviderAttribute to the class and use the

LicFileLicenseProvider LicenseProvider. Your code should look like the
following.
using System.ComponentModel;

[ToolBoxBitmap(typeof(NumericTextBox),
"NumericTextBox.ico")]
[LicenseProvider(typeof(LicFileLicenseProvider))]
public class NumericTextBox : System.Windows.Forms.TextBox

Introduction

Instructions

 Module 3: Building Controls 35

� Write the code to create and destroy a license
1. Declare a class level License called validatedLicense.
2. In the control constructor, use the Validate method of the LicenseManager

to generate a License and return it to the validatedLicense variable. Your
code should look like the following.
validatedLicense =
LicenseManager.Validate(typeof(NumericTextBox), this);

3. In the control destructor, explicitly destroy the License object. Your code
should look like the following.
if (validatedLicense != null)
{
 validatedLicense.Dispose();
 validatedLicense = null;
}

� Add the NumericTextBox to the Toolbox and test it
1. On the Build menu, click Build Solution.
2. On the File menu, click Add Project, and then click New Project.
3. Create a new Windows application and name it Test.
4. On the Tools menu, click Customize Toolbox.
5. Click the .NET Framework Components tab, and then click Browse.
6. Open the NumericTextBox.dll file from

install_folder\Democode\Mod03\Mod03_02\Starter\bin, and then click OK.
7. Attempt to add a NumericTextBox to the form. You will get an error

stating that a valid license could not be granted.

� Add a .LIC license file to the NumericTextBox
1. Expand the References folder in the Test Windows application and display

the Path property of the NumericTextBox reference. This is where you will
need to create the .lic license file.

2. Open Microsoft Notepad.
3. Type the following code.

NumericTextBox is a licensed component.
4. Save the file in

install_folder\Democode\Mod03\Mod3_02\Starter\obj\Debug, and name it
NumericTextBox.lic.

5. Close Notepad.

36 Module 3: Building Controls

� Test the licensed NumericTextBox and examine the supporting files
1. Add a licensed NumericTextBox to the form in the Windows application.
2. In Solution Explorer, click Show All Files.
3. Open the Licenses.licx file and review the syntax.
4. Expand the \bin folder and observe that there is no run-time .license file for

the application.
5. Set the Test Windows application as the startup project, and run the

application.
6. Close the application.
7. In Solution Explorer, click Refresh, and then display the run-time

Text.exe.licenses file in
install_folder\Democode\Mod03\Mod3_02\Starter\obj\Debug.

 Module 3: Building Controls 37

How LicFileLicenseProvider Works in .NET
When you attempt to add a licensed component in your applicationWhen you attempt to add a licensed component in your application

The LicenseManager attempts to locate a valid .LIC file

If the LicenseManager finds a suitable .LIC file, it fills the License
object with a valid license

Visual Studio .NET generates a .LICX file in the host application

When you build the application and run it, the LC.exe utility (license
complier) looks at the .LICX file for a list of licensed classes,
instantiates these classes, extracts the runtime license key, and
embeds the collection of runtime keys in a binary .Licenses file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you attempt to add a licensed component to your application, a series of
steps take place in Visual Studio .NET to find a licensed file.

When you attempt to add a licensed component in your application, the
following steps take place in Visual Studio .NET.

1. The LicenseManager attempts to locate a valid .LIC file in the same folder
as the referenced licensed assembly.

2. If the LicenseManager finds a suitable .LIC file, it fills the License object
with a valid license.

3. Visual Studio .NET generates a .LICX file in the host application that lists
attributes of all the licensed controls used by the host application.

4. When you build the application and run it, the LC.exe utility (license
complier) looks at the .LICX file for a list of licensed classes, instantiates
these classes, extracts the run-time license key, and embeds the collection of
run-time keys in a binary .Licenses file.

Introduction

Procedure

38 Module 3: Building Controls

Review

� Extending and Creating Controls

� Adding Design-Time Support for Controls

� Licensing a Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Distinguish between a composite control and a custom control.
You combine existing controls to create composite controls. Create
composite controls when you need complex functionality that requires
the use of more than one control.
If you do not want to combine or extend existing controls, you have the
option of creating your own custom controls. Custom controls display
user interface (UI) elements by making calls to a GDI+ Graphics object
in the OnPaint event. Custom controls are generally derived from the
base class System.Windows.Forms.Control.

2. How do you test a control?
1. Create a new form in the same project.
2. Add the control to the Toolbox.
3. Add the control to the form from the Toolbox.

3. What are property attributes?
Attributes are the glue that binds design-time functionality to a
component. Property attributes allow you to specify the behavior of
properties at design time. Property attributes allow you to specify
grouping options for custom properties in the Properties window of the
Visual Studio .NET environment, default values for properties, and
custom editors for custom properties.

 Module 3: Building Controls 39

4. List some property attributes built into Visual Studio .NET.
Browsable
Category
Description
DefaultProperty
DefaultValue
TypeConverter
Editor
RefreshProperties

5. What are extenders?
Extender providers add properties to other controls. An example of an
extender is the ToolTip control. The ToolTip property is not available
to controls on a form until you add the ToolTip control to the form.

6. What is the purpose of LicenseManager and LicenseProvider in licensing
controls?
The LicenseManager class is responsible for validating licensed controls
at both run time and design time.
The LicenseProvider class is the place to put custom validation code.

40 Module 3: Building Controls

Lab 3.1: Building Controls
� Exercise 1: Defining an Event and Raising

It from an Extended Control

� Exercise 2: Creating a Composite Control

� Exercise 3: Adding Design-Time Support

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Declare and raise an event in a custom control to a host application.
� Create a composite control.
� Define property procedures in a composite control to read, write, and format

properties of constituent controls.
� Add design-time support to custom controls.
� Test custom controls.

This lab focuses on the concepts in Module 3, “Building Controls,” in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET). As a result, this lab may not comply with Microsoft security
recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to use intrinsic controls in a Visual Studio .NET–
based application.

� The knowledge and skills to create custom controls in a
Visual Studio .NET–based application.

� The knowledge and skills to add design-time support custom controls in a
Visual Studio .NET–based application.

� The knowledge and skills to debug a custom control project in a
Visual Studio .NET–based application.

Objectives

Note

Prerequisites

 Module 3: Building Controls 41

You are a developer in a trading company called Northwind Traders. The
department you work in is developing a purchase order application that will be
used by the Northwind Traders sales force. When developing purchase order
applications that cater to different people, you often write the same code (code
that has the same functionality) for different applications. Instead of writing the
same code repeatedly, you decide to take advantage of component-based
development and develop classes and controls that can be reused in other
applications.

A common task that you perform in applications is writing code that prevents
users from entering non-numeric values in text boxes that display information
such as account balances and telephone numbers. You decide to create a group
of extended controls that inherit from the TextBox class and enforce the
required logic. Some may enforce numeric constraints; others may enforce
string formatting.

In addition, to increase the efficiency of your development time and provide a
consistent interface for the purchase order applications, you decide to create a
custom composite control that includes all the constituent controls required to
display order information.

Scenario

Estimated time to
complete this lab:
30 minutes

42 Module 3: Building Controls

Exercise 1
Defining an Event and Raising It from an Extended Control
In this exercise, you will define an event for the NumericTextBox control, raise it from the control,
pass event information, and respond to it from a host application.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab03_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab03_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Scenario
The NumericTextBox control is an extended control that inherits from the TextBox class. The
control accepts only numeric characters and allows the use of the BACKSPACE key. Your users
are complaining because the current version of the control does not provide feedback when an
invalid character is entered. You have been asked to expose an event on the NumericTextBox
control that passes event arguments to host applications when an invalid key is pressed. The host
applications can then display the source and details of the error in the control to the user.

Tasks Additional information

1. Open Visual Studio .NET,
and open the
NumericTextBox.sln file.
To open the solution file,
browse to
install_folder\Labfiles\
Lab03_1\Ex01\Starter\
NumericTextBox.

a. For more information about opening a project file, see the following
resources:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Use the Task List in the
NumericText.cs file to
locate the code section
'TODO: 1. Modify the
statement so that the
NumericTextBox class
inherits from the
System.Windows.Forms.
TextBox class.

a. For more information about creating extended controls and why you
should use them, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For additional
information about creating extended controls, search by using the
phrase Windows Forms Control Development C#.

3. Use the Task List in the
NumericText.cs file to
locate the code section
'TODO: 2. Declare the
InvalidUserEntry event
that passes an Object type
and KeyPressEventArgs
event arguments.

a. For more information declaring an event, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For additional
information about raising events from custom controls, search by
using the phrase Defining an Event.

 Module 3: Building Controls 43

Tasks Additional information

4. Use the Task List in the
NumericText.cs file to
locate the code section
'TODO: 3. Raise the
InvalidUserEntry event,
passing the current instance
of the NumericTextBox
control and the instance of
the KeyPressEventArgs
event.

The InvalidUserEntry
event will fire every time a
user enters an invalid
character.

a. For more information about how to raise an event, see the following
resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For additional
information about raising events from custom controls, search by
using the phrase Defining an Event.

5. Rebuild the
NumericTextBox project.

a. For more information about building your application, see the
following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrase Default and Custom Builds.

6. Add a Windows Application
project to the
NumericTextBox solution,
and name it Test.

a. For more information about adding a project to an existing solution for
testing, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For help with the code
editor, search by using the phrase Debugging Preparation:
Windows Control Libraries.

7. Open Design view of Form1
in the Test project, and add
the NumericTextBox
control to the Toolbox.
Then, add a
NumericTextBox control
from the Toolbox to Form1.

Make sure to reference the
version of the control in the
Debug folder.

a. For more information about customizing the Toolbox, see the
following resources:

• Code Walkthrough: Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Using the Toolbox.

44 Module 3: Building Controls

Tasks Additional information

8. Add an event handler to
Form1 for the
NumericTextBox
InvalidUserEntry event. In
the event handler, use the
KeyPressEventArgs event
arguments to display the
value of the invalid key that
is pressed in a message box.

a. For more information about creating event handlers, see the following
resources:

• Lesson: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing Microsoft
.NET Applications for Windows (Visual C# .NET).

• Practice: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing Microsoft
.NET Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrase Consuming Events.

9. Set the Test project as the
Startup Project, rebuild the
project, and then start the
NumericTextBox solution.
Enter a non-numeric
character in the
NumericTextBox control.

The InvalidUserEntry
event procedure should run
and display a message box
that includes the value of the
invalid key that was pressed.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

 Module 3: Building Controls 45

Exercise 2
Creating a Composite Control
In this exercise, you will create a composite control by using the Windows Control Library
template and define properties procedures that read, write, and format the properties of constituent
controls. You will then test the composite control in a host application.

Scenario
As a developer at Northwind Traders, you realize that many applications are being built to enable
the sales force to create purchase orders. Rather than create individual controls that offer this
functionality in each application, you decide to create a single composite control that contains all
the controls required to accomplish this task. You decide to first create the composite control and
define all the properties. You will add the data binding code to the control afterward.

The composite control will be called OrderItemControl. The OrderItemControl control includes
four TextBox controls and a ComboBox control that will be used to display the quantity, product
name, price, discount, and quantity/unit of orders.

The following image shows what the OrderItemControl control looks like.

There are solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab03_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open Visual Studio .NET,
create a new Windows
Control Library project, and
name it OrderItemControl.
Save the project in
install_folder\Labfiles\
Lab03_1\Ex02.

a. For more information about creating a project, see the following
resources:

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Adding Projects and Items to the New Application.

2. Add a new UserControl
component to the
OrderItemControl project,
and name it
OrderItemControl.cs.
Delete UserControl1 from
the project.

You need to delete the
existing UserControl from
the project or else it will
generate errors.

a. For more information about adding new items to a project, see the
following resources:

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Adding Projects and Items to the New Application.

46 Module 3: Building Controls

Tasks Additional information

3. Add a TextBox control to
OrderItemControl. Set the
Name property to
QuantityTextBox. Use the
image of the
OrderItemControl shown in
the illustration to determine
where to place the
QuantityTextBox control.

a. For more information about adding controls to a User Control and
configuring properties, see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases User Control Designer and Setting Properties for
Controls, Documents, and Forms.

4. Add a ComboBox to
OrderItemControl. Set the
Name to
ProductNameComboBox.
Set the Items property to A,
B, C—placing each value on
a separate line. Use the
image of the
OrderItemControl shown in
the illustration to determine
where to place
ProductNameComboBox.

a. For more information about adding controls to a User Control,
configuring properties, and setting the Items collection of a
ComboBox, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases User Control Designer, Setting Properties for Controls,
Documents, and Forms and String Collection Editor.

5. Add a TextBox to
OrderItemControl. Set the
Name to PriceTextBox. Set
the Enabled property to
False. Use the image of the
OrderItemControl shown in
the illustration to determine
where to place
PriceTextBox.

Additional information is not necessary for this task.

6. Add a TextBox to
OrderItemControl. Set the
Name to DiscountTextBox.
Use the image of the
OrderItemControl shown in
the illustration to determine
where to place
DiscountTextBox.

Additional information is not necessary for this task.

7. Add a TextBox to
OrderItemControl. Set the
Name to
QuantityPerUnitTextBox.
Set the Enabled property to
False. Use the image of the
OrderItemControl shown in
the illustration to determine
where to place
QuantityPerUnitTextBox.

Additional information is not necessary for this task.

 Module 3: Building Controls 47

Tasks Additional information

8. In OrderItemControl,
create a Public property
named OrderQuantity that
returns a String and gets
and sets the Text property of
QuantityTextBox.

a. For more information about creating property procedures, see the
following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrase Properties Overview.

9. In OrderItemControl,
create a Public property
named OrderProductName
that returns a String and
gets and sets the Text
property of
ProductNameComboBox.

a. For more information about creating property procedures, see the
following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrase Properties Overview.

10. In OrderItemControl,
create a Public property
named OrderPrice that
returns a String and gets
and sets the Text property of
PriceTextBox. In the Set
block, use the Format
function to convert Value to
Currency.

Using property procedures
gives you greater control
over how properties are set
and retrieved.

a. For more information about creating property procedures and using the
Format function, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrases Properties Overview and Format Function.

11. In OrderItemControl,
create a Public property
named OrderDiscount that
returns a String and gets
and sets the Text property of
DiscountTextBox.

a. For more information about creating property procedures, see the
following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrase Properties Overview.

48 Module 3: Building Controls

Tasks Additional information

12. In OrderItemControl,
create a Public property
named
OrderQuantityPerUnit
that returns a String and
gets and sets the Text
property of
QuantityPerUnitTextBox.

a. For more information about creating property procedures, see the
following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Properties Overview.

13. Add a Windows Application
project to the
OrderItemControl solution,
and name it Test.

a. For more information about adding a project to an existing solution for
testing, see the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For help with the code
editor, search by using the phrase Debugging Preparation:
Windows Control Libraries.Control Libraries.

14. Open Design view of Form1
in the Test project, and add
an OrderItemControl
control from the Toolbox.
Resize Form1 to make the
control fit.

When you use User Controls
to create composite controls,
they are automatically added
to the Toolbox in the design
time environment of the
solution. When you develop
extended controls and
custom controls, you must
manually add them to the
ToolBox.

a. For more information about adding user controls from the Toolbox, see
the following resources:

• Lesson: Extending and Creating Controls in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Creating a Composite Control in Module 3, “Building
Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Using the Toolbox.

 Module 3: Building Controls 49

Tasks Additional information

15. Add a Button control to
Form1, accept the default
name, and in the Click event
procedure, perform the
following steps:

• Assign the
OrderItemProduct
Name property of the
OrderItemControl
control to the
OrderItemQuantity
property.

• Assign the
OrderDiscount
property of the
OrderItemControl
control to the
OrderPrice property.

• Assign the
OrderDiscount
property of the
OrderItemControl
control to the
OrderQuantityPerUnit
property.

This is only to test the
Get and Set statements
of the property
procedures that you
created.

a. For more information about creating event handlers, see the following
resources:

• Lesson: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• Practice: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. Search by using the
phrase Consuming Events.

16. Set a breakpoint on the first
line in the Button1 click
event procedure created in
the step 15. Set the Test
project as Startup Project,
rebuild the solution, and
then run the
OrderItemControl solution.
Select B in the
ProductNameComboBox
control, and type 12 in the
DiscountTextBox control.
Click Button1, and view the
results.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

50 Module 3: Building Controls

Exercise 3
Adding Design-Time Support
In this exercise, you will add attributes to properties of the OrderItemControl control. You will
then test the design-time support features that you added.

Scenario
As the developer of the OrderItemControl, you do not know how developers will use it and the kind
of support that they will require to be able to use the control. You decide to add some design-time
support to the control to enable other developers to use the control easily. You will add description
and category information to the properties that you created in the previous exercise so that it is easy
for other developers to understand the function of each property.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab03_1\Ex03\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab03_1\Ex03\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open Visual Studio .NET,
and open the
OrderItemControl.sln file.
To open the solution files,
browse to
install_folder\Labfiles\
Lab03_1\Ex03\Starter\
OrderItemControl.

a. For more information about opening a project file and starting an
application, see the following resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Add Category and
Description attributes to
each property of the
OrderItemControl. Use
OrderItemControl as the
Category.

a. For more information about adding design-time support to control
properties, see the following resources:

• Lesson: Adding Design-Time Support for Controls in Module 3,
“Building Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Adding Design-Time Support for Controls in Module 3,
“Building Controls,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Attributes and Design-Time Support.

 Module 3: Building Controls 51

Tasks Additional information

3. Build the OrderItemControl
project. Add a Windows
Application project to the
OrderItemControl solution,
and name it Test. Add an
OrderItemControl from the
ToolBox, and view the
custom properties in the
Properties window. Make
sure to enable the
Categorized button so that
you can see how your
control properties are sorted.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Lesson: Overview of XML Web Services 4

Lesson: Creating a Simple XML Web
Services Client 4

Overview 1

Lesson: Adding ADO.NET Objects to and
Configuring ADO.NET Objects in a Windows
Forms Application 2

Lesson: Accessing and Modifying Data by
Using DataSets 14

Lesson: Binding Data to Controls 33

Lab 4.1: Accessing Data by Using
ADO.NET 47

Lesson: Overview of XML Web Services 59

Lesson: Creating a Simple XML Web
Services Client 65

Lesson: Persisting Data 72

Lab 4.2: Calling an XML Web Service 83

Review 87

Module 4: Using Data in
Windows Forms
Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Using Data in Windows Forms Applications iii

Instructor Notes
The module provides an overview of how to use data in a Windows Forms
application. Windows Forms are a part of the new Microsoft® .NET
Framework. The module explains how to use the Microsoft ADO.NET object to
access, display, and update data from a database. In this module, students also
learn how to create and test a simple XML Web service client application and
how to persist application settings.

After completing this module, students will be able to:

� Describe the objects in the ADO.NET object model.
� Add and configure ADO.NET objects in a Windows Forms application.
� Access and modify data from a database by using DataSets.
� Bind data to controls.
� Describe the XML Web services model and the roles of HTML, Simple

Object Access Protocol (SOAP), and XML in the Web services model.
� Create and test a simple XML Web service client application.
� Persist data to files, serialize objects, use isolated storage, and persist

application settings.

To teach this module, you need the Microsoft PowerPoint® file 2555A_04.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Review the animation for this module.
� Complete the demonstrations, practices, and labs.

Presentation:
180 minutes

Labs:
60 minutes

Required materials

Preparation tasks

iv Module 4: Using Data in Windows Forms Applications

How to Teach This Module
This section contains information that will help you to teach this module.

� If students are interested in referencing code in other languages, point them
to “Language Equivalents” in the Help documentation for the Microsoft
Visual Studio® .NET development system. This section provides examples
in languages such Microsoft Visual Basic® .NET, Microsoft Visual C#™,
and Java.

� Lab 4.1: Accessing Data by Using ADO.NET is based on the Purchase
Order application in Course 2555A, Developing Microsoft .NET
Applications for Windows® (Visual C# .NET) and is intended to simulate a
real-world environment in which students will demonstrate what they
learned during the lecture and practice portions of the module. The lab does
not provide step-by-step detailed instructions; instead, the students are given
tasks to complete in the left column and a list of resources that they can use
(if they need help) in the right column. Students get the hands-on experience
that they need by completing the practice activities at the end of each lesson.

� Lab 4.2: Calling an XML Web Service is based on the Expense Report
application in Course 2555A, Developing Microsoft .NET Applications for
Windows® (Visual C# .NET).

Lesson: Overview of XML Web Services
This section describes the instructional methods for teaching this lesson.

This is an overview lesson that does not cover implementation details.
Implementation details are included in the Creating a Simple XML Web
Services Client lesson.

Lesson: Creating a Simple XML Web Services Client
This section describes the instructional methods for teaching this lesson.

Ask students if they have ever created a simple XML Web service. If they have
not, you may want to do an informal demonstration of creating a simple XML
Web service so they can see how easy it is.

 Module 4: Using Data in Windows Forms Applications 1

Overview

� Adding ADO.NET Objects to and Configuring ADO.NET
Objects in a Windows Forms Application

� Accessing and Modifying Data by Using DataSets

� Binding Data to Controls

� Overview of XML Web Services

� Creating a Simple XML Web Services Client

� Persisting Data

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Data binding provides a simple, convenient, powerful, and transparent way for
developers to create a read/write link between the controls on a form and the
data in their applications.

Windows Forms, which are part of the new Microsoft® .NET Framework,
support binding data to Microsoft ADO.NET DataSets, arrays, collections, and
other controls. A control can be bound to any collection that supports indexed
access to the elements in that collection.

XML Web services enable the exchange of data and the remote invocation of
application logic by using XML messaging to move data through firewalls and
among many heterogeneous systems.

Developers can create applications that weave together XML Web services
from a variety of sources in much the same way that developers traditionally
use components when creating a distributed application.

After completing this module, you will be able to:

� Describe the objects in the ADO.NET object model.
� Add and configure ADO.NET objects in a Windows Forms application.
� Access and modify data from a database by using DataSets.
� Bind data to controls.
� Describe the XML Web services model and the roles of HTML, SOAP, and

XML in the XML Web services model.
� Create and test a simple XML Web service client application.
� Persist data to files, serialize objects, use isolated storage, and persist

application settings.

Introduction

Objectives

2 Module 4: Using Data in Windows Forms Applications

Lesson: Adding ADO.NET Objects to and Configuring
ADO.NET Objects in a Windows Forms Application

� ADO.NET Objects

� What Is a DataSet?

� What Is a Typed DataSet?

� How to Add ADO.NET Objects to and Configure
ADO.NET Objects in a Windows Forms Application

� Practice: Adding ADO.NET Objects to and Configuring
ADO.NET Objects in a Windows Forms Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As application development has evolved, a lot of new applications are based on
the Web application model. An increasing number of applications use XML to
encode data to be passed over network connections. ADO.NET provides a
programming model that incorporates features of both XML and ADO.NET in
the .NET Framework.

ADO.NET is a set of classes that allow .NET-based applications to read and
update information in databases and other data stores. You can access these
classes through the .NET Framework System.Data namespace.

ADO.NET provides consistent access to a wide variety of data sources,
including Microsoft SQL Server™ databases, OLE DB–compliant databases,
non-relational sources such as Microsoft Exchange Server, and XML
documents.

ADO.NET is designed for working with disconnected data in a multi-tier
environment. ADO.NET uses XML as the format for transmitting disconnected
data, which makes it easier to communicate with client applications that are not
based on Windows Forms.
After completing this lesson, you will be able to:

� Describe the objects in the ADO.NET object model.
� Describe datasets.
� Describe typed datasets.
� Add ADO.NET objects and configure ADO.NET objects in a Windows

Forms application.

Introduction

Lesson objectives

 Module 4: Using Data in Windows Forms Applications 3

ADO.NET Objects

Data SourceDataAdapterDataTable

DataTable

DataSet

DataAdapter

FillFill

UpdateUpdate

UpdateUpdate

FillFill

ConnectionConnection
UpdateCommandUpdateCommand

SelectCommandSelectCommand

SelectCommandSelectCommand

UpdateCommandUpdateCommand

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO.NET evolved from the ADO data access model. By using ADO.NET, you
can develop applications that are robust and scalable and that can use XML.

ADO.NET has some of the same objects as ADO (like the Connection and
Command objects), and introduces new objects, such as Dataset, DataReader,
and DataAdapter.

To move data between a data store and your application, you must first have a
connection to the data store. In ADO.NET you can create and manage a
connection by using a Connection object. Applications use Connection objects
to communicate with databases. The ConnectionString property determines
connection settings. These connection settings access a particular DataSource.
A typical ConnectionString property might look like the following code:

Provider=SQLOLEDB.1;Data Source=MySQLServer;Initial
Catalog=NORTHWIND;Integrated Security=SSPI

There are two kinds of connection objects in ADO.NET: SqlConnection and
OleDbConnection. The SqlConnection object manages a connection to
Microsoft SQL Server version 7.0 or later. The SqlConnection object is
optimized for use with SQL Server 7.0 or later by bypassing the OLE DB layer.
The OleDbConnection object manages a connection to any data store
accessible through OLE DB. The OleDbConnection object interacts with OLE
DB to expose a consistent API for a variety of data sources—everything from
simple text files to spreadsheets and full-featured databases.

The Connection object is one component of a .NET Framework data
provider. A data provider in the .NET Framework serves as a bridge between an
application and a data source and is used to retrieve data from a data source and
to reconcile changes to that data back to the data source.

Introduction

Connection object

Note

4 Module 4: Using Data in Windows Forms Applications

You can use Command objects to access data directly in the database in a
connected environment. Command objects use SQL statements or stored
procedures to retrieve data. Commands travel across connections, and result
sets are returned in the form of streams that can be read by DataReaders or
pushed into DataSet objects. Command objects contain a Parameters
collection that populates the input and output arguments of SQL statements or
stored procedures. For example, if you have a SQL statement that returns all of
the rows in the Orders table where the EmployeeID is equal to a value
determined at run time, you add the value EmployeeID to the Parameters
collection of the Command object.

A Command object contains a reference to a SQL statement or stored
procedure that you can execute directly. The two Command classes are
described in the following table.

Command class Description

System.Data.SqlClient.SqlCommand SQL Server .NET Data Provider

command

System.Data.OleDb.OleDbCommand OLE DB .NET Data Provider command

The DataReader is a fast, forward-only cursor that loops through a stream of
rows. When you execute a Command object that returns a set of rows, you use
a DataReader to loop through the set of rows. You can use a Command object
and the ExecuteReader method to return a DataReader. You can execute any
SELECT statement or a stored procedure that contains a SELECT statement.

The DataReader provides strongly typed methods to get the value of a specific
column in the current row. You can also obtain metadata about the rows, such
as the column name and the column data type.

When you process a result set with a DataReader, the associated connection is
kept busy until you close the DataReader. For this reason, you should close the
DataReader as soon as you finish processing the result set.

Datasets store data in a disconnected cache. The structure of a dataset is similar
to that of a relational database; it exposes a hierarchical object model of tables,
rows, and columns. In addition, it contains constraints and relationships defined
for the dataset.

Command object

DataReader object

DataSet object

 Module 4: Using Data in Windows Forms Applications 5

The DataSet object represents a local copy of data from a data source and is
one of the key innovations of the Microsoft .NET Framework. By itself, the
DataSet object is useful for reference. However, to serve as a true data-
management tool, a DataSet must be able to interact with a data source. To
accomplish this, the .NET Framework provides the DataAdapter class. A
DataAdapter object serves as a bridge between a DataSet and a data source for
retrieving and saving data. The DataAdapter class represents a set of database
commands and a database connection that you use to fill a DataSet and update
the data source. DataAdapter objects are part of the Microsoft ADO.NET data
providers, which also include connection objects, data-reader objects, and
command objects. Microsoft Visual Studio® .NET makes two primary
DataAdapters available for use with databases. In addition, other
DataAdapters can be integrated with Visual Studio. The primary
DataDdapters are:

� OleDbDataAdapter, which is suitable for use with any data source that is
exposed by an OLE DB provider.

� SqlDataAdapter, which is specific to a SQL Server version 7.0 or later
database. The SqlDataAdapter is faster than the OleDbDataAdapter
because it works directly with SQL Server and does not go through an OLE
DB layer.

DataAdapter object

6 Module 4: Using Data in Windows Forms Applications

What Is a DataSet?

� Datasets can include multiple DataTables

� Relationships between tables are represented using
DataRelations

� Constraints enforce primary and foreign keys

� Use the DataRow and DataColumn to access values in
Tables

DataTable

DataColumn

DataRow

DataRelation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In ADO.NET, by using DataSets you can represent data in a local cache and
provide a relational programming model for the data regardless of its source.

The ADO.NET DataSet is an in-memory cache of data that functions as a
disconnected relational view of the data. The connection to the data source does
not need to be active for an application to view and manipulate data in a
DataSet. This disconnected architecture enables greater scalability by using
database server resources only when reading from, or writing to, the data
source.

DataSets store data similarly to the way data is stored in a relational database,
with a hierarchical object model of tables, rows, and columns. Additionally,
you can define constraints and relationships for the data in the DataSet.

DataTable objects represent the tables in a DataSet. A DataTable represents
one table of in-memory relational data. The data is local to the .NET-based
application in which it resides, but it can be populated from an existing data
source. A DataTable is composed of DataColumns.

A DataColumn is the building block for creating the schema of a DataTable.
Each DataColumn has a DataType property that determines the kind of data
that each DataColumn contains. For example, you can restrict the data type to
integers, strings, or decimals. Because data contained in the DataTable is
typically merged back into the original data source, you must match the data
types to those in the data source.

Introduction

Definition

DataTables in DataSets

DataColumns in
DataTables

 Module 4: Using Data in Windows Forms Applications 7

The DataSet class has a Tables property that gets a collection of DataTable
objects in the DataSet, and a Relations property that gets a collection of the
DataRelation objects in the DataSet.

A DataTable object contains several collections that describe the data in the
table and cache the data in memory. The following table describes the most
important collections.

Collection name

Type of object
in collection

Description of object in collection

Columns DataColumn Contains metadata about a column in the table,

such as the column name, data type, and
whether rows can contain a NULL value in
this column.

Rows DataRow Contains a row of data in the table. A
DataRow object also maintains the original
data in the row, before any changes were made
by the application.

Constraints Constraint Represents a constraint on one or more
DataColumn objects. Constraint is an
abstract class. There are two concrete
subclasses: UniqueConstraint and
ForeignKeyConstraint.

ChildRelations DataRelation Represents a relationship to a column in
another table in the DataSet. You use
DataRelation objects to create links between
primary keys and foreign keys in your tables.

Tables in a DataSet

8 Module 4: Using Data in Windows Forms Applications

What Is a Typed DataSet?

� Typed datasets
� Derive from the base DataSet class
� Provide type checking at compile time
� Provide faster access to tables and columns in the dataset
� Generated from XML Schema (.xsd) files by using the

XSD.exe tool
� To access tables and columns

� Typed dataset

� Untyped dataset
PubsDataSet.Tables("Titles");PubsDataSet.Tables("Titles");

PubsDataSet.Titles;PubsDataSet.Titles;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Datasets can be typed or untyped. Typed datasets are classes that are generated
from XML Schema (.xsd) files. An untyped dataset, in contrast, has no
corresponding built-in schema.

A typed dataset is a class that derives from the base DataSet class. It inherits all
the methods, events, and properties of a dataset. In addition, a typed dataset
provides strongly typed methods, events, and properties. This means that you
can access tables and columns by name, instead of by using collection-based
methods. For example, to access the Titles table from a dataset named
pubsDataSet1, you use the following code:

PubsDataSet.Tables("Titles");

However, with a typed dataset, you can directly access the Titles table by using
the following code:

PubsDataSet.Titles;

Typed datasets are not only easier to read, but they are also fully supported by
the Microsoft IntelliSense® technology in the Code Editor in
Visual Studio .NET. In addition to being easier to work with, the syntax for the
typed dataset provides type checking at compile time; this greatly reduces the
possibility of errors in assigning values to dataset members. Access to tables
and columns in a typed dataset is also slightly faster at run time because access
is determined at compile time—not through collections at run time.

You can generate a strongly typed dataset from within the Visual Studio .NET
integrated development environment (IDE) by selecting tables from an existing
database or by creating one using the XML Designer.

Introduction

Definition

Advantages of typed
datasets

 Module 4: Using Data in Windows Forms Applications 9

How to Add ADO.NET Objects to and Configure ADO.NET Objects
in a Windows Forms Application

Drag an OleDbDataAdapter or SqlDataAdapter object from the
Toolbox to a form
Drag an OleDbDataAdapter or SqlDataAdapter object from the
Toolbox to a form

Specify connection and SQL command information Specify connection and SQL command information

Select the adapter or adapters that will be used to transfer data
between the data source and the dataset
Select the adapter or adapters that will be used to transfer data
between the data source and the dataset

On the Data menu, choose Generate DatasetOn the Data menu, choose Generate Dataset

Select New and then specify a name for the new datasetSelect New and then specify a name for the new dataset

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The data design tools in Visual Studio .NET provide a simple way to connect to
a database, retrieve data from it, and generate a typed dataset.

You can use either of the following data design tools to connect to a data
source:

� DataAdapter Configuration Wizard
This wizard prompts you for information to create a connection that is in
turn linked to a data adapter.

� Data Form Wizard
This wizard creates the connection object as part of the form that it is
configuring.

This topic explains how to connect to a data source by using DataAdapter
Configuration Wizard.

When you use data design tools, you need not create explicit connections
to a data source; however, there are times when you need to create just a
connection. For more information about how to create a connection, in the
Visual Studio .NET documentation, search by using the phase Creating
ADO.NET Connection Objects.

Introduction

Note

10 Module 4: Using Data in Windows Forms Applications

Data Adapter Configuration Wizard helps you set the properties of a new or
existing data adapter. A data adapter contains SQL commands or stored
procedures that your application can use to read data into a dataset from a
database and write it back again. The wizard can also create a data connection
that allows the adapter to communicate with a database.

To use DataAdapter Configuration Wizard:

1. Drag an OleDbDataAdapter or SqlDataAdapter object from the Toolbox
onto a form or component.

2. Specify connection and SQL command information.
The wizard displays several dialog boxes:

• If you ask to create a connection, the wizard displays the Connection
tab of the Data Link Properties dialog box, which allows you to
specify a provider, server name, database name, user name, and
password for the connection.

• To help you create SQL statements, the wizard provides the Query
Builder, a utility that allows you to create and test a Select statement by
using visual tools. To launch it, click the Query Builder button when
asked for a SQL statement.

3. In Component Designer, select the adapter or adapters that will transfer data
between the data source and the dataset.
Typically, each data adapter accesses data in a single table. Therefore, to
create a dataset that contains multiple data tables, select all the adapters for
the tables that you want to work with.

4. On the Data menu, choose Generate Dataset.
The Generate DataSet dialog box appears.

5. Click New, and then specify a name for the new dataset. If you want to add
the dataset to your form or component, click Add an instance of this
DataSet to the designer.
This generates a typed dataset.

Procedure: Adding
ADO.NET objects

 Module 4: Using Data in Windows Forms Applications 11

Practice: Adding ADO.NET Objects to and Configuring ADO.NET
Objects in a Windows Forms Application

In this practice, you will

� Add and configure a SQLConnection
object on a Windows Form

� Add and configure a SQLDataAdapter
control on a Windows Form

� Generate the dataset

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add ADO.NET objects to and configure ADO.NET
objects on a form by using Data Adapter Configuration Wizard.

� Create a Windows application project
1. Open Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the New Project dialog box, select Windows Application, name it

BuildingDataSets, and then click OK.

� Add a SQLConnection control to the form and configure it
1. Drag a SQLConnection control from the ToolBox to Form1.

The SQLConnection control is on the Data tab of the Toolbox.
2. In the Properties window, click the ConnectionString property, click the

arrow, and then click New Connection.
3. In the Data Link Properties dialog box, type <computername>\MOC

where <computername> is the name of your computer.
4. Select the Use Windows NT Integrated Security option.
5. Select the pubs database from the drop-down list, click Test Connection to

ensure that you can access the pubs database, and then click OK.
6. Click OK to close the Data Link Properties dialog box.
7. Review the ConnectionString text that is generated.

Introduction

Instructions

12 Module 4: Using Data in Windows Forms Applications

� Add a SQLDataAdapter control to the form and configure it
1. Drag a SQLDataAdapter control from the ToolBox to Form1.
2. In opening page of the Data Adapter Configuration Wizard, click Next.
3. In the data connection drop-down list, click

<computername>\moc\pubs.dbo, and then click Next.
4. In the Choose a Query Type dialog box, click Next.

You can use this wizard create SQL statements and stored procedures or
modify existing stored procedures.

5. On the Toolbar, click the Query Builder button.
6. In the Add Table dialog box, select the Titles tables, click Add, and then

click Close.
7. In the Query Builder dialog box, in the Titles table, select All Columns,

and then click OK.
8. Click Next to open the View Wizard Results dialog box.
9. Review the information in the View Wizard Results dialog box, and then

click Finish.

� Review the code generated
1. Review the SelectCommand, DeleteCommand, InsertCommand and

UpdateCommand properties of the SQLDataAdapter1 control in the
Properties window.
Each of these properties is associated with a SQLCommand object that was
generated by the wizard. Each operation (SELECT, INSERT, UPDATE,
DELETE) uses a specific SQLCommand to perform its task.

2. Expand the DeleteCommand property and review the CommandText
property.
Each SQLCommand object has a unique CommandText property that is
generated by the wizard and enables the object to perform its task.

� Generate a typed DataSet
1. Right-click the SQLDataAdapter1 control, and click Generate DataSet.

If the Generate DataSet option is disabled, then click anywhere
outside the Properties window before generating the dataset.

2. Click OK in the Generate Dataset dialog box.
A dataset control named DataSet11 is added to Form1. DataSet11 is an
instance of the typed dataset DataSet1.

3. In Solution Explorer, double-click DatSet1.xsd.
This is the visual representation of your dataset. In this view you can add
new or existing tables to your dataset and create relationships between them.

Note

 Module 4: Using Data in Windows Forms Applications 13

4. Click XML in the lower left of the designer.
This is the XML representation of your dataset.

5. In Solution Explorer, click Show All Files.
6. In Solution Explorer, expand DataSet1.xsd, and then double-click

DataSet1.cs.
7. Review the code.

The object created is a typed dataset that inherits from the DataSet class.
The data information in the .xsd file is used to create the typed dataset.

14 Module 4: Using Data in Windows Forms Applications

Lesson: Accessing and Modifying Data by Using
DataSets

� How to Populate a Dataset

� How to Update Data in a Dataset

� How to Update Data to a Data Source

� Practice: Populating and Updating DataSets

� How to Create Database Schema on the Client

� Demonstration: Creating Database Schema by Using the
XML Schema Designer

� How to Read and Write XML Data into a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO.NET provides you with the Dataset object for the caching of data on the
client computer. This dataset is automatically disconnected from the data source
but maintains the ability to later update the source based on changes made at the
client.

This lesson shows how to create datasets and populate tables in them. This
lesson also shows how to edit these tables and propagate those changes to the
data source.

After completing this lesson, you will be able to:

� Populate a dataset with data from a data source.
� Update the data in a dataset.
� Update the data source by using a dataset.
� Create relationships between tables in a dataset.
� Create database schema on the client.
� Read XML data into a dataset.
� Write data from a dataset into an XML file.

Introduction

Lesson objectives

 Module 4: Using Data in Windows Forms Applications 15

How to Populate a Dataset

� Use the DataAdapter object to fill the dataset

SqlDataAdapter storesSQLDataAdapter;
SqlCommand storesSelectSQLCommand;
storesSelectSQLCommand.CommandText = "SELECT * FROM

stores";
storesSelectSQLCommand.Connection = SqlConnection1;
storesSQLDataAdapter.SelectCommand =

storesSelectSQLCommand;
storesSQLDataAdapter.Fill(storesDataSet.Tables["Stores"]);

SqlDataAdapter storesSQLDataAdapter;
SqlCommand storesSelectSQLCommand;
storesSelectSQLCommand.CommandText = "SELECT * FROM

stores";
storesSelectSQLCommand.Connection = SqlConnection1;
storesSQLDataAdapter.SelectCommand =

storesSelectSQLCommand;
storesSQLDataAdapter.Fill(storesDataSet.Tables["Stores"]);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A dataset is an in-memory representation of data and does not actually contain
any data until you fill it by using a DataAdapter object. After you create the
DataAdapter object, you use the Fill method, passing a DataSet and,
optionally, the DataTable name as parameters.

The DataAdapter uses the SelectCommand object to execute the query and
returns the results to the DataSet or to the DataTable referenced as parameters.
The following code programmatically creates and configures a
SQLDataAdapter and a SQLCommand and then uses the Fill method to
populate a table in a dataset:

SqlDataAdapter storesSQLDataAdapter;
SqlCommand storesSelectSQLCommand;
storesSelectSQLCommand.CommandText = "SELECT * FROM stores";
storesSelectSQLCommand.Connection = SqlConnection1;
storesSQLDataAdapter.SelectCommand = storesSelectSQLCommand;
storesSQLDataAdapter.Fill(storesDataSet.Tables["Stores"]);

It is often necessary to pass parameters to a SQL statement. For example, when
accessing rows from a data source, you use the SELECT statement, which uses
a unique identifier to identify the rows to be accessed. The unique identifier is
commonly the value of a primary key field. The SELECT statement uses
parameters that contain the unique identifier, and the columns and values to be
updated, as shown in the following SQL statement:

SELECT stor_id, ord_num, qty, ord_date, payterms, title_id
FROM sales WHERE (stor_id = @stor_id)

In the previous example, the stor_id field must be populated with a value from
the @stor_id parameter for the SQL statement to return results.

Introduction

Populating a dataset

Passing parameters to
SELECT statements

16 Module 4: Using Data in Windows Forms Applications

A Parameter object holds the input and output parameters of SQL statement
and stored procedures. The Parameters collection of a Command object is
where you add the required arguments of SQL statements or stored procedures.
There are a variety of ways to add Parameter objects to the Parameters
collection. The following code uses the SelectCommand property to access a
Command object and then assigns the value of stor_id to the Value property of
the Parameter object in the Parameters collection that is identified by
@stor_id:
salesSqlDataAdapter.SelectCommand.Parameters["@stor_id"].Value
= stor_id;

After all the arguments for a SQL statement or stored procedure are defined in
Parameter objects, you can call the Fill method of the DataAdapter to get the
results.

salesSqlDataAdapter.Fill(StoreSalesDataSet1.sales);

 Module 4: Using Data in Windows Forms Applications 17

How to Update Data in a DataSet

� Adding rows

� Editing rows

� Deleting data

DataRow newDataRow =
pubsDataSet.Tables["Titles"].NewRow();

newDataRow["title"] = "New Book";
newDataRow["type"] = "business";
pubsDataSet.Tables["Titles"].Rows.Add(newDataRow);

DataRow newDataRow =
pubsDataSet.Tables["Titles"].NewRow();

newDataRow["title"] = "New Book";
newDataRow["type"] = "business";
pubsDataSet.Tables["Titles"].Rows.Add(newDataRow);

changeDataRow.BeginEdit();
changeDataRow["Title"] = changeDataRow["Title"].ToString()

+ " 1";
changeDataRow.EndEdit();

changeDataRow.BeginEdit();
changeDataRow["Title"] = changeDataRow["Title"].ToString()

+ " 1";
changeDataRow.EndEdit();

DataRow deleteDataRow =
pubsDataSet.Tables["Titles"].Rows[0];

pubsDataSet.Tables["Titles"].Rows.Remove(deleteDataRow);

DataRow deleteDataRow =
pubsDataSet.Tables["Titles"].Rows[0];

pubsDataSet.Tables["Titles"].Rows.Remove(deleteDataRow);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have created a dataset of DataTables, you might want to add, update,
and delete data. Any changes that you make to the data are stored in memory
and later used to apply the changes to the data source.

To add new rows to a dataset table:

1. Instantiate a DataRow object by using the NewRow method of the
DataTable.

2. Populate the columns with data.
3. Call the Add method of the DataRows collection, passing the DataRow

object.
The following code shows how to add rows to a dataset:
DataRow newDataRow =
pubsDataSet.Tables["Titles"].NewRow();
newDataRow["title"] = "New Book";
newDataRow["type"] = "business";
pubsDataSet.Tables["Titles"].Rows.Add(newDataRow);

Introduction

Procedure: Adding rows
to a dataset

18 Module 4: Using Data in Windows Forms Applications

To edit existing rows in a dataset table:

1. Call the BeginEdit method of the row.
2. Change the data in the columns.
3. Call EndEdit or CancelEdit to accept or reject the changes.

The following code shows how to edit data in an existing column:
DataRow changeDataRow =
pubsDataSet.Tables["Titles"].Rows[0];
changeDataRow.BeginEdit();
changeDataRow["Title"] = changeDataRow["Title"].ToString()
+ " 1";
changeDataRow.EndEdit();

Use either of the following methods to delete a row:

� Remove method
Call the Remove method of the DataRows collection. This permanently
removes the row from the dataset.

� Delete method
Call the Delete method of the DataRow object. This only marks the row for
deletion in the dataset, and calling RejectChanges will undo the deletion.
The following code shows how to delete an existing row from a dataset:
DataRow deleteDataRow =
pubsDataSet.Tables["Titles"].Rows[0];
pubsDataSet.Tables["Titles"].Rows.Remove(deleteDataRow);

Procedure: Editing rows
in a dataset

Procedure: Deleting data
in a dataset

 Module 4: Using Data in Windows Forms Applications 19

How to Update Data to a Data Source

SqlCommand insertTitlesCommand = new SqlCommand
("Insert titles (title_id, title, type)
values (@title_id,@title,@type)");

insertTitlesCommand.Parameters.Add
("@title_id", SqlDbType.VarChar, 6, "title_id");

insertTitlesCommand.Parameters.Add
("@title", SqlDbType.VarChar, 80, "title");

insertTitlesCommand.Parameters.Add
("@type", SqlDbType.Char, 12, "type");

titlesSQLDataAdapter.InsertCommand = insertTitlesCommand;
titlesSQLDataAdapter.Update(pubsDataSet, "titles");

SqlCommand insertTitlesCommand = new SqlCommand
("Insert titles (title_id, title, type)
values (@title_id,@title,@type)");

insertTitlesCommand.Parameters.Add
("@title_id", SqlDbType.VarChar, 6, "title_id");

insertTitlesCommand.Parameters.Add
("@title", SqlDbType.VarChar, 80, "title");

insertTitlesCommand.Parameters.Add
("@type", SqlDbType.Char, 12, "type");

titlesSQLDataAdapter.InsertCommand = insertTitlesCommand;
titlesSQLDataAdapter.Update(pubsDataSet, "titles");

� Explicitly specifying the updates

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have updated the tables in your dataset, you will want to replicate
those changes to the underlying data source. To do this, use the Update method
of the DataAdapter object, which is the link between dataset and data source.

The Update method, like the Fill method, takes two parameters: the DataSet
and the name of the DataTable in which the changes have been made. The
Update method determines the changes to the data and executes the appropriate
SQL command (Insert, Update, or Delete) against the source data.

You use the InsertCommand, UpdateCommand, and DeleteCommand
properties of the DataAdapter to identify the changes occurring in your
dataset. You specify each of these as an existing command object for an Insert,
Update, or Delete SQL statement. For any variable columns in the statements,
you use SqlParameter objects to identify the column, data type, size, and data
to be inserted.

Introduction

Explicitly specifying the
updates

20 Module 4: Using Data in Windows Forms Applications

The following code shows how to use the InsertCommand property to add a
row to the Titles table in the pubs database:

SqlCommand insertTitlesCommand = new SqlCommand
("Insert titles (title_id, title, type) values
(@title_id,@title,@type)");

insertTitlesCommand.Parameters.Add
 ("@title_id", SqlDbType.VarChar, 6, "title_id");
insertTitlesCommand.Parameters.Add
 ("@title", SqlDbType.VarChar, 80, "title");
insertTitlesCommand.Parameters.Add
 ("@type", SqlDbType.Char, 12, "type");

titlesSQLDataAdapter.InsertCommand = insertTitlesCommand;
titlesSQLDataAdapter.Update(pubsDataSet, "titles");

 Module 4: Using Data in Windows Forms Applications 21

Practice: Populating and Updating DataSets

In this practice, you will

� Configure the SQLConnection control on
a Windows Form to connect to the
database

� Populate the dataset

� Update the database

� Test the application

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will populate a dataset and update a database with the
changes made to the dataset. You will fill the dataset with the Stores and Sales
tables of the pubs database. For the Stores table, you will write all of the code
required to populate the dataset. For the Sales table, you will use the code
generated by Data Adapter Configuration Wizard and a typed dataset. You will
also update the database with any changes to the Sales table.

� Open the practice project
1. Use Microsoft Windows® Explorer to browse to

install_folder\Practices\Mod04\Mod04_02\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the PopulatingAndUpdatingDataSets.sln solution file to open
the project.

� Populate StoreSalesDataSet1 with data from the Stores table
1. Show TODO comments in the Task List.

To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

2. Locate TODO: 1 in the Code Editor of Form1.
3. Under TODO: 1, declare and instantiate a SqlDataAdapter named

storesSQLDataAdapter.
4. Declare and instantiate a SqlCommand named

storesSelectSQLCommand.

Introduction

Instructions

Note

22 Module 4: Using Data in Windows Forms Applications

5. Declare a DataTable named storesTable and initialize it with the String
Stores. Your code should look like this:
System.Data.SqlClient.SqlDataAdapter storesSQLDataAdapter =
new System.Data.SqlClient.SqlDataAdapter();
System.Data.SqlClient.SqlCommand storesSelectSQLCommand =
new System.Data.SqlClient.SqlCommand();
DataTable storesTable = new DataTable("Stores");

6. Locate TODO: 2 in the Code Editor of Form1.
7. Under TODO: 2, set the CommandType property of

storesSelectSQLCommand to CommandType.Text.
8. Set the CommandText property of storesSelectSQLCommand to,

"SELECT stor_id, stor_name FROM stores".
9. Set the Connection property of storesSelectSQLCommand to

SQLConnection1.
10. Set the SelectCommand property of storesSQLDataAdapter to

storesSelectSQLCommand. Your code should look like this:
storesSelectSQLCommand.CommandType = CommandType.Text;
storesSelectSQLCommand.CommandText = "SELECT stor_id,
stor_name FROM stores";
storesSelectSQLCommand.Connection = sqlConnection1;
storesSQLDataAdapter.SelectCommand =
storesSelectSQLCommand;

11. Locate TODO: 3 in the Code Editor of Form1.
12. Under TODO: 3, use the Fill method of storesSQLDataAdapter to

populate storesTable.
13. Use the Add method to add storesTable to the Tables collection of the

existing StoreSalesDataSet dataSet. Your code should look like this:
storesSQLDataAdapter.Fill(storesTable);
StoreSalesDataSet1.Tables.Add(storesTable);

 Module 4: Using Data in Windows Forms Applications 23

� Use existing code generated by Data Adapter Configuration Wizard
and a typed dataset to populate StoreSalesDataSet1 with data from the
Sales table

The CommandText property of SalesSQLSelectCommand is set to the
following:

"SELECT stor_id, ord_num, qty, ord_date, payterms, title_id
FROM sales WHERE (stor_id = @stor_id)"

You must assign the @stor_ID parameter a value to get the required results.
You use the Parameters collection of the SQLCommand object to assign this
value.

1. Locate TODO: 4 in the Code Editor of Form1.
2. Under TODO: 4, use the SelectCommand property of

SalesSqlDataAdapter to access SalesSQLSelectCommand and set the
Value property of the @storeid parameter in the Parameters collection to
storeID. Your code should look like this:
SalesSQLDataAdapter.SelectCommand.Parameters["@stor_id"].
Value = storeID;

3. Locate TODO: 5 in the Code Editor of Form1.
4. Under TODO: 5, use the Clear method of Sales DataTable in

StoreSalesDataSet1 to clear the Sales table of any existing data. Your code
should look like this:
StoreSalesDataSet1.sales.Clear();

5. Locate TODO: 6 in the Code Editor of Form1.
6. Under TODO: 6, use the Fill method of SalesSQLDataAdapter to populate

the sales property of StoreSalesDataSet1. Your code should look like this:
SalesSqlDataAdapter.Fill(StoreSalesDataSet1.sales);

� Update the pubs database with the changes in StoreSalesDataSet1
1. Locate TODO: 7 in the Code Editor of Form1.
2. Under TODO: 7, use the Update method of SalesSqlDataAdapter, and

pass StoreSalesDataSet1 as an argument. Your code should look like this:
SalesSqlDataAdapter.Update(StoreSalesDataSet1);

� Test the application
1. Press F5 to compile and run the application.
2. In the Stores list, click News and Brews.

You may want to set breakpoints in your code to follow the execution
path.

Tip

24 Module 4: Using Data in Windows Forms Applications

3. Click the bottom row of the DataGrid to create a new row, and enter the
following fields.

The date in the following table is in the mm/dd/yy format for the
purposes of practicing the concepts learned in the lesson. However, when
you create an application for an international audience, you should use a
different method of capturing the date - like a pop-up calendar to select the
date, or three individual list boxes: for the month, day, and year.

Field Value

stor_id 7067

ord_num P2122

qty 12

ord_date 6/13/2002

payterms Net 60

title_id PC9999

4. Click Update.
5. Switch to the Visual Studio .NET IDE, and use Server Explorer to verify

that the database was updated.
6. Switch back to the Store Orders application, set the qty field of the new row

to 24, and then click Update.
7. Switch to the Visual Studio .NET IDE, and use Server Explorer to verify

that the database was updated.
8. To refresh the view, right-click the results, and then click Run.
9. Switch back to the Store Orders application, delete the new row, and then

click Update.
10. Switch to the Visual Studio .NET IDE, and use Server Explorer to verify

that the database was updated.

Note

 Module 4: Using Data in Windows Forms Applications 25

How to Create Database Schema on the Client

� XML Schema (.xsd) files
enforce data integrity on
the client

� Use the XML Designer to
create and modify XML
Schema files
1. Determine the schema

design
2. On the Project menu,

click Add New Item
3. Add the schema
4. Create the schema

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a typed dataset is generated at design time, a dataset class and an
associated XML Schema file is created in your project. XML Schema files
define and validate the data being imported from XML streams or documents
into typed datasets. The XML Schema file associated with the dataset can be
loaded into the XML Designer providing a visual representation of the dataset
structure that can be edited and viewed. You can create and edit table structures
and create relations between tables by using the XML Designer.

In typed datasets, XML Schema (.xsd) files establish the relational structure of
the dataset's tables and columns, the key columns, constraints, and relationships
between tables. The relational structure information is used when generating a
DataSet class. The table relation information is available within a dataset, and
referential integrity can be maintained within the DataSet.

Introduction

26 Module 4: Using Data in Windows Forms Applications

To create an XML schema:

1. Determine the design needed for your schema.
2. On the Project menu, click Add New Item.
3. Do one of the following:

• Add a schema. To add a schema, open the appropriate folder, and then
double-click XML Schema.
An XML Schema (.xsd) file is added to your project.
- Or -

• Add a dataset. To add a dataset, open the appropriate folder, and then
double-click DataSet.
An XML Schema file and typed DataSet class file (.vb or .cs file) are
added to your project.

4. To create the schema, add elements and attributes.

Procedure: Creating an
XML schema

 Module 4: Using Data in Windows Forms Applications 27

Demonstration: Creating Database Schema by Using the XML
Schema Designer

In this demonstration, you will see how to create a
DataRelation between tables in a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see the creation of a DataRelation in a dataset
between the Suppliers and Products tables of the Northwind database. After the
DataRelation is created, you will see how referential integrity is maintained on
the client in the dataset.

� Open the CreatingRelations.sln solution file
• Open the CreatingRelations.sln solution file in Visual Studio .NET from

install_folder\Democode\ Mod04\Mod04_01\Starter.

� Test the behavior of the dataset before the relation is created
1. Press F5 to compile and run the application.

On the Load event of Form1, the SuppliersSqlDataAdapter and the
ProductsSqlDataAdapter fill the SuppliersProductsDataSet1 dataset.

2. Select the first row in the Suppliers DataGrid, and press DELETE.
Because there is no relationship between the tables on the client dataset, the
dataset does not maintain referential integrity.

3. Click the Submit Data button.
The database is aware of the relationship between the Suppliers and
Products tables and prevents the changes from being persisted.

4. Close the application.

Introduction

Instructions

28 Module 4: Using Data in Windows Forms Applications

� Create a relationship between the Suppliers and Products tables in the
SuppliersProductsDataSet dataset

1. Open SuppliersProductsDataSet.xsd in Design view.
2. Drag a Relation control from the Toolbox to the Suppliers table.
3. In the Edit Relation dialog box, in the Parent element list, click Suppliers,

and in the Child element list, click Products.
Notice the Update rule, Delete rule, and Accept/Reject rule lists. You can
control how a dataset manages DataRelations between tables when changes
and updates occur. For example, if you set the Delete rule to Cascading
(the default) the dataset will automatically delete all child elements when a
parent is deleted to enforce referential integrity.

4. Click OK.
5. Close SuppliersProductsDataSet.xsd, and then click Yes to save the

changes.

� Test the behavior of the dataset and notice that a relation exists
1. Press F5 to compile and run the application.
2. Notice that the first row of the Products DataGrid displays the product Chai,

which has a SupplierID of 1.
3. Select the first row in the Suppliers DataGrid (where SupplierID = 1), and

press DELETE.

Because the DataRelation exists, the dataset cascades the deletion of all the
products that are associated with the Supplier parent and maintains referential
integrity.

 Module 4: Using Data in Windows Forms Applications 29

How to Read and Write XML Data into a DataSet

� Use ReadXML to load data from a file or stream

� Write data and schema information from a DataSet to a
file or stream by using the WriteXML method

purchaseDataSet.ReadXml
("C:\\sampledata\\PurchaseData.xml",

XmlReadMode.IgnoreSchema);

purchaseDataSet.ReadXml
("C:\\sampledata\\PurchaseData.xml",

XmlReadMode.IgnoreSchema);

purchaseDataSet.WriteXml
("C:\\sampledata\\CurrentOrders.xml",

XmlWriteMode.IgnoreSchema);

purchaseDataSet.WriteXml
("C:\\sampledata\\CurrentOrders.xml",

XmlWriteMode.IgnoreSchema);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the ReadXml method of the DataSet object to load data from an
XML file into a dataset. When you use this method, you can load data from
XML files that contain only XML data or from files that contain XML data as
well as an inline schema. You can write data and schema information from a
dataset to a file or stream by using the WriteXml method of the Dataset object.

An inline schema is an XSD schema that appears at the beginning of the XML
data file. This schema describes the XML information that appears after the
schema in the XML file.

The ReadXml method is overloaded and can be used to read from a stream
object, an XML file, a TextReader subclass object, or an XmlReader subclass
object, as shown in the following code:

Dataset.ReadXml(Stream | FileName | TextReader | XmlReader, {
ByVal mode as XmlReadMode })

Use the XmlReadMode parameter to specify what the XML file contains and
what information should be loaded from the file. This parameter is optional. If
no XmlReadMode value is supplied, the default value Auto is used.

Introduction

Simplified syntax for
reading XML data

30 Module 4: Using Data in Windows Forms Applications

The following table shows the values for the XmlReadMode parameter of the
ReadXml method of the DataSet object.

XmlReadMode value Description

ReadSchema Reads any inline schema and then loads the schema and

data:
� If the dataset already contains a schema, any new

tables that are defined by an inline schema are added
to the dataset.

� If the inline schema defines a table that is already in
the dataset, an exception is thrown.

� If the dataset does not contain a schema, and there is
no inline schema, no data is read.

IgnoreSchema Ignores any inline schema and loads data into the existing
dataset. Any data that does not match the existing schema
is discarded.

InferSchema Ignores any inline schema and infers a new schema based
on the structure of the XML data. If the dataset already
defines a schema, tables are added to this schema.

The data is then loaded into the dataset.

DiffGram Reads a DiffGram and adds the data to the current schema
in the dataset. A DiffGram is an XML format that is used
to identify current and original versions of data elements.

Fragment Reads XML fragments and appends data to appropriate
dataset tables. This setting is typically used to read XML
data generated directly from SQL Server.

Auto Examines the XML file and chooses the most appropriate
option.

� If the dataset contains a schema or the XML contains
an inline schema, ReadSchema is used.

� If the dataset does not contain a schema and the XML
does not contain an inline schema, InferSchema is
used.

For best performance, specify an XmlReadMode rather
than Auto.

XmlReadMode
parameter values

 Module 4: Using Data in Windows Forms Applications 31

The following example first loads a schema into a new dataset by using the
ReadXmlSchema method and then loads the data from an XML file by using
the ReadXml method with the IgnoreSchema option of the XmlReadMode
parameter:

private void ReadXmlDataOnly()
{
 try
 {
 DataSet purchaseDataSet = new DataSet();
 Console.WriteLine("Reading the Schema file");
 purchaseDataSet.ReadXmlSchema
 ("C:\\sampledata\\PurchaseData.xsd");
 Console.WriteLine("Loading the XML data file");
 purchaseDataSet.ReadXml
 ("C:\\sampledata\\PurchaseData.xml",
 XmlReadMode.IgnoreSchema);
 dataGrid1.DataSource = purchaseDataSet.Tables[0];
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
}

The following code shows partial syntax for the WriteXml method of the
DataSet object:

Overloads Public Sub WriteXml (ByVal filename As String |
stream As Stream | writer as TextWriter | writer as XmlWriter,
{ByVal mode As XmlWriteMode})

When you use the WriteXml method, you can specify an optional value for the
XmlWriteMode parameter. This parameter specifies whether to generate a file
that contains only XML data, XML data with an inline XSD schema, or a
DiffGram.

The following table describes the different values for the XmlWriteMode
parameter of the WriteXml method of the DataSet object.

XmlWriteMode value What is generated

IgnoreSchema An XML file containing the data from a dataset. No schema

information is included. If the dataset is empty, no file is
created.

WriteSchema An XML file containing an inline schema and the data from
a populated dataset. If the dataset contains only schema
information, an inline schema is written to the output file. If
the dataset does not include schema information, no file is
created.

DiffGram An XML file in the form of a DiffGram, containing both the
original and current values for the data.

Example of loading a
schema and data into a
dataset

Partial syntax for writing
to an XML file

XmlWriteMode values

32 Module 4: Using Data in Windows Forms Applications

The following code saves the data stored in a dataset as an XML file but does
not write any schema information:

private void SaveXMLDataOnly()
{
 try
 {
 DataSet purchaseDataSet = new DataSet();
 //Load an inline schema and data from an XML file
 purchaseDataSet.ReadXml
 ("C:\\sampledata\\PurchaseOrder.xml",
 XmlReadMode.ReadSchema);
 //Save the data portion of the DataSet to a file
 purchaseDataSet.WriteXml
("C:\\sampledata\\CurrentOrders.xml",
XmlWriteMode.IgnoreSchema);
 }
 catch (Exception exp)
 {
 Console.WriteLine("Exception: " + exp.ToString());
 }
}

Example of writing XML
data to a file

 Module 4: Using Data in Windows Forms Applications 33

Lesson: Binding Data to Controls

� How to Perform Simple Binding by Using the
DataBindings Property

� How to Perform Complex Data Binding by Using the
DataBound Windows Forms Controls

� Practice: Binding Controls to Data

� How to Maintain the Currency of a Control by Using
CurrencyManager

� Demonstration: Maintaining the Currency of a Control by
Using CurrencyManager

� How to Format and Parse Data Bound Values

� Practice: Formatting Data Bound Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In Windows Forms, you can bind to not just traditional data sources but also to
almost any structure that contains data. You can bind to an array of values that
you calculate at run time, read from a file, or derive from the values of other
controls. In addition, you can bind any property of any control to the data
source. In traditional data binding, you typically bind the display property (for
example, the Text property of a TextBox control) to the data source. With the
.NET Framework, you also have the option of binding other properties.

Windows Forms can take advantage of two types of data binding: simple
binding and complex binding. This lesson covers how to bind data to controls
by using simple binding and complex binding.

After completing this lesson, you will be able to:

� Describe the ControlBindings collection.
� Perform simple binding by using the DataBindings property.
� Perform complex binding by using data bound Windows Forms controls.
� Describe the CurrencyManager object.
� Maintain the currency of an object by using the BindingContext object.
� Format data-bound values.

Introduction

Lesson objectives

34 Module 4: Using Data in Windows Forms Applications

How to Perform Simple Binding by Using the DataBindings
Property

txtCustomerAddress.DataBindings.Add("Text",
dsNorthwindData1.Customers, "Address");

txtCustomerCity.DataBindings.Add("Text",
dsNorthwindData1.Customers, "City");

txtCustomerAddress.DataBindings.Add("Text",
dsNorthwindData1.Customers, "Address");

txtCustomerCity.DataBindings.Add("Text",
dsNorthwindData1.Customers, "City");

Property of the control to
which data is bound

Property of the control to
which data is bound

Column in the tableColumn in the tableTable from the data sourceTable from the data source

To use the DataBindings Collection to bind a control
to a data source, set the DataBinding property of the
control to the data source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In Windows Forms, you can bind to not just traditional data sources but also to
almost any structure that contains data. For example, you can bind to arrays,
collections, properties of other controls, and ADO.NET objects such as data
views and table columns.
Simple data binding is accomplished by adding Binding objects to a
ControlBindingsCollection. The Binding class is used to create and maintain
a simple binding between the property of a control and the property of an
object. Any object that inherits from the Control class maintains a list of the
Binding objects in the ControlBindingsCollection. The DataBindings
property exposes the ControlBindingsCollection and, like any collection,
supports methods to Add, Remove, and Clear the objects (Bindings) in it.

To perform a simple bind of a control:

1. In the form, select the control and display the Properties window.
2. Expand the (DataBindings) property.

The properties most often bound are displayed in the (DataBindings)
property list. For example, in most controls, the Text property is most
frequently bound.

3. If the property that you want to bind is not one of the commonly bound
properties, click the Ellipsis button (…) in the Advanced box to display the
Advanced Data Binding dialog box with a complete list of properties for
that control.

4. Click the list arrow for the property that you want to bind.
A list of available data sources is displayed.

Introduction

Procedure: Performing
simple binding at design
time

 Module 4: Using Data in Windows Forms Applications 35

5. Expand the data source that you want to bind to until you find the single
data element that you want.
For example, if you are binding to a column value in a dataset’s table,
expand the name of the dataset, and then expand the table name to display
column names.

6. Click the name of an element to bind to it.

You can also create a Binding object programmatically at run time. To do so,
use the Add method of the DataBindings collection. The method expects the
following arguments:

� Name of the property of the control that will consume the data
� Data source
� Name of the field in the data source to bind to

The following code binds the Text property of the txtCustomer text box to the
Address column of the Customers tables in the dsNorthwind1 typed dataset:

txtCustomerAddress.DataBindings.Add("Text",
dsNorthwindData1.Customers, "Address");

A period-delimited navigation path is required when the data source is set to an
object that contains multiple DataTable objects (such as a DataSet or
DataViewManager). For example, the previous code could also be written as
shown.

txtCustomerAddress.DataBindings.Add("Text", dsNorthwindData1,
"Customers.Address");

Procedure: Performing
simple binding at run
time

36 Module 4: Using Data in Windows Forms Applications

How to Perform Complex Data Binding by Using the DataBound
Windows Forms Controls

� Complex data binding

� Bind a control property to a data table

� Use with combo boxes, list boxes, data grids

� Can bind controls to DataSets, Arrays, and ArrayLists

� Complex databinding at design time

� Set the DataSource and DataMember properties

� Complex databinding at run time

DataGrid1.DataSource = productsDataSet;

DataGrid1.DataMember = "Products";

DataGrid1.DataSource = productsDataSet;

DataGrid1.DataMember = "Products";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Instead of binding each data field to a separate control, you bind the complete
data source to one control. This is called complex data binding. A very useful
component for complex data binding is the DataGrid control.

Because a dataset can contain more than one DataTable, there are two relevant
properties: DataSource and DisplayMember. DataSource refers to the dataset
and DisplayMember refers to the contained DataTable. Alternatively, you can
use the SetDataBinding method to set both values at once.

To bind a combo box, list box, or data grid to a data source at design time:

1. Add the control to the form.
2. Select the control.
3. Set the DataSource property to the data source, such as a dataset.
4. Set the DisplayMember property to the name of a column in the data

source.

To bind a data-bound control to a data source at run time, add the following
lines of code that set the DataSource and DisplayMember properties:

DataGrid1.DataSource = productsDataSet;
DataGrid1.DataMember = "Products";

If the DataSource property is not ambiguous, you can use it without defining
the DataMember. The following code accomplishes the same results as the
previous line of code:

DataGrid1.DataSource = productsDataSet.Tables["Products"];

Introduction

Procedure: Performing
complex data binding at
design time

Procedure: Performing
complex data binding at
run time

 Module 4: Using Data in Windows Forms Applications 37

Practice: Binding Controls to Data

In this practice, you will

� Configure the SQLConnection control to
connect to the database

� Bind controls to columns in the dataset at
design time

� Bind controls to columns in the dataset at
run time

Begin reviewing the objectives
for this practice activity 10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will bind various controls to data in a dataset at design time
and also programmatically at run time. You will begin by using simple binding
to bind data to Label controls and then you will use complex data binding to
bind data to a ComboBox and a DataGrid.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod04\Mod04_03\Starter.
2. Double-click the DataBinding.sln solution file to open the project.

� Bind StateLabel control to the State column by using the Properties
window

1. Show TODO comments in the Task List.
To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

2. Open Form1 in Design view.
3. In the Properties window, select StateLabel on Form1, and then expand

DataBindings.
4. Select the Text property, click the Text Property arrow, expand

StoresSalesDataSet1, expand Sales, and then click State.

Introduction

Instructions

38 Module 4: Using Data in Windows Forms Applications

� Bind CityLabel to the city column programmatically at run time
1. Locate TODO: 1 in the Code Editor of Form1.
2. Under TODO: 1, call the Add method of the DataBindings collection of

CityLabel, and pass Text as the name of the property,
StoreSalesDataSet1.sales as the name of the data source, and city as the
name of the column. Your code should look like this:
CityLabel.DataBindings.Add("Text",
StoreSalesDataSet1.sales,"city");

� Bind DataGrid1 to the sales table by using the Properties window
1. Open Form1 in Design view.
2. Select DataGrid1 on Form1 and use the Properties window to set the

DataSource property to StoreSalesDataSet1.
3. Use the Properties window to set the DataMember to sales.

� Bind StoresComboBox to the stores table programmatically at run time
1. Locate TODO: 2 in the Code Editor of Form1.
2. Under TODO: 2, set the DataSource property of StoresComboBox to the

Stores table in StoreSalesDataSet1.
3. Set the DisplayMember property of StoresComboBox to the stor_name

column.
4. Set the ValueMember property of StoresComboBox to the stor_id

column. Your code should look like this:
StoresComboBox.DataSource =
StoreSalesDataSet1.Tables["Stores"];
StoresComboBox.DisplayMember = "stor_name";
StoresComboBox.ValueMember = "stor_id";

The ComboBox control allows you to bind the ValueMember property
to an alternate value that is not displayed in the ComboBox. This is often used
when you want to display a user–friendly value to the user and bind to another
field that is used programmatically, such as a primary key.

� Test the application
1. Press F5 to compile and run the application.
2. Select different stores in the Stores list to ensure the controls display the

data bound values.

Note

 Module 4: Using Data in Windows Forms Applications 39

How to Maintain the Currency of a Control by Using
CurrencyManager

Datagrid

Data Source 1

Data Source 2

Currency Manager1Currency Manager1
TextBox1TextBox1

TextBox2TextBox2

Currency Manager2Currency Manager2

CurrencyManager cm;
cm = (CurrencyManager)this.BindingContext[pubsDataSet,
"Authors"];
cm.Position += 1;

CurrencyManager cm;
cm = (CurrencyManager)this.BindingContext[pubsDataSet,
"Authors"];
cm.Position += 1;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Any data source that you bind to a Windows Forms control to will have an
associated CurrencyManager object. CurrencyManager is an object that is
used to keep data-bound controls synchronized with a data source. The
CurrencyManager object is important because data sources, such as Tables in
datasets, do not keep track of the currently selected row. You need an
intermediary object that is aware of the currently selected position in a data
source and can notify databound controls when the position changes. That
intermediary object is CurrencyManager. The CurrencyManager object
synchronizes data-bound controls with the data source by managing a collection
of the bound data supplied by a data source.

For each data source associated with a Windows Form, the form maintains at
least one CurrencyManager. There is a CurrencyManager object on the form
for each discrete data source that you are binding to. If the controls on the form
all bind to a single source (for example, if several TextBox controls are bound
to the same data table), then they will share the same CurrencyManager.
However, there are times when controls on the form will be bound to different
sources. In that case, there are multiple CurrencyManager objects on the form,
and each one tracks which record or data element is being used by the controls.

Introduction

40 Module 4: Using Data in Windows Forms Applications

The following table lists some of the properties of the CurrencyManager
object that helps it track data.

Property Description

Bindings Gets the collection of bindings being

managed.

Count Determines the last item in the list of
rows.

Current Contains the value of the current item in
the data source.

List Gets the data source (which implements
IList) for this CurrencyManager.

Position Specifies the position of the item in the
underlying list.

Every Windows Form has a BindingContext object. The BindingContext
object tracks all of the CurrencyManager objects on a form. Thus, any
Windows Form with data-bound controls has at least one BindingContext
object that tracks one (or more) CurrencyManager object (or objects) that
track one data source (for each CurrencyManager).

For example, if you add a TextBox control to a form and bind it to a column of
a table in a dataset, the control communicates with the BindingContext object
for that form. The BindingContext object, in turn, communicates with the
specific CurrencyManager object for that data association. If you query the
CurrencyManager’s Position property, it reports the current record for that
TextBox control’s binding.

You use the BindingContext of a form to access the various
CurrencyManagers. To do so, you must specify the data source that the
CurrencyManger is managing. For example, to access the CurrenyManager
that manages the Authors table of DataSet1 you would use the following code:

CurrencyManager cm;
cm = (CurrencyManager)this.BindingContext[pubsDataSet,
"Authors"];

If you use a container control, such as a GroupBox, Panel, or TabControl, to
contain data-bound controls, you can create a BindingContext for just that
container control and its controls. This allows each part of your form to be
managed by its own CurrencyManager object.

To determine the currency of a control, use the Position property of the
CurrencyManager as shown.

cm.Position += 1;

You can also use the following code to increment CurrencyManager.

this.BindingContext[pubsDataSet, "Authors"].Position += 1

CurrencyManager
properties

Procedure: Maintaining
the currency by using
the CurrencyManager

 Module 4: Using Data in Windows Forms Applications 41

Demonstration: Maintaining the Currency of a Control by Using
CurrencyManager

In this demonstration, you will see how to
maintain the currency of a control by using
CurrencyManager

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to maintain the currency of a control by
using CurrencyManager.

� Create a Windows-based application project
1. Open Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the New Project dialog box, click Windows Application, name it

BindingContextNavigation, and then click OK.

� Use Data Form Wizard to create a data bound form
1. On the File menu, click Add New Item.
2. In the Add New Item dialog box, in the Templates section, click Data

Form Wizard, and then click Open.
3. In the opening page of Data Form Wizard, click Next.
4. Specify the name of the new dataset as OrdersDataSet, and click Next.
5. Select a connection to the Northwind database in the database connection

drop-down list. If a connection does not exist, create a new connection.
Click Next.

6. Add the Orders and Order Details tables by selecting them in the
Available Items tree, click the Add (>) button, and then click Next.

7. In the Name box, type OrderOrderDetailsRelation

Introduction

Instructions

42 Module 4: Using Data in Windows Forms Applications

8. Set the following settings.

List Setting

Parent table Orders

Child table Order Details

Keys (for both tables) OrderID

9. Click the Add (>) button, and then click Next.
10. Ensure that the Orders table is set as the Master or single table and Order

Details is set as the Detail table, and then click Next.
11. Select Single record in individual controls, and then click Finish.

� Display and discuss the code generated for the navigation buttons
1. Locate the Click event of the btnNavNext button in the Code Editor of

DataForm1, and discuss the following line of code:
this.BindingContext[objOrdersDataSet,"Orders"].Position =
(this.BindingContext[objOrdersDataSet,"Orders"].Position +
1);

2. Locate the objOrdersDataSet_PositionChanged() procedure, and discuss
the following line of code:
this.lblNavLocation.Text =
 ((((this.BindingContext[objOrdersDataSet,
 "Orders"].Position + 1)).ToString() + " of ") +

this.BindingContext[objOrdersDataSet,
 "Orders"].Count.ToString());

3. Locate the Click event of the btnLast button in the Code Editor of
DataForm1, and discuss the following line of code:
this.BindingContext[objOrdersDataSet,"Orders"].Position =
 (this.objOrdersDataSet.Tables["Orders"].Rows.Count - 1);

4. In Solution Explorer, right-click the BindingContextNavigation project,
and then click Properties.

5. Add code to the Load event of Form1 to display DataForm1.
6. Press F5 to compile and run the application, and then demonstrate the use of

the navigation buttons.
7. Close the application.

 Module 4: Using Data in Windows Forms Applications 43

How to Format and Parse Data Bound Values

TextBox1TextBox1Format

Parse

Binding ObjectData Source

10 $10

$1010

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Often the data retrieved from a data source may not match the data type
accepted by a control in your application. The Binding object provides two
methods—Format and Parse—to ensure that the data received and sent back to
the data source is of the right data type.

The Format event occurs both when data is pushed from the data source into
the control and when the data is pulled from the control into the data source.
When the data is pushed from the data source into the control, the Binding
object uses the Format event to put the formatted data into the control. When
the data is pushed from the control into the data source, the Binding first parses
the data by using the Parse event and then formats the data and sends it to the
data source.

You can use the Format and Parse events to create custom formats for
displaying data. For example, if the data in a table is of type Decimal, you can
display the data in the local currency format by setting the Value property of
the ConvertEventArgs object to the formatted value in the Format event.
Consequently, you must remove the format from the displayed value in the
Parse event.

The Format event occurs whenever the current value of the
BindingManagerBase changes, which includes:

� The first time the property is bound.
� Any time the Position changes.
� Whenever the data-bound list is sorted or filtered, which is accomplished

when a DataView supplies the list.

Introduction

Format and Parse
events

44 Module 4: Using Data in Windows Forms Applications

The Parse event occurs:
� After the Validated event of the Control object occurs.
� When the EndCurrentEdit method of the BindingManagerBase is called.
� When the current object of the BindingManagerBase changes (in other

words, when the Position changes).

The following code creates event delegates for the Parse and Format events of
a Binding object and then uses event procedures to format the data between a
String and a Decimal:

private void BindControl()
{

Binding priceBinding = new
 Binding("Text",titlesDataSet1,"titles.price");

 priceBinding.Format += new
 ConvertEventHandler(this.FormatDecimalToString);
 priceBinding.Parse += new
 ConvertEventHandler(this.ParseStringToDecimal);
 PriceTextBox.DataBindings.Add(priceBinding);
}

private void FormatDecimalToString(object sender,
ConvertEventArgs convertArgs)
{

convertArgs.Value =
 Convert.ToDecimal(convertArgs.Value).ToString("c");

}

private void ParseStringToDecimal(object sender,
ConvertEventArgs convertArgs)
{
 convertArgs.Value =
 Decimal.Parse(convertArgs.Value.ToString(),

NumberStyles.Currency);
}

Procedure: Using the
Format and Parse
events

 Module 4: Using Data in Windows Forms Applications 45

Practice: Formatting Data Bound Controls

� In this practice, you will

� Configure the SQLConnection control to
connect to the database

� Create an event procedure for the Parse
event

� Create an event delegate for the Parse
event

Begin reviewing the objectives
for this practice activity 10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add event handlers to the Format and Parse events of
a Binding object and then use the ConvertEventArgs class to apply
appropriate formatting to the data bound value.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod04\Mod04_04\Starter.
2. Double-click the FormatParse.sln solution file to open the project.

� Create an event procedure invoked by the Parse event that converts the
Value of ConvertEventArgs from a String to a Decimal

1. Show TODO comments in the Task List.
To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

2. Locate TODO: 1 in the Code Editor of Form1.
3. Under TODO: 1, create a procedure called ParseStringToDecimal that

accepts two arguments: sender as an Object and convertArgs as a
ConvertEventArgs.

4. Assign the Value of convertArgs to a String named stringValue.

Introduction

Instructions

46 Module 4: Using Data in Windows Forms Applications

5. Call the Parse method of the Decimal object and pass the two arguments:
stringValue as the string to be formatted and NumberStyles.Currency as
the NumberStyles constant.

6. Assign the results of the Parse method to Value property of convertArgs.
Your code should look like this:
private void ParseStringToDecimal(object sender,
ConvertEventArgs convertArgs)
{
 convertArgs.Value =
 Decimal.Parse(convertArgs.Value.ToString(),
 NumberStyles.Currency);
}
The Parse method converts the String representation of a number in a
specified style to its decimal equivalent by using the specified formatting
style.

� Create an event delegate for the Parse event that references the
FormatDecimalToString procedure

1. Locate TODO: 2 in the Code Editor of Form1.
2. Under TODO: 2, use AddHandler to create an event delegate for the Parse

event of the priceBinding object that references the
ParseStringToDecimal procedure. Your code should look like this:
priceBinding.Parse += new
ConvertEventHandler(this.ParseStringToDecimal);

3. The priceBinding object is a Binding object that is added to the
DataBindings collection of PriceTextBox. Review the following code:
Binding priceBinding = new
Binding("Text",titlesDataSet1,"titles.price");
PriceTextBox.DataBindings.Add(priceBinding);

� Test the application
1. Press F5 to compile and run the application.
2. Select different titles in the Book Titles list, and review how the Price text

box is updated and formatted.
3. Use the Price text box to change the price of a book, and then click the

Debug.Write Value button.
4. Display and review the results in the Output window of the Visual

Studio.NET IDE.

 Module 4: Using Data in Windows Forms Applications 47

Lab 4.1: Accessing Data by Using ADO.NET

� Exercise 1: Generating and Populating
DataSets

� Exercise 2: Modifying a DataSet

� Exercise 3: Updating a DataSet to a Data
Source

� Exercise 4: Binding and Formatting Data in
Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Add and configure ADO.NET objects by using Component Designer.
� Configure DataAdapters by using Data Adapter Configuration Wizard.
� Generate typed datasets.
� Populate a dataset from data in a database.
� Create relationships between tables in a dataset.
� Update data to a data source by using typed datasets.
� Bind data to controls.
� Format the data bound to controls.

This lab focuses on the concepts in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C#™ .NET). As a result, this lab may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Microsoft Visual Studio® .NET–compatible programming
language.

� The knowledge and skills to use Data Adapter Configuration Wizard in the
Visual Studio .NET IDE.

� The knowledge and skills to access and update a database from a Visual
Studio .NET–based application.

Objectives

Note

Prerequisites

48 Module 4: Using Data in Windows Forms Applications

� The knowledge and skills to create Relations between tables in a dataset in a
Visual Studio .NET–based application.

� The knowledge and skills to bind data to controls in a Visual Studio .NET–
based application.

� The knowledge and skills to format data bound to controls in a
Visual Studio .NET–based application.

You are an application developer at a trading company called Northwind
Traders. The department that you work in is developing a Purchase Order
application that will be used by the Northwind Traders sales force. You are
responsible for completing data access code that will use ADO.NET objects to
access the Northwind database. Much of the code was written by your
colleagues, and you are responsible for creating the code that will populate and
update the Order and Order Details tables. You are also responsible for writing
the data binding code in the OrderItemControl control.

The Order and Order Details tables have a one-to-many relationship. To write
the code that populates and updates these tables, you must understand the
relationship between the tables and the fields involved. The following
illustration represents the relations and fields in the Order and Order Details
tables.

Scenario

Estimated time to
complete this lab:
45 minutes

 Module 4: Using Data in Windows Forms Applications 49

Exercise 1
Generating and Populating DataSets
In this exercise, you will create a SQLDataAdapter by using Data Adapter Configuration Wizard,
and populate a dataset with data from a database at run time. You will use Component Designer to
add and configure ADO.NET objects. You can use Component Designer to add subcomponents to a
class, configure them, and code their events.

Scenario
You begin to build the data access features into the Purchase Order application. Your development
team has built some of the preliminary data access code that you need to complete. Your
responsibility is to create a DataAdapter that can access and update the Order table of the
Northwind database.

The application uses employee information to load and create order entries. Each order is associated
with a single employee. The Orders table includes an EmployeeID column that maps to the
EmployeeID column in the Employees table. The DataAdapter that you create will use the value
of the employeeID variable to determine which rows to return. You decide to use Data Adapter
Configuration Wizard to configure the SELECT command of the DataAdapter and allow it to
generate the Update command for you.

50 Module 4: Using Data in Windows Forms Applications

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab04_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab04_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open Visual Studio .NET,
and open the
OrderApplication.sln file.
To open the solution file,
browse to
install_folder\Labfiles\
Lab04_1\Ex01\Starter\
OrderApplication.

a. For more information about opening a project file, see the following
resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Add a SQLDataAdapter
control to
OrderApplicationData
Class. In Data Adapter
Configuration Wizard, use
the NorthwindConnection
information, and create the
following SQL Select
statement:

SELECT * FROM Orders
WHERE (EmployeeID =
@EmployeeID)

• Ensure that the wizard
created the Insert,
Update, and Delete
commands.

• Change the name of the
new SQLDataAdapter
to OrdersDataAdapter.

a. For more information about adding controls to Component Designer or
by using Data Adapter Configuration Wizard, see the following
resources:

• Lesson: Adding ADO.NET Objects to and Configuring ADO.NET
Objects in a Windows Forms Application in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• Practice: Adding ADO.NET Objects to and Configuring ADO.NET
Objects in a Windows Forms Application in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Component Designer or the phrase Data Adapter
Configuration Wizard.

3. Use the Task List to locate
the code section 'TODO: 1',
and create a local variable to
hold an instance of
NorthwindDataSet and
name it tempDataSet.

Additional information is not necessary for this task.

 Module 4: Using Data in Windows Forms Applications 51

Tasks Additional information

4. Use the Task List to locate
the code section 'TODO: 2',
and add @employeeID (the
global employee ID) to the
Parameters collection of
the SelectCommand
property of
OrdersDataAdapter and
OrderDetailsDataAdapter.

a. For more information about assigning values to the Parameters
collection of Command objects, see the following resources:

• Lesson: Accessing and Modifying Data by Using DataSets in
Module 4, “Using Data in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Populating and Updating DataSets in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• The Visual Studio .NET SDK documentation. Search by using the
phrase Using Parameters with a DataAdapter.

5. Use the Task List to locate
the code section TODO: 3',
and call the Fill method of
OrdersDataAdapter and
OrderDetailsDataAdapter
to fill the Orders and
OrderDetails tables of
tempDataSet.

a. For more information about filling DataSets with data by using a
DataAdapter, see the following resources:

• Lesson: Accessing and Modifying Data by Using DataSets in
Module 4, “Using Data in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Populating and Updating DataSets in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• The.NET Framework SDK documentation. For additional
information about assigning values to the Parameters collection of
Command objects, search by using the phrase Populating a
DataSet from a DataAdapter.

6. Place a breakpoint at the
beginning of the
RefreshLocalData
procedure. Compile and run
the application. From the
Data menu, click Refresh
Data, and step through each
line of code. Locate and
review the contents of the
NorthwindData.XML file,
which is in the most recent
folder version folder of
C:\Documents and
Settings\All Users\
Application Data\
Northwind Traders\
PurchaseOrder\.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

52 Module 4: Using Data in Windows Forms Applications

Exercise 2
Modifying a DataSet
In this exercise, you will review the code that creates data tables objects, insert new data rows, and
append the information to an existing dataset.

Scenario
The Orders table uses an auto incrementing column named OrderID to generate primary keys
when new rows are created in the database. This value is also generated by datasets when a new
row is inserted in the Orders table. The Purchase Order application uses a global dataset named
pendingOrdersData to store all the orders until they are submitted to the database. Each order is
associated with one or more order details. The Orders table includes an OrderID column that maps
to the OrderID column of the Order Details table.

One of your colleagues has written a procedure called SaveOrders that creates new rows in the
Orders table, captures the value of the OrderID generated by the dataset, and uses it to create rows
in the Order Details table. After all of the rows in the Order Details table are created, the procedure
persists the order information in an XML file named PendingOrders.XML. You decide to review
the code more closely to understand how it works.

There are solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab04_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

 Module 4: Using Data in Windows Forms Applications 53

Tasks Additional information

1. Open Visual Studio .NET,
and open the
OrderApplication.sln file.
To open the solution file,
browse to
install_folder\Labfiles\
Lab04_1\Ex02\Solution\
OrderApplication.

a. For more information about opening a project file, see the following
resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Place a breakpoint at the
beginning of the
SaveOrders procedure in
MainForm. Compile and run
the application. On the
toolbar, click the Refresh
button, and choose an
employee name. To create
different order items, click
the New Order Item button
and then click the Save
Order button. Step over
each line of code by
pressing F10 and review the
flow of the code.

When reviewing the code,
look for the following
things:

• The SaveOrders
procedure creates a new
row in the Orders table
and assigns the columns
to values from the
controls of MainForm.
When the row is added
to the table, the auto
incrementing OrderID
generated by the
DataSet is stored in a
variable named
clientOrderID.

• The SaveOrders
procedure then creates
rows in the Order
Details table and uses
the value of
clientOrderID to
populate the OrderID
column for each row
inserted into the Order
Details table.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

54 Module 4: Using Data in Windows Forms Applications

Exercise 3
Updating a DataSet to a Data Source
In this exercise, you will create a relationship between two tables to create a typed dataset and then
update the changes from the dataset to a DataSource.

Scenario
In the Northwind database, each order is associated with one or more order details. The Orders
table includes an OrderID column that maps to the OrderID column of the Order Details table.
When you create a new row in the Orders table, the SaveOrders procedure ensures that all child
rows in the Order Details table have the same OrderID as the parent in the Orders table. When you
update the dataset to a data source, you must first update the Orders table and then the Order Details
table. When you update a row in the Orders table, however, a new OrderID will be generated by the
database that might not match the child values in the Order Details table. This causes an error when
you attempt to update the Order Details table.

One way to resolve this problem is to write code that uses DataSet events to capture the new
OrderID generated by the database and assign it to all child rows in the Order Details table.
However, other options are available when you use typed datasets and DataAdapters for each table
in a database. Instead of writing code for DataSet events, you can use the Refresh the DataSet
option in Data Adapter Configuration Wizard. With this option enabled, the wizard adds a
SELECT statement after the Insert and Update statements to retrieve the Identity column
generated by the database.

When you create a relation between tables by using XML Designer, you can choose how table
relationships are handled when the parent table is modified. For example, if you set the Delete Rule
to Cascade (the default), and you delete rows in a parent table, all the related rows in the child table
are also deleted. When you create a relation between the Orders and Order Details tables, it is
important that you set the value of the Update Rule option to Cascade (the default) so that any
changes made to a parent table are cascaded to the child tables.

When you update a row in the Orders table, the DataAdapter returns the OrderID value generated
by the database and changes the value in the Orders table of the dataset. With the cascading update
rule, all the child rows in the Order Details table of the dataset will automatically be changed to the
new OrderID of the parent. Now when you update the Order Details table to the database it will
have the same OrderID as the parent.

 Module 4: Using Data in Windows Forms Applications 55

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab04_1\Ex03\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab04_1\Ex03\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open Visual Studio .NET,
and open the
OrderApplication.sln file.
To open the solution file,
browse to
install_folder\Labfiles\
Lab04_1\Ex03\Starter\
OrderApplication.

a. For more information about opening a project file, see the following
resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Use XML Designer to
create a relation between the
Orders and Order Details
tables in the
NorthwindDataSet.xsd file.

a. For more information about using XML Designer, see the following
resources:

• Lesson: Accessing and Modifying Data by Using DataSets in
Module 4, “Using Data in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Demonstration: Creating Database Schema by Using the XML
Schema Designer in Module 4, “Using Data in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase XML Designer.

3. Use the Task List to locate
the code section 'TODO: 1'
in the code view of
OrderApplicationDataClass.
cs, and update the database
by using the Update method
of OrdersDataAdapter and
OrderDetailsDataAdapter.

The Cascading Update rule
enforced by the relation
between the two tables
should automatically
retrieve the OrderID
generated by the server.
When an Order row is
created, it is assigned to
related rows in the Order
Details table on the client
computer.

a. For more information about updating a data source, see the following
resources:

• Lesson: Accessing and Modifying Data by Using DataSets in
Module 4, “Using Data in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Populating and Updating DataSets in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Updating the Database with a DataAdapter and the
DataSet.

56 Module 4: Using Data in Windows Forms Applications

Tasks Detailed steps

4. Compile and run the
application . On the toolbar,
click the Refresh button,
and choose an employee
name. To create an order,
click the New Order Item
button. To save the order,
click the Save Order
button, and then click the
Submit button on the
Toolbar. Use Server
Explorer to verify that the
order was saved to the
database.

a. For more information about building and debugging your applications
and using Server Explorer, see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds, Using the Debugger, and
Server Explorer Window.

 Module 4: Using Data in Windows Forms Applications 57

Exercise 4
Binding and Formatting Data in Controls
In this exercise, you will bind data to controls and format the data by using the events of the
Binding class.

Scenario
The OrderItemControl control is under development and requires code to bind constituent
controls to data from the Products table. A method within the control called GetProductData has
been created, and it accepts a parameter named productsTable that contains data from the Products
table. You need to bind data from this table to the constituent controls. You also need to convert the
values in the Price column to currency when you bind them to UnitPriceTextBox control.

There are starter and solution files associated with this exercise. Browse to the
install_folder\Labfiles\Lab04_1\Ex04\Starter folder to find the starter files, and browse to the
install_folder\Labfiles\Lab04_1\Ex04\Solution folder to find the solution files. If you performed a
default installation of the course files, install_folder corresponds to C:\Program
Files\Msdntrain\2555.

Tasks Detailed steps

1. Open Visual Studio .NET,
and open the
OrderApplication.sln file.
To open the solution file,
browse to
install_folder\Labfiles\
Lab04_1\Ex04\Starter\
OrderApplication.

a. For more information about opening a project file, see the following
resources

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Use the Task List to locate
the code section 'TODO: 1
in the code window of
OrderItemControl.cs' , and
assign the DataSource of
ProductNameComboBox
to the DataTable passed to
the GetProductData
procedure. Assign the
DisplayMember and
ValueMember of
ProductNameComboBox
to the ProductName and
ProductID columns,
respectively.

a. For more information about binding controls to data, see the following
resources:

• Lesson: Binding Data to Controls in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• Practice: Binding Controls to Data in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The.NET Framework SDK documentation. For additional
information about binding controls to data, search by using the
phrase Data Binding and Windows Forms.

58 Module 4: Using Data in Windows Forms Applications

Tasks Detailed steps

3. Use the Task List to locate
the code section 'TODO: 2',
and declare a Binding
object, and use it to bind the
Text property of
UnitPriceTextBox to the
UnitPrice column of the
DataTable passed to the
GetProductData procedure.

a. For more information about binding data to controls, see the following
resources:

• Lesson: Binding Data to Controls in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• Practice: Binding Controls to Data in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The.NET Framework SDK documentation. For additional
information about binding controls to data, search by using the
phrase Data Binding and Windows Forms.

4. Use the Task List to locate
the code section 'TODO: 3',
and create an event
procedure named
DecimalToCurrency that
converts the
ConvertEventArgs event
argument to a currency
format.

a. For more information about creating event procedures for Binding
objects, see the following resources:

• Lesson: Binding Data to Controls in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• Practice: Formatting Data Bound Controls in Module 4, “Using
Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#
.NET).

• The.NET Framework SDK documentation. For additional
information about binding controls to data, search by using the
phrase Data Binding and Windows Forms.

5. Use the Task List to locate
the code section 'TODO: 4',
and create an event handler
for the Format event of the
Binding object created in
step 4.

a. For more information about creating event handlers, see the following
resources:

• Lesson: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• Practice: Creating an Event Handler for a Control in Module 2,
“Working with Controls,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The Visual Studio .NET SDK documentation. For additional
information about binding controls to data, search by using the
phrase Creating Event Handlers at Run Time for Windows
Forms.

6. Compile and run the
application. On the toolbar,
click the Refresh button,
and choose an employee
name. To populate the
OrderItemControl control,
click the New Order Item
button. Navigate through the
products by using the
ProductNameComboBox
control.

a. For more information about building and debugging your applications,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

 Module 4: Using Data in Windows Forms Applications 59

Lesson: Overview of XML Web Services

Web service provider Web service consumer

UDDI
(Web service broker)

Pub
lis

h Find

Bind

Internet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services enable the exchange of data and the remote invocation of
application logic by using XML messaging to move data through firewalls and
between heterogeneous systems.

XML Web services are accessible from just about any kind of application,
including other XML Web services, Web applications, applications for the
Windows operating system, and console applications. The only requirement is
that the client must be able to send, receive, and process messages to and from
the XML Web service.

An XML Web service can be used either internally by a single application or
exposed externally over the Internet for use by any number of applications by
using a service broker, which is a node that hosts a Universal Description,
Discovery and Integration (UDDI) registry. Because it is accessible through a
standard interface, an XML Web service allows completely different systems to
work together as a single web of computation.

This lesson presents an overview of the XML Web services programming
model and shows how to create applications that use XML Web services.

After completing this lesson, you will be able to:

� Describe the XML Web services model.
� Describe the roles of HTTP, Simple Object Access Protocol (SOAP), and

XML in the Web services model.

Introduction

Lesson objectives

60 Module 4: Using Data in Windows Forms Applications

What Are XML Web Services?

� An XML Web service is a URL-addressable set of
functions that is exposed over a network to serve as a
building block for creating distributed applications

� Based on Internet technologies, such as HTTP, XML
and SOAP

� Building blocks

� Basic elements

� XML Web service provider

� XML Web service consumer

� XML Web service broker

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In many cases, applications must access remote data or functionality. One way
to make this happen is to call XML Web services.

An XML Web service is an URL-addressable set of functions that is exposed
over a network to serve as a building block for creating distributed applications.

An example of an XML Web service is Microsoft Passport. Passport provides
authentication services and all of its functionality is accessible through HTTP
requests.

The foundations for XML Web services are HTTP, XML, and Simple Object
Access Protocol (SOAP, a lightweight HTTP- and XML-based protocol used
for information exchange). The development of these technologies is governed
by the World Wide Web Consortium (W3C).

Like components, XML Web services are black boxes. They encapsulate the
implementation and provide an interface for communicating with the Web
service. Therefore, you can use XML Web services as building blocks for
applications.

The basic elements of the XML Web service model are:

� The XML Web service broker, which is a network node hosting a global
registry of available Web services, much like a telephone directory.

� The XML Web service provider, which is a network node hosting a Web
service.

� The XML Web service consumer, which is a network node hosting any
client that can communicate by using HTTP. The clients include browsers,
console applications, and traditional graphical user interface (GUI)
applications.

Introduction

Definition

Example of an XML Web
service

Basic elements of the
XML Web service model

 Module 4: Using Data in Windows Forms Applications 61

How Do XML Web Services Work?

Locate XML Web
service

Locate XML Web
service

Get description of
XML Web service
Get description of
XML Web service

Proxy calls XML
Web service

methods

Proxy calls XML
Web service

methods

Static or dynamic

Methods, arguments,
return values

Proxy transparently handles
network communication

Discovery document

WSDL

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the core characteristics of an XML Web service is the high degree of
abstraction that exists between the implementation and consumption of a
service. By using XML-based messaging as the mechanism by which the
service is created and accessed, both the XML Web service client and the XML
Web service provider are freed from needing any knowledge of each other
beyond inputs, outputs, and locations.

You can discover the location of an XML Web service either statically or
dynamically:

� If you know the location of the XML Web service you want to call, you
explicitly provide it in your application. This is called static discovery.

� If you do not know the location of XML Web service you want to call, then
you must use dynamic discovery methods.

For more information about static and dynamic discovery of XML Web
services, see the lesson titled Creating a Simple XML Web Services Client in
Module 4, “Using Data in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#™ .NET).

An XML Web service can be used either internally by a single application or
exposed externally over the Internet for use by any number of applications.
Because it is accessible through a standard interface, an XML Web service
allows heterogeneous systems to work together as a single web of computation.

An XML Web service consumer must be able to construct the messages that are
sent to a Web service and parse the messages that are received from a Web
service. Manually writing the code to construct and parse the messages is time-
consuming and prone to error. It is better to encapsulate this code in a class that
can be reused. A class like this is called a proxy class.

When you reference an XML Web service from a consumer application, the
.NET Framework generates a proxy for you.

Introduction

Discovering the location
of the XML Web service

XML Web service
description

Proxy calls XML Web
service methods

62 Module 4: Using Data in Windows Forms Applications

What is SOAP?

� SOAP is a lightweight XML-based protocol for exchange
of information in decentralized, distributed environments

� Provides enhanced features such as the ability to

� Pass by reference

� Pass objects, structures, data sets
UDDI

Any
clientSOAP

SO
AP

XML
Web service

SOAPWeb Server

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services use SOAP as the protocol for network messages.

Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol
for exchange of information in decentralized, distributed environments.

Soap messages consist of two main parts:

� An envelope for handling extensibility and modularity.
� An encoding mechanism for representing types in an envelope.

By using SOAP as an underlying protocol for XML, messages can pass data by
reference and contain complex structures such as objects, structures, and data
sets.

Introduction

Definition

The advantages of using
SOAP

 Module 4: Using Data in Windows Forms Applications 63

What is WSDL?

� WSDL

An XML grammar used for describing a Web service in terms of the
messages it accepts and generates

� WSDL document

Defines the types used in the operations (methods) of a Web service
and the documents that are exchanged for each operation

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To be able to use or consume a Web service, you must first know how to
interact with it.

Web Services Description Language (WSDL) is an XML grammar that is used
for describing a Web service in terms of the messages it accepts and generates.
In other words, a WSDL file acts as a contract between a Web service consumer
(client) and a Web service.

A WSDL document defines the types used in the operations (methods) of a
Web service and the documents that are exchanged for each operation. Then,
these definitions are associated with a network protocol and grouped into
messages to define an endpoint (the network location of a Web service). WSDL
can describe endpoints and their operations without specifying the message
formats or the network protocols to which an endpoint is bound.

As a Web service consumer, it is important that you are familiar with WSDL to
understand the contract defined in a WSDL document.

A WSDL document is just a list of definitions. In a WSDL file, the root element
is named definitions. This element contains five primary child elements that
define the Web service. The following table describes the five elements that
appear in the definitions element in a WSDL file in the order specified.

Element Description

types Defines the various data types used to exchange messages.

message Describes the messages to be communicated.

portType Identifies a set of operations and the messages involved with
each of those operations.

binding Specifies the protocol details for various service operations and
describes how to map the abstract content of these messages
into a concrete format.

service Groups a set of related ports together.

Introduction

Definition

Structure of a WSDL
document

64 Module 4: Using Data in Windows Forms Applications

The following code is an example of some of the contents of the WSDL
document for the ExpenseReportWebService XML Web service that your client
application will call in Lab 4.2: Calling an XML Web Service in Course
2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET):

<?xml version="1.0" encoding="utf-8" ?>
- <definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://localhost/ExpenseReportWebService"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://localhost/ExpenseReportWebService"
xmlns="http://schemas.xmlsoap.org/wsdl/">
- <types>
- <s:schema elementFormDefault="qualified"
targetNamespace="http://localhost/ExpenseReportWebService">
<s:import namespace="http://www.w3.org/2001/XMLSchema" />
- <s:element name="AuthenticateUser">
- <s:complexType>
- <s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="username"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="password"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="passwordToken"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
 ...

Usually this information is transparent to the developer. The XML Web service
description is just used by the .NET Framework when you add a reference to an
XML Web service to your client application. You will see a more user-friendly
display of the details of the methods, arguments, and return values associated
with an XML Web service that you reference in the lesson titled Creating a
Simple XML Web Services Client in Module 4, “Using Data in Windows
Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

Example

 Module 4: Using Data in Windows Forms Applications 65

Lesson: Creating a Simple XML Web Services Client

Web service consumer

Web service
provider

Internet

Firewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson shows how to create and test a client application that uses XML
Web services.

For more information about how to make asynchronous calls to XML
Web services to avoid blocking the user interface, see Module 7,
“Asynchronous Programming,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

After completing this lesson, you will be able to create and test a simple XML
Web service client application.

Introduction

Note

Lesson objective

66 Module 4: Using Data in Windows Forms Applications

How to Locate an XML Web Service

� Static Discovery

� Provide explicit URL

� Disco file

� Dynamic Discovery

� UDDI

� Vsdisco file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The process by which you locate a Web service and its descriptions and learn
how to interact with it is known as Web service discovery.

A Web service provider can make discovery information available to Web
service consumer developers. It can do this by either statically or dynamically
generating a document that contains a link to the WSDL document for all the
Web services hosted by the provider.

Static discovery is possible when the location of a discovery document (usually
with the extension .disco) is already known. Static discovery involves providing
an explicit URL for an XML Web service or retrieving the discovery document
by providing an explicit URL and interpreting its contents.

Dynamic discovery takes place when all that is known to the consumer is the
endpoint of the Web service provider. In this situation, there is no static list of
.disco files at the endpoint. Instead, the list of available Web services and the
associated service contracts must be dynamically retrieved from a UDDI
directory by the consumer.

A static discovery document usually has the extension .disco and a
dynamic discovery document has the extension .vsdisco.

Introduction

Static discovery

Dynamic discovery

Note

 Module 4: Using Data in Windows Forms Applications 67

How to Access an XML Web Service

� Add Web reference

- Or -

� Run WSDL.exe

// Inside a button click event
ExpenseReportWebService WS = new ExpenseReportWebService();
DataSet ds = WS.GetReportsForEmployee(username, passwordToken,

0, 10, ref totalReports);

// Inside a button click event
ExpenseReportWebService WS = new ExpenseReportWebService();
DataSet ds = WS.GetReportsForEmployee(username, passwordToken,

0, 10, ref totalReports);

Generate the proxyGenerate the proxy

Instantiate the proxy Instantiate the proxy

Call XML Web service methodsCall XML Web service methods

Instantiate the proxyInstantiate the proxy

Call XML Web service methodCall XML Web service method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Much of the work of calling an XML Web service is done for you by the .NET
Framework, but you must add a few lines of code to your application to get the
.NET Framework to do the work on your behalf. The following is an overview
of the main steps that you must take in your application to call an XML Web
service:

1. Generate the proxy that will call the XML Web service methods.
You can either add a Web reference to your Visual Studio .NET project or
call the command line utility WSDL.exe.

2. Instantiate the proxy.
Based on the description of the XML Web service, instantiate the proxy
object that you use to call the XML Web service methods.

3. Call the XML Web service methods that are required by your application.
Based on the description of the XML Web service methods, call them
appropriately.

In Visual Studio .NET, you can generate a proxy by adding a Web Reference to
your client application project.

Introduction

Procedure: Generating
the proxy

68 Module 4: Using Data in Windows Forms Applications

The following is the documentation for an XML Web service—a user-friendly
summary of the WSDL document that contains a short description of the
methods available. When you click the Service Description hyperlink, you will
see the WSDL document.

Alternatively, you can use WSDL to generate a proxy. The following code
generates a proxy by using the default language (C#) and default protocol
(SOAP).

wsdl http://www.contoso.com/ExpenseReportWebService/
ExpenseReportWebService.asmx?wsdl

As shown in the code on the slide, the following statement generates the proxy
to call the ExpenseReportWebService WS XML Web service:

ExpenseReportWebService WS = new ExpenseReportWebService();

As shown in the code on the slide, you can call the methods of the XML Web
service, as appropriate, to get the data that your application needs:

DataSet ds = WS.GetReportsForEmployee(username, passwordToken,
 0, 10, ref totalReports);

Procedure: Instantiating
the proxy

Procedure: Calling the
XML Web service
methods

 Module 4: Using Data in Windows Forms Applications 69

How to Test an XML Web Services Client

Build the client applicationBuild the client application

Call the XML Web service installed on http://localhostCall the XML Web service installed on http://localhost

Handle exceptions thrown by the XML Web serviceHandle exceptions thrown by the XML Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have developed an XML Web services consumer application, you can
test it on your own computer by using a URL that begins with http://localhost.
To do this, the XML Web service that you are calling must be installed on your
computer. For Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET), you have ExpenseReportWebService installed to
use in the practice called Calling an XML Web Service and in Lab 4.2: Calling
an XML Web Service in Module 4, “Using Data in Windows Forms
Applications.”

If you experience an error when you try to call the XML Web service, you can
place a breakpoint in your application at the point where you call a method of
the XML Web service and then step through the code to get more details about
the problems that are occurring.

Any exception thrown in the XML Web service call will be returned as a
SoapException. The Message property of the exception contains a text
representation of the exception. You can parse this property to provide
customized error handling or display it to the user.

Introduction

Calling the XML Web
service

Exceptions

70 Module 4: Using Data in Windows Forms Applications

Practice: Calling an XML Web Service

In this practice, you will

� Add a call to an XML Web service to a
client application

� Use a provided XML Web service to test
your application

Begin reviewing the objectives
for this practice activity 10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a call to an XML Web service to a client
application and then use a provided XML Web service to test your application.

� Add a call to the Web service
1. Open the WebServiceClient project in

install_folder\Practices\Mod04_05\Starter.
2. Open the MainForm form, and view its code.
3. To add a Web reference to the Expense Report Web service, in Solution

Explorer, right-click WebServiceClient, and then click Add Web
Reference.

4. In the Add Web Reference dialog box, in the Address box, type
http://localhost/ExpenseReportWebService/ExpenseReport
WebService.asmx, and then press ENTER.

5. After the Web reference information is loaded, click Add Reference.
6. Show TODO comments in the Task List.

To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

7. In the MainForm source file, find the first TODO comment near the top of
the file. Add the using statement for the XML Web service namespace.
using WebServiceClient.localhost;

Introduction

Instructions

 Module 4: Using Data in Windows Forms Applications 71

8. Find the next TODO comment, which instructs you instantiate the XML
Web service proxy class. Add the code to instantiate the proxy.
WS = new ExpenseReportWebService();

9. Find the last TODO comment, which instructs you to add a call to the
GetReportsForEmployee method of the Web service. Add the code to
make the call to the method.
WS.GetReportsForEmployee(null, null, 0, 10,
 ref TotalReports);

10. Build the project.

� Test the call to the XML Web service
1. Run the application.
2. Click Call Web Service.

After the Web service call completes, a text message will appear in the
application.
If time permits, set a breakpoint in the CallBtn_Click method and step
through the creation of the Web service proxy and the call to the XML Web
service method.

72 Module 4: Using Data in Windows Forms Applications

Lesson: Persisting Data

� How to Persist Data in Files

� How to Serialize Objects

� How to Use Isolated Storage

� How to Persist Application Settings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many applications must persist, or store, data. This lesson presents techniques
and locations for persisting data.

After completing this lesson, you will be able to:

� Persist data to and read data from files.
� Serialize objects.
� Use isolated storage.
� Persist application settings.

Introduction

Lesson objectives

 Module 4: Using Data in Windows Forms Applications 73

How to Persist Data in Files

� Use readers and writers for persisted data

ClassClassClass

BinaryReader and
BinaryWriter
BinaryReader and
BinaryWriter

StreamReader and
StreamWriter
StreamReader and
StreamWriter

DescriptionDescriptionDescription

These classes read and write primitive types
as binary values in a specific encoding to and
from a stream.

These classes read and write primitive types
as binary values in a specific encoding to and
from a stream.

The implementations of these classes are
designed for character input and output.
The implementations of these classes are
designed for character input and output.

StringReader and
StringWriter
StringReader and
StringWriter

The implementations of these classes are
designed for string input and output.
The implementations of these classes are
designed for string input and output.

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many applications must persist, or store, data. Basic file input/output (I/O)
functionality, found in the System.IO root, provides the ability to access, store,
and manipulate data that is stored in hierarchical file systems that have files that
are referenced by using unique paths.

When an application stores data in a file, you must carefully choose the file
name and storage location to minimize the possibility that the storage location
will be known to another application and, therefore, vulnerable to corruption.
Isolated storage provides the means to manage downloaded Web application
files to minimize storage conflicts.

The abstract Stream class is designed for byte input and output. You can use
the reader and writer classes to input and output to streams and strings that use
other types.

The following table describes some commonly used Reader and Writer
classes.

Class Description

BinaryReader and BinaryWriter These classes read and write primitive types as

binary values in a specific encoding to and from
a stream.

StreamReader and StreamWriter The implementations of these classes are
designed for character input and output.

StringReader and StringWriter The implementations of these classes are
designed for string input and output.

A reader or writer is attached to a stream so that the required types can be read
or written to easily.

Introduction

Reading and writing files

74 Module 4: Using Data in Windows Forms Applications

The following code shows how to write data of type Integer to and read from a
new, empty file stream that is named Test.data. After creating the data file in
the current directory, the BinaryWriter class writes the integers 0 through 10
to Test.data. Then, the BinaryReader class reads the file and displays the file’s
content to the console.

using System;
using System.IO;

class MyStream {
 private const string FILE_NAME = "Test.data";
 public static void Main(String[] args) {
 // Create the new, empty data file.
 if (File.Exists(FILE_NAME)) {
 Console.WriteLine("{0} already exists!", FILE_NAME);
 return;
 }
 FileStream fs = new FileStream(FILE_NAME,
 FileMode.CreateNew);
 // Create the writer for data.
 BinaryWriter w = new BinaryWriter(fs);
 // Write data to Test.data.
 for (int i = 0; i < 11; i++) {
 w.Write((int) i);
 }
 w.Close();
 fs.Close();
 // Create the reader for data.
 fs = new FileStream(FILE_NAME, FileMode.Open,
 FileAccess.Read);
 BinaryReader r = new BinaryReader(fs);
 // Read data from Test.data.
 for (int i = 0; i < 11; i++) {
 Console.WriteLine(r.ReadInt32());
 w.Close();
 }
 }
}

 Module 4: Using Data in Windows Forms Applications 75

In the following example, the code defines a string and converts it to an array of
characters, which can then be read as required by using the appropriate
StringReader.Read method:

using System;
using System.IO;

public class CharsFromStr
{
 public static void Main(String[] args) {
 // Create a string to read characters from.
 String str = "Some number of characters";
 // Size the array to hold all the characters of the
 // string, so that they are all accessible.
 char[] b = new char[24];
 // Create a StringReader and attach it to the string.
 StringReader sr = new StringReader(str);
 // Read 13 characters from the array that holds
 // the string, starting from the first array member.
 sr.Read(b, 0, 13);
 // Display the output.
 Console.WriteLine(b);
 // Close the StringReader.
 sr.Close();

 }
}

The preceding example produces the following output:

Some number o

Internally, the common language run time represents all characters as Unicode.
However, Unicode can be inefficient when transferring characters over a
network or when persisting in a file. To improve efficiency, the .NET
Framework class library provides several types that are derived from the
System.Text.Encoding abstract base class. These classes know how to encode
and decode Unicode characters to ASCII, UTF-7, UTF-8, Unicode, and other
arbitrary code pages. When you construct a BinaryWriter or StreamWriter,
you can choose any of these encodings. The default encoding is UTF-8.

System.Text.Encoding

76 Module 4: Using Data in Windows Forms Applications

How to Serialize Objects

� Binary serialization

Add the Serializable attributeAdd the Serializable attribute

Serialize the object to a fileSerialize the object to a file

Deserialize the file into an objectDeserialize the file into an object

Serialize the object to a fileSerialize the object to a file

Deserialize the file into an objectDeserialize the file into an object

� XML serialization

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Serialization is the process of converting the state of an object into a form that
can be persisted or transported. The complement of serialization is
deserialization, which converts a stream into an object. Together, these
processes allow data to be easily stored and transferred. The .NET Framework
features two serializing technologies: binary serialization and XML
serialization.

Binary serialization preserves type fidelity, which is useful for preserving the
state of an object between different invocations of an application. For example,
you can share an object between different applications by serializing it to the
clipboard. You can serialize an object to a stream, disk, or memory; over the
network; and so forth.

Introduction

Binary serialization

 Module 4: Using Data in Windows Forms Applications 77

There are three main steps to saving data by using binary serialization.

1. Add the Serializable attribute to the class to be serialized.
 [Serializable]
public class MyObject {
 public int n1 = 0;
 public int n2 = 0;
 public String str = null;
}

2. Serialize the object to a stream by using a BinaryFormatter object.
MyObject obj = new MyObject();
obj.n1 = 1;
obj.n2 = 24;
obj.str = "Some String";
IFormatter formatter = new BinaryFormatter();
Stream stream = new FileStream("MyFile.bin",
 FileMode.Create, FileAccess.Write, FileShare.None);
formatter.Serialize(stream, obj);
stream.Close();

3. When your application needs the persisted data, deserialize the file to an
object, by using a BinaryFormatter object.
IFormatter formatter = new BinaryFormatter();
Stream stream = new FileStream("MyFile.bin", FileMode.Open,
 FileAccess.Read, FileShare.Read);
MyObject obj = (MyObject) formatter.Deserialize(stream);
stream.Close();

For an object to be successfully serialized, every object it refers to must also be
serializable. If the serialization engine encounters any object that is not
serializable during serialization, it will throw a SerializationException.

By default, binary serialization stores all the members of an object, both public
and private. The .NET Framework provides attributes to control which
members are serialized; you can use these if you want to override the default
behavior. In addition, you can implement the ISerializable interface if you need
complete control of the binary serialization process.

Because binary serialization stores all the members of an object by default,
versioning can be tricky. If you add or remove members from an object,
serialized representations of that object may not deserialize correctly. Careful
use of attributes to prevent the serialization of non-essential members may
avoid this problem, but you may have to implement the ISerializable interface
to allow backward compatibility if you make many changes to your objects.

For more information about binary serialization, see the Binary Serialization
section in the .NET Framework software development kit (SDK)
documentation.

XML serialization serializes only public properties and fields and does not
preserve type fidelity. This is useful when you want to provide or consume data
without restricting the application that uses the data. Because XML is an open
standard, it is an attractive choice for sharing data across the Web.

Procedure: Saving data
by using binary
serialization

XML serialization

78 Module 4: Using Data in Windows Forms Applications

There are two main steps to saving data by using XML serialization.

1. Serialize the object to a file.
public class OrderForm {
 public DateTime OrderDate;
}

OrderForm myObject = new OrderForm();
// Insert code to set properties and fields of the object.
XmlSerializer mySerializer = new
 XmlSerializer(typeof(OrderForm));
// To write to a file, create a StreamWriter object.
StreamWriter myWriter = new StreamWriter("myFileName.xml");
mySerializer.Serialize(myWriter, myObject);

2. When your application needs the persisted data, deserialize the object from
a file.
OrderForm myObject;
// Construct an instance of the XmlSerializer with the type
// of object that is being deserialized.
XmlSerializer mySerializer = new
 XmlSerializer(typeof(OrderForm));
// To read the file, create a FileStream object.
FileStream myFileStream = new FileStream("myFileName.xml",
 FileMode.Open);
// Call the Deserialize method and cast to the object type.
myObject = (OrderForm)
 mySerializer.Deserialize(myFileStream);

The following items can be serialized using the XmLSerializer class.

� Public read/write properties and fields of public classes
� Classes that implement ICollection or IEnumerable

Only collections are serialized, not public properties.

� XmlElement objects
� XmlNode objects
� DataSet objects

As with binary serialization, the .NET Framework provides attributes and other
techniques to control XML serialization more finely. In addition, XML
serialization is used by the .NET Framework to create SOAP messages for
XML Web service calls. For more information about XML serialization, see the
XML Serialization section of the .NET Framework SDK documentation.

Procedure: Saving data
by using XML
serialization

Note

 Module 4: Using Data in Windows Forms Applications 79

Generally speaking, binary serialization is best for storing private state and data
used by one application or assembly. It produces compact files that are fast to
save and load. XML serialization produces larger files and has more overhead
but is better for cases when data will be shared across systems, such as with
XML Web services.

Binary serialization XML serialization

Stores all members, both public and
private, by default.

Only stores public members by default.

Usually produces very compact serialized
representations of objects, with little
overhead.

Usually produces larger serialized
representations of objects, with more
overhead.

Makes interoperation difficult, because
object state is stored in a proprietary
format.

Interoperation is easier, because it uses
open standards such as XML and SOAP.

Comparison of binary
and XML serialization

80 Module 4: Using Data in Windows Forms Applications

How to Use Isolated Storage

� For scenarios that require higher security, such as the Internet,
you should read and write data to isolated storage

� To access isolated storage

Open the storeOpen the store

Create a stream for reading or writing files in the storeCreate a stream for reading or writing files in the store

Close the stream and storeClose the stream and store

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For some applications, such as downloaded Web applications and code that
may come from sources that are not trusted, the basic file system does not
provide the necessary isolation and safety. Isolated storage is a data storage
mechanism that provides isolation and safety by defining standardized ways of
associating code with saved data.

Administrators can use tools that are designed to manipulate isolated storage to
configure file storage space, set security policies, and delete unused data. With
isolated storage, code no longer must invent unique paths to specify safe
locations in the file system while data is protected from unauthorized access.
There is no need for hard coding of information that indicates where an
application’s storage area is located. With isolated storage, partially trusted
applications can store data in a manner that is controlled by the computer’s
security policy. Security policies rarely grant permission to access the file
system by using standard I/O mechanisms. However, by default, code that runs
from a local computer, a local network, or the Internet is granted the right to use
isolated storage. Web applications can also use isolated storage with roaming
user profiles, thereby allowing user’s isolated stores to roam with their profile.

The namespace System.IO.IsolatedStorage contains the IsolatedStorageFile
and IsolatedStorageFileStream classes, which applications can use to access
the files and directories in their isolated storage area.

Introduction

 Module 4: Using Data in Windows Forms Applications 81

There are three main steps to accessing isolated storage:

1. Open the store.
IsolatedStorageFile isoStore = null;
isoStore = IsolatedStorageFile.GetUserStoreForDomain();

2. Create a stream for reading or writing files in the store.
IsolatedStorageFileStream dataFile = null;
dataFile = new IsolatedStorageFileStream("myfile.txt",
 FileMode.Open, isoStore);
// code to read from or write to file goes here

3. Close the stream and store.

dataFile.Close();
isoStore.Close();

Procedure: Accessing
isolated storage

82 Module 4: Using Data in Windows Forms Applications

How to Persist Application Settings

� Choose a technique
� Use a DataSet object

Good for tabular or relational data
� Use reader/writer objects

Complete control, but developer must write
and maintain more code

� Use serialization
Good choice when application stores state in objects

� Choose a storage location
� The file system
� Isolated storage

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are many techniques that you can use to save user data in
Windows Forms applications. Your application may use one or all of the
following techniques, depending on its particular requirements.

If you have just a few properties to save, the DataSet object is a good candidate
for saving user data. Data sets are easy to configure, access, and persist. Data
sets are also obvious choices for user data in the form of rows and tables. For
example, the expense report sample application stores saved reports and
DataSet objects in isolated storage. Also, the order entry sample application
uses a DataSet object to store some user setting, such as whether to play sounds
when orders are entered.

If you want complete control over saving user data, or if you need to save data
to a specific file format, manually saving data in a file is the right choice. With
this technique, you can use StreamReader and StreamWriter objects or
BinaryReader and BinaryWriter objects to store data. The main disadvantage
of this approach is that you must write and maintain all the code to save your
data.

Serialization is a good choice when your state is stored in a few objects, and
you can use the serialization mechanisms in the .NET Framework to persist
these objects. Depending on your particular needs, you can use binary
serialization or XML serialization to persist your objects. Serialization provides
very useful default behavior, but it also allows you a lot of flexibility if you
need to customize its behavior.

In addition to the storage technique, you must also choose the location to which
you will save user data. In addition to the file system, the .NET Framework
provides isolated storage. Using isolated storage is a good choice when you
want a simple virtual file system that is tied to the identity of your code and the
user. You must use the file system when you need to write files that are used by
other applications or read files generated by other applications.

Introduction

Storing user data in a
DataSet object

Saving user data to a file
manually

Saving user data by
using serialization

Location of saved user
data

 Module 4: Using Data in Windows Forms Applications 83

Lab 4.2: Calling an XML Web Service

Exercise 1: Calling an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Add a Web reference.
� Create an XML Web service proxy object.
� Call methods in an XML Web service.

This lab focuses on the concepts in Module 4, “Using Data in
Windows Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET). As a result, this lab may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to debug an application by using
Visual Studio .NET.

� The knowledge and skills to call XML Web services.

Your organization, Contoso, Ltd., provides access to expense report
information by using a private XML Web service. You are writing a
Windows Forms client application that uses and updates expense report
information. Your application will use your organization’s XML Web service
to accomplish this task.

Objectives

Note

Prerequisites

Scenario

84 Module 4: Using Data in Windows Forms Applications

There are starter and solution files associated with this lab. Browse to
install_folder\Labfiles\Lab04_2\Ex01\Starter to find the starter files, and
browse to install_folder\Labfiles\Lab04_2\Ex01\Solution to find the solution
files. If you performed a default installation of the course files, install_folder
corresponds to C:\Program Files\Msdntrain\2555.

Lab setup

Estimated time to
complete this lab:
15 minutes

 Module 4: Using Data in Windows Forms Applications 85

Exercise 1
Calling an XML Web Service
In this exercise, you will call some methods of an XML Web Service.

Tasks Additional information

1. Open the ExpenseReport project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab04_2\Ex01\Starter to
find the project files.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using the
phrase Open Project Dialog Box. For
additional information about starting an
application from in the Designer, in Index,
search by using the phrase Debugging
Windows Applications.

2. Add a Web reference to the test XML Web
service on your local computer. The URL for this
XML Web service is:

http://localhost/
ExpenseReportWebService/
ExpenseReportWebService.asmx

a. For more information about how to add a Web
reference, see the following resources:

• Practice: Calling an XML Web Service in
Module 4, “Using Data in Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Creating a Simple XML Web
Services Client in Module 4, “Using Data in
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

3. Open the ExpenseReportUtilities file. Find the
TODO comment toward the bottom of the file.
Add the code to create the XML Web service
proxy object and store it in the WSInternal
member of the class.

a. For more information about how to create an
XML Web service proxy object, see the following
resources:

• Practice: Calling an XML Web Service in
Module 4, “Using Data in Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Creating a Simple XML Web
Services Client in Module 4, “Using Data in
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

86 Module 4: Using Data in Windows Forms Applications

Tasks Additional information

4. Open the ExpenseReportList form, and view its
code. Find the two TODO comments in the
constructor. Add the code to make the XML Web
service calls after the comments. In each case,
you will retrieve the XML Web service proxy
from the static (shared) Utilities object, by using
the following syntax:

Utilities.WS

a. The first method call will be to the
GetReportsForEmployee method. Store the
return value from this call in the
ExpRepDataSet data member, and pass the
following parameters.

Parameter Value

username UCred.UserNameString
passwordToken UCred.PasswordTokenString
reportIndex RecordCursor
numberReports 10
totalNumberReports ref TotalNumRecords

b. The second method call will be to the
GetReportsForManagerApproval method.
Again, store the return value from this call in
the ExpRepDataSet data member, and pass
the same parameters as in step 4a.

a. For more information about how to call a method
of an XML Web service, see the following
resources:

• Practice: Calling an XML Web Service in
Module 4, “Using Data in Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Creating a Simple XML Web
Services Client in Module 4, “Using Data in
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

5. Build and run the application. Click the View
Submitted Reports button and make sure the list
of expense reports is populated.

Additional information is not necessary for this task.

 Module 4: Using Data in Windows Forms Applications 87

Review

� Adding ADO.NET Objects to and Configuring ADO.NET
Objects in a Windows Forms Application

� Accessing and Modifying Data by Using DataSets

� Binding Data to Controls

� Overview of XML Web Services

� Creating a Simple XML Web Services Client

� Persisting Data

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the difference between a connection object and a command object?
Applications use Connection objects to connect to databases.
You can use Command objects to access data directly in the database in
a connected environment. Command objects use SQL statements or
stored procedures to retrieve data. Commands travel across
connections, and result sets are returned in the form of streams that can
be read by DataReaders or pushed into DataSet objects.

2. What is the difference between a dataset and a DataAdapter?
Datasets store data in a disconnected cache. The structure of a dataset
is similar to that of a relational database; it exposes a hierarchical
object model of tables, rows, and columns.
A DataAdapter object serves as a bridge between a dataset and a data
source for retrieving and saving data. The DataAdapter class
represents a set of database commands and a database connection that
you use to fill a dataset and update the data source.

3. How do you access tables and columns in a typed and untyped dataset?
Typed dataset
PubsDataSet.Titles;
Untyped dataset
PubsDataSet.Tables(“Titles”);

88 Module 4: Using Data in Windows Forms Applications

4. How do you generate a new Database schema?
On the Project menu, click Add New Item.
To add a schema, open the appropriate folder, and then double-click
XML Schema.
An XML Schema (.xsd) file is added to your project.

5. What are the functions of ReadXML and WriteXML methods?
You can use the ReadXml method of the DataSet object to load data
from an XML file into a dataset. When you use this method, you can
load data from XML files that contain only XML data or from files that
contain XML data as well as an inline schema.
You can write data and schema information from a dataset to a file or
stream by using the WriteXml method of the Dataset object.

6. What is CurrencyManager?
The CurrencyManager object is used to keep data-bound controls
synchronized with a data source. The CurrencyManger is important
because data sources, such as tables in datasets, do not track the
currently selected row. You need an intermediary object that is aware
of the currently selected position in a data source and can notify
databound controls when the position changes. That intermediary
object is a CurrencyManager object.

7. What are the main steps that you take in your application to call an XML
Web service?
The main steps that you take in your application to call an XML Web
service are to:

• Generate the proxy that will call the XML Web service methods.

• Instantiate the proxy.

• Call the XML Web service methods that are required by your
application.

 Module 4: Using Data in Windows Forms Applications 89

8. Describe the two ways to generate an XML Web service proxy.
Add a Web Reference in Visual Studio .NET and use the WSDL.exe
utility.

9. List three techniques for persisting application settings.
Three techniques for persisting application settings include using:

• A DataSet object

• Reader/writer objects

• Serialization

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Using .NET and COM Components
in a Windows Forms Application 2

Lesson: Calling Win32 APIs from Windows
Forms Applications 17

Review 28

Lab 5.1: Interoperating with COM and
Calling Win32 APIs 30

Module 5:
Interoperating with
Managed Objects

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Interoperating with Managed Objects iii

Instructor Notes
This module provides students with knowledge of how to use COM
components in Microsoft® .NET Framework-based applications. The module
also covers how to call Microsoft Win32® APIs from a .NET-based application.

After completing this module, students will be able to:

� Use .NET and COM components in a Microsoft .NET Framework Windows
Forms application.

� Call Microsoft Win32 APIs from a Windows Forms application.

To teach this module, you need the Microsoft PowerPoint® file 2555A_05.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices, demonstrations, and lab.

Presentation:
60 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 5: Interoperating with Managed Objects

How to Teach This Module
This section contains information that will help you to teach this module.

• Lab 5.1: Interoperating with COM and Calling Win32 APIs is based on the
Purchase Order application in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C#™ .NET) and is intended to simulate a
real-world environment in which students will demonstrate what they
learned during the lecture and practice portions of the module. The lab does
not provide step-by-step detailed instructions; instead, the students are given
tasks to complete in the left column and a list of resources that they can use
(if they need help) in the right column. Students get the hands-on experience
that they need by completing the practice activities at the end of each lesson.

Lesson: Using .NET and COM Components in a Windows Forms
Application

This section describes the instructional methods for teaching this lesson.

• Tell students that this lesson covers only how to call COM components
from a .NET-based application. It does not cover using .NET objects from a
COM client. For more information about calling a .NET object from a COM
client, refer them to the Course 2571A, Application Upgrade and
Interoperability Using Visual Studio .NET.

Lab: Interoperating with COM and Calling Win32 APIs
� Make sure that you have demonstrated the two lab applications—the

Expense Report application and the Purchase Order application—in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET) before students begin the lab. For information about how
to demonstrate the lab scenarios, see the Introduction module in
Course 2555A, Developing .NET Windows Applications (Visual C# .NET).

� Practice exercises will enable students to successfully complete the lab
exercises. Therefore, make sure that students have completed all practice
exercises before they begin the lab.

 Module 5: Interoperating with Managed Objects 1

Overview

� Using .NET and COM Components in a Windows Forms
Application

� Calling Win32 APIs from Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

With the advent of the Microsoft® .NET Framework, there is need to upgrade
existing software systems and for developers to adapt to the new platform. To
provide a convenient and easy migration path for existing systems, the .NET
Framework offers a broad interoperable functionality between managed code
and existing COM components.

Two of the primary goals of .NET Interoperation are to ensure that:

1. Installation of the .NET Framework does not affect existing COM
applications.
Because .NET and COM can coexist, you can selectively upgrade COM
components to .NET without affecting other COM or .NET-based
applications. Therefore, you may or may not choose to upgrade COM
components to .NET.

2. The .NET Framework and COM components can communicate with each
other; they can cooperate.
Because .NET and COM can cooperate, you can build .NET-based
applications that implement functionality exposed by COM objects and
COM applications that implement functionality exposed by .NET objects.

This module introduces you to the concepts and mechanics of the interoperation
of .NET managed code with COM unmanaged code and platform services.

After completing this module, you will be able to:

� Use .NET and COM components in a Microsoft .NET Framework Windows
Forms application.

� Call Microsoft Win32® APIs from a Windows Forms application.

Introduction

Objectives

2 Module 5: Interoperating with Managed Objects

Lesson: Using .NET and COM Components in a Windows
Forms Application

� COM vs .NET

� How to Call COM Components from .NET

� Role of the RCW

� How to Generate Interop Assemblies

� Private, Shared, and Primary Interop Assemblies

� Practice: Using COM Components in .NET-Based
Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft .NET Framework provides interoperability services to use
existing applications, smooth the migration path, and simplify the interaction
between managed and unmanaged code. Interop Services conceal from both
clients and servers the differences between the managed world and the
unmanaged world.

The common language runtime provides two mechanisms for interoperating
with unmanaged code:

� Platform Invocation Services
Platform invoke is a service that allows managed code to call unmanaged
functions that are implemented in dynamic-link libraries (DLL). It locates
and invokes an exported function and marshals its arguments (integers,
strings, arrays, structures, and so on) across the interoperation boundary as
needed.

� COM Interop
COM Interop is a bi-directional service that provides a bridge between
the.NET Framework and COM. It allows .NET clients to call COM
components and COM clients to call .NET Framework components.
COM Interop maintains programming model consistency in both COM and
.NET. It resolves the inconsistencies between the two models and makes the
difference transparent to both clients and servers.

In this lesson, you will learn how to call COM components from the .NET
Framework.

Introduction

 Module 5: Interoperating with Managed Objects 3

After completing this lesson, you will be able to:

� Identify the differences between COM and .NET programming models.
� Explain how to call COM components from the .NET Framework.
� Describe the role of the runtime callable wrapper (RCW) in interoperating.
� Generate interop assemblies.
� Describe private, shared, and primary interop assemblies.

This module does not cover using .NET objects from a COM client by
using the COM callable wrapper (CCW). For more information about the
CCW, see “COM Callable Wrapper” in the .NET Framework software
development kit (SDK) documentation.

Lesson objectives

Note

4 Module 5: Interoperating with Managed Objects

COM vs .NET

Garbage collectionReference counting

ExceptionsHResults

MetadataType library

Type standardBinary standard

ResilientImmutable

Strong namesGUIDs

Object basedInterface based

.NET Framework Model.NET Framework ModelCOM ModelCOM Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

COM differs from the .NET Framework object model in several ways.

The differences between COM and .NET are summarized in the following
table.

Characteristic COM .NET Framework

Coding model Interface based. COM objects

always communicate through
interfaces.

Object based. .NET Framework
objects can pass data directly to each
other, without implementing
interfaces.

Identity Globally unique identifiers (GUIDs).
GUIDs identify a specific
unmanaged type and provide no
location information for that type.

Strong names. Strong names consist
of a unique assembly name in
addition to a type name. Because the
assembly name uniquely identifies
the type, you can reuse a type name
across multiple assemblies. An
assembly also introduces publisher
key, version, and location
information to a managed type.

Type compatibility Binary standard. The internal binary
layout of classes must comply with
COM rules.

Type standard. The .NET common
type system specification establishes
a framework that enables cross-
language integration, type safety, and
so on.

Type definition Type library. Type information is
stored only for public types.
Moreover, a type library is optional.

Metadata. Type information is stored
as metadata and is mandatory for all
types. Metadata is embedded inside
assemblies.

Introduction

Differences between
COM and .NET

 Module 5: Interoperating with Managed Objects 5

(continued)
Characteristic COM .NET Framework

Type safety Not type-safe. Unmanaged compilers

do not provide type checking on
pointer types. Therefore, the code
becomes susceptible to potentially
harmful activity.

Optionally safe. Managed code
requires a higher level of trust.
Therefore, although you can use
pointers in managed code, the code
has restrictions because of its unsafe
behavior.

Error-handling mechanism HRESULTs. A COM method returns
an HRESULT to indicate whether
the call succeeded or failed.

Exceptions. Managed code
incorporates exceptions.

Object-lifetime management Reference counting. Clients of COM
objects manage object lifetime by
means of reference counting.

Garbage collection. The common
language runtime manages the
lifetime of objects by means of
garbage collection.

Versioning Immutable. COM interfaces are
immutable. In other words, if you
change an interface, you must
rename it with a new GUID.

Resilient. Managed types can evolve,
retaining the same name.

6 Module 5: Interoperating with Managed Objects

How to Call COM Components from .NET

� The CLR enables managed code to call COM objects
through a proxy called the Runtime Callable Wrapper
(RCW)

� The RCW is a managed object and subject to garbage
collection

COM Object ACOM Object A

COM Object BCOM Object B

RCWRCW

RCWRCW

.NET Client.NET Client

.NET Client.NET Client

Unmanaged Managed

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many organizations cannot afford to upgrade to .NET overnight. A lot of
money has been invested in the existing systems and users need to preserve
their investment. In addition, some critical business applications cannot be
changed. Therefore, Interop Services enable developers to use existing code or
migrate their existing systems to .NET in multiple stages.

When a .NET client calls a COM component, a series of events take place.

1. When a .NET Client loads a COM object, a runtime callable wrapper
(RCW) is created.
The runtime creates exactly one RCW for each COM object, regardless of
the number of references that exist on that object. This ensures that a single
object identity is shared between the RCW and the COM object.

2. Using metadata derived from a type library, the runtime creates both the
COM object being called and a wrapper for that object.

3. Each RCW maintains a cache of interface pointers on the COM object it
wraps.

4. The runtime performs garbage collection on the RCW.

Introduction

Process

 Module 5: Interoperating with Managed Objects 7

Role of the RCW

� Maintains object lifetime

� Marshals method calls between managed and
unmanaged code

� Consumes selected COM interfaces without exposing
them to the .NET client

COM
Object
COM
Object RCWRCW .NET

Client
.NET
Client

Unmanaged Managed

INew

IUnknown

IDispatch

INew

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The primary goal of the RCW is to hide the differences between the managed
and unmanaged programming models.

The RCW is an important part of the interoperation model. It performs several
roles.

1. Maintains object lifetime.
The RCW is responsible for keeping the COM object alive as long as the
RCW is being used. The runtime performs garbage collection on the RCW
like any other managed object, but the RCW internally holds a reference to
the COM object it wraps.

2. Marshals method calls between managed and unmanaged code.
The RCW marshals method calls between managed and unmanaged code on
behalf of the wrapped object. This involves several tasks, such as:
a. Implicitly converting parameters passed between the two environments

to the correct type.
For example, when you pass a parameter of the type System.String to a
COM function, the RCW automatically converts the parameter to the
correct BSTR type expected by the COM component. If the COM
function returns a BSTR parameter to the .NET client, the RCW
automatically converts the parameter to System.String.

b. Translating HRESULT errors generated by COM objects to .NET
exceptions.
For example, the RCW translates the HRESULT error
COR_E_UNAUTHORIZEDACCESS to
UnauthorizedAccessException exception in .NET.

Introduction

Role of the RCW

8 Module 5: Interoperating with Managed Objects

There are some limitations to using the RCW. For example, Success
HRESULTS are not returned from unmanaged code. Variable length arrays
also pose challenges. For more information about these limitations and how
to fix them, refer to the “Interop Marshaling” section of the .NET
Framework SDK.

3. Consumes selected COM interfaces without exposing them to the .NET
client.
An important role of the RCW is to make a .NET client act as if it is using a
.NET object and to make a COM object act as if it is being used by a COM
client. To accomplish this, the RCW consumes selected COM interfaces
without exposing them to the managed client. For example, the COM
IUnknown interface exposes methods for reference counting and querying
interfaces on all COM objects. The RCW consumes this interface from the
COM object but does not expose it to .NET clients. Instead, the RCW uses
this interface internally to function as a COM object.

4. Allows developers to write code that treats COM objects wrapped by the
RCW like any other object.

Note

 Module 5: Interoperating with Managed Objects 9

How to Generate Interop Assemblies

Unmanaged Managed

Interop
Assembly
Interop

Assembly

A
B
C
D

Tlbimp.exeTlbimp.exe

A B

C D

COM objectCOM object

COM objectCOM object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

.NET-based applications can bind to COM classes in an early or late bound
fashion. Early binding requires complete type information for the COM class at
compile-time and requires the underlying COM class to support early binding
as well. COM type definitions usually reside in a type library. To use COM
types in managed code, you must generate metadata from type libraries.

COM type libraries can be standalone .tlb files or they can be embedded in the
resource section of a .dll or .exe file. Other sources of type-library information
are .olb and .ocx files.

After locating the type library containing the implementation of your target
COM type, you can generate an assembly containing type metadata. The
metadata can be generated in various ways. Usually it is generated from an
existing type library that describes the types with a tool called Tlbimp.exe
(Type Library Importer).

After the metadata is generated, it is saved as a typical .NET assembly. The
assemblies are commonly called interop assemblies because they contain
metadata for COM types but no code.

Just like any other assembly, you can examine an interop assembly with tools
like Ildasm.exe to browse the types defined in the assembly.

There are a variety of tools that allow you to generate interop assemblies. The
most common include the Microsoft Visual Studio® .NET IDE and the
Tlbimp.exe utility.

To add a reference to a type library from the Visual Studio IDE:

1. On the Project menu, click References.
2. Click the COM tab.
3. In the Available References list, double-click the type library.
4. Click OK to run TLBIMP and add the assembly to the hidden Bin directory

of the project.

Introduction

Procedure: Generate
interop assemblies

10 Module 5: Interoperating with Managed Objects

You can build metadata by using the TLBIMP tool. The TLBIMP provides
command-line switches to adjust metadata in the resulting interop file, imports
types from an existing type library, and generates an interop assembly and a
namespace. The TLBIMP provides a finer degree of control when creating
interop assemblies.

Use the following syntax to generate an interop assembly by using the TLBIMP
tool:

Tlbimp TlbFile [/out: name] [/reference: file] [/silent] [/verbose] [/strictref]
[/unsafe][[/primary]][/publickey: file] [/keyfile: file][/keycontainer: name]

TLBIMP uses the command line switches described in the following table.

Command Line Switch Description

/out:filename Specifies the name of the output file,

assembly, and namespace in which to
write the metadata definitions.

/keyfile:filename

/publickey:filename

/keycontainer:containername

Options for supplying information to
generate a strongly named assembly.

/reference:filename Specifies the assembly file to use to
resolve references to types defined outside
the current type library. If you do not
specify the /reference option, Tlbimp.exe
automatically recursively imports any
external type library that the type library
being imported references.

/primary Produces a primary interop assembly for
the specified type library. Information is
added to the assembly indicating that the
publisher of the type library produced the
assembly.

The following command line creates an interop assembly by using the Com1.tlb
COM type library.

tlbimp COM1.tlb /keyfile:myPublicKeyFile.sn
/reference:COM2InteropAssembly.dll
/out:COM1InteropAssembly.dll

The example uses the myPublicKeyFile.sn file to assign a strong name to the
assembly by using a public key. The COM1 component calls members of
another COM class called COM2. However, if you have already created an
interop assembly for COM2 called COM2InteropAssembly.dll, this will be a
duplication of work. To prevent the TLBIMP tool from generating an interop
assembly that contains information for both COM1 and COM2, add a reference
to the existing COM2InteropAssembly.dll. This will ensure that metadata for
COM2 will not be generated in the COM1InteropAssembly.

Procedure: Add a
reference to a type
library by using the
TLBIMP tool

Example

 Module 5: Interoperating with Managed Objects 11

Private, Shared, and Primary Interop Assemblies

Application1.exeApplication1.exe

MetadataMetadata

MSILMSIL

C:\Application1

Productlib.dllProductlib.dll
MetadataMetadata

Application2.exeApplication2.exe

MetadataMetadata

MSILMSIL

C:\Application2

Productlib.dllProductlib.dll
MetadataMetadata

Private Interop
Assemblies

Productlib.dllProductlib.dll
MetadataMetadata

GAC Strong Named
Assemblies

Primary Interop Assembly is an assembly signed by the
company that produced the original type library

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When metadata is generated from a type library, the resulting assembly can be
private and exposed only in the scope of an application or it can be shared by
being placed in the global assembly cache.

To install an assembly for private use, both the application .exe and the
assembly containing imported COM types must be installed in the same
directory structure. The illustration shows an unsigned assembly to be used
privately by Application1.exe and Application2.exe, which reside in separate
application directories. The interop assembly, which is called ProductLib.dll in
this example, is installed twice.

Assemblies shared by multiple applications should be installed in a centralized
repository called the global assembly cache. .NET clients can access the same
copy of the interop assembly, which is signed and installed in the global
assembly cache. A shared assembly has a strong name made up of the assembly
name, version, culture, and the public key of the assembly publisher. TLBIMP
includes the /keyfile, /publickey, and /keycontainer options for supplying
information to generate strongly named assembly.

A shared interop assembly signed by the company that produced the original
type library is called a primary interop assembly. An assembly signed by any
other company or individual is called an alternate interop assembly.

Primary interop assemblies (PIA) are provided by the same publisher as the
type library that they describe and provide the official definitions of the types
defined with that type library. Primary interop assemblies are always signed by
their publisher to ensure uniqueness. A primary interop assembly is created
from a type library by running TLBIMP with the /primary switch.

Introduction

Private interop
assemblies

Shared assemblies

Primary interop
assemblies

12 Module 5: Interoperating with Managed Objects

PIAs are important because they provide unique type identity. They distinguish
the official type definitions from all other definitions provided by other interop
assemblies, thereby ensuring type compatibility between applications that share
the types defined in a PIA.

When available, always use the primary interop assembly published by the
author of the COM component you intend to incorporate in your managed code.
Types in the primary interop assembly are imported for you and are ready to
activate and call from managed code. Avoid using interop assemblies that are
not primary interop assemblies.

 Module 5: Interoperating with Managed Objects 13

Practice: Using COM Components in .NET-Based Applications

In this practice, you will

� Register the COM Component

� Add reference to the COM component

� Add code to use the COM component in a
.NET-based application

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use two COM components in your .NET-based
application, Masked Edit ActiveX and NorthwindData_COM.

The Masked Edit ActiveX control generally behaves as a standard text box
control with enhancements for optional masked input and formatted output. The
Mask property of the Masked Edit control allows developers to define the
formatting of text in the control and the ClipText property provides access to
the unformatted text.

The NorthwindData_COM component uses Microsoft ADO 2.6 to connect to
the Northwind database. The component contains a class called
RemainingInventoryClass that exposes the ShowUnitsInStock method. The
ShowUnitsInStock method returns a live count of the number of units
remaining in inventory for a product.

Introduction

14 Module 5: Interoperating with Managed Objects

� Register the NorthwindData_COM component
1. To open the Command Prompt window, click Start, point to All Programs,

point to Accessories, and then click Command Prompt.
2. In the Command Prompt window, type the following and then press

ENTER:
Regsvr32 “C:\Program
Files\Msdntrain\2555\Practices\Mod05\Mod05_01\Starter\North
windData_COM.dll"

The path in step 2 will change if the starter files for the practices and
demonstrations are installed in a different location on your computer.

You can also drag the NorthwindData_COM.dll file from Microsoft
Windows Explorer to the Run dialog box or to the Command window,
append regsrv32 to the beginning of the file name, and then press ENTER.

A message box confirms a successful registration.

� Add a reference to the NorthwindData_COM component
1. Open Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the New Project dialog box, click Windows Application, in the Name

box, type ComInterop and then click OK.
4. On the Project menu, click Add Reference.
5. Click the COM tab, double-click the NorthwindData_COM component,

and then click OK.

� Add the Masked Edit control to the Toolbox
1. On the Tools menu, click Customize Toolbox.
2. Select Microsoft Masked Edit Control, version 6.0, and then click OK.

Confirm that the MaskEdBox control is added to the Toolbox in the Visual
Studio IDE.

Instructions

Note

Tip

 Module 5: Interoperating with Managed Objects 15

� Configure the controls on the form
1. Add the following controls to the form.

Control Name Text

Label ProductIDLabel ProductID

MaskEdBox COMMaskEdBox

Button GetUnitsInStockButton Get UnitsInStock

Label UnitsInStockLabel UnitsInStock

2. Set the Mask property of COMMaskEdBox to ##.
Your form should look like the following illustration.

� Add code to use the COM objects in your .NET-based application
1. Create a procedure for the Click event of GetUnitsInStockButton.
2. Create a String variable named serverName and set it equal to

(local\MOC).
3. Create a Short variable called productID and assign it the value of the

ClipText property of the COMMaskedEdit control. Convert the ClipText
value to Short (Int16) before assigning it to productID.

4. Create a variable named comObject to hold an instance of the
NorhwindData_COM.RemainingInventoryClass component.

5. Call the ShowUnitsInStock method of comObject and pass productID, by
reference, as the first argument. Pass serverName, by reference, as the
second argument. Assign the string returned from the ShowUnitsInStock
method to the Text property of UnitsInStockLabel. Your code should look
like this:
private void GetUnitsInStockButton_Click(object sender,
System.EventArgs e)
{
 serverName = "(local)\\MOC";
 short prodID = Convert.ToInt16(COMMaskEdBox.ClipText);
 NorthwindData_COM.RemainingInventoryClass comObject =
new NorthwindData_COM.RemainingInventoryClass();
 UnitsInStockLabel.Text = comObject.ShowUnitsInStock(ref
prodID, ref serverName);
}

16 Module 5: Interoperating with Managed Objects

� Test the application
1. Press F5 to compile and run the application.
2. Enter a number between 1 and 77, and then click GetUnitsInStock.

Confirm that the label reflects the number of items in stock.

 Module 5: Interoperating with Managed Objects 17

Lesson: Calling Win32 APIs from Windows Forms
Applications

� Platform Invocation Services

� How to Define Functions by Using the DllImport
Attribute

� How to Call Win32 APIs from a Windows Forms
Application

� Practice: Calling Win32 APIs

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows APIs are DLLs that are part of the Microsoft Windows® operating
system. You use them to perform tasks when it is difficult to write equivalent
procedures of your own. The advantage of using Windows APIs in your code is
that they can save development time because they contain hundreds of useful
functions that are already written and waiting to be used. The disadvantage is
that Windows APIs can be difficult to work with and unforgiving when things
go wrong.

Windows DLLs represent a special category of interoperability. Windows APIs
do not use managed code, do not have built-in type libraries, and use data types
that are different from those used with Visual Studio .NET. Because of these
differences, and because Windows APIs are not COM objects, interoperability
with Windows APIs and the .NET Platform is performed by using platform
invoke. Platform invoke is a service that enables managed code to call
unmanaged functions implemented in DLLs. You can use platform invoke in
C# by applying the DllImport attribute to an empty procedure. This lesson
covers how to call Win32 APIs from Windows Forms applications by using
platform invoke.

After completing this lesson, you will be able to:

� Explain the role of the Platform Invocation Services in calling unmanaged
code from managed code.

� Call Win32 APIs from a Windows Forms application by using the Declare
statement and the DllImport attribute.

Introduction

18 Module 5: Interoperating with Managed Objects

Platform Invocation Services

A platform invoke call to an unmanaged DLL function

The The PInvokePInvoke ModelModel

Unmanaged Managed

Standard
marshaling service

DLLDLL

DLL
function

DLL
function

Platform
invoke

Common language
runtime

Common language
runtime

AssemblyAssembly

MetadataMetadata

IL codeIL code
CompilerCompiler

Managed
source
code

Managed
source
code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Platform Invocation Services is a mechanism by which managed code calls
unmanaged code.

Platform invoke allows managed code to call unmanaged functions that are
implemented in a DLL. Platform invoke takes care of finding and invoking the
correct function, as well as marshaling its managed arguments to and from their
unmanaged counterparts (integers, strings, and so on). Platform invoke and
COM Interop share much of the marshaling code inside the .NET Framework.

You can use the DllImport attribute to declare functions in DLLs.

When platform invoke calls an unmanaged function, it performs the following
set of actions.

1. Locates the DLL containing the function.
To locate a function in a DLL, platform invoke must have the following
information.
a. The name of the DLL file, such as User32.dll, GDI32.dll, Kernel32.dll.
b. The name of the function or ordinal number, such as MessageBox or

exported function number #452.
c. The character set that will be used—ANSI or Unicode.

Win32 API contains two versions of each function: a single-Byte
character ANSI version and a double-Byte character Unicode version.
For instance, MessageBoxA is the ANSI entry point for the
MessageBox function and MessageBoxW is the Unicode version.
The character set is controlled by the value of the CharSet field of
DllImportAttribute, which will be discussed later in more detail.

2. Loads the DLL into memory.

Introduction

Definition

Role of platform invoke
in calling Win32 APIs

 Module 5: Interoperating with Managed Objects 19

3. Locates the address of the function in memory and pushes its arguments
onto the stack, marshaling data as required.

4. Transfers control to the unmanaged function.
5. Returns exceptions generated by the unmanaged function to the managed

caller.

20 Module 5: Interoperating with Managed Objects

How to Define Functions by Using the DllImport Attribute
� DllImport attribute is used to define functions

� Parameters are used to specify specific behavior

� CallingConvention

� CharSet
[DllImport("KERNEL32.DLL", EntryPoint="MoveFileW",

SetLastError=true,

CharSet=CharSet.Unicode, ExactSpelling=true,

CallingConvention=CallingConvention.StdCall)]

public static extern bool MoveFile(String src,
String dst);

[DllImport("KERNEL32.DLL", EntryPoint="MoveFileW",
SetLastError=true,

CharSet=CharSet.Unicode, ExactSpelling=true,

CallingConvention=CallingConvention.StdCall)]

public static extern bool MoveFile(String src,
String dst);

� EntryPoint

� ExactSpelling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DllImport attribute is used to specify the DLL location that contains the
implementation of an external method.

DllImport has the following named parameters that specify the specific
behavior of the attribute.

� CallingConvention
The CallingConvention parameter indicates the calling convention for the
entry point. If no CallingConvention is specified, a default of
CallingConvention.Winapi is used.

� CharSet
The CharSet parameter indicates the character set used in the entry point. If
no CharSet is specified, a default of CharSet.Auto is used.

� EntryPoint
The EntryPoint parameter gives the name of the entry point in the DLL. If
no EntryPoint is specified, the name of the method is used.

� ExactSpelling
The ExactSpelling parameter indicates whether EntryPoint must exactly
match the spelling of the indicated entry point. If no ExactSpelling is
specified, a default of False is used.

Introduction

DllImport parameters

 Module 5: Interoperating with Managed Objects 21

Apply the DllImport attribute to the empty function. The first parameter is the
name and location of the DLL containing the function that you are calling. You
do not need to specify the path for files located in the Windows system
directories. The second parameter is a named argument that specifies the name
of the function in the Windows API.

[DllImport("KERNEL32.DLL", EntryPoint="MoveFileW",
SetLastError=true,
CharSet=CharSet.Unicode, ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]
public static extern bool MoveFile(String src, String dst);

Procedure

22 Module 5: Interoperating with Managed Objects

How to Call Win32 APIs from a Windows Forms Application

Create a new project in Visual Studio .NETCreate a new project in Visual Studio .NET

Import the System.Runtime.InteropServices namespaceImport the System.Runtime.InteropServices namespace

using System.Runtime.InteropServices;using System.Runtime.InteropServices;

Define a function using DllImportDefine a function using DllImport

Add code to call the Win32 API from a Windows FormAdd code to call the Win32 API from a Windows Form

bool result;
System.IntPtr resourceHandle = System.IntPtr.Zero;
result =

Win32PlaySoundClass.PlaySound_DllImport(soundFileNam
e,resourceHandle,0);

bool result;
System.IntPtr resourceHandle = System.IntPtr.Zero;
result =

Win32PlaySoundClass.PlaySound_DllImport(soundFileNam
e,resourceHandle,0);

Determine the details of the function you want to callDetermine the details of the function you want to call

*****************************ILLEGAL FOR NON-TRAINER USE******************************

So far, you have learned the components that are involved in calling a Win32
API from a .NET Framework-based application. Now you will look at the entire
procedure of calling a Win32 API from a .NET Windows Forms application.

To call a Win32 API:

1. Determine the name of the function that you want to call, its arguments,
argument types, return value, and the name and location of the DLL that
contains it.

2. Create a new class in Visual Studio .NET.
3. Import the System.Runtime.InteropServices namespace.

using System.Runtime.InteropServices;

Introduction

Procedure

 Module 5: Interoperating with Managed Objects 23

4. Define a function by using DllImport.
Add the following DllImport attribute either to the declaration section of
the startup form for your project, or to the declaration section of the class or
module where you want to use the DLL.
[DllImport("winmm.dll", EntryPoint="PlaySound")]
public static extern bool PlaySound_DllImport(string
pszSound,IntPtr hmod ,int fdwSound);

5. Add code to call the Win32 API from a Windows Form.
bool result;
System.IntPtr resourceHandle = System.IntPtr.Zero;
result =
Win32PlaySoundClass.PlaySound_DllImport(soundFileName,
resourceHandle,0);

Although calling an unmanaged DLL function from managed code is
almost identical to calling a managed function, there are some differences when
passing data structures and using callback functions. For more information
about making advanced calls through platform invoke, see Course 2571A,
Application Upgrade and Interoperability Using Visual Studio .NET.

Note

24 Module 5: Interoperating with Managed Objects

Practice: Calling Win32 APIs

Begin reviewing the objectives
for this practice activity 15 min

In this practice, you will call a Win32 API from
a .NET-based application using the DllImport
attribute

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create and test a class that calls the Win32 PlaySound
API.

The PlaySound API is used to play sound files such as .wav files and is located
in the Winmm.dll file. It has the following signature:

BOOL PlaySound(
 LPCSTR pszSound,
 HMODULE hmod,
 DWORD fdwSound
);

Notice that the arguments of the API use unmanaged C++ variable types. You
must understand these variables types to convert them to an equivalent .NET
type.

For more information and a list of unmanaged data types and their managed
equivalents, see the “Platform Invoke Data Types” section of the .NET
Framework SDK.

Introduction

 Module 5: Interoperating with Managed Objects 25

The PlaySound function takes three arguments and returns a Boolean value
indicating whether or not the function was able to play the sound file. The
arguments include:

� pszSound
A string that defines the name of the sound file.

� hmod
Handle to the executable file that contains the resource to be loaded. This
parameter must be NULL unless SND_RESOURCE is specified in
fdwSound.

� fdwSound
Flags that are used to determine how the sound is played. Examples of flags
include whether the sound should play asynchronously or whether it should
loop.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\Mod05\Mod05_02\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the PInvoke.sln solution file to open the project.

� Add a class to the project and import the
System.Runtime.InteropServices namespace

1. On the Project menu, click Add Class.
2. Name the class Win32PlaySoundClass.cs, and then click Open.
3. Import the System.Runtime.InteropServices namespace by typing the

following code above the Win32PlaySoundClass.
using System.Runtime.InteropServices;

� Use the DllImportAttribute to call the PlaySound Win32 API
1. Open the Win32PlaySoundClass file.
2. Inside the Win32PlaySound class, create a DllImport attribute that

exposes the Winmm.dll and sets the EntryPoint parameter to PlaySound.
Your code should look like the following.
[DllImport("winmm.dll", EntryPoint="PlaySound")]

Instructions

Note

26 Module 5: Interoperating with Managed Objects

3. Append a public static external function to the DllImport attribute named
PlaySound_DllImport that returns a Boolean value. Create the arguments
required by the PlaySound function by using the following table, which
includes the argument names, the unmanaged type expected, and the .NET
equivalent type.

Argument Name Unmanaged Type Managed Equivalent

pszSound LPCSTR String
hmod HMODULE IntPtr

fdwSound DWORD Int

Your code should look like the following.
[DllImport("winmm.dll", EntryPoint="PlaySound")]
public static extern bool PlaySound_DllImport(string
pszSound,IntPtr hmod ,int fdwSound);

� Add code to test the PlaySound_DllImport function
1. Open the PlaySoundForm in the Code Editor, and then locate the

PlayButton_Click event procedure.
2. Declare a Boolean value named result to hold the results of the

PlaySound_Dll function.
3. Create the IntPtr variable named resourceHandle and initialize it to 0.
4. Call the PlaySound_Dll function of the Win32PlaySound class and assign

the results to the result variable. Use the following table to fill the
parameters.

Parameter Value

pszSound soundFileName

hmod resourceHandle

fdwSound 0

Your code should look like the following.
bool result;
System.IntPtr resourceHandle = System.IntPtr.Zero;
result =
Win32PlaySoundClass.PlaySound_DllImport(soundFileName,
resourceHandle,0);

 Module 5: Interoperating with Managed Objects 27

� Test the PlaySound_DllImport function
1. Press F5 to build and run the application.
2. On the File menu, click Open.
3. Click the Windows XP Startup.wav file, and then click Open.
4. Click the Play button to test the sound.
5. Close the application.

If there are no speakers available to test the sound, test the value of the
result variable in the debug mode.

� Resolve the errors in the PlaySound_DllImport function of the
Win32PlaySound_Error class

• Open the Win32PlaySound_ErrorClass file and review the
PlaySound_DllImport function. There is an error in the function. You can
attempt to test it to confirm. What is the error?
The function explicitly sets the ExactSpelling to True; however, the
EntryPoint is set to PlaySound. The function PlaySound does not exist
in Winmm.dll; only PlaySoundA (Ansi) and PlaySoundW (Unicode)
exist. To correct this error, set ExactSpelling to False. Another way to
correct this error is to explicitly set the EntryPoint to PlaySoundW.
__

__

__

You can also correct this error by setting the EntryPoint parameter to
PlaySoundA; however, you must also set the CharSet parameter to
CharSet.Ansi.

Note

Note

28 Module 5: Interoperating with Managed Objects

Review

� Using .NET and COM Components in a Windows
Forms Application

� Calling Win32 APIs from Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. List some of the differences between COM and .NET components.
COM is based on binary standard. The internal binary layout of classes
must comply with COM rules. .NET is based on a type standard. The
common type system in .NET establishes a framework that enables
cross-language integration, type safety, and high performance code
execution.
COM uses type libraries to store type information. In the .NET
Framework, type information is stored as metadata and is mandatory
for all types. Metadata is embedded inside assemblies.
COM methods usually return an HRESULT, indicating that the call
succeeded or failed. In .NET, managed code incorporates exceptions.
Clients of COM objects manage object lifetime by reference counting.
In .NET, the runtime manages the lifetime of objects through garbage
collection.
For identity, COM uses GUIDs. .NET uses strong names.

2. How do you call COM components from a .NET-based application?
When a .NET Client loads a COM object, a RCW is created.
Using metadata derived from a type library, the runtime creates both
the COM object being called and a wrapper for that object.
Each RCW maintains a cache of interface pointers on the COM object
that it wraps.
The runtime then performs garbage collection on the RCW.

 Module 5: Interoperating with Managed Objects 29

3. Describe the role of the RCW in interoperability.
Maintains object lifetime.
Marshals method calls between managed and unmanaged code.
Consumes selected COM interfaces without exposing them to the .NET
client.
Allows developers to write code that treats COM objects wrapped by
the RCW like any other object.

4. What are the two most common methods used for generating interop
assemblies?
Visual Studio .NET IDE and TLBIMP tool.

5. List the functions of the Platform invoke service.
Locates the DLL containing the function.
Loads the DLL into memory.
Locates the address of the function in memory and pushes its
arguments onto the stack, marshaling data as required.
Transfers control to the unmanaged function.
Returns exceptions generated by the unmanaged function to the
managed caller.

6. How do you call a Win32 API from a .NET-based application?
1. Determine the name of the function you want to call, its arguments,

argument types, return value, and the name and location of the DLL
that contains it.

2. Create a new class in Visual Studio .NET.
3. Import the System.Runtime.InteropServices namespace.
4. Define a function by using DllImport.
5. Add code to call the Win32 API from a Windows Form.

30 Module 5: Interoperating with Managed Objects

Lab 5.1: Interoperating with COM and Calling Win32 APIs

� Exercise 1: Using a COM Component in a
.NET-Based Application

� Exercise 2: Calling Win32 APIs from a
.NET-Based Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Create an Interop assembly.
� View assembly information with ILDASM.
� Invoke functions on a COM component from managed code.
� Declare functions that expose Win32 DLLs.
� Invoke Win32 DLLs from managed code.

This lab focuses on the concepts in Module 5, “Interoperating with
Managed Objects,” in Course 2555A, Developing Microsoft .NET Applications
for Windows (Visual C# .NET). As a result, this lab may not comply with
Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to create an Interop assembly from the Visual
Studio .NET IDE.

� The knowledge and skills to invoke COM functions from a
Visual Studio .NET–based application.

� The knowledge and skills to expose Win32 DLLs in a Visual Studio
.NET-based application.

� The knowledge and skills to invoke Win32 DLLs in a Visual Studio
.NET-based application.

Objectives

Note

Prerequisites

 Module 5: Interoperating with Managed Objects 31

You are a developer in a trading company called Northwind Traders. The
department that you work in is developing a purchase order application that will
be used by the Northwind Traders sales force. As you develop the Purchase
Order application, you realize that there are some required functionalities that
are either too difficult to include in the first version of the application or are
inaccessible from the .NET Framework. One of these functionalities is the
ability to do a live lookup on the database to determine how many units of a
specified product remain in the inventory. The other functionality is to include
sound files that play when a user successfully completes an operation.

You realize that you can re-use existing COM components in your application.
A COM component called NorthwindData_COM already exists, and it
performs the required lookup task. In addition, NorthwindData_COM was
installed with a previous application on all the client computers on which the
Purchase Order application will be installed.

You also realize that you can expose and invoke the Win32 APIs that play
media files and use them in the Purchase Order application.

Scenario

Estimated time to
complete this lab:
30 minutes

32 Module 5: Interoperating with Managed Objects

Exercise 1
Using a COM Component in a .NET-Based Application
In this exercise, you will create a reference to a COM object, view the Interop assembly by using
ILDASM, and invoke the COM component from a Windows Forms application.

Scenario
The sales staff of Northwind Traders has put in a request that the Purchase Order application be
able to display the number of units in inventory for a specified product. Without knowing how
much inventory is available, it is difficult for the sales staff to estimate the time it will take to
deliver the order. By knowing the number of units in stock, they can anticipate late deliveries and
warn the customer in advance.

You decide to use an existing COM component that was installed on the sales staff’s laptops with a
previous application. The existing COM component is called NorthwindData_COM, and it includes
a class called RemainingInventoryClass. The RemainingInventoryClass class includes a method
called ShowUnitsInStock that returns a string that identifies the product name and the number of
units remaining in inventory.

All the functions that are available in NorthwindData_COM use ADO 2.6 and require a live
connection to the database, so the salesperson must be connected to the database for the component
to return the expected results. You intend to provide a disconnected feature that provides a similar
function in the next version of the Purchase Order application.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab05_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab05_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

 Module 5: Interoperating with Managed Objects 33

Tasks Additional information

1. Open Visual Studio .NET, and
open the
PurchaseOrderApplication.sln
file. To open the solution file,
browse to
install_folder\Labfiles\
Lab05_1\Ex01\Starter\
OrderApplication.

a. For more information about opening a project file, see the following
resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Register the
NorthwindData_COM.dll
located in
install_folder\Labfiles\
Lab05_1\Ex01\Starter\ using
the REGSVR32 utility and
add a reference to the
component.

When you use the IDE to
create a reference to a COM
component, it uses TLBIMP
to create an Interop assembly.

• If you already registered
this component in
Practice: Using COM
Components in .NET
Applications in Module 5,
“Interoperating with
Managed Objects,” in
Course 2555A,
Developing Microsoft
.NET Applications for
Windows (Visual C#
.NET), then just add a
reference to the
NorthwindData_COM.dll
component.

a. For more information about the adding a reference and creating an
Interop assembly, see the following resources:

• Lesson: Using .NET and COM Components in a Windows Forms
Application in Module 5, “Interoperating with Managed
Objects,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using COM Components in .NET-Based Applications
in Module 5, “Interoperating with Managed Objects,” in Course
2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET).

• The Visual Studio .NET Help documentation. For additional
information about creating References, search by using the
phrase Adding and Removing References.

• The.NET Framework SDK documentation. For additional
information about creating Interop assemblies, search by using
the phrase Importing a Type Library as an Assembly.

3. Run ILDASM, and view the
information for
Interop.NorthwindData_COM
.dll. This DLL is located in
install_folder\Labfiles\
Lab05_1\Ex01\Starter\
OrderApplication\Bin\Debug.

Interop.NorthwindData_COM
.dll is the Interop assembly
that was generated when you
added a reference to the
NorthwindData_COM.dll.

a. For more information about how to use ILDASM, see the following
resource:

• The .NET Framework SDK documentation. Search by using the
phrase MSIL Disassembler (Ildasm.exe).

34 Module 5: Interoperating with Managed Objects

Tasks Additional information

4. Open MainForm in the Code
Editor. Use the Task List to
locate the code section 'TODO
1. Create an instance of the
NorthwindData_COM
RemainingInventoryClass
COM component.

a. For more information about using COM components in managed
code, see the following resources:

• Lesson: Using .NET and COM Components in a Windows Forms
Application in Module 5, “Interoperating with Managed
Objects,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using COM Components in .NET-Based Applications
in Module 5, “Interoperating with Managed Objects,” in Course
2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation. For additional
information about using COM components in .NET code, search
by using the phrase Using COM Types in Managed Code.

5. Use the Task List to locate the
code section 'TODO 2. Create
an instance of the
OrderItemControl control
and assign it the
SourceControl property of
the ProductContextMenu
control.

a. For more information about using the SourceControl method of the
ContextMenu class, see the following resource:

• The.NET Framework SDK documentation. Search by using the
phrase ContextMenu.SourceControl Property.

6. Use the Task List to locate the
'TODO 3. Create a variable of
the type Short and assign it
the OrderProductID property
of the OrderItemControl.

a. For more information about the OrderItemControl, see the
following resource:

• Lab 3.1: Building Controls in Module 3, “Building Controls,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

7. Use the Task List to locate the
code section 'TODO 4. Create
a try, catch block and call the
ShowUnitsInStock method of
the
RemainingInventoryClass
class, passing the Short
variable containing the
ProductID and the name of a
SQL Server with the
Northwind database installed.
Display the results in a
message box.

The name of the SQL Server
uses syntax similar to
LONDON\MOC.

a. For more information about creating a Try Catch block and using
COM components in managed code, see the following resources:

• Lesson: Using .NET and COM Components in a Windows Forms
Application in Module 5, “Interoperating with Managed
Objects,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using COM Components in .NET-Based Applications
in Module 5, “Interoperating with Managed Objects,” in Course
2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET).

• The.NET Framework SDK documentation. For additional
information about using Try Catch blocks, search by using the
phrase Using the Try/Catch Block to Catch Exceptions.

• The Visual Studio .NET SDK documentation. For help with
using COM components in managed code, search by using the
phrase Using COM Types in Managed Code.

 Module 5: Interoperating with Managed Objects 35

Tasks Additional information

8. Compile and run the
application. Add an
OrderItemControl control by
clicking the New Order Item
button. Right-click the
ComboBox within the
OrderItemControl, and click
Show Inventory. Repeat this
for other products.

A message box appears that
displays the current number of
units in stock.

a. For more information about building and debugging your
applications, see the following resource:

• The Visual Studio .NET Help documentation. Search by using
the phrases Default and Custom Builds and Using the
Debugger.

36 Module 5: Interoperating with Managed Objects

Exercise 2
Calling Win32 APIs from a .NET-Based Application
In this exercise, you create a class that exposes a Win32 API. You will then invoke the Win32 API
by using your class from a Windows Forms application. The PlaySound function takes three
arguments and returns a Boolean value that indicates whether or not the function was able to play
the sound file. The arguments include:

pszSound

A string that defines the name of the sound file.

hmod

Handle to the executable file that contains the resource to be loaded. This parameter must be NULL
unless SND_RESOURCE is specified in fdwSound.

fdwSound

Flags that are used to determine how the sound is played. Examples of flags include whether the
sound should play asynchronously or whether it should loop.

Scenario
You decide to add sound effects to the Purchase Order application that will notify users when they
successfully save an order and when they successfully update their orders to the database. However,
the Win32 APIs that are responsible for playing media files are not exposed by the .NET
Framework. You must create a class that exposes the winmm.dll and allows you to call the
PlaySound API.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab05_1\Ex02\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab05_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open Visual Studio .NET.
Open the
PurchaseOrderApplication.sln
file. To open the solution file,
browse to
install_folder\Labfiles\
Lab05_1\Ex02\Starter\
OrderApplication.

a. For more information about opening a project file, see the following
resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box.

2. Add the Save.wav sound file
located in
install_folder\Labfiles\
Lab05_1\Ex02\Starter to the
Bin directory of the
PurchaseOrderApplication
project.

a. For more information about adding new items to a project, see the
following resource:

• The Visual Studio .NET Help documentation. Search by using
the phrase Adding Projects and Items to the New Application.

 Module 5: Interoperating with Managed Objects 37

Tasks Additional information

3. Add a new class to the
PurchaseOrderApplication
project and name it
Win32PlaySound.cs.

a. For more information about adding new items to a project, see the
following resource:

• The Visual Studio .NET Help documentation. Search by using
the phrase Adding Projects and Items to the New Application.

4. Create a function that exposes
the Win32 PlaySound
function in the winmm.dll.

a. For more information about creating functions that expose WIN32
DLLs, see the following resources:

• Lesson: Calling Win32 APIs from Windows Forms Applications
in Module 5, “Interoperating with Managed Objects,” in Course
2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET).

• Practice: Calling Win32 APIs in Module 5, “Interoperating with
Managed Objects,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For help with using
COM components in managed code, search by using the phrase
Consuming Unmanaged DLL Functions.

5. Open MainForm in the Code
Editor. Use the Task List to
locate the code section 'TODO
1. Use the Win32PlaySound
class and call the Win32
PlaySound function if the
soundOn Boolean value is
True. Call the PlaySound
function with “Save.wav” as
the name of the media file, a 0
for the second argument, and a
0 for the third argument.

a. For more information about creating functions that expose WIN32
DLLs, see the following resources:

• Lesson: Calling Win32 APIs from Windows Forms Applications
in Module 5, “Interoperating with Managed Objects,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Calling Win32 APIs in Module 5, “Interoperating with
Managed Objects,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation. For help with using
COM components in managed code, search by using the phrase
Consuming Unmanaged DLL Functions.

6. Compile and run the
application. Click the New
Order Item button, and then
click the Save Order button to
save an order.

You should hear a sound play.
If sound is not available with
your computer, test the
Boolean value returned by the
PlaySound function; this
value indicates success or
failure.

a. For more information about building and debugging your
applications, see the following resource:

• The Visual Studio .NET Help documentation. Search by using
the phrases Default and Custom Builds and Using the
Debugger.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Printing from a Windows Forms
Application 2

Lesson: Using the Print Preview,
Page Setup, and Print Dialogs 16

Lesson: Constructing Print Document
Content by Using GDI+ 32

Lesson: Creating Reports by Using
Crystal Reports 47

Review 56

Lab 6.1: Printing Formatted Documents 58

Module 6: Printing and
Reporting in Windows
Forms Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Printing and Reporting in Windows Forms Applications iii

Instructor Notes
This module provides students with an overview of how to print and create
reports in Windows Forms applications, which are a part of the new
Microsoft® .NET Framework.

After completing this module, students will be able to:

� Print documents in a Windows Forms application.
� Use the printing dialog boxes of Microsoft Visual Studio® .NET in a

Windows Forms application.
� Use GDI+ to construct print document content.
� Create and format reports by using Crystal Reports.

To teach this module, you need the Microsoft PowerPoint® file 2555A_06.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the demonstration, practices and lab.

Presentation:
90 minutes

Lab:
45 minutes

Required materials

Preparation tasks

iv Module 6: Printing and Reporting in Windows Forms Applications

How to Teach This Module
This section contains information that will help you to teach this module.

� The duration of this module is approximately 90 minutes. However, if you
are running short of time, you should go through the slides quickly and then
let students do the practices. If students can complete their practices, they
will be able to meet the objectives of the module.

� Before you start this module, find out how many students use Crystal
Reports. If this lesson is not important to your students, you can skip it.

� Lab 6.1: Printing Formatted Documents is based on the Purchase Order
application in Course 2555A, Developing Microsoft .NET Applications for
Windows® (Visual C#™ .NET) and is intended to simulate a real-world
environment in which students will demonstrate what they learned during
the lecture and practice portions of the module. The lab does not provide
step-by-step detailed instructions; instead, the students are given tasks to
complete in the left column and a list of resources that they can use (if they
need help) in the right column. Students get the hands-on experience that
they need by completing the practice activities at the end of each lesson.

Lab 6: Printing Formatted Documents
• Make sure that you have demonstrated the two lab applications—the

Expense Report application and the Purchase Order application—in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET) before students begin the lab. To see how to demonstrate
the lab scenarios, see the Introduction module in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

 Module 6: Printing and Reporting in Windows Forms Applications 1

Overview

� Printing from a Windows Forms Application

� Using the Print Preview, Page Setup, and Print Dialogs

� Constructing Print Document Content by Using GDI+

� Creating Reports by Using Crystal Reports

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Any application developed for the Microsoft® Windows® operating system that
deals with data should include printing and reporting features for the users. This
module explores how to implement printing in a Windows Forms application
and how to create reports in a Windows Forms application by using Crystal
Reports for Microsoft Visual Studio® .NET.

After completing this module, you will be able to:

� Print documents in a Windows Forms application.
� Use the Visual Studio .NET printing dialog boxes in a Windows Forms

application.
� Use GDI+ to construct print document content.
� Create and format reports by using Crystal Reports.

Introduction

Objectives

2 Module 6: Printing and Reporting in Windows Forms Applications

Lesson: Printing from a Windows Forms Application

� How Printing Works in a .NET Windows Forms
Application

� PrintDocument Object

� PrintPage Event and PrintPageEventArgs

� How to Enable Printing in a Windows Forms
Application

� Practice: Adding Print Support to a Windows Forms
Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes how to add basic print support to a Windows Forms
application. Most applications developed for Windows include the ability to
print some information. Visual Studio .NET provides components that simplify
the print process in your Windows Forms application and provides you with
control throughout the entire print process.

After completing this lesson, you will be able to:

� Add a PrintDocument control to a form and create a PrintPage event
handler.

� Add programming logic to a PrintPage event procedure to construct page
content.

� Add programming logic to a PrintPage event procedure that enables your
application to print more than one page of content.

Introduction

Lesson objectives

 Module 6: Printing and Reporting in Windows Forms Applications 3

How Printing Works in a .NET Windows Forms Application

5. Print method
• Sends content to printer

4. Standard Dialog boxes for
printing
• PrintPreviewDialog
• PageSetupDialog
• PrintDialog

What
About User
Support?

What
About User
Support?

3. PrintPageEventArgs parameter
• PageSettings property
• Graphics object
• HasMorePages property

2. PrintPage event
• Construct content
• Support multi-page docs

1. PrintDocument object
• Enables printing

How?How?

Again,
How?

Again,
How?

But How Do I
Actually
Print?

But How Do I
Actually
Print?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Application developers who use Windows Forms will use the PrintDocument
class to support printing in their .NET Windows Forms applications. However,
the PrintDocument object is not the only component that you will be using
when printing documents in Windows Forms applications.

1. Add the PrintDocument object.
The PrintDocument object is central to printing in Windows Forms
applications.

2. Create the PrintPage Event handler.
The PrintDocument object uses the program logic that you create in the
PrintDocument.PrintPage event to construct the content of the print
document and indicate when additional pages must be generated.

3. Use the PrintPageEventArgs parameter.
The PrintPage event uses the PrintPageEventArgs parameter that it
receives to access and store information about the print document.
Applications will generally use the PageSettings property to read
information about document layout, construct page content by drawing text
and graphics on the Graphics object, and then indicate when additional
pages must be generated by setting the HasMorePages property.

More information about constructing print content by using the
Graphics object supplied by the PrintPageEventArgs parameter is included
in the lesson titled Constructing Print Document Content by Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C#™ .NET).

Introduction

Print procedure

Note

4 Module 6: Printing and Reporting in Windows Forms Applications

4. Use the standard print dialog boxes available in Visual Studio .NET.
User support can be added by using the three standard dialog boxes that are
provided in the Design view of Toolbox. The standard dialog boxes provide
an easy way of adding powerful end user support in your applications with a
familiar user interface (UI).

More information about PrintPreviewDialog, PageSetupDialog, and
PrintDialog is included in the lesson titled Using the Print Preview, Page
Setup, and Print Dialogs in Module 6, “Printing and Reporting in Windows
Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

5. Print the document by using the Print method.
The PrintDocument.Print method is used to enable actual document
printing.

Note

 Module 6: Printing and Reporting in Windows Forms Applications 5

PrintDocument Object

� PrintDocument object
� Provides the ability to print a document
� Provides properties that describe what to print

Note: The check marks indicate the most commonly used properties, events,
and methods of the PrintDocument object

PrintDocument
Properties

PrintDocumentPrintDocument
PropertiesProperties

DefaultPageSettingsDefaultPageSettings

DocumentNameDocumentName

PrintControllerPrintController

PrinterSettingsPrinterSettings

PrintDocument
Events

PrintDocumentPrintDocument
EventsEvents

BeginPrintBeginPrint

EndPrintEndPrint

PrintPagePrintPage

QueryPageSettingsQueryPageSettings

PrintDocument
Methods

PrintDocumentPrintDocument
MethodsMethods

DisposeDispose

PrintPrint

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The PrintDocument object is central to printing in Windows Forms
applications. You use PrintDocument to set properties that specify what to
print and to provide the properties, events, and methods that are required to
print documents. The PrintDocument object is added to a Form from the
Toolbox at design time, but an instance of the PrintDocument class can be
declared at run time as well.

The DefaultPageSettings property gets or sets page settings that are used as
defaults for all pages to be printed.

The PrinterSettings property can be used to get or set the printer that prints the
document, modify the properties of the selected printer, and modify settings
associated with the print job such as the number of copies that will be printed.

The following table describes some additional properties of the
PrintDocument object that you can use to customize a print job.

Property Description

DocumentName Gets or sets the document name to display while printing

the document.

PrintController Gets or sets the print controller that guides the printing
process.

For more information and a complete list of the properties of the
PrintDocument object, in the Visual Studio .NET Help documentation, search
by using the phrase PrintDocument members.

Introduction

PrintDocument
properties

6 Module 6: Printing and Reporting in Windows Forms Applications

The PrintPage event is used to generate the content of the print document, and
it is in the PrintPage event handler that you must include your own code to
indicate when the document has additional pages of content to print.

The following table describes some additional events of the PrintDocument
object that enable you to print output.

Event Description

BeginPrint Occurs when the Print method is called and before the

first page of the document prints. One example of when
to use BeginPrint is when you want to notify the user
about how many pages there are in a print job.

EndPrint Occurs when the last page of the document has printed.
One example of when EndPrint can be used is when you
want to signal the user that the print job has completed.

QueryPageSettings Occurs immediately before each PrintPage event. You
can use QueryPageSettings when you want to use
different PageSettings for one or more pages of a print
document.

For more information and a complete list of the events of the PrintDocument
object, in the Visual Studio .NET Help documentation, search by using the
phrase PrintDocument members.

After you have established the printer and default page settings and constructed
the contents of the print document, you will use the Print method to start the
print process. The Print method sends the contents of the print document to the
printer by passing the print device a Graphics object that acts as a container for
the content. The Graphics object is discussed in more detail in the PrintPage
Event and PrintPageEventArgs topic in this module.

The Dispose method releases the resources used by the PrintDocument
component.

For more information and a complete list of the methods of the PrintDocument
object, in the Visual Studio .NET Help documentation, search by using the
phrase PrintDocument members.

PrintDocument events

PrintDocument methods

 Module 6: Printing and Reporting in Windows Forms Applications 7

PrintPage Event and PrintPageEventArgs

• The PrintPage event includes
two parameters: an object
representing the Sender and a
PrintPageEventsArgs object

• The PrintPage event
procedure contains the
programming logic that
constructs the contents of the
print document and ensures
that the entire print document
is printed

•The PrintPageEventArgs
object provides the
components required to
construct the pages of the
print document

•PageSettings, Graphics,
and HasMorePages are
the critical members

PrintPagesEventArgs ObjectPrintPagesEventArgs Object

PrintPage EventPrintPage Event

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A PrintDocument.PrintPage event occurs for every page of a print document
that is displayed or printed. You create a procedure to handle the PrintPage
event and populate it with the code used to construct the content of the print
document.

The event procedure that handles the PrintDocument.PrintPage event has two
parameters: the object representing the sender that fired the event
(PrintDocument) and the PrintPageEventArgs object. The procedure that you
create to handle the PrintPage event contains the programming logic required
to construct the print document (using the components supplied by the
PrintPageEventArgs object). The PrintPage event procedure also contains the
programming logic that you develop to indicate when an additional page of
content must be generated.

The PrintPageEventArgs parameter contains all the data required to construct a
page of the print document. The PrintPageEventArgs object has six member
components, including the Graphics object that is used as the “paper” on which
the contents of a page are drawn. The other two most critical members are the
HasMorePages property that you must set to True when there are more pages
to print, and the PageSettings property that can be used to read the page setting
values for the current page.

The other three properties of the PrintPageEventArgs parameter are Cancel,
MarginBounds, and PrintBounds. You can use the Cancel property to stop
the construction of document pages before the end of the print document and
the PagesBounds and MarginBounds properties to return the size of the
current page and the size of the page inside the margins, respectively (both of
which can be determined by using the PageSettings property).

Introduction

PrintPage event
procedure

Members of the
PrintPageEventArgs
parameter

8 Module 6: Printing and Reporting in Windows Forms Applications

The PageSettings property supplied by the PrintPageEventArgs parameter is a
read-only property that is used to get page settings for the current page.
PageSettings includes Bounds and Margins members that supply the same
information found in the PageBounds and MarginBounds properties.

To modify page settings, you must handle the QueryPageSettings event
of the PrintDocument object.

The following example demonstrates how to use the PageSettings and
MarginBounds properties inside a PrintPage event handler to determine the
location of the left margin and the number of text lines that will fit on a page for
a given font.

…
LeftMargin = e.PageSettings.Margins.Left;
LinesPP = e.MarginBounds.Height/myFont.GetHeight(e.Graphics);
…

The Graphics object supplied by the PrintPageEventArgs parameter acts as a
canvas for each page of a print document. You use the GDI+ drawing methods
of the Graphics object to draw the text and graphics contents of the page. For
example, to draw text inside a PrintPage event handler, you could use the
Graphics.DrawString method as follows:

…
 e.Graphics.DrawString(" text will go here.", myFont,
myBrush, X, Y);
…

More information about constructing print content by using the Graphics
object supplied by the PrintPageEventArgs parameter is included in the lesson
titled Constructing Print Document Content by Using GDI+ in Module 6,
“Printing and Reporting in Windows Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C# .NET).

PrintPageEventArgs.
PageSettings

Note

PrintPageEventArgs.
Graphics

Note

 Module 6: Printing and Reporting in Windows Forms Applications 9

The HasMorePages property supplied by the PrintPageEventArgs parameter is
a Boolean value that is False by default. You must manually set the value of the
HasMorePages property to True to indicate that an additional page should be
printed. The following example demonstrates how to set the HasMorePages
property to True when the next line of text would occur below the bottom
margin on the page.

// for each text line that will fit on the page,
// read a new line from the document
while (CurrentLine < LinesPerPage)
{
 TextLine = StreamToPrint.ReadLine();
 if(TextLine == null)
 {
 break;
 }

 // set the vertical position on the page based
 // on the current line number
 VerticalPosition = TopMargin +
 CurrentLine * MyFont.GetHeight(e.Graphics);

 // draw the text on the page
 e.Graphics.DrawString(TextLine,
 MyFont,
 MyBrush,
 HorizontalPosition,
 VerticalPosition);

 // increment the line number
 CurrentLine += 1;
}

// If more lines of text exist in the file,
// print another page.
if (TextLine != null)
{
 e.HasMorePages = true;
}
else
{
 e.HasMorePages = false;
}

PrintPageEventsArgs.
HasMorePages

10 Module 6: Printing and Reporting in Windows Forms Applications

How to Enable Printing in a Windows Forms Application

Print Page EventPrint Page EventPrint Page Event

• Use the
class to read page settings such
as margins and page height and
width

• Establish fonts and brushes used
in your output

• Establish regions on the page
• Construct output by positioning

text and graphics by using the
methods of the Graphics class

• Use the
class to read page settings such
as margins and page height and
width

• Establish fonts and brushes used
in your output

• Establish regions on the page
• Construct output by positioning

text and graphics by using the
methods of the Graphics class

PrintPagesEventArgs ClassPrintPagesEventArgs ClassPrintPagesEventArgs Class
PrintPageEventArgs

• Graphics Object
• HasMorePages
• PageSettings

PrintDocument ObjectPrintDocument ObjectPrintDocument Object

• Specify print settings
• Add printing logic to PrintPage

Event
• Call the Print method

• Specify print settings
• Add printing logic to PrintPage

Event
• Call the Print methodPrint MethodPrint MethodPrint Method

• Calls PrintPage
• Checks HasMorePages
• Calls PrintPage
• Checks HasMorePages

DefaultPageSettingsDefaultPageSettings

DIALOGSDIALOGSDIALOGS

• Document property of the
Dialogs set to the
PrintDocument object

• Document property of the
Dialogs set to the
PrintDocument object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To print from a Windows Form application, you will use a PrintDocument
object to define the printer and characteristics of the print job, add programming
logic to the PrintPage event, provide your users with run-time support (by
using the standard dialog boxes provided in Visual Studio .NET), and then call
the Print method.

To print a text document from a Windows Form application, you perform the
following procedure:

1. Add an instance of the PrintDocument class to your application and create
a PrintPage event procedure.
To add a PrintDocument control to a Form, open the Toolbox, and then
double-click PrintDocument. To create a PrintPage procedure, open the
Design view of the Form, click printDocument1. Then, in the Properties
window, click the Events button, and then double-click PrintPage.

2. Begin adding programming logic to the PrintDocument1_PrintPage
procedure to construct the content of the print document.
You can use the PageSettings property to define text and graphics regions
on the page. A simple example is assigning the value of
PageSettings.Margins.Left to a variable that will be used to position text on
the left side of the page. You must use the GDI+ drawing methods of the
PrintPageEventArgs.Graphics object to construct the contents of the print
document page.

Introduction

Procedure: Enabling
printing in a Windows
Forms application

 Module 6: Printing and Reporting in Windows Forms Applications 11

3. Add support for previewing your print document so that you can test the
code that you developed up to this point. One simple way to preview your
print document is to add a PrintPreviewControl to your Form from the
Toolbox.

4. Add additional programming logic to the PrintDocument1_PrintPage
procedure that uses the HasMorePages property to indicate whether or not
more pages must be printed. The manner in which you determine whether
HasMorePages should be set to True depends on how your print document
is being constructed.

12 Module 6: Printing and Reporting in Windows Forms Applications

Practice: Adding Print Support to a Windows Forms Application

In this practice, you will

� Add a PrintDocument control to a project

� Create a PrintPage event procedure and
develop code to construct the contents of
a print document

� Set the value of the HasMorePages
property to indicate when more pages
should be printed

Begin reviewing the objectives
for this practice activity 8 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add print support to a Windows Forms application.
The practice involves adding a PrintDocument control to a project, creating a
procedure to handle the PrintPage event, adding programming logic to the
PrintPage procedure, and using the HasMorePages property. You will see
some questions in between some steps. Try and answer the question before you
move to the next step.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the PrintProcess.sln solution file to open the project.

Introduction

Instructions

Note

 Module 6: Printing and Reporting in Windows Forms Applications 13

� Add the PrintDocument control to your application
1. In Solution Explorer, click Form1.cs, and then click the View Designer

icon.
2. In the Toolbox, scroll down until you see the PrintDocument control, and

then double-click PrintDocument.
3. What functionality does the PrintDocument class provide to your

application?
The PrintDocument class enables a Windows Forms application to
initiate the print process (by calling the PrintDocument.Print method)
and provides access to printer and page settings that can be used to
control the appearance of your print document.
__

__

__

� Create a custom PrintPage procedure
1. In Solution Explorer, click Form1.cs, and then click the View Code icon.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: Add PrintPage event constructor.
4. Add the following code statement below the TODO line and press ENTER.

this.printDocument1.PrintPage +=
 new System.Drawing.Printing.PrintPageEventHandler(
 this.MyPrintPage);

5. What is the purpose of the PrintDocument.PrintPage event?
You will use the procedure that handles the PrintDocument.PrintPage
event to construct each page of a print document individually, to
control the number of print document pages that are created, to adjust
the page settings for each page of a print document, and to cancel a
print job when required. The Graphics object of the
PrintPageEventArgs parameter is used to construct the contents of each
page individually. The Graphics object will be passed to the print
device by using the PrintDocument.Print method.
__

__

__

14 Module 6: Printing and Reporting in Windows Forms Applications

6. In the Task List, double-click TODO: create the PrintPage event handler.
7. Add the following code statements below the TODO line and press ENTER.

private void MyPrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
{
 e.Graphics.DrawString("Page " + currentPage.ToString() +
 " text will go here.", myFont, myBrush, X, Y);

 if (currentPage < totalPages)
 {
 currentPage += 1;

 }
}

8. Press F5, and then click Print Preview.
9. Close the PrintPreviewDialog dialog box.
10. Use the NumericUpDown control to add a second page to your print

document, and then preview your document again.
11. Why doesn’t your application display more than one page?

The HasMorePages property of the PrintPageEventArgs object is False
by default. You must develop the programming logic for a print loop
when the print job includes more than one document page.
__

__

12. Close the PrintProcess application.

� Create a print loop to ensure that all of the document pages are printed
1. Modify the contents of the if statement near the bottom of your

MyPrintPage procedure so that it appears as follows:
if (currentPage < totalPages)
{
 currentPage += 1;
 e.HasMorePages = true;

}
else
{
 e.HasMorePages = false;
}

2. Start the PrintProcess application.
3. Use the NumericUpDown control to add a second page to your document,

and then preview your print document again. You should now be able to see
both pages of your print document.

 Module 6: Printing and Reporting in Windows Forms Applications 15

� Close your application and Visual Studio .NET
If time permits, use the two buttons at the bottom of Form1 to display some
additional information that is available through the PrintDocument object, and
then examine the underlying code.

1. Close the PrintProcess application.
2. Save the PrintProcess application.
3. Close Visual Studio .NET.

16 Module 6: Printing and Reporting in Windows Forms Applications

Lesson: Using the Print Preview, Page Setup, and Print
Dialogs

� How to Use the PrintPreviewDialog Control

� Practice: Using the PrintPreviewDialog Control

� How to Use the PageSetupDialog Control

� Practice: Using the PageSetupDialog Control

� How to Use the PrintDialog Control

� Practice: Using the PrintDialog Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET includes three preconfigured dialog boxes—
PrintPreviewDialog, PageSetupDialog, and PrintDialog—that enable your
application user to preview a print document, specify page settings, and
establish the printer and print job settings from a Windows Forms application.
Using these preconfigured dialog boxes in a Windows Forms application not
only eases development, but also provides a clean, efficient, and familiar
interface to the end users. This lesson explains how to use the three print dialog
boxes in a Windows Forms application.

After completing this lesson, you will be able to:

� Display a print preview of the print document by using the
PrintPreviewDialog and PrintPreviewControl controls.

� Use a PrintPreviewControl control to preview your print document.
� Specify page settings for a document by using the PageSetupDialog

control.
� Select a printer and settings for the print job by using the PrintDialog

control.

Introduction

Lesson objectives

 Module 6: Printing and Reporting in Windows Forms Applications 17

How to Use the PrintPreviewDialog Control

PrintPreviewDialogPrintPreviewDialog

� Use PrintPreviewDialog to display how a document will
appear when printed

� To display a print preview of a document
1. Create an instance of the PrintPreviewDialog component
2. Set the Document property to the PrintDocument object
3. Configure the desired display settings for the

PrintPreviewDialog and the included PrintPreviewControl
4. Display the dialog by using the ShowDialog method

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A common feature of applications is the ability to display a preview of the
document to be printed. In Windows Forms applications, this feature is
provided by using the PrintPreviewDialog control. The PrintPreviewDialog
contains a PrintPreviewControl as well as controls for printing, zooming,
displaying one or multiple pages, and closing the dialog box. The standard
PrintPreviewDialog provides the user with a familiar tool for previewing
documents, but you can develop your own custom preview form by using the
same PrintPreviewControl used by the PrintPreviewDialog when your
application or users require something different.

To use the PrintPreviewDialog to display a print preview of a document:

1. Add a PrintPreviewDialog control to your project by using the Toolbox, or
create a PrintPreviewDialog at run time by using code such as this:
PrintPreviewDialog previewDialog = new
 PrintPreviewDialog();

2. Set the Document property of the PrintPreviewDialog control to the
PrintDocument component.
After you have created a PrintPreviewDialog object, you must set its
Document property to the PrintDocument object of your print document.
You can set the Document property in the Properties window of the
PrintPreviewDialog control at design-time or with the following code at
run time:
previewDialog.Document = PrintDocument1;

Introduction

Procedure

18 Module 6: Printing and Reporting in Windows Forms Applications

3. Properties of the PrintPreviewDialog, and the included
PrintPreviewControl, can be used to establish display settings showing the
dialog box:
previewDialog.WindowState =
 FormWindowState.Maximized;
previewDialog.PrintPreviewControl.StartPage = 0;
previewDialog.PrintPreviewControl.Zoom = 1.0;

4. Display the PrintPreviewDialog by using the ShowDialog method.
Like all other dialog boxes, you can use the ShowDialog method to display
the PrintPreview dialog box at run time:
previewDialog.ShowDialog();

The following code shows an example of how to use the PrintPreviewDialog
control to display a print preview of a document. The example assumes that a
PrintPreviewDialog control and a PrintDocument control were added to a
Form and that the PrintPreview procedure is called from an event handler.

private void PrintPreview()
{
 // ensure that the first page of the print document is shown
 printPreviewDialog1.PrintPreviewControl.StartPage = 0;

 // display the document two pages at a time
 printPreviewDialog1.PrintPreviewControl.Columns = 2;

 // maximize the size of the dialog box on the display screen
 printPreviewDialog1.WindowState = FormWindowState.Maximized;

 // display the contents of the appropriate print document
 printPreviewDialog1.Document = printDocument1;
 printPreviewDialog1.ShowDialog();

}

The PrintPreviewControl is supplied in the Toolbox as a separate control that
you can use to preview a print document. You use the PrintPreviewControl
control when you want to define your own print-preview user interface. It has
no buttons or other user interface elements.

Some of the properties of the PrintPreviewControl control include Zoom,
Columns, Rows, and StartPage. These properties are available whether you
are using the PrintPreviewControl separately or as part of the
PrintPreviewDialog.

PrintPreviewControl.Columns = 2;
PrintPreviewDialog.PrintPreviewControl.Columns = 2;

For more information about PrintPreviewControl, in the Visual Studio .NET
Help documentation, search by using the phrase PrintPreviewControl.

Example

PrintPreviewControl

 Module 6: Printing and Reporting in Windows Forms Applications 19

Practice: Using the PrintPreviewDialog Control

In this practice, you will

� Add a PrintPreviewDialog control

� Create a PrintPreview subroutine

� Modify the display settings for the
PrintPreviewDialog dialog box

Begin reviewing the objectives for
this practice activity 8 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a PrintPreviewDialog control and program logic
to a project so that application users can preview a document before printing it.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_02\Starter.
2. Double-click the PrintPreviewDialog.sln solution file to open the project.

� Add the PrintPreviewDialog control to your application
1. In Solution Explorer, click Form1.cs, and then click View Designer.
2. In the Toolbox, scroll down until you see the PrintPreviewDialog control,

and then double-click PrintPreviewDialog.
3. Where does the PrintPreviewDialog appear in the Design View window?

The PrintPreviewDialog control is added to the component tray at the
bottom of the Design View window.
__

__

Introduction

Instructions

20 Module 6: Printing and Reporting in Windows Forms Applications

� Create a PrintPreview procedure that displays the print document
1. In Solution Explorer, click Form1.cs, and then click View Code.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: create PrintPreview procedure.
4. Add the following code statements below the TODO line.

private void PrintPreview()
{
 printPreviewDialog1.Document = printDocument1;
 printPreviewDialog1.ShowDialog();
}

5. Run the PrintPreviewDialog application, and use the menu or button to
display the print document.

6. Is there a way to make the dialog box larger by default?
Yes. The WindowState property of the dialog box can be used to set the
default window state to Maximized.
__

7. Close the PrintPreviewDialog application.

� Modify the display settings for the PrintPreviewDialog dialog box
1. Add the following code line to the top of the PrintPreview procedure.

printPreviewDialog1.WindowState =
 FormWindowState.Maximized;

2. Run the PrintPreviewDialog application, and use the menu or button to
display the print document.

3. Change the displayed page number to page 4, and then close the dialog box.
4. Redisplay the print document. Notice that the starting page is the page that

was displayed when the dialog box was closed.
5. Close the application, and then add the following code lines to the top of the

PrintPreview procedure.
printPreviewDialog1.PrintPreviewControl.StartPage = 0;
printPreviewDialog1.PrintPreviewControl.Zoom = 1.0;

6. Run the PrintPreviewDialog application, and use the menu or button to
display the print document. Verify that the Print Preview dialog box
always shows page 1 at 100% when opened.

7. Optional: Open the PrintPreviewDialog, change the page that is being
displayed to page 2, and then close and reopen the preview dialog box to
verify that the initial page displayed is always page 1.

8. Close the dialog box, and then close the application.

 Module 6: Printing and Reporting in Windows Forms Applications 21

� Examine some additional methods for displaying a print document
1. In Design view, enable the two other buttons on Form1.
2. Start the application, and use each button to display the print document.
3. Close the application, and examine the code used to display the document.
4. When would you want to use a PrintPreviewControl rather than a

PrintPreviewDialog to display a print document?
You would use a PrintPreviewControl to display a document when you
need to customize the print preview capabilities of an application.
__

__

5. Close the solution.

If time permits

22 Module 6: Printing and Reporting in Windows Forms Applications

How to Use the PageSetupDialog Control

� Use PageSetupDialog to set page details in Windows
Forms applications
� Border and margin adjustments
� Headers and footers
� Portrait vs. landscape

� To use PageSetupDialog to specify page settings
1.Create an instance of the PageSetupDialog control
2.Use ShowDialog to display the dialog at run time
3.Specify document settings by using the

DefaultPageSettings property or PageSettings class

PageSetupDialogPageSetupDialog

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The PageSetupDialog control is a pre-configured dialog box that you can use
to set page layout details for printing in Windows Forms applications. The
PageSetupDialog control provides an easy solution to specify page settings
instead of configuring your own dialog box. With PageSetupDialog, you can
allow users to set border and margin adjustments, headers and footers, and
portrait versus landscape orientation by using a familiar tool.

To use PageSetupDialog to specify page settings:

1. Create an instance of PageSetupDialog.
The first step in using the PageSetupDialog in a Windows Forms
application is to add a PageSetupDialog control to your form from the
Toolbox or create a new instance of the PageSetupDialog control in code as
shown below.
PageSetupDialog PageDlg = new PageSetupDialog();

2. Supply PageSetupDialog with a PageSettings object that can be used to
store page settings and used for both the PrintDocument object and the
PageSetupDialog.
…
PageDlg.PageSettings = MyPageSettings;

Introduction

Procedure: Using the
PageSetupDialog

 Module 6: Printing and Reporting in Windows Forms Applications 23

3. Use the ShowDialog method to display the dialog box at run time.
To display the dialog box at run time, use the ShowDialog method as shown
in the following code.
PageDlg.ShowDialog();

4. Apply the modified page settings to your PrintDocument object.
To apply the new page settings to your document, use the
DefaultPageSettings property of the PrintDocument object.
printDocument1.DefaultPageSettings = MyPageSettings;

The following code shows an example of how to use the PageSetupDialog
control.

private void PageSetup()
{
 try {
 PageSetupDialog pageDialog = new PageSetupDialog();

 if (storedPageSettings == null) {
 storedPageSettings = new PageSettings();
 }

 pageDialog.PageSettings = storedPageSettings ;
 pageDialog.ShowDialog();

 }

 catch(Exception ex) {
 MessageBox.Show("An error occurred - " + ex.Message);
 }

}

The user can enable sections of the PageSetup dialog box to manipulate
printing, margin, and paper orientation, and size.

Use the Margins and MinMargins properties to specify margins.

pageSetupDialog1.PageSettings.Margins.Top = 200;
pageSetupDialog1.PageSettings.Margins.Left = 200;
pageSetupDialog1.PageSettings.Margins.Bottom = 100;
pageSetupDialog1.PageSettings.Margins.Right = 100;

pageSetupDialog1.MinMargins.Top = 85;
pageSetupDialog1.MinMargins.Left = 75;
pageSetupDialog1.MinMargins.Bottom = 100;
pageSetupDialog1.MinMargins.Right = 100;

Set the AllowPrinter, AllowOrientation, and AllowPaper properties to True
to allow users to specify these properties.

pageSetupDialog1.AllowOrientation = false;
pageSetupDialog1.AllowPaper = false;
pageSetupDialog1.AllowPrinter = false;

Example

Customize sections of
the PageSetup dialog
box

24 Module 6: Printing and Reporting in Windows Forms Applications

Practice: Using the PageSetupDialog Control

In this practice, you will

� Add a PageSetupDialog control to your
application

� Create a PageSetup subroutine that
displays page settings

� Assign the page settings to the
PrintDocument object

Begin reviewing the objectives for
this practice activity 8 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a PageSetupDialog control and program logic to a
project so that application users can specify page settings before printing a
document.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_03\Starter.
2. Double-click the PageSetupDialog.sln solution file to open the project.

� Add the PageSetupDialog control to your application
1. In Solution Explorer, click Form1.cs, and then click View Designer.
2. In the Toolbox, scroll down until you see the PageSetupDialog control, and

then double-click PageSetupDialog.
3. Where does the PageSetupDialog control appear in the Design View

window?
The PageSetupDialog control is added to the component tray at the
bottom of the Design View window.
__

Introduction

Instructions

 Module 6: Printing and Reporting in Windows Forms Applications 25

� Create a PageSetup procedure that displays page settings
1. In Solution Explorer, click Form1.cs, and then click View Code.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: create PageSetup procedure.
4. Add the following code statements below the TODO line.

private void PageSetup()
{
 pageSetupDialog1.ShowDialog();
}

5. Run the PageSetupDialog application, and use the menu or button to display
the Page Setup dialog box. Why does an error occur?
The PageSetupDialog control requires that you supply a PageSettings
object that represents the page settings for the document.
__

6. Close the application, and then add the following code lines to the top of the
PageSetup procedure.
myPageSettings = new PageSettings();
pageSetupDialog1.PageSettings = myPageSettings;

7. Run the PageSetupDialog application, and display the Page Setup dialog
box.

8. Change the Top and Left margins to 0.5 inches, and then click OK.
9. Display a preview of the print document. Why didn’t the new settings take

effect?
Although the PageSetupDialog automatically places the new settings
into the MyPageSettings object, you still have to assign the page settings
to the PrintDocument object.
__

__

10. Close the PrintPreviewDialog and the application.

� Assign the page settings to the PrintDocument object
1. Add the following code lines to the bottom of the PageSetup procedure.

if (myPageSettings != null)
{
 printDocument1.DefaultPageSettings = myPageSettings;
}

2. Run the PageSetupDialog application, and use the menu or button to display
the PageSetup dialog box.

3. Change the Top and Left margins to 0.5 inches, and then preview the print
document.

4. Reopen the PageSetup dialog box. Notice that the page settings are lost.

26 Module 6: Printing and Reporting in Windows Forms Applications

5. Click Cancel, close the application, and then, in the PageSetup procedure,
replace the "myPageSettings = new PageSettings();" code line with the
following code lines.
if (myPageSettings == null)
{
 myPageSettings = new PageSettings();
}

6. Run the PageSetupDialog application, and use the PageSetup dialog box to
modify the document’s page settings. Notice that settings are not lost when
the dialog box is closed.

7. Close the application.

� Examine some additional members of the PageSetupDialog control
1. In the Code Editor, examine the code in the pageSetupButton_Click

procedure.
2. Remove the comment characters from the front of the code lines one section

at a time, and view the changes to the PageSetup dialog box and the Print
Preview dialog box by running the application and opening the two dialog
boxes.

3. How could you use these additional members of the PageSetupDialog
control?
These additional members could be used to customize the
PageSetupDialog and control the range of settings that a user is allowed
to select.
__

__

4. Close the application and Visual Studio .NET.

If time permits

 Module 6: Printing and Reporting in Windows Forms Applications 27

How to Use the PrintDialog Control

� Use PrintDialog to specify printer-related settings
� Specify printer and print job properties
� Specify print range and collate settings

� To use a PrintDialog control for users to select a printer
1.Create an instance of the PrintDialog component
2.Set the Document property to the PrintDocument object
3.Capture user input by using the DialogResult property

and display the Print dialog box

PrintDialogPrintDialog

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Often, users will need to select a printer or set print properties before a
particular print job. This can be done by using the PrintDialog control.

To use the PrintDialog control to print a document:

1. Add a PrintDialog control to your project by using the Toolbox, or create
an instance of the PrintDialog control at run time as follows:
PrintDialog printDialog = new PrintDialog();

2. Set the Document property of the PrintDialog object to the PrintDocument
component.
You must set the Document property of the PrintDialog control to the
PrintDocument object for document you are printing. Set the Document
property of the PrintDialog control at design time in the Properties window,
or at run time by using code, as follows:
printDialog.Document = printDocument1;

3. Capture the user’s response to the PrintDialog by using a DialogResult
object when constructing the code statement that displays the dialog box.
...
DialogResult UserResponse = printDialog.ShowDialog();

Introduction

Procedure

28 Module 6: Printing and Reporting in Windows Forms Applications

The following code uses the PrintDialog control to provide the user with an
opportunity to modify printer and print job settings before printing the
document.

private void PrintDoc()
{
 PrintDialog1.Document = PrintDocument1;

 DialogResult userResponse;
 userResponse = PrintDialog1.ShowDialog();
 if (userResponse == DialogResult.OK)
 {
 PrintDocument1.Print();
 }
}

Example

 Module 6: Printing and Reporting in Windows Forms Applications 29

Practice: Using the PrintDialog Control

In this practice, you will

� Add a PrintDialog control to your
application

� Create a PrintDoc subroutine that
displays the print dialog

� Print a document by using the
PrintDocument.Print method

Begin reviewing the objectives for
this practice activity 8 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a PrintDialog control and program logic to a
project so that application users can specify printer and print job settings before
printing a document.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_04\Starter.
2. Double-click the PrintDialog.sln solution file to open the project.

� Add the PrintDialog control to your application
1. In Solution Explorer, click Form1.cs, and then click the View Designer

icon.
2. In the Toolbox, scroll down until you see the PrintDialog control, and then

double-click PrintDialog.
3. Where does the PrintDialog control appear in the Design View window?

The PrintDialog control is added to the component tray at the bottom
of the Design View window.
__

Introduction

Instructions

30 Module 6: Printing and Reporting in Windows Forms Applications

� Create a PrintDoc procedure that displays the Print dialog box
1. Open Form1 in the Code Editor.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: create PrintDoc procedure.
4. Add the following code statements below the TODO line.

private void PrintDoc()
{
 printDialog1.ShowDialog();
}

5. Run the PrintDialog application, and click the menu item or button that is
used display the Print dialog box. Why doesn’t the Print dialog box open?
The PrintDialog.Document property must be set before the PrintDialog
can be displayed.
__

6. Close the application, and then add the following code line to the top of the
PrintDoc procedure.
printDialog1.Document = printDocument1;

� Print a document by using the PrintDocument.Print method
1. Run the PrintDialog application, and then display the Print dialog box.
2. Click OK.
3. Why didn’t the document print?

The PrintDialog does not call the PrintDocument.Print method—you
must add code to do this yourself. However, this means that you have to
know which dialog box button the user clicked. You can determine this
by using a DialogResult object.
__

__

For more information about the DialogResult object, see the Visual
Studio .NET Help documentation.

4. Close the application, and then replace the "printDialog1.ShowDialog()"
code line in the PrintDoc procedure with the following lines of code.
DialogResult userResponse;
userResponse = printDialog1.ShowDialog();
if (userResponse == DialogResult.OK)
{
 printDocument1.Print();
}

Note

 Module 6: Printing and Reporting in Windows Forms Applications 31

5. Run the PrintDialog application, and display the print dialog box.
6. Click OK, and then, inside in the Output File Name box, type C:\Text
7. Click OK.

Notice that a Printing dialog box opens automatically, providing the user
with an opportunity to cancel the print job.

8. Close the application, and close Visual Studio .NET.

32 Module 6: Printing and Reporting in Windows Forms Applications

Lesson: Constructing Print Document Content by Using
GDI+

� What Is GDI+?
� What Is the Graphics Object?
� How to Create and Use Pens, Brushes, and

Fonts
� How to Draw and Measure Text in the PrintPage

Event Procedure
� How to Generate Print Content by Using

StreamReader
� Demonstration: Constructing Print Document

Content by Using GDI+
� Practice: Constructing Print Document Content

by Using GDI+

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In Windows Forms applications, you use GDI+ and the PrintPage event of the
PrintDocument object to construct the contents of a print document. This
lesson introduces GDI+ and covers how to use GDI+ methods to draw the text
and graphics content of a print document from in a .NET Windows Forms
application.

After completing this lesson, you will be able to:

� Identify the components of GDI+ and use GDI+ in your applications.
� Use a Graphics object as a canvas for creating the contents of a print

document.
� Create and use the pens, brushes, and fonts that are required to draw text

and graphics objects.
� Use the drawing methods of a Graphics object to draw text and two-

dimensional (2-D) vector graphics.
� Generate print content by using StreamReader.

Introduction

Lesson objectives

 Module 6: Printing and Reporting in Windows Forms Applications 33

What Is GDI+?

� GDI+ (the new graphics device interface)

� Enables applications to generate graphics and
formatted text for the video display and the printer

� Allows application developers to create device-
independent applications

� Three parts of GDI+

� 2-D vector graphics

� Text

� Images

*****************************ILLEGAL FOR NON-TRAINER USE******************************

GDI+ is a graphics device interface that you can use to draw two-dimensional
vector graphics, text, and bitmapped images. GDI+ expands on the features of
GDI by providing new features such as gradient brushes and alpha blending.
GDI+ makes graphic programming easier and more flexible. It enables
applications to generate graphics and formatted text for the video display and
the printer. It also allows application developers to create device-independent
applications. For example, you can create a single PrintPage procedure to
construct graphical content that can be printed to most graphics printers or be
shown as a print preview on a graphics display screen.

The services of GDI+ fall into three main categories:

� 2-D vector graphics
Vector graphics involves drawing lines, curves, and figures that are defined
by a set of points on a coordinate system. GDI+ provides classes and
structures that store information about these objects. For example, the
Rectangle object stores information about the location and size of a
rectangle, and the Graphics class has methods for drawing lines, curves,
and other shapes.

� Text
GDI+ allows you to draw text in a variety of fonts, sizes, and styles.

� Images
Certain graphics cannot be displayed as 2-D vector graphics and must be
displayed as bitmaps. GDI+ provides the Bitmap class for displaying,
manipulating, and saving bitmaps. For more information about bitmaps, see
Appendix A, “Using Filled Shapes and Images,” in the student workbook.

Introduction

Three parts of GDI+

34 Module 6: Printing and Reporting in Windows Forms Applications

What Is the Graphics Object?

� Graphics Object:
� Provides the drawing surface on which content is placed
� Provides methods for drawing text and graphics at specified

locations
� Provides various tools for modifying its contents

Graphics myGraphic = this.CreateGraphics();

' draw lines or outlined shapes using a Pen
myGraphic.Graphics.DrawLine(myPen,X1,Y1,X2,Y2) ;

' draw filled shapes using a Brush
myGraphic.FillRectangle(myBrush,X1,Y1,X2,Y2);

' draw text using a Font and a Brush
myGraphic.DrawString(myText,myFont,myBrush,X1,Y1);

Graphics myGraphic = this.CreateGraphics();

' draw lines or outlined shapes using a Pen
myGraphic.Graphics.DrawLine(myPen,X1,Y1,X2,Y2) ;

' draw filled shapes using a Brush
myGraphic.FillRectangle(myBrush,X1,Y1,X2,Y2);

' draw text using a Font and a Brush
myGraphic.DrawString(myText,myFont,myBrush,X1,Y1);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To draw the text, lines, and shapes that make up the content of a print
document, you must use a Graphics object.

The Graphics object is central to GDI+ and the construction of print document
content. It provides the drawing surface for the GDI+ drawing methods.

To construct print document content with GDI+:

� Set the properties of the Graphics object.
� Call the methods of the Graphics object to draw text, lines, and shapes.

The Graphics object provides an extensive assortment of methods that can be
used to draw text, lines, and shapes. There are also methods for scaling,
transforming, and measuring the contents that have or will be drawn on its
surface. Some of the most common methods are listed in the following table.

Method Description

Clear Clears the entire drawing surface and fills it with the

specified background color.

DrawLine

Draws a line connecting the two points specified by
coordinate pairs.

DrawRectangle Draws a rectangle specified by a coordinate pair, a width,
and a height.

DrawString Draws the specified text string at the specified location
with the specified Brush and Font objects.

FillRectangle Fills the interior of a rectangle.

MeasureString Measures the specified string when drawn with the
specified font and formatted with the specified format.

Introduction

Role of the Graphics
object in GDI+

Graphics object
methods

 Module 6: Printing and Reporting in Windows Forms Applications 35

The following code examples show how to draw objects by using the Graphics
object provided by the PrintPageEventArgs parameter of the
PrintDocument.PrintPage event.

//Create a graphics object
Graphics myGraphics = this.CreateGraphics();

// draw lines or outlined shapes using a Pen
myGraphics.DrawLine(myPen,X1,Y1,X2,Y2) ;
myGraphics.DrawRectangle(myPen, X1, Y1, X2, Y2);

// draw filled shapes using a Brush
myGraphics.FillRectangle(myBrush,X1,Y1,X2,Y2);

// draw text using a Font and a Brush
myGraphics.DrawString(myText, myFont, myBrush, X1, Y1);

// measure text width on the Graphics object using a Font
textWidth = myGraphics.MeasureString(myText, myFont).Width;

Example

36 Module 6: Printing and Reporting in Windows Forms Applications

How to Create and Use Pens, Brushes, and Fonts

PensPensPens A pen is required to draw lines and outlined shapesA pen is required to draw lines and outlined shapes

BrushesBrushesBrushes A brush is required to draw filled shapes or draw textA brush is required to draw filled shapes or draw text

FontsFontsFonts A font is required to draw text of a single size or styleA font is required to draw text of a single size or style

Pen myPen = new Pen(Color.Blue);Pen myPen = new Pen(Color.Blue);

Font myFont = new Font("Arial", 12);Font myFont = new Font("Arial", 12);

SolidBrush myBrush = new SolidBrush(Color.Blue);SolidBrush myBrush = new SolidBrush(Color.Blue);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use Pen, Brush, and Font objects to construct 2-D vector graphics, text,
and bitmap images with GDI+.

A pen is required to draw lines, curves, and outlined shapes. To create a new
pen, you must specify a color. You also have the option to specify values for
the width and line style properties:

1. Create a new pen.
Pen myPen = new Pen(Color.Blue);

2. Apply width and style properties.
The Width property for a Pen is of type Integer and has a default value of
1 (units are established by the Graphics object). The DashStyle property is
also of type Integer, but your code will be easier to read if you use the
DashStyle enumeration provided by the Drawing2D namespace. Although
the Width property can be set when you instantiate a new Pen, the line style
must be applied after the Pen has been created. The following code
examples demonstrate creating pens with various width and style properties.
Defaults are 1 for Width, and Style for Solid.
Pen penWideRed = new Pen(Color.Red, 10);
Pen penDashedBlack = new Pen(Color.Black, 6);
penDashedBlack.DashStyle = DashStyle.Dash;
penDashedBlack.DashCap = DashCap.Round;

Introduction

Procedure: Creating
pens

 Module 6: Printing and Reporting in Windows Forms Applications 37

Brush objects are required for drawing text and filled shapes. You can create
brushes that produce Solid, Hatched, Textured, and Gradient fills.

• Create a new Brush.
The following code examples demonstrate creating a solid blue brush and a
linear gradient brush by using white and light blue blended horizontally.
Brush brushBlue = new SolidBrush(Color.Blue);
LinearGradientBrush myGrBrush = new LinearGradientBrush(
 lgRectangle,
 Color.White,
 Color.LightBlue,
 LinearGradientMode.Horizontal);

For more information about Hatched, Textured, and Gradient Brushes see
“Brushes and Filled Shapes” in the .NET Framework software development kit
(SDK) and see Appendix A, “Using Filled Shapes and Images,” in the student
workbook.

Before you can draw text with GDI+, you must construct a Font object. The
declaration statement for a Font object can include parameters for the
FontFamily (such as Arial), Size, Style, and the GraphicsUnits used by the
Size parameter. The FontFamily and Size properties are required when creating
a new font.

• Create a new Font object.
The following code example creates an Arial font of size 10 and a Lucida
font with a style setting of bold and a size of 12 millimeters.
Font smallFont = new Font("Arial", 10);
Font largeFont;
largeFont = new Font("Lucida",
 12,
 FontStyle.Bold,
 GraphicsUnit.Millimeter);

Procedure: Creating
brushes

Procedure: Creating
fonts

38 Module 6: Printing and Reporting in Windows Forms Applications

How to Draw and Measure Text in the PrintPage Event Procedure

� To draw text
1.Calculate the location for the text
2.Select the Font and Brush that you want to use for this text
3.Call the Graphics.DrawString method

e.Graphics.DrawString(myText, myFont, myBrush, X1, Y1);e.Graphics.DrawString(myText, myFont, myBrush, X1, Y1);

� To measure text

textWidth = e.Graphics.MeasureString(myText,myFont).Width;
textHeight =

e.Graphics.MeasureString(myText,myFont).Height;

textWidth = e.Graphics.MeasureString(myText,myFont).Width;
textHeight =

e.Graphics.MeasureString(myText,myFont).Height;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

GDI+ enables you to draw and measure text.

You can draw text by using the DrawString method of the Graphics object. To
draw text, you must have a Brush object and a Font object.

If you need to determine the width or height of text as it will be drawn on the
page of a print document or another Graphics object, you can use the
MeasureString method of the Graphics object. For example, you must know
the width and length of a string as it appears on the page to center the string in a
region of the page. MeasureString can also be used to determine how many
lines of text will fit on a page, whether a line of text will fit between the
margins, and to right-align text.

To construct text for your print document in the PrintPage event procedure:

1. Calculate the location on the page where the text will be placed.
2. Select the Font and Brush that you want to use for this text.

You can either use Fonts and Brushes that you already created or create
new ones. For more information about creating Fonts and Brushes, see the
topic How to Create and Use Pens, Brushes, and Fonts in this lesson.

3. Call the DrawString method.
To construct the text, call the DrawString method of the Graphics object.
e.Graphics.DrawString(myText, myFont, myBrush, X1, Y1);

Introduction

Procedure: Drawing text

 Module 6: Printing and Reporting in Windows Forms Applications 39

To measure text, add the code as shown to the PrintPage event handler.

The following code measures the width and height of the specified string.

textWidth = e.Graphics.MeasureString(myText, myFont).Width;
textHeight = e.Graphics.MeasureString(myText,
 myFont).Height;

Another option for getting the height of your text is to use the GetHeight
method for Font and pass it the Graphics object as follows.

textHeight = myFont.GetHeight(e.Graphics);

Procedure: Measuring
text

40 Module 6: Printing and Reporting in Windows Forms Applications

How to Generate Print Content by Using StreamReader

private void btnPrintPreviewControl_Click(object
sender, System.EventArgs e)

{
try

{
StreamToPrint = new

StreamReader(“printMe.txt”);
try
{

PrintPreview();
}
finally
{

StreamToPrint.Close();
}

}
}

private void btnPrintPreviewControl_Click(object
sender, System.EventArgs e)

{
try

{
StreamToPrint = new

StreamReader(“printMe.txt”);
try
{

PrintPreview();
}
finally
{

StreamToPrint.Close();
}

}
}

Use StreamReader to read lines of information from a
standard text file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In addition to using GDI+ to generate print content, you can also use
StreamReader as an input provider. You use StreamReader to read lines of
information from a standard text file.

The following example demonstrates how to use StreamReader with a
PrintPreviewControl. When the Print Preview button is clicked, the stream of
text is read from the file PrintMe.txt.

private void btnPrintPreviewControl_Click(
 object sender, System.EventArgs e)
{
 try
 {
 StreamToPrint = new StreamReader(FilePath);
 try
 {
 PrintPreview();
 }
 finally
 {
 StreamToPrint.Close();
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Introduction

Example

 Module 6: Printing and Reporting in Windows Forms Applications 41

The following code shows that if no text is being read from StreamReader, the
printing exits, or else it checks if there are more pages to print.

// inside PrintPage event handler
while (currentLine < linesPerPage)
{
 textLine = StreamToPrint.ReadLine();
 if(textLine == null)
 {
 break;
 }

 // position text, draw text, increment currentLine

}

//If more lines of text exist in the file, print another page.
if (TextLine != null)
{
 e.HasMorePages = true;
}
else
{
 e.HasMorePages = false;
}

42 Module 6: Printing and Reporting in Windows Forms Applications

Demonstration: Constructing Print Document Content by Using
GDI+

In this demonstration, you see how to construct
print document content by using GDI+

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to create print document content by
using GDI+.

� Open the projects
1. Start two instances of Visual Studio .NET.
2. Open the PurchaseOrderApplication solution file in one instance of

Visual Studio .NET and the PrintingForm2555Class solution file in the
other. The solution files can be found under install_folder\Sampapps, in the
folders named OrderApplication and PrintingForm2555Class.

� Examine and modify code in the PrintingForm2555Class project
1. Open PrintingForm2555Class.cs in the Code Editor.
2. Mention that this class inherits from the PrintDocument class.
3. Describe the procedures that are used to: define the regions of the form,

draw the text, and 2-D vector objects that make up the blank form, receive
text content from the host application, and fill in the content on the form.

4. Move down to the PrintingEmptyForm2555 procedure, and then show the
code that is used to create the fonts and brushes for this document.

5. Scroll down and show some of the GDI+ code statements that draw the lines
and filled shapes.

6. Scroll down further and show the process required to center the purchase
item labels on the header row of the purchase item table.

7. Scroll back up to the top of this procedure and change some of the pen and
brush properties.

8. Rebuild the class.

Introduction

Instructions

 Module 6: Printing and Reporting in Windows Forms Applications 43

� Examine and run the PurchaseOrderApplication project
1. Open MainForm.cs in the Code Editor.
2. Describe the procedures that are used to: read content from the form, pass

form content to the printing class, preview the print document, modify page
settings, and print the document.

3. In Solution Explorer, remove the reference to the PrintingForm2555Class
from the PurchaseOrderApplication project, and then add a reference to
the newly built class by browsing to the bin folder of the
PrintingForm2555Class folder and opening the PrintingFomr2555Class.dll
file.

4. Rebuild the PurchaseOrderApplication solution, and then run the
application.

5. Open the Print Preview dialog box to show your modifications.

44 Module 6: Printing and Reporting in Windows Forms Applications

Practice: Constructing Print Document Content by Using GDI+

In this practice, you will

� Create pens, brushes, and fonts

� Create 2-D vector objects

� Measure and position text on the page

Begin reviewing the objectives
for this practice activity 15 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will construct print document content by using 2-D vectors
and text in GDI+.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_05\Starter.
2. Double-click the PrintPageCode.sln solution file to open the project.

� Create pens, brushes, and fonts
1. Open Form1 in the Code Editor.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: create pens.
4. Add the following code statements below the TODO line.

Pen penWideRed = new Pen(Color.Red, 10);
Pen penDashedBlack = new Pen(Color.Black, 6);
penDashedBlack.DashStyle = DashStyle.Dash;
penDashedBlack.DashCap = DashCap.Round;

5. In the Task List, double-click TODO: create brushes.
6. Add the following code statements below the TODO line.

Brush brushBlue = new SolidBrush(Color.Blue);
Brush brushBlack = Brushes.Black;

7. In the Task List, double-click TODO: create fonts.

Introduction

Instructions

 Module 6: Printing and Reporting in Windows Forms Applications 45

8. Add the following code statements below the TODO line.
Font fontMedium = new Font("Arial", 14);
Font fontLargeBold;
fontLargeBold = new Font("Arial", 36, FontStyle.Bold);

9. Do any of the code statements that you entered require a reference to the
Drawing2D namespace?
Yes. The code statements used to set the DashStyle and DashCap use
enumerations provided by the Drawing2D namespace.
__

__

� Create 2-D vector objects
1. In the Task List, double-click TODO: draw outline shapes.
2. Add the following code statements below the TODO line.

e.Graphics.DrawLine(penWideRed,
 hPos1,
 vPos1,
 hPos2,
 vPos2);
e.Graphics.DrawRectangle(penDashedBlack,
 hPos1,
 vPos1,
 rectWidth,
 rectHeight);

3. In the Task List, double-click TODO: draw filled shapes.
4. Add the following code statements below the TODO line.

Rectangle fillRectangle;
fillRectangle = new Rectangle(
 lgRectangle.Left,
 lgRectangle.Bottom,
 lgRectangle.Width,
 lgRectangle.Height);
e.Graphics.FillRectangle(brushBlue, fillRectangle);

� Measure and position text on the page
1. In the Task List, double-click TODO: draw centered text.
2. Add the following code statements below the TODO line.

textWidth = e.Graphics.MeasureString(centeredText,
 fontMedium).Width;
textHeight = fontMedium.GetHeight(e.Graphics);
hPos = rectText.Left + (rectText.Width - textWidth) / 2;
vPos = rectText.Top + (rectText.Height - textHeight) / 2;
e.Graphics.DrawRectangle(Pens.Black, rectText);
e.Graphics.DrawString(centeredText,
 fontMedium,
 brushBlack,
 hPos,
 vPos);

46 Module 6: Printing and Reporting in Windows Forms Applications

3. Run your application, and click Print Preview to view the GDI+ output.
4. Close the preview form, click Draw gradient text, and then click Print

Preview.
5. How would you draw right-aligned text?

You can draw right-aligned text by measuring the text string and
establishing a horizontal position that is equal to the right-side position
that you define minus the width of the text string.
__

__

If time permits, examine the code used to create the gradient filled text.
6. Save your application, and then close Visual Studio .NET.

 Module 6: Printing and Reporting in Windows Forms Applications 47

Lesson: Creating Reports by Using Crystal Reports

� Crystal Reports

� How to Create and Format a Report by Using Crystal
Reports

� How to View a Report by Using Crystal Report Viewer

� How to Add DataSets to a Report

� Practice: Creating and Viewing Crystal Reports

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are many ways to present data to users. For example, you could write
code to loop through recordsets and print them inside your Windows-based
application. However, by using such methods, any work beyond basic
formatting can be complicated and difficult to program.

With Crystal Reports for Microsoft Visual Studio .NET, you can quickly create
complex and professional-looking reports. Instead of writing code, you use the
Crystal Report Designer interface to create and format the report that you need.
The powerful Report Engine processes the formatting, grouping, and charting
criteria that you specify.

This lesson introduces Crystal Reports for Visual Studio .NET and also covers
how to use Report Expert to create and format reports.

After completing this lesson, you will be able to:

� Explain how Crystal Reports helps in creating reports.
� Create and format a report by using Crystal Reports.
� View a report by using Crystal Report Viewer.
� Add datasets to a report.

Introduction

Lesson objectives

48 Module 6: Printing and Reporting in Windows Forms Applications

Crystal Reports

� Is the standard reporting tool in .NET
�Allows you to create a report from the beginning or use

one of the Report Expert Wizards

�You can use any programming language
�Report viewers for Windows-based and Web applications
�Run time customization of reports
�Easy interaction with reports
�Data visualization and analysis capabilities

Crystal ReportsCrystal Reports

BenefitsBenefits

http://msdn.microsoft.com/vstudio/partners/toolshttp://msdn.microsoft.com/vstudio/partners/tools
/crystaldecisions.asp/crystaldecisions.asp

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Crystal Reports is the standard reporting tool in Visual Studio .NET. It allows
you to create a report from scratch or use one of the Report Expert Wizards.
Before you learn how to use Crystal Reports for creating and formatting
reports, you must understand the benefits of using Crystal Reports.

Crystal Reports:

� Allows you to choose the language and project.
Use the programming language of your choice and access Crystal Report
Designer from any project.

� Provides report viewers for Windows-based and Web applications.
Crystal Reports provides two report viewers that you can use to view your
report in your application: Web Forms Viewer for Web applications and
Windows Forms Viewer for Windows-based applications.

� Allows run-time customization of reports.
Crystal Reports enables the viewer to interact with other controls at run
time. With run-time customization, users can view different reports or
change the format, data selection, or export options of an existing report.

� Allows users to interact easily with reports.
Because Crystal Reports can interact with other controls, users are able to
filter report information by clicking a button or selecting from a combo box.

� Provides data-visualization and analysis capabilities.
Crystal Reports provides developers with data visualization and analysis
capabilities. It uses an open and flexible architecture—with standards like
extensible markup language (XML)—to allow you to share reports and
information over the Web. It also offers features such as details on charts,
report navigation, and text search.

Introduction

Benefits of using Crystal
Reports

 Module 6: Printing and Reporting in Windows Forms Applications 49

How to Create and Format a Report by Using Crystal Reports

Creating a Crystal Report by
Using the Report Expert

Format
the report

Format
the report

Generate
a report

Generate
a report

Group items
and create
formulas

Select the
required

fields

Select the
required

fields

Choose a
data source

Choose a
template

Choose a
template

Open the
Report
Expert

Open the
Report
Expert

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use Crystal Reports to add reporting capabilities to your application.
Crystal Reports allows you to create a report from the beginning or use the
Report Expert, which helps you create a report by using a wizard.

To create and format reports by using the Report Expert:

1. Open Report Expert.
a. In Solution Explorer, right-click the project name, point to Add, and

then select Add New Item from the shortcut menu.
b. In the Add New Item dialog box, in the Templates pane, click Crystal

Report.
c. In the Name box, type a report name with an .rpt extension.
d. Click Open to invoke Crystal Report Designer, which will help you

create and design the new report.
e. In Crystal Report Gallery, select the Using the Report Expert option.

Introduction

Procedure: Create and
format a report by using
Report Expert

50 Module 6: Printing and Reporting in Windows Forms Applications

2. Choose a template.
Report Expert provides various templates for creating a report. Some of the
templates are:

• Standard

• Form Letter

• Form

• Cross-Tab

• Subreport

• Mail Label

• Drill Down

• For more information about each of the templates, in the
Visual Studio .NET Help documentation, search by using the phrase
Crystal Reports Experts.

3. Choose a data source.
Select the data source that your report will reference. You can use more than
one data source in a report. You also choose the database tables that you
want to use in the report. Crystal Reports can automatically link the tables,
or you can specify how you want the tables linked. Database tables are
linked so that records from one database match related records from
another.

4. Select the required fields.
After selecting the data source, select the fields that you want to display on
the report.

5. Group items and create formulas.
When you first insert a database field into your report, the data in the fields
appears in the order in which it was originally entered into the database.
Grouping, sorting, and totaling help turn disorganized data into useful
information on a report.
In most cases, the data needed for a report already exists in database table
fields. Sometimes, you need to put additional data on the report that does
not exist in any of the data fields. In cases such as this, you must create a
formula. There are four different groups of formulas in Crystal Reports:
report, conditional formatting, selection, and search. The majority of
formulas in a report use the report and conditional formatting formulas.
For more information about how to create and use these formulas, in the
Visual Studio .NET Help documentation, search by using the phrase
Formula Overview.

 Module 6: Printing and Reporting in Windows Forms Applications 51

6. Generate the report.
After you have added the required fields and formulas to the report, click
Finish to generate the report.

7. Format the report.
After a report is generated, you might want to make changes to the layout
and design of the report, as well as the appearance of text, objects, or entire
report sections. You can use various formatting options to change the layout
of your reports.

• To format an object, right-click the object, and then click Format.

• To format a report section, right-click the report section, and then click
Format Section.

52 Module 6: Printing and Reporting in Windows Forms Applications

How to View a Report by Using Crystal Report Viewer

Set ReportSource to the name of the report that is displayed

Add the Crystal Report Viewer control to the form

Use ShowZoomButton to zoom in and zoom out on the report

Use ShowPrintButton to print the report

To View a Report by Using Crystal Report ViewerTo View a Report by Using Crystal Report Viewer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET includes a Crystal Report Viewer control that enables you
to view a report at run time. To specify the report that you want to view, you set
the ReportSource property of the viewer.

To view a report by using the Crystal Report Viewer control:

1. Add a Crystal Report Viewer control to the form.
The Controls Toolbox includes the Crystal Report Viewer control. To add
the control to the form, drag the control from the Toolbox to the form.

2. Set the ReportSource property of the viewer.
The next step is to set the ReportSource property of the Crystal Report
viewer to the name of the report that is to be displayed. You can set the
ReportSource property in the Properties window at design time or you can
set it at run time.

3. Use the ShowZoomButton property to zoom in or zoom out on reports.
The Crystal Report viewer includes the ShowZoomButton to zoom in or
zoom out on reports. To enable this property, set the ShowZoomButton
property to True in the Properties window.

4. Use the ShowPrintButton property to print the report.
The ShowPrintButton property enables you to print the report. Set the
ShowPrintButton property to True to enable the button on the viewer.

Introduction

Procedure: Viewing a
report

 Module 6: Printing and Reporting in Windows Forms Applications 53

How to Add DataSets to a Report

� Adding datasets to reports allows you to create
reports that are disconnected from the database

� To add datasets to a report, add the code to the
Form_Load event

private CrystalReport.StoreSalesReport report;

storeSalesSqlDataAdapter.Fill(storeSalesDataSet1);
report = new CrystalReport.StoreSalesReport();
report.SetDataSource(storeSalesDataSet1);
crystalReportViewer1.ReportSource = report;

private CrystalReport.StoreSalesReport report;

storeSalesSqlDataAdapter.Fill(storeSalesDataSet1);
report = new CrystalReport.StoreSalesReport();
report.SetDataSource(storeSalesDataSet1);
crystalReportViewer1.ReportSource = report;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Crystal Reports for Visual Studio .NET supports reports that access ADO.NET
datasets.

To add an ADO.NET dataset to a report:

1. Create an instance of the report.
To make the report display the data at run time, you must first create an
instance of the report:
private CrystalReport.StoreSalesReport report;
report = new CrystalReport.StoreSalesReport();

2. Generate a design time instance of a dataset.
The design time instance of the dataset exposes the fields in the dataset to
Report Expert. The design time dataset contains only the data description,
and not the actual data. Therefore, when working with a report connected to
a dataset object, you cannot browse field data in Crystal Report Designer at
design time.

3. Populate the dataset.
storeSalesSqlDataAdapter.Fill(storeSalesDataSet1);

4. Call the SetDataSource method of the report, and pass an instance of the
populated dataset.
report.SetDataSource(StoreDataSet1);

5. Set the ReportSource property of the Crystal Report Viewer to the instance
of the report.
crystalReportViewer1.ReportSource = report;

Introduction

Procedure: Adding an
ADO.NET dataset to a
report

54 Module 6: Printing and Reporting in Windows Forms Applications

Practice: Creating and Viewing Crystal Reports

In this practice, you will

� Configure the SqlConnection1 control on
Form1 to connect to the pubs database

� Create a Crystal Report

� Add a Crystal Report Viewer control to
Form1

Begin reviewing the objectives for
this practice activity

12 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create and view Crystal Reports.

� Open the practice project
1. Use Windows Explorer to browse to

install_folder\Practices\Mod06\Mod06_06\Starter.
2. Double-click the CrystalReport.sln solution file to open the project.

� Configure the sqlConnection1 control on Form1 to connect to the Pubs
database

1. Open Form1 in Design view.
2. Select sqlConnection1, and from the Properties window, click the

ConnectionString property, click the arrow, and then click New
Connection.

Use the existing connection information for the Pubs database if it
already exists and skip to the next procedure.

3. In the Data Link Properties dialog box, type computername\MOC where
computername is the name of your computer.

4. Select the Use Windows NT Integrated Security option.
5. Select the Pubs database from the drop-down list, click Test Connection to

ensure that you can access the Pubs database, click OK, and then click OK
again.

Introduction

Instructions

Note

 Module 6: Printing and Reporting in Windows Forms Applications 55

� Create a Crystal Report
1. On the File menu, click Add New Item.
2. On the Add New Item dialog box, under Template, click Crystal Report.
3. Set the name of the report to StoreSalesReport.rpt, and then click Open.
4. Close the Crystal Decisions Registration Wizard dialog box.
5. On the Crystal Report Gallery dialog box, click OK.
6. On the Data tab, expand Project Data, expand ADO.NET DataSets, and

then expand CrystalReport.storeSalesDataSet.
7. Click Insert Table, and then click Next.
8. On the Fields tab, in Available Fields list, click stor_id, and then click Add.
9. Repeat step 8 to add all of the fields that are listed below stores table in the

Available Fields list, and then click Next.
10. On the Group tab, in the Available Fields list, below Report Fields, click

stores.stor_name, click Add, and then click Next.
11. On the Total tab, in the Summarized Fields list, click stores.qty, click

Remove, and then click the Style tab.
12. Set the title to Store Sales, and then click Finish.

� Add a Crystal Report Viewer control to Form1
1. Open Form1 in Design view.
2. In the Toolbox, double-click CrystalReportViewer.
3. Set the Dock property of the CrystalReportViewer so that the control fills

the entire form.
4. Open Form1 in the Code Editor.
5. On the View menu, point to Show Tasks, and then click Comment.
6. In the Task List, double-click TODO 1: create an instance of

StoreSalesReport.
7. Add the following code statement below the TODO line:

private CrystalReport.StoreSalesReport report;
8. In the Task List, double-click TODO 2: Call the SetDataSource method

of report and pass storeSalesDataSet1.
9. Add the following code statements below the TODO line:

report = new CrystalReport.StoreSalesReport();
report.SetDataSource(storeSalesDataSet1);
crystalReportViewer1.ReportSource = report;

10. Build and run your application.
11. Use the Crystal Report Viewer control to examine your report.

Notice the features provided on the viewer’s toolbar.
12. Save your project, and then close Visual Studio .NET.

56 Module 6: Printing and Reporting in Windows Forms Applications

Review

� Printing from a Windows Forms Application

� Using the Print Preview, Page Setup, and Print Dialogs

� Constructing Print Document Content by Using GDI+

� Creating Reports by Using Crystal Reports

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. List the tasks involved in printing simple text file output in
Visual Studio .NET.
Use a StreamReader object to read in the contents of the text file and
then draw the contents of the StreamReader line-by-line onto the
Graphics object inside your PrintDocument.PrintPage event handler.
The Graphics object is supplied by the PrintPageEventArgs class,
which is the event arguments parameter (e) for the PrintPage event
handler.

2. What property is used to capture user input from a dialog box?
The DialogResult property of the parent form is used to capture the
action taken to close a dialog box. For example, DialogResult can be
used to determine whether the PrintDialog was closed by clicking OK
or by clicking Cancel.

3. What is the role of the Graphics object in printing by using GDI+?
The Graphics object acts as the canvas on which the GDI+ methods
draw.

4. What methods of GDI+ are used to draw text and graphics?
Methods such as DrawRectangle and FillEllipse are used to draw 2-D
vector shapes. The DrawString method is used to draw text.

 Module 6: Printing and Reporting in Windows Forms Applications 57

5. What kind of object does the following code create?
Pen myPen = new Pen(Color.Black);
Graphics g = this.CreateGraphics();
g.DrawEllipse(myPen, 20, 30, 10, 50);
This Visual C# .NET code produces the 2-D vector outline shape of an
ellipse by using a solid black pen that has the default width of 1 pixel
(the default graphic unit).

6. List some of the benefits of using Crystal Reports.
Crystal Reports provides a fast and easy way to generate professional
looking reports.

7. List the steps involved in creating a report by using Crystal Reports.
Establish the database connection to your data, add a Crystal Report
(.rpt file) to your project, configure the report by using the Crystal
Report Gallery, add a CrystalReportViewer control to your form,
declare a report object and assign an instance of your report (.rpt) to it,
use the SetDataSource property of your report object to populate it
with data, and then assign the report object to the ReportSource
property of your CrystalReportViewer.

58 Module 6: Printing and Reporting in Windows Forms Applications

Lab 6.1: Printing Formatted Documents

� Exercise 1: Adding Print Support to an
Application

� Exercise 2: Creating Printed Output by Using
GDI+

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Reference a namespace so that you don’t have to fully qualify each
namespace member in your code.

� Use the PrintDocument class and the PrintPage event to enable printing in
a Windows Forms application.

� Use the PageSetupDialog, PrintPreviewDialog, and PrintDialog classes
to provide user control over the print process.

� Create pens, brushes, and fonts for use with GDI+ drawing methods.
� Use GDI+ methods to draw outline and filled shapes on a print document.
� Measure and position text on a print document.

This lab focuses on the concepts in Module 6, “Printing and Reporting in
Windows Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET). As a result, this lab may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to use elements of the System.Drawing
namespace and the PrintDocument class in a Visual Studio .NET–based
application.

� The knowledge and skills to use the PrintPreviewDialog,
PageSetupDialog, and PrintDialog classes in a Visual Studio .NET–based
application to provide user control of the print process.

� The knowledge and skills to use the two-dimensional (2-D) vector and Text
drawing capabilities of GDI+ in a Visual Studio .NET–based application.

Objectives

Note

Prerequisites

 Module 6: Printing and Reporting in Windows Forms Applications 59

Members of the Northwind Traders sales force need to print purchase order
documents while they are at a customer site. The purchase order documents—
form number NT-2555P (portrait) and NT-2555L (landscape)—have specific
requirements associated with document layout, text formatting, and the
appearance of 2-D vector graphics objects. You are an application developer at
Northwind Traders. The department that you work in is developing a purchase
order application that will be used by the Northwind Traders sales force. You
have been assigned the task of completing the code sections of the purchase
order application that support printing. The Northwind Traders Legal and
Media departments have given you the three requirements tables that describe
these forms. The tables are included at the end of this lab.

To complete this task, you must add basic print support to a project, enable
users to control the print process by using dialog boxes, and develop the code
statements necessary to complete the construction of the print document by
using GDI+.

Scenario

Estimated time to
complete this lab:
45 minutes

60 Module 6: Printing and Reporting in Windows Forms Applications

Exercise 1
Adding Print Support to an Application
In this exercise, you will open two existing Visual Studio .NET projects, create a reference to the
Drawing and Drawing2D namespaces, create a procedure that handles the PrintPage event,
develop code that ensures that all pages of a print document are included in a print job, and add
support for the PrintPreviewDialog, PageSetupDialog, and PrintDialog dialog boxes to your
application. This exercise assesses your knowledge of the print process and your ability to use the
PrintDocument class and the three dialog boxes to provide the application user with control of the
print process.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab06_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab06_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Scenario
The user interface of the purchase order application has been developed and the underlying code is
functioning as intended. You have reviewed the application code and the code contained in a
custom document printing class that inherits from the PrintDocument class. The custom printing
class that your department created will be used to print the purchase order forms that are used by
Northwind Traders. Most of the code that is used to construct (draw) purchase order documents has
already been written. You will now begin adding code to your application and the printing class so
that users can print purchase order documents.

The Northwind Traders sales force has requested that the application be capable of printing in either
portrait or landscape mode and that page margins be fixed in accordance with the Legal department
and Media department requirements for the purchase order document. The sales force would also
like to have the option to review the purchase order document with a customer before it is printed.

As the application developer, you will start by opening the purchase order application and the
printing class in separate projects and checking to see what code still needs to be added to the two
projects to support document printing. Then, you will add support for the PrintPreviewDialog. In
addition to providing the sales force with an easy way to preview a purchase order before printing,
the PrintPreview dialog box enables you to view the print document as you develop the code that
constructs the document. You will then add support for the PageSetupDialog class to your
application and create the code that is required to show this dialog box. By checking various page
layout settings, you can ensure that the print document is constructed in accordance with the page
layout parameters needed by your Legal and Media departments. Because your customer also wants
the option to print without previewing the document, you will also add support for the PrintDialog
class.

 Module 6: Printing and Reporting in Windows Forms Applications 61

Tasks Additional information

1. Open two instances of
Visual Studio .NET. In the
first instance, open the
Lab06Application.sln file.
In the second instance, open
the Lab06Class.sln file. To
open the solution files, in
the Lab06Application and
Lab06Class folders,
respectively, browse to
install_folder\Labfiles\
Lab06_1\Ex01\Starter.

You can open two instances
of Visual Studio .NET when
you want to work on an
application and an external
class library at the same
time.

a. For more information about opening a project file and starting an
application, see the following resource:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box. For additional information about
starting an application from in Designer, in Index, search by using
the phrase Debugging Windows Applications.

2. Use the Task List in the
Lab06Class.cs file to locate
the code section 'TODO:
Programmatically reference
required namespaces' and
then add code statements
that reference the Drawing
and Drawing2D
namespaces.

When you create a reference
to a namespace, you can
refer to the namespace
members without having to
fully qualify member names
in your code. This makes
your code easier to develop
and easier to read.

a. For more information about the Drawing and Drawing2D namespaces
and why you should use them, see the following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. For additional
information about creating a reference to a namespace, search by
using the phrases References and the Imports Statement,
Namespaces and Imports Statement. For additional information
about the Drawing and Drawing2D namespaces, search by using
the phrases System.Drawing and System.Drawing.Drawing2D.

62 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

3. Use the Task List in the
Lab06Class.cs file to locate
the code section 'TODO:
Create the declaration
statement for the PrintPage
Procedure' and then create
the declaration statement for
a procedure named
Lab06Class_PrintPage that
handles the PrintPage
event. Add code statements
to the procedure that call the
PrintingEmptyForm2555
and PrintingContentsForm
2555 procedures.

The PrintPage procedure
handles all requests for a
page of the print document.
The PrintPageEventArgs
class that is passed to the
PrintPage procedure
contains the Graphics
object on which you
construct the print
document.

a. For more information about the PrintPage event and the
PrintPageEventArgs class, see the following resources:

• Lesson: Printing From a Windows Forms Application in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Adding Print Support to a Windows Forms Application in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. For additional
information about the PrintPage event, search by using the phrases
Creating Standard Windows Forms Print Jobs and
PrintDocument.PrintPage Event. For additional information
about the PrintPageEventArgs class, search by using the phrases
PrintPageEventArgs Class and PrintPageEventArgs Members.

4. Use the Task List in the
Lab06Class.cs file to locate
the code section 'TODO:
Determine if more pages
must be printed' and then
create a code section that
tells the event handler for
the PrintPage event that
there are more pages to print
when currentPurchaseItem
Number is less than
totalPurchaseItems,
otherwise specify that there
are no more pages to print.

In Visual Studio .NET, you
must create your own
programming logic to set the
HasMorePages property to
generate print documents
that consist of more than one
page.

a. For more information about how to specify that there are additional
pages to be printed, see the following resources:

• Lesson: Printing From a Windows Forms Application in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Practice: Adding Print Support to a Windows Forms Application in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase PrintPageEventArgs.HasMorePages Property.

 Module 6: Printing and Reporting in Windows Forms Applications 63

Tasks Additional information

5. Rebuild the Lab06Class
project. In the
Lab06Application project, in
Solution Explorer, update
the reference to Lab06Class.

After you rebuild a class
library, ensure that your
applications reference the
new version.

a. For more information about referencing an external class, see the
following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Project References, Adding and Removing References,
and Preparing and Managing Builds.

6. Open the code editor view
of MainForm.cs in the
Lab06Application project,
and configure the Task List
to display comments.

Using the Task List and
TODO comments can help
you remember development
tasks that must still be done.

a. For more information about the code editor view and the Task List, see
the following resource:

• The Visual Studio .NET Help documentation. For help with the
code editor, search by using the phrase Managing the Code
Editor and View. For help with Task List, search by using the
phrase Task List Views.

7. Use the Task List to locate
the code section 'TODO:
Create an instance of the
PrintPreviewDialog class'.
Add code below the
comment line that creates an
instance of the
PrintPreviewDialog class
named
form2555PreviewDialog.

a. For more information about the PrintPreviewDialog class and how to
add an instance of this dialog box to your application, see the following
resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PrintPreviewDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Introduction to the Windows Forms PrintPreviewDialog
Control.

64 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

8. Use the Task List to locate
the code section 'TODO:
Create an instance of the
PageSetupDialog class'.
Add code below the
comment line that creates an
instance of the
PageSetupDialog class
named
form2555SetupDialog.

The PageSetupDialog class
enables users to modify the
page settings of a print
document. You can use it to
test the code that constructs
the print document by
displaying the print
document with various page
setting values. You will get
a chance to modify page
settings later in this lab
exercise.

a. For more information about adding the PageSetupDialog class to an
application, see the following resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PageSetupDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Introduction to the Windows Forms PageSetupDialog
Component, PageSetupDialog Class, and PageSetupDialog
Members.

9. Use the Task List to locate
the code section 'TODO:
Create an instance of the
PrintDialog class'. Add code
below the comment line that
creates an instance of the
PrintDialog class named
form2555PrintDialog.

a. For more information about adding support for the PrintDialog class to
your application, see the following resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PageSetupDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Introduction to the Windows Forms PrintDialog
Component and PrintDialog Component.

 Module 6: Printing and Reporting in Windows Forms Applications 65

Tasks Additional information

10. Use the Task List to locate
the code section 'TODO: Set
purchaseItemNumber and
purchaseItemCount'. Add
code below the TODO
comment that assigns a
value of 0 to the
MainModule.purchaseItem
Number variable and assigns
the value of the Count
property of
MainModule.mainPOForm.
ProductOrderPanel.Controls
to the
MainModule.purchaseItem
Count variable.

In addition to developing the
code logic that determines
when HasMorePages is
True or False, you must
reset the variables that are
used to make this
determination every time a
print document is generated.

a. The purchaseItemNumber and purchaseItemCount variables are passed
to the Lab06Class class (inherits from PrintDocument) and used to
determine when HasMorePages should be set to True or False. The
purchaseItemNumber variable is the current purchase item being
printed, and the purchaseItemCount variable is the total number of
purchase items in the current purchase order.

11. Use the Task List to locate
the code section 'TODO:
Add support for a full screen
preview of the print
document'. Add code below
the comment line that
assigns the
form2555Document
instance of the Lab06Class
class to the Document
property of
form2555PreviewDialog
(the print preview dialog
box) and displays the print
document by using the full
display screen.

Implementing support for
the print preview dialog box
early in the development
process enables you to
preview the print document
as you develop the code that
constructs your document.

a. For more information about the PrintPreviewDialog class and how it
can be used in the print process, see the following resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PrintPreviewDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Displaying Print Preview in Windows Applications.

66 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

12. Rebuild and then start the
Lab06Application project.
Use the File menu or the
Print button on the ToolBar
control to demonstrate that
you can now display the
print preview dialog box.
Close the Lab06Application
executable file.

You can use the Print
Preview dialog box to
verify that the code in your
PrintPage procedure is
working correctly. Try
adding 25 purchase items to
a purchase order. The print
document should now wrap
onto a second page when
previewed.

a. For more information about building and debugging your applications,
and for information about running the Purchase Order application, see
the following resources:

• Demonstration, Purchase Order Application, in Module 0,
“Introduction,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

13. Use the Task List to locate
the code section 'TODO:
Apply the initial page
settings'. Add code below
the comment line that
assigns the
form2555PageSettings
variable to the PageSettings
property of the Page Setup
dialog box that you
instantiated.

The page setup dialog box
must be assigned an initial
PageSettings value before it
can be displayed for the first
time; otherwise, an error
will occur.

a. The form2555PageSettings object is scoped at the module level so
that user-specified settings are maintained between viewings of the
PageSetupDialog class.

b. For more information about the PageSettings class, see the following
resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PageSetupDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase PageSettings Class.

 Module 6: Printing and Reporting in Windows Forms Applications 67

Tasks Additional information

14. Use Task List to locate the
code section 'TODO:
Disable user access to the
Margins section of the
dialog'. Add code below the
comment line that disables
user access to the margin
settings.

Restricting user access to
only those page settings that
are required will help to
eliminate support issues that
would be generated when
users modify settings in an
unpredictable manner.

a. For more information about members of the PageSetupDialog class,
see the following resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PageSetupDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase PageSetupDialog Members.

15. Rebuild and then start the
Lab06Application project.
Use the File menu to open
the page setup dialog box
and change the page
orientation from portrait to
landscape. Use the print
preview dialog box to view
the print document. Close
the Lab06Application
executable file.

a. For more information about building and debugging your application,
use the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

16. Use the Task List to locate
the code section 'TODO:
Determine if the document
should be printed'. Add code
statements below the
comment line that will send
form2555Document to the
printer when the application
user clicks OK to close the
print dialog.

You must use DialogResult
to determine whether the
user closed PrintDialog by
clicking Cancel or by
clicking OK.

a. For more information about using DialogResult, see the following
resources:

• Lesson: Using the Print Preview, Page Setup, and Print Dialogs in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: Using the PageSetupDialog Control in Module 6,
“Printing and Reporting in Windows Forms Applications,” in
Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrase Retrieving the Result for Dialog Boxes.

68 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

17. Rebuild and then start the
Lab06Application project.
Use the File menu to
demonstrate that the print
dialog box is working as
intended. Close the
Lab06Application
executable file.

a. For more information about building and debugging your application,
see the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

18. Save the changes that you
made to your code, and then
close both solution files.

Additional information is not necessary for this task.

 Module 6: Printing and Reporting in Windows Forms Applications 69

Exercise 2
Creating Printed Output by Using GDI+
In this exercise, you will create pens, brushes, and fonts and then use them to draw 2-D vector
objects and text at specific locations on a print document. This exercise provides you with an
opportunity to assess your ability to complete the construction of a print document by using GDI+.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab06_1\Ex02\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab06_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Scenario
Initial testing has revealed that the custom printing class does not accurately reproduce the legal and
official representation of the organization’s purchase order documents—Northwind Traders forms
NT-2555P and NT-2555L. To correct this problem, you will review the data contained in the
NT-2555P and NT-2555L requirements tables (the tables of data from the Media and Legal
Departments that are included after this exercise) and develop GDI+ code statements that produce
the required 2-D vector objects and text. You will begin by creating some of the pens, brushes, and
fonts required to construct portions of the forms. After that, you will develop the code that draws
some of the 2D vector shapes that are used to create the base forms. The last step will be to develop
the code used to draw some of the text that appears on the NT-2555P and NT-2555L forms.

Tasks Additional information

1. In the first instance of
Visual Studio .NET, browse
to install_folder\Labfiles\
Lab06_1\Ex02\Starter and
open the
Lab06Application.sln file.
In the second instance,
browse to
install_folder\Labfiles\
Lab06_1\Ex02\Starter and
open the Lab06Class.sln
file.

a. For more information about opening a project file and starting an
application, see the following resources:

• The Visual Studio .NET Help documentation. For additional
information about opening a project file, in Search, select the
Search in titles only check box, then search by using the phrase
Open Project Dialog Box. For additional information about
starting an application from in Designer, in Index, search by using
the phrase Debugging Windows Applications.

2. Open the code editor view
of the Lab06Class.cs file
and use Task List to locate
the code section 'TODO:
Create the pageBorderPen'.
Add code below the
comment line that creates a
pen named pageBorderPen
and that has the following
characteristics:
Color = Gray,
width = 3,
DashStyle = Dash.

a. For more information about creating pens, see the following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Pens, Brushes, and Colors; Setting Pen Width and
Alignment (in the .NET Framework Developer’s Guide) and
Using a Brush to Fill Shapes.

70 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

3. Use the Task List to locate
the code section 'TODO:
Create the footerBrush'. Add
code below the comment
line that creates a solid black
brush named footerBrush.

a. For more information about creating brushes, see the following
resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Pens, Brushes, and Colors; Setting Pen Width and
Alignment and Using a Brush to Fill Shapes.

4. Use the Task List to locate
the code section 'TODO:
Create the footerFont'. Add
code below the comment
line that creates a Private
font named footerFont and
that has the following
characteristics: family =
Microsoft Sans Serif,
emSize = 7.

a. For more information about creating fonts, see the following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Constructing Font Families and Fonts (in the .NET
Framework Developer’s Guide), Fonts and Text (in the .NET
Framework Developer’s Guide), and Using GDI+ Managed
Classes (in the .NET Framework Developer’s Guide).

 Module 6: Printing and Reporting in Windows Forms Applications 71

Tasks Additional information

5. Use the Task List to locate
the code section 'TODO:
Draw the border of the
Customer Address table'.
Create the code statements
required to draw the border
of the customer address
table by using the following
variables:
sectionOutlinePen,
customerSectionLeft,
customerSectionTop,
customerSectionWidth,
customerSectionHeight.

GDI+ offers many ways to
draw an outlined shape such
as a rectangle. As a
developer, it is important to
consider whether the
parameters used to draw a
shape can be used again
later in your program before
you select a drawing
method.

a. For more information about drawing 2-D vector shapes, see the
following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Pens, Lines, and Rectangles; Using a Pen to Draw Lines
and Rectangles; and Graphics Methods.

6. Use the Task List to locate
the code section TODO:
Draw a rectangle that
defines the margin limits'.
Create the code statements
required to draw a rectangle
that defines the limits of the
page by using the following
variables: pageBorderPen,
pageLeft, pageTop,
pageWidth, pageHeight.

a. For more information about drawing 2-D vector shapes, see the
following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Pens, Lines, and Rectangles; Using a Pen to Draw Lines
and Rectangles; and Graphics Methods.

72 Module 6: Printing and Reporting in Windows Forms Applications

Tasks Additional information

7. Use the Task List to locate
the code section 'TODO:
Draw the shaded area of the
Purchase Items table'.
Create the code statements
required to draw the shaded
portion of the Purchase
Items table by using the
following variables:
purchaseSectionHeaderRow
BackgroundBrush,
purchaseSectionLeft,
purchaseSectionTop,
purchaseSectionWidth,
purchaseSectionRowHeight.

When you use filled shapes
on a print document,
consider how the document
will look when it is
photocopied or printed by
using a gray scale.

a. For more information about filled shapes, see the following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. For additional
information about drawing 2-D filled shapes, search by using the
phrases Drawing Lines and Shapes with GDI+ and GDI+
Graphics.

8. Use Task List to locate the
code section 'TODO: Draw
the horizontal lines inside
the Purchase Items table'.
Create the code statements
required to draw the interior
lines by using the following
variables:
sectionInteriorPen,
purchaseSectionLeft,
verticalPosition,
purchaseSectionRight,
verticalPosition.

In addition to using the
width and color properties to
change the appearance of a
line, you should consider
using line styles and line
caps.

a. For more information about drawing lines, see the following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Using a Pen to Draw Lines and Rectangles, Drawing a Line
with Line Caps, and Using a Pen to Draw Lines and Shapes.

 Module 6: Printing and Reporting in Windows Forms Applications 73

Tasks Additional information

9. Use the Task List to locate
the code section 'TODO:
Draw the footer text'. Create
the code statements required
to draw the contents of the
printText variable by using
the variables footerFont,
footerBrush,
horizontalPosition, and
verticalPosition, where
horizontalPosition has a
value equal to the left
margin value of the page
and verticalPosition has a
value equal to the bottom
margin value of the page
minus the height of the font.

By default, text is drawn
below and to the right of the
position specified in a
DrawString command.

a. For more information about drawing and measuring text, see the
following resources:

• Lesson: Constructing Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Practice: How to Construct Print Document Content Using GDI+ in
Module 6, “Printing and Reporting in Windows Forms
Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The Visual Studio .NET Help documentation. Search by using the
phrases Drawing Text with GDI+ and Fonts and Text.

10. Rebuild the Lab06Class
project, reconstruct the
reference to the class library
in the Lab06Application
project, and then view the
updated print document by
using Lab06Application.

a. For more information about building and debugging your application,
use the following resource:

• The Visual Studio .NET Help documentation. Search by using the
phrases Default and Custom Builds and Using the Debugger.

11. Save your projects, and then
close Visual Studio .NET.

Additional information is not necessary for this task.

74 Module 6: Printing and Reporting in Windows Forms Applications

The following tables provide information required to construct the NT-2555P
and NT-2555L forms, which are the official Northwind Traders purchase order
documents.

Page Layout Table for Forms NT-2555P and NT-2555L

Document region/feature

Size constraint,
NT-2555P (portrait)

Size constraint,
NT-2555L (landscape)

Top Margin 1.0 inch (25.4 mm) 0.85 inch (21.6 mm)

Left Margin 1.2 inch (30.5 mm) 1.6 inch (40.6 mm)

Right Margin 0.8 inch (20.3 mm) 1.0 inch (25.4 mm)

Bottom Margin 1.0 inch (25.4 mm) 0.7 inch (17.8 mm)

Document Title Area 10% of available
height*, full width

Same as NT-2555P

Address Table 25% of available
height*, full width

Same as NT-2555P

Purchase Table 62.5% of available
height*, full width

Same as NT-2555P

This table is incomplete. The complete Page Layout Table for Forms NT-2555P
and NT-2555L table would contain additional information required to recreate the
NT-2555P and NT-2555L forms. Information has been left out of this table because
the additional information is not required to complete the exercises in this lab.

* The available height is the distance between the top and bottom margins.

Vector Objects Table for Forms NT-2555P and NT-2555L
Document region/feature Object type Pen/brush details

Page Border Rectangle Dashed line type, 3 point

(pt) width, gray

Address Table, border lines Rectangle Solid line type, 2 pt
width, blue

Address Table, interior lines Line Solid line type, 1 pt
width, blue

Address Table, 'Ship To' rows Filled Rectangle Light-gray brush fill

Purchase Table, border lines Rectangle Solid line type, 2 pt
width, blue

Purchase Table, interior lines Line Solid line type, 1 pt
width, blue

Order Item Table, header row Filled Rectangle Light-blue brush fill

 Module 6: Printing and Reporting in Windows Forms Applications 75

Font Specification Table for Forms NT-2555P and NT-2555L

Document region/feature

Font details
(font name, style, point
size, and color)

Text layout
(position in region)

Company Name Microsoft Sans Serif,

Bold, 16 pt, Blue
Center-left position in
Document Title region

Company Address Microsoft Sans Serif,
Regular, 8 pt, Blue

Immediately to the right
of, and bottom-aligned
to Company Name

Address Table Labels Microsoft Sans Serif,
Regular, 7 pt, Gray

Offset 10% of the font
height from the top-left
corner of the cell

Address Table Text Microsoft Sans Serif,
Regular, 10 pt, Black

Offset 25% of the font
height from the left side
of the cell and down
110% of the font height
from the top of the cell

Order Item Table Header Microsoft Sans Serif,
Regular, 10 pt, Black

Centered in the cell

Order Item Table Text:
Quantity, Unit Price, Discount

Microsoft Sans Serif,
Regular, 9 pt, Black

Right justified in the cell
with an offset of 25% of
the font height

Order Item Table Text: Product
Description, Unit Size

Microsoft Sans Serif,
Regular, 9 pt, Black

Left justified in the cell
with an offset of 25% of
the font height

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: The .NET Asynchronous
Programming Model 2

Lesson: The Asynchronous Programming
Model Design Pattern 7

Lesson: How to Make Asynchronous Calls
to Any Method 19

Lesson: Protecting State and Data in a
Multithreaded Environment 27

Review 34

Lab 7.1: Making Asynchronous Calls to an
XML Web Service 36

Module 7:
Asynchronous
Programming

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Asynchronous Programming iii

Instructor Notes
In this module, students learn how to use the techniques of asynchronous
programming and multithreading to avoid blocking the user interface of an
application.

After completing this module, students will be able to:

� Describe the Microsoft® .NET Framework asynchronous programming
model.

� Modify a client application to use built-in .NET Framework support for
asynchronous calls to methods.

� Describe how to add explicit support for asynchronous calls to any method.

To teach this module, you need the Microsoft PowerPoint® file 2555A_07.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Review the animation for this module.
� Complete the demonstrations, practice, and lab.

Presentation:
90 minutes

Lab:
15 minutes

Required materials

Preparation tasks

iv Module 7: Asynchronous Programming

How to Teach This Module
This section contains information that will help you to teach this module.

� If students are interested in referencing code examples in other languages,
point them to “Language Equivalents” in Microsoft Visual Studio® .NET
Help documentation. This section provides examples in languages such as
Microsoft Visual Basic® .NET, C#, and Java.

� The lab at the end of this module is based on the Expense Report application
in Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C#™ .NET), and is intended to simulate a real-world environment in
which students will demonstrate what they learned during the lecture and
practice portions of the module. The lab does not provide step-by-step
detailed instructions; instead, the students are given tasks to complete in the
left column and a list of resources that they can use (if they need help) in the
right column. Students get hands-on experience that they need by
completing the practice activity in the module.

Lesson: The .NET Asynchronous Programming Model
This section describes the instructional methods for teaching this lesson.

This is a brief overview lesson to define asynchronous programming and
provide scenarios in which it is appropriate to use asynchronous programming.
Wait to discuss implementation until you teach the next lesson.

Lesson: The Asynchronous Programming Model Design
Pattern

This section describes the instructional methods for teaching this lesson.

Emphasize to students that when they use .NET Framework classes that include
support for asynchronous programming they do not have to implement the
BeginOperation and EndOperation methods. These are provided by the .NET
Framework, and all they, as developers, must do is to call these methods.

Focus on the asynchronous callback technique for completion, because this is
the technique that is used in the rest of the lesson and is the most typical
technique to use for Windows Forms applications.

Overview of the
Asynchronous
Programming Model
Design Pattern

 Module 7: Asynchronous Programming v

Lesson: How to Make Asynchronous Calls to Any Method
This section describes the instructional methods for teaching this lesson.

Point out to students that even when they create and use a delegate to call any
method, the .NET Framework still provides the implementation of the
BeginInvoke and EndInvoke methods.

Lesson: Protecting State and Data in a Multithreaded
Environment

This section describes the instructional methods for teaching this lesson.

Tell students that especially for Windows Forms application, they should be
able to design the application to minimize the need for synchronization. They
can accomplish this by selectively enabling and disabling user interface
elements as asynchronous operations are performed.

 Module 7: Asynchronous Programming 1

Overview

� The .NET Asynchronous Programming Model

� The Asynchronous Programming Model Design Pattern

� How to Make Asynchronous Calls to Any Method

� Protecting State and Data in a Multithreaded
Environment

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A well-designed Microsoft® .NET Framework Windows Forms application
includes techniques to prevent blocking user interaction.

In this module, you will learn how to use the techniques of asynchronous
programming and multithreading to avoid blocking the user interface of an
application.

After completing this module, you will be able to:

� Describe the .NET Framework asynchronous programming model.
� Modify a client application to use built-in .NET Framework support for

asynchronous calls to methods.
� Describe how to add explicit support for asynchronous calls to any method.

Introduction

Objectives

2 Module 7: Asynchronous Programming

Lesson: The .NET Asynchronous Programming Model

� What Is Asynchronous Programming?

� Demonstration: Comparing Synchronous and
Asynchronous Versions of an Application

� Asynchronous Programming Support in the .NET
Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides extensive support for asynchronous calls and
multithreading.

In this lesson, you will learn about asynchronous programming and. the NET
asynchronous programming model.

After completing this lesson, you will be able to:

� Define asynchronous programming.
� List typical scenarios in which asynchronous programming is useful.
� Describe the .NET asynchronous programming model.

Introduction

Lesson objectives

 Module 7: Asynchronous Programming 3

What Is Asynchronous Programming?

� An application gives some work to other thread(s)
while it continues doing other work on the main thread

� Useful in Windows Forms
applications so users will
not be blocked waiting for
results and can instead
continue with other work

Submit reportsSubmit reportsSubmit reports

Create new
reports
Create new Create new
reportsreports

Submit reports
to server

Submit reports Submit reports
to serverto server

Main threadMain thread

Worker threadWorker thread

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One important measure of a Windows Forms application is its timely response
to user interaction. One important technique developers have to support
responsiveness is asynchronous programming.

The central idea behind asynchronous programming is to be able to issue
method calls to other components and to carry on with other work, without
waiting for the operation to complete. The .NET Framework common language
runtime provides rich support for asynchronous programming and handles the
details of threading and data exchange.

In a non-programming scenario, consider a painting crew that is painting the
rooms in a house that is some distance from town. As they are painting walls of
the rooms, the crew chief realizes that they did not bring enough trim paint for
the woodwork. The crew chief can tell one of the crew members to go to the
paint store to order and wait for more trim paint to be custom mixed to the
appropriate color, while the rest of the crew continues to paint the walls. When
the crew member finally returns with the trim paint, some members of the crew
can switch to painting the woodwork in those rooms where the walls have
dried.

There are quite a few scenarios in the programming world that involve potential
wait times: requests for file or network input/output (I/O), Web access, and so
forth. You can use asynchronous techniques in your applications in these
scenarios to allow users to remain productive.

Introduction

Definition

Example of
asynchronous scenarios

4 Module 7: Asynchronous Programming

Demonstration: Comparing Synchronous and Asynchronous
Versions of an Application

In this demonstration, you will be able to compare
the user experience in synchronous and
asynchronous versions of the Expense Report
application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you see a comparison of the user experience in
synchronous and asynchronous versions of the Expense Report application.

� To demonstrate the synchronous behavior of the Expense Report
application

1. Run the synchronous version of the Expense Report application,
ExpenseReport.exe, in install_folder\Democode\Mod07\Mod07_01\Sync.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. In the main application window, click the View Submitted Reports button.
3. Notice that the application is not responsive while the XML Web service is

being called. You can test this by trying to move the main application
window, or by trying to minimize the main application window before the
expense report list window opens.

4. After the expense report list window opens, close the application.

Introduction

Instructions

Note

 Module 7: Asynchronous Programming 5

� To demonstrate the asynchronous behavior of the Expense Report
application

1. Run the asynchronous version of the Expense Report application,
ExpenseReport.exe, in install_folder\Democode\Mod07\Mod07_01\Async.

2. On the main application window, click the View Submitted Reports
button.

3. Notice that the application is responsive while the XML Web service is
being called. You can test this by moving the splitter control in the expense
report list window, or by minimizing the main application window.

4. After data is loaded in the expense report list window, close the application.

6 Module 7: Asynchronous Programming

Asynchronous Programming Support in the .NET Framework

� A design pattern for asynchronous programming
� Used by the .NET Framework to make asynchronous

calls uniform across different parts of the framework
� User-created classes that support asynchronous calls

should conform to this design pattern
� Asynchronous support is provided in many of the

logical areas
� I/O, sockets, networking, ASP.NET and XML Web

services, messaging, and asynchronous delegates
� Implementation is transparent, call the appropriate

methods and let the NET Framework handle the details

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides a design pattern for asynchronous programming
and built-in support for many areas which often involve making complex calls
that take a considerable amount of time to complete.

The .NET Framework provides a design pattern that makes asynchronous calls
uniform across the different parts of the .NET Framework.

Classes that include built-in support have a pair of asynchronous methods for
each synchronous method they contain. For example, if you want to read from a
stream synchronously, you use the Read method of the System.IO.Stream
class. If, however, you want to make the call asynchronously, then you would
instead use the BeginRead and EndRead methods of the System.IO.Stream
class.

In addition, the .NET Framework makes the details of threading that support
asynchronous programming mechanisms largely transparent to the developer.

For more information about using the support provided for asynchronous
programming by the .NET Framework in your applications, see the lesson The
Asynchronous Programming Model Design Pattern in this module.

Introduction

Support provided by the
.NET Framework

 Module 7: Asynchronous Programming 7

Lesson: The Asynchronous Programming Model Design
Pattern

Choose
completion
mechanism

Asynchronous?
NO

YES

// ...
// ... call Operation
// ... wait for return
// ... continue processing
// ...

// ...
// ... call Operation
// ... wait for return
// ... continue processing
// ...

// ...
// ... call BeginOperation
// ... operation begun on
// another thread
// ... continue with other
// processing
// ... receive results
// ... process results
// ...

// ...
// ... call BeginOperation
// ... operation begun on
// another thread
// ... continue with other
// processing
// ... receive results
// ... process results
// ...

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The asynchronous programming model design pattern provides a consistent and
type-safe way to call methods asynchronously. This lesson concentrates on how
to make asynchronous calls to classes that contain built-in asynchronous
support. In the lesson How to Make Asynchronous Calls to Any Method, you
will learn about the additional steps you must take to make asynchronous calls
to classes that do not contain built-in asynchronous support.

After completing this lesson, you will be able to:

� Describe the asynchronous programming model design pattern.
� List the four ways to be notified of completion and describe appropriate

scenarios for each way.
� List the steps for using asynchronous callback as the notification method.
� Modify a client application to use built-in .NET Framework support for

asynchronous calls to methods.

Introduction

Lesson objectives

8 Module 7: Asynchronous Programming

Overview of the Asynchronous Programming Model Design Pattern

� Caller decides whether a particular call should be asynchronous

� Asynchronous operation logically split into two parts
1. Client begins the operation by calling the BeginOperation method
2. Client notified that operation is complete and receives results

Completion TechniqueCompletion TechniqueCompletion Technique

Use a callbackUse a callback

CommentsCommentsComments

Supply a callback delegate, method will be
called when operation completes
Supply a callback delegate, method will be
called when operation completes

PollPoll Poll the IAsyncResult interface’s
IsCompleted property
Poll the IAsyncResult interface’s
IsCompleted property

Call the EndOperation
method
Call the EndOperation
method

Call the EndOperation method and block till
operation completes
Call the EndOperation method and block till
operation completes

Wait on a handleWait on a handle Wait on IAsyncResult interface’s WaitHandle
property, then call EndOperation method
Wait on IAsyncResult interface’s WaitHandle
property, then call EndOperation method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the innovations provided by the asynchronous design pattern is that the
caller can decide whether a particular call should be asynchronous.

After you determine that you want to make an asynchronous call to one of the
classes that provides built-in asynchronous support, you simply make a call to
the class’s appropriate BeginOperation method and determine what method you
want to use to complete the call. The call to BeginOperation returns an object
implementing this IAsyncResult interface. Depending on the completion
technique used, this object may be used to help complete or get information
about the asynchronous operation.

You must also determine how you want your application to be notified of the
completion of the asynchronous call and to receive the results (if any) of the
call.

When you want to avoid blocking the thread that made the asynchronous call,
use a callback method to be notified of the asynchronous call completion.

This is the technique most appropriate when you want to avoid blocking user
interaction, for example in Windows Forms applications, or in other heavily
event-driven processing scenarios. For this reason the remainder of this lesson
will focus on using this technique.

When you use a callback, you typically call the EndOperation method,
described later in this topic, inside the callback method to retrieve the results of
the asynchronous operation.

If you want to maintain complete control over the flow of the application, then
you can use a polling method. When using this technique, you will incur the
overhead of manually checking the returned IAsyncResult interface’s
IsCompleted property to determine if the call is completed.

This technique is typically not appropriate for event-driven or user interaction
scenarios.

Introduction

Beginning the operation

Receiving completion
notification and results

Callback

Polling

 Module 7: Asynchronous Programming 9

The EndOperation technique can be used when you have a finite amount of
work to be done on the main thread that is not dependent on the asynchronous
call. After that work is done and your application must receive the results of the
asynchronous operation before it can do any further meaningful work, you can
call the EndOperation method to block until the asynchronous operation
completes.

Be aware that an EndOperation might block forever if the asynchronous call
never completes due to a network or server failure. Therefore, the wait on a
handle technique might be more appropriate to use in certain situations.

With the wait on a handle technique, you can specify a maximum time-out to
wait for an asynchronous operation to complete. You can also use the
System.Threading.WaitHandle.WaitAll method to wait on multiple
asynchronous operations and be notified when they have all completed.

For more information about using the polling and wait on a handle techniques,
see Module 14, “Threading and Asynchronous Programming” in Course
2349B, Programming with the Microsoft .NET Framework (Microsoft Visual
C# .NET).

EndOperation

Wait on a handle

10 Module 7: Asynchronous Programming

Using the Design Pattern with an Asynchronous Callback for
Completion

Create the asynchronous callback delegateCreate the asynchronous callback delegate

Callback Delegate{

Main thread

Inside the callback, invoke the EndOperation method to notify that
asynchronous work is complete and to return results
Inside the callback, invoke the EndOperation method to notify that
asynchronous work is complete and to return results

EndOperation
}

Return control to the main thread and update UIReturn control to the main thread and update UI

Update UI

Invoke the BeginOperation method, passing it the callback delegateInvoke the BeginOperation method, passing it the callback delegate

Thread from thread pool

BeginOperation
{…}

Get reportsGet reports

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before providing the details of the code used for making an asynchronous call
with an asynchronous callback for completion, it is useful to provide an
overview of the process.

When you use the callback as the completion technique, there are four main
steps in the process:

1. To set up for the asynchronous call, create an asynchronous delegate that
points to the callback method you want to have invoked when the
asynchronous operation completes.
A delegate is an object that you can use to call the methods of other objects.
In other words, a delegate is an object-oriented, type-safe, secure way to
provide the functionality of a function pointer in the .NET Framework.

2. Wherever appropriate in your application, initiate the asynchronous call by
invoking the appropriate BeginOperation method, passing it the
asynchronous delegate.

3. Inside the callback, invoke the appropriate EndOperation method to retrieve
results, if appropriate.

4. Return control to the main thread to update the user interface.

The remaining topics in this lesson provide the programming details related to
these steps.

Introduction

Process: Using
asynchronous callbacks
for completion

Definition

 Module 7: Asynchronous Programming 11

How to Set Up and Initiate the Call

Create the asynchronous callback delegateCreate the asynchronous callback delegate

Invoke the BeginOperation method, passing it the callback delegateInvoke the BeginOperation method, passing it the callback delegate

AsyncCallback delCB = new AsyncCallback(
this.AsyncCB);

AsyncCallback delCB = new AsyncCallback(
this.AsyncCB);

Asynchronous callback delegate

WS.BeginGetReportsForEmployee(
username, pwdToken,
RecordCursor, 10, TotalNumRecords,
delCB, null);

WS.BeginGetReportsForEmployee(
username, pwdToken,
RecordCursor, 10, TotalNumRecords,
delCB, null);

Invoke the BeginOperation method

Callback delegate is passed in to the
BeginOperation method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An appropriate scenario for using a callback to notify completion and return
results of an asynchronous call is calling a method of an XML Web service to
obtain information for a Windows Forms application.

1. Set up the asynchronous call by creating an asynchronous delegate that
points to the callback method that you want to have invoked when the
asynchronous operation completes, in this case the AsyncCB method of the
form from which you make the call.
AsyncCallback delCB = new AsyncCallback(
 this.AsyncCB);
Notice that part of the .NET Framework support provided for asynchronous
programming is the AsyncCallback delegate class. The signature for a
method referred to by an AsyncCallback delegate is as follows.
void AsyncCB (IAsyncResult ar);
For more information about the AsyncCallback delegate, search for
AsyncCallback delegate in the Microsoft Visual Studio® .NET Help
documentation.

2. Initiate the asynchronous call by invoking the BeginOperation method, in
this case WS.BeginGetReportsForEmployee, and passing it the callback
delegate, in this case, delCB. Notice that the callback delegate is always
passed in as the next to the last parameter.
WS.BeginGetReportsForEmployee(
 username, pwdToken,
 RecordCursor, 10, TotalNumRecords,
 delCB, null);

Introduction

Procedure: Setting up
and initiating the call

12 Module 7: Asynchronous Programming

The final parameter of the BeginInvoke method is of type System.Object and
is for user data. This user data is passed into the callback when the operation is
completed in the AsyncState property of the IAsyncResult parameter of the
callback.

The .NET Framework will take care of allocating a thread from the thread pool
to run the code in the GetReportsForEmployee method and, when it
completes, will call the method pointed to by delCB (AsyncCB).

 Module 7: Asynchronous Programming 13

How to Receive Completion Notification and Results

Inside the callback, invoke the EndOperation method to retrieve the
results of the asynchronous call
Inside the callback, invoke the EndOperation method to retrieve the
results of the asynchronous call

// Inside the callback method, AsyncCB, call
// EndOperation to get results of the async call

void AsyncCB (IAsyncResult ar)
{

...
DataSet ds = WS.EndGetReportsForEmployee(

ar, out TotalNumRecords);
...

}

// Inside the callback method, AsyncCB, call
// EndOperation to get results of the async call

void AsyncCB (IAsyncResult ar)
{

...
DataSet ds = WS.EndGetReportsForEmployee(

ar, out TotalNumRecords);
...

}

Invoke EndOperation method

Receive results

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After the method that you called asynchronously has completed its work, the
.NET Framework calls the asynchronous callback delegate that you designated.

• Inside the asynchronous callback delegate, call the appropriate
EndOperation method and return any results.
// Inside the callback method, AsyncCB, call
// EndOperation to get the results of the async call

void AsyncCB (IAsyncResult ar)
{
 ...
ExpRepDataSet = WS.EndGetReportsForEmployee(
 ar, out TotalNumRecords);
 ...

}

If the asynchronous operation throws an exception, it will be returned from the
call to the EndOperation method.

Introduction

Procedure: Receiving
completion notification
and results

Exceptions

14 Module 7: Asynchronous Programming

How to Return Control to the Main Thread

Return control to the main threadReturn control to the main thread

//Switch back to main thread to update the UI
//First, create a MethodInvoker delegate for
//the method to be called
MethodInvoker mi = new MethodInvoker(

this.UpdateUI);

// Use the current form’s BeginInvoke to
// invoke the delegate
this.BeginInvoke(mi);

//Switch back to main thread to update the UI
//First, create a MethodInvoker delegate for
//the method to be called
MethodInvoker mi = new MethodInvoker(

this.UpdateUI);

// Use the current form’s BeginInvoke to
// invoke the delegate
this.BeginInvoke(mi);

In Windows Forms applications, any calls to methods
or properties for controls on the form must be done
on the main thread

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In Windows Forms applications, any changes to properties for controls on
forms must be done on the main thread. Methods and properties for controls
cannot be safely accessed from any other thread.

To return control to the main thread:

1. From inside the callback, switch back to the main thread.
//Switch back to main thread to update UI
//First, create a MethodInvoker delegate for
//the method to be called

MethodInvoker mi = new MethodInvoker(
 this.UpdateUI);
The .NET Framework provides a MethodInvoker delegate class that you
can use to call generic methods. In the previous code sample, you create a
delegate that refers to the UpdateUI method in the current object. The
signature for a method referred to by a MethodInvoker delegate is as
follows.
void UpdateUI();

2. Update the user interface.
//Use the current form’s BeginInvoke to
//invoke the delegate.

this.BeginInvoke(mi);
This call to the form’s BeginInvoke method will cause the method referred
to by mi to be called on the main thread and therefore update the user
interface (UI) safely. By calling the BeginInvoke method instead of the
Invoke method, the worker thread used to make the asynchronous call
returns to the thread pool faster, thus avoiding exhaustion of threads in the
thread pool.

Introduction

Procedure: Returning
control to the main
thread

 Module 7: Asynchronous Programming 15

Animation: Making an Asynchronous Call to an XML Web Service

In this animation, you will see how an
object makes an asynchronous call to
an XML Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how an object makes an asynchronous call to an
XML Web service.

A Microsoft Windows Forms client application calls an XML Web service to
retrieve and change information about expense reports. The XML Web service
provides a SubmitReport method that takes an expense report, validates it, and
adds it to the database of expense reports.

When a Web service reference is added to a Microsoft Visual Studio .NET
project, a client proxy class for the XML Web service is generated. In addition
to the synchronous SubmitReport method, the proxy includes the
asynchronous BeginSubmitReport and EndSubmitReport methods.

A callback method named SubmitReportCallback is used as the callback
method for the asynchronous operation. The asynchronous operation is started
by calling the proxy’s BeignSubmitReport method, passing a delegate object
that refers to the callback method. When the BeginSubmitReport method is
called, it calls the SubmitReport method on another thread from the runtime’s
thread pool and returns immediately to the caller. The client is free to continue
executing other code and the user interface remains responsive.

When the SubmitReport method completes, the callback method is invoked.
The callback method invokes the EndSubmitReport method to retrieve the
results of the XML Web service call. If the SubmitReport method completed
successfully, the EndSubmitReport method returns the results; otherwise, an
exception is thrown in the EndSubmitReport method for the callback to
handle.

16 Module 7: Asynchronous Programming

The application displays the results of the XML Web service call by using the
UpdateUI method. The UpdateUI method manipulates controls to show the
results. Controls can only be called safely from the application’s main thread.
The callback method is not executing on the application’s main thread, and
therefore cannot call the UpdateUI method directly.

Instead, it calls the form’s thread-safe BeginInvoke method, passing it a
delegate to the UpdateUI method. BeginInvoke then executes this method on
the main thread.

 Module 7: Asynchronous Programming 17

Practice: Making an Asynchronous Call to an XML Web Service

In this practice, you will
� Observe the behavior of the version of the

Expense Report application that makes
synchronous calls to the XML Web service

� Modify the Expense Report application so
that it makes asynchronous calls to the
XML Web service

� Rebuild the application and observe how
the behavior of the Expense Report
application has changed

15 min
Begin reviewing the objectives for

this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will convert a synchronous XML Web service call to an
asynchronous XML Web service call.

� Observe the synchronous version of the Expense Report application
1. Open the Mod07Practice.sln solution file in

install_folder\Practices\Mod07\Mod07_01\Starter.
2. Open the MainForm.cs file and view the code.
3. Build the project and run the application.
4. Click Call Web Service. While the XML Web service call is happening,

click the minimize button to try to minimize the application. Notice that the
application is not responsive. It will not minimize until the XML Web
service call completes.

5. Click Exit to quit the application.

� Modify the Expense Report application to make asynchronous calls
1. Show TODO comments in the Task List.

To show TODO comments, on the View menu, point to Show Tasks, and
then click All.

2. Find the first TODO comment in the code. Add the code to instantiate an
AsyncCallback delegate that refers to the WebserviceCallback method of
this class.
AsyncCallback asyncCB = new AsyncCallback(
 this.WebserviceCallback);

Introduction

Instructions

18 Module 7: Asynchronous Programming

3. Find the next TODO comment. Add the code to begin the call to the XML
Web service.
WS.BeginGetReportsForEmployee(null, null, 0, 10,
 TotalReports, asyncCB, null);

4. Find the next TODO comment and uncomment the line of code below the
TODO comment.

5. Find the next two TODO comments. Comment out the rest of the code (the
synchronous code) in the method.

6. Find the next TODO comment. Add the code to finish the call to the XML
Web service.
ExpenseReports = WS.EndGetReportsForEmployee(result,
 out TotalReports);

7. Find the next TODO comment. Add the code to instantiate a
MethodInvoker delegate that points to the UpdateUI method of this class.
MethodInvoker mi = new MethodInvoker(this.UpdateUI);

8. Find the next TODO comment. Add the code to call BeginInvoke on this
form, passing the MethodInvoker delegate created in step 6.
this.BeginInvoke(mi);

9. Save your files and build the project.

� Observe how the Expense Report application behavior has changed
1. Run the application.
2. Click Call Web Service. After the message Async: Calling web service...

appears, try to minimize the window. Notice that the UI is still responsive
during the call to the XML Web service.

3. Click Exit to quit the application.
4. Set breakpoints in the CallBtn_Click, WebserviceCallback, and

UpdateUI methods. Rerun the application to see the flow of control of the
asynchronous operation.

 Module 7: Asynchronous Programming 19

Lesson: How to Make Asynchronous Calls to Any Method
� Overview of How to Make Asynchronous Calls to

Any Method
� How to Create the Asynchronous Delegate
� How to Initiate the Asynchronous Call
� How to Complete the Asynchronous Call
� How to Return Control to the Main Thread and

Update the UI
� Demonstration: Using Asynchronous Delegates

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is not necessary for a called object to provide explicit support for
asynchronous calls. The .NET Framework provides services required for you to
call any method asynchronously.

After completing this lesson, you will be able to:

� Describe how to make asynchronous calls to any method.
� Explicitly create and call asynchronous delegates.

Introduction

Lesson objectives

20 Module 7: Asynchronous Programming

Overview of How to Make Asynchronous Calls to Any Method

� Initiate the call
� Complete the call
� Return data (if applicable) and control to the main

thread

You must explicitly create and call a delegate for the method
that you want to invoke
You must explicitly create and call a delegate for the method
that you want to invoke

Follow the design pattern for asynchronous programmingFollow the design pattern for asynchronous programming

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you make asynchronous calls to classes that contain built-in support for
asynchronous programming, such as XML Web services and stream I/O, the
compiler creates asynchronous delegates and their BeginOperation and
EndOperation methods for you.

When you want to asynchronously call methods in classes without built-in
support, you must explicitly create and call the delegate for the method that you
want to invoke.

A delegate is an object-oriented, type-safe, secure way to provide the
functionality of a function pointer in the .NET Framework. Asynchronous
delegates allow you to call a synchronous method in an asynchronous manner.

After creating the asynchronous delegate, you then follow the same process that
you would use for making asynchronous calls to classes with built-in support:

1. Choose the completion mechanism that you want to use and do any setup
the completion mechanism requires.

2. Initiate the asynchronous call.
3. Receive the completion notification and any results.
4. Return control to the main thread and update the UI, as appropriate.

Techniques for protecting state and data is covered in the topic How to Protect
State and Data in a Multithreaded Environment in this module.

Introduction

Explicitly create the
asynchronous delegate

Definition

Follow design pattern
for asynchronous
programming

 Module 7: Asynchronous Programming 21

How to Create the Asynchronous Delegate

Declare the delegateDeclare the delegate

Instantiate the delegate, passing in the method that the delegate
points to
Instantiate the delegate, passing in the method that the delegate
points to

public delegate int CalcDelegate(
int startingValue,
int interestRate);

public delegate int CalcDelegate(
int startingValue,
int interestRate);

Delegate keyword
The delegate's
signature matches
that of the method it
will point to

//Instantiate class that contains method delegate points to
TotalReturnCalc tr = new TotalReturnCalc();
//Instantiate the delegate, passing it the method to call
CalcDelegate cd = new CalcDelegate(tr.CalculateReturn);

//Instantiate class that contains method delegate points to
TotalReturnCalc tr = new TotalReturnCalc();
//Instantiate the delegate, passing it the method to call
CalcDelegate cd = new CalcDelegate(tr.CalculateReturn);

The method that you want the
delegate to point to

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have explicitly declared an asynchronous delegate, you can use the
asynchronous methods of a delegate object created for you by the compiler. The
.NET Framework will still make the threading infrastructure necessary for
asynchronous programming transparent to you.

To declare the delegate, use the delegate keyword.

public delegate int CalcDelegate(
 int startingValue,
 int interestRate);

The previous code declares a delegate to a method that returns an integer and
takes two integers as parameters.

Because Microsoft Visual C#™ and Microsoft Visual Basic® .NET compilers
support asynchronous delegates, they generate the Invoke method and the
BeginInvoke and EndInvoke methods when you declare the delegate.

Use the Invoke method if you want to call the target method synchronously.

Use the BeginInvoke method to call the target method asynchronously. The
runtime queues the request and returns immediately to the caller. The target
method will be called on a thread from the thread pool. The original thread that
submitted the request is free to continue executing in parallel to the target
method, which is running on a thread pool thread.

If a callback has been specified on BeginInvoke, it is called when the target
method returns. In the callback, the EndInvoke method is used to obtain the
return value and the in/out parameters. If the callback is not specified on
BeginInvoke, you can use the other asynchronous design pattern techniques,
for example, polling, on the original thread that submitted a request.

Introduction

Procedure: Declaring
the delegate

22 Module 7: Asynchronous Programming

Instantiate the class that contains the method that the delegate will point to.

TotalReturnCalc tr = new TotalReturnCalc();

Then instantiate the delegate, passing in the method it points to.

CalcDelegate cd = new CalcDelegate(tr.CalculateReturn);

Procedure: Instantiating
the delegate

 Module 7: Asynchronous Programming 23

How to Initiate the Asynchronous Call

Create the delegate to the callback methodCreate the delegate to the callback method

Call the BeginInvoke methodCall the BeginInvoke method
� When using a callback method, pass in the delegate for the callback

method
� Returns an object implementing IAsyncResult

// create AsyncCB delegate to callback method
AsyncCallback cb = new AsyncCallback(this.ResultsCB);

// call BeginInvoke to asynchronously call the method
IAsyncResult ar = cd.BeginInvoke(startVal, intRate, cb, null);

// create AsyncCB delegate to callback method
AsyncCallback cb = new AsyncCallback(this.ResultsCB);

// call BeginInvoke to asynchronously call the method
IAsyncResult ar = cd.BeginInvoke(startVal, intRate, cb, null);

Method that will receive the
callback notification

Callback delegate passed in to BeginInvoke

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Using a callback method as the completion mechanism is most appropriate for
Windows Forms applications. To use the callback method, you must create a
delegate to safely invoke it.

To create the delegate that allows you to call the callback method, instantiate an
AsyncCallback object:

AsyncCallback cb = new AsyncCallback(this.ResultsCB);

In the code example above, this refers to the object from which you are making
the asynchronous call. Alternatively, the method that handles the callback could
be in a different object, if necessary for your scenario.

To call the BeginInvoke method, pass the callback delegate, named cb in the
code example, to the BeginInvoke method as the second to last parameter.

IAsyncResult ar = cd.BeginInvoke(startVal, intRate, cb,
 null);

The final parameter of the BeginInvoke method is of type System.Object and
is for user data. This user data is passed into the callback when the operation is
completed in the AsyncState property of the IAsyncResult parameter of the
callback.

Introduction

Procedure: Creating the
delegate to the callback
method

Procedure: Calling the
BeginInvokemethod

24 Module 7: Asynchronous Programming

How to Complete the Asynchronous Call

Call the EndInvoke methodCall the EndInvoke method
� Returns a return value or a data structure that includes a return value

//inside the callback method called ResultsCB
void ResultsCB(IAsyncResult ar)
{

...
int result = cd.EndInvoke(ar);
...

}

//inside the callback method called ResultsCB
void ResultsCB(IAsyncResult ar)
{

...
int result = cd.EndInvoke(ar);
...

}

Use EndInvoke to return results

Update the UI to reflect the results of the operationUpdate the UI to reflect the results of the operation
When using Windows Forms, this involves returning control back
to the main UI thread because Windows Forms can only be safely
called from the main thread

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When the asynchronous operation completes, the .NET Framework calls your
callback method. Your callback method, in turn, calls the EndInvoke method
to notify the caller of completion. For Windows Forms applications, you must
return control to the main thread before updating the user interface.

You can call the EndInvoke method to retrieve the results of the operation.

int result = cd.EndInvoke(ar);

If the asynchronous operation throws an exception, it will be returned from the
call to the EndInvoke method.

In Windows Forms applications, you must return control to the main thread
before updating the user interface.

Introduction

Procedure: Calling the
EndInvoke method

Exceptions

Updating the UI

 Module 7: Asynchronous Programming 25

How to Return Control to the Main Thread and Update the UI

Instantiate a MethodInvoker delegate for the UI update methodInstantiate a MethodInvoker delegate for the UI update method

Asynchronously call the MethodInvoker delegateAsynchronously call the MethodInvoker delegate

// Use BeginInvoke to call the MethodInvoker, because
// it returns worker thread to thread pool faster

this.BeginInvoke(mi);

// Use BeginInvoke to call the MethodInvoker, because
// it returns worker thread to thread pool faster

this.BeginInvoke(mi);

//Switch back to main thread before updating UI

MethodInvoker mi = new MethodInvoker(this.UpdateUI);

//Switch back to main thread before updating UI

MethodInvoker mi = new MethodInvoker(this.UpdateUI);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As with the design pattern discussed in the previous lesson, you use the
MethodInvoker delegate to transfer control to the main thread.

MethodInvoker mi = new MethodInvoker(this.UpdateUI);

this.BeginInvoke(mi);

By calling the UpdateUI method asynchronously, by using BeginInvoke
instead of Invoke, the worker thread used to make the asynchronous call
returns to the thread pool faster, thus promoting better application performance.

Notice that this step is necessary only if the UI in a Windows Forms application
must be updated. Also notice that all of the steps after creating the delegate are
the same in this case as they are in the case in which a delegate is not used.

Introduction

Procedure: Instantiating
a MethodInvoker
delegate

Procedure: Invoking the
MethodInvoker delegate
asynchronously

26 Module 7: Asynchronous Programming

Demonstration: Using Asynchronous Delegates

In this demonstration, you will see how
to call any method asynchronously
from a Windows Forms application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to call a method asynchronously from a
Windows Forms application.

� To view the code for the application
1. Open the AsyncDelegates.sln solution file in

install_folder\Democode\Mod07\Mod07_02\AsyncDelegates.
2. Open the Class1.cs source file and view the code.
3. Notice the FactorizeDelegate declaration near the top of the file. This

shows an example of a delegate declaration.
4. Notice the Factorize method in the PrimeFactorizer class. This is the

method the delegate will refer to and invoke asynchronously.
5. Notice the FactorizeNumber method in the Simple class. This is the

method that instantiates a PrimeFactorizer object, then instantiates a
delegate referring to the Factorize method in that class. Then it calls
BeginInvoke on the delegate.

6. Notice the FactorizedResults method in the Simple class. This is the
callback method that is invoked when the asynchronous operation
completes.

� To view the flow of control as the application executes
1. Set breakpoints at the top of the Factorize, FactorizeNumber, and

FactorizedResults methods.
2. Run the application, noticing the flow of control between the three methods

mentioned above.

Introduction

 Module 7: Asynchronous Programming 27

Lesson: Protecting State and Data in a Multithreaded
Environment

� How to Protect State and Data in a Multithreaded
Environment

� Demonstration: Protecting State and Data in a
Multithreaded Environment

*****************************ILLEGAL FOR NON-TRAINER USE******************************

No synchronization is the default for objects. Therefore, when you use
asynchronous programming techniques, you must consider how to protect state
and data in this multithreaded environment.

After completing this lesson, you will be able to describe techniques to protect
state and data in a multithreaded environment.

Introduction

Lesson objective

28 Module 7: Asynchronous Programming

How to Protect State and Data in a Multithreaded Environment

� Automatic synchronization
Potential overhead incurred

� Synchronized code region
Monitor class

� Manual synchronization
� Mutex class
� ReaderWriterLock class
� Interlocked.Increment and Interlocked.Decrement

methods
� Design applications to try to minimize synchronization

needs

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For many Windows Forms applications, little state protection code may be
necessary, because most access of object state happens on the main thread.
However, this will not be the case for every application. The
System.Threading namespace provides classes and interfaces for
synchronizing access to data to provide thread safety.

You can use the SynchronizationAttribute on any class that is derived from
ContextBoundObject to synchronize all instance methods and fields. All
objects in the same context domain share the same lock. Multiple threads are
allowed to access the instance methods and fields, but only a single thread is
allowed at any one time. Static members are not protected from concurrent
access by multiple threads.

Using automatic synchronization can incur more overhead than using
manual synchronization techniques.

Another technique that you can use is a compiler keyword to synchronize
blocks of code, instance methods, and static methods. In Visual C#, the
keyword is lock. This keyword uses the Monitor class to lock the object.

When you use the lock keyword, the compiler generates code. The Visual C#
compiler emits a try/finally block with Monitor.Enter at the beginning of the
try, and Monitor.Exit in the finally block. If an exception is thrown inside of
the lock block, the finally handler runs to allow you to perform any clean-up
work.

Introduction

Automatic
synchronization

Note

Synchronized code
regions

 Module 7: Asynchronous Programming 29

The C# statement, of the form lock(x) where x is an expression of a reference-
type, is equivalent to the following except that x is evaluated only once:

System.Threading.Monitor.Enter(x);
try {
 ...
}
finally {
 System.Threading.Monitor.Exit(x);
}

The lock keyword marks a statement block as a critical section.

lock(expression) statement_block,

where expression specifies the object that you want to lock on. expression must
be a reference type.

Typically, expression is this if you want to protect an instance variable, or
typeof(class) if you want to protect a static variable or if the critical section
occurs in a static method in the specified class. The statement_block includes
the statements of the critical section.

For example, to synchronize access in a static method:

using System;
using System.Threading;

class Cache
{
 public static void Add(object x)
 {
 // method code that doesn't require exclusive access
 lock (typeof(Cache))
 {
 // code requiring exclusive access to static data
 }
 // method code that doesn't require exclusive access
 }
}

Or, to synchronize access in an instance method:

class Counter
{
 public override int Read(int threadNum)
 {
 // ...
 // method code that doesn't require exclusive access
 lock(this)
 {
 // code requiring exclusive access to instance data
 }
 // method code that doesn't require exclusive access
 }
}

30 Module 7: Asynchronous Programming

You can use the Monitor, Interlocked, Mutex, ManualResetEvent,
AutoResetEvent, and ReaderWriterLock classes to acquire and release a lock
to protect global, static, and instance fields and global, static, and instance
methods.

For many UI-based applications, little or no special synchronization code is
required. All of the changes of the UI must happen on the main application
thread, so this usually forces synchronous access to state information. Also,
careful enabling and disabling of UI elements can prevent the application from
getting into an undefined state. For example, the Expense Reporting sample
application enables and disables buttons as asynchronous XML Web service
calls are made to prevent threading-related problems. Therefore, no special
synchronization code is required in the Expense Reporting application, other
than the use of MethodInvoker delegates to switch control to the main thread
upon completion of asynchronous calls.

For more information about synchronization techniques, see Module 14,
“Threading and Asynchronous Programming” in Course 2349B, Programming
with the Microsoft .NET Framework (Microsoft Visual C# .NET).

Manual synchronization

Designing applications
to minimize
synchronization needs

 Module 7: Asynchronous Programming 31

Demonstration: Protecting State and Data in a Multithreaded
Environment

In this demonstration, you will see how
to protect state and data by using a
synchronized code region

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to protect state and data by using a
synchronized code region.

� To view the code for the ThreadSafety application
1. Open the ThreadSafety.sln solution file in install_folder\Democode\Mod07

\Mod07_03\ThreadSafety.
2. Open the Class1.cs source file and view the code.
3. Notice the Read method in the CounterUnsafe class.

This method reads the count member variable twice, with a delay in
between the two readings. If other threads change the value of count during
that interval, two different values will be read.

4. Notice the Increment method in the CounterUnsafe class.
This method increments the count variable, with a long delay between when
it reads the value of count and writes the updated value of count. If other
threads try to update the value of count during this interval, the value of
count written by this method overwrites the results of other calls.

5. Notice the Read method in the CounterUsingLock class.
This method reads the count variable twice, with a delay in between the two
readings. However, this method accesses count in a lock code block, so the
value of count will not change between the two readings.

6. Notice the Increment method in the CounterUsingLock class.
This method increments the count variable, with a long delay between when
it reads the value of count and writes the updated value of count. However,
this method accesses count in a lock code block, so the value of count
cannot be changed while this method accesses it.

Introduction

32 Module 7: Asynchronous Programming

� To run the application and view the output
1. To open the Visual Studio .NET command prompt, click Start, point to All

Programs, point to Microsoft Visual Studio .NET, point to Visual Studio
.NET Tools, and then click Visual Studio .NET Command Prompt.

2. Change directories to install_folder\Democode\Mod07\
Mod07_03\ThreadSafety\bin\debug. Run the application ThreadSafety.exe
from the command line.

3. View the output of the test. The output should look similar to the following.
Unsafe test:
Start Resource writing (Thread=0) count: 0
Stop Resource writing (Thread=0) count: 1
Start Resource reading (Thread=1)count: 1
Stop Resource reading (Thread=1) count: 1
Start Resource writing (Thread=2) count: 1
Stop Resource writing (Thread=2) count: 2
Start Resource reading (Thread=3)count: 2
Stop Resource reading (Thread=3) count: 2
Start Resource writing (Thread=4) count: 2
Stop Resource writing (Thread=4) count: 3
Start Resource reading (Thread=5)count: 3
Start Resource writing (Thread=6) count: 3
Stop Resource reading (Thread=5) count: 3
Start Resource reading (Thread=7)count: 3
Stop Resource reading (Thread=7) count: 3
Start Resource writing (Thread=8) count: 3
Stop Resource writing (Thread=6) count: 4
Start Resource reading (Thread=9)count: 4
Stop Resource reading (Thread=9) count: 4
Stop Resource writing (Thread=8) count: 4
All Unsafe threads have completed.
Lock test:
Start Resource writing (Thread=0) count: 0
Stop Resource writing (Thread=0) count: 1
Start Resource reading (Thread=1)count: 1
Stop Resource reading (Thread=1) count: 1
Start Resource writing (Thread=2) count: 1
Stop Resource writing (Thread=2) count: 2
Start Resource reading (Thread=3)count: 2
Stop Resource reading (Thread=3) count: 2
Start Resource writing (Thread=4) count: 2
Stop Resource writing (Thread=4) count: 3
Start Resource reading (Thread=5)count: 3
Stop Resource reading (Thread=5) count: 3
Start Resource writing (Thread=6) count: 3
Stop Resource writing (Thread=6) count: 4
Start Resource reading (Thread=7)count: 4
Stop Resource reading (Thread=7) count: 4
Start Resource writing (Thread=8) count: 4
Stop Resource writing (Thread=8) count: 5
Start Resource reading (Thread=9)count: 5
Stop Resource reading (Thread=9) count: 5
All Lock threads have completed.

 Module 7: Asynchronous Programming 33

Notice that although Increment was called five times for the unsafe test, the
value of the counter never reaches five. Also, the start and stop notifications
are interspersed among different threads. In the lock version, the start and
stop notifications are paired for each thread, and the counter is correctly
incremented to five.

34 Module 7: Asynchronous Programming

Review

� The .NET Asynchronous Programming Model

� The Asynchronous Programming Model Design Pattern

� How to Make Asynchronous Calls to Any Method

� Protecting State and Data in a Multithreaded
Environment

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. When and why would you use asynchronous programming techniques in an
application?
You should use asynchronous programming techniques in an
application with significant user interaction to avoid blocking the user
interface during slow method calls, such as XML Web service calls.

2. In a Windows Forms application, what are the main steps to follow to use
the asynchronous programming design pattern with an asynchronous
callback for completion?
The main steps are:
1. Create the asynchronous callback delegate.
2. Invoke the BeginOperation method, passing it the callback.
3. Inside the callback, invoke the EndOperation method for

completion.
4. Return control to the main thread and update the user interface.

 Module 7: Asynchronous Programming 35

3. List the four ways to complete an asynchronous call.
Four ways to complete the asynchronous call are:

• Using a callback

• Polling

• Calling EndOperation

• Waiting on a handle

4. Why do you need to return control to the main thread before updating the UI
in Windows Forms applications?
You need to return control to the main thread before updating the UI
because Windows Forms controls can be safely accessed only from the
main thread.

5. What additional step must you follow to asynchronously call a method of
any class?
When you want to asynchronously call methods in classes without built-
in asynchronous support, you must explicitly create the delegate for the
method you want to invoke. After that, follow the same steps required
to asynchronously call methods in a class with built-in asynchronous
support.

6. If an asynchronous operation throws an exception, when does your code
receive the exception?
The exception is thrown when the EndOperation method is called.

7. What keyword is provided by the C# language for controlling access by
multiple threads to a block of code?
The C# language provides the lock keyword to control access by
multiple threads to a block of code.

36 Module 7: Asynchronous Programming

Lab 7.1: Making Asynchronous Calls to an XML Web
Service

Exercise 1: Converting Synchronous Calls to
Asynchronous Calls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Make asynchronous calls by using the .NET Framework asynchronous
design pattern.

� Convert synchronous calls to asynchronous calls by using the .NET
Framework asynchronous design pattern.

� Use the Visual Studio .NET debugger to follow the flow of asynchronous
calls.

This lab focuses on the concepts in Module 7, “Asynchronous
Programming,” in Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET). As a result, this lab may not comply with Microsoft
security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to debug an application by using
Visual Studio .NET.

� The knowledge and skills to call XML Web services and make
asynchronous calls by using the .NET Framework asynchronous design
pattern.

Objectives

Note

Prerequisites

 Module 7: Asynchronous Programming 37

The Expense Report application makes numerous calls to an XML Web service.
To improve the responsiveness and usability of the application, all of the XML
Web service calls should be made asynchronously.

To make the calls asynchronous, you must perform the following tasks:

� Convert the synchronous XML Web service calls to asynchronous calls.
� Write the method that handles the asynchronous callback.
� Write the method that updates the user interface.

In the starter code for this lab, the asynchronous callback method and user
interface update method are already written, and some of the XML Web service
calls are already converted.

In this lab, you will convert the rest of the synchronous XML Web service calls
to asynchronous calls and then use the Visual Studio debugger to follow the
flow of the asynchronous calls in the resulting code.

There are starter and solution files associated with this lab. Browse to
install_folder\Labfiles\Lab07_1\Ex01\Starter to find the starter files, and
browse to install_folder\Labfiles\Lab07_1\Ex01\Solution to find the solution
files. If you performed a default installation of the course files, install_folder
corresponds to C:\Program Files\Msdntrain\2555.

Scenario

Lab Setup

Estimated time to
complete this lab:
15 minutes

38 Module 7: Asynchronous Programming

Exercise 1
Converting Synchronous Calls to Asynchronous Calls
In this exercise, you will convert some synchronous XML Web service calls to asynchronous calls.
You will also use the Visual Studio debugger to view the flow of asynchronous calls and test your
application to ensure that it has the expected results.

Tasks Additional information

1. Open the ExpenseReport project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab07_1\Ex01\Starter to
find the project files.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. Open the ExpenseReportList source file, and view
the code. Refer to the synchronous versions of the
calls to see which parameters to pass:

• The first four parameters should be the same.

• The fifth parameter should not use the ref
keyword in the asynchronous version.

• The sixth parameter should be the callback
delegate.

• The seventh parameter should be null.

a. See the TODO comments in the code for more
detailed information about the tasks that you must
perform to convert the synchronous XML Web
service calls in the constructor to asynchronous
calls.

b. For more information about how to make
asynchronous calls, see the following resources:

• Practice: Making an Asynchronous Call to an
XML Web Service in Module 7
“Asynchronous Programming,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: The Asynchronous Programming
Model Design Pattern in Module 7
“Asynchronous Programming,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
For more information about the asynchronous
design pattern, search by using the phrase
Including Asynchronous Calls.

 Module 7: Asynchronous Programming 39

Tasks Additional information

3. View the flow of asynchronous code by setting
breakpoints in the ExpenseReportList
constructor and the GetReportsCB and
UpdateReportsUI methods.

a. Run the application in the Visual Studio
debugger. Click View Submitted Reports.
Step through the code, and make sure it
executes as expected.

b. Confirm the correct behavior in the user
interface by making sure that the expense
reports are downloaded asynchronously when
a new list window is opened.

a. For more information about debugging and
controlling the flow of asynchronous calls, see the
following resources:

• Practice: Making an Asynchronous Call to an
XML Web Service in Module 7
“Asynchronous Programming,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This practice contains information about how
to debug an asynchronous call.

• Lesson: The Asynchronous Programming
Model Design Pattern in Module 7
“Asynchronous Programming,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).
This lesson contains information about the
flow of control of an asynchronous call.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Adding Accessibility Features 2

Lesson: Adding Help to an Application 9

Lesson: Localizing an Application 21

Review 34

Lab 8.1: Enhancing the Usability of an
Application 37

Course Evaluation 53

Module 8: Enhancing
the Usability of
Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 8: Enhancing the Usability of Applications iii

Instructor Notes
In this module, students learn to use the accessibility, Help, and localization
features available in the Microsoft® .NET Framework.

After completing this module, students will be able to:

� Use .NET Framework features to add and enable accessibility features in an
application.

� Add support for context-sensitive Help, Help menus, and ToolTips to an
application.

� Use localization properties and resource files to create a localized version of
a .NET Framework Windows Forms application.

To teach this module, you need the Microsoft PowerPoint® file 2555A_08.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices and lab.

Presentation:
60 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 8: Enhancing the Usability of Applications

How to Teach This Module
This section contains information that will help you to teach this module.

� If students are interested in referencing code examples in other languages,
point them to “Language Equivalents” in the Help documentation for the
Microsoft Visual Studio® .NET development system. This section provides
examples in languages such Microsoft Visual Basic® .NET, C#, and Java.

� Lab 8.1 is based on the Expense Report application in Course 2555A,
Developing Microsoft .NET Applications for Windows (Visual C#™ .NET)
and is intended to simulate a real-world environment in which students will
demonstrate what they learned during the lecture and practice portions of
the module. The lab does not provide step-by-step detailed instructions;
instead, the students are given tasks to complete in the left column and a list
of resources that they can use (if they need help) in the right column.
Students get the hands-on experience that they need by completing the
practice activity in the module.

Lesson: Adding Accessibility Features
This section describes the instructional methods for teaching this lesson.

For the most current information about accessibility support, you can direct
students to the Microsoft Accessibility Web page at
http://www.microsoft.com/enable/.

This practice requires a sound card to hear Microsoft Narrator. If the student
computers do not have sound cards, make the practice an instructor-led
demonstration instead.

Lesson: Adding Help to an Application
This section describes the instructional methods for teaching this lesson.

In this topic, you can mention to students that one advantage of using HTML
files for Help content is that this makes it very easy to update.

The next practice in this lesson—called Practice: Adding ToolTips to an
Application—is very short. If you prefer, you can delay this practice until you
have taught the How to Display Help with the ToolTip Control topic and then
combine the two practices.

This practice is very short. If you prefer, you can delay the previous practice—
called Practice: Adding Help to an Application—until you have taught this
topic and then combine the two practices.

Lesson: Localizing an Application
This section describes the instructional methods for teaching this lesson.

To help students understand the use of culture and region, as these terms are
used in the context of localizing applications, you can ask students in the class
to provide some examples from their own experience or provide some of your
own.

Practice: Adding
Accessibility Support to
an Application

How to Add Context-
Sensitive Help for Forms
and Controls
Practice: Adding Help to
an Application

Practice: Adding
ToolTips to an
Application

 Module 8: Enhancing the Usability of Applications v

Lab 8.1: Enhancing the Usability of an Application
This section describes the instructional methods for teaching this lesson.

In Exercise 5, Localizing Resources in an Application, if you cut
and paste the text from the Name column in the lab instructions, such as
AppUnavailableMessage, from the softcopy of the module Word document
directly into the resource file entries, you will get an unhandled exception. This
is because the pasted string will include some non-printable characters that are
not valid for a resource file.

Important

 Module 8: Enhancing the Usability of Applications 1

Overview

� Adding Accessibility Features

� Adding Help to an Application

� Localizing an Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Enhancing the usability of an application has several benefits. It can help all
users learn how to use an application more quickly and more efficiently in their
work. It can also make the application available for wider audiences—from
people with disabilities, such as people who are blind or deaf, to worldwide
audiences who speak different languages and who come from different cultures.

This module explores the support that is available in the Microsoft® .NET
Framework that allows developers to more easily enhance the usability of the
applications that they develop.

After completing this module, you will be able to:

� Use .NET Framework features to add and enable accessibility features in an
application.

� Add support for context-sensitive Help, Help menus, and ToolTips to an
application.

� Use localization properties and resource files to create a localized version of
a .NET Framework Windows Forms application.

Introduction

Objectives

2 Module 8: Enhancing the Usability of Applications

Lesson: Adding Accessibility Features

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By following accessibility design practices and by using support for
accessibility features in the .NET Framework, you can make your applications
available to your customers or employees with accessibility needs.

This lesson will briefly describe the accessibility support available in the
.NET Framework and how to make the forms and controls of your applications
accessible. The lesson also covers how to test the application by using
Microsoft Narrator, an accessibility utility that is included with the
Microsoft Windows® XP operating system.

For more information about supporting accessibility in your applications, refer
to the topics under “Accessibility” in the MSDN Library section titled “User
Interface Design and Development.”

After completing this lesson, you will be able to:

� Describe the accessibility support that is available in the .NET Framework.
� Make the forms and controls in your application accessible.
� Test the accessibility of your application.

Introduction

Lesson objectives

 Module 8: Enhancing the Usability of Applications 3

Accessibility Support in the .NET Framework

� Accessibility options

� Microsoft accessibility aids
� Narrator
� Magnifier
� On-Screen Keyboard

� Developers can provide accessibility support by setting
properties on forms and controls in their applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the goals for Windows XP was to deliver easier and better
customization that caters to specific hearing, vision, and mobility needs.

The Windows operating system provides several accessibility options that users
can set from Control Panel to control interaction with the keyboard, mouse,
display, and sounds.

Accessibility aids are specialized programs and devices that help people with
disabilities use computers more effectively. Some accessibility aids are built in
to the Windows operating system. There are many types of aids. Some
examples include:

� Screen enlargers for people who have low vision.
� Screen readers for people who are blind.
� Voice input utilities for people who control their computers by providing

verbal commands to their computers instead of by using the keyboard or
mouse.

In this lesson, you will use Narrator—the screen reader included with
Windows XP—to demonstrate and test the accessibility properties that you can
set on the user interface elements of your applications.

Introduction

Windows support

Definition

4 Module 8: Enhancing the Usability of Applications

For more information about the guidelines for designing accessible
applications, see the MSDN Library and the Microsoft Accessibility Web site
http://www.microsoft.com/enable/.

Some examples of the guidelines include:

� The application must be compatible with specific system color, size, font,
sound, and input settings.
This provides a consistent user interface (UI) across all applications on the
user’s system. Users can configure their preferred settings for these
elements by using Control Panel.

� Applications must be compatible with the High Contrast display option.
Users who desire a high degree of screen legibility select the Use High
Contrast check box on the Display tab of the Accessibility Options dialog
box. When this option is selected, several restrictions are imposed on the
application. For example, only system colors that can be selected through
Control Panel, or colors set by the user, may be used by the application.

� The application must provide keyboard access to all features.
This allows the user to interact with the application without requiring a
pointing device, such as a mouse.

� Applications must not convey information by sound alone.
Applications that convey information by sound must provide additional
options to express this information. This includes on-screen messages.

Many of the standard user interface elements also have properties that you can
set either at design time or programmatically in your applications to provide
information for use by accessibility aids.

Developer support

 Module 8: Enhancing the Usability of Applications 5

How to Make Forms and Controls Accessible

this.AppExitButton = new System.Windows.Forms.PushButton();
this.AppExitButton.Text = "E&xit";
AppExitButton.AccessibleRole =

System.Windows.Forms.AccessibleRole.PushButton;
AppExitButton.AccessibleName = "Exit";
AppExitButton.AccessibleDescription = "Use this button to

exit the application";
this.Controls.Add(this.AppExitButton);

this.AppExitButton = new System.Windows.Forms.PushButton();
this.AppExitButton.Text = "E&xit";
AppExitButton.AccessibleRole =

System.Windows.Forms.AccessibleRole.PushButton;
AppExitButton.AccessibleName = "Exit";
AppExitButton.AccessibleDescription = "Use this button to

exit the application";
this.Controls.Add(this.AppExitButton);

Control PropertyControl Property DescriptionDescription

AccessibleName
Briefly describes and identifies
the object. Examples: button
or menu item text

AccessibleDescription Provides greater context for
low-vision or blind users

AccessibleRole Describes the use of the
element in the user interface

Set standard properties
to values that support
accessibility

Set accessibility properties

Text, Font Size, Forecolor,
Backcolor, BackgroundImage

At design time or
programmatically

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The settings of various properties of a control or form can affect how accessible
your application will be. Some properties are specifically designed for use by
accessibility aids while others are more general properties like FontSize.

This table provides accessibility considerations related to certain properties.

Property Considerations for accessibility

AccessibleName This control property briefly describes and identifies the

object, such as the text in a button, the name of a menu
item, or a label displayed next to a text box control.
Accessibility aids read the value of this property and
report it to the user. For example, this text is read by
Narrator and provided to the user audibly.

AccessibleDescription This control property provides greater context beyond the
AccessibleName property for low-vision or blind users.
You can use this property to describe the visual
appearance of the object such as buttons that contain
graphics rather than text. Narrator does not read the value
of this property, but other accessibility aids may.

AccessibleRole This control property describes the use of the element in
the user interface. For example, button, text box,
animation, dialog box, Help balloon, list, and so forth.
Leave this set to (default) unless you need to provide a
more specific description for a custom or composite
control.

TabIndex Creates a sensible navigational path through the form. It
is important for controls without intrinsic labels, such as
text boxes, to have their associated label immediately
precede them in the tab order.

Introduction

Properties related to
accessibility

6 Module 8: Enhancing the Usability of Applications

(continued)
Property Considerations for accessibility

Text Use the ampersand (&) character to create access keys.

Using access keys is part of providing documented
keyboard access to features.

FontSize If the font size is not adjustable, then it should be set to
10 points or larger. After the form’s font size is set, all
the controls added to the form thereafter will have the
same size.

ForeColor If this property is set to the default, then the user’s color
preferences will be used on the form.

BackColor If this property is set to the default, then the user’s color
preferences will be used on the form.

BackgroundImage Leave this property blank to make text more readable.

At design time, use the Properties window to set the appropriate values for
properties for a form or control.

You can also set the property values programmatically. In the following code, a
button that has the appropriate property values is created and added to a form.
The this keyword in the code refers to the form to which the button is added.

this.AppExitButton = new System.Windows.Forms.PushButton();
this.AppExitButton.Text = "E&xit";
AppExitButton.AccessibleRole =
System.Windows.Forms.AccessibleRole.PushButton;
AppExitButton.AccessibleName = "Exit";
AppExitButton.AccessibleDescription = "Use this button to exit
the application";
this.Controls.Add(this.AppExitButton);

Setting accessibility
properties at design
time

Programmatically
setting accessibility
properties

 Module 8: Enhancing the Usability of Applications 7

How to Test Accessibility

Build the application

Turn on an accessibility aid, such as Narrator

Run the application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you set the appropriate property values for your user interface elements to
support accessibility and build your application, you can use one of the built-in
accessibility aids, such as Narrator, to test the application.

To test the accessibility features that you added to your application:

1. If you have not already done so, build your application.
2. Set the volume on your computer to a level that is comfortable for you.
3. On the Start menu, point to All Programs, point to Accessories, point to

Accessibility, and then click Narrator.
4. Start your application, and navigate the user interface.
5. Notice how Narrator uses the accessibility property information to describe

the user interface and your interaction with the application.

Notice that Narrator reads the information for one of the controls twice.
This is because Narrator automatically reads the information from the control
that has focus, then reads the information about the form, and finally reads the
information about all the controls that appear on the form.

Introduction

Procedure: Testing the
application with Narrator

Note

8 Module 8: Enhancing the Usability of Applications

Practice: Adding Accessibility Support to an Application

In this practice, you will

� Set the AccessibleName property for a
control

� Enable Narrator

� Run the application to see the results

10 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will set the AccessibleName property for a control in the
UsabilityDemo project, enable Narrator, and run the UsabilityDemo application
to see the results.

� Add accessibility support to an application
1. In Microsoft Visual Studio® .NET, open the UsabilityDemo project in

install_folder\Practices\Mod08\Mod08_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Open the UsabilityDemo form.
3. Click the Show Date/Time button.
4. Set the AccessibleName property to Shows the computer’s current date

and time.
5. Make sure that the AccessibleRole property is set to Default.
6. Save your changes, and rebuild the project.
7. Set the volume on your computer to a level that is comfortable for you.
8. Start Narrator. On the Start menu, point to All Programs, point to

Accessories, point to Accessibility, and then click Narrator.
9. Run the UsabilityDemo application either from the command prompt or

from Windows Explorer.
10. As the application runs, listen to Narrator describe the UsabilityDemo form

and the Show Date/Time button.

Introduction

Instructions

Note

 Module 8: Enhancing the Usability of Applications 9

Lesson: Adding Help to an Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Adding Help to your application will make it easier for all users to learn how to
use your application more quickly and more efficiently.

After completing this lesson, you will be able to:

� Describe the Help support available in the .NET Framework.
� Add Help to an application by adding context-sensitive Help, Help menus,

and ToolTips.

Introduction

Lesson objectives

10 Module 8: Enhancing the Usability of Applications

Help in the .NET Framework

� Context-sensitive Help

� HelpProvider control

� HelpButton property

� Help menu support

� The ToolTip control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides support for adding Help to your application by
using three main areas:

� Context-sensitive Help
� Help menus
� ToolTips

Visual Studio .NET provides several new controls that you can use when
developing applications. To provide context-sensitive Help, you can use the
HelpProvider control and the HelpButton property. To create a short Help text
string that will appear when a user rests the mouse on a control, you can use the
ToolTip control. The HelpProvider and ToolTip controls do not appear on the
form. They provide an interface between the controls and the properties that
you can set to provide Help and ToolTips.

You can use the MainMenu control to add a Help menu to the application to
provide easy access to Help topics.

Introduction

Adding support for Help
at design time

 Module 8: Enhancing the Usability of Applications 11

How to Add Context-Sensitive Help for Forms and Controls

Add the HelpProvider control
Set the HelpNamespace property

Add a HelpButton to the form

For each control that you want to add Help information set the
following properties

� HelpKeyword
� HelpNavigator
� HelpString

Build and test the application
Give a control focus and press F1

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Context-sensitive Help is the information that is displayed about the user
interface element that has focus when the user presses F1 or clicks the Help
button on a form and then clicks a user interface element.

Adding context-sensitive Help for forms and controls involves several steps.

The HelpProvider control enables Help in an application.

1. In Visual Studio .NET Design view, use the Toolbox to add a
HelpProvider control to a form.

2. Associate help text with each control.

• If you do not set the HelpNamespace property of the HelpProvider
control, then information in the HelpString property for the control with
focus displays in a small pop-up window near the control.

• If you do set the HelpNamespace property of the HelpProvider control
to a URL or a file, then when the user presses F1 at run time, the
information from the URL or file specified in the HelpNamespace
property displays.

When the user clicks the Help button on the form at run time and then clicks a
control, the text in the HelpString property for that control displays.

1. In Visual Studio .NET Design view, set the following properties for the
form to which you want to add a Help button.

2. Set the HelpButton property to True.
3. Set the MaximizeBox property to False.
4. Set the MinimizeBox property to False.

Introduction

Procedure: Adding the
HelpProvider control

Procedure: Adding a
Help button to the form

12 Module 8: Enhancing the Usability of Applications

In Visual Studio .NET Design view, set the HelpKeyword, HelpNavigator,
and HelpString properties for each control for which you want to add Help
information.

If you set the HelpNamespace property in the HelpProvider control to an
HTML page and you set the HelpKeyword property of a control, the Help
system will try to locate an anchor tag in the Help file that has the keyword in it
when the F1 key is pressed. For example, if the keyword is FormHelp, the
Help system will look for in the target HTML file.
Because F1 is now overridden by setting the HelpNamespace property to bring
up a separate Help file, the Help button can be used to mimic the F1
functionality.

The HelpNavigator property determines how the keyword is used by the Help
system to locate the information the user has requested. This property can take
one of the following values.

HelpNavigator property value Description

AssociateIndex Specifies that the index for a specified topic is

performed in the specified URL.

Find The search page for the specified URL is
displayed.

Index The index page for the specified URL is displayed.

TableOfContents The table of contents page for the specified URL is
displayed.

KeywordIndex Specifies a keyword search for and the action to
take in the specified URL.

Topic The topic referenced by the specified URL is
displayed.

The HelpString property is used for pop-up Help (the Help that is displayed
when a user presses F1 when a specific control has focus). If the
HelpNamespace property on the HelpProvider is set, pressing F1 on a Help-
enabled control will always bring up the target Help file rather than the pop-up
window.

If you set the HelpButton property on a form to True and do not set the
MaximizeBox and MinimizeBox properties to False, then the form will
display the maximize box and minimize box, but it will not display the Help
button.

Set the Help information
for each control

Note

 Module 8: Enhancing the Usability of Applications 13

How to Link Help Topics to a Menu

Help.ShowHelp (this, HelpProvider.HelpNamespace);Help.ShowHelp (this, HelpProvider.HelpNamespace);

Parent of the
Help dialog box
Parent of the

Help dialog box
Path and name of

Help file
Path and name of

Help file

Set the HelpNamespace property to point to a file or URL,
such as http://localhost/InternalBusinessAppHelp.htm

Add a MainMenu control to the form
� Add Help menu item and subitems
� Implement Help menu subitem click event procedures to open

the HelpNamespace

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the Visual Studio .NET MainMenu control to add a menu and
submenus to your application.

To link Help topics to a menu:

1. In Visual Studio .NET Design view, add the MainMenu control to the
form.

Introduction

Procedure: Linking Help
topics to a menu

14 Module 8: Enhancing the Usability of Applications

2. Edit the menu to add the Help menu and Help menu items.

3. When the Help menu option is clicked at run time, it fires a click event. In
the click event code for the menu item, add code to open the Help file:
Help.ShowHelp (this, HelpProvider.HelpNamespace);
In the previous code:

• The first parameter (this) is the control that identifies the parent of the
Help dialog box. In this case, the form is the parent control of the Help
dialog box.

• The second parameter (HelpProvider.HelpNamespace) is the path and
name of the Help file. The URL can be of the form C:\..., file:///…, or
http://....

 Module 8: Enhancing the Usability of Applications 15

Practice: Adding Help to an Application

In this practice, you will

� Add context-sensitive Help to an
application

� Link a Help file to context-sensitive Help

� Link a Help file to a Help menu item

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add the HelpProvider control to the application and
set the HelpString property of the Show Date/Time button to support context-
sensitive Help. Then, you will set the HelpNamespace property on the
HelpProvider control and the HelpKeyword and HelpNavigator properties of
the Show Date/Time button to support access to Help files. You will also add
the Help button to the form and complete the code for the Help menu to display
the Help file.

� Add context-sensitive Help to an application
1. In Visual Studio .NET, open the UsabilityDemo.sln solution file in

install_folder\Practices\Mod08\Mod08_02\Starter.
2. Open the UsabilityDemo.cs form in Design view.
3. On the View menu, click ToolBox.
4. In the ToolBox, double-click the HelpProvider control to add it to the

form.
5. Change the (Name) property of the HelpProvider to

UsabilityDemoHelpProvider.
6. Click the Show Date/Time button to display its properties.
7. Set the HelpString on UsabilityDemoHelpProvider property to Shows the

current date and time in the text box above.
8. Build and run the application.
9. Tab through the controls until the Show Date/Time button has focus.
10. Press F1 to view the context-sensitive Help for the Show Date/Time button.

Introduction

Instructions

16 Module 8: Enhancing the Usability of Applications

� Link to a Help file to provide context-sensitive Help
1. In the UsabilityDemo project, change the HelpNamespace property of the

UsabilityDemoHelpProvider control to
http://localhost/UsabilityDemoHelpFile.htm.

2. Click the Show Date/Time button to display its properties.
3. Set the HelpKeyword on UsabilityDemoHelpProvider property to

DateAndTime.
4. Set the HelpNavigator on UsabilityDemoHelpProvider property to Topic.
5. Set the HelpButton property of the UsabilityDemo form to True.
6. Set the MaximizeBox property of the UsabilityDemo form to False.
7. Set the MinimizeBox property of the UsabilityDemo form to False.
8. Build and run the application.
9. Tab through the controls until the Show Date/Time button has focus.
10. Press F1 to view the topic in the Help file in Microsoft Internet Explorer.
11. Close Internet Explorer.
12. Click the help button in the upper right corner of the window to enable

context-sensitive Help.

13. Click Show Date/Time.
A small window will appear that explains what the Show Date/Time button
does.

14. Close the application.

� Link Help to a Help menu in an application
1. In the UsabilityDemo.sln solution file, open the UsabilityDemo.cs form in

Design view.
2. Click the Help menu to show the items in the menu.
3. Double-click the Help menu item in the Help menu to display the source

code for the Click event for the menu item.
4. Show TODO comments in the Task List.

To show TODO comments, on the View menu, point to Show Tasks, and
then click All.

 Module 8: Enhancing the Usability of Applications 17

5. Locate the TODO comment in the Click event handler for the menu item,
and add the following code.
// TODO: Call the ShowHelp method to display the help file
to the user.
Help.ShowHelp(this,
UsabilityDemoHelpProvider.HelpNamespace);

6. Build and run the application.
7. On the Help menu, click the Help menu item.

Internet Explorer displays the Help file.

18 Module 8: Enhancing the Usability of Applications

How to Display Help with the ToolTip Control

Add the ToolTip control

Build and test the
application

Set the value for the
ToolTip on ToolTip…
property

Point to a control that has
an associated ToolTip

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To enable ToolTips in an application, you must add a ToolTip control to each
form.

To add ToolTips to an application:

1. In Visual Studio .NET Design view, add a ToolTip control to the form.

Introduction

Procedure: Adding
ToolTips to an
application

 Module 8: Enhancing the Usability of Applications 19

2. Set the appropriate value for the ToolTip in the ToolTipControlName
Properties window for each control on the form for which you want a
ToolTip to display.

When the user moves the mouse pointer over the control at run time, after a
short pause the ToolTip window appears, displaying the text that you set as the
value for the ToolTip on toolTip1 property.

20 Module 8: Enhancing the Usability of Applications

Practice: Adding ToolTips to an Application

In this practice, you will

� Add the ToolTip control to an application

� Set the ToolTip property for a control

10 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a ToolTip control to the form and set the ToolTip
on UsabilityToolTip property of the Show Date/Time button to a short string.
You will then run the application to test whether the ToolTip appears when you
point to the button by using the mouse pointer.

� Add ToolTips to an application
1. In Visual Studio .NET, open the UsabilityDemo.sln solution file in

install_folder\Practices\ Mod08\Mod08_03\Starter.
2. Open the UsabilityDemo form.
3. On the View menu, click ToolBox.
4. In the ToolBox, double-click the ToolTip control to add it to the form.
5. Change the (Name) property of the ToolTip control to

UsabilityDemoToolTip.
6. Click the Show Date/Time button to display its properties.
7. Set the ToolTip on UsabilityToolTip property of the button to Displays

the current date and time.
8. Build and run the application.
9. Move the mouse pointer over the Show Date/Time button.

A ToolTip window appears and shows the text that you added.

Introduction

Instructions

 Module 8: Enhancing the Usability of Applications 21

Lesson: Localizing an Application

� Globalization

� Localization

� Culture

� Region

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you want to develop applications for use by people who speak various
languages and come from various cultures, there are two aspects to consider:

� Globalization
You should build the core functionality of the application without sources
that will be localized. By doing this, you are designing applications that can
be adapted to different cultures.

� Localization
You then localize an application for specific cultures and regions by
creating translations of resources. Culture is “who you are,” region is
“where you are.” For example, you can localize an application into English
for various regions, such as the United States of America (en-US) and the
United Kingdom (en-GB).
Within culture there are two concepts: current culture and current uiculture.
Culture is for formatting numerics and datetime; uiculture is for retrieving
resources by the correct localized language.

The CultureInfo class contains culture-specific information, such as the
language, country/region, calendar, and cultural conventions associated with a
specific culture. This class also provides the information required for
performing culture-specific operations, such as casing, formatting dates and
numbers, and comparing strings.

The CultureInfo class specifies a unique name for each culture. The name is a
combination of a two-letter lowercase culture code associated with a language
and, if required, a two-letter uppercase subculture code associated with a
country or region. For a list of all the valid culture and region codes, see the
topic “CultureInfo Class” in the .NET Framework software development kit
(SDK) documentation.

Introduction

Localization support in
the .NET Framework

22 Module 8: Enhancing the Usability of Applications

After completing this lesson, you will be able to:

� Differentiate between the concepts of globalization and localization of an
application.

� Use localization properties and resource files to create a localized version of
an application.

Lesson objectives

 Module 8: Enhancing the Usability of Applications 23

Localization in the .NET Framework

� Localizing the user interface elements

� Localizing other resources

� Strings

� Bitmaps

� Other objects, such as audio files

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides good support for developers who want to create
localized versions of their applications.

You can set properties on forms and controls to create multiple language
versions of the user interface of your application.

Visual Studio .NET creates and uses resource files to store the information
created for each form and control for the different cultures and regions.

Introduction

Localizing user interface
elements

24 Module 8: Enhancing the Usability of Applications

When you create multiple language versions of a form, Visual Studio .NET
automatically creates resource files to store the localization information. There
are two resource files for each language: one for the specific culture and region
and one for the overall culture. You can view these files by using
Windows Explorer to the view folder for your project.

When you localize other resources, such as text strings, bitmaps, and so on, you
must create resource files manually. To do this, add a new resource file to the
project, name it appropriately, and then use the ResourceManager object in the
.NET Framework to retrieve the appropriate resources at run time.

Localizing other
resources

 Module 8: Enhancing the Usability of Applications 25

How to Set Localization Properties

Create the default culture version of the form

Set the Localizable property of the form to True

Set the appropriate value for the Language property
of the form

Modify the Text property values for the form and controls into
the appropriate language

Build the application

Resize and/or reposition each control as needed

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you localize your application, you must create the initial user interface.
Then, test the interface thoroughly for functionality: button clicks, hiding and
showing controls, enabling and disabling controls, and so forth. This is the
default culture version of the user interface for your application. Set the
Language property to (default) and the Localizable property to False.

After you have created and tested the UI in the default language, you can then
create the other localized versions that your organization’s business needs
require by setting localization properties and providing new values for the text
or other values of the controls.

To set localization properties on a form:

1. In Visual Studio .NET Design view, select the form that you want to
localize.

2. Set the Localizable property of the form to True.
3. Set the Language property of the form to the language into which you want

to localize the form.
4. Set the Text properties for each control with the correction for that culture.
5. Resize and/or reposition each control, as needed, to fit the localized text.
6. Build and test the application in the appropriate culture.

Each time that you choose another culture to localize to, Visual Studio .NET
creates a new resource file for that culture. The data stored in the resource file is
XML and includes not only the localized data but also changes made to control
positioning and size.

Introduction

Procedure: Setting
localization properties

26 Module 8: Enhancing the Usability of Applications

How to Create Localized Resource Files

Open an existing project and add an assembly resource file
for the appropriate culture

Add entries to the resource file with values in the appropriate
language for the culture

Save the file

Build the application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can localize text strings associated with your application, such as
informational or error messages, by using separate resource files for the various
culture and region versions of your application.

To create a localized resource file:

1. In Visual Studio .NET, open the existing project for the application to which
you want to add localized strings.

2. On the Project menu, click Add New Item, and then select the Assembly
Resource File icon in the Templates pane. Give the file a name that
includes the appropriate culture identifier: for example,
UsabilityDemoText.de-DE.resx.

Introduction

Procedure: Creating a
localized resource file

 Module 8: Enhancing the Usability of Applications 27

3. Add entries into the resource file, with values in the appropriate language
for the culture.

4. Save the file.
When you create resources files in this manner, they will be listed in the
Visual Studio .NET Solution window as part of the project.

5. Build the application.
The compiler automatically creates a compiled version (or satellite
assembly) for each culture.

28 Module 8: Enhancing the Usability of Applications

A satellite assembly is an assembly that contains only resources. After you
build an application that contains multiple resource files for multiple cultures,
the resulting satellite assembly names are all the same; however, they are stored
in different folders that are named after the culture that they represent. For
example, if you build an application called AppHelp with the resource file
mentioned in the previous procedure, the resulting satellite assembly would be
named UsabilityDemo.resources.dll, and it would be stored in
ApplicationFolder\bin\Debug\culture (for example,
UsabilityDemo\bin\Debug\de-DE).

The best reason to use satellite assemblies is the separation of resources from
the application. You can build a version of your application with the default
culture and release it to the public. At a later time, you can deploy a satellite
assembly for each culture that you support. When a culture for your application
becomes available, you put it in a separate assembly and make it available to
your clients (by using the network, a Web site, or some other media).

Third-party organizations can create resource files by using the Resource File
Generator (ResGen.exe) tool that is included with the .NET Framework. You
can use this tool to create resource files without having Visual Studio .NET
installed. Source files for ResGen must be text files with a file extension of .txt
or XML files with the file extension of .resx. ResGen compiles these files into
resource files that have the file extension .resource.

For more information about how the .NET Framework searches for resource
files, see Module 4, “Assembly Versioning and Satellite Assemblies,” in
Course 2350A, Securing and Deploying Microsoft .NET Assemblies or see the
.NET SDK documentation.

Using satellite assembly
files

 Module 8: Enhancing the Usability of Applications 29

How to Change the Locale

using System.Globalization;
using System.Resources;
using System.Threading;

…
Thread.CurrentThread.CurrentUICulture =

Thread.CurrentThread.CurrentCulture;
…

ResourceManager rm = new
ResourceManager("MyNamespace.Resource1",
Assembly.GetExecutingAssembly());

MessageBox.Show(rm.GetString("test_1"));

using System.Globalization;
using System.Resources;
using System.Threading;

…
Thread.CurrentThread.CurrentUICulture =

Thread.CurrentThread.CurrentCulture;
…

ResourceManager rm = new
ResourceManager("MyNamespace.Resource1",
Assembly.GetExecutingAssembly());

MessageBox.Show(rm.GetString("test_1"));

Root name of the
resource file

Root name of the
resource file

Main assembly for
the resources

Main assembly for
the resources

Add code to an application to programmatically set the
culture and UICulture for an application to the new value
Add code to the application to use a resource manager to
extract the elements from the resource file

The user can change the regional and language
options from Control Panel

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have resource files with localized strings for the various versions of
your application, you can add the code to set the culture of your application to
match changes in locale that the user has selected. Then, you can add code to
use a resource manager to display strings as appropriate. The .NET Framework
ensures that the correct resource file for the culture is used as the source for
your text strings.

To change the locale to match the Control Panel settings:

1. Add the following using directives, which are needed to work with culture
information:
using System.Globalization; // Defines culture-related

 // information, such as

 // the language, the country and

 // region, calendars in use, format

 // pattern for dates, currency, and

 // number, and sort order for strings.

using System.Resources; // provides classes and interfaces

 // that allow developers to create, store and

 // manage various culture-specific resources

 // used in an application

using System.Threading;

2. Set the thread’s User Interface culture based on what is set in Control Panel.
Thread.CurrentThread.CurrentUICulture =

Thread.CurrentThread.CurrentCulture;

In this case, the Thread.CurrentThread.CurrentCulture property value is
taken from the settings in Control Panel. To make the UI use the correct
culture, you set the CurrentUICulture property value of the current thread.

Introduction

Procedure: Changing
the locale to match the
Control Panel settings

30 Module 8: Enhancing the Usability of Applications

If you want to ensure that your Windows Forms application starts with
the culture that is set in the Regional and Language Options dialog box in
Control Panel, set the Thread.CurrentThread.CurrentUICulture property
value prior to the call to the InitializeComponents method in the startup class
constructor.

The resource manager uses the resource fallback process to control how an
application retrieves resources. The resource manager uses the
CultureInfo.CurrentUICulture property to determine which resources to
search for and load. If you want to use a different culture than that of the local
computer, then you must set this property programmatically in your application.
For example, if you set the Culture.CurrentUICulture property to en-GB, the
runtime searches for a satellite assembly that supports the en-GB culture. If the
Culture.CurrentUICulture is not set, the common language runtime sets the
culture to that of the local computer.

Because the runtime always searches for the default culture when all other
possibilities are exhausted, you should always include a default culture with
your applications. The default culture is the only one that is built into the main
application assembly. For more information about how the .NET Framework
searches for resource files, see Module 4, “Assembly Versioning and Satellite
Assemblies,” in Course 2350A, Securing and Deploying Microsoft .NET
Assemblies or see the .NET SDK documentation.

To access localized strings by using a resource manager:

1. Add the code to instantiate a resource manager and access resources.
ResourceManager rm = new

ResourceManager("MyNamespace.Resource1",

Assembly.GetExecutingAssembly());

The first parameter is the root name of the resource file. For example, if the
resource file is Resource1.en-EN.resources, the root name is Resource1. The
root name of the resource file is qualified with the namespace that contains
the resource file. The second parameter is the main assembly for the
resources. Because you are in the assembly that is the main assembly, the
call to GetExecutingAssembly() returns the current assembly’s name.

2. Add the code to access the resource and display the localized string.
MessageBox.Show (rm.GetString("test_1"));

When you create an instance of the resource manager, it automatically gets
the value for the current culture and locates the appropriate resource file.
Call GetString, passing the name of a specific resource file element, and it
will return the value from the correct resource file that matches the current
culture setting. If the resource manager cannot locate the appropriate
resource file, an exception is thrown. Therefore, any code that uses the
resource manager should be wrapped in exception-handling code.

Note

Procedure: Accessing
localized strings by
using a resource
manager

 Module 8: Enhancing the Usability of Applications 31

Practice: Localizing an Application

In this practice, you will

� Localize the user interface of an
application

� Add localized string resources to an
application

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will localize the user interface of an application and add
localized string resources for an application.

� Localize a form in a Windows Forms application
1. In Visual Studio .NET, open the UsabilityDemo.sln solution file in

install_folder\Practices\ Mod08\Mod08_04\Starter.
2. Open the UsabilityDemo form.
3. Click the Show All Files button in the Solution Explorer window.

4. Examine the Localizable property of the form. Notice that it is set to True,
which means that the form can be localized.

5. Set the Language property of the form to French (France).
The English version of the form is still displayed, but it can be localized into
French. Notice that a set of new resource files for the form can be found
under the UsabilityDemo source file in Solution Explorer. These are
UsabilityDemo.fr.resx and UsabilityDemo.fr-FR.resx. Both of these files are
required for the resource fallback process.

6. Notice that this form has also been localized into German and Japanese.
7. Set the Text property of the form to Démonstration de l'utilisation.

To get the strings for the French version of the form, go to the
UsabilityDemoLocalizedStrings.rtf file in install_folder\Practices\
Mod08\Mod08_04.

Introduction

Instructions

Note

32 Module 8: Enhancing the Usability of Applications

8. Set the Text property of the menu and menu item to Aide.
9. Set the Text property of the Choose a Culture button to Choisir une

langue.
10. Set the Text property of the Show Date/Time button to Afficher la

date/l'heure.
11. Set the Text property of the Show Currency button to Afficher la devise.
12. Set the Text property of the Show a String button to Afficher une chaîne.
13. Set the Text property of the Exit button to Quitter.

� Add a string resource file to the application
1. In Solution Explorer, right-click the UsabilityDemo project, select Add,

and choose Add New Item.
2. In the Add New Item window, select the Assembly Resource File icon in

the Templates pane.
3. Set the name of the resource file to UsabilityDemoText.fr-FR.resx., and

then click Open.
4. Set the Name of the resource string to SimpleTextString.
5. Set the Value of the resource string to Voici du texte.
6. Save and close the resource file.

� Add code to obtain resource strings
1. View the UsabilityDemo source file.
2. Show TODO comments in the Task List. To do this, click the View menu,

point to Show Tasks, and then click All.
3. Find the first TODO comment in the code. Add the three using directives to

enable support for localization in the application.
using System.Globalization;
using System.Resources;
using System.Threading;

4. Find the next TODO comment. Declare a private resource manager
variable.
private ResourceManager RM;

5. Find the next TODO comment. Create an object instance of the resource
manager. The code is added to the first constructor in the application.
RM = new ResourceManager("UsabilityDemo.UsabilityDemoText",
Assembly.GetExecutingAssembly());

6. Find the next TODO comment. Create an object instance of the resource
manager. The code is added to the second constructor in the application.
RM = new ResourceManager("UsabilityDemo.UsabilityDemoText",
Assembly.GetExecutingAssembly());

 Module 8: Enhancing the Usability of Applications 33

7. Find the next TODO comment. Add code to use the resource manager to
retrieve the text string from the resource file and display it in the text box.
OutputTextBox.Text = RM.GetString("SimpleTextString");

8. Find the next TODO comment. Add code to set the current thread’s Culture
and UICulture property values to the same culture that the user requested.
Thread.CurrentThread.CurrentUICulture = new
CultureInfo(ChosenCulture, false);
Thread.CurrentThread.CurrentCulture = new
CultureInfo(ChosenCulture, false);

9. Save your work.

� Test the application
1. Build and run the application.
2. Notice that the only thing that you can do when the application starts is

either choose a culture or exit the application. After you choose a culture for
the application, the other buttons become available.

3. Click Choose a Culture.
4. Select one of the cultures.

If you don’t select any of them, the application uses English as the default.
5. When you click OK on the CultureChooser form, the CultureChooser

form disappears and the UsabilityDemo form reappears in the correct
culture.

34 Module 8: Enhancing the Usability of Applications

Review

� Adding Accessibility Features

� Adding Help to an Application

� Localizing an Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is an accessibility aid? List the accessibility aids that are included with
Windows XP.
An accessibility aid is an application that provides alternative input and
output methods for people with disabilities, such as people who have
hearing, sight, and mobility impairments. Windows XP includes several
accessibility aids, including Narrator, Magnifier, and On-Screen
Keyboard.

2. List some guidelines that developers should consider with regard to
accessibility when writing an application.
The application must be compatible with specific system color, size,
font, sound, and input settings. Applications must be compatible with
the High Contrast option. The application must provide keyboard
access to all features. Applications should convey no information by
sound alone.

 Module 8: Enhancing the Usability of Applications 35

3. What control properties are available to enable accessibility of an
application through an accessibility aid? Describe their uses.
AccessibleName, AccessibleDescription, and AccessibleRole. The
AccessibleName property is used to briefly describe the control. For
example, if the control is an OK button, the AccessibleName property
would be set to something similar to OK. The AccessibleDescription
property provides additional information to the user. This property is
particularly useful when the control does not have any associated text,
such as a button with a picture on it. AccessibleRole describes the role
of the control. Typically, the AccessibleRole will be set to (default), but
there are times when this must changed for custom and composite
controls.

4. Describe the purpose of the ampersand (&) character with regard to the text
for controls.
The ampersand character, when included in the Text property of a
control, provides an access key to the user so that he or she can use the
keyboard—in addition to the mouse—to access the control.

5. Describe techniques for adding Help to an application.
The developer can add Help by using the HelpProvider control, the
ToolTip control, a Help menu, and the HelpButton property of a form.

6. What is the purpose of the HelpNamespace property?
The HelpNamespace property of the HelpProvider control indicates
where a Help file is located. When this property has a value, pressing
F1 at run time loads the Help file rather than displaying a pop-up Help
window.

7. When enabling the HelpButton property, what must be done to ensure that
the Help button appears on the form at run time?
The MaximizeBox and MinimizeBox properties must be set to False.

8. Where do the HelpProvider and ToolTip controls appear when they are
added to a form?
They appear below the form, not on the form.

36 Module 8: Enhancing the Usability of Applications

9. What should be localized when building a Windows application?
The user interface, strings, graphics, audio files, and any other
resources that must be changed between cultures.

10. What properties must be set to localize a form?
The Localizable property must be set the True to indicate that the form
can be localized, and the Language property must be set for the
appropriate culture and region.

11. What is required to change the locale of an application at run time so that it
matches the current settings of the computer?
A resource manager reads the localized information from the resource
files, and the user interface culture must be changed to the current
culture of the thread.

12. Describe the purpose of resource files.
A resource file is used to store the localized versions of resources such
as strings, bitmaps, and audio and video files that are not part of the
user interface. The resource manager reads the values from a resource
file based on the current culture setting in the application.

 Module 8: Enhancing the Usability of Applications 37

Lab 8.1: Enhancing the Usability of an Application

� Exercise 1: Adding Support for Accessibility

� Exercise 2: Adding Help to an Application

� Exercise 3: Adding ToolTips to an Application

� Exercise 4: Localizing the User Interface of an
Application

� Exercise 5: Localizing Resources in an
Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Enhance an application by adding accessibility features.
� Provide user Help and ToolTips in an application.
� Localize the user interface of an application.
� Create and access localized resource files.

This lab focuses on the concepts in Module 8, “Enhancing the Usability
of Applications,” in Course 2555A, Developing Microsoft .NET Applications
for Windows (Visual C# .NET). As a result, this lab may not comply with
Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to modify the properties of controls.
� The knowledge and skills to add accessibility and Help features and to

localize an application’s user interface and resources by using
Visual Studio .NET.

Objectives

Note

Prerequisites

38 Module 8: Enhancing the Usability of Applications

The Internal Business Application shell provides a common access point to
various internal business applications. The shell must provide accessibility
support and Help to users in the organization. In addition, the application must
be localized into several languages to support the languages spoken by people
of different cultures across the organization.

Supporting accessibility requires that you set control properties and use an
accessibility aid such as the Narrator utility included in Windows XP. Including
Help as part of the application requires that you use the HelpProvider control,
set several properties on controls, and add code to the application to provide
access to a Help file. To localize the application for specific region and culture
combinations requires that each user interface element (form, controls, and so
on) and resources found in the source code be localized for the appropriate
cultures. In addition, the use of a resource manager is required to retrieve
localized resources from resource files.

In this lab, you will add some accessibility support and Help features to the
Internal Business Application shell and localize the application for several
region and culture combinations.

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 8: Enhancing the Usability of Applications 39

Exercise 1
Adding Support for Accessibility
In this exercise, you will update the Internal Business Application shell by adding support for
accessibility and testing the application by using the Narrator accessibility aid in Windows XP.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab08_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab08_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in Visual
Studio .NET. Browse to
install_folder\Labfiles\Lab08_1\Ex01\Starter to
find the project.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. Open the AppControlForm form and set the
form’s AccessibleName property to Internal
Business Application Control Panel.

a. For more information about how to add
accessibility support to an application, see the
following resources:

• Practice: Adding Accessibility Support to an
Application, in Module 8, “Enhancing the
Usability of Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Lesson: Adding Accessibility Features in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

b. For more information about writing accessible
applications, see the following resource:

• The Visual Studio.NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Designing Accessible Applications.

40 Module 8: Enhancing the Usability of Applications

Tasks Additional information

3. Set the AccessibleName property for the buttons.
See the following table for the values to give to
the AccessibleName property for each button.

Button Value

Make Travel Plans Make Travel Plans
Expense Reporting Expense Reporting
Procurement Procurement
Exit Exit the Application

a. For more information about how to add
accessibility support to an application, see the
following resources:

• Practice: Adding Accessibility Support to an
Application, in Module 8, “Enhancing the
Usability of Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Lesson: Adding Accessibility Features in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

4. Enable Narrator. a. For more information about how to enable
Microsoft Narrator in Windows XP Professional,
see the following:

• Practice: Adding Accessibility Support to an
Application, in Module 8, “Enhancing the
Usability of Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

• Lesson: Adding Accessibility Features in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

5. Run the application to test the accessibility
support. You can log on with the user name
mario and the password P@ssw0rd.

a. For more information about starting an
application in the Designer, see the following
resource:

• The Visual Studio.NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Debugging Windows Applications.

 Module 8: Enhancing the Usability of Applications 41

Exercise 2
Adding Help to an Application
In this exercise, you will update the Internal Business Application shell by adding on-screen Help.
When the user presses the F1 key, a Help message that is associated with the control that has focus
appears.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab08_1\Ex02\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab08_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab08_1\Ex02\Starter to
find the project.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. View the Toolbox, and add the HelpProvider
control to the AppControlForm form.

a. Set the (Name) property of the HelpProvider
control to
InternalBusinessAppHelpProvider.

b. Set the HelpNamespace property to
http://localhost/
InternalBusinessAppHelp.htm.

a. For more information about adding Help to an
application, see the following resources:

• Practice: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C # .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Introduction to the Windows Forms
HelpProvider.

42 Module 8: Enhancing the Usability of Applications

Tasks Additional information

3. Select the AppControlForm form. To enable Help
on the form, set some of the Help properties. See
the following table for the properties and the
corresponding values to set.

Property Value

HelpKeyword IBA_ControlPanel
HelpNavigator Topic
HelpString Provides access to the
 company’s internal
 applications

a. For more information about adding Help to an
application, see the following resources:

• Practice: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Introduction to the Windows Forms
HelpProvider.

 Module 8: Enhancing the Usability of Applications 43

Tasks Additional information

4. For each of the controls on the AppControlForm
form, set the Help properties to enable Help.
Use the following tables to set the appropriate
properties for the following controls.

a. Make Travel Plans control

Property Value

HelpKeyword IBA_Travel
HelpNavigator Topic
HelpString Plan a business trip.

b. Expense Reporting control

Property Value

HelpKeyword IBA_Expense
HelpNavigator Topic
HelpString Log expenses for
 reimbursement.

c. Procurement control

Property Value

HelpKeyword IBA_Procurement
HelpNavigator Topic
HelpString Internal Purchasing.

d. Exit control

Property Value

HelpKeyword IBA_Exit
HelpNavigator Topic
HelpString Exit the Internal Business
 Application.

e. Status Bar control

Property Value

HelpKeyword IBA_Status
HelpNavigator Topic
HelpString Network Connection Status

a. For more information about adding Help to an
application, see the following resources:

• Practice: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Introduction to the Windows Forms
HelpProvider.

44 Module 8: Enhancing the Usability of Applications

Tasks Additional information

5. Add a Help button to the AppControlForm form.

a. Set the value for the MaximizeBox and
MinimizeBox properties to False.

a. For more information about adding Help to an
application, see the following resources:

• Practice: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Introduction to the Windows Forms
HelpProvider.

6. Link the Help menu to the Help file.

a. For more detailed information about the tasks that
you must perform, see the TODO comments in
the code.

b. For more information about adding Help to an
application, see the following resources:

• Practice: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Introduction to the Windows Forms
HelpProvider.

7. Run the application to test Help. a. For more information about starting an
application from within Designer, see the
following resource:

• The Visual Studio.NET Help documentation.
In Index, search by using the phrase
Debugging Windows Applications.

 Module 8: Enhancing the Usability of Applications 45

Exercise 3
Adding ToolTips to an Application
In this exercise, you will update the Internal Business Application shell by adding ToolTips to the
AppControlForm form and providing ToolTip text for the controls on the form.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab08_1\Ex03\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab08_1\Ex03\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab08_1\Ex03\Starter to
find the project.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. View the AppControlForm form in the form
designer.

a. View the Toolbox, and add the ToolTip
control to the AppControlForm form.

b. Set the (Name) property of the ToolTip
control to ApplicationToolTip.

a. For more information about adding ToolTips to
an application, see the following resource:

• Practice: Adding ToolTips to an Application
in Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase ToolTip
Component.

46 Module 8: Enhancing the Usability of Applications

Tasks Additional information

3. Set the text for the ToolTip for each of the
controls on the AppControlForm form.

a. Use the following table to set the value for the
ToolTip on ApplicationToolTip property for
each control.

Property Value

Form Accesses internal
 applications.
Make Travel Plans Allows you to plan a
 business trip.
Expense Reporting Allows you to submit and
 check expense reports.
Procurement Allows you to purchase
 items at company rates.
Exit Exit the application.
Status bar Displays the network
 connection status.

a. For more information about adding ToolTips to
an application, see the following resources:

• Practice: Adding ToolTips to an Application
in Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• Lesson: Adding Help to an Application in
Module 8, “Enhancing the Usability of
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase ToolTip
Component.

4. Run the application to test the ToolTips. a. For more information about starting an
application in the Designer, see the following
resource:

• The Visual Studio.NET Help documentation.
In Index, search by using the phrase
Debugging Windows Applications.

 Module 8: Enhancing the Usability of Applications 47

Exercise 4
Localizing the User Interface of an Application
In this exercise, you will update the Internal Business Application shell by localizing the
AppControlForm form into French.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab08_1\Ex04\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab08_1\Ex04\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab08_1\Ex04\Starter to
find the project.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. View the AppControlForm form in the form
designer. Set the Language property of the form
to French (France).

a. For more information about localizing an
application, see the following resources:

• Practice: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

48 Module 8: Enhancing the Usability of Applications

Tasks Additional information

3. Change the Text property of each control from
English to its equivalent French translation.

a. Use the following table to set the value for
Text property for each control.

Control Value

Form Tableau de bord des
 applications
HelpMenu Aide
HelpMenuItem Aide
AboutMenuItem À propos de l'application
 interne d'entreprise
Make Travel Plans Préparer un voyage
Expense Reporting Notes de frais
Procurement Réservation
Exit Quitter

Note: You can copy and paste the French strings from
the file install_folder\Labfiles\Lab08_1\Ex04\Starter\
InternalBusinessApplicationLocalizedStrings.rtf.

a. For more information about localizing an
application, see the following resources:

• Practice: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

4. Add code to the AppControlForm form to set the
culture to match the regional and language
information that the user has set in Control Panel.

a. For more detailed information about the tasks that
you must perform, see the TODO comments in
the code.

b. For more information about localizing an
application, see the following resources:

• Practice: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

 Module 8: Enhancing the Usability of Applications 49

Tasks Additional information

5. Change the default language for the computer,
and test the application.

a. Open Control Panel in Windows XP
Professional:

• If you are using Category View in
Control Panel, click Date, Time,
Language, and Regional Options, and
then click Regional and Language
Options.

• If you are using Classic View in Control
Panel, double-click Regional and
Language Options.

b. In the Regional and Language Options
dialog box, on the Regional Options tab, in
the Standards and formats area, in the list of
languages, click French (France).

c. Run the application.

No additional information is required for this task.

50 Module 8: Enhancing the Usability of Applications

Exercise 5
Localizing Resources in an Application
In this exercise, you will update the Internal Business Application shell by localizing strings used in
the AppControlForm form.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab08_1\Ex05\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab08_1\Ex05\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab08_1\Ex05\Starter to
find the project.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio.NET Help documentation.
Search by using the phrase Open Project
Dialog Box.

2. Create a new resource file, and name it
AppControlRes.fr-FR.resx.

a. For more information about localizing an
application, see the following resources:

• Practice: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

 Module 8: Enhancing the Usability of Applications 51

Tasks Additional information

3. Add text in French to the resource file.

a. Use the following table to set the Name and
Value elements for each resource string.

Name Value

AppUnavailable Application non disponible
Message
PermissionDenied Autorisation refusée
Message
Unauthorized
Message Vous ne disposez pas des
 autorisations nécessaires
 pour utiliser cette
 application
OfflineMode Mode hors connexion
OnlineMode Mode connexion

Note: You can copy and paste the French strings from
the file install_folder\Labfiles\Lab08_1\Ex05\Starter\
InternalBusinessApplicationLocalizedStrings.rtf.

a. For more information about localizing an
application, see the following resources:

• Practice: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

4. Add code to the AppControlForm form to set the
culture to match the regional and language
information that the user has set in Control Panel.

a. For more detailed information about the tasks that
you must perform, see the TODO comments in
the code.

b. For more information about localizing an
application, see the following resources:

• Lesson: Localizing an Application in Module
8, “Enhancing the Usability of Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase Developing
World-Ready Applications.

52 Module 8: Enhancing the Usability of Applications

Tasks Additional information

5. Make sure that the default language for the
computer is set still to French (France) and test
the application.

a. To change the default language for the
computer, open Control Panel in
Windows XP Professional.

• If you are using Category View in
Control Panel, click Date, Time,
Language, and Regional Options, and
then click Regional and Language
Options.

• If you are using Classic View in Control
Panel, double-click Regional and
Language Options.

b. In the Regional and Language Options
dialog box, on the Regional Options tab, in
the Standards and formats area, in the list of
languages, click French (France).

c. Run the application.

No additional information is required for this task.

 Module 8: Enhancing the Usability of Applications 53

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

At a convenient time between now and the end of the course, please
complete a course evaluation, which is available at
http://www.metricsthatmatter.com/survey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: .NET Assemblies 2

Lesson: Deploying Windows Forms
Applications 24

Review 46

Lab 9.1: Deploying an Application 48

Module 9: Deploying
Windows Forms
Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 9: Deploying Windows Forms Applications iii

Instructor Notes
In this module, students learn about assemblies and the use of strong-named
assemblies and the global assembly cache in the Microsoft® .NET Framework.
Students also learn how to configure and deploy Windows Forms applications.

After completing this module, students will be able to:

� Use strong-named assemblies in .NET applications.
� Use application configuration files to configure and use Microsoft

Windows® Installer 2.0 to package and deploy .NET applications.

To teach this module, you need Microsoft PowerPoint® file 2555A_09.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Complete the demonstrations, practices and lab.

Presentation:
120 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 9: Deploying Windows Forms Applications

How to Teach This Module
This section contains information that will help you to teach this module.

� If students are interested in referencing code examples in other languages,
point them to “Language Equivalents” in the Help documentation for the
Microsoft Visual Studio® .NET development system. This section provides
examples in languages such as Microsoft Visual Basic® .NET, C#, and Java.

� Lab 9.1, Deploying an Application is based on the Expense Report
application used throughout Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C#™ .NET) and is intended to simulate a
real-world environment in which students will demonstrate what they
learned during the lecture and practice portions of the module. The lab does
not provide step-by-step detailed instructions; instead, the students are given
tasks to complete in the left column and a list of resources that they can use
(if they need help) in the right column. Students get the hands-on experience
that they need by completing the practice activity in the module.

Lesson: .NET Assemblies
This section describes the instructional methods for teaching this lesson.

The key points of this lesson are for the student to understand the difference
between private and strong-named assemblies and the appropriate scenarios for
the use of each.

Also, be sure to emphasize that the GACUtile.exe utility is for use during
application development. For application development, assemblies should be
installed in the global assembly cache by using the .NET Framework
configuration tool (Mscorcfg.msc) or Windows Installer setup projects.

Lesson: Deploying Windows Forms Applications
This section describes the instructional methods for teaching this lesson.

In this lesson, point out to students that the deployment of Windows Forms
applications is easier thanks to the support added by the .NET Framework,
which avoids the old problem of dynamic link-library (DLL) versioning issues.

Lab 9.1: Deploying an Application
This section describes the instructional methods for teaching this lab.

If a student opens the InternalBusinessApplication.sln solution file for Exercise
3, Deploying a .NET Application, the work area is initially blank. Tell students
that to view the file system editor, in Solution Explorer they must right-click
InternalBusinessApplication, click View, and then click File System.

How to Install
Assemblies into the
Global Assembly Cache

 Module 9: Deploying Windows Forms Applications 1

Overview

� .NET Assemblies

� Deploying Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will learn about assemblies and the use of strong-named
assemblies and the global assembly cache in the Microsoft® .NET Framework.
You will also learn how to configure and deploy your .NET applications.

After completing this module, you will be able to:

� Use strong-named assemblies in .NET applications.
� Use application configuration files to configure and use Microsoft

Windows® Installer 2.0 to package and deploy .NET applications.

Introduction

Objectives

2 Module 9: Deploying Windows Forms Applications

Lesson: .NET Assemblies

� What is an Assembly?
� What Are Private Assemblies?
� What Are Strong-Named Assemblies?
� How to Build a Strong-Named Assembly
� How to Call a Strong-Named Assembly
� Demonstration: Viewing Assembly Metadata
� Practice: Calling a Strong-Named Assembly
� How to Install Assemblies into the Global Assembly Cache
� Demonstration: Using the .NET Framework Configuration Tool to

Work with the Global Assembly Cache
� Practice: Working with the Global Assembly Cache

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn about the difference between private and strong-
named assemblies, how to build and call strong-named assemblies. You will
learn how to install strong-named assemblies in the global assembly cache and
why you would want to do so. You will also learn how to use the Fusion Log
Viewer (FusLogVw utility) to trace the assembly load process to troubleshoot
application activation problems.

After completing this lesson, you will be able to:

� Describe the difference between private and strong-named assemblies.
� Build strong-named assemblies and call them from an application.
� Install strong-named assemblies in the global assembly cache.
� Use the FusLogVw utility to trace the assembly load process to troubleshoot

application activation problems.

Introduction

Lesson objectives

 Module 9: Deploying Windows Forms Applications 3

What is an Assembly?

� A functional unit of sharing, versioning, and identity in
the .NET Framework

� A unit for which permissions are requested and
granted

� Can be shared across .NET applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Applications in the .NET Framework always consist of one or more assemblies.

An assembly:

� Is a functional unit of sharing, versioning, and identity in the .NET
Framework.

� Is a unit for which permissions are requested and granted.
� Can be shared across .NET applications.

In the simplest case, an application can consist of one assembly that contains
one managed module with all the code and resources for the application. In
most scenarios, however, an application has multiple assemblies, and each
assembly may have multiple files. References between assemblies are not
resolved until the code making the call is executed. So, all assemblies of an
application need not be present at run time. Assemblies, such as localization
resources, can be retrieved on demand.

All assemblies are self-describing. Each assembly contains metadata that
includes the identity and version of the assembly and the types implemented by
that assembly. You can use the Microsoft intermediate language (MSIL)
Disassembler (Ildasm.exe) to view the contents of the assembly file. At the
command prompt, type the following command:

ildasm <assembly name>

Introduction

Definition

4 Module 9: Deploying Windows Forms Applications

What are Private Assemblies?

� Private assemblies

� Where private assemblies can reside
� Default probing process

Application folder tree
� Use Assembly.LoadFrom for these locations

Any folder on the local computer
Any folder on a remote computer
A URL

Assembly PrivateAssembly;
PrivateAssembly = Assembly.LoadFrom("C:\\PrivateAssembly.dll");
// Obtain a reference to a method known to exist in assembly.
MethodInfo Method =

PrivateAssembly.GetTypes()[0].GetMethod("CalculateSum");

Assembly PrivateAssembly;
PrivateAssembly = Assembly.LoadFrom("C:\\PrivateAssembly.dll");
// Obtain a reference to a method known to exist in assembly.
MethodInfo Method =

PrivateAssembly.GetTypes()[0].GetMethod("CalculateSum");

Private assemblies are deployed with and used
exclusively by a single application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the .NET Framework, you can create source code by using any programming
language that is compatible with the .NET Framework. You then use the
corresponding compiler to build a managed module. A managed module is a
standard portable executable (PE) file for the Windows operating system that
contains MSIL code that is executed by the common language runtime.
Managed modules must be packaged in assemblies before they can be executed
by the common language runtime, therefore all code written for the .NET
Framework must be packaged as an assembly before it can be executed.

A private assembly is deployed with and used exclusively by a single
application. A private assembly is referenced by its simple name. The simple
name is defined in the assembly’s metadata.

When the common language runtime searches for a private assembly, it uses the
assembly’s simple name to locate the referenced assembly.

When the application is installed, the private assembly is also installed in the
same root directory of the application, or in a subdirectory that appears under
the root directory of the application.

Introduction

Definition

Where private
assemblies can reside

 Module 9: Deploying Windows Forms Applications 5

The probing process for private assemblies can be summarized with the
following steps:

1. The runtime obtains the private assembly’s simple name from the metadata
of the application that is referencing the private assembly.

2. The runtime starts probing first in the application’s root directory, next in
the assembly’s named subdirectory, and then in the assembly’s culture
subdirectory. For example, if the application MyApp is installed in
C:\Program Files\MyApp, the following directories may be searched:
C:\Program Files\MyApp\MyAssembly.dll.
C:\Program Files\MyApp\MyAssembly\MyAssembly.dll.
C:\Program Files\MyApp\MyAssembly.exe.
C:\Program Files\MyApp\MyAssembly\MyAssembly.exe.
C:\Program Files\MyApp\de\MyAssembly.dll.
C:\Program Files\MyApp\de\MyAssembly\MyAssembly.dll.
C:\Program Files\MyApp\de\MyAssembly.exe.
C:\Program Files\MyApp\de\MyAssembly\MyAssembly.exe.

To access an assembly that is not in the directory tree of the application, you
can use the Assembly.LoadFrom() method, providing the location where the
assembly can be found. To use Assembly.LoadFrom(), you must include the
using directive, using System.Reflection. The following code demonstrates
how to call LoadFrom():

Assembly PrivateAssembly;
PrivateAssembly =
 Assembly.LoadFrom ("C:\\PrivateAssembly.dll");
// Obtain a reference to a method known to
// exist in the assembly.
MethodInfo Method =
 PrivateAssembly.GetTypes()[0].GetMethod("CalculateSum");

6 Module 9: Deploying Windows Forms Applications

What are Strong-Named Assemblies?

� Strong-named assemblies

� Benefits of strong names

� Where strong-named assemblies can reside

� Where strong-named assemblies should reside

� Private assemblies vs. strong-named assemblies

Strong names identify assemblies uniquely and allow for
features that guarantee the assembly is authentic and has not
been tampered with

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To get many of the benefits assemblies provide, such as sharing by multiple
applications on the system, side-by-side versioning, and better support for
security and deployment, you must use strong-named assemblies.

The .NET Framework uses strong names to provide a way to identify
assemblies uniquely, allowing applications to run with the versions of the
strong-named assemblies they were built with. Also, strong-names allow for
features to guarantee the assembly is authentic and has not been tampered with.

Strong-named assemblies consist of the assembly’s identity, which is:

� The simple text name of the assembly.
� The version number of the assembly.
� The culture information, if it is provided (optional).
� A public key for the client.
� A digital signature.

The tool used to create the assembly generates a hash of the file that contains
the assembly’s manifest. The private key is used to sign the hash (digital
signature). The digital signature is stored in the PE file that contains the
manifest for the assembly. The public key is used by the client of the strong-
named assembly to decrypt its digital signature.

Strong names guarantee name uniqueness by relying on unique key pairs. No
one can generate the same assembly name that you can, because an assembly
generated with one private key has a different name than an assembly generated
with another private key.

Strong names protect the version lineage of an assembly. A strong name can
ensure that no one can produce a subsequent version of your assembly. Users
can be sure that a version of the assembly they are loading comes from the same
publisher that created the version the application was built with.

Introduction

Definition

Benefits of strong
names

 Module 9: Deploying Windows Forms Applications 7

Strong names provide a strong integrity check. Passing the .NET Framework
security checks guarantee that the contents of the assembly have not been
changed since it was built. Note, however, that strong names in and of
themselves do not imply a level of trust, such as that provided by a digital
signature and the supporting certificate.

Strong-named assemblies can only reference other strong-named
assemblies.
When you reference a strong-named assembly, you are expecting to get certain
benefits, such as versioning and naming protection. If the strong-named
assembly you reference then references a private assembly which does not have
these benefits, you lose the benefits you would derive from using a strong-
named assembly and revert to dynamic link-library (DLL) conflicts.

Strong-named assemblies can reside in:

� An application folder.
� Any folder on the local computer.
� Any folder on a remote computer.
� A URL.
� The global assembly cache.

Assemblies shared by multiple applications should be installed in the global
assembly cache, a centralized repository. .NET clients can access the same copy
of the assembly, which is signed and installed in the global assembly cache.
The global assembly cache can handle multiple versions of an assembly, and
it’s a secure place where assemblies can be stored. If the assembly is not going
to be shared, then the assembly should be installed in the application directory
tree. Once a strong-named assembly has been installed in the global assembly
cache, it is referred to as a shared assembly.

The only differences between a strong-named assembly and a shared assembly
are (a) where they are located and (b) during the integrity/security validation. If
the assembly is installed in the global assembly cache, the runtime checks the
assembly during the install. If the assembly is not installed in the global
assembly cache, the integrity is checked at run time.

Some key differences between private and strong-named assemblies are listed
below.

Private assemblies:

� Can only be installed in an application’s directory structure.
� Are referenced only by their simple name.
� Can have version information, but the runtime does not use it.
� Are not installed in the global assembly cache and therefore the runtime will

not look in the global assembly cache when probing for the private
assembly.

Note

Where strong-named
assemblies can reside

Where strong-named
assemblies should
reside

Differences between
private and strong-
named assemblies

8 Module 9: Deploying Windows Forms Applications

Strong-named assemblies:

� Can be installed in a number of different locations.
� Are referenced by their simple name, culture, version, and public key.
� Contain version information that the runtime checks when loading the

assembly.
� Can be installed in the global assembly cache and therefore the runtime will

look in the global assembly cache as part of the probing process.
� Can have multiple versions deployed in a side-by-side manner in the global

assembly cache.

In addition to the differences and benefits mentioned above, strong-named
assemblies can be used instead of private assemblies to provide the following
two benefits:

� When the application is built, it is tied to a specific version of the assembly
it references. Therefore, a new version of the assembly cannot simply be
installed in place of the original assembly because the application will not
run.

� When the application runs, the reference strong-named assembly is verified
for tampering prior to being loaded and executed. This prevents any
malicious activity that may occur if the assembly being loaded is not the
same one that built the application.

For more information about both private and strong-named assemblies, see
Course 2350A, Securing and Deploying Microsoft .NET Applications.

 Module 9: Deploying Windows Forms Applications 9

How to Build a Strong-Named Assembly

Add attributes that describe the assemblyAdd attributes that describe the assembly

Use the Sn.exe utility to create a strong name key fileUse the Sn.exe utility to create a strong name key file

Build the projectBuild the project

Add to AssemblyInfo file

sn –k CalcKey.snksn –k CalcKey.snk

[assembly: AssemblyKeyFile("CalcKey.snk")]
[assembly: AssemblyVersion("2.1.45.0")]

[assembly: AssemblyKeyFile("CalcKey.snk")]
[assembly: AssemblyVersion("2.1.45.0")]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To create a strong-named assembly, you need to use a private key to sign the
assembly. The public key is included with the assembly to allow client
applications to verify the strong name. The public key is automatically included
in the assembly when it is signed. For more information about signing an
assembly, see Module 10, “Securing Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET Applications for Windows (Visual C#™
.NET).

To create a strong-named assembly:

1. Use the Sn.exe utility to create a strong name key file.
The command-line Strong Name tool (Sn.exe) that comes with the .NET
Framework is used to build strong-name key files. For example, the
following command will build a strong-name key file named CalcKey.snk:
sn -k CalcKey.snk

2. Add the AssemblyKeyFile attribute flags and other assembly attributes, as
appropriate.
To create a strong-named assembly, use assembly attributes. An assembly
attribute is placed in the AssemblyInfo file that is part of the Microsoft
Visual Studio® .NET project. Assembly attributes instruct the compiler to
populate certain assembly metadata settings or perform certain actions as
defined by the attribute.

3. Build the application.

Introduction

Procedure: Creating a
Strong-Named
Assembly

10 Module 9: Deploying Windows Forms Applications

The AssemblyKeyFile attribute tells the compiler to create a strong-named
assembly and indicates where the key pair can be found. The following example
demonstrates the use of the AssemblyKeyFile and AssemblyVersion attributes
(note that the AssemblyVersion attribute is not used to force the compile to
build a strong-named assembly, but is needed to give the assembly a version
number):

using System.Reflection;
 …
[assembly: AssemblyKeyFile("CalcKey.snk")]
[assembly: AssemblyVersion("2.1.45.0")]

There are other assembly attributes that can be added to the AssemblyInfo file.
For more information about assembly attributes, search on the phrase
assembly-level attributes in Visual Studio .NET online Help.

Examples of assembly
attributes

 Module 9: Deploying Windows Forms Applications 11

How to Call a Strong-Named Assembly

Add a reference to the strong-named assemblyAdd a reference to the strong-named assembly
Browse to the correct location

Add using statement for the namespace of the strong-named
assembly
Add using statement for the namespace of the strong-named
assembly

Build the applicationBuild the application

If built using the same code as a private
assembly, then you must add a reference and
rebuild the calling application

If built using the same code as a private
assembly, then you must add a reference and
rebuild the calling application

TroubleshootingTroubleshootingTroubleshooting

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Now that you have created a strong-named assembly, how do you call it from
an application?

To call a strong-named assembly:

1. Add a reference to the strong-named assembly to your project:
a. In the Visual Studio .NET Solution Explorer, right-click the References

node.
b. Click Add Reference.

The Add Reference dialog box appears.
c. Click the Browse button to locate the assembly.
d. When you have selected the correct assembly, click OK.
e. Check the References node in Solution Explorer, to verify that the

reference to the assembly has been added.
2. Add a using statement for the Namespace of the strong-named assembly to

the source files that require access to the assembly.
3. Build and run the application.

Introduction

Procedure: Calling a
Strong-Named
Assembly

12 Module 9: Deploying Windows Forms Applications

Default binding policy refers to the process by which the runtime locates an
assembly based on the binding information contained in the application. An
application will be bound to an assembly it was built and tested with, even if a
newer version of the assembly is available. Default binding policy is always
used unless it is explicitly overridden.

If you originally build an application that uses a private assembly
and then make a strong-named version of that private assembly, you must add a
reference to the strong-named assembly and rebuild the calling application in
order for the calling application to use the strong-named version of the
assembly.

In the lesson, Deploying Windows Forms Applications, in Module 9,
“Deploying Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Microsoft Windows (Visual C# .NET), you will
learn how you can use application configuration files to override the default
binding policy.

Troubleshooting

Important

 Module 9: Deploying Windows Forms Applications 13

Demonstration: Viewing Assembly Metadata

In this demonstration, you will see how to

� Add external tools to the Visual Studio
.NET environment

� Use ILDASM to vie the metadata of an
application that references a type that is
built into a separate assembly

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to add external tools to the Visual
Studio .NET environment. You will then see how to view the metadata of an
application that references a type that is built into a separate assembly.

If you performed a default installation of the course files, install_folder
corresponds to C:\Program Files\Msdntrain\2555.

� To add ILDASM to the Visual Studio .NET environment
1. Start Visual Studio .NET.
2. From the Tools menu, select External Tools.
3. In the External Tools dialog box, click Add.
4. In the Title box, type MSIL Disassembler
5. Click the … button to the right of the Command field.
6. In the Open File dialog box, browse to C:\Program Files\

Microsoft Visual Studio .NET\FrameworkSDK\bin.
7. Select ildasm.exe and click Open.
8. On the External Tools dialog box, click OK.
9. View the Tools menu again and notice that a menu item for MSIL

Disassembler is now available.

Introduction

Note

Instructions

14 Module 9: Deploying Windows Forms Applications

� To view the metadata of an assembly
1. In Visual Studio .NET, click the Tools menu and select MSIL

Disassembler.
2. When the ILDASM window appears, click the File menu and then click

Open.
3. In the Open dialog box, browse to install_folder\Democode\Mod09\

Mod09_01.
4. Select CalculatorEngine.dll and click Open.
5. Notice that the CalculatorEngine.dll node has two sub-nodes, the

MANIFEST and the Calculator namespace.
6. Double-click the MANIFEST sub-node. Notice that there is an .assembly

CalculatorEngine entry in the manifest. Below this reference you will see
the .ver entry showing what version of CalculatorEngine.dll was built.
CalculatorEngine is not a strong-named assembly because there is no public
key entry in the manifest. Therefore, even though a version number has
been applied to CalculatorEngine.dll, the runtime will not consider it when
probing for this assembly when an application that references it is executed.

7. Close the MANIFEST window and ILDASM.
8. Run ILDASM from the Tools menu again on WindowsCalculator.exe.
9. Notice that the WindowsCalculator.exe node also has two sub nodes, the

MANIFEST and the WindowsCalculator namespace.
10. Double-click the MANIFEST sub-node.
11. Notice that there is an entry in the manifest called .assembly extern

CalculatorEngine that contains the version number. This indicates that this
reference is to an EXTERNAL assembly—one that is different than
WindowsCalculator.exe.

 Module 9: Deploying Windows Forms Applications 15

Practice: Calling a Strong-Named Assembly

In this practice, you will

� Create a strong-named assembly

� Create an application that calls a strong-
named assembly

� View the metadata for the application

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a strong-name key pair file and reference this
file in the CalculatorEngine library. You will then create the
WindowsCalculator application so that it references the strong-named
assembly. In addition, you will use ILDASM to inspect the metadata of both
CalculatorEngine.dll and WindowsCalculator.exe.

� Creating a strong-named assembly
1. Open a Command Prompt window, by clicking Start, pointing to All

Programs, pointing to Microsoft Visual Studio .NET, pointing to Visual
Studio .NET Tools, and then clicking Visual Studio .NET Command
Prompt.

2. At the command prompt, change directory to
install_folder\Practices\Mod09\Mod09_01\Starter\CalculatorEngine.

3. Enter the command sn –k CalcKey.snk. This creates a strong-named key
file that we can use to build a strong-named assembly.

4. In Visual Studio .NET, open the CalculatorEngine.sln solution file in
install_folder\Practices\ Mod09\Mod09_01\Starter\CalculatorEngine.

5. Show TODO comments in the Task List.
To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

6. Open the AssemblyInfo.cs file.
7. Locate the first TODO comment. Change the version number from 2.0.1.1

to 3.0.1.1.
[assembly: AssemblyVersion("3.0.1.1")]

Introduction

Instructions

16 Module 9: Deploying Windows Forms Applications

8. Locate the next TODO comment. Add a new attribute at the bottom of the
file to reference the strong name key pair file.
[assembly: AssemblyKeyFile("CalcKey.snk")]

9. Open the Calculator.cs source file.
10. Locate the TODO comment. Change the versionInfo string from v2.0.1.1 to

v3.0.1.1.
private static string versionInfo = "Calculator v3.0.1.1";

11. Rebuild the assembly and then close Visual Studio.NET.
12. In a Visual Studio .NET Command Prompt window, change directories to

install_folder\Practices\Mod09\Mod09_01\Starter\CalculatorEngine\
bin\Debug.

13. At the command prompt, run ILDASM on CalculatorEngine.dll.
ildasm CalculatorEngine.dll

14. Open the MANIFEST sub-node.
15. Notice that under the .assembly CalculatorEngine entry, there is a

.publickey entry. This indicates that CalculatorEngine is a strong-named
assembly.

16. Close the MANIFEST window and ILDASM.

� Creating an application that references the strong-named assembly
1. In Visual Studio .NET, open the WindowsCalculator.sln solution file in

install_folder\Practices\Mod09\Mod09_01\Starter. Rebuild the solution.
2. Run the application and notice that the version number is 3.0.1.1. This is the

version number of CalculatorEngine.dll.
3. In a Visual Studio .NET Command Prompt window, change directories to

install_folder\Practices\ Mod09\Mod09_01\Starter \bin\debug.
4. Run ILDASM on WindowsCalculator.exe by typing the command:

ildasm WindowsCalculator.exe
5. Open the MANIFEST sub- node. Notice that the .assembly extern

CalculatorEngine entry has both the version number entry of 3:0:1:1, and a
.publickeytoken entry. This shows that this application has a reference to
an external strong name assembly.

 Module 9: Deploying Windows Forms Applications 17

How to Install Assemblies into the Global Assembly Cache

Several tools available for installing assemblies in
the Global Assembly Cache

� During development and testing phases, use
GACUtil.exe

GACUtil.exe options
-i (install)
-l (list)
-u (uninstall)

� For deployment, use
MSCORCFG.msc
Windows Installer Setup Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The global assembly cache is a machine-wide code cache used for storing one
or more versions of an assembly. Storing multiple versions of an assembly in
the global assembly cache is called side-by-side deployment. The global
assembly cache stores assemblies that can be shared among many applications
on the computer.

Assemblies that are deployed in the global assembly cache must have a strong
name. This is because the global assembly cache has stricter naming rules to
ensure that side-by-side deployment and execution is possible. As a result,
when you install an assembly in the global assembly cache, the common
language runtime verifies that the assembly is unique to any other assembly
already installed in the global assembly cache and has not been tampered with.
The verification process begins by decrypting the signature of the strong name
by using the public key that is included in the assembly. If the signature is not
present or the results of decrypting the signature do not match the contents of
the assembly, the installation process is terminated.

To install or uninstall an assembly in the global assembly cache, you need to
have administrator-level privileges on the computer on which the cache resides.
Assemblies should be installed in the global assembly cache by using Windows
Installer or by using the .NET Framework configuration tool, Mscorcfg.msc.
During development, you can use the Global Assembly Cache tool or Windows
Explorer to install your assembly in the global assembly cache for testing
purposes. Both of these tools are available for convenience only and should not
be used for production deployment.

GACUtil.exe is a command line utility that allows you to view and manipulate
the contents of the global assembly cache. GACUtil.exe options include:

� /i or –i: installs a strong-named assembly into the global assembly cache.
� /l or –l: lists the contents of the global assembly cache.
� /u or –u: removes one or more assemblies from the global assembly cache.

Introduction

Using GACUtil.exe

18 Module 9: Deploying Windows Forms Applications

The .NET Framework Configuration tool is a Microsoft Management Console
(MMC) snap-in that allows you to manage and configure assemblies in the
global assembly cache, adjust code access security policy, and adjust remoting
services.

When you create a Microsoft Windows Installer 2.0 setup project for your
application, you can add strong-named assemblies to the Global Assembly
Cache node of your setup project.

Using MSCORCFG.msc

Using a Windows
Installer 2.0 setup
project

 Module 9: Deploying Windows Forms Applications 19

When your application is installed by using the Windows Installer, these strong-
named assemblies will be installed into the global assembly cache of the
computer where the installed project is run. For more information about setup
projects see the lesson, Deploying Windows Forms Applications, Module 9,
“Deploying Windows Forms Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

20 Module 9: Deploying Windows Forms Applications

Demonstration: Using the .NET Framework Configuration Tool to
Work with the Global Assembly Cache

In this demonstration, you will see how to
use the .NET Framework Configuration Tool
(mscorcfg.msc) to install an assembly into
the Global Assembly Cache and how to
examine the contents of the Global Assembly
Cache

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the .NET Framework
Configuration Tool (mscorcfg.msc) to install an assembly into the global
assembly cache, and how to examine the contents of the global assembly cache.

� To install an assembly into the global assembly cache by using the .NET
Framework configuration tool

1. Run the .NET Framework configuration tool (mscorcfg.msc) by double-
clicking the mscorcfg.msc icon on the desktop.

2. In the left pane of the .NET Framework Configuration Tool window, click
the Assembly Cache node.

3. In the right pane of the .NET Framework Configuration Tool window, click
Add an Assembly to the Assembly Cache.

4. In the Add an Assembly dialog, change folders to
install_path\Democode\Mod09\Mod09_02.

5. Select CalculatorEngine.dll and click the Open button.

� To use the .NET Framework configuration tool to examine the global
assembly cache

1. In the right pane of the .NET Framework Configuration Tool window, click
View List of Assemblies in the Assembly Cache.

2. Scroll through the cache list and locate CalculatorEngine. Notice it lists the
version, culture, and public key token information as well.

Introduction

Instructions

 Module 9: Deploying Windows Forms Applications 21

Practice: Working with the Global Assembly Cache

In this practice, you will

� Build a new version of an assembly

� Use GACutil.exe to install this assembly in
the Global Assembly Cache

� Create an application that references the
assembly that you installed in the Global
Assembly Cache

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will install the CalculatorEngine assembly in the global
assembly cache. You will then build the WindowsCalculator application. Prior
to running the application, you will remove all the local copies of
CalculatorEngine.dll. You will then verify that WindowsCalculator still runs
because it finds the correct version of CalculatorEngine in the global assembly
cache.

During development, you can use the global assembly cache tool
(GACUtil) to install your assembly in the global assembly cache for testing
purposes. This tool is available for convenience only and should not be used for
production deployment. For production environments, assemblies should be
installed in the global assembly cache by using Windows Installer or by using
the .NET Framework configuration tool, Mscorcfg.msc.

� Building a new version of the CalculatorEngine assembly
1. In Visual Studio .NET, open the CalculatorEngine.sln solution file in

install_folder\Practices\Mod09\Mod09_02\Starter\CalculatorEngine.
2. Show TODO comments in the Task List.

To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

3. Open the AssemblyInfo.cs file.
4. Locate the first TODO comment. Change the version number from 3.0.1.1

to 4.0.1.1.
[assembly: AssemblyVersion("4.0.1.1")]

Introduction

Important

Instructions

22 Module 9: Deploying Windows Forms Applications

5. Open the Calculator.cs source file.
6. Locate the TODO comment. Change the versionInfo string from v3.0.1.1 to

v4.0.1.1.
private static string versionInfo = "Calculator v4.0.1.1";

7. Rebuild the library, and then close Visual Studio .NET.

� Using GACUtil to install an assembly into the global assembly cache
1. Open the Visual Studio .NET Command Prompt window by clicking Start

pointing to All Programs, pointing to Microsoft Visual Studio .NET,
pointing to Visual Studio .NET Tools, and then clicking Visual Studio
.NET Command Prompt.

2. Change directories to
install_folder\Practices\Mod09\Mod09_02\Starter\CalculatorEngine\
bin\Debug.

3. Install the CalculatorEngine assembly into the global assembly cache by
entering the command:
gacutil –i CalculatorEngine.dll
You should receive the message Assembly successfully added to the
cache.

4. Display the contents of the global assembly cache by entering the command:
gacutil –l

5. Scroll through the list to find CalculatorEngine. The entry should contain
the information “CalculatorEngine, Version=4.0.1.1, Culture-neutral,
PublicKeyToken=***, Custom=null”.

� Building the application that references the strong-named assembly in
the global assembly cache

1. In Visual Studio .NET, open the WindowsCalculator.sln solution file in
install_folder\Practices\Mod09\Mod09_02\Starter.

2. Expand the References node in the Solution Explorer.
3. Right-click the References node and select Add Reference.
4. In the Add Reference dialog box, click Browse and locate

CalculatorEngine.dll in
install_folder\Practices\Mod09\Mod09_02\Starter\CalculatorEngine\
bin\Debug. Click Open and then click OK.

5. Open the CalcUI.cs source file.
6. Show TODO comments in the Task List.

To show TODO comments, click the View menu, point to Show Tasks, and
then click All.

7. Locate the TODO comment. Add a using directive to access Calculator.
using Calculator;

8. Build the WindowsCalculator application.

 Module 9: Deploying Windows Forms Applications 23

9. In Windows Explorer, rename all local copies of CalculatorEngine.dll to
OLD_Calculator.dll. This would include
install_folder\Practices\Mod09\Mod09_02\Starter\bin\debug,
install_folder\Practices\Mod09\Mod09_02\Starter\CalculatorEngine\bin\
Debug, and install_folder\Practices\Mod09\Mod09_02\Starter\
CalculatorEngine\obj\Debug.

10. In Windows Explorer, browse to
install_folder\Practices\Mod09\Mod09_02\Starter\bin\debug.

11. Run the application by double-clicking WindowsCalculator.exe. Notice that
the WindowsCalculator application still runs even though a local copy of the
CalculatorEngine.dll assembly could not be found. This is because the
runtime found the correct assembly in the global assembly cache and loaded
it.

24 Module 9: Deploying Windows Forms Applications

Lesson: Deploying Windows Forms Applications

� What Are Application Configuration Files?
� Elements of Application Configuration Files
� Element Attributes
� Practice: Creating and Using Application Configuration Files
� Other Configuration Files
� Demonstration: Tracing the Assembly Loading Process
� Packaging and Deploying .NET Applications
� Components of a Windows Installer Setup Project
� How to Create and Use a Windows Installer Setup Project
� Practice: Creating and Using a Windows Installer Deployment

Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to use application configuration files and
Windows Installer 2.0 setup projects to deploy your.NET Framework
applications.

After completing this lesson, you will be able to:

� Create and use application configuration files for.NET applications.
� Trace the assembly load process to aid in troubleshooting.
� Use Microsoft Windows Installer 2.0 to package and deploy .NET

applications.

Introduction

Lesson objectives

 Module 9: Deploying Windows Forms Applications 25

What are Application Configuration Files?

� Application configuration files provide a way of overriding the
metadata in assemblies without having to rebuild the application
� Name: MyApp.exe.config
� Format: XML
� Location: in the same folder as the application executable file

� Runtime searches for and examines (if found) application
configuration files

� Application configuration files allow you to override default
treatment regarding application, assembly and policies

� Application configuration files contain
� Hierarchical elements
� Some elements have attributes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Every assembly and application is versioned in the .NET Framework.
Application configuration files provide a way of overriding the metadata in
assemblies without having to rebuild the application.

When an application runs, the .NET Framework common language runtime
searches for dependencies that the application needs, such as other assemblies
and resource files. This is known as the probing process. As part of the probing
process, the runtime searches for and examines (if found) application
configuration files. If a file is found, the runtime modifies its probing behavior
based on the contents of the configuration file.

Application configuration files are XML files that contain settings specific to an
application. This file contains configuration settings that the common language
runtime reads (such as assembly binding policy) when it probes for the
application’s dependencies. Application configuration files allow you to
override the application/assembly version, location of dependent assemblies,
the probing process, and any publisher policy that a third-party vendor may
have provided.

The application configuration file can redirect an application to use a different
version of an assembly or look in a different location for an assembly, but the
assembly itself must still be built with the same key pair that the application
expects. This is because the runtime will check for tampering when a strong-
named assembly is referenced. This helps prevent the use of redirection for
malicious intentions, because the perpetrator would have to obtain the key pair
to accomplish their task.

Application configuration files reside in the same folder as the executable to
which they apply. The naming convention for an application configuration file
is executable_name.config. For example, if your application is named
MyApp.exe, the application configuration file must be named
MyApp.exe.config.

Introduction

Definition

Definition

26 Module 9: Deploying Windows Forms Applications

Application configuration files contain hierarchical elements and some of these
elements can have attributes. Here is an example of a simple application
configuration file.

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="CalculatorEngine"
 publicKeyToken="3a1061701aba2b5b"
 culture="en-US"/>
 <bindingRedirect oldVersion="3.0.1.1"
 newVersion="4.0.1.1"/>
 <codeBase version="4.0.1.1"
 href="file:///C:/Program
Files/MyApplications/WindowsCalculator/CalculatorEngine.dll"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The path for the <codeBase> element may differ from the one shown in
the example configuration file, depending on where the referenced assembly is
located.

Other topics in this lesson provide more information about configuration
elements and element attributes.

Example of an
application
configuration file

Note

 Module 9: Deploying Windows Forms Applications 27

Elements of Application Configuration Files

<configuration>
<runtime>

<assemblyBinding>
<dependentAssembly>

<assemblyIdentity>
<bindingRedirect>
<codeBase>
<publisherPolicy>

<probing>
<publisherPolicy>

. . .
<configuration>

<configuration>
<runtime>

<assemblyBinding>
<dependentAssembly>

<assemblyIdentity>
<bindingRedirect>
<codeBase>
<publisherPolicy>

<probing>
<publisherPolicy>

. . .
<configuration>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Configuration files are structured in a hierarchical fashion beginning with the
root <configuration> element. Because the elements and sub elements are well-
formed XML, they are case-sensitive.

The table describes the elements that may be included in the configuration file.

Element Description

<configuration> The root element of the configuration file, <configuration>

indicates that the information that follows the element is
used to configure the application. All configuration files
must contain the starting and ending configuration
elements.

<runtime> A sub element of <configuration>, <runtime>contains
information about assembly binding at run time.

<assemblyBinding> A sub element of <runtime>, <assemblyBinding> contains
information about assembly version redirection and
locations of assemblies.

<dependentAssembly> A sub element of <assemblyBinding>,
<dependentAssembly> encapsulates binding policy
information, such as the assembly name, the version
number, and the assembly’s location. This element
contains the binding rules for an individual assembly. If
binding policy is needed for multiple assemblies, use one
<dependentAssembly> element for each assembly.

<assemblyIdentity> A sub element of <dependentAssembly>,
<assemblyIdentity> contains identifying information about
the assembly. The identity information can include the
simple name of the assembly, culture information if it is
provided, and a token that maps to a public key.

Introduction

Application
configuration file
elements

28 Module 9: Deploying Windows Forms Applications

(continued)
Element Description

<bindingRedirect> A sub element of <dependentAssembly>,

<bindingRedirect> redirects the runtime from one
assembly version to another.

<codeBase> A sub element of <dependendAssembly>, <codeBase>
specifies where the runtime can find a strong-named
assembly.

<probing> Specifies subdirectories of the application's base directory
that might contain assemblies.

<publisherPolicy> Specifies whether the runtime applies publisher policy. If
placed within the <dependentAssembly> element, the
<publisherPolicy> element will apply to the specific
assembly. If placed within the <assemblyBinding>
element, the <publisherPolicy> element will apply to all
assemblies referenced by the application.

 Module 9: Deploying Windows Forms Applications 29

Element Attributes

� <assemblyIdentity>
� name (required)
� publicKeyToken (optional)
� culture (optional)

� <codeBase>
� version (required)
� href (required)

� <bindingRedirect>
� oldVersion (required)
� newVersion (required)

� <probing>
� privatePath (required)

� <publisherPolicy>
� apply (required)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Some of the policy configuration elements include attributes that specify
additional details for the runtime to use in locating referenced assemblies.

The table describes the attributes that can be used with certain configuration file
elements.

Element Attribute Description

<assemblyIdentity> name: (required)

The simple name of the assembly.

 publicKeyToken (optional)
Value that specifies the strong name
of the assembly.

 culture (optional)
String that indicates the language and
country/region of the assembly.

<codeBase> version (required)
Specifies the version of the assembly
the codebase applies to. The format of
version numbers in .NET is
major.minor.build.revision.

 href (required)
Specifies the URL where the
assembly is stored.

Introduction

Configuration file
element attributes

30 Module 9: Deploying Windows Forms Applications

(continued)
Element Attribute Description

<bindingRedirect> oldVersion (required)

Specifies the version or version range
of the assembly that was originally
requested.

 newVersion (required)
Specified the version of the assembly
to use instead of the originally
requested version.

<probing> privatePath (required)
Contains the directories that the
runtime should search for assemblies.
The directories specified in
privatePath must be subdirectories of
the application base directory.

<publisherPolicy> Apply (required)
Indicates whether publisher policy is
applied at runtime. Values are yes and
no.

 Module 9: Deploying Windows Forms Applications 31

Practice: Creating and Using Application Configuration Files

In this practice, you will

� Create a new version of the
CalculatorEngine assembly

� Create an application configuration file for
the WindowsCalculator application that
points to the new version of the
CalculatorEngine assembly and verify that,
without rebuilding it, the application
references the new version of the
CalculatorEngine assembly

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will install a new version of the CalculatorEngine
assembly in the global assembly cache. You will then build an application
configuration file for the WindowsCalculator application that points the
application to the new version of CalculatorEngine. You will not have to
rebuild the WindowsCalculator application for it to use the new version of
CalculculatorEngine.

� Install a new version of the CalculatorEngine assembly into the global
assembly cache

1. Open the Visual Studio .NET Command Prompt window by clicking Start,
pointing to All Programs, pointing to Microsoft Visual Studio .NET,
pointing to Visual Studio .NET Tools, and then clicking Visual Studio
.NET Command Prompt.

2. Change directories to install_folder\Practices\Mod09\Mod09_03\Starter.
3. Delete CalculatorEngine.dll.

This is version 4.0.1.1, which is the assembly that WindowsCalculator
currently references.

4. Copy CalculatorEngine.dll.v5011 to CalculatorEngine.dll.
5. Install the CalculatorEngine assembly into the global assembly cache by

typing the following command:
gacutil –i CalculatorEngine.dll
You should receive the message Assembly successfully added to the
cache.

Introduction

Instructions

32 Module 9: Deploying Windows Forms Applications

6. Display the contents of the global assembly cache by typing the following
command:
gacutil –l

7. Scroll through the list to find CalculatorEngine. There should be two
versions of CalculatorEngine in the global assembly cache. One version is
4.0.1.1 and the other is 5.0.1.1.

� Create an application configuration file for WindowsCalculator
1. Run the .NET Framework configuration tool (Mscorcfg.msc) by double-

clicking the Mscorcfg.msc icon on the desktop.
2. Click the Applications node.
3. Click Add an Application to Configure.

4. In the Configure an Application dialog box, click Other to locate the
assembly.

5. Browse to install_folder\Practices\Mod09\Mod09_03\Starter, select
WindowsCalculator.exe, and then click Open.

6. In Mscorcfg.msc, under Applications, expand the WindowsCalculator.exe
application node, and then click Configured Assemblies.

7. In the right pane, click the Configure an Assembly link.
8. In the Configure an Assembly dialog box, select Choose an assembly

from the assembly cache.
9. Click Choose Assembly.
10. In the Choose Assembly from Assembly Cache dialog box, scroll through

the list of assemblies to locate CalculatorEngine version 5.0.1.1. Click
CalculatorEngine, and then click Select.

11. Click Finish.
The CalculatorEngine Properties dialog box appears.

12. Click the Binding Policy tab.
13. In the Requested Version column, type 4.0.1.1

 Module 9: Deploying Windows Forms Applications 33

14. In the New Version column, type 5.0.1.1
15. Click Apply, and then click OK.
16. Use Notepad to open install_folder\Practices\Mod09\Mod09_03\Starter\

WindowsCalculator.exe.config and examine the contents. Notice the
<bindingRedirect> tag. Close Notepad.

17. Run the application by double-clicking WindowsCalculator.exe. Verify
that it uses the new version of the CalculatorEngine assembly. The version
will be 5.0.1.1.

34 Module 9: Deploying Windows Forms Applications

Other Configuration Files

� Publisher policy

� Machine policy

� Enterprise policy

Publisher
policy

Machine
policy

Enterprise
policy

Overrides
Application policy

Overrides
Application and
Publisher policy

Overrides
all other
policies

Application
policy

Safe-mode versioningSafe-mode versioning

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are several other policy levels that can be applied to your application that
can override the default binding policy and settings in the application
configuration file.

Publisher policy configuration files are usually explicitly installed as part of a
service pack or program update. For example, when using third-party
components, the vendor may provide an updated version as a service pack. As
part of the service pack, a publisher policy file is included to redirect
applications to use the new version of the component. By default, publisher
policy overrides application policy and the metadata that is found in the
application’s metadata. However, safe-mode versioning is allowed by
configuring the application configuration file to ignore the publisher policy file.
This is accomplished through the <publisherPolicy> element by setting the
apply attribute to no.

The machine policy configuration file, Machine.config, contains settings that
apply to an entire computer. This file is located in the
%runtime install path%\Config directory. Putting the settings in the machine
configuration file makes your system easier to maintain. For example, if you
have a third-party component that both your client and server application uses,
or that multiple applications use, it is easier to put the settings for that
component in one place. In this case, the machine configuration file is the
appropriate place for the settings, so you don’t have the same settings in
multiple different files. By default, machine policy overrides publisher policy
and application policy.

The enterprise policy level affects every computer and user on the network and
can only be administered by enterprise or domain administrators. You might
consider administering policy on this level when every person in your
enterprise uses an application and you want to make sure that it always receives
sufficient permissions to run. By default, enterprise policy overrides machine,
publisher, and application policy.

Introduction

Publisher policy
configuration files

Machine policy
configuration file

Enterprise policy
configuration file

 Module 9: Deploying Windows Forms Applications 35

Demonstration: Tracing the Assembly Loading Process

In this demonstration, you will see how to use
the Fusion Log Viewer (FUSLOGVW) to trace
the assembly loading process and solve
probing errors

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Fusion Log Viewer
(FUSLOGVW) to trace the assembly loading process and identify assembly
loading problems (probing errors).

Prior to performing this demonstration, run the Fusion Log Viewer
and enable the Log Failures checkbox. If you do not do so, the run time will
not log probing errors and the following practice will not work as expected. It is
also beneficial to leave tracking of log failures turned on at all times to help you
in troubleshooting application problems.

� Run the WindowsCalculator application
1. In Windows Explorer, browse to

install_folder\Democode\Mod09\Mod09_03.
2. Double-click WindowsCalculator.exe to run the application. Notice that

the version number of the CalculatorEngine is 3.0.1.1.

� Using the configuration file
1. In Windows Explorer, delete CalculatorEngine.dll from

install_folder\Democode\Mod09\Mod09_03.
2. Rename HoldWindowsCalculator.exe.config to

WindowsCalculator.exe.config.
3. Run the application again.

You should see a System.IO.FileNotFoundException.

Important

Instructions

36 Module 9: Deploying Windows Forms Applications

� To use FUSLOGVW (Fusion Log Viewer) to solve probing errors
1. Open a Visual Studio .NET Command Prompt window.

To open a Visual Studio .NET Command Prompt window, click Start, point
to All Programs, point to Microsoft Visual Studio .NET, point to Visual
Studio .NET Tools, and then click Visual Studio .NET Command
Prompt.

2. Run the Fusion Log Viewer by typing the command:
fuslogvw

3. In the Assembly Binding Log Viewer window, locate the entry that matches
the last execution of the WindowsCalculator application and double-click it.

4. Look through the log entries noting the various points at which the runtime
attempted to locate the CalculatorEngine assembly and the order in which
each attempt was made. The log will be similar to the following:
LOG: Processing DEVPATH.

LOG: DEVPATH is not set. Falling through to regular bind.

LOG: Publisher policy file is not found.

LOG: Host configuration file not found.

LOG: Using machine configuration file from

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\config\

machine.config.

LOG: Post-policy reference: CalculatorEngine,

Version=3.0.1.1, Culture=neutral,

PublicKeyToken=3d117e8f75e2ae71

LOG: Cache Lookup was unsuccessful.

LOG: Attempting download of new URL

file:///C:/Courses/2555A/CD_Trainer/StudentCD/Democode/

Mod09/Demo09_03/CalculatorEngine.DLL.

LOG: Attempting download of new URL

file:///C:/Courses/2555A/CD_Trainer/StudentCD/Democode/

Mod09/Demo09_03/CalculatorEngine/CalculatorEngine.DLL.

LOG: Attempting download of new URL

file:///C:/Courses/2555A/CD_Trainer/StudentCD/Democode/

Mod09/Demo09_03/CalculatorEngine.EXE.

LOG: Attempting download of new URL

file:///C:/Courses/2555A/CD_Trainer/StudentCD/Democode/

Mod09/Demo09_03/CalculatorEngine/CalculatorEngine.EXE.

LOG: All probing URLs attempted and failed.

� Run the executable
1. Rename CalculatorEngine.dll.v4.0.1.1 to CalculatorEngine.dll.
2. Run the WindowsCalculator application once again. Notice that the version

number of CalculatorEngine is now 4.0.1.1.

 Module 9: Deploying Windows Forms Applications 37

Packaging and Deploying .NET Applications

� Packaging applications
� As a set of executables and DLLs
� Microsoft Windows Installer 2.0 package
� Cabinet files

� Deploying applications
� XCOPY
� Windows Installer 2.0
� Code download

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You have several options for how you package and deploy your .NET
applications.

Packaging is the act of creating a package that can install your application onto
the user’s computer.

Deployment is the act of distributing a built application to the computer and
setting up the application so it will run correctly.

This table compares packaging options available for .NET applications.

Packaging Option Description Comments

Executables and DLLs A set of executables and DLLs in

the original folder hierarchy in
which the application was built.

No packaging is required with .NET
applications and assemblies. You can use the
EXE and DLL files as they were built.

Windows Installer 2.0 Use Visual Studio .NET to create
.msi files for use with the
Windows Installer.

This is the standard way of distributing and
installing applications that run on the desktop.
Other applications can also be deployed by
using .msi files. For example, Microsoft
ASP.NET applications can be packaged in an
.msi file.

Introduction

Definitions

Packaging Options

38 Module 9: Deploying Windows Forms Applications

(continued)
Packaging Option Description Comments

Cabinet Files Use Visual Studio .NET to create

cabinet (.cab) files for deployment
of a .NET Framework application.

The following restrictions apply when creating
the .cab file for .NET compatible applications:

Only one assembly can be stored in a .cab file.
The .cab file must have the same name as the
file in the assembly that contains the manifest.
For example, if the file containing the manifest
in the assembly is called MyClasses.dll, then
the .cab file must be named MyClasses.cab.

After you have created a .cab file, it can be
downloaded by specifying its location by using
the <codeBase> element in one of the
configuration files.

This table compares the deployment options available for .NET applications.

Deployment Option Description Comments

XCOPY Because common language runtime applications

are self-describing and require no registry entries,
you can use XCOPY to copy the application to an
appropriate directory. The application can then be
run from that directory. You can also use FTP to
deploy your application.

Easiest way to install an application.

To remove the application from the
computer, just delete for directory
structure for the application.

Installs private and strong-named
assemblies only. No shared
assemblies can be installed this way.

Windows Installer 2.0 Windows Installer 2.0 can install, repair, or
remove Microsoft .NET Framework assemblies in
the GACand in private directories. This is the
recommended way to deploy Windows Forms
Applications.

Use a Visual Studio .NET setup
project to build an .msi file.

Installation, repair, and removal of
assemblies in the global assembly
cache.

Install, repair, or remove assemblies
in private locations designated for
particular applications.

Rollback unsuccessful installations,
repairs, or removals of assemblies.

Install-on-demand strong-named
assemblies in the GACand in private
locations designated for particular
applications.

Code Download If you are distributing your application over the
Internet or through a corporate intranet, you can
download the code to a computer and run the
application.

Deployment Options

 Module 9: Deploying Windows Forms Applications 39

Components of a Windows Installer Setup Project

Setup projects for applications

� Application folder

� Global assembly cache folder

� User’s desktop

� User’s Program menu

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By using a Windows Installer setup project you can customize how the
application is deployed on the user’s computer.

Remember to add files from a Release build, not a Debug build, to setup
projects.

This table describes the uses for the various components of a Windows Installer
setup project.

Setup Component Description

Application folder The folder used to store the application, for

example, C:\Program Files\Manufacturer\Product.

Global Assembly Cache Folder Use this folder to install shared assemblies. When
creating a new setup project, the Global Assembly
Cache Folder will not appear in the File Editor by
default. To show the Global Assembly Cache
Folder, right-click File System on Target
Machine, highlight Add Special Folder, and
select Global Assembly Cache Folder.

User’s Desktop Use this folder to install shortcuts on the desktop.

User’s Program Menu Use this folder to install a shortcut in the program
menu.

Introduction

Note

Components of a
Windows Installer setup
project

40 Module 9: Deploying Windows Forms Applications

How to Create and Use a Windows Installer Setup Project

Create a new setup project in Visual Studio .NETCreate a new setup project in Visual Studio .NET

Set project properties as appropriateSet project properties as appropriate

Add icons for your application to the setup projectAdd icons for your application to the setup project

Add any shared assemblies to the Global Assembly Cache folder of the
project
Add any shared assemblies to the Global Assembly Cache folder of the
project

Build the projectBuild the project

In Explorer double-click the Setup.exe file created by the setup project to
install the application
In Explorer double-click the Setup.exe file created by the setup project to
install the application

Add the application files to be installed in the application folderAdd the application files to be installed in the application folder
For example, .exe, .dll, and locale files

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use Visual Studio .NET to create a Windows Installer setup project for
your application. You can then copy the .msi file to the appropriate computer
and double-click the .msi file from the setup project to install your application.

1. Create a new setup project in Visual Studio .NET.

2. Click OK and then set project properties such as Author, Description,
Manufacturer, ManufacturerUrl, ProductName, Title, and Version.

Introduction

Procedure: Creating and
using a Windows
Installer setup project

 Module 9: Deploying Windows Forms Applications 41

3. To add the application files to be installed in the application folder, in the
File System tree, right-click the Application Folder, click Add, and then
click Folder or File, as appropriate.

4. Set the DefaultLocation property of the Application Folder if you wish to
change the location of where the contents of the Application Folder will be
installed.

5. To add the icons for your application to the setup project, in the File System
tree, right-click User’s Desktop or User’s Program Menu, and choose
Create Shortcut to User’s Desktop or Create Shortcut to User’s
Programs Menu, as appropriate.

42 Module 9: Deploying Windows Forms Applications

6. To add any shared assemblies to the global assembly cache at setup time
(these are strong-named assemblies that will be shared among multiple
applications), in the File System tree, right-click the File System on Target
Machine root node, click Add Special Folder, and then click Global
Assembly Cache Folder. Right-click the Global Assembly Cache Folder,
point to Add, and then click Assembly. Use the Component Selector to
browse and a select any strong-named assemblies you wish to add to the
global assembly cache.

7. Build the setup project.
The output is an .msi file.

8. In Windows Explorer, locate and double-click Setup.exe to install the
application on your computer.

By default, the .NET framework redistributable library is not
included in the deployment project. This library can be added to the deployment
project in the event the target machines do not have the .NET Framework
already installed. To add the redistributable library, expand the Detected
Dependencies list in Solution Explorer, right click
dotnetfxredist_x86_enu.msm, and clear the Exclude option on the shortcut
menu.

Important

 Module 9: Deploying Windows Forms Applications 43

Practice: Creating and Using a Windows Installer Deployment
Project

20 minBegin reviewing the objectives for
this practice activity

In this practice, you will create and test a
Windows Installer deployment project for the
WindowsCalculator application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a Microsoft Installer setup project and add the
WindowsCalculator application to the project. You will then test the project to
validate that the application installed and works correctly.

� Create the setup project
1. Start Visual Studio .NET.
2. On the Start page, click New Project.
3. In the New Project window, in the Project Type pane, click Setup and

Deployment Projects.
4. In the Templates pane, click Setup Project.
5. Set the Location to install_folder\Practices\Mod09\Mod09_04\Starter.
6. Set the Name to WinCalc. Click OK to create the project.
7. In the File System tree, right-click File System on Target Machine, click

Add Special Folder, and then click Global Assembly Cache Folder.
8. Right-click Global Assembly Cache Folder, click Add, and then click

File.
9. In the Add Files dialog box, change folder to

install_folder\Practices\Mod09\Mod09_04\Starter, and then double-click
CalculatorEngine.dll.

10. Right-click Application Folder, click Add, and then click File.
11. In the Add Files dialog box, double-click WindowsCalculator.exe.
12. Right-click Application Folder, click Add, and then click File.
13. In the Add Files dialog box, double-click KEYS03.ICO.

Introduction

Instructions

44 Module 9: Deploying Windows Forms Applications

14. Right-click the Application Folder, and then click Properties Window. In
the Properties window, change the DefaultLocation property to
[ProgramFilesFolder]\[ProductName] by removing the Manufacturer
entry. Also, change the AlwaysCreate property to True.

15. In Solution Explorer, expand Detected Dependencies. In the Detected
Dependencies folder, right-click CalculatorEngine.dll, and then click
Exclude.

16. To create a shortcut for the User’s Desktop, select the Application Folder
again, and then click WindowsCalculator.exe.
When you reach step 24, you will be directed to repeat steps 16 through 22
to create a second shortcut for the Program menu.

17. On the Action menu, click Create Shortcut to WindowsCalculator.exe.
Rename the shortcut to Windows Calculator.

18. In the Properties window, make sure the Target property is set to
WindowsCalculator.

19. Click on the Icon property and select Browse.
20. In the Icon dialog box, click Browse.
21. Select Application Folder from the Look In dropdown list and click on

KEYS03.ICO.
22. Click OK and then click OK in the Icon dialog box.
23. Drag the shortcut from the Application Folder to the User’s Desktop node.
24. To create a shortcut for the Program menu, repeat steps 16 through 22

again to create another shortcut with the same name.
25. Drag the shortcut to the User’s Program Menu node.
26. In Solution Explorer, click the WinCalc project. In the Properties window,

set the following properties to their associated values.

Property Value

Author Your Name

Manufacturer Your Name or Your Company’s Name

ProductName WinCalc

Title Windows Calculator

27. Save and build the setup project.

� Install and run the application
1. In Windows Explorer, browse to

install_folder\Practices\Mod09\Mod09_04\Starter\WinCalc\Debug.
2. Double-click Setup.exe to start the installation of the Windows Calculator

application.
3. Click Next three times. The application will be installed on the computer.
4. Click Close after the application has been installed.
5. View the computer’s desktop and double-click the Windows Calculator

icon.
The application should start and show that it is using version 6.0.1.1 of the
CalculatorEngine assembly.

 Module 9: Deploying Windows Forms Applications 45

6. Close the Calculator.
7. Click the Start button, point to All Programs, and then click the Windows

Calculator.
The application should run and show that it, too, is using version 6.0.1.1. of
the CalculatorEngine assembly.

8. Close the Calculator.
9. In Windows Explorer, browse to C:\Program Files\WinCalc.

You should see the WindowsCalculator.exe file in this folder, but not
CalculatorEngine.dll.

10. In Windows Explorer, change directories to C:\WINDOWS\assembly.
You should see CalculatorEngine version 6.0.1.1 installed in the global
assembly cache.

46 Module 9: Deploying Windows Forms Applications

Review

� .NET Assemblies

� Deploying Windows Forms Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Describe how private assemblies and strong-named assemblies differ.
Private assemblies are referenced exclusively by their simple names.
Private assemblies are installed in the same folder hierarchy as the
application that references the assembly. Private assemblies are not
shared among applications, nor are they versioned.
Strong-named assemblies are referenced by their simple names,
versions, cultures, digital signatures, and public keys. Strong-named
assemblies can be installed in the same folder hierarchy as the
application that references the assembly, in any folder on a computer,
on a remote computer, or on a Web site. Strong-named assemblies can
be shared across multiple applications and they are versioned.

2. Describe how strong-named assemblies and shared assemblies differ.
Shared assemblies are strong-named assemblies that have been
installed in the global assembly cache. Multiple versions of an assembly
can be installed in the global assembly cache (side-by-side versioning)
and the assembly is verified at installation time rather than at runtime.

3. What is needed to build a strong-named assembly?
A private/public key pair is needed to build a strong-named assembly.
For testing purposes, the sn.exe utility can be used to generate this key
pair. In addition, an attribute must be added to the AssemblyInfo file to
indicate where Visual Studio .NET can locate the key pair.

 Module 9: Deploying Windows Forms Applications 47

4. How is an assembly installed in the global assembly cache?
There are three methods for installing an assembly in the global
assembly cache.

• GACUtil.exe

• Mscorcfg.msc

• Windows Installer 2.0

5. Why would you use an application configuration file?
A component that an application uses has been upgraded to a newer
version. For the application to load the newer version of the component,
an application file is necessary fir redirecting the runtime to the newer
version, thus overriding the metadata found in the application. An
alternative to this is to rebuild the application. Application
configuration files allow upgrades without having to rebuild the
application.

6. You want to redirect the runtime to load version 2.3.4.56 of an assembly
that an application needs from D:\CustomAssemblies\MyAssembly.dll.
What entry needs to be made in the application configuration file?
<codeBase version="2.3.4.56"
href="file:///D:/CustomAssemblies/MyAssembly.dll"/>

7. When would a publisher policy configuration file be used?
Publisher policy configuration files are typically used by third-party
vendors when they need to upgrade their component to a newer
version. Included in the upgrade is a publisher policy file that redirects
the runtime to the newer version of component. Application
configuration files can override publisher policy through safe-mode
versioning.

8. List the three methods of deploying an application.
Three methods for deploying an application are:

• Copying the application to a folder on the target machine through
the use of XCOPY.

• Using Windows Installer.

• Using .cab files.

48 Module 9: Deploying Windows Forms Applications

Lab 9.1: Deploying an Application

� Exercise 1: Building and Referencing a
Strong-Named Assembly

� Exercise 2: Installing a Strong-Named
Assembly into the Global Assembly Cache

� Exercise 3: Deploying a .NET Application

� Exercise 4: Using an Application
Configuration File

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Build a strong-named assembly.
� Build an application that references a strong-named assembly.
� Install a strong-named assembly in the global assembly cache.
� Deploy an application by using Windows Installer.
� Use an application configuration file to cause an application to use a new

version of a referenced assembly.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to debug an application by using
Visual Studio .NET.

� The knowledge and skills to build strong-named assemblies and applications
that reference strong-named assemblies.

� The knowledge and skills to create a .NET setup project to deploy an
application.

� The knowledge and skills to create an application configuration file for an
application.

Objectives

Prerequisites

 Module 9: Deploying Windows Forms Applications 49

Many applications that you create for the .NET Framework will require the use
of assemblies that are not included with the application assembly. The
referenced assembly may be installed into the global assembly cache, or it may
reside in a location other than the application’s folder.

In this lab, you will create a strong-named assembly and then reference this
assembly from an application. You will then deploy the application by using a
Setup and Deployment project to build a Windows Installer file. In addition,
you will upgrade the strong-named assembly to a new version and modify the
application to use the new assembly through the use of application
configuration files.

Scenario

Estimated time to
complete this lab:
30 minutes

50 Module 9: Deploying Windows Forms Applications

Exercise 1
Building and Referencing a Strong-Named Assembly
In this exercise, you will use the Expense Reporting application to build a strong-named assembly.
You will then use the Internal Business Application shell application to reference the strong-named
assembly. You will also use ILDASM to verify that ExpenseReport.DLL is a strong-named
assembly.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab09_1\Ex01\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab09_1\Ex01\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the ExpenseReport project in Visual Studio
.NET. Browse to
install_folder\Labfiles\Lab09_1\Ex01\Starter\
ExpenseReportApp to find the project files.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio .NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Open Project Dialog Box.

2. Build the expense report project. Keep this
instance of Visual Studio .NET open.

a. For more information about building an
application, see the following resource:

• The Visual Studio .NET Help documentation.
Search by using the phrase Preparing and
Managing Builds.

3. Open the InternalBusinessApp project in another
instance of Visual Studio.NET. Browse to
install_folder\Labfiles\Lab09_1\Ex01\Starter\
Business Application Shell to find the project
files.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio .NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Open Project Dialog Box.

4. Add a reference to the ExpenseReport DLL file. a. For more information about how to add a
reference to an assembly by using Visual Studio
.NET, see the following resource:

• Practice: Working with the Global Assembly
Cache in Module 9, “Deploying Windows
Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

5. Build and test the internal business application.
Keep this instance of Visual Studio .NET open.

No additional information is necessary for this task.

6. Open a Visual Studio .NET Command Prompt
window and change directories to the location of
InternalBusinessApp.exe. Browse to
install_folder\Labfiles\Lab09_1\Ex01\
Starter\Business Application Shell\bin\Debug to
find the executable.

a. For more information about how to open a Visual
Studio .NET Command Prompt window, see the
following resource:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

 Module 9: Deploying Windows Forms Applications 51

Tasks Additional information

7. Run ILDASM, and view the information for
InternalBusinessApp.exe. View the MANIFEST,
and note that the reference to the ExpenseReport
assembly does not include a public key token.
Close ILDASM.

a. For more information about how to use ILDASM,
see the following resources:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase MSIL
Disassembler (Ildasm.exe).

8. In a Visual Studio .NET Command Prompt
window, change directories to where the
ExpenseReport project is located. Browse to
install_ folder\Labfiles\Lab09_1\Ex01\Starter\
ExpenseReportApp to find the project.

a. For more information about how to open a
command prompt window in Visual Studio .NET,
see the following resource:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

9. Run the strong-name tool to generate a strong-
name key pair file.

• Name the strong-name key pair file
ExpenseReport.snk.

a. For more information about SN.EXE, see the
following resource:

• The .NET Framework SDK documentation.
Search by using the phrases Strong Name
Tool (Sn.exe) and Creating a Key Pair.

10. Switch to the Visual Studio .NET instance in
which the ExpenseReport project is open.

a. Complete the AssemblyKeyFile attribute to
reference the ExpenseReport.snk key pair file.

b. Rebuild the ExpenseReport project.

a. For more information about how to use ILDASM,
see the following resource:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

b. For more information about global attributes and
the AssemblyInfo file, see the following resource:

• The .NET Framework SDK documentation.
Search by using the phrase Global
Attributes.

11. Switch to the Visual Studio .NET instance in
which the InternalBusinessApp project is open.

a. Rebuild and run the application.

b. In a Visual Studio .NET Command Prompt
window, run ILDASM to view the
information for InternalBusinessApp.exe.

c. View the MANIFEST. Notice that the
reference to the ExpenseReport assembly now
includes a public key token.

a. For more information about how to use ILDASM,
see the following resources:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase MSIL
Disassembler (Ildasm.exe).

52 Module 9: Deploying Windows Forms Applications

Exercise 2
Installing a Strong-Named Assembly into the Global Assembly
Cache
In this exercise, you will update the ExpenseReport assembly to version 2.0.1.1 and install it into
the global assembly cache. You will then build and run the Internal Business Application to
reference the ExpenseReport assembly and use ILDASM to verify that the Internal Business
Application is referencing the correct version of the ExpenseReport assembly.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab09_1\Ex02\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab09_1\Ex02\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the ExpenseReport project in Visual Studio
.NET. Update the AssemblyVersion attribute to
"2.0.1.1" and build the expense report project.
Browse to install_folder\Labfiles\Lab09_1\
Ex02\Starter\ExpenseReportApp to find the
project.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio .NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Open Project Dialog Box.

2. Open the InternalBusinessApp project in another
instance of Visual Studio.NET. Browse to
install_folder\Labfiles\Lab09_1\Ex02\Starter\
Business Application Shell to find the project.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio .NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Open Project Dialog Box.

3. Add a reference to the ExpenseReport DLL file.
Browse to install_folder\Labfiles\Lab09_1\Ex02\
Starter\ExpenseReportApp\bin\Debug to find the
DLL.

a. For more information about how to add a
reference to an assembly using Visual Studio
.NET, see the following resource:

• Practice: Working with the Global Assembly
Cache in Module 9, “Deploying Windows
Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

4. In Solution Explorer, beneath References, click
the ExpenseReport entry.

a. Change the Copy Local property to False.
This prevents Visual Studio .NET from
copying the ExpenseReport.dll file into the
debug folder of the Internal Business
Application.

b. Build the Internal Business Application.

No additional information is necessary for this task.

 Module 9: Deploying Windows Forms Applications 53

Tasks Additional information

5. Open a command prompt window in
Visual Studio .NET, and change directories to the
location where ExpenseReport.dll is located.
Browse to install_folder\Labfiles\Lab09_1\
Ex02\Starter\ExpenseReportApp\bin\Debug to
find the file.

a. For more information about how to open a
command prompt window in Visual Studio .NET,
see the following resource:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

6. Run GACUTIL to install ExpenseReport.dll into
the global assembly cache.

• View the global assembly cache after
installing the ExpenseReport.dll assembly.
There should be an entry for ExpenseReport
in the global assembly cache.

a. For more information about how to use
GACUTIL, see the following resource:

• Practice: Working with the Global Assembly
Cache in Module 9, “Deploying Windows
Forms Applications,” in Course 2555A,
Developing Microsoft .NET Applications for
Windows (Visual C# .NET).

7. Run the Internal Business Application. No additional information is necessary for this task.

8. Open a Visual Studio .NET Command Prompt
window and change directories to the location
where InternalBusinessApp.exe is located.
Browse to install_folder\Labfiles\Lab09_1\
Ex02\Starter\Business Application
Shell\bin\Debug to find the executable file.

a. For more information about how to open a Visual
Studio .NET Command Prompt window, see the
following resource:

• Practice: Calling a Strong-Named Assembly
in Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

9. Run ILDASM, and view
InternalBusinessApp.exe.

• View the MANIFEST. Notice that the
reference to the ExpenseReport assembly is
now to version 2.0.1.1.

a. For more information about how to use ILDASM,
see the following resources:

• Practice: Calling a Strong-name Assembly in
Module 9, “Deploying Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET).

• The .NET Framework SDK documentation.
Search by using the phrase MSIL
Disassembler (Ildasm.exe).

54 Module 9: Deploying Windows Forms Applications

Exercise 3
Deploying a .NET Application
In this exercise, you will package the Expense Reporting application into a Windows Installer file
by using a Setup and Deployment project. You will then install the application on the local
computer.

Note The Internal Business Application component of the Expense Reporting application requires
that the Expense Report XML Web service be installed on the target computer. This exercise
assumes that the Expense Report XML Web service has already been installed on the target
computer.

There are solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab09_1\Ex03\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the InternalBusinessApp project in Visual
Studio .NET. Browse to
install_folder\Labfiles\Lab09_1\Ex03\Starter\
Business Application Shell to find the project
files.

a. For more information about opening a project
file, see the following resource:

• The Visual Studio .NET Help documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Open Project Dialog Box.

2. Build the InternalBusinessApp project. Close the
InternalBusinessApp solution, but keep Visual
Studio .NET open.

a. For more information about building an
application, see the following resource:

• The Visual Studio .NET Help documentation.
Search by using the phrase Preparing and
Managing Builds.

3. Create a new Setup and Deployment project. Use
the template that will create a Windows Installer
setup project.

• Set the project name to
InternalBusinessApplication.

• Set the project location to
install_folder\Labfiles\Lab09_1\
Ex03\Starter.

a. For more information about how to create a new
Setup and Deployment project, see the following
resource:

• Topic: How to Create and Use a Windows
Installer Setup Project in Module 9,
“Deploying Windows Forms Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

 Module 9: Deploying Windows Forms Applications 55

Tasks Additional information

4. Add the global assembly cache folder to the
project.

a. For more information about how to add the global
assembly cache folder, see the following
resource:

• Practice: Creating and Using a Windows
Installer Deployment Project in Module 9,
“Deploying Windows Forms Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

b. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

5. Add the localized folders to the Application
folder.

a. Right-click Application folder, point to Add,
and select Folder.

b. Create folders with the following names:
de, de-DE, en, en-US, fr, fr-FR, ja, and ja-JP.

a. For more information about how to add the
Application folder, see the following resource:

• Practice: Creating and Using a Windows
Installer Deployment Project in Module 9,
“Deploying Windows Forms Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

b. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

6. Add the InternalBusinessApp.exe file to the
Application folder. Browse to
install_folder\Labfiles\Lab09_1\Ex03\Starter\
Business Application Shell\bin\Debug to find the
InternalBusinessApp.exe file.

a. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

56 Module 9: Deploying Windows Forms Applications

Tasks Additional information

7. Add the ExpenseReport.dll file to the global
assembly cache folder. Browse to
install_folder\Labfiles\Lab09_1\Ex03\
Starter\Business Application Shell to find the
ExpenseReport.dll.

a. For more information about how to add the global
assembly cache folder, see the following
resource:

• Practice: Creating and Using a Windows
Installer Deployment Project in Module 9,
“Deploying Windows Forms Applications,”
in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

b. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

8. Add the localized resource assemblies to their
associated folders in the setup project. These
folders are the localized folders that you created
in step 5. Browse to install_folder\Labfiles\
Lab09\Ex03\Starter\Business Application
Shell\bin\Debug to find the folders that contain
the localized resource files.

The localized resource files are named
InternalBusinessApp.resources.dll and can be
found in the folders named de, de-DE, en, en-US,
fr, fr-FR, ja, and ja-JP under install_folder\
Labfiles\Lab09_1\Ex03\Starter\
Business Application Shell\bin\Debug.

a. For more information about packaging and
deploying resources, see the following resource:

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

9. Create the directory for the Help file, and add it to
the project.

a. Name the custom folder IISRoot.

b. Set the DefaultLocation property of IISRoot
to C:\inetpub\wwwroot.

c. Browse to install_folder\ Labfiles\Lab09_1\
Ex03\Starter\Business Application Shell, find
the InternetBusinessAppHelp.htm file, and
add it to IISRoot.

a. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

 Module 9: Deploying Windows Forms Applications 57

Tasks Additional information

10. Set the following project properties.

Property Value

Author Contoso, Ltd.
Manufacturer Contoso Ltd
ProductName Internal Business Application
Title Internal Business Application
Version 3.0.1

a. When prompted to change the ProductCode
and PackageCode properties, click Yes.

b. Set the AlwaysCreate property for the
Application folder to True.

No additional information is necessary for this task.

11. Create the application shortcuts. a. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

Warning: A new dependency to ExpenseReport.dll may appear under Detected Dependencies in
Solution Explorer. If this occurs, right-click the ExpenseReport.dll dependency, and select Exclude
from the context menu. If you do not do this, a copy of the ExpenseReport.dll file will be installed in
the target application folder in addition to the global assembly cache, and your application will use the
.dll file from the application folder instead of the .dll from the global assembly cache.

12. Build the project, and install the Internal Business
Application. Browse to install_folder\
\Labfiles\Lab09_1\Ex03\Starter\
InternalBusinessApplication\Debug to find the
Setup.exe file.

a. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

13. Test the Internal Business Application.

• Test the different region/culture settings that
the application supports.

a. For more information about deploying
applications, see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Deploying Applications.

58 Module 9: Deploying Windows Forms Applications

Exercise 4
Using an Application Configuration File
In this exercise, you will create an application configuration file that will redirect the Internal
Business Application to load a new version of the ExpenseReport.dll file.

There are starter and solution files associated with this exercise. Browse to
install_folder\Labfiles\Lab09_1\Ex04\Starter to find the starter files, and browse to
install_folder\Labfiles\Lab09_1\Ex04\Solution to find the solution files. If you performed a default
installation of the course files, install_folder corresponds to C:\Program Files\Msdntrain\2555.

Tasks Additional information

1. Open the Visual Studio .NET Command Prompt
window and install the ExpenseReport.dll file into
the global assembly cache. After the file is
installed in the global assembly cache, delete it
from the folder. Browse to install_folder\
Labfiles\Lab09_1\Ex04\Starter to find the
ExpenseReport.dll file.

a. For more information about how to create
application configuration files, see the following
resource:

• Practice: Creating and Using Application
Configuration Files in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

b. For more information about configuration files,
see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Configuration Files.

2. Run the .NET Configuration Tool, and create a
new application configuration file for the
InternalBusinessApp.exe application. Change the
BindingRedirect entry from 3.0.1.1 to 4.0.1.1.
Browse to install_folder\Labfiles\Lab09_1\Ex04\
Starter to find the InternalBusinessApp.exe file.

a. For more information about how to create
application configuration files, see the following
resource:

• Practice: Creating and Using Application
Configuration Files in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

b. For more information about configuration files,
see the following resources:

• Lesson: Deploying Windows Forms
Applications in Module 9, “Deploying
Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET).

• The .NET Framework SDK. Search by using
the phrase Configuration Files.

 Module 9: Deploying Windows Forms Applications 59

Tasks Additional information

3. Run the application.

• Verify that the application still runs with the
new version of ExpenseReport.dll.

No additional information is necessary for this task.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Security in the .NET Framework 2

Lesson: Using Code Access Security 14

Lesson: Using Role-Based Security 29

Review 40

Lab 10.1: Adding and Testing Permission
Requests 42

Course Evaluation 46

Module 10: Securing
Windows Forms
Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 10: Securing Windows Forms Applications iii

Instructor Notes
This module starts with an overview of the Microsoft® .NET Framework
security model. In this module, students learn how to use code access security
and role-based security in their applications.

After completing this module, students will be able to:

� Describe the .NET Framework security model.
� Use code access security to secure an application.
� Use role-based security to control access to an application.

To teach this module, you need the Microsoft PowerPoint® file 2555A_10.ppt.

To prepare for this module:

� Read all of the materials for this module.
� Review the animation for this module.
� Complete the demonstrations, practice, and lab.

Presentation:
75 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 10: Securing Windows Forms Applications

How to Teach This Module
This section contains information that will help you to teach this module.

� If students are interested in referencing code examples in other languages,
point them to “Language Equivalents” in the Microsoft Visual Studio®
.NET Help documentation. This section provides examples in languages
such as Microsoft Visual Basic® .NET, C#, and Java.

� The lab at the end of this module is based on the Expense Report application
in Course 2555A, Developing Microsoft .NET Applications for Windows
(Visual C# .NET), and is intended to simulate a “real world” environment in
which students will demonstrate what they learned during the lecture and
practice portions of the module. The lab does not provide step-by-step
detailed instructions; instead, the students are given tasks to complete in the
left column, and a list of resources that they can use (if they need help) in
the right column. Students get hands-on experience that they need by
completing the practice activity in the module.

Lesson: Security in the .NET Framework
This section describes the instructional methods for teaching this lesson.

This is an overview lesson. The main point of this lesson is to introduce the key
concepts that will help students understand how the .NET Framework security
model works. The other two lessons in the module cover the details of how to
implement code access and role-based security in applications. Do not go into
implementation details in this overview lesson.

This topic defines code access security and presents an overview of how the
.NET Framework uses security policy to map evidence about an assembly to a
set of permissions for that assembly. Point out the note regarding .NET
Framework Service Pack 1.

In this animation, students see an example of how the permission grant for a
Microsoft .NET Framework assembly is determined based on evidence and
policy levels. This is a good time to check to make sure that students
understand the key elements of code access security.

This topic defines role-based security and the concepts of identity and principal.

This topic defines authentication and provides some examples of authentication
authorities.

This topic defines authorization. Emphasize to students that there is an order
relationship here: authentication is first, then authorization.

How Does Code Access
Security Work?

Animation: Code Access
Security

What is Role-Based
Security?
What is Authentication?

What is Authorization?

 Module 10: Securing Windows Forms Applications v

Lesson: Using Code Access Security
This section describes the instructional methods for teaching this lesson.

This topic covers permission requests and why developers should use them in
their applications. Stress to students that the .NET Framework applies the
security policy to all applications whether they make permission requests in
their applications or not. The motivation for adding permission requests to
applications is to document what permissions the application needs and to test
them in the different deployment situations. This helps a developer to discover
where to add additional exception handling related to permission request
failures while the application while is still in the development phase instead of
after it has been deployed.

This demonstration shows students how to use the .NET Framework
configuration Microsoft Management Console (MMC) snap-in to view and
modify security policy on their computers. This is useful so students can set up
test environments for applications they are developing.

This topic covers how to use Code Access Security tool (Caspol.exe) which is a
command-line based utility for viewing and manipulating security policy.
Caspol.exe is an alternative utility that students can use to set up test
environments for applications they are developing.

Lesson: Using Role-Based Security
This section describes the instructional methods for teaching this lesson.

To provide a transition from the previous lesson and this one, you can remind
students that code access security controls what resources certain sections of
code in their application can access and that role-based security allows
developers to limit which users can run certain parts of an application.

The main thing to emphasize in this lesson is the flexibility that role-based
security provides and the benefit that much of the infrastructure required for
security checking is provided by the .NET Framework, which simplifies the
developer’s work.

This topic provides more detail about the types of principals and identities that
can be used to implement role-based security.

In this topic, students learn how to use the IsInRole method of the Principal
object to control access to an application.

In this demonstration, students follow the flow of an application in the
debugger to see how an application implements role-based security.

How to Use Code
Access Security

Demonstration:
Administering Security
Policy Settings

How to Test the Code
Access Security of an
Application

How Role-Based
Security Works

How to Use Principals
and Identities to Control
Access to an
Application

Demonstration: Using
Role-based Security to
Control Access to an
Application

vi Module 10: Securing Windows Forms Applications

Lab: Adding and Testing Permission Requests
� Ensure that you have demonstrated the lab application Expense Report

Application in Course 2555A, Developing Microsoft .NET Applications for
Windows (Visual C# .NET), before students attempt the lab. To see how to
demonstrate the lab scenario, see Module 0 in Course 2555A, Developing
Microsoft .NET Applications for Windows (Visual C# .NET).

� The practice exercise will enable students to successfully complete the lab
exercise. Therefore, ensure that students have completed the practice
exercise.

 Module 10: Securing Windows Forms Applications 1

Overview

� Security in the .NET Framework

� Using Code Access Security

� Using Role-Based Security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft® .NET Framework provides many new features to secure an
application.

In this module, you will learn about the .NET Framework security model and
learn how to use .NET Framework security features in your applications.

After completing this module, you will be able to:

� Describe the .NET Framework security model.
� Use code access security to secure an application.
� Use role-based security to control access to an application.

Introduction

Objectives

2 Module 10: Securing Windows Forms Applications

Lesson: Security in the .NET Framework

� Security Basics

� What is Evidence?

� What are Permissions?

� How Does Code Access Security Work?

� Animation: Code Access Security

� What is Role-Based Security?

� What is Authentication?

� What is Authorization?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft Windows® 2000 security model protects a system by preventing
unauthorized users from accessing that system. The security model in the .NET
Framework protects application code and data from being misused or damaged
by other code by enforcing security restrictions on managed code. The .NET
Framework security model is based on type safety, code signing, encryption of
data, code access security, role-based security, and isolated storage.

In this lesson, you will learn about the .NET Framework security model.

After completing this lesson, you will be able to:

� Define evidence and describe its role in the security system in the .NET
Framework.

� Define Authentication and Authorization and describe their roles in the
security system in the .NET Framework.

� List the major characteristics of code access security and role-based
security.

� Describe the .NET Framework security model.

Introduction

Lesson objectives

 Module 10: Securing Windows Forms Applications 3

Security Basics

� Code access security
Permissions granted to code based on:
� Evidence
� Permissions and permission sets
� Security policy

� Role-based security
Permissions granted to users based on:
� User name
� Roles

Windows group(s)
Generic and custom principals and identities
Microsoft .NET Passport

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Two important aspects of the .NET Framework security model are code access
security, which controls what resources your code can access, and role-based
security, which allows developers to limit which users can run certain parts of
an application.

The .NET Framework code access security model allows code to use protected
resources only if it has permission to do so. This is implemented by using the
concept of permissions, which represent the right for code to access protected
resources. Evidence about an assembly is used to grant code a set of
permissions based on security policy. When code accesses resources to perform
a task, a demand for the permissions it needs is made, and the .NET Framework
security system determines whether all of the callers to that code have been
granted the permissions being demanded.

The .NET Framework includes support for role-based security. This allows
code to determine the identity and role membership for the user of an
application and make access decisions based on identity.

For more information about building secure applications, see Writing Secure
Code, by Howard, Michael, and David LeBlanc. Redmond, WA: Microsoft
Press, 2002.

Introduction

Code access security

Role-based security

4 Module 10: Securing Windows Forms Applications

What is Evidence?

� A set of information about the identity and origin of an
assembly

� Used by the .NET Framework security system at load
time to determine the permissions that an assembly
receives based on existing security policy

� Examples of items that make up evidence

� Strong name signature, code publisher, location, and
zone

� Other custom-defined items

� Strength of evidence

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The security system uses this evidence about the assembly to determine which
permissions to grant it based upon existing security policy.

Evidence is a set of information about the identity and origin of an assembly.

Evidence may include:

� The assembly’s strong name, consisting of a unique public key, a simple
name, and a version.

� The assembly’s publisher, from the Microsoft Authenticode® signature.
� The zone from which the assembly originates, such as the local computer,

intranet, or Internet zones.
� The location from which the assembly originates, expressed as a URL,

universal naming convention (UNC) path, or local computer folder.
� The cryptographic hash of the assembly.

The creator of an assembly can also include custom evidence with the
assembly. This custom evidence is evaluated only if security policy is
configured to use the custom evidence.

Some forms of evidence are stronger than others and can therefore be used to
make more far-reaching security policy decisions.

Strong names, for instance, provide an extremely reliable form of evidence,
because they are very difficult to falsify unless the publisher’s private key has
been compromised. Authenticode signatures are also strong forms of evidence.

Conversely, evidence such as an assembly’s zone or URL is weaker. Web sites
can be hacked, and packets can be tampered with over the Internet. It is a risk to
grant permissions based heavily on weaker forms of evidence. However, both
strong and weak forms of evidence can be combined in an effective security
policy.

Introduction

Definition

Examples

Strength of evidence

 Module 10: Securing Windows Forms Applications 5

What are Permissions?

Examples of built-in permission classes
UIPermission, PrintingPermission, WebPermission,
IsolatedStorageFilePermission

Code access permissions are the
rights to access certain computing
resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Code access permissions represent rights to access certain computing resources.

Actions protected by permissions include reading and writing files on the file
system, accessing environment variables, and making calls to ADO.NET for
database access.

The .NET Framework has many built-in code access permission classes that are
designed to protect access to system resources. The .NET Framework uses the
built-in permission classes to protect system resources. You, as a developer, do
not need to take any further action to use system resources, because the .NET
Framework will make the appropriate security checks. The built-in permission
classes are listed in the following table.

Code access permission class Resource protected

DirectoryServicesPermission Directory services

DnsPermission DNS services

EnvironmentPermission Environment variables

EventLogPermission Event logs

FileDialogPermission File dialog boxes in the UI

FileIOPermission Files and folders on the file system

IsolatedStorgeFilePermission Isolated storage

MessageQueuePermission Message queues

OleDbPermission Databases accessed by the OLEDB data access
provider

PerformanceCounterPermission Performance counters

PrintingPermission Printers

ReflectionPermission Type information at run time

RegistryPermission Registry

Introduction

Example

Built-in code access
permission classes

6 Module 10: Securing Windows Forms Applications

(continued)
Code access permission class Resource protected

SecurityPermission Execute code, assert permissions, call

unmanaged code, skip verification, and other
rights

ServiceControllerPermission Running or stopping services

SocketPermission Connections to other computers by means of
sockets

SqlClientPermission Databases accessed by the Microsoft
SQL Server™ data access provider

UIPermission Windows and other UI elements

WebPermission Connections to other computers by means of
HTTP

In addition to the built-in permission classes, developers can add new
permissions to the security system by implementing custom permissions.

 Module 10: Securing Windows Forms Applications 7

How Does Code Access Security Work?

Gather evidence
for assembly

Gather evidence
for assembly

Assign assembly to
code group(s)

Assign assembly to
code group(s)

Per assembly grant
Assembly gets INTERSECTION of
permission sets for all policy levels

Per assembly grant
Assembly gets INTERSECTION of
permission sets for all policy levels

Policy levels
� Enterprise
� Machine
� User
� Application domain (optional)

Code Groups

Repeat this same security check
for all security policy levels

Repeat this same security check
for all security policy levels

Each assembly in an application can have a different permission grant

Assembly gets
UNION

of permission sets
for its code groups

Assembly gets
UNION

of permission sets
for its code groups

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework enforces security restrictions on managed code. Every
assembly that is loaded is granted a set of permissions by the .NET Framework
to access various system resources. A group of permissions is called a
permission set. These permissions are based on security policy. The security
policy uses evidence about an assembly to determine which permissions to
grant that assembly. In other words, the .NET Framework uses security policy
to map evidence about an assembly to a set of permissions for that assembly.

A code group consists of a membership condition and a set of permissions that
an assembly might be granted if it meets that membership condition. The
runtime evaluates the membership condition specified in the code group against
the evidence about the assembly. If the assembly meets the membership
condition, it is eligible to be granted the permission set associated with the code
group. When an assembly meets the membership conditions for a code group, it
is said to be a member of that code group.

As an example, the membership condition for a code group could specify that
the publisher of an assembly is Microsoft. Therefore, any assembly published
by Microsoft would satisfy the membership condition and be eligible to receive
the permission set associated with the code group. This permission set could
represent the right to access the C:\temp directory and the USERNAME
environment variable, for instance.

An assembly receives the union of permissions for all code groups to which it
belongs.

Introduction

Code groups

8 Module 10: Securing Windows Forms Applications

Security policy is organized into different policy levels: enterprise policy level,
machine policy level, user policy level, and an optional application domain
policy level.

Security Policy Levels Description

Enterprise Enterprise-level policy is specified by the network

administrator, and contains a code group hierarchy that
applies to all managed code on the entire network.

Machine Machine-level policy is specified by the local computer
administrator, and contains the code group hierarchy that
applies to all managed code on the computer.

User User-level policy contains a code group hierarchy that
applies to all managed code run by a particular user. Either
the local computer administrator or the user sets user
policies

Application domain
(optional)

Application domain policy level is an optional level that
provides isolation, unloading, and security boundaries for
executing managed code.

A final permission grant is assigned on a per assembly basis, so each assembly
in an application can have a different permission grant.

The common language runtime provides a default security policy and uses the
following named permission sets to implement that policy:

� Nothing
Provides code with no permissions. Code cannot run. Under default security
policy, code in the untrusted zone gets this permission set.

� Execution
Provides permission for code to run only. Does not allow code to use any
protected resources.

� Internet
Allows code to execute, to create safe top-level windows and file dialog
boxes, to make Web connections to the same site that the assembly
originates from, and to use isolated storage with a quota. Under default
security policy, all code from the Internet and trusted zones receives this
permission set.

Service Pack 1 of the .NET Framework changes default security
policy for code executed from the Internet zone. Under the new policy, code
from the Internet receives no permissions by default.

� LocalIntranet
Allows code to execute, to create user interface elements without
restrictions; to use isolated storage with no quota; to use DNS services; to
read the USERNAME, TEMP, and TMP environment variables; to make
Web connections to the same site the assembly originates from; and to read
files in the same folder as the assembly. Under default security policy, all
code from the LocalIntranet zone receives this permission set.

Security policy levels

Default security policy

Note

 Module 10: Securing Windows Forms Applications 9

� Everything
Provides all standard permissions except permission to skip verification.

� FullTrust
Provides full access to all resources protected by permissions. Under default
security policy, all code from the local computer zone receives this
permission set.

10 Module 10: Securing Windows Forms Applications

Animation: Code Access Security

In this animation, you will see how
the permission grant for a Microsoft
.NET assembly is determined based
on evidence and policy levels

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how the permission grant for a Microsoft .NET
assembly is determined based on evidence and policy levels.

When an assembly is loaded, the common language runtime examines the
evidence that the code provides. The permissions that are granted to managed
code are determined at the time that the assembly containing that code is
loaded.

Policies are represented by a hierarchy of code groups. At the root of the
hierarchy of each code group is a group containing all code. This root group has
child groups, which in turn may have child groups, and so on. Code that is not a
member of a parent code group cannot be a member of any of a child code
group in the code group hierarchy. However, code that is a member of a parent
code group can also be a member of one or more child code groups.

The runtime uses the evidence about the code to decide which code groups that
code belongs to. Code groups specify a set of membership conditions for code.
The permission set that the code is assigned at the machine policy level is the
union of the permissions that are associated with all of the code groups that the
code is a member of.

This procedure is carried out for each policy level and is based on the code’s
evidence. The runtime computes the intersection of the permission sets that
have been assigned to the code at each policy level to determine the final set of
permissions that are assigned to the code. For example, if the user policy grants
only the permissions that are part of the LocalIntranet permission set, and the
machine policy grants the FullTrust permission set, then the final permission set
granted is that of LocalIntranet intersected with FullTrust, which is the
LocalIntranet permission set.

Introduction

Summary

 Module 10: Securing Windows Forms Applications 11

What is Role-Based Security?

� Identity

� Typically consists of user’s log on name

� Principal

� Typically consists of role(s) associated with a user

� Roles can be
Microsoft Windows user and group

- Or -
Custom (using generic principals and identities)

� Authenticated identity generally == identity + principal

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A role-based security model uses authenticated identity information about the
user to make decisions about security authorization. The authenticated identity
information typically consists of the user’s login name and the roles associated
with the user.

Role-based security in the .NET Framework extensively uses two concepts:
identities and principals.

An identity encapsulates the user’s login name.

A principal encapsulates the user’s role membership information.

Role-based security in the .NET Framework allows developers to use Microsoft
Windows user and group information, or to do custom authentication and
authorization by using generic principals and identities.

Introduction

Identity

Principal

12 Module 10: Securing Windows Forms Applications

What is Authentication?

� Process of finding and verifying the identity of a user

� Done against some authentication authority

Examples of authentication mechanisms:
Operating system (NTLM or Kerberos v. 5)
.NET Passport
Application-defined mechanisms

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you determine what a specific user is authorized to do, you must verify
the identity of that user.

Authentication is the process of discovering and verifying the identity of a user
by examining the user’s credentials, and then validating those credentials
against some authority.

A variety of authentication mechanisms are used today, some of which can be
used with .NET Framework role-based security. Examples of commonly used
mechanisms include the operating system, Microsoft Passport, and application-
defined mechanisms. Specific examples of operating system authentication
mechanisms are NTLM authentication and the Kerberos version 5
authentication protocol.

Introduction

Definition

Authentication
mechanisms

 Module 10: Securing Windows Forms Applications 13

What is Authorization?

� Process of determining whether a user’s request to do
something is allowed to proceed

� Happens after authentication and is based on the
user’s authenticated identity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The next step after authentication is authorization.

Authorization is the process of determining whether a user is allowed to
perform a requested action.

Authorization occurs after authentication and uses information about a user’s
identity and roles to determine what resources that user can access. You can use
.NET Framework role-based security to implement authorization.

For more information about how to implement authorization, see Using Role-
Based Security in this module.

Introduction

Definition

14 Module 10: Securing Windows Forms Applications

Lesson: Using Code Access Security

� How to Use Code Access Security

� How to Make Assembly Permission Requests

� Demonstration: Administering Security Policy Settings

� How to Test the Code Access Security of an
Application

� Practice: Adding Permission Requests

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Every application that targets the common language runtime must interact with
the runtime’s security system. When an application executes, the runtime
automatically evaluates it and gives it a set of permissions. Depending on the
permissions that the application receives and the resources it uses, it either runs
properly or generates a security exception.

The local security settings on a particular computer ultimately determine which
permissions code receives. Because these settings can change from computer to
computer, you can never be sure that your code will receive sufficient
permissions to run. Therefore, every developer must be familiar with code
access security concepts to write effective applications targeting the common
language runtime.

Interaction with the runtime security system is performed by using imperative
and declarative security calls. Declarative calls are performed by using
attributes; imperative calls are performed by using new instances of classes in
your code. Some calls can only be performed imperatively, while others can be
performed only declaratively. Some calls can be performed in either manner.
For more information about imperative security calls and class and method
level declarative security calls, see Course 2350A, Securing and Deploying
Microsoft .NET Applications.

Because most system resources are already protected by built-in permissions,
most developers will not need to implement new permissions. Also, the runtime
code that accesses these resources already makes the appropriate security
checks to make sure calling code has been granted the proper permissions. So,
the main task for developers is to document their use of permissions and make
sure their code behaves as expected in the security contexts in which it will run.
This is done by using permission requests and runtime tools to configure
security policy.

Introduction

 Module 10: Securing Windows Forms Applications 15

In this lesson, you will learn how to implement permission requests in
Windows Forms applications.

After completing this lesson, you will be able to:

� Make assembly level declarative requests for permissions to access
resources.

� Test applications in various security contexts.

Lesson objectives

16 Module 10: Securing Windows Forms Applications

How to Use Code Access Security

Use attributes to make assembly permission requests
� Minimum permission sets

If not available, assembly will not load and PolicyException
is thrown

� Optional permission sets
Useful, but code is still able to run effectively without them

� Refused permissions
Allows your code to ensure protection of certain resources

Assembly makes
permission requests

(Minimum + Optional) - Refused

Assembly makes
permission requests

(Minimum + Optional) - Refused

Security policy
applied

Security policy
applied

Final permission grant
is the intersection of what assembly
requested and security policy allows

Final permission grant
is the intersection of what assembly
requested and security policy allows

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because the NET Framework protects system resources, the major security task
for developers is to make permission requests to document the permissions the
code uses. In the development phase, adding permission requests allows you to
test if your assembly will be able to run successfully in the security contexts in
which you expect the application to be deployed.

To make permission requests for an assembly, add attributes to the
AssemblyInfo source file of your project. These attributes are then stored in the
metadata of an assembly. The assembly permission requests are examined when
an assembly is loaded. The .NET Framework proceeds based on the kind of
permission request the assembly makes.

The three kinds of permission requests are:

� Minimum permissions (RequestMinimum)
The permissions in these requests represent the minimum set of permissions
that an assembly needs to work effectively. If these permissions are not
available to an assembly when it is loaded, the .NET Framework does not
execute the code in that assembly and throws a PolicyException. A
minimum permission request for an assembly documents the required
permissions for that assembly. Not making a minimum permission request
for an assembly is the equivalent of making a minimum permission request
of Nothing.

� Optional permissions (RequestOptional)
The permissions in these requests represent permissions that code can use,
but the code is still able to run effectively without them. These permissions
are granted to an assembly if they are available to that assembly, but if they
are not available, the assembly is still allowed to run. Not making an
optional permission request for an assembly is the equivalent of making an
optional permission request of FullTrust. If an assembly does not need any
optional permissions, it is a best practice to make an optional request for no
permissions. This prevents your code from getting any additional
permissions from security policy, and forces it to run with least privilege.

Introduction

Kinds of permission
requests

 Module 10: Securing Windows Forms Applications 17

� Refused permissions (RequestRefused)
The permissions in these requests represent permissions that code is never to
be granted, even if security policy allows them to be granted. Not making a
refused permission request is the equivalent of making a refused permission
request of Nothing.

The permissions the assembly actually receives are the result of the following
operation:

FG = SP ∩ ((M ∪ O) – R)

Where FG is the final grant, SP is the permission set an assembly receives from
security policy, ∩ is intersection of sets, M is the minimum permission request,
∪ is the union of sets, O is the optional permission request, and R is the refused
permission request.

Final permission grant

18 Module 10: Securing Windows Forms Applications

How to Make Assembly Permission Requests

// Add attributes to the AssemblyInfo source file
// Request for a specific permission

[assembly:UIPermission(
SecurityAction.RequestMinimum,
Window = UIPermissionWindow.SafeTopLevelWindows)]

// Request for a permission set
[assembly:PermissionSet (

SecurityAction.RequestMinimum,
Name = "LocalIntranet")]

// Add attributes to the AssemblyInfo source file
// Request for a specific permission

[assembly:UIPermission(
SecurityAction.RequestMinimum,
Window = UIPermissionWindow.SafeTopLevelWindows)]

// Request for a permission set
[assembly:PermissionSet (

SecurityAction.RequestMinimum,
Name = "LocalIntranet")]

Add attributes to the assembly information file
Be sure to include assembly scope on permission request attributes

Add attributes to the assembly information file
Be sure to include assembly scope on permission request attributes

Add code to handle security exceptionsAdd code to handle security exceptions CodeExample

Assembly scopeAssembly scope

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can request permissions by adding assembly-level attributes to the
AssemblyInfo source file. You can make more than one permission request of a
certain kind by using multiple attributes. These attributes vary, depending on
the permissions you are requesting. The attribute used to make permission
requests is scoped with assembly and the SecurityAction is RequestMinimum,
RequestOptional, or RequestRefused.

To better document your code, place your assembly permission requests in the
AssemblyInfo source file.

1. Open the AssemblyInfo.cs source file for the appropriate project and add
attributes for permission requests. Be sure to include the assembly scope
qualifier to the request, as in the following examples:
// Add attributes to the AssemblyInfo source file
// Request for a specific permission
[assembly:UIPermission(
 SecurityAction.RequestMinimum,
 Window = UIPermissionWindow.SafeTopLevelWindows)]

// Request for a permission set
[assembly:PermissionSet(
 SecurityAction.RequestMinimum,
 Name = “LocalIntranet”)]
The following example makes an optional permission request for no
permissions:
[assembly:PermissionSet(
 SecurityAction.RequestOptional,
 Unrestricted = false)]

Introduction

Procedure: Making
assembly permission
requests

Example: Assembly
permission request
attributes

 Module 10: Securing Windows Forms Applications 19

2. If you make any optional permission requests, your code may be granted the
permission. However, if it is not, you’ll have to add code to handle security
exceptions.
using System.Security;
using System.IO;

FileStream fs = null;

try
{
 // open a file for reading
 fs = new FileStream("C:\\log.txt",
 FileMode.Open,
 FileAccess.Read);
 // read from file
 …
}
catch (SecurityException se)
{
 // display error message
 MessageBox.Show(“ExceptionMessage: “ + se.Message);
}

Example: Handling
security exceptions

20 Module 10: Securing Windows Forms Applications

Demonstration: Administering Security Policy Settings

In this demonstration, you will see
how to use the .NET Framework
Configuration tool (Mscorcfg.msc) to
administer security policy settings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework configuration Microsoft Management Console (MMC)
snap-in provides a graphical interface to modify security policy.

� To view current security policy
1. Run the .NET Framework Configuration tool (Mscorcfg.msc) by double-

clicking the Mscorcfg.msc icon on the desktop.
2. In the console tree, expand the following nodes:

a. Runtime Security Policy
b. Machine
c. Code Groups
d. All_Code
Point out that these code groups are the children of the root (All_Code) code
group for the machine policy level.

3. In the console tree, click the My_Computer_Zone code group.
a. In the details pane, point out that the properties for this code group are

shown. These include a description of the code group, the membership
condition for the code group, and the permission set granted by the code
group.

b. Point out that the last four code groups under All_Code have been added
for testing purposes for the practice and lab in this module.

4. In the console tree, expand the Internet_Zone node and point out that it has
a child code group that grants access to the same Internet site from which
the code originated. This code group will only be evaluated if its parent
code group’s membership condition is satisfied.

5. In the console tree, right-click the Internet_Zone code group, and then
click Properties. Point out that this dialog box shows the properties for the
code group, and also lets you edit them.

Introduction

Instructions

 Module 10: Securing Windows Forms Applications 21

6. Click the Membership Condition tab, and point out that the membership
condition for this code group is Internet zone.
a. Click the Condition type box to show the different conditions available

for use in a membership condition.
b. Select the Strong Name condition type, and point out that the

parameters for the condition type change.
c. Click the Condition type box and change it back to Zone.

7. Click the Permission Set tab, and point out that the permission set granted
for this code group is the Internet permission set.
a. Click the Permission set box to show the different permission sets

available for use, but do not change the permission set. This tab also
shows the permissions that make up the Internet permission set.

b. In the Permission list, click User Interface, and then click the View
Permission button. Point out that the Permission Viewer dialog box
displays the user interface-related permissions that are granted as part of
the Internet permission set.

c. Click Close to close the Permission Viewer dialog box.
d. Click Security, and then click View Permission. Point out the security-

related permissions that are either granted or denied as part of the
Internet permission set.

e. Click Close to close the permission viewer dialog box.
f. Click Cancel to close the Internet_Zone Properties dialog box.

8. The default security policy for the user and enterprise policy levels is that all
code gets the FullTrust permission set.
a. To show this in the console tree, in the Runtime Security Policy node,

expand the Enterprise and Code Groups nodes, and then, in the
Enterprise hierarchy, click All_Code. Point out that it grants FullTrust.

b. Do the same thing for the All_Code node in the User hierarchy, pointing
out that it looks the same and also grants FullTrust. Explain that code
will not get FullTrust based on these policy levels, because the policy
grants for the user and enterprise policy levels will be intersected with
the policy grant for the machine policy level to determine the final
permission grant. Assuming that the machine policy level grants
something less than FullTrust when the enterprise and user policy levels
are intersected with the machine policy level, an assembly would get the
permission set associated with the machine policy level.

c. Collapse the Enterprise and User hierarchies before moving to the next
step.

9. The snap-in also allows viewing of permission sets.
a. In the Machine node, expand Permission Sets. This shows a list of the

permission sets for the machine policy level.
b. Under the Permission Sets list, click Internet, and point out that the

permissions that make up the Internet permission set are shown in the
details pane.

22 Module 10: Securing Windows Forms Applications

� To add a new code group
The snap-in can also be used to add new code groups and permission sets.

1. In the Machine and Code Groups nodes, right-click the All_Code node,
and then click New. The Create Code Group Wizard appears.

2. In the Create Code Group Wizard, in the Name box, type New_Test. In
the description box, type a new test code group and then click Next.

3. In the Condition Type box, click URL. In the URL box, type
file:///C:/testfolder/* and then click Next.

4. In the Use existing permission set box, click LocalIntranet, and then click
Next.

5. Click Finish.
6. In the console tree, right click the New_Test code group, and then click

Properties. On the General tab of the New_Test Properties dialog box,
select the This policy level will only have the permissions from the
permission set associated with this code group box to set the Exclusive
attribute. The code group now has an exclusive URL membership condition
of file:///C:/testfolder/*. Any code run from that folder will get the
LocalIntranet permission set. Click OK.

7. In the console tree, right-click the New_Test code group, and then click
Delete. In the Remove Code Group dialog box, click Yes. Notice that the
code group is gone.

8. Close the MMC snap-in.

 Module 10: Securing Windows Forms Applications 23

How to Test the Code Access Security of an Application

� Use the Code Access Security tool (Caspol.exe) to:
� View policy information

� Add code groups to test applications with different
permission sets

� Do not turn off security

Caspol –l

Caspol –lg

Caspol –lp

Caspol –l

Caspol –lg

Caspol –lp

List code groups and permission setsList code groups and permission sets

List code groupsList code groups

List permission setsList permission sets

Caspol –ag 1 –url file:///C:/test/* Internet
-n Test_Group –exclusive on

Caspol –cg Test_Group LocalIntranet

Caspol –rg Test_Group

Caspol –ag 1 –url file:///C:/test/* Internet
-n Test_Group –exclusive on

Caspol –cg Test_Group LocalIntranet

Caspol –rg Test_Group

Add code groupAdd code group

Change
permission set
Change
permission set

Remove code groupRemove code group

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Code Access Security tool (Caspol.exe) is a command-line utility that
allows you to view and manipulate security policy. The Code Access Security
tool ships with the .NET Framework software development kit (SDK), and it
can be used from scripts to configure security.

The Code Access Security tool displays all the available information for the
default policy level, which is the machine level. This information includes the
code group hierarchy, named permission sets, and assemblies with full trust. To
view information about another policy level, you can use a command-line
option before any other command-line options to indicate the policy level you
wish to view or modify.

The syntax for Caspol.exe is a follows:

caspol <option> <args> ...

Introduction

24 Module 10: Securing Windows Forms Applications

The following table lists the command-line options used in the examples in this
topic.

Command-line
option

Action or qualifier

Comments

-l List Lists all available information for the

default policy level, which is the
machine level.

-lg List code groups Lists the code groups for the default
policy level. This is the most useful
option for viewing current security
policy.

-lp List permission sets Lists named permission sets.

-ag Add code group Add a new code group to the default
policy level.

-url URL The code on the slide uses the URL of
the assembly as the condition for the
code group.

-n Code group name The name for the new code group.

-exclusive Set the policy statement
Exclusive flag

This is useful for testing purposes. Any
assemblies that meet the code group’s
condition will get the associated
permission set, and only the associated
permission set, for this policy level. For
example, this can be used to prevent
code running on the local machine from
automatically being granted the FullTrust
permission set.

-cg Change code group Change an existing code group.

-rg Remove code group Remove an existing code group.

To get information about the command-line options available for Caspol.exe,
type the following command:

Caspol –help

The Code Access Security tool is quick way to view security policy.

1. To list all available information about code groups and permission sets,
open the Microsoft Visual Studio® .NET Command Prompt window and
type the following command:
Caspol –l
To open the Visual Studio .NET Command Prompt window, click Start,
point to All Programs, point to Microsoft Visual Studio .NET, point to
Visual Studio .NET Tools, and then click Visual Studio .NET Command
Prompt.

2. To list code groups, open the Visual Studio .NET Command Prompt
window and type the following command:
Caspol –lg

Procedure: Using
Caspol.exe to view
security policy
information

 Module 10: Securing Windows Forms Applications 25

3. To list permission sets, in the Visual Studio .NET Command Prompt
window type the following command:
Caspol –lp

4. To reset the current policy level to default security policy, in the Visual
Studio .NET Command Prompt window type the following command:
Caspol –reset

By default, all code running on the local computer receives the FullTrust
permission set. Often, when testing the security characteristics of your code, it
is convenient to have your code run with different permission sets. An easy way
to do this is to create a test folder and configure security policy to treat this
folder as a different zone.

You can also use the Code Access Security tool to set up security context test
environments for your applications.

1. Create a folder named C:\testfolder.
2. To create a new code group to test an application that you want to run with

the Internet permission set, open the Visual Studio .NET Command Prompt
window and type the following command:
Caspol –ag 1 –url file:///C:/testfolder/* Internet
-n Test_Group –exclusive on
This adds a new exclusive code group at the machine policy level with a
URL membership condition of file:///C:/test/* that grants the Internet
permission set and is named Test_Group. The code group must be
exclusive. This ensures that other code groups that would normally match
your assembly are ignored, as in the case of code whose zone is
MyComputer, which would usually be granted FullTrust. You can then copy
your application to the test directory, and when you run it, it will get the
Internet permission set.
To open the Visual Studio .NET Command Prompt window, click Start,
point to All Programs, point to Microsoft Visual Studio .NET, point to
Visual Studio .NET Tools, and then click Visual Studio .NET Command
Prompt.

3. To change this code group to test your application against the LocalIntranet
permission set, type the following command:
Caspol –cg Test_Group LocalIntranet

4. To remove your test code group by typing the following command:
Caspol –rg Test_Group

Do not turn off security. The Code Access Security tool has an
option that allows you to turn off security. Avoid using this option if at all
possible.

Procedure: Testing your
application by using
Caspol.exe

Important

26 Module 10: Securing Windows Forms Applications

Practice: Adding Permission Requests

In this practice, you will

� View the behavior of an application that
contains no permission requests

� Add permission requests to an assembly
and then test the behavior of the
application in different security contexts

15 minBegin reviewing the objectives for
this practice activity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will compare the behavior of an application that tries to
access various resources under different permission request situations and in
different security contexts.

� View application behavior without permission requests
1. In Visual Studio .NET, open the PermissionRequests.sln solution file in

install_folder\Practices\Mod10\Mod10_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Open the PermReqForm.cs form and view its code.
3. Build the project and run the application.

Introduction

Instructions

Note

 Module 10: Securing Windows Forms Applications 27

4. Click each of the three buttons at the top of the form and notice that all of
the operations succeed.

This happens because the code is running with the FullTrust permission
set, with no permission request restrictions.

5. Click Exit to quit the application.

� Add permission requests to the application
1. Open the AssemblyInfo.cs file and find the TODO comment at the bottom

of the file. Notice that a minimum permission request for a UIPermission
has already been added.

2. Add a minimum permission request for the required
IsolatedStorageFilePermission.
[assembly:IsolatedStorageFilePermission(
 SecurityAction.RequestMinimum,
 UsageAllowed =
 IsolatedStorageContainment.DomainIsolationByUser)]

3. Add a minimum permission request for the required
EnvironmentVariablePermission.
[assembly:EnvironmentPermission(
 SecurityAction.RequestMinimum,
 Read = "USERNAME")]

4. Add an optional permission request for no permissions. This prevents the
assembly from getting any additional permissions that security policy may
allow.
[assembly:PermissionSet(SecurityAction.RequestOptional,
 Unrestricted = false)]

5. Build the project and run the application.
6. Click Open Isolated Storage, and then click Read USERNAME

Environment Variable. Notice that these two operations succeed. Then
click Open C:\test.txt File. That operation fails with a security exception,
even though the code would normally get the FullTrust permission set. This
happens because the optional permission request for no permissions was
added to the assembly.

28 Module 10: Securing Windows Forms Applications

7. Exit the application.
8. In the AssemblyInfo file, add a minimum permission request for the

required FileIOPermission.
[assembly:FileIOPermission(
 SecurityAction.RequestMinimum,
 All = "C:\\test.txt")]

9. Build the project and run the application. Try all three operations that you
tried in Step 6. Notice that all three operations succeed now. Click Exit to
quit the application.

� Test application behavior in other security contexts
1. In Windows Explorer, copy the PermissionRequests.exe file from

install_folder\Practices\Mod10\Mod10_01\PermissionRequests\bin\debug
to C:\test\LocalIntranet.

2. In the C:\test\LocalIntranet folder, double-click the
PermissionRequests.exe file to run the application. Notice that an
exception window appears, notifying you of a
System.Security.Policy.PolicyException exception. The application was
not able to run because it makes a minimum permission request from
permissions that are not granted as part of the LocalIntranet permission set.
Specifically, the request for permission to read the C:\Test.txt file is not
allowed in the LocalIntranet permission set.

3. Click No to avoid debugging the application.

 Module 10: Securing Windows Forms Applications 29

Lesson: Using Role-Based Security

� Check identity of the user

� Check the role of the user

Username = FredUsername = FredUsername = Fred

Administrator

Manager
Role = ManagerRole = ManagerRole = Manager

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Role-based security allows developers to control access to applications based
on the user’s identity. In this lesson, you will learn how to use the .NET
Framework role-based features in your applications.

For more information about role-based security calls, see Course 2350B,
Securing and Deploying Microsoft .NET Applications.

After completing this lesson, you will be able to:

� Use Windows principals and identities to control access to an application.
� Implement custom authentication by using generic principals and identities.

Introduction

Lesson objectives

30 Module 10: Securing Windows Forms Applications

How Role-Based Security Works

� Authentication and authorization

� Identities

� Windows identity

� Generic identity

� Custom identity

� Principals

� Windows principal

� Generic principal

� Custom principal

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Principal and identity objects are used to access information about the user.
You can access information about Windows users and the Windows groups that
they belong to by using the WindowsPrincipal and WindowsIdentity objects.
To access user information based on your own custom authentication scheme,
you can use the GenericPrincipal and GenericIdentity objects or implement
your own custom principal and identity objects.

Before you determine what a specific user is authorized to do, you must verify
the identity of that user. Authentication is the process of discovering and
verifying the identity of a user by examining the user’s credentials and then
validating those credentials against some authority.

The next step after authentication is authorization. Authorization is the process
of determining whether a user is allowed to perform a requested action.
Authorization occurs after authentication and uses information about a user’s
identity and roles to determine what resources that user can access.

An identity object encapsulates information about the user or entity being
validated, such as the user name and authentication type. The .NET Framework
provides three kinds of identity objects:

� Windows identity
Represents the identity of the user based on a method of authentication that
is supported by the Windows operating system. A Windows identity
provides the ability to impersonate another user, so resources can be
accessed on behalf of that other user. The WindowsIdentity class
implements this kind of identity.

� Generic identity
Represents the identity of the user based on a custom authentication method,
which is defined by the application. The GenericIdentity class implements
this kind of identity.

Introduction

Authentication

Authorization

Identities

 Module 10: Securing Windows Forms Applications 31

� Custom identity
Represents an identity that encapsulates custom user information. Any
custom identity class must implement the IIdentity interface.

All identity classes must implement the IIdentity interface. The IIdentity
interface has three public properties, listed in the following table.

Property Description

Name The name of the current user, represented as a string.

IsAuthenticated A Boolean value indicating whether the user has been
authenticated.

AuthenticationType The type of authentication used, represented as a string.

A principal object represents the security context under which code is running.
This includes the identity of the user, as represented by an associated identity
object, and the roles associated with the user.

A role defines a group of related users of an application. For example, a
banking application might impose limits on the withdrawal amounts that can be
transacted, based on role. In this scenario, tellers might be authorized to process
withdrawals that are less than a specified amount, while managers might be
allowed to process withdrawals above the specified amount.

Role-based security in the .NET Framework supports three kinds of principals:

� Windows principal
Represents Windows users and their roles. The roles are the Windows
groups that the user is a member of. The WindowsPrincipal class
implements this kind of principal.

� Generic principal
Represents users and roles that are independent of Windows users and their
roles. Essentially, the generic principal is a simple solution for application
authentication and authorization. The GenericPrincipal class implements
this kind of principal.

� Custom principal
Represents application-specific role information. Any custom principal class
must implement the IPrincipal interface.

Principals

32 Module 10: Securing Windows Forms Applications

All principal classes implement the IPrincipal interface. The IPrincipal
interface has an Identity property that stores the identity object related to the
current principal and an IsInRole method that determines whether the current
principal belongs to the specified role.

A principal object is bound to a call context object in an application domain
object. A default call context is always created for each new application
domain, so there is always a call context available. When a new thread is
created, a call context object is also created for that thread. The principal object
reference is automatically copied from the creating thread to the new thread’s
call context.

 Module 10: Securing Windows Forms Applications 33

How to Create WindowsPrincipal and WindowsIdentity Objects

Choice of two techniques
� Creating objects for a single validation

� Creating objects for repeated validation

WindowsIdentity MyIdentity =
WindowsIdentity.GetCurrent();

WindowsPrincipal MyPrincipal =
new WindowsPrincipal(MyIdentity);

WindowsIdentity MyIdentity =
WindowsIdentity.GetCurrent();

WindowsPrincipal MyPrincipal =
new WindowsPrincipal(MyIdentity);

AppDomain.CurrentDomain.SetPrincipalPolicy(
PrincipalPolicy.WindowsPrincipal);

WindowsPrincipal MyPrincipal =
System.Threading.Thread.CurrentPrincipal

as WindowsPrincipal;

AppDomain.CurrentDomain.SetPrincipalPolicy(
PrincipalPolicy.WindowsPrincipal);

WindowsPrincipal MyPrincipal =
System.Threading.Thread.CurrentPrincipal

as WindowsPrincipal;

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two ways to create WindowsPrincipal objects, depending on
whether code must repeatedly perform role-based validation or must perform it
only once.

When you must perform role-based validation once, you can call the
WindowsIdentity.GetCurrent method.

1. Initialize a new instance of the WindowsIdentity class by calling the static
WindowsIdentity.GetCurrent method.
In the first example shown on the slide, the GetCurrent method queries the
current Windows account and places information about that account into the
identity object.

2. Create a new instance of the WindowsPrincipal class and pass the value of
a WindowsIdentity object to it.

When you must perform role-based validation repeatedly, you can call the
SetPrincipalPolicy method on the System.AppDomain object.

1. Call the static SetPrincipalPolicy method on the System.AppDomain
object, passing it a PrincipalPolicy enumeration value that indicates what
the policy should be. Supported values are NoPrincipal,
UnauthenticatedPrincipal, and WindowsPrincipal.

2. With the policy set, use the Thread.CurrentPrincipal property to retrieve
the principal that encapsulates the current Windows user.

Introduction

Procedure: Creating a
WindowsPrincipal object
for a single validation

Procedure: Creating a
WindowsPrincipal object
for repeated validation

34 Module 10: Securing Windows Forms Applications

The following example creates an instance of a WindowsIdentity object and a
WindowsPrincipal object, and gathers identity and principal information from
the objects:

using System;
using System.Threading;
using System.Security.Principal;
public class Class1
{
 public static int Main(string[] args)
 {
 WindowsIdentity MyIdentity =
 WindowsIdentity.GetCurrent();
 WindowsPrincipal MyPrincipal = new
 WindowsPrincipal(MyIdentity);

 //Principal values.
 string Name = MyPrincipal.Identity.Name;
 string Type = MyPrincipal.Identity.AuthenticationType;
 string Auth =
 MyPrincipal.Identity.IsAuthenticated.ToString();
 //Identity values.
 string IdentName = MyIdentity.Name;
 string IdentType = MyIdentity.AuthenticationType;
 string IdentIsAuth =
 MyIdentity.IsAuthenticated.ToString();
 string ISAnon = MyIdentity.IsAnonymous.ToString();
 string IsG = MyIdentity.IsGuest.ToString();
 string IsSys = MyIdentity.IsSystem.ToString();
 string Token = MyIdentity.Token.ToString();
 …
 return 0;
 }
}

 Module 10: Securing Windows Forms Applications 35

How to Create GenericPrincipal and GenericIdentity Objects

� Create and initialize a GenericIdentity object

� Create and initialize a GenericPrincipal object and attach
it to the current thread

GenericIdentity MyIdentity =
new GenericIdentity("User1");

GenericIdentity MyIdentity =
new GenericIdentity("User1");

String[] MyStringArray = {"Manager", "Employee"};
GenericPrincipal MyPrincipal =

new GenericPrincipal(MyIdentity, MyStringArray);
System.Threading.Thread.CurrentPrincipal = MyPrincipal;

String[] MyStringArray = {"Manager", "Employee"};
GenericPrincipal MyPrincipal =

new GenericPrincipal(MyIdentity, MyStringArray);
System.Threading.Thread.CurrentPrincipal = MyPrincipal;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the GenericIdentity class in conjunction with the
GenericPrincipal class to implement role-based security that is independent of
the Windows security system. For example, you can prompt a user for a name
and password, check them against a database or a Lightweight Directory Access
Protocol (LDAP) directory, and then create identity and principal objects based
on the values in the database.

There are three mains steps for implementing role-based security by using
GenericIdentity and GenericPrincipal objects.

1. Create a new instance of the GenericIdentity class and initialize it with the
name that you want it to hold.

2. Create a new instance of the GenericPrincipal class and initialize it with
the previously created GenericIdentity object and an array of strings that
represent the roles that you want associated with this principal. The second
example on the slide specifies an array of strings that represent a Manager
role and a Teller role. The GenericPrincipal object is then initialized with
the previous GenericIdentity object and the string array.

3. Attach the principal to the current thread, as shown on the slide. Attaching
the principal to the current thread is valuable in situations where the
principal must be validated several times, it must be validated by other code
running in your application, or it must be validated by a
PrincipalPermission object.

The code attaching the principal to the current thread must have
been granted the ControlPrincipal member of the SecurityPermission
class to successfully attach the principal to the thread.

Introduction

Procedure:
Implementing role-based
security by using
GenericIdentity and
GenericPrincipal objects

Important

36 Module 10: Securing Windows Forms Applications

The following example creates an instance of a GenericPrincipal and a
GenericIdentity:

using System;
using System.Security.Principal;
using System.Threading;
public class Class1
{
 public static int Main(string[] args)
 {
 // Prompt user for username and password, and then
 // authenticate those credentials against a database
 // or other authority. For this sample, the username
 // is hard-coded.
 String Username = "Joe";

 // Assuming authentication succeeds, create the
 // GenericIdentity representing the user.
 GenericIdentity MyIdentity = new
 GenericIdentity(Username);

 // Look up the roles the user belongs to in a database
 // or other location. For this sample, the roles are
 // hard-coded.
 String[] MyRoles = {"Manager", "Teller"};

 // Create the GenericPrincipal representing the user
 // and associated roles.
 GenericPrincipal MyPrincipal = new
 GenericPrincipal(MyIdentity, MyRoles);

 // Store the principal on the thread, so it can be
 // retrieved and used by other code.
 Thread.CurrentPrincipal = MyPrincipal;
 }
}

Example

 Module 10: Securing Windows Forms Applications 37

How to Use Principals and Identities to Control Access to an
Application

After you have created a principal object

� Use the Name property of the principal’s identity object
to check the user’s name

� Use the principal’s IsInRole method to check role
membership

// Assume a valid principal is in MyPrincipal
if (String.Compare(MyPrincipal.Identity.Name,

"DOMAIN\\Fred", true)==0
// Permit access to some code

// Assume a valid principal is in MyPrincipal
if (String.Compare(MyPrincipal.Identity.Name,

"DOMAIN\\Fred", true)==0
// Permit access to some code

// Assume a valid principal is in MyPrincipal
if (MyPrincipal.IsInRole("DOMAIN\\Administrators"))
// Permit access to some code

// Assume a valid principal is in MyPrincipal
if (MyPrincipal.IsInRole("DOMAIN\\Administrators"))
// Permit access to some code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have created a principal object, you can add code to your application
to control access to your application based on elements of a user’s identity.

You can control access to code based on the user’s name, as shown in the first
example on the slide. The example the following code uses a case-insensitive
string comparison to see if the user’s name is DOMAIN\Fred. The first two
parameters to the static String.Compare method are the strings to be
compared, and the third parameter tells the method to do a case-insensitive
comparison.

// Assume a valid principal is in MyPrincipal
if (String.Compare(MyPrincipal.Identity.Name, “DOMAIN\\Fred”,
true)==0
// Permit access to some code

For WindowsIdentity objects, the name represents the user’s login name,
including the domain.

You can check role membership by calling the IsInRole method on the
principal object, as shown in the second example on the slide. The example on
the slide checks if the user belongs to the DOMAIN\Administrators role.

For WindowsPrincipal objects, a role maps to a Windows group, including the
domain. When checking for membership in built-in Windows groups, you can
use the WindowsBuiltInRole enumeration. The following example uses a
hard-coded string in the call to determine if the user is a member of the built-in
Administrators role:

MyPrincipal.IsInRole("BUILTIN\\Administrators");

Introduction

Example

Example

38 Module 10: Securing Windows Forms Applications

The code works, but it is not easily localized. The following example uses the
WindowsBuiltInRole enumeration instead, and is more easily localized:

MyPrincipal.IsInRole(WindowsBuiltInRole.Administrator);

.NET Framework role-based security does not provide access to COM+
roles with these mechanisms. Classes in the System.EnterpriseServices
namespace must be used to gain access to COM+ role-based security
information.

Note

 Module 10: Securing Windows Forms Applications 39

Demonstration: Using Role-based Security to Control Access to an
Application

In this demonstration, you will see
how an application uses role-based
security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how an application uses role-based security.

� To view code that uses role-based security
1. Open the RoleBasedSecurity.sln solution file in

install_folder\Democode\Mod10\Mod10_01\RoleBasedSecurity.
2. Open the RBSForm.cs form and view its code.
3. Note how the current WindowsPrincipal is obtained in the RBSForm

constructor.
4. Set breakpoints in the CheckUserBtn_Click and CheckRoleBtn_Click

methods.
5. Run the application.
6. In the User Name box, type your user name, making sure to include the

domain, for example, computername\myuser.
7. Click Check User Name.
8. Step through the code in the event handler and note how the user name

check is performed. When you are done with the code in this method, press
F5 to continue execution of the application.

9. In the Role box, type a role that you are a member of, such as
BUILTIN\Users.

10. Click Check Role.
11. Step through the code in the event handler and note out how the role

membership check is performed. Then click Exit to quit the application.

Introduction

Instructions

40 Module 10: Securing Windows Forms Applications

Review

� Security in the .NET Framework

� Using Code Access Security

� Using Role-Based Security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are the two major areas of security in the .NET Framework?
The two major areas of security in the .NET Framework are code
access security and role-based security.

2. How are evidence, security policy, and permissions related?
The runtime uses security policy to map evidence to permissions.

3. What are the three types of permission requests that you can make?
You can make minimum, optional, and refused permission requests.

4. What kind of permissions should you include in a minimum permission
request?
Include in a minimum permission request any permission that is
absolutely necessary for your code to run successfully.

 Module 10: Securing Windows Forms Applications 41

5. What are the two ways to configure the security policy to test an
application?
You can use the .NET Framework Configuration tool (Mscorcfg.msc)
or the Code Access Security tool (Caspol.exe) to configure the security
policy.

6. What are authentication and authorization?
Authentication is the process of validating a user’s credentials.
Authorization is the process of deciding whether an authenticated user
is allowed to access a resource.

7. Describe when you would use a WindowsPrincipal object and when you
would use a CustomPrincipal object to implement role-based security.
Use a WindowsPrincipal when your role-based security decisions are
based on Windows users and groups. Use a CustomPrincipal when your
role-based security decisions are based on another authentication
mechanism, such as a SQL Server database.

8. What method of the Principal class do you use to perform role check?
You use the IsInRole method of the Principal class.

9. What are the three main steps to implement role-based security with
GenericIdentity and GenericPrincipal objects in your application?
The three main steps to implement role-based security with
GenericIdentity and GenericPrincipal objects are:

• Create a new instance of the GenericIdentity class and initialize it
with the name you want it to hold.

• Create a new instance of the GenericPrincipal class and initialize it
with the previously created GenericIdentity object and an array of
strings that represent the roles that you want associated with this
principal.

• Attach the principal to the current thread. Attaching the principal
to the current thread is valuable in situations where the principal
must be validated several times, it must be validated by other code
running in your application, or it must be validated by a
PrincipalPermission object.

42 Module 10: Securing Windows Forms Applications

Lab 10.1: Adding and Testing Permission Requests

Exercise 1: Adding and Testing
Permission Requests

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will have demonstrated your ability to:

� Add assembly permission requests.
� Test an application by running it in different security contexts.

This lab focuses on the concepts in Module 10, “Securing Windows
Forms Applications,” in Course 2555A, Developing Microsoft .NET
Applications for Windows (Visual C# .NET). As a result, this lab may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� The knowledge and skills to develop a simple Windows Forms application
by using a Visual Studio .NET–compatible programming language.

� The knowledge and skills to debug an application by using
Visual Studio .NET.

� The knowledge and skills to add permission requests.

To follow best practices, you want to document the permissions that your
application requires and to run it with the fewest privileges possible. To do this
with the .NET Framework security system, you will use permission requests.
This will also help you to configure the security policy if you decide to deploy
your application in other security contexts.

In this lab, you will add minimum permission requests for the permissions that
you need and an optional permission request for no permissions to prevent any
additional permissions from being granted to your application.

Objectives

Note

Prerequisites

Scenario

 Module 10: Securing Windows Forms Applications 43

There are starter and solution files associated with this lab. Browse to
install_folder\Labfiles\Lab10_1\Ex01\Starter to find the starter files, and
browse to install_folder\Labfiles\Lab10_1\Ex01\Solution to find the solution
files. If you performed a default installation of the course files, install_folder
corresponds to C:\Program Files\Msdntrain\2555.

Lab setup

Estimated time to
complete this lab:
30 minutes

44 Module 10: Securing Windows Forms Applications

Exercise 1
Adding and Testing Permission Requests
In this exercise, you will add some minimum permission requests to the Expense Report
application. You will also test the Expense Report application in different security contexts.

Tasks Additional information

1. Open the ExpenseReport.sln solution file in
Visual Studio .NET. Browse to
install_folder\Labfiles\Lab10_1\Ex01\Starter to
find the project files.

a. For more information about opening a project file
and starting an application, see the following
resource:

• The Visual Studio .NET Help documentation.
For additional information about opening a
project file, in Search, select the Search in
titles only check box, then search by using
the phrase Open Project Dialog Box. For
additional information about starting an
application in the Designer, in Index, search
by using the phrase Debugging Windows
Applications.

2. Open the AssemblyInfo.cs file. Add minimum
permission requests for the following
permissions:

• Use of all windows.

• Use of Isolated Storage, isolated by domain
and user. Use the following syntax:

[assembly:
IsolatedStorageFilePermission(
SecurityAction.RequestMinimum,
UsageAllowed =
IsolatedStorageContainment.Domain
IsolationByUser)]

• Use of Web access for the Expense Report
Web service. Use the following syntax:

[assembly:WebPermission(
SecurityAction.RequestMinimum,
Connect =
"http://localhost/ExpenseReportWeb
Service/
ExpenseReportWebService.asmx")]

• Add an optional permission request for no
permissions.

a. For more information about permission requests,
see the following resources:

• Practice: Adding Permission Requests in
Module 10, “Securing Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET). This practice contains
information about how to add the minimum
permission request for the use of all windows
and the optional permission request for no
permissions.

• Lesson: Using Code Access Security in
Module 10, “Securing Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET). This lesson contains
information about how to make permission
requests.

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Requesting Permissions.

 Module 10: Securing Windows Forms Applications 45

Tasks Additional information

3. Test the permission requests.

a. Build and run the application in Visual Studio
to make sure it still works.

b. Copy the ExpenseReport.exe file from the
bin(\debug) folder of the project to the
C:\Test\LocalIntranet folder.

c. Double-click the application and attempt to
run it. Notice that you get a policy exception.

a. In step 3.c., the application will not run because
the LocalIntranet permission set limits Web
access to the same site that the assembly was
downloaded from. If the application were
installed on localhost, it would run in the
LocalIntranet permission set.

b. For more information about the default security
policy, see the following resources:

• Lesson: Using Code Access Security in
Module 10, “Securing Windows Forms
Applications,” in Course 2555A, Developing
Microsoft .NET Applications for Windows
(Visual C# .NET). This lesson contains
information about configuring the security
policy.

• The .NET Framework SDK documentation.
In Search, select the Search in titles only
check box, then search by using the phrase
Default Security Policy.

46 Module 10: Securing Windows Forms Applications

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

To complete a course evaluation, go to
http://www.metricsthatmatter.com/survey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

Contents

Overview 1

Lesson: Creating Brushes and Filled Shapes 2

Lesson: Working with Bitmap Images 14

Appendix A: Using
Filled Shapes and
Images

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active X, Authenticode, FrontPage, IntelliSense,
MSDN, PowerPoint, Visual Basic, Visual C#, Visual Studio, Win32, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix A: Using Filled Shapes and Images iii

Instructor Notes
This appendix provides students with an overview of how to create filled shapes
and images by using GDI+. Students learn how to use solid, hatch, texture,
linear gradient, path gradient, and transparent brushes to fill shapes. They will
also learn how to load, skew, rotate, reflect, crop, and scale images.

After completing this module, students will be able to:

� Create and use textured, hatched, and gradient brushes to fill shapes.
� Manipulate bitmap images and use them in a Windows Forms application.

To teach this appendix, you need the Microsoft® PowerPoint® file
2555A_XA.ppt.

To prepare for this module:

� Read all of the materials for this appendix.
� Complete the practices.

Presentation:
60 minutes

Lab:
00 minutes

Required materials

Preparation tasks

iv Appendix A: Using Filled Shapes and Images

How to Teach This Appendix
This section contains information that will help you to teach this appendix.

� This is an optional teachable appendix. Find out the interest of students in
GDI+. Depending on time and the interest level of students, you may teach
this appendix.

� The appendix consists of two practices that will help reinforce the concepts
taught in the lessons.

 Appendix A: Using Filled Shapes and Images 1

Overview

� Creating Brushes and Filled Shapes

� Working with Bitmap Images

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft® .NET Framework common language runtime uses an advanced
implementation of the Microsoft Windows® graphics design interface (GDI)
called GDI+. GDI+ allows you to create graphics, draw text, and manipulate
graphical images as objects. GDI+ is designed to offer performance as well as
ease of use. You can use GDI+ to render graphical images on Windows Forms
and controls as well as on any Graphics object. GDI+ has fully replaced GDI
and is now the only way to render graphics programmatically in Windows
Forms applications.

Module 6, “Reporting and Printing in Windows Forms Applications,” in Course
2555A, Developing Microsoft .NET Applications for Windows Applications
(Visual C#™ .NET), introduces the basics of GDI+ and how to draw text and
shapes by using the Graphics object methods.

In this appendix, you will learn about some more advanced tasks that you can
perform with GDI+, such as how to create and use additional brush types and
manipulate images.

For more information about GDI+ beyond what is included in this appendix,
see the Microsoft .NET Framework software development kit (SDK)
documentation and Programming Microsoft Windows with C#, by Charles
Petzold.

After completing this appendix, you will be able to:

� Create and use textured, hatched, and gradient brushes to fill shapes.
� Manipulate bitmap images and use them in a Windows Forms application.

Introduction

Objectives

2 Appendix A: Using Filled Shapes and Images

Lesson: Creating Brushes and Filled Shapes

� Types of Brushes for Filled Shapes

� How to Create Solid and Texture Filled Shapes

� How to Create Hatch Filled Shapes

� How to Create a Gradient Filled Shape

� How to Create a Path Gradient Filled Shape

� How to Create Transparent Shapes

� Practice: Creating Brushes and Filled Shapes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Two-dimensional (2-D) shapes are vector objects that can be drawn as an
outline by using a pen and, in the case of a closed shape, filled by using a brush.
Rectangles and ellipses are good examples of closed shapes because they
consist of an outline and an interior. Closed shapes can be drawn as either an
outline by using a Drawxxx method or a filled shape by using a Fillxxx
method.

In this lesson, you will learn how to draw filled shapes by using each of the
different types of brushes supported by GDI+.

After completing this lesson, you will be able to:

� Draw filled shapes by using GDI+ methods.
� Create hatch filled shapes.
� Create texture filled shapes.
� Create gradient filled shapes.
� Create path gradient filled shapes.
� Create transparent shapes.

Introduction

Lesson objectives

 Appendix A: Using Filled Shapes and Images 3

Types of Brushes for Filled Shapes

Solid BrushSolid Brush

Gradient BrushGradient Brush

Hatch BrushHatch Brush

Path Gradient
Brush

Path Gradient
Brush

Texture BrushTexture Brush

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Applications use filled shapes for a variety of tasks. Spreadsheet applications,
for example, use filled shapes to construct charts and graphs, and drawing and
painting applications use filled shapes to enable the user to draw vector objects.

GDI+ provides five brush classes for filling the interiors of closed shapes. The
five brush types are SolidBrush, TextureBrush, HatchBrush,
LinearGradientBrush, and PathGradientBrush. All of these classes inherit
the members of the Brush class.

The SolidBrush is the simplest form of brush and is used to fill a shape with
solid color. SolidBrush is found in the System.Drawing namespace.

The TextureBrush is similar to a solid brush but uses an image rather than a
solid color to fill a shape. With a texture brush, you can fill a shape with any
pattern that is available in a bitmap form. TextureBrush is found in the
System.Drawing namespace.

The HatchBrush enables you to select from more than 50 preset hatch style
patterns (enumerations of HatchStyle) to fill in a shape. When you fill a shape
with a hatch brush, you specify a line color, a background color, and a hatch
style. HatchBrush is found in the System.Drawing.Drawing2D namespace.

You can use a linear gradient brush to fill a shape with color that changes
gradually as you move across the shape horizontally, vertically, or diagonally.
LinearGradientBrush is found in the System.Drawing.Drawing2D
namespace.

A path gradient brush provides you with many additional capabilities beyond
those of a linear gradient brush. You use a path gradient brush when you want
to create a shape that begins with a single color on the inside and gradually
changes to one or more other colors along the perimeter of the shape.
PathGradientBrush is found in the System.Drawing.Drawing2D namespace.

Introduction

Solid brushes

Texture brushes

Hatch brushes

Linear gradient brushes

Path gradient brushes

4 Appendix A: Using Filled Shapes and Images

How to Create Solid and Texture Filled Shapes

� Use the Image class with the
SolidBrush to create a solid
filled shape

� Use the Image class and the
TextureBrush to create a
texture pattern

CodeExample

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can fill a closed shape with a solid color or a texture by using the Image
class and the SolidBrush/TextureBrush class. Both SolidBrush and
TextureBrush are included in the System.Drawing namespace.

The following example shows how to draw a solid blue ellipse.

SolidBrush myBrush = new SolidBrush(Color.Blue);
e.Graphics.FillRectangle(myBrush, 0, 0, 120, 40);

The following example fills an ellipse with an image. The code constructs an
Image object, and then passes the address of that Image object as an argument
to a TextureBrush constructor. The final statement fills the ellipse with
repeated copies of the image.

imageFileName = "C:\Images\Image01.jpg";
Image brushImage = new Bitmap(imageFileName);
TextureBrush myImageBrush = new TextureBrush(brushImage);
e.Graphics.FillEllipse(myImageBrush, 0, 0, 135, 55);

You can also use a brush to draw lines by constructing a pen based on the
brush rather than a solid color. For more information about using a brush as the
source of a line color, see “Drawing a Line Filled with a Texture” in the .NET
Framework SDK documentation.

Introduction

Procedure: How to
create a solid filled
shape

Procedure: How to
create a texture filled
shape

Note

 Appendix A: Using Filled Shapes and Images 5

How to Create Hatch Filled Shapes

� The HatchBrush object creates a hatched line fill
pattern

� The HatchBrush constructor takes three
arguments

� Hatch style

� Color of the hatch lines

� Color of the background

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A hatch brush allows you to select from a large variety of preset hatched line
patterns to fill in a shape.

Each hatch pattern is made from two colors: one for the background and one for
the lines that form the pattern over the background. To fill a closed shape with a
hatch pattern, use a HatchBrush object. HatchBrush and HatchStyle are
included in the System.Drawing.Drawing2D namespace.

The HatchBrush constructor takes three arguments:

� Hatch style
� Color of the hatch lines
� Color of the background

The hatch style argument can be any of the more than 50 values from the
HatchStyle enumeration, such as Cross, Horizontal, OutlinedDiamond,
Sphere, Vertical, and ZigZag.

The following example demonstrates how to fill an ellipse with a horizontal line
hatch pattern of red on a cyan background:

Imports System.Drawing.Drawing2D
…
HatchBrush myHatchBrush = new
 HatchBrush(HatchStyle.Horizontal, Color.Red, Color.Cyan);

e.Graphics.FillEllipse(myHatchBrush, 0, 200, 120, 40);

Introduction

Procedure

6 Appendix A: Using Filled Shapes and Images

How to Create a Gradient Filled Shape

Use a gradient brush to fill a shape with a gradually
changing color

Rectangle rect = new Rectangle(hPos, vPos, txtWidth,
txtHeight);

LinearGradientBrush lgBrush = new
LinearGradientBrush(rect, Color.SeaGreen,
Color.BlueViolet,LinearGradientMode.Horizontal);

e.Graphics.DrawString(myText, myFont, myBrush, hPos,
vPos);

Rectangle rect = new Rectangle(hPos, vPos, txtWidth,
txtHeight);

LinearGradientBrush lgBrush = new
LinearGradientBrush(rect, Color.SeaGreen,
Color.BlueViolet,LinearGradientMode.Horizontal);

e.Graphics.DrawString(myText, myFont, myBrush, hPos,
vPos);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can fill a shape with a gradually changing color by using a gradient brush.
For example, you can use a horizontal gradient to fill a shape with color that
changes gradually as you move from the left edge of the shape to the right edge.

A linear gradient changes color as you move horizontally, vertically, or
diagonally across a closed shape. For creating linear gradients, GDI+ provides a
LinearGradientBrush which inherits from the Brush class and is included in
the System.Drawing.Drawing2D namespace.

The orientation of a LinearGradientBrush (horizontal, vertical, or diagonal) is
determined by the orientation of a line connecting the two points used in the
construction of the brush. When the brush is constructed by using a rectangle
rather than two points, the orientation is determined by the value of either the
LinearGradientMode parameter or the angle parameter.

By default, the color in a linear gradient changes uniformly from one endpoint
to another. However, you can customize a linear gradient in many ways. For
example, you can create a nonuniform linear gradient or a gradient that begins
with one color in the middle and blends into a second color at both ends.

For more information about customizing the appearance of a
LinearGradientBrush, see “Creating a Linear Gradient and Filling Shapes
with a Gradient Brush” in the .NET Framework SDK documentation, or see
“LinearGradientBrush Members” in the .NET Framework Class Library.

Introduction

 Appendix A: Using Filled Shapes and Images 7

The following example draws a string (myText) by using a linear gradient
brush. The size of the brush is determined by a rectangle, which is constructed
to be the same size as the string when it is drawn on the graphics object.

Rectangle rect = new Rectangle(hPos, vPos, txtWidth,
 txtHeight);
LinearGradientBrush lgBrush = new LinearGradientBrush(rect,
 Color.SeaGreen, Color.BlueViolet,
 LinearGradientMode.Horizontal);
e.Graphics.DrawString(myText, myFont, myBrush, hPos, vPos);

If the object being drawn with a linear gradient brush extends beyond the
size of the brush, the color gradient repeats itself until the entire object is filled.

Procedure: How to
create a horizontal linear
gradient

Note

8 Appendix A: Using Filled Shapes and Images

How to Create a Path Gradient Filled Shape

CodeExample

Use a path gradient brush to customize the way you fill a
shape with gradually changing colors

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The PathGradientBrush class enables you to create gradients with more than
two colors and provides additional methods for customizing a gradient fill. For
example, you can specify one color for the center of a path and another color
for the outside edge. You can also specify separate colors for each of several
points along the perimeter of a path.

The following example fills shapes with a path gradient brush. The center color
is set to white and the color of the outside edge is set to a predefined color.

PathGradientBrush pgBrush = new PathGradientBrush(pathShape1);
pgBrush.CenterColor = Color.White;
pgBrush.SurroundColors = colorsShape1;

e.Graphics.FillPath(pgBrush, pathShape1);

By default, a path gradient brush does not extend outside the boundary of the
path. If you use the path gradient brush to fill a figure that extends beyond the
boundary of the path, the area of the object that is outside the path is not filled.

For more information about customizing a PathGradientBrush, see “Creating a
Path Gradient” in the .NET Framework SDK documentation.

By default, the center point of a path gradient brush is at the centroid of the path
used to construct the brush. You can change the location of the center point by
setting the CenterPoint property of the PathGradientBrush class.

Introduction

Procedure: How to fill an
ellipse with a path
gradient

Procedure: How to set
the center point

 Appendix A: Using Filled Shapes and Images 9

The following example creates a path gradient brush based on an ellipse. The
center of the ellipse is at (70, 35), but the center point of the path gradient brush
is set to (120, 40).

// Create a path that consists of a single ellipse.
GraphicsPath path = new GraphicsPath();
path.AddEllipse(0, 0, 140, 70);

// Use the path to construct a brush.
PathGradientBrush pgBrush2 = new PathGradientBrush(path);

// Set the center point to a location that is not
// the centroid of the path.
pgBrush2.CenterPoint = new PointF(120, 40);

// Set the color at the center of the path to blue.
pgBrush2.CenterColor = Color.FromArgb(255, 0, 0, 255);

// Set the color along the entire boundary
// of the path to aqua.
Color[] colors = {Color.FromArgb(255, 0, 255, 255)};
pgBrush2.SurroundColors = colors;

e.Graphics.FillEllipse(pgBrush2, 0, 0, 140, 70);

10 Appendix A: Using Filled Shapes and Images

How to Create Transparent Shapes

� The alpha value of the color component indicates the
transparency of the color

� To create semitransparent objects, set the alpha
component of the color to a value less than ‘255’

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In GDI+, a color is a 32-bit value with 8 bits each for alpha, red, green, and
blue. The alpha value indicates the transparency of the color—the extent to
which the color is blended with the background color. Alpha values range from
0 through 255, where 0 represents a fully transparent color, and 255 represents a
fully opaque color.

When you fill a shape, you must pass the address of a Brush object to one of
the fill methods of the Graphics class. One parameter of the SolidBrush
constructor is a Color object.

To fill an opaque shape, set the alpha component of the color to 255. To fill a
semitransparent shape, set the alpha component to any value from 1 through
254. For a transparent object, set the alpha component value to 0.

When you fill a semitransparent shape, the color of the shape is blended with
the colors of the background. The alpha component specifies how the shape and
background colors are mixed. Alpha values near 0 place more weight on the
background colors, and alpha values near 255 place more weight on the shape
color.

Introduction

Procedure

 Appendix A: Using Filled Shapes and Images 11

The following example draws two ellipses on a textured background. The first
ellipse uses an alpha component of 255, so it is opaque. The second ellipse uses
an alpha component of 128, so it is semitransparent. Background images can be
seen through a semitransparent shape.

Bitmap bitmap = new Bitmap(imageFileName);
e.Graphics.DrawImage(bitmap, 50, 50, bitmap.Width,
 bitmap.Height);

SolidBrush opaqueBrush = new SolidBrush(Color.FromArgb(255,
 Color.Blue));
SolidBrush semiTransBrush = new SolidBrush(Color.FromArgb(128,
 Color.Blue));

e.Graphics.FillEllipse(opaqueBrush, 0, 200, 45, 30);
e.Graphics.FillEllipse(semiTransBrush, 0, 250, 45, 30);

12 Appendix A: Using Filled Shapes and Images

Practice: Creating Brushes and Filled Shapes

In this practice, you will

� Create and modify brushes

� Customize brushes

Begin reviewing the objectives
for this practice activity 10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You are a software developer at Northwind Traders. You have been asked to
create a Form class that can be used throughout the company as a splash screen
that displays while an application loads.

In this practice, you will work with hatched, textured, gradient, and
semitransparent brushes.

� Open the practice project
1. Using Windows Explorer, navigate to

install_folder\Practices\AppendixA\AppendixA_01\Starter.

If you performed a default installation of the course files,
install_folder corresponds to C:\Program Files\Msdntrain\2555.

2. Double-click the Filled Shapes.sln solution file to open the project.
3. On the Debug menu, click Start.
4. Click Show Splash Screen.

Identify the brush types used on the splash screen form.

� Create and modify brushes
1. Stop the splash screen application, and then open the Code Editor for

splashForm.cs.
2. On the View menu, point to Show Tasks, and then click Comment.
3. In the Task List, double-click TODO: modify TextureBrush.
4. Enable the code statement that follows the TODO line.
5. In the Task List, double-click TODO: modify HatchBrush.
6. Modify the code statement that creates the HatchBrush by changing the

HatchStyle from LargeCheckerBoard to Cross.

Introduction

Instructions

Note

 Appendix A: Using Filled Shapes and Images 13

7. In the Task List, double-click TODO: modify LinearGradientBrush.
8. Modify the code statement that creates the LinearGradientBrush by

changing the LinearGradientMode from Vertical to Horizontal.
9. In the Task List, double-click TODO: create PathGradientBrush.
10. Add the following code statements below the TODO line.

PathGradientBrush brushShape1 = new
 PathGradientBrush(pathShape1);
brushShape1.CenterColor = Color.White;
brushShape1.SurroundColors = colorsShape1;

11. In the Task List, double-click TODO: draw pathShape1.
12. Add the following code statement below the TODO line.

e.Graphics.FillPath(brushShape1, pathShape1);
13. Do any of the code statements that you modified or added require a

reference to the Drawing2D namespace?
Yes. The hatch and gradient brush types require the Drawing2D
namespace.
__

14. On the Debug menu, click Start.
15. Click Show Splash Screen.

Examine the change to the splash screen form.
16. Close the splash form, and then close the splash screen application.

� Customize brushes
1. In the Task List, double-click TODO: customize the linear gradient

brush.
2. Modify the code statement that uses the SetBlendTriangularShape method

by changing the value passed to the method from 0.0 to 0.5.
3. In the Task List, double-click TODO: enable customizations to the path

gradient brush.
4. Enable the code statement that follows the TODO line.
5. On the Debug menu, click Start.
6. Click Show Splash Screen.

Examine the change to the splash screen form. If necessary, change the code
statements back to their original state, run the application again to see the
appearance of the “Purchase Order Application” text and “star-shaped path”
before the changes were made, and then reintroduce the changes made in
steps 2 and 4 above.

7. Close the splash screen form, and then close the splash screen application.
8. If time permits, experiment with the code used to set the alpha value

(transparency) for the path gradient brushes. You can find the appropriate
code section by double-clicking TODO: modify transparency settings for
path gradient brushes in the Task list.

14 Appendix A: Using Filled Shapes and Images

Lesson: Working with Bitmap Images

� What Is a Bitmap Image?

� How to Load and Display an Image

� How to Crop and Scale Images

� How to Rotate, Skew, and Reflect Images

� How to Create Thumbnail Images

� Practice: Working with Bitmap Images

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Certain kinds of pictures are difficult or impossible to display with the
techniques of vector graphics. For example, the pictures on toolbar buttons and
the pictures that appear as icons would be difficult to specify as collections of
lines and curves. Images of this type are stored as bitmaps, arrays of numbers
that represent the colors of individual dots on the screen.

After completing this lesson, you will be able to:

� Describe bitmaps and the various file formats for saving bitmaps.
� Load and display bitmaps on screen.
� Crop and scale images.
� Rotate, skew, and reflect images.
� Create thumbnail images.

Introduction

Lesson objectives

 Appendix A: Using Filled Shapes and Images 15

What Is a Bitmap Image?

� Bitmap

� A bitmap is an array of bits that specify the color of
each pixel in a rectangular array of pixels

� Graphic File Formats

� Used for saving bitmaps in disk files

� Types of Graphic File Formats

� BMP, GIF, JPEG, EXIF, PNG, TIFF

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A bitmap is an array of bits that specify the color of each pixel in a rectangular
array of pixels. The number of bits devoted to an individual pixel determines
the number of colors that can be assigned to that pixel. For example, if each
pixel is represented by 4 bits, then a pixel can be assigned one of 16 different
colors (2^4 = 16).

Disk files that store bitmaps usually contain one or more information blocks
that store information such as the number of bits per pixel, number of pixels in
each row, and number of rows in the array. Such a file might also contain a
color table (sometimes called a color palette). A color table maps numbers in
the bitmap to specific colors.

A bitmap that stores indexes in a color table is called a palette-indexed bitmap.
Some bitmaps have no need for a color table. For example, if a bitmap uses 24
bits per pixel, that bitmap can store the colors themselves rather than indexes in
a color table.

There are many standard formats for saving bitmaps in disk files. GDI+
supports the following graphics file formats.

� BMP
BMP is a standard format used by Windows to store device-independent and
application-independent images. BMP files are usually not compressed and
therefore are not well suited for transfer across the Internet.

� Graphics Interchange Format (GIF)
GIF is a common format for images that appear on Web pages. GIFs work
well for line drawings, pictures with blocks of solid color, and pictures with
sharp boundaries between colors. GIFs are compressed, but no information
is lost in the compression process; a decompressed image is exactly the
same as the original. GIF files can store only colors with 1, 2, 4, or 8 bits per
pixel.

Introduction

Graphics file formats

16 Appendix A: Using Filled Shapes and Images

� Joint Photographic Experts Group (JPEG)
JPEG is a compression scheme that is used for natural scenes such as
scanned photographs. Some information is lost in the compression process,
but often the loss is imperceptible to the human eye. JPEGs store 24 bits per
pixel, so they are capable of displaying more than 16 million colors.

� Exchangeable Image File (EXIF)
EXIF is a file format used for photographs captured by digital cameras. An
EXIF file contains an image that is compressed according to the JPEG
specification. An EXIF file also contains information about the photograph
(date taken, shutter speed, exposure time, and so on) and information about
the camera (manufacturer, model, and so on).

� Portable Network Graphics (PNG)
The PNG format retains many of the advantages of the GIF format but also
provides capabilities beyond those of GIF. Like GIF files, PNG files are
compressed with no loss of information. PNG files can store colors with 8,
24, or 48 bits per pixel and grayscales with 1, 2, 4, 8, or 16 bits per pixel. In
contrast, GIF files can use only 1, 2, 4, or 8 bits per pixel.
PNG improves on GIF in its ability to progressively display an image; that
is, to display better and better approximations of the image as it arrives over
a network connection. PNG files can contain gamma correction and color
correction information so that the images can be accurately rendered on a
variety of display devices.

� Tagged Image File Format (TIFF)
TIFF is a flexible and extendable format that is supported by a wide variety
of platforms and image-processing applications. TIFF files can store images
with an arbitrary number of bits per pixel and can use a variety of
compression algorithms. Several images can be stored in a single, multiple-
page TIFF file. Information related to the image, such as scanner make, host
computer, type of compression, orientation, samples per pixel, and so on can
be stored in the file and arranged through the use of tags.

 Appendix A: Using Filled Shapes and Images 17

How to Load and Display an Image

� Use the Bitmap class for working with bitmap images

� To load and display a bitmap

� Create a Bitmap object and pass the name of the
image to the Bitmap constructor

� Pass that Bitmap object to the DrawImage method of a
Graphics object

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

GDI+ provides the Bitmap class for working with bitmap images. The Bitmap
class derives from the Image class but provides additional methods for loading
saving, and manipulating bitmap images.

To load a bitmap from a file and display that bitmap on the screen, you use a
Bitmap object and a Graphics object. The Bitmap class supports several file
formats, including BMP, GIF, JPEG, PNG, and TIFF.

To load and display a bitmap:

1. Create a Bitmap object.
When you create the Bitmap object, pass the name of the image file to the
Bitmap constructor.

2. After you have created a Bitmap object, pass that Bitmap object to the
DrawImage method of a Graphics object.
The following example creates a Bitmap object from a JPEG file located in
the startup folder of the application and then draws the bitmap with its
upper-left corner at (60, 10).
string fileName = Application.StartupPath + @"\Bitmap.jpg";
Bitmap fileImage = new Bitmap(fileName);
e.Graphics.DrawImage(fileImage, 60, 10);

Introduction

Procedure

18 Appendix A: Using Filled Shapes and Images

How to Crop and Scale Images

� Use the DrawImage method of the Graphics class to
crop and scale images

� One type of DrawImage takes two arguments, a Bitmap
object and a Rectangle object

� To crop and scale images specify the size of the
rectangle as the desired image size

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Graphics class in GDI+ provides several DrawImage methods, some of
which have source and destination rectangle parameters that you can use to crop
and scale images.

Introduction

 Appendix A: Using Filled Shapes and Images 19

One of the DrawImage methods receives a Bitmap object and uses a
Rectangle object to specify the size of the drawn image. The rectangle specifies
the destination for the drawing operation; that is, it specifies the rectangle in
which to draw the image. If the size of the destination rectangle is different
from the size of the original image, the image is scaled to fit the destination
rectangle. The following example draws an image full scale and then draws the
image with scaled coordinates.

// draw the original image
e.Graphics.DrawImage(fileImage, 0, 0);

// create a rectangle that can be used to create
// a scaled version of the original image
float topImage = e.PageBounds.Top;
float leftImage = e.PageBounds.Left;
float widthImage = fileImage.Size.Width;
float heightImage = fileImage.Size.Height;

Rectangle scaledCoordinates = new Rectangle(
 leftImage,
 topImage + heightImage,
 0.5 * widthImage,
 0.5 * heightImage);

// draw a smaller version of the bitmap image by
// specifying the image and a rectangle
e.Graphics.DrawImage(fileImage, scaledCoordinates);

Some overloads of the DrawImage method include a source-rectangle
parameter as well as a destination-rectangle parameter. The source-rectangle
parameter specifies the portion of the original image to draw. The destination
rectangle parameter specifies the rectangle in which to draw that portion of the
image. If the source rectangle specifies a region of the original image that is
smaller than the original image, the image drawn in the destination rectangle
will be a cropped version of the original image showing only that portion of the
image specified by the source rectangle. If the size of the destination rectangle
is different from the size of the source rectangle, the image is scaled to fit the
destination rectangle.

Procedure

20 Appendix A: Using Filled Shapes and Images

How to Rotate, Skew, and Reflect Images

� To rotate, skew, and reflect an image

� Specify destination points for the upper-left, upper-right,
and lower-left corners of the original image

(0, 0)

(0, 50)

(100, 0)

y

x

(200, 20) is the destination for (0, 0)

(250, 30) is the
destination for (0, 50)

(110, 100) is the
destination for (100, 0)

CodeExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can rotate, skew, and reflect an image by specifying destination points for
the upper-left, upper-right, and lower-left corners of the original image.

Introduction

 Appendix A: Using Filled Shapes and Images 21

The following code demonstrates how to create the point arrays that can be used
to rotate, skew, and reflect an image.

// create a set of points that can be used to
// draw a version of the original image
// that is rotated 90 degrees counter-clockwise
//
// upper-left becomes lower-left
// upper-right becomes upper-left
// lower-left becomes lower-right
Point[] rotatedCoordinates = {
new Point(leftImage, topImage + heightImage + widthImage),
new Point(leftImage, topImage + heightImage),
new Point(leftImage + heightImage,
 topImage + heightImage + widthImage)
};

e.Graphics.DrawImage(fileImage, rotatedCoordinates);

// create a set of points that can be used to
// draw a skewed version of the original image
//
// upper-left remains upper-left
// upper-right remains upper-right
// lower-left becomes lower-left + .5 width
Point[] skewedCoordinates = {
new Point(leftImage, topImage + heightImage),
new Point(leftImage + widthImage, topImage + heightImage),
new Point(leftImage + widthImage / 2,
 topImage + heightImage * 2)
};

e.Graphics.DrawImage(fileImage, skewedCoordinates);

// create a set of points that can be used to
// draw a reflected version of the original image
//
// upper-left becomes lower-left + .5 width
// upper-right becomes lower-right +.5 width
// lower-left becomes upper-left
Point[] reflectedCoordinates = {
new Point(leftImage + widthImage / 2,
 topImage + heightImage * 2),
new Point(leftImage + widthImage + widthImage / 2,
 topImage + heightImage * 2),
new Point(leftImage, topImage + heightImage)
};

e.Graphics.DrawImage(fileImage, reflectedCoordinates);

Procedure

22 Appendix A: Using Filled Shapes and Images

How to Create Thumbnail Images

Dim image = New Bitmap("Compass.bmp")
Dim pThumbnail As Image =

image.GetThumbnailImage(100, 100, Nothing, _
New IntPtr())
e.Graphics.DrawImage(_
pThumbnail, _
10, _
10, _
pThumbnail.Width, _
pThumbnail.Height)

Dim image = New Bitmap("Compass.bmp")
Dim pThumbnail As Image =

image.GetThumbnailImage(100, 100, Nothing, _
New IntPtr())
e.Graphics.DrawImage(_
pThumbnail, _
10, _
10, _
pThumbnail.Width, _
pThumbnail.Height)

Create a thumbnail image by calling the GetThumbnailImage
method of an Image object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A thumbnail image is a small version of an image. You can create a thumbnail
image by calling the GetThumbnailImage method of an Image object.

The following code constructs an Image object from the file WinForms.jpg.
The code creates a thumbnail image that is 1/6 the size of the original. The
callback and callbackData parameters of the GetThumbnailImage method are
not used in this example.

string fileName = Application.StartupPath +
@"\WinForms.jpg";
Bitmap fileImage = new Bitmap(fileName);
Image pThumbnail = fileImage.GetThumbnailImage(
 fileImage.Width / 6,
 fileImage.Height / 6,
 null, new IntPtr());

e.Graphics.DrawImage(pThumbnail, 100, 100,
 pThumbnail.Width, pThumbnail.Height);

Introduction

Procedure

 Appendix A: Using Filled Shapes and Images 23

Practice: Working With Bitmaps

In this practice, you will

� Create a Bitmap object

� Draw a Bitmap object

� Draw scaled and skewed images

Begin reviewing the objectives
for this practice activity 10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You are a software developer at Northwind Traders. One of your current
projects requires that you create a routine for opening, modifying, and printing
bitmap images.

In this practice, you will draw and preview a bitmap object on a print document,
scale the image, skew the image, and examine the code used to create a
semitransparent image.

� Open the practice project file
1. Using Windows Explorer, navigate to

install_folder\Practices\AppendixA\AppendixA_02\Starter.
2. Double-click the Bitmap Images.sln solution file to open the project.
3. Open Form1 in the Code Editor.
4. On the View menu, point to Show Tasks, and then click Comment.

� Create a Bitmap object
1. In the Task List, double-click TODO: create bitmap object.
2. Add the following code statement below the TODO line.

Bitmap fileImage = new Bitmap(fileName);

� Draw a Bitmap object
1. In the Task List, double-click TODO: draw the bitmap image.
2. Add the following code statement below the TODO line.

e.Graphics.DrawImage(fileImage, leftImage, topImage);
3. On the Debug menu, click Start, and then click Print Preview.
4. Close the Print Preview dialog box and the Bitmap Images application.

Introduction

Instructions

24 Appendix A: Using Filled Shapes and Images

� Draw scaled and skewed images
1. In the Task List, double-click TODO: draw a scaled image.
2. Add the following code statement below the TODO line.

e.Graphics.DrawImage(fileImage, scaledCoordinates);
3. On the Debug menu, click Start, and then click Print Preview.
4. Close the Print Preview dialog box and the Bitmap Images application.
5. In the Task List, double-click TODO: draw a skewed image.
6. Add the following code statement below the TODO line.

e.Graphics.DrawImage(fileImage, skewedCoordinates);
7. On the Debug menu, click Start, and then click Print Preview.
8. Close the Print Preview dialog box.
9. Click Draw semitransparent reflection, and then click Print Preview.
10. Close the Print Preview dialog box and the Bitmap Images application.
11. Examine the code used to set up the scaled and skewed versions of the

image and the transparency settings.

