
   

  

• 
Table of 
Contents

Application Development Using C# and .NET

By Michael Stiefel, Robert J. Oberg
  

Publisher: Prentice Hall PTR
Pub Date: December 21, 2001

ISBN: 0-13-093383-X
Pages: 656
Slots: 1   

   Copyright
   The Integrated .NET Series From Object Innovations
   Preface
     Organization
     Sample Programs
     Caveat
     Web Sites
   
   Acknowledgments
   The Integrated .NET Series from Object Innovations and Prentice Hall PTR
     Introduction
     Introductory .NET Language Books
     Introduction to C# Using .NET
     Introduction to Programming Visual Basic Using .NET
     Programming Perl in the .NET Environment
     Intermediate .NET Framework Books

 

http://www.informit.com/safari/author_bio.asp?ISBN=013093383X
http://www.informit.com/safari/author_bio.asp?ISBN=013093383X


     Application Development Using C# and .NET
     Application Development Using Visual Basic .NET
     .NET Architecture and Programming Using Visual C++
     Fundamentals of Web Applications Using .NET and XML
   
   Chapter 1.  What Is Microsoft .NET?
     Microsoft and the Web
     Windows on the Desktop
     A New Programming Platform
     The Role of XML
     Summary
   
   Chapter 2.  .NET Fundamentals
     Problems of Windows Development
     Applications of the Future
     .NET Overview
     Summary
   
   Chapter 3.  C# Overview for Sophisticated Programmers
     Hello World in C#
     Performing Calculations in C#
     Classes
     C# Type System
     Strings
     Arrays and Indexers
     More about Methods
     Exceptions



     Unsafe Code
     Summary
   
   Chapter 4.  Object-Oriented Programming in C #
     Review of Object-Oriented Concepts
     Acme Travel Agency Case Study: Design
     Inheritance in C#
     Access Control
     Acme Travel Agency Case Study: Implementation
     More about Inheritance
     Summary
   
   Chapter 5.  C# in the .NET Framework
     System.Object
     Collections
     Interfaces
     Acme Travel Agency Case Study: Step 2
     Generic Interfaces in .NET
     Delegates
     Attributes
     Summary
   
   Chapter 6.  User Interface Programming
     Windows Forms Hierarchy
     Simple Forms Using .NET SDK
     Menus
     Controls



     Visual Studio.NET and Forms
     Dialog Boxes
     ListBox Control
     Acme Travel Agency Case Study—Step 3
     Summary
   
   Chapter 7.  Assemblies and Deployment
     Assemblies
     Private Assembly Deployment
     Shared Assembly Deployment
     Assembly Configuration
     Multimodule Assemblies
     Setup and Deployment Projects
     Summary
   
   Chapter 8.  .NET Framework Classes
     Metadata and Reflection
     Input and Output in .NET
     Serialization
     .NET Application Model
     Context
     Application Isolation
     Asynchronous Programming
     Remoting
     Custom Attributes
     Garbage Collection and Finalization
     Summary



   
   Chapter 9.  Programming with ADO.NET
     .NET Data Providers
     The Visual Studio.NET Server Explorer
     Data Readers
     Parameters Collection
     SqlDataAdapter and the DataSet Class
     DataSet Collections
     DataSet Fundamentals
     Database Transactions and Updates
     Optimistic vs. Pessimistic Locking and the DataSet
     Working with DataSets
     Acme Travel Agency Case Study
     XML Data Access
     AirlineBrokers Database
     Schema with Relationships
     Typed DataSet
     Summary
   
   Chapter 10.  ASP.NET and Web Forms
     What Is ASP.NET?
     Web Forms Architecture
     Request/Response Programming
     Web Applications Using Visual Studio.NET
     Acme Travel Agency Case Study
     ASP.NET Applications
     State in ASP.NET Applications



     ASP.NET Configuration
     Server Controls
     HTML Server Controls
     Database Access in ASP.NET
     Summary
   
   Chapter 11.  Web Services
     Protocols
     Web Service Architecture
     SOAP Differences
     Web Service Class
     Hotel Broker Web Service
     Summary
   
   Chapter 12.  Security
     User-Based Security
     Code Access Security
     Internet Security
     Role-Based Security in .NET 
     Forms-Based Authentication
     Code Access Permissions
     Code Identity
     Security Policy
     Summary
   
   Chapter 13.  Tracing and Debugging in .NET
     The TraceDemo Example



     Enabling Debug and Trace Output
     Using the Debug and Trace Classes
     Using Switches to Enable Diagnostics
     Enabling or Disabling Switches
     TraceListener
     Listeners Collection
     Summary
   
   Chapter 14.  Interoperability
     Calling COM Components from Managed Code
     Calling Managed Components from COM Client
     Platform Invocation Services (PInvoke)
     Summary
   
   Appendix A.  Visual Studio.NET
     Overview of Visual Studio.NET
     Creating a Console Application
     Project Configurations
     Debugging
     Summary
   

 



Copyright

Library of Congress Cataloging-in-Publication Data 

Stiefel, Michael. 

Application development using C# and .NET / Michael Stiefel, Robert J. Oberg 

p. cm. 

1. System design. 2. Computer software—Development. 3. C# (Computer 
program language). I. Oberg, Robert J. II. Title. 

QA76.9.S88 S745 2002 

005.2'768—-dc21 

2001056574 

Editorial/Production Supervision: Nick Radhuber 

Acquisitions Editor: Jill Harry 

Marketing Manager: Dan DePasquale 

Manufacturing Buyer: Maura Zaldivar 

Cover Design: Anthony Gemmellaro 

Cover Design Direction: Jerry Votta 

Interior Series Design: Gail Cocker-Bogusz 

© 2002 by Michael Stiefel and Robert J. Oberg 

Published by Prentice Hall PTR 

Prentice-Hall, Inc. 

Upper Saddle River, NJ 07458 

Prentice Hall books are widely used by corporations and government agencies for 



training, marketing, and resale. 

The publisher offers discounts on this book when ordered in bulk quantities. For 
more information, contact Corporate Sales Department, phone: 800-382-3419; 
fax: 201-236-7141; email: corpsales@prenhall.com Or write: Corporate Sales 
Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458. 

Product and company names mentioned herein are the trademarks or registered 
trademarks of their respective owners. 

All rights reserved. No part of this book may be reproduced, in any form or by 
any means, without permission in writing from the publisher. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

Pearson Education LTD. 

Pearson Education Australia PTY, Limited 

Pearson Education Singapore, Pte. Ltd 

Pearson Education North Asia Ltd 

Pearson Education Canada, Ltd. 

Pearson Educación de Mexico, S.A. de C.V. 

Pearson Education—Japan 

Pearson Education Malaysia, Pte. Ltd 

Pearson Education, Upper Saddle River, New Jersey

Dedication

To the memory of 

Dr. A. Edward Stefanacci, 1930-1993 

To keep an adjunct to remember theeWere to import forgetfulness in me.

mailto:corpsales@prenhall.com


William Shakespeare Sonnet 122 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


The Integrated .NET Series From Object 
Innovations

C# 

●     Introduction to C# Using .NET

Oberg 
●     Application Development Using C# and .NET

Stiefel/Oberg 

Visual Basic 

●     Introduction to Programming Visual Basic Using .NET

Wyatt/Oberg 
●     Application Development Using Visual Basic and .NET

Oberg/Thorsteinson/Wyatt 

Visual C++ 

●     .NET Architecture and Programming Using Visual C++

Thorsteinson/Oberg 

Web Applications 

●     Fundamentals of Web Applications Using .NET and XML

Bell/Feng/Soong/Zhang/Zhu 

PERL 

●     Programming PERL in the .NET Environment

Saltzman/Oberg 



Preface
Microsoft .NET is an advance in programming technology that greatly simplifies 
application development both for traditional, proprietary applications, and for the 
emerging paradigm of Web-based services. .NET is a complete restructuring of 
Microsoft's whole system infrastructure and represents a major learning challenge 
for programmers developing applications on Microsoft platforms. The new 
platform includes a new programming language C# and a major class library, the 
.NET Framework. 

This book covers important topics in the .NET Framework for experienced 
programmers. You do not need prior experience in C#, because there is a self-
contained treatment, but you should have experience in some object-oriented 
language such as C++ or Java. The book could also be read by a seasoned Visual 
Basic programmer who has experience working with objects and components in 
VB. 

If you already understand C#, you may safely skip or skim Chapters 3 and 4. 
Chapter 5 contains important information about the interactions of C# and the 
.NET Framework. You may then proceed with a detailed study of the .NET 
Framework in Chapters 6 and beyond. For a thorough introduction to the C# 
language you may read the book Introduction to C# Using .NET. 

The book is practical, with many examples and a major case study. The goal is to 
equip you to begin building significant applications using the .NET Framework. 
The book is part of The Integrated .NET Series from Object Innovations and 
Prentice Hall PTR. 



Organization

The book is organized into five major parts, and is structured to make it easy for 
you to navigate to what you most need to know. The first part, consisting of 
Chapters 1 and 2, should be read by everyone. It answers the question "What is 
Microsoft .NET?" and outlines the programming model of the .NET Framework. 

The second part, consisting of Chapters 3-5, covers the C# programming 
language. If you are already familiar with C# you can skim these chapters, paying 
the most attention to Chapter 5, which covers topics such as interfaces, delegates, 
and events. This chapter also describes important interactions between C# and the 
.NET Framework. The case study, which is elaborated throughout the entire 
book, is introduced in Chapter 4. 

The third part, Chapters 6-9, covers important fundamental topics in the .NET 
Framework. Chapter 6 covers user interface programming using the Windows 
Forms classes. Chapter 7 discusses assemblies and deployment, which constitute 
a major advance in the simplicity and robustness of deploying Windows 
applications, ending the notorious "DLL hell." Chapter 8 delves into important 
.NET Framework classes, including the topics of metadata, serialization, 
threading, attributes, application domains, asynchronous programming, remoting, 
and memory management. Chapter 9 covers ADO.NET, which provides a 
consistent set of classes for accessing both relational and XML Data. 

The fourth part of the book provides an in-depth introduction to Web 
programming using ASP.NET and SOAP. Chapter 10 introduces the 
fundamentals of ASP.NET, including the use of Web Forms, which greatly 
simplifies the development of sophisticated Web sites. Chapter 11 covers SOAP 
and Web Services, which provide an easy-to-use and robust mechanism for 
heterogeneous systems to interoperate. 

The final part of the book covers additional important topics in the .NET 
Framework. Chapter 12 covers the topic of security in detail, including code 
access security, declarative security, and the securing of Web applications and 
services. Chapter 13 introduces the debug and trace classes provided by .NET. 
Chapter 14 covers interoperability of .NET with COM and with Win32 
applications. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Sample Programs

The only way to really learn a major framework is to read and write many, many 
programs, including some of reasonable size. This book provides many small 
programs that illustrate pertinent features of .NET in isolation, which makes them 
easy to understand. The programs are clearly labeled in the text, and they can all 
be found in the software distribution that accompanies this book. 

A major case study, the Acme Travel Agency, is progressively developed in 
Chapters 4 through 12. It illustrates many features of C# and .NET working in 
combination, as they would in a practical application. 

The sample programs are provided in a self-extracting file on the book's Web site. 
When expanded, a directory structure is created, whose default root is 
c:\OI\NetCs. The sample programs, which begin with the second chapter, are in 
directories Chap02, Chap03, and so on. All the samples for a given chapter are 
in individual folders within the chapter directories. The names of the folders are 
clearly identified in the text. Each chapter that contains a step of the case study 
has a folder called CaseStudy, containing that step. If necessary, there is a 
readme.txt file in each chapter directory to explain any instructions necessary for 
getting the examples to work. 

This book is part of The Integrated .NET Series. The sample programs for other 
books in the series are located in their own directories underneath \OI, so all the 
.NET examples from all books in the series will be located in a common area as 
you install them. 

These programs are furnished solely for instructional purposes and should not be 
embedded in any software product. The software (including instructions for use) 
is provided "as is" without warranty of any kind. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Caveat

The book and the associated code were developed with Beta 2 of the .NET 
Framework. Microsoft has indicated that this version of .NET is close to what 
will be the final version. Nonetheless, changes will be made before .NET is 
released. The code in the examples has been verified to work only with Windows 
2000. Database code has been verified with SQL Server 2000. Several examples 
in the database and security chapters have machine names embedded in 
connection strings or role names. When trying to run these examples, you will 
have to replace those names with the appropriate name for your machine. To 
make installation easy, the database examples run with user name "sa" and 
without a password. Needless to say, in a real system you should NEVER have 
any login id without a password or have a database application use sa to log into a 
database. [1] 

[1] That is just one of several steps necessary to avoid an SQL Injection 
attack.

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Web Sites

The Web site for the book series is: 

www.objectinnovations.com/dotnet.htm 

A link is provided at that Web site for downloading the sample programs for this 
book. 

Additional information about .NET technology is available at: 

www.reliablesoftware.com 

The book sample programs are available at this Web site as well. 

The Web site for the book will also have a list of .NET learning resources that 
will be kept up-to-date. 

http://www.objectinnovations.com/dotnet.htm
http://www.reliablesoftware.com/
http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Acknowledgments
We are indebted to Mike Meehan for helping to get this project off the ground, 
starting at a meeting at the PDC when Microsoft announced .NET. That 
conversation put into motion what has become a substantial series of books on 
.NET technology, in which this volume is the second. We would also like to 
thank Jill Harry at Prentice Hall for her ongoing support with this ambitious book 
project. 

Several people at Microsoft reviewed parts of the book: Steven Pratschner, Jim 
Hogg, Michael Pizzo, Michael Day, Krzysztof Cwalina, Keith Ballinger, and Eric 
Olsen. We thank them for taking time out from their very tight schedules to 
correct our manuscript. Connie Sullivan and Stacey Giard coordinated technical 
sessions and helped assure our access to resources at Microsoft. 

Moshe Raab took precious time off from his consulting work and provided many 
helpful suggestions. Peter Thorsteinson, an author of another book in our series, 
was a valuable resource for understanding the deployment of .NET applications. 
Will Provost helped clarify several issues related to XML. We also want to thank 
all the other authors in the .NET series, because there is much synergy in a group 
working on parallel books, even if in the heat of writing we did not always 
collaborate as closely as we might have. These hardworking people include Eric 
Bell, Howard Feng, Michael Saltzman, Ed Soong, Dana Wyatt, David Zhang, and 
Sam Zhu. 

As always, reviewers should get credit for improving the quality of the work; any 
remaining errors are the responsibility of the authors. 

Robert always has a hard time writing acknowledgments, because there are so 
many people to thank on such a major project. I (Robert) usually thank Michael 
Stiefel, but this time he is my co-author, and so we are on the same side of the 
fence, thanking others. My wife, Marianne, has provided enormous support and 
encouragement for all my writing efforts. This project was especially demanding, 
and so her support is all the more appreciated. Thank you all, and the other 
colleagues, friends, and students—too numerous to mention individually—who 
have helped me over the years. 

Michael would like to thank his wife not only for her understanding of his 
intellectual lack of presence while writing the book (even if he was physically 
present), but also for the associated behaviors, not the least of which was the 
repeated playing of music that one social critic referred to as "Das Lied von der 
Erde and other light classics." Of course I did not follow his other advice about 
how to write a book. 



 

November 23, 2001 



The Integrated .NET Series from Object 
Innovations and Prentice Hall PTR

About this Series 

Robert J. Oberg, Series Editor 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Introduction

The Integrated .NET Book Series from Object Innovations and Prentice Hall PTR 
is a unique series of introductory and intermediate books on Microsoft's important 
.NET technology. These books are based on proven industrial-strength course 
development experience. The authors are expert practitioners, teachers, and 
writers who combine subject-matter expertise with years of experience in 
presenting complex programming technologies such as C++, MFC, OLE, and 
COM/COM+. These books teach in a systematic, step-by-step manner and are not 
merely summaries of the documentation. All the books come with a rich set of 
programming examples, and a thematic case study is woven through several of the 
books. 

From the beginning, these books have been conceived as an integrated whole, and 
not as independent efforts by a diverse group of authors.. The initial set of books 
consists of three introductory books on .NET languages and four intermediate 
books on the .NET Framework. Each book in the series is targeted at a specific 
part of the important .NET technology, as illustrated by the diagram below. 

 



Introductory .NET Language Books

The first set of books teaches several of the important .NET languages. These 
books cover their language from the ground up and have no prerequisite other 
than programming experience in some language. Unlike many .NET language 
books, which are a mixture of the language and topics in the .NET Framework, 
these books are focused on the languages, with attention to important interactions 
between the language and the framework. By concentrating on the languages, 
these books have much more detail and many more practical examples than 
similar books. 

The languages selected are the new language C#, the greatly changed VB.NET, 
and Perl.NET, the open source language ported to the .NET environment. Visual 
C++ .NET is covered in a targeted, intermediate book, and JScript.NET is 
covered in the intermediate level .NET Web-programming book. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Introduction to C# Using .NET

This book provides thorough coverage of the C# language from the ground up. It 
is organized with a specific section covering the parts of C# common to other C-
like languages. This section can be cleanly skipped by programmers with C 
experience or the equivalent, making for a good reading path for a diverse group 
of readers. The book gives thorough attention to the object-oriented aspects of C# 
and thus serves as an excellent book for programmers migrating to C# from 
Visual Basic or COBOL. Its gradual pace and many examples make the book an 
excellent candidate as a college textbook for adventurous professors looking to 
teach C# early in the language's life-cycle. 



Introduction to Programming Visual Basic 
Using .NET

Learn the VB.NET language from the ground up. Like the companion book on 
C#, this book gives thorough attention to the object-oriented aspects of VB.NET. 
Thus the book is excellent for VB programmers migrating to the more 
sophisticated VB.NET, as well as for programmers experienced in languages such 
as COBOL. This book would also be suitable as a college textbook. 



Programming Perl in the .NET Environment

A very important part of the vision behind Microsoft® .NET is that the platform 
is designed from the ground up to support multiple programming languages from 
many sources, and not just Microsoft languages. This book, like other books in 
the series, is rooted in long experience in industrial teaching. It covers the Perl 
language from the ground up. Although oriented toward the ActiveState Perl.NET 
compiler, the book also provides excellent coverage of the Perl language suitable 
for other versions as well. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Intermediate .NET Framework Books

The second set of books is focused on topics in the .NET Framework, rather than 
on programming languages. Three parallel books cover the .NET Framework 
using the important languages C#, VB.NET, and Visual C++. The C# and 
VB.NET books include self-contained introductions to the languages suitable for 
experienced programmers, allowing them to rapidly come up to speed on these 
languages without having to plow through the introductory books. The fourth 
book covers the important topic of web programming in .NET, with substantial 
coverage of XML, which is so important in the .NET Framework. 

The design of the series makes these intermediate books much more suitable to a 
wider audience than many similar books. The introductory books focus on 
languages frees up the intermediate books to cover the important topics of the 
.NET Framework in greater depth. The series design also makes for flexible 
reading paths. Less experienced readers can read the introductory language books 
followed by the intermediate framework books, while more experienced readers 
can go directly to the intermediate framework books. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Application Development Using C# and .NET

This book does not require prior experience in C#. However, the reader should 
have experience in some object-oriented language such as C++ or Java™. The 
book could also be read by seasoned Visual Basic programmers who have 
experience working with objects and components in VB. Seasoned programmers 
and also a less experienced reader coming from the introductory C# book can 
skip the first few chapters on C# and proceed directly to a study of the 
Framework. The book is practical, with many examples and a major case study. 
The goal is to equip the reader with the knowledge necessary to begin building 
significant applications using the .NET Framework. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Application Development Using Visual Basic 
.NET

This book is for the experienced VB programmer who wishes to learn the new 
VB.NET version of VB quickly and then move on to learning the .NET 
Framework. It is also suitable for experienced enterprise programmers in other 
languages who wish to learn the powerful RAD-oriented Visual Basic language 
in its .NET incarnation and go on to building applications. Like the companion 
C# book, this book is very practical, with many examples, and includes the same 
case study implemented in VB.NET. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


.NET Architecture and Programming Using 
Visual C++

This parallel book is for the experienced Visual C++ programmer who wishes to 
learn the .NET Framework to build high-performing applications. Unlike the C# 
and VB.NET book, there is no coverage of the C++ language itself, because C++ 
is too complex to cover in a brief space. This book is specifically for experienced 
C++ programmers. Like the companion C# and VB.NET books, this book is very 
practical, with many examples, and includes the same case study implemented in 
Visual C++. 



Fundamentals of Web Applications Using .NET 
and XML

The final book in the series provides thorough coverage of building Web 
applications using .NET. Unlike other books about ASP.NET, this book gives 
attention to the whole process of Web application development. The book 
incorporates a review tutorial on classical Web programming, making the book 
accessible to the experienced programmer new to the Web world. The book 
contains significant coverage on ASP.NET, Web Forms, Web Services, SOAP, 
and XML. 



Chapter 1. What Is Microsoft .NET?
.NET is Microsoft's vision of applications in the Internet age. .NET provides 
enhanced interoperability features based upon open Internet standards. .NET 
improves the robustness of classic Windows applications. .NET offers developers 
a new programming platform and superb tools, with XML playing a fundamental 
role. 

Microsoft .NET is a platform built on top of the operating system. Three years in 
the making before the public announcement, .NET represents a major investment 
by Microsoft. .NET has been influenced by other technological advances such as 
XML, Java™, and COM. 

Microsoft .NET provides: 

●     The Common Language Runtime, a robust runtime platform. 
●     Multiple language development, with no language being more preferred 

over any other. 
●     The .NET Framework, an extensible programming model, which provides 

a very large class library of reusable code available to any .NET language. 
●     Support for a networking infrastructure built on top of Internet standards 

that allows a high level of communication among applications. 
●     Support for the new industry standard of Web Services. Web Services 

represent a new mechanism of application delivery that extends the idea of 
component-based development to the Internet. 

●     ASP.NET, which allows you to use standard programming practices to 
develop Web applications. 

●     A Deployment model that allows for versioning and the end of "DLL 
Hell." 

●     A Security model that is easy for programmers to use in their programs. 
●     An interoperability mechanism that enables .NET programs to access 

legacy code, including COM components. 
●     Powerful development tools. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Microsoft and the Web

The World Wide Web has been a big catch-up challenge to Microsoft. Actually 
the Web coexists quite well with Microsoft's traditional strength, the PC. Through 
a PC application, the browser, a user gains access to a whole world of 
information. 

The Web relies on standards such as HTML, HTTP, and XML, which are 
essential for communication among diverse users on a wide variety of computer 
systems and devices. 

While complex, the Windows PC is quite standardized. While the Web is based 
on standard protocols, there is a Tower of Babel of multiple languages, databases, 
development environments, and devices running on top of those protocols. This 
exploding complexity of technology exacerbates a growing shortage of 
knowledge workers who can build the needed systems using the new 
technologies. .NET provides the infrastructure so that programmers can 
concentrate on adding value in their applications without having to reinvent 
solutions to common programming problems. 

Applications in the Internet Age

Originally the Web was a vast information repository. Browsers would make 
requests for pages of existing information, and Web servers would deliver this 
information as static HTML pages. Even when interactive Web applications were 
introduced, HTML, which combines information with the details of how it is 
formatted for viewing, was still used. 

XML provides a standard way of transmitting data independent of its formatting. 
XML can thus provide ways for companies to agree on standards for documents 
and information flows, such as purchase orders and invoices. E-commerce can 
then be automated among cooperating companies (B-to-B). XML, however, only 
describes the data; it does not supply the actions to be performed on that data. For 
that we need Web Services. 

Web Services

One of the most important aspects of .NET is the support for Web Services. 
Based on the industry standard SOAP protocol, Web Services allow you to 
expose your applications' functionality across the Internet. From the perspective 
of a .NET programmer, a Web Service is no different from any other kind of 
service implemented by a class in a .NET language. The programming model is 
the same for calling a function within an application, in a separate component on 



the same machine, or as a Web Service on a different machine. 

This inherent simplicity will make it very easy for companies to create and host 
applications. If desired, a whole application could be completely outsourced, 
removing issues of development, deployment, and maintenance. Or you could use 
third-party Web Services that did not exist when you designed your application. 

ASP.NET

.NET includes a totally redone version of the popular Active Server Pages 
technology, known as ASP.NET. Whereas ASP relied on interpreted script code 
in languages with limited capabilities interspersed with page-formatting 
commands, ASP.NET code can be written in any NET language, including C#, 
VB.NET, JScript, and C++ with managed extensions. Since this is compiled 
code, you can separate your interface code from your business logic in a separate 
"code behind" file. Although C#, VB.NET, and JScript may be left as embedded 
script within the Web page, managed C++ must be placed in a code behind file. 

ASP.NET provides Web forms, which vastly simplifies creating Web user 
interfaces. 

Drag-and-drop in Visual Studio.NET makes it very easy to lay out forms. You 
can add code to form events such as a button click. 

ASP.NET will automatically detect browser capability. For high-end browsers 
code processing can be performed on the client. For low-end browsers the server 
does the processing and generates standard HTML. All this is done transparently 
to the developer by ASP.NET. 

The combination of Web Services and compiled full-blown languages such as C#, 
VB.NET, and managed C++, allows Web programming to follow an object-
oriented programming model, which had not been possible with ASP scripting 
languages and COM components. 

Open Standards and Interoperability

The modern computing environment contains a vast variety of hardware and 
software systems. Computers range from mainframes and high-end servers to 
workstations and PCs and to small mobile devices such as PDAs and cell phones. 
Operating systems include traditional mainframe systems, many flavors of UNIX, 
Linux, several versions of Windows, real-time systems, and special systems such 
as PalmOs for mobile devices. Many different languages, databases, application 
development tools, and middleware products are used. 



In the modern environment, few applications are an island unto themselves. Even 
shrink-wrapped applications deployed on a single PC may use the Internet for 
registration and updates. The key to interoperability among applications is the use 
of standards. Since applications typically run over a network, a key standard is 
the communications protocol used. 

Communications Protocols

TCP/IP sockets is highly standard and widely available. Too much detail, 
however, has to be mastered, for programmers to be productive in writing robust 
distributed applications. Somewhat higher is the remote procedure call (RPC), but 
RPC is still very complex, and there are many flavors of RPC. Popular are higher 
level protocols, such as CORBA, RMI, and DCOM. These are still complex, and 
require special environments at both ends. These protocols suffer other 
disadvantages, such as difficulty in going across firewalls. 

One communication protocol has become ubiquitous: HTTP. For this reason, 
Microsoft, IBM, and other vendors have introduced a new protocol called SOAP 
(Simple Object Access Protocol). SOAP uses text-based XML to encode object 
method requests and the accompanying data. The great virtue of SOAP is its 
simplicity, leading to ease of implementation on multiple devices. While SOAP 
can run on top of any protocol, its ability to run on top of standard Internet 
protocols, such as HTTP, allows it to pass through firewalls without any 
connectivity problems. 



Windows on the Desktop

Microsoft began with the desktop. The modern Windows environment has 
become ubiquitous. Countless applications are available, and most computer 
users are at least somewhat at home with Windows. While Microsoft has made 
much progress in modernizing Windows, there are still significant problems. 

Problems with Windows

Maintaining a Windows PC is a chore, because applications are quite complex. 
They consist of many files, registry entries, shortcuts, and so on. Different 
applications can share certain DLLs, and installing a new application can 
overwrite a DLL an existing application depends on, possibly breaking an old 
application ("DLL Hell"). Removing an application is a complex operation and is 
often imperfectly done. 

A PC can gradually become less stable, sometimes requiring the drastic cure of 
reformatting the hard disk and starting from scratch. While there is tremendous 
economic benefit to using PCs, because standard applications are inexpensive and 
powerful and the hardware is cheap, the savings are reduced by the cost of 
maintenance. 

Windows was originally developed when personal computers were not connected 
over a network and security was not an issue. While security was built into 
Windows NT and Windows 2000, the programming model is difficult to use. 
(Pop quiz: Did you ever pass anything but NULL to a Win32 
LPSECURITY_ATTRIBUTES argument?) 

The Glass House and Thin Clients

The old "glass house" model of a central computer that controls all applications 
has had an appeal, and there has been a desire to move toward "thin clients" of 
some sort. But the much heralded "network PC" never really caught on. There is 
too much of value in standard PC applications. Users like the idea of their "own" 
PC, with their data stored safely and conveniently on their local computer. 
Without broadband connectivity a server-based application such as word 
processing would not perform very well. Security is also a very difficult issue to 
solve with thin clients. The personal computer is undoubtedly here to stay. 

A Robust Windows

With all the hype about .NET and the Internet, it is important to realize that .NET 
has changed the programming model to allow the creation of much more robust 



Windows applications. Applications no longer rely on storing extensive 
configuration data in the fragile Windows Registry. .NET applications are self-
describing, containing metadata within the program executable files themselves. 
Different versions of an application or component can be deployed side-by-side. 
Applications can share components through the Global Assembly Cache. 
Versioning is built into the deployment model. A straightforward security model 
is part of .NET. Windows Forms technology is a new paradigm for building 
Windows GUI applications. 



A New Programming Platform

Let us look at what we have just discussed from the point of view of .NET as a 
new programming platform: 

●     Code can be validated to prevent unauthorized actions. 
●     It is much easier to program than the Win32 API or COM. 
●     All or parts of the platform can be implemented on many different kinds of 

computers (as has been done with Java). 
●     All the languages use one class library. 
●     Languages can interoperate with each other. 

There are several important features to the .NET platform: 

●     .NET Framework 
●     Common Language Runtime 
●     Multiple language development 
●     Development tools 

.NET Framework

Modern programming relies heavily on reusable code provided in libraries. 
Object-oriented languages facilitate the creation of class libraries, which are 
flexible, have a good degree of abstraction, and are extensible by adding new 
classes and basing new classes on existing ones, "inheriting" existing 
functionality. 

The .NET Framework provides over 2500 classes of reusable code, which can be 
called by all the .NET languages. The .NET Framework is extensible, and new 
classes can inherit from existing classes, even those implemented in a different 
language. 

Examples of classes in the .NET Framework include Windows programming, 
Web programming, database programming, XML, and interoperability with COM 
and Win32. The .NET Framework is discussed in the next chapter and throughout 
the rest of the book. 

Common Language Runtime

A runtime provides services to executing programs. Traditionally there are 
different runtimes for different programming environments. Examples of 
runtimes include the standard C library, MFC, the Visual Basic runtime, and the 
Java Virtual Machine. The runtime environment provided by .NET is called the 



Common Language Runtime or CLR. 

Managed Code and Data

The CLR provides a set of services to .NET code (including the .NET 
Framework, which sits on top of the CLR). In order to make use of these services, 
.NET code has to behave in a predictable fashion, and the CLR has to understand 
the .NET code. For example, to do runtime checking of array boundaries, all 
.NET arrays have identical layout. NET code can also be restricted by type safety 
requirements. 

As we will discuss in the next chapter, the restrictions on .NET code are defined 
in the Common Type System (CTS) and its implementation in the Microsoft 
Intermediate Language (MSIL or IL). The Common Type System defines the 
types and operations that are allowed in code running under the CLR. For 
example, it is the CTS that restricts types to using single implementation 
inheritance. MSIL code is compiled into the native code of the platform. 

.NET applications contain metadata, or descriptions of the code and data in the 
application. Metadata allows the CLR, for example, to automatically serialize 
data into a storage. 

Code that can use the services of the Common Language Runtime is called 
managed code. 

Managed data is allocated and deallocated automatically. This automatic 
deallocation is called garbage collection. Garbage collection reduces memory 
leaks and similar problems. 

Microsoft and ECMA
Microsoft has submitted specifications for the C# programming 
language and core parts of the .NET Framework to the European 
Computer Manufacturers Association (ECMA) for standardization. The 
ECMA specification defines the platform-independent Common 
Language Infrastructure (CLI). The CLR can be thought of as the CLI 
plus the Base Class Libraries (BCL). The BCL has support for the 
fundamental types of the CTS such as file I/O, strings, and formatting. 
Since the CLR is platform dependent, it makes use of the process and 
memory management models of the underlying operating system. 

The ECMA specification defines the Common Intermediate Language 
(CIL). The ECMA specification allows for CIL to be compiled into 
native code or interpreted. 



Verifiable Code

Managed code can be checked for type safety. Type safe code cannot be 
subverted. For example, a buffer overwrite cannot corrupt other data structures or 
programs. You can only enter and leave methods at fixed points, you cannot 
calculate a memory address and start executing code at an arbitrary point. 
Security policy can be applied to type safe code. For example, access to certain 
files or user interface features can be allowed or denied. You can prevent the 
execution of code from unknown sources. 

Not all code that makes use of the facilities of the CLR is necessarily type safe. 
The canonical example is managed C++. Managed C++ code can make use of 
CLR facilities such as garbage collection, but cannot be guaranteed to be type 
safe. 

Multiple Language Development

As its name suggests, the CLR supports many programming languages. A 
"managed code" compiler must be implemented for each language. Microsoft 
itself has implemented compilers for managed C++, Visual Basic.NET, Jscript, 
and the new language C#. Well over a dozen other languages are being 
implemented by third parties, among them COBOL by Fujitsu and Perl by 
ActiveState. To accommodate the use or creation of .NET data types, however, 
new syntax often has to be introduced. Nonetheless, programmers do not need to 
be retrained in a completely new language in order to gain the benefits of .NET. 
Legacy code can be accessed through the interoperability mechanism. 

Development Tools

A practical key to success in software development is a set of effective tools. 
Microsoft has long provided great tools, including Visual C++ and Visual Basic. 
With .NET they have combined their development tools into a single integrated 
environment called Visual Studio.NET. 

●     VS.NET provides a very high degree of functionality for creating 
applications in all the languages supported by .NET. 

●     You can do multiple language programming, debugging, and so on. 
●     VS.NET has many kinds of designers for forms, databases, and other 

software elements. 

As with the languages themselves, third parties can provide extensions to Visual 
Studio.NET, creating a seamless development environment for their language that 
interoperates with the other .NET language. The tool set includes extensive 



support for building Web applications and Web Services. There is also great 
support for database application development. 

The Importance of Tools

The importance of tools should not be underestimated. Ada, a very powerful 
programming language, never achieved widespread use. While part of the initial 
vision was to create a standard Ada Programming Support Environment (APSE), 
most of the attention was paid to specifying the language, not the APSE. 
Consequently, Ada never did develop any development environment comparable 
to that of Visual Studio, Smalltalk, or some of the Java IDEs. 

Visual Studio.NET will be highly tuned for productivity, and much training will 
be available. Microsoft has far more resources to throw at Visual Studio.NET 
than do smaller vendors in the highly fragmented tools market. Java is highly 
standardized in the language and API, but tools, which are required for 
productivity, are not standard. 



The Role of XML

XML is ubiquitous in .NET and is highly important in Microsoft's overall vision. 
Some uses of XML in .NET include: 

●     XML can be used to model data in coordination with ADO.NET datasets. 
●     XML is used in configuration files. 
●     XML documentation can be automatically generated by some .NET 

languages. 
●     XML is used for encoding requests and responses in Web Services. 
●     XML is used to describe and transmit data in Web Services. 

Success Factors for Web Services

The ultimate success of Microsoft's Internet vision depends on two external 
factors: the infrastructure of the Internet and the success of the proposed Web 
Services business model. The widespread use of Web Services depends on having 
high bandwidth widely available. This capability will probably indeed materialize 
within the next several years. The prospect for the business model remains to be 
seen. 

It is important to understand that the overall .NET technology includes far more 
than the widely hyped Internet part. The more robust Windows platform and the 
very powerful .NET Framework and tools will be enduring features. 



Summary

Microsoft .NET is a new platform built on top of the operating system. It provides 
many capabilities for building and deploying both standard applications and new 
Web-based ones. Web Services allow applications to expose functionality across 
the Internet, typically using the SOAP protocol. SOAP supports a high degree of 
interoperability, since it is based on widely adopted standards such as HTTP and 
XML. 

NET uses managed code running on the Common Language Runtime that 
employs the Common Type System. The .NET Framework is a very large class 
library available consistently across many languages. XML plays a fundamental 
role in .NET. All this functionality can be used to build more robust Windows 
applications as well as Internet applications. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Chapter 2. .NET Fundamentals
What kind of problems is .NET designed to solve? .NET solves problems that 
have plagued programmers in the past. .NET helps programmers develop the 
applications of the future. This chapter is designed to present an overview of 
Microsoft .NET by looking at a simple program rather than talking in vague 
generalities. While we will start discussing Microsoft .NET in detail in Chapter 6, 
this chapter will enable you to get a feel for the big picture right away. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Problems of Windows Development

Imagine a symphony orchestra where the violins and the percussion sections had 
different versions of the score. It would require a heroic effort to play the simplest 
musical composition. This is the life of the Windows developer. Do I use MFC? 
Visual Basic or C++? ODBC or OLEDB? COM interface or C style API? Even 
within COM: do I use IDispatch, dual, or pure vtable interfaces? Where does the 
Internet fit into all of this? Either the design had to be contorted by the 
implementation technologies that the developers understood, or the developers 
had to learn yet another technological approach that was bound to change in 
about two years. 

Deployment of applications can be a chore. Critical entries have to be made in a 
Registry that is fragile and difficult to back up. There is no good versioning 
strategy for components. New releases can break existing programs often with no 
information about what went wrong. Given the problems with the Registry, other 
technologies used other configuration stores such as a metabase or SQL Server. 

Security in Win32 is another problem. It is difficult to understand and difficult to 
use. Many developers ignored it. Developers who needed to apply security often 
did the best they could with a difficult programming model. The rise of Internet-
based security threats transforms a bad situation into a potential nightmare. 

Despite Microsoft's efforts to make development easier problems remained. 
Many system services had to be written from scratch, essentially providing the 
plumbing code that had nothing to do with your business logic. MTS/COM+ was 
a giant step in the direction of providing higher level services, but it required yet 
another development paradigm. COM made real component programming 
possible. Nonetheless, you either did it simply, but inflexibly in Visual Basic, or 
powerfully, but with great difficulty in C++, because of all the repetitive 
plumbing code you had to write in C++. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Applications of the Future

Even if .NET fixed all the problems of the past, it would not be enough. One of 
the unchanging facts of programming life is that the boundaries of customer 
demand are always being expanded. 

The growth of the Internet has made it imperative that applications work 
seamlessly across network connections. Components have to be able to expose 
their functionality to other machines. Programmers do not want to write the 
underlying plumbing code, they want to solve their customers' problems. 



.NET Overview

The Magic of Metadata

To solve all these problems .NET must provide an underlying set of services that is 
available to all languages at all times. It also has to understand enough about an 
application to be able to provide these services. 

Serialization provides a simple example. Every programmer at some time or another has 
to write code to save data. Why should every programmer have to reinvent the wheel of 
how to persist nested objects and complicated data structures? Why should every 
programmer have to figure out how to do this for a variety of data stores? .NET can do 
this for the programmer. Programmers can also decide to do it themselves if required. 

To see how this is done, look at the Serialize sample associated with this chapter. For 
the moment ignore the programming details of C# which will be covered in the next 
three chapters, and focus on the concepts. 

[Serializable] class Customer 
{ 
  public string name; 
  public long id; 
} 
class Test 
{ 
  static void Main(string[] args) 
  { 
    ArrayList list = new ArrayList(); 

    Customer cust = new Customer(); 
    cust.name = "Charles Darwin"; 
    cust.id = 10; 
    list.Add(cust); 

    cust = new Customer(); 
    cust.name = "Isaac Newton"; 
    cust.id = 20; 
    list.Add(cust); 

    foreach (Customer x in list) 
      Console.WriteLine(x.name + ": " + x.id); 

    Console.WriteLine("Saving Customer List"); 
    FileStream s = new FileStream("cust.txt", 



             FileMode.Create); 
    SoapFormatter f = new SoapFormatter(); 
    f.Serialize(s, list); 
    s.Close(); 

    Console.WriteLine("Restoring to New List"); 
    s = new FileStream("cust.txt", FileMode.Open); 
    f = new SoapFormatter(); 
    ArrayList list2 = (ArrayList)f.Deserialize(s); 
    s.Close(); 

    foreach (Customer y in list2) 
      Console.WriteLine(y.name + ": " + y.id); 
  } 
} 

We have defined a Customer class with two fields: a name and an id. The program 
first creates an instance of a collection class that will be used to hold instances of the 
Customer class. We add two Customer objects to the collection and then print out the 
contents of the collection. The collection is then saved to disk. It is restored to a new 
collection instance and printed out. The results printed out will be identical to those 
printed out before the collection was saved. [1] 

[1] The sample installation should have already built an instance that you can 
run. If not, double-click on the Visual Studio.NET solution file that has the .sln 
suffix. When Visual Studio comes up, hit Control-F5 to build and run the 
sample.

We wrote no code to indicate how the fields of the customer object are saved or 
restored. We did have to specify the format (SOAP) and create the medium to which the 
data was saved. The .NET Framework classes are partitioned so that where you 
load/save, the format you use to load/save, and how you load/save can be chosen 
independently. This kind of partitioning exists throughout the .NET Framework. 

The Customer class was annotated with the Serializable attribute in the same way the 
public attribute annotates the name field. If you do not want your objects to be 
serializable, do not apply the attribute to your class. If an attempt is then made to save 
your object, an exception will be thrown and the program will fail. [2] 

[2] Comment out the Serializable attribute in the program (you can use the 
C/C++/* */ comment syntax) and see what happens.

Attribute-based programming is used extensively throughout .NET to describe how the 
Framework should treat code and data. With attributes you do not have to write any 
code; the Framework takes the appropriate action based on the attribute. Security can be 



set through attributes. You can use attributes to have the Framework handle 
multithreading synchronization. Remoting of objects becomes straightforward through 
the use of attributes. 

The compiler adds this Serializable attribute to the metadata of the Customer class to 
indicate that the Framework should save and restore the object. Metadata is additional 
information about the code and data within a .NET application. Metadata, a feature of 
the Common Language Runtime, provides such information about the code as: 

●     Version and locale information 
●     All the types 
●     Details about each type, including name, visibility, and so on 
●     Details about the members of each type, such as methods, the signatures of 

methods, and the like 
●     Attributes 

Since metadata is stored in a programming-language-independent fashion with the code, 
not in a central store such as the Windows Registry, it makes .NET applications self-
describing. The metadata can be queried at runtime to get information about the code 
(such as the presence or absence of the Serializable attribute). You can extend the 
metadata by providing your own custom attributes. 

In our example, the Framework can query the metadata to discover the structure of the 
Customer object in order to be able to save and restore it. 

Types

Types are at the heart of the programming model for the CLR. A type is 
analogous to a class in most object-oriented programming languages, 
providing an abstraction of data and behavior, grouped together. A type in the 
CLR contains: 

Fields (data members)

Methods 

Properties 

Events 

There are also built-in primitive types, such as integer and floating point numeric types, 
string, etc. We will discuss types under the guise of classes and value types when we 
cover C#. 



.NET Framework Class Library

The Formatter and FileStream classes are just two of more than 2500 classes in the 
.NET Framework that provide plumbing and system services for .NET applications. 
Some of the functionality provided by the .NET Framework includes: 

●     Base class library (basic functionality such as strings, arrays, and formatting) 
●     Networking 
●     Security 
●     Remoting 
●     Diagnostics 
●     I/O 
●     Database 
●     XML 
●     Web services that allow us to expose component interfaces over the Internet 
●     Web programming 
●     Windows User Interface 

Interface-Based Programming

Suppose you want to encrypt your data and therefore do not want to rely on the 
Framework's serialization. Your class can inherit from the ISerializable interface and 
provide the appropriate implementation. (We will discuss how to do this in a later 
chapter.) The Framework will then use your methods to save and restore the data. 

How does the Framework know that you implemented the ISerializable interface? It 
can query the metadata related to the class to see if it implements the interface! The 
Framework can then use either its own algorithm or the class's code to serialize or 
deserialize the object. 

Interface-based programming is used in .NET to allow your objects to provide 
implementations to standard functionality that can be used by the Framework. 
Interfaces also allow you to program using methods on the interface rather than 
methods on the objects. You can program without having to know the exact type of the 
object. For example, the formatters (such as the SOAP formatter used here) implement 
the IFormatter interface. Programs can be written using the IFormatter interface and 
thus are independent of any particular current (binary, SOAP) or future formatter and 
still work properly. 

Everything Is an Object

So if a type has metadata, the runtime can do all kinds of wonderful things. But does 
everything in .NET have metadata? Yes! Every type, whether it is user defined (such as 
Customer) or part of the Framework (such as FileStream), is a .NET object. All .NET 



objects have the same base class, the system's Object class. Hence everything that runs 
in .NET has a type and therefore has metadata. 

In our example, the serialization code can walk through the ArrayList of customer 
objects and save each one as well as the array it belongs to, because the metadata allows 
it to understand the object's type and its logical structure. 

Common Type System

The .NET Framework has to make some assumptions about the nature of the types that 
will be passed to it. These assumptions are the Common Type System (CTS). The CTS 
defines the rules for the types and operations that the Common Language Runtime will 
support. It is the CTS that limits .NET classes to single implementation inheritance. 
Since the CTS is defined for a wide range of languages, not all languages need to 
support all features of the CTS. 

The CTS makes it possible to guarantee type safety, which is critical for writing reliable 
and secure code. As we noted in the previous section, every object has a type and 
therefore every reference to an object points to a defined memory layout. If arbitrary 
pointer operations are not allowed, the only way to access an object is through its public 
methods and fields. Hence it's possible to verify an object's safety by analyzing the 
object. There is no need to know or analyze all the users of a class. 

How are the rules of the CTS enforced? The Microsoft Intermediate Language (MSIL 
or IL) defines an instruction set that is used by all .NET compilers. This intermediate 
language is platform independent. The MSIL code can later be converted to a platform's 
native code. Verification for type safety can be done once based on the MSIL; it need 
not be done for every platform. Since everything is defined in terms of MSIL, we can 
be sure that the .NET Framework classes will work with all .NET languages. Design no 
longer dictates language choice; language choice no longer constrains design. 

MSIL and the CTS make it possible for multiple languages to use the .NET Framework 
since their compilers produce MSIL. This one of the most visible differences between 
.NET and Java, which in fact share a great deal in philosophy. 

ILDASM

The Microsoft Intermediate Language Disassembler (ILDASM) can display the 
metadata and MSIL instructions associated with .NET code. It is a very useful tool both 
for debugging and for increasing your understanding of the .NET infrastructure. You 
can use ILDASM to examine the .NET Framework code itself. [3] Figure 2-1 shows a 
fragment of the MSIL code from the Serialize example, where we create two new 
customer objects and add them to the list. [4] The newobj instruction creates a new 
object reference using the constructor parameter. [5] Stloc stores the value in a local 



variable. Ldloc loads a local variable. [6] It is strongly recommended that you play with 
ILDASM and learn its features. 

[3] ILDASM is installed on the Tools menu in Visual Studio.NET. It is also 
found in the Microsoft.NET\FrameworkSDK\Bin subdirectory. You can invoke 
it by double-clicking on its Explorer entry or from the command line. If you 
invoke it from the command line (or from VS.NET) you can use the /ADV 
switch to get some advanced options.

[4] Open Serialize.exe and Click on the plus (+) sign next to Test. Double-click 
on Main to bring up the MSIL for the Main routine.

[5] Technically it is not a parameter. IL is a stack-based language, and the 
constructor is a metadata token previously pushed on the stack.

[6] You can read all about MSIL in the ECMA documents, specifically the 
Partition III CIL Instruction Set.

Figure 2-1. Code fragment from Serialize example.

 

Language Interoperability

Having all language compilers use a common intermediate language and common base 
class make it possible for languages to interoperate. But since all languages need not 
implement all parts of the CTS, it is certainly possible for one language to have a 
feature that another does not. 



The Common Language Specification (CLS) defines a subset of the CTS representing 
the basic functionality that all .NET languages should implement if they are to 
interoperate with each other. This specification enables a class written in Visual 
Basic.NET to inherit from a class written in COBOL.NET or C#, or to make 
interlanguage debugging possible. An example of a CLS rule is that method calls need 
not support a variable number of arguments, even though such a construct can be 
expressed in MSIL. 

CLS compliance applies only to publicly visible features. A class, for example, can 
have a private member that is non-CLS compliant and still be a base class for a class in 
another .NET language. For example, C# code should not define public and protected 
class names that differ only by case-sensitivity, since languages such as VB.NET are 
not case-sensitive. Private fields could have case-sensitive names. 

Microsoft itself is providing several CLS-compliant languages: C#, Visual Basic.NET, 
and C++ with Managed Extensions. Third parties are providing additional languages 
(there are over a dozen so far). ActiveState is implementing Perl and Python. Fujitsu is 
implementing COBOL. 

Managed Code

In the serialization example a second instance of the Customer object was assigned to 
the same variable (cust) as the first instance without freeing it. None of the allocated 
storage in the example was ever deallocated. .NET uses automatic garbage collection to 
reclaim memory. When memory allocated on the heap becomes orphaned, or passes out 
of scope, it is placed on a list of memory locations to be freed. Periodically, the system 
runs a garbage collection thread that returns the memory to the heap. 

By having automatic memory management the system has eliminated memory leakage, 
which is one of the most common programming errors. In most cases, memory 
allocation is much faster with garbage collection than with classic heap allocation 
schemes. Note that variables such as cust and list are object references, not the objects 
themselves. This makes the garbage collection possible. 

Garbage collection is one of several services provided by the Common Language 
Runtime (CLR) to .NET programs. [7] Data that is under the control of the CLR garbage 
collection process is called managed data. Managed code is code that can use the 
services of the CLR. .NET compilers that produce MSIL can produce managed code. 

[7] Technically, metadata, the CTS, the CLS, and the Virtual Execution System 
(VES) are also part of the CLR. We are using CLR here in the sense that it is 
commonly used. The VES loads and runs .NET programs and supports late 
binding. For more details refer to the Common Language Infrastructure (CLI) 
Partition I: Concepts and Architecture document submitted to ECMA. This 
document is loaded with the .NET Framework SDK.



Managed code is not automatically type safe. C++ provides the classic example. You 
can use the __gc attribute to make a class garbage collected. The C++ compiler will 
prevent such classes from using pointer arithmetic. Nonetheless, C++ cannot be reliably 
verified. [8] 

[8] The most immediate reason for this is that the C Runtime Library (CRT) 
that is the start-up code for C++ programs was not converted to run under 
.NET because of time constraints. Even if this were to be done, however, 
there are two other obstacles to verifying C++ code. First, to ensure that the 
verification process can complete in a reasonable amount of time, the CLR 
language specifications require certain IL language patterns to be used and 
the managed C++ compiler would have to be changed to accommodate this. 
Second, after disallowing the C++ constructs that inhibit verification (like 
taking the address of a variable on the stack, or pointer arithmetic), you would 
wind up with a close approximation to the C# language.

Code is typically verified for type safety before compilation. This step is optional and 
can be skipped for trusted code. One of the most significant differences between 
verified and unverified code is that verified code cannot use pointers. [9] Code that used 
pointers could subvert the Common Type System and access any memory location. 

[9] It would not be correct to say that code written in MSIL is managed code. 
The CTS permits MSIL to have unmanaged pointers in order to work with 
unmanaged data in legacy code. The reverse is not true; unmanaged code 
cannot access managed data. The CLS prohibits unmanaged pointers.

Type safe code cannot be subverted. A buffer overwrite is not able to corrupt other data 
structures or programs. Methods can only start and end at well-defined entry and exit 
points. Security policy can be applied to type safe code. [10] For example, access to 
certain files or user interface features can be allowed or denied. You can prevent the 
execution of code from unknown sources. You can prevent access to unmanaged code 
to prevent subversion of .NET security. Type safety also allows paths of execution of 
.NET code to be isolated from one another. [11] 

[10] This is discussed in more detail in Chapter 12.

[11] See the discussion of Application Domains in Chapter 8.

Assemblies

Another function of the CLR is to load and run .NET programs. 

.NET programs are deployed as assemblies. An assembly is one or more EXEs or DLLs 
with associated metadata information. The metadata about the entire assembly is stored 
in the assembly's manifest. The manifest contains, for example, a list of the assemblies 



upon which this assembly is dependent. 

In our Serialize example there is only file in the assembly, serialize.exe. That file 
contains the metadata as well as the code. Since the manifest is stored in the assembly 
and not in a separate file (like a type library or registry), the manifest cannot get out of 
sync with the assembly. Figure 2-2 shows the metadata in the manifest for this example. 
[12] Note the assembly extern statements that indicate the dependencies on the 
Framework assemblies mscorlib and System.Runtime.Formatters.SOAP. These 
statements also indicate the version of those assemblies that serialize.exe depends on. 

[12] Open serialize.exe in ILDASM and double-click on the MANIFEST item.

Figure 2-2. Manifest for the Serialize assembly.

 

Assemblies can be versioned, and the version is part of the name for the assembly. To 
version an assembly it needs a unique name. Public/private encryption keys are used to 
generate a unique (or strong) name. 

Assemblies can be deployed either privately or publicly. For private deployment all the 
assemblies that an application needs are copied to the same directory as the application. 
If an assembly is to be publicly shared, an entry is made in the Global Assembly Cache 
(GAC) so that other assemblies can locate it. For assemblies put in the GAC a strong 
name is required. Since the version is part of the assembly name, multiple versions can 



be deployed side by side on the same machine without interfering with each other. 
Whether you use public or private deployment there is no more "DLL Hell." [13] 

[13] This is discussed in much more detail in Chapter 7.

Assembly deployment with language interoperability makes component development 
almost effortless. 

JIT Compilation

Before executing on the target machine, MSIL has to be translated into the machine's 
native code. This can either be done before the application is called, or at runtime. At 
runtime, the translation is done by a just-in-time (JIT) compiler. The Native Image 
Generator (Ngen.exe) translates MSIL into native code so that it is already translated 
when the program is started. 

The advantage of pretranslation is that optimizations can be performed. Optimizations 
are generally impractical with JIT because the time it takes to do the optimization can 
be longer than it takes to compile the code. Start-up time is also faster with 
pretranslation because no translation has to be done when the application starts. 

The advantage of JIT is that it knows what the execution environment is when the 
program is run and can make better assumptions, such as register assignments, when it 
generates the code. Only the code that is actually executed is translated, code that never 
gets executed is never translated. 

In the first release of .NET, the Native Image Generator and the JIT compiler use the 
same compiler. No optimizations are done for Ngen, its only current advantage is faster 
start-up. For this reason we do not discuss Ngen in this book. 

Performance

You may like the safety and ease-of-use features of managed code but you might be 
concerned about performance. Early assembly language programmers had similar 
concerns when high-level languages came out. 

The CLR is designed with high performance in mind. With JIT compilation, the first 
time a method is encountered, the CLR performs verifications and then compiles the 
method into native code (which will contain safety features, such as array bounds 
checking). The next time the method is encountered, the native code executes directly. 
Memory management is designed for high performance. Allocation is almost 
instantaneous, just taking the next available storage from the managed heap. 
Deallocation is done by the garbage collector, which has an efficient multiple-
generation algorithm. 



You do pay a penalty when security checks have to be made that require a stack walk as 
we will explain in the Security chapter. 

Web pages use compiled code, not interpreted code. As a result ASP.NET is much 
faster than ASP. 

For 98% of the code that programmers write, any small loss in performance is far 
outweighed by the gains in reliability and ease of development. High performance 
server applications might have to use technologies such as ATL Server and C++. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Summary

.NET solves the problems that have plagued Windows development in the past. 
There is one development paradigm for all languages. Design and programming 
language choices are no longer in conflict. Deployment is more rational and 
includes a versioning strategy. While we will talk more about it in later chapters, 
metadata, attribute-based security, code verification, and type-safe assembly 
isolation make developing secure applications much easier. The plumbing code 
for fundamental system services is provided, yet you can extend or replace it if 
you must. 

The Common Language Runtime provides a solid base for developing 
applications of the future. The CLR is the foundation whose elements are the 
Common Type System, metadata, the Common Language Specification, and the 
Virtual Execution System (VES) that executes managed code. [14] As we shall 
see in future chapters, .NET makes it easier to develop Internet applications for 
both service providers and customer-based solutions. With the unified 
development platform .NET provides, it will be much easier than in the past for 
Microsoft or others to provide extensions. 

[14] The Base Class Libraries classes (BCL) are also part of the CLR.

All this is made possible by putting old technologies together in the CLR 
creatively: intermediate languages, type-safe verification, and of course, 
metadata. As you will see, metadata is used in many features in .NET. 

We shall expand on these topics in the course of the book. We next cover the C# 
language. Depending on your knowledge of C#, you might be able to skim 
Chapters 3, 4, and 5. Chapter 4 introduces the Acme Travel Agency case study, 
which is used throughout the book. Chapter 5 covers important topics about the 
interaction of C# and the .NET Framework. 



Chapter 3. C# Overview for Sophisticated 
Programmers
In this chapter we quickly cover the essentials of the C# language, which should 
be quite easy for you to learn if you have experience with C++ or Java. A "hello, 
world" program introduces the basic structure of C# programs. We then cover 
variables, operators, control structures, formatting, methods, and input/output. 
Classes are fundamental in C#, and we examine them in some detail. Besides the 
standard features, C# adds some convenience features, such as properties. We 
cover the essentials of data types in C#, which correspond to types in the 
Common Type System. We discuss the fundamental distinction between value 
and reference types and see how to convert between them using boxing and 
unboxing operations. 

C# has a string type, and the StringBuilder class can be used for dynamically 
changing strings. We examine arrays in C# and some operations provided by the 
System.Array class. We then cover some additional topics concerning methods, 
including parameter passing, variable length parameter lists, method overloading, 
and operator overloading. We discuss exception handling in C# in some detail, 
including the use of user-defined exception classes and structured exception 
handling. 

We conclude the chapter by looking at how you can have "unsafe" sections of C# 
code, which can be used to work with pointers for efficiency or for interoperating 
with legacy code. 



Hello World in C#

Whenever learning a new programming language, a good first step is to write and 
run a simple program that will display a single line of text. Such a program 
demonstrates the basic structure of the language, including output. 

Here is "Hello, World" in C#. (See the Hello directory for this chapter.) 

// Hello.cs 

using System; 

class Hello 
{ 
    public static int Main(string[] args) 
    { 
        Console.WriteLine("Hello, World"); 
        return 0; 

    } 
} 

Compiling and Running (Command Line)

You can learn how to use the Microsoft Visual Studio.NET IDE (integrated 
development environment) in Appendix A. You can also use the command-line 
tools of the .NET Framework SDK. Be sure to get the environment variables set 
up properly, as described in the sidebar. To compile this program at the command 
line, enter the command 

>csc Hello.cs 

An executable file Hello.exe will be generated. To execute your program, type at 
the command line: 

>Hello 

The program will now execute, and you should see displayed the greeting: 

Hello, World 



Setting Environment Variables
In order to run command-line tools such as the C# compiler using a 
simple name such as csc rather than a complete path, we must set certain 
environment variables. To do so we can use a batch file, corvars.bat, 
which can be found in the bin directory of the Framework SDK. 

I experienced different behavior in different beta versions of the .NET 
Framework SDK. In one version the environment variables were set up 
automatically as part of the install, and in another version I had to use 
the corvars.bat file. 

If you have Visual Studio.NET installed, you can ensure that the 
environment variables are set up by starting your command prompt 
session from Start | Programs | Microsoft Visual Studio.NET 7.0 | 
Microsoft Visual Studio Tools | Microsoft Visual Studio.NET 
Command Prompt. 

Program Structure

// Hello.cs 

class Hello 

{ 
... 
} 

Every C# program has at least one class. A class is the foundation of C#'s support 
of object-oriented programming. A class encapsulates data (represented by 
variables) and behavior (represented by methods). All of the code defining the 
class (its variables and methods) will be contained between the curly braces. We 
will discuss classes in detail later. 

Note the comment at the beginning of the program. A line beginning with a 
double slash is present only for documentation purposes and is ignored by the 
compiler. C# files have the extension .cs. 

// Hello.cs 

... 

An alternate form of comment is to use an opening /* and a closing */. 



/* This is a comment 
   that may be continued over 
   several lines */ 

There is a distinguished class, which has a method whose name must be Main. 
The method should be public and static. An int exit code can be returned to the 
operating system. Note that in C# the file name need not be the same as the name 
of the class containing the Main method. 

// Hello.cs 

using System; 

class Hello 
{ 
    public static int Main(string[] args) 
    { 
        ... 
        return 0; 
    } 
} 

Use void if you do not return an exit code. 

public static void Main(string[] args) 

Command-line arguments are passed as an array of strings. The runtime will call 
this Main method—it is the entry point for the program. All the code of the Main 
method will be between the curly braces. 

// Hello.cs 

using System; 

class Hello 
{ 
    public static int Main(string[] args) 
    { 
        Console.WriteLine("Hello, World"); 
        return 0; 
    } 
} 



Every method in C# has one or more statements. A statement is terminated by a 
semicolon. A statement may be spread out over several lines. 

The Console class provides support for standard output and standard input. The 
method WriteLine displays a string, followed by a new line. 

Namespaces

Much standard functionality in C# is provided through many classes in the .NET 
Framework. Related classes are grouped into namespaces. Many useful classes, 
such as Console, are in the System namespace. The fully qualified name of a 
class is specified by the namespace followed by a dot followed by a class name. 

System.Console 

A using statement allows a class to be referred to by its class name alone. 

// Hello.cs 

using System; 

class Hello 
{ 
    public static int Main(string[] args) 
    { 
        Console.WriteLine("Hello, World"); 
        return 0; 
    } 
} 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Performing Calculations in C#

Our "Hello, World" program illustrated the basic structure of a C# program, but we will need a 
slightly more elaborate example to show the use of other basic programming constructs, such as 
variables, expressions, and control structures. Our next example is a simple calculator for an IRA 
account. We calculate the accumulation of deposits to an IRA of $2000.00 a year at 6% interest for 
10 years, assuming that each deposit is made at the end of the year. Our calculation is performed 
two ways: 

●     In a loop, year by year, accumulating a total as we go 
●     Using a formula 

The example program is in the folder Ira\Step1. 

// Ira.cs - Step 1 

using System; 

class Ira 
{ 
   public static int Main(string[] args) 
   { 
      int years = 10; 
      decimal rate = 0.06m; 
      decimal amount = 2000M; 
      decimal interest; 
      decimal total = 0m; 
      Console.WriteLine("{0,4} {1,12} {2,12} {3,12}", 
         "Year", "Amount", "Interest", "Total"); 
      for (int i = 1; i <= years; i++) 
      { 
         interest = total * rate; 
         total += amount + interest; 
         Console.WriteLine( 
            "{0, -4} {1, 12:C} {2, 12:C} {3, 12:C}", 
            i, amount, interest, total); 
      } 
      Console.WriteLine("\nTotal using formula = {0}", 
         IraTotal(years, (double) rate, (double) amount)); 
      return 0; 
   } 
   public static double IraTotal(int years, double rate, 
      double amount) 
   { 
      double total = 
         amount * (Math.Pow(1 + rate, years) - 1) / rate; 
         long total_in_cents = (long) Math.Round(total * 100); 
         total = total_in_cents /100.0; 



      return total; 
   } 
} 

If you compile and run it, you will see this output: 

Year       Amount     Interest        Total 
1       $2,000.00        $0.00    $2,000.00 
2       $2,000.00      $120.00    $4,120.00 
3       $2,000.00      $247.20    $6,367.20 
4       $2,000.00      $382.03    $8,749.23 
5       $2,000.00      $524.95   $11,274.19 
6       $2,000.00      $676.45   $13,950.64 
7       $2,000.00      $837.04   $16,787.68 
8       $2,000.00    $1,007.26   $19,794.94 
9       $2,000.00    $1,187.70   $22,982.63 
10      $2,000.00    $1,378.96   $26,361.59 

Total using formula = 26361.59 

Variables

In C# variables are of a specific data type. Some common types are int for integers and double for 
floating-point numbers. C# has the decimal data type, which has a high degree of precision, 
suitable for monetary calculations. 

You must declare and initialize variables before you can use them. 

int years = 10;    // reserves space and assigns 
                   // an initial value 
decimal interest;  // reserves space but does 
                   // not initialize it to any value 

If an initial value is not specified in the declaration, the variable must be initialized in code before 
it can be used. We will discuss initialization later in the chapter. 

Variables must be either local within a method or members of a class. There are no global variables 
in C#. 

Literals

A literal is used when you explicitly write a value for a variable in a program. An integer literal is 
represented by either an ordinary decimal integer or a hexadecimal integer. A floating-point or 
decimal literal is represented by a number with a decimal point or by exponential notation. You 
may influence the type [1] that is used for storing a literal by a suffix. The suffix f or F indicates 
single precision floating point. The suffix d or D indicates double precision floating point. The 
suffix m or M indicates decimal (think money). 



[1] We discuss C# types, such as float, double, and decimal, later in the chapter.

decimal rate = 0.06m; 
decimal amount = 2000M; 

There are two forms for string literals. Escape sequences are not processed for string literals that 
are prefixed with @. 

string file1 ="c:\\test1.txt"; 
string file2 = @"c:\test2.txt"; 

C# Operators and Expressions

You can combine variables and literals via operators to form expressions. The C# operators are 
similar to those in C and C++, having similar precedence and associativity rules. There are three 
kinds of operators, 

●     Unary operators take one operand and use prefix notation (e.g., --a) or postfix notation (e.g., 
a++). 

●     Binary operators take two operands and use infix notation (e.g., a + b). 
●     The one ternary operator ?: takes three operands and uses infix notation (e.g., expr ? x : y). 

Operators are applied in the precedence order shown in Table 3-1. For operators of the same 
precedence, order is determined by associativity. 

●     The assignment operator is right-associative (operations are performed from right to left). 
●     All other binary operators are left-associative (operations are performed from left to right). 

Precedence and associativity can be controlled by parentheses; what is done first is shown as the 
primary operator (x) in the precedence table. C# has checked and unchecked operators, which will 
be discussed later. 

Table 3-1. Operator Precedence in C#

Category Operators 

Primary (x) x.y f(x) a[x] x++ x- new typeof sizeof 
checked unchecked 

Unary + - ! ~ ++x --x (T)x 

Multiplicative * / % 

Additive + - 

Shift << >> 

Relational < > <= >= is as 

Equality == != 



Logical AND & 

Logical XOR ^ 

Logical OR | 

Conditional AND && 

Conditional OR || 

Conditional ?: 

Assignment = *= /= %= += -= <<= >>= &= ^= |= 

Output and Formatting

The Console class in the System namespace supports two simple methods for performing output: 

●     WriteLine writes out a string followed by a new line. 
●     Write writes out just the string without the new line. 

You can write out other data types by relying on the ToString method of System.Object, which 
will provide a string representation of any data type. We will discuss the root class System.Object 
in Chapter 5, where you will also see how to override ToString for your own custom data type. 
You can use the string concatenation operator + to build up an output string. 

int x = 24; 
int y = 5; 
int z = x * y; 
Console.Write("Product of " + x + " and " + y); 
Console.WriteLine(" is " + z); 

The output is all on one line: 

Product of 24 and 5 is 120 

Placeholders

A more convenient way to build up an output string is to use placeholders {0}, {1}, and so on. An 
equivalent way to do the output shown above is 

Console.WriteLine("Product of {0} and {1} is {2}", x,y,z); 

The program OutputDemo illustrates the output operations just discussed. 

We will generally use placeholders for our output from now on. Placeholders can be combined 
with formatting characters to control output format. 

Format Strings

C# has extensive formatting capabilities, which you can control through placeholders and format 
strings. 



●     Simple placeholders: {n}, where n is 0, 1, 2, . . . , indicating which variable to insert 
●     Control width: {n,w}, where w is width (positive for right-justified and negative for left-

justified) of the inserted variable 
●     Format string: {n:S}, where S is a format string indicating how to display the variable 
●     Width and format string: {n,w:S} 

A format string consists of a format character followed by an optional precision specifier. Table 3-
2 shows the available format characters. 

Table 3-2. C# Format Characters

Format Character Meaning 

C Currency (locale specific) 

D Decimal integer 

E Exponential (scientific) 

F Fixed point 

G General (E or F) 

N Number with embedded commas 

X Hexadecimal 

Sample Formatting Code

The program FormatDemo illustrates formatting. Our sample program Ira\Step1 provides another 
example. The header uses width specifiers, and the output inside the loop uses width specifiers and 
the currency format character. 

... 
Console.WriteLine("{0,4} {1,12} {2,12} {3,12}", 
   "Year", "Amount", "Interest", "Total"); 
for (int i = 1; i <= years; i++) 
{ 
   interest = total * rate; 
   total += amount + interest; 
   Console.WriteLine( 
      "{0, -4} {1, 12:C} {2, 12:C} {3, 12:C}", 
      i, amount, interest, total); 
} 
... 

Control Structures

The preceding code fragment illustrates a for loop. The C# control structures include the familiar 
control structures of the C family of languages, 



●     if 
●     while 
●     do 
●     for 
●     switch 
●     break 
●     continue 
●     return 
●     goto 

These all have standard semantics, except for switch, which is less error-prone in C#. There are 
several other control statements in C#: 

●     There is a foreach loop, which we will discuss later in connection with arrays and 
collections. 

●     The throw statement is used with exceptions. We will discuss exceptions later in this 
chapter. 

●     The lock statement can be used to enforce synchronization in multithreading situations. We 
will discuss multithreading in Chapter 8. 

Switch Statement

In C#, after a particular case statement is executed, control does not automatically continue to the 
next statement. You must explicitly specify the next statement, typically by a break or goto label. 
(As in C and C++, you may call for identical handling of several cases by having empty statements 
for all the case labels except the last one.) In C# you may also switch on a string data type. The 
program SwitchDemo illustrates use of the switch statement in C#. 

... 
switch(scores[i]) 
{ 
   case 1: 
      Console.Write("Very "); 
      goto case 2;       // cannot fall through 
   case 2: 
      Console.WriteLine("Low"); 
     break; 
   case 3: 
      Console.WriteLine("Medium"); 
      break; 
   case 4: 
   case 5: 
      Console.WriteLine("High"); 
      break; 
   default: 
      Console.WriteLine("Special Case"); 
      break; 
} 



... 

Methods

Our Ira\Step1 example program has a method IraTotal for computing the total IRA accumulation 
by use of a formula. In C# every function is a method of some class; there are no freestanding 
functions. If the method does not refer to any instance variables of the class, the method can be 
static. We will discuss instance data of a class later in this chapter. Since the method is accessed 
only from within the class, it is designated as private. 

Note the use of the Pow and Round methods of the Math class, which is another class in the 
System namespace. These methods are static methods. To call a static method from outside the 
class in which it is defined, place the name of the class followed by a period before the method 
name. In C# you cannot employ the alternative C++ style of using an instance name to qualify a 
static method. 

... 
private static double IraTotal(int years, double rate, 
   double amount) 
{ 
   double total = 
      amount * (Math.Pow(1 + rate, years) - 1) / rate; 
      long total_in_cents = (long) Math.Round(total * 100); 
   total = total_in_cents /100.0; 
   return total; 
} 
... 

Console Input in C#

Our first Ira program is not too useful, because the data are hardcoded. To perform the calculation 
for different data, you would have to edit the source file and recompile. What we really want to do 
is allow the user of the program to enter the data at runtime. 

An easy, uniform way to do input for various data types is to read the data as a string and then 
convert to the desired data type. Use the ReadLine method of the System.Console class to read in 
a string. Use the ToXxxx methods of the System.Convert class to convert the data to the type you 
need. 

Console.Write("amount: "); 
string data = Console.ReadLine(); 
amount = Convert.ToDecimal(data); 

Although console input in C# is fairly simple, we can make it even easier using object-oriented 
programming. We can encapsulate the details of input in an easy-to-use wrapper class, 
InputWrapper (which is not part of the .NET Framework class library). 

Using the InputWrapper Class



In C# you instantiate a class by using the new keyword. 

InputWrapper iw = new InputWrapper(); 

This code creates the object instance iw of the InputWrapper class. 

The InputWrapper class wraps interactive input for several basic data types. The supported data 
types are int, double, decimal, and string. Methods getInt, getDouble, getDecimal, and 
getString are provided to read those types from the command line. A prompt string is passed as an 
input parameter. The directory InputWrapper contains the files InputWrapper.cs, which 
implements the class, and TestInputWrapper.cs, which tests the class. (For convenience, we 
provide the file InputWrapper.cs in each project where we use it.) 

You can use the InputWrapper class without knowing its implementation. With such 
encapsulation, complex functionality can be hidden by an easy-to-use interface. (A listing of the 
InputWrapper class is in the next section.) 

Here is the code for Ira\Step2. We read in the deposit amount, the interest rate, and the number of 
years, and we compute the IRA accumulation year by year. The first input is done directly, and 
then we use the InputWrapper class. The bolded code illustrates how to use the InputWrapper 
class. Instantiate an InputWrapper object iw by using new. Prompt for and obtain input data by 
calling the appropriate getXXX method. 

// Ira.cs - Step 2 

using System; 

class Ira 
{ 
   public static int Main(string[] args) 
   { 
      InputWrapper iw = new InputWrapper(); 
      decimal amount;   // annual deposit amount 
      decimal rate;     // interest rate 
      int years;        // number of years 
      decimal total;    // total accumulation 
      decimal interest; // interest in a year 
      Console.Write("amount: "); 
      string data = Console.ReadLine(); 
      amount = Convert.ToDecimal(data); 
      rate = iw.getDecimal("rate: "); 
      years = iw.getInt("years: "); 
      total = 0m; 
      Console.WriteLine("{0,4} {1,12} {2,12} {3,12}", 
         "Year", "Amount", "Interest", "Total"); 
      for (int i = 1; i <= years; i++) 
      { 
         interest = total * rate; 
         total += amount + interest; 



         Console.WriteLine( 
            "{0, -4} {1, 12:C} {2, 12:C} {3, 12:C}", 
            i, amount, interest, total); 
      } 
      Console.WriteLine("\nTotal using formula = {0}", 
         IraTotal(years, (double) rate, (double) amount)); 
      return 0; 
   } 
   private static double IraTotal(int years, double rate, 
      double amount) 
   { 
      double total = 
         amount * (Math.Pow(1 + rate, years) - 1) / rate; 
      long total_in_cents = (long) Math.Round(total * 100); 
      total = total_in_cents /100.0; 
      return total; 
   } 
} 

Compiling Multiple Files

The program in Ira\Step2 is our first example of the common situation of a program with multiple 
files (in this case, just two: Ira.cs and InputWrapper.cs). It is easy to compile multiple files at the 
command line. 

> csc /out:Ira.exe *.cs 

This will compile all the files in the current directory. You should use the /out option to specify the 
name of the output file. 

If multiple classes contain a Main method, you can use the /main command-line option to specify 
which class contains the Main method that you want to use as the entry point into the program. 

>csc /main:Ira /out:Ira.exe *.cs 

InputWrapper Class Implementation

The InputWrapper class is implemented in the file InputWrapper.cs. You should find the code 
reasonably intuitive, given what you already know about classes. 

// InputWrapper.cs 
// 
// Class to wrap simple stream input 
// Datatype supported: 
//      int 
//      double 
//      decimal 
//      string 



using System; 

class InputWrapper 
{ 
   public int getInt(string prompt) 
   { 
      Console.Write(prompt); 
      string buf = Console.ReadLine(); 
      return Convert.ToInt32(buf); 
   } 
   public double getDouble(string prompt) 
   { 
      Console.Write(prompt); 
      string buf = Console.ReadLine(); 
      return Convert.ToDouble(buf); 
   } 
   public decimal getDecimal(string prompt) 
   { 
      Console.Write(prompt); 
      string buf = Console.ReadLine(); 
      return Convert.ToDecimal(buf); 
   } 
   public string getString(string prompt) 
   { 
      Console.Write(prompt); 
      string buf = Console.ReadLine(); 
      return buf; 
   } 
} 

Note that, unlike the method IraTotal, the methods of the InputWrapper class are used outside of 
the class so they are marked as public. 

If bad input data is presented, an exception will be thrown. Exceptions are discussed later in this 
chapter. 



Classes

In this section we carefully examine the C# class, which is fundamental to programming in 
C#. For illustration we introduce two classes, Customer and Hotel, which will be elaborated 
in a case study that is used throughout the book. We will introduce the case study itself in 
Chapter 4. 

If you are a Java programmer, you will find the C# class to be quite familiar, and you should 
be able to skim this section. C++ programmers must read much more carefully. C# differs 
from C++ with respect to object instantiation, assignment, and destruction. Our pace is 
somewhat more leisurely in this section, because classes are so fundamental to programming 
in C#. 

Classes as Structured Data

C# defines primitive data types that are built into the language. Data types, such as int and 
decimal, can be used to represent simple data. C# provides the class mechanism to represent 
more complex forms of data. Through a class, you can build up structured data out of simpler 
elements, which are called data members, or fields. (See TestCustomer\Step1.) 

// Customer.cs - Step 1 

public class Customer 
{ 
   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
   public Customer(string first, string last, string email) 
   { 
      FirstName = first; 
      LastName = last; 
      EmailAddress = email; 
   } 
} 

Customer is now a new data type. A customer has a CustomerId, a FirstName, a 
LastName, and an EmailAddress. 

Classes and Objects

A class represents a "kind of," or type of, data. It is analogous to the built-in types like int and 
decimal. A class can be thought of as a template from which individual instances can be 
created. An instance of a class is called an object. Just as you can have several individual 
integers that are instances of int, you can have several customers that are instances of 
Customer. The fields, such as CustomerId and FirstName in our example, are sometimes 



also called instance variables. 

References

There is a fundamental distinction between the primitive data types and the extended data 
types that can be created using classes. When you declare a variable of a primitive data, you 
are allocating memory and creating the instance. 

int x; // 4 bytes of memory have been allocated 

When you declare a variable of a class type (an object reference), you are only obtaining 
memory for a reference to an object of the class type. No memory is allocated for the object 
itself, which may be quite large. This behavior is very different from that of C++, where 
declaring an object in this way causes an instance to be created, using the default constructor. 
The behavior is identical to what happens in Java. 

Customer cust; // cust is a reference to a Customer object 
               // The object itself does not yet exist 

Constructors

Through a constructor, you can initialize individual objects in any way you wish. Besides 
initializing instance data, you can perform other appropriate initializations (e.g., open a file). 

A constructor is like a special method that is automatically called when an object is created 
via the new keyword. A constructor 

●     has no return type 
●     has the same name as the class 
●     should usually have public access 
●     may take parameters, which are passed when invoking new 

In the calling program, you use new to instantiate object instances, and you pass desired 
values as parameters. 

Default Constructor

If you do not define a constructor in your class, C# will implicitly create one for you. It is 
called the default constructor and takes no arguments. The default constructor will assign 
instance data, using any assignments in the class definition. Fields without an initializer are 
assigned default values (0 for numerical data types, empty string for string, and so on). The 
default constructor is called when an object instance is created with new and no parameters. If 
you provide code for any constructor in your class, you must explicitly define a default 
constructor with no arguments, if you want one. 

Instantiating and Using an Object



You instantiate an object by the new operator, which will cause a constructor to be invoked. 

cust = new Customer("Rocket", 
                    "Squirrel", 
                    "rocky@frosbitefalls.com"); 
// Customer object now exists and cust is a reference to it 

Once an object exists, you work with it, including accessing its fields and methods. Our 
simple Customer class at this point has no methods, only four fields. You access fields and 
methods using a dot. 

cust.CustomerId = 1; // all fields have now been assigned 

TestCustomer\Step0 provides a simple test program to exercise the Customer class. Note 
that an unassigned field of a class receives a default value, such as 0, when an object is 
instantiated. 

Assigning Object References

TestCustomer\Step1 provides a more complete test program to exercise the Customer class. 
Two object instances are created, an assignment is made of one object reference to another, 
and a field is assigned a value. 

// TestCustomer.cs 

using System; 

public class TestCustomer 
{ 
   public static void Main() 
   { 
      Customer cust1, cust2; 
      cust1 = new Customer("Rocket", 
                           "Squirrel", 
                           "rocky@frosbitefalls.com"); 
      cust1.CustomerId = 1; 
      cust2 = new Customer("Bullwinkle", 
                           "Moose´´, 
                           "moose@wossamotta.edu"); 
      cust2.CustomerId = 2; 
      ShowCustomer("cust1", cust1); 
      ShowCustomer("cust2", cust2); 
      cust1 = cust2; 
      cust1.EmailAddress = "bob@podunk.edu"; 
      ShowCustomer("cust1", cust1); 
      ShowCustomer("cust2", cust2); 
   } 



   private static void ShowCustomer(string label, 
                                    Customer cust) 
   { 
      Console.WriteLine("- - - - {0} - - - -", label); 
      Console.WriteLine("CustomerId = {0}", 
                        cust.CustomerId); 
      Console.WriteLine("FirstName = {0}", cust.FirstName); 
      Console.WriteLine("LastName = {0}", cust.LastName); 
      Console.WriteLine("EmailAddress = {0}", 
                        cust.EmailAddress); 
   } 
} 

Figure 3-1 shows the object references cust1 and cust2 and the data they refer to after the 
objects have been instantiated and the CustomerId field has been assigned. 

Figure 3-1. Two object references and the data they refer to.

 

When you assign an object variable, you are assigning only the reference; there is no copying 
of data. [2] Figure 3-2 shows both object references and their data after the assignment: 

[2] C and C++ programmers will recognize assignment of references as similar to 
assignment of pointers. 

Figure 3-2. Two references refer to the same data.



 

cust1 = cust2; // cust1 and cust2 now refer to same object 

Now when you assign a new value a field of one object, 

cust1.EmailAddress = "bob@podunk.edu"; 

you will see the same data through both object references. Here is the output from running 
TestCustomer\Step1. 

- - - - cust1 - - - -
CustomerId = 1 
FirstName = Rocket 
LastName = Squirrel 
EmailAddress = rocky@frosbitefalls.com 
- - - - cust2 - - - -
CustomerId = 2 
FirstName = Bullwinkle 
LastName = Moose 
EmailAddress = moose@wossamotta.edu 
- - - - cust1 - - - -
CustomerId = 2 
FirstName = Bullwinkle 
LastName = Moose 
EmailAddress = bob@podunk.edu 
cust1 1 
"Rocket" 
"Squirrel" 
"rocky@frosbitefalls.com" 
cust2 2 
"Bullwinkle" 
"Moose" 
"moose@wossamotta.edu" 



- - - - cust2 - - - -
CustomerId = 2 
FirstName = Bullwinkle 
LastName = Moose 
EmailAddress = bob@podunk.edu 

Garbage Collection

Through the assignment of a reference, an object may become orphaned. Objects may also be 
orphaned when they pass out of scope. Such an orphan object (or "garbage") takes up memory 
in the computer, which can now never be referenced. In Figure 3-2 the customer with 
CustomerId of 1 is now garbage. 

The Common Language Runtime automatically reclaims the memory of unreferenced objects. 
This process is known as garbage collection. Garbage collection takes up some execution 
time, but it is a great convenience for programmers, helping to avoid a common program error 
known as a memory leak. Garbage collection is discussed in more detail in Chapter 8. 

Methods

Typically, a class will specify behavior as well as data. A class encapsulates data and 
behavior in a single entity. A method specifies the behavior and consists of 

●     An access specifier, typically public or private 
●     A return type (can be void if the method does not return data) 
●     A method name, which can be any legal C# identifier 
●     A parameter list, enclosed by parentheses, which specifies data that is passed to the 

method (can be empty if no data is passed) 
●     A method body, enclosed by curly braces, which contains the C# code that the method 

will execute 

public void RaisePrice(decimal amount) 
{ 
   rate += amount; 
} 

In this example the return type is void (no data is passed back), the method name is 
RaisePrice, the parameter list consists of a single parameter of type decimal, and the body 
contains one line of code that increments the member variable rate by the value that is passed 
in. 

RaisePrice is a method in the Hotel class. The initial version of the Hotel class with a simple 
test program is in the folder TestHotel\Step1. 

Public and Private

Fields and methods of a C# class can be specified as public or private. Normally, you declare 



fields as private. A private field can be accessed only from within the class, not from outside. 

public class Hotel 
{ 
   private string city; 
   private string name; 
   private int number = 50; // legal in C# 
   private decimal rate; 
   ... 

Note that in C# you can initialize fields when they are declared. This kind of initialization is 
not legal in C++. 

Methods may be declared as either public or private. Public methods are called from outside 
the class and are used to perform calculations and to manipulate the private data. You may 
also provide public "accessor" methods to provide access to private fields. 

... 
public decimal GetRate() 
{ 
   return rate; 
} 
public void SetRate(decimal val) 
{ 
   rate = val; 
} 
... 

You may also have private methods, which can be thought of as "helper functions" for use 
within the class. Rather than duplicating code in several places, you may create a private 
method, which will be called wherever it is needed. An example is the ShowHotel method in 
TestHotel.cs. 

This

Sometimes it is convenient within code for a method to be able to access the current object 
reference. C#, like C++, defines a keyword this, which is a special variable that always refers 
to the current object instance. With this you can then refer to the instance variables. The Hotel 
class has a constructor to initialize its instance data with values passed as parameters. We can 
make use of the same names for parameters and fields and remove ambiguity by using the this 
variable. Here is the code for the constructor: 

public Hotel(string city, string name, int number, 
             decimal rate) 
{ 
   this.city = city; 
   this.name = name; 



   this.number = number; 
   this.rate = rate; 
} 

Sample Program

The program TestHotel\Step1 illustrates all the features we have discussed so far. Here is the 
class definition: 

// Hotel.cs - Step 1 

public class Hotel 
{ 
   private string city; 
   private string name; 
   private int number = 50;   // legal in C# 
   private decimal rate; 
   public Hotel(string city, string name, int number, 
                decimal rate) 
   { 
      this.city = city; 
      this.name = name; 
      this.number = number; 
      this.rate = rate; 
   } 
   public Hotel() 
   { 
   } 
   public string GetCity() 
   { 
      return city; 
   } 
   public string GetName() 
   { 
      return name; 
   } 
   public int GetNumber() 
   { 
      return number; 
   } 
   public void SetNumber(int val) 
   { 
      number = val; 
   } 
   public decimal GetRate() 
   { 



      return rate; 
   } 
   public void SetRate(decimal val) 
   { 
      rate = val; 
   } 
   public void RaisePrice(decimal amount) 
   { 
      rate += amount; 
   } 
} 

Here is the test program: 

// Test.cs - Step 1 

using System; 

public class TestHotel 
{ 
   public static void Main() 
   { 
      Hotel generic = new Hotel(); 
      ShowHotel(generic); 
      Hotel ritz = new Hotel("Atlanta", "Ritz", 100, 95m); 
      ShowHotel(ritz); 
      ritz.RaisePrice(50m); 
      ritz.SetNumber(125); 
      ShowHotel(ritz); 
   } 
   private static void ShowHotel(Hotel hotel) 
   { 
      Console.WriteLine( 
         "{0} {1}: number = {2}, rate = {3:C}", 
         hotel.GetCity(), hotel.GetName(), 
         hotel.GetNumber(), hotel.GetRate()); 
   } 
} 

Here is the output: 

: number = 50, rate = $0.00 
Atlanta Ritz: number = 100, rate = $95.00 
Atlanta Ritz: number = 125, rate = $145.00 

Properties



The encapsulation principle leads us to typically store data in private fields and to provide 
access to this data through public accessor methods that allow us to set and get values. For 
example, in the Hotel class we provided a method GetCity to access the private field city. 
You don't need any special syntax; you can simply provide methods and call these methods 
what you want, typically GetXXX and SetXXX. 

C# provides a special property syntax that simplifies user code. You can access a private field 
as if it were a public member. Here is an example of using a Number property of our Hotel 
class. 

ritz.Number = 125; 
Console.WriteLine("There are now {0} rooms", ritz.Number); 

As you can see, the syntax using the property is a little more concise. Properties were 
popularized in Visual Basic and are now part of .NET and available in selected other .NET 
languages, such as C#. The program TestHotel\Step2, illustrates implementing and using 
several properties, City, Name, Number, and Rate. The first two properties are read-only 
(only get defined), and the other properties are read/write (both get and set). It is also possible 
to have a write-only property (only set defined). Here is the code for the properties Name 
(read-only) and Number (read-write) in the second version of the Hotel class. Notice the 
syntax and the C# keyword value to indicate the new value of the field. 

// Hotel.cs - Step 2 

public class Hotel 
{ 
   private string city; 
   private string name; 
   private int number; 
   private decimal rate; 
   ... 
   public string Name 
   { 
      get 
      { 
         return name; 
      } 
   } 
   public int Number 
   { 
      get 
      { 
         return number; 
      } 
      set 
      { 



         number = value; 
      } 
   } 
   ... 

Static Fields and Methods

In C# a field normally is assigned on a per-instance basis, with a unique value for each object 
instance of the class. Sometimes it is useful to have a single value associated with the entire 
class. This type of field is called a static field. Like instance data members, static data 
members can be either public or private. To access a public static member, you use the dot 
notation, but in place of an object reference before the dot you use the name of the class. 

Static Methods

A method may also be declared static. A static method can be called without instantiating the 
class. An example we have already seen is the Main method in a class, which the runtime 
system is able to call without instantiating an object. The Main method must always be static. 

You call a static method by using the dot notation, with the class name in front of the dot. 
Because you must call a static method without an instance, a static method can use only static 
data members and not instance data members. 

Static methods may be declared public or private. A private static method, like other private 
methods, may be used as a helper function within a class, but not called from outside. 

Sample Program

Our previous Customer class relied on the user of the class to assign a CustomerId for the 
customer. A better approach is to encapsulate assigning an id within the class itself, so that a 
unique id will be automatically generated every time a new Customer object is created. It is 
easy to implement such a scheme by using a static field nextCustId, which is used to assign 
an id. Every time the id is assigned, nextCustId is incremented. TestCustomer\Step2 
demonstrates this solution and also illustrates the use of a static method. Here is the code 
defining the Customer class: 

// Customer.cs - Step 2 

public class Customer 
{ 
   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
   static private int nextCustId = 1; 
   public Customer(string first, string last, string email) 
   { 



      CustomerId = nextCustId++; 
      FirstName = first; 
      LastName = last; 
      EmailAddress = email; 
   } 
   public static int GetNextId() 
   { 
      return nextCustId; 
   } 
} 

Here is the test program: 

// TestCustomer.cs - Step 2 

using System; 

public class TestCustomer 
{ 
   public static void Main() 
   { 
      Console.WriteLine("next id = {0}", 
                        Customer.GetNextId()); 
      Customer cust1, cust2; 
      cust1 = new Customer("John", "Doe", 
                           "john@rocky.com"); 
      cust2 = new Customer("Mary", "Smith", 
                           "mary@moose.edu"); 
      ShowCustomer("cust1", cust1); 
      ShowCustomer("cust2", cust2); 
   } 
   private static void ShowCustomer(string label, 
                                    Customer cust) 
   ... 

Note that the static method GetNextId is accessed through the class Customer and not 
through an object reference such as cust1. This program also illustrates the fact that Main is a 
static method and is invoked by the runtime without an instance of the TestCustomer class 
being created. Since there is no instance, any method of TestCustomer called from within 
Main must also be declared static, as illustrated by ShowCustomer. 

Static Constructor

Besides having static fields and static methods, a class may also have a static constructor. A 
static constructor is called only once, before any object instances have been created. A static 
constructor is defined by prefixing the constructor with static. A static constructor mut take no 
parameters and has no access modifier (such as public or private). 



In a language such as C++, where there can be global variables not attached to any class, you 
may initialize a library through the constructor for a global object. In C# there are no such 
freestanding global objects, but you can achieve similar initialization through use of a static 
constructor. As a somewhat whimsical example of a static constructor, consider the 
StaticWorld program, which provides an alternative implementation of "Hello, World." 

// StaticWorld.cs 

public class Hello 
{ 
   static Hello() 
   { 
      System.Console.Write("Hello, "); 
   } 
   public static void World() 
   { 
      System.Console.WriteLine("World"); 
   } 
} 

public class World 
{ 
   public static void Main(string[] args) 
   { 
       Hello.World(); 
   } 
} 

Constant and Readonly Fields

If you want to make sure that a variable always has the same value, you can assign the value 
via an initializer and use the const modifier. Such a constant is automatically static, and you 
will access it from outside the class through the class name. 

Another situation may call for a one-time initialization at runtime, and after that the value 
cannot be changed. You can achieve this effect through a readonly field. Such a field may be 
either an instance member or a static member. In the case of an instance member, it will be 
assigned in an ordinary constructor. In the case of a static member, it will be assigned in a 
static constructor. 

The program ConstantHotel illustrates the use of both const and readonly. In both cases, you 
will get a compiler error if you try to modify the value. 

// ConstantHotel.cs 

public class Hotel 



{ 
   public const decimal rate = 100m; 
   public readonly string name; 
   public Hotel(string name) 
   { 
      this.name = name; 
   } 
} 

Here is the test program: 

// TestHotel.cs 

using System; 

public class TestHotel 
{ 
   public static void Main() 
   { 
      Console.WriteLine("rate = {0:C}", Hotel.rate); 
      //Hotel.rate = 150m;          // illegal 
      Hotel hotel = new Hotel("Ritz"); 
      Console.WriteLine("hotel name = {0}", hotel.name); 
      //hotel.name = "Sheraton";    // illegal 
   } 
} 

Here is the output: 

rate = $100.00 
hotel name = Ritz 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


C# Type System

In C# there is a fundamental distinction between value types and reference types. 
Value types have storage allocated immediately on the stack when the variable is 
declared. Reference types have storage allocated on the heap, and the variable is 
only a reference to the actual data, which can be allocated later. 

We have been looking at classes in some detail. A class defines a reference type. 
In this section we survey the entire C# type system, including simple types such 
as int and decimal. In C# a struct has many similarities to a class but is a value 
type. Another important kind of value type in C# is an enum. 

We examine later several other important types, including string, array, interface, 
and delegate. We will discuss the default values that get assigned to variables 
when there is not an explicit initialization. We will see that all types in C# are 
rooted in a fundamental base class called object. In C# "everything is an object," 
and value types are transparently converted to object references as needed 
through a process known as boxing. The inverse process, unboxing, returns an 
object to the value type from which it came. 

Overview of Types in C#

In C# there are three kinds of types: 

●     Value types 
●     Reference types 
●     Pointer types 

Value Types

Value types directly contain their data. Each variable of a value type has its own 
copy of the data. Value types typically are allocated on the stack and are 
automatically destroyed when the variable goes out of scope. Value types include 
the simple types like int and decimal, structures, and enumeration types. 

Reference Types

Reference types do not contain data directly but only refer to data. Variables of 
reference types store references to data, called objects. Two different variables 
can reference the same object. Reference types are allocated on the managed 
heap and eventually get destroyed through a process known as garbage 
collection. 



Reference types include string, object, class types, array types, interfaces, and 
delegates. 

Pointer Types

Pointer types are used only in unsafe code and will be discussed later in this 
chapter. 

Value Types

In this section we survey all the value types, including the simple types, 
structures, and enumerations. 

Simple Types

The simple data types are general-purpose value data types, including numeric, 
character, and Boolean. 

●     The sbyte data type is an 8-bit signed integer. 
●     The byte data type is an 8-bit unsigned integer. 
●     The short data type is a 16-bit signed integer. 
●     The ushort data type is a 16-bit unsigned integer. 
●     The int data type is a 32-bit signed integer. 
●     The uint data type is a 32-bit unsigned integer. 
●     The long data type is a 64-bit signed integer. 
●     The ulong data type is a 64-bit unsigned integer. 
●     The char data type is a Unicode character (16 bits). 
●     The float data type is a single-precision floating point. 
●     The double data type is a double-precision floating point. 
●     The bool data type is a Boolean (true or false). 
●     The decimal data type is a decimal type with 28 significant digits 

(typically used for financial purposes). 

Types in System Namespace

There is an exact correspondence between the simple C# types and types in the 
System namespace. C# reserved words are simply aliases for the corresponding 
types in the System namespace. Table 3-3 shows this correspondence. 

Table 3-3. Types in C# and the System Namespace



C# Reserved Word Type in System Namespace 

sbyte System.SByte 
byte System.Byte 
short System.Int16 
ushort System.UInt16 
int System.Int32 
uint System.UInt32 
long System.Int64 
ulong System.UInt64 
char System.Char 
float System.Single 
double System.Double 
bool System.Boolean 
decimal System.Decimal 

Structures

A struct is a value type which can group heterogeneous types together. It can 
also have constructors and methods. In C++ the concept of class and struct is 
very close. In C++ a class has default visibility of private and a struct has default 
visibility of public, and that is the only difference. There is a more fundamental 
difference in C#. 

In C# the key difference between a class and a struct is that a class is a reference 
type and a struct a value type. A class must be instantiated explicitly using new. 
The new instance is created on the heap, and memory is managed by the system 
through a garbage-collection process. Since a default constructor will be created 
for a struct if none is defined, a struct declared on the stack will be initialized. 
You may also use new. A new instance of a struct is created on the stack, and the 
instance will be deallocated when it goes out of scope. 

There are different semantics for assignment, whether done explicitly or via call 
by value mechanism in a method call. For a class, you will get a second object 
reference, and both object references refer to the same data. For a struct, you will 
get a completely independent copy of the data in the struct. 

A struct is a convenient data structure to use for moving data across a process or 
machine boundary, and we will use structs in our case study. For example, we 
will use a struct to represent customer data. 



public struct CustomerListItem 
{ 
   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
} 

Enumeration Types

The final kind of value type is an enumeration type. An enumeration type is a 
distinct type with named constants. Every enumeration type has an underlying 
type, which is one of the following. 

●     byte 
●     short 
●     int 
●     long 

An enumeration type is defined through an enum declaration. 

public enum BookingStatus : byte 
{ 
      HotelNotFound,     // 0 implicitly 
      RoomsNotAvailable, // 1 implicitly 
      Ok = 5             // explicit value 
} 

If the type is not specified, int is used. By default, the first enum member is 
assigned the value 0, the second member 1, and so on. Constant values can be 
explicitly assigned. 

You can make use of an enumeration type by declaring a variable of the type 
indicated in the enum declaration (e.g., BookingStatus). You can refer to the 
enumerated values by using the dot notation. Here is some illustrative code: 

BookingStatus status; 
status = hotel.ReserveRoom(name, date); 
if (status == BookingStatus.HotelNotFound) 
   Console.WriteLine("Hotel not found"); 
... 

Reference Types



A variable of a reference type does not directly contain its data but instead 
provides a reference to the data stored in the heap. In C# there are the following 
kinds of reference types: 

●     Class 
●     Array 
●     Interface 
●     Delegate 

Reference types have a special value null, which indicates the absence of an 
instance. 

We have already examined classes in some detail, and we will look at arrays later 
in this chapter. Interfaces and delegates will be covered in Chapter 5. 

Class Types

A class type defines a data structure that has fields, methods, constants, and other 
kinds of members. Class types support inheritance. Through inheritance a derived 
class can extend or specialize a base class. We will discuss inheritance in Chapter 
4. 

Two classes in the .NET Framework Class Library are so important that they 
have C# reserved words as aliases for them: object and string. 

Object

The object class type is the ultimate base type for all types in C#. Every C# type 
derives directly or indirectly from object. The object keyword in C# is an alias 
for the predefined System.Object class. System.Object has methods such as 
ToString, Equals, and Finalize, which we will study later. 

String

The string class encapsulates a Unicode character string. The string keyword is 
an alias for the predefined System.String class. The string type is a sealed class. 
(A sealed class is one that cannot be used as the base class for any other classes.) 

The string class inherits directly from the root object class. String literals are 
defined using double quotes. There are useful built-in methods for string. For 
now, note that the Equals method can be used to test for equality of strings. 



string a = "hello"; 
if (a.Equals("hello")) 
      Console.WriteLine("equal"); 
else 
      Console.WriteLine("not equal"); 

There are also overloaded operators: 

if (a == "hello") 
      ... 

We will study string in detail later in this chapter. 

Default Values

Several kinds of variables are automatically initialized to default values: 

●     Static variables 
●     Instance variables of class and struct instances 
●     Array elements 

Local variables are not automatically initialized, and you will get a compiler error 
message if you try to use a local variable that has not been initialized. 

The default value of a variable of reference type is null. 

The default value of a variable of value type is the value assigned in the default 
constructor. For simple types this value corresponds to a bit pattern of all zeros: 

●     For integer types, the default value is 0 
●     For char, the default value is '\u0000' 
●     For float, the default value is 0.0f 
●     For double, the default value is 0.0d 
●     For decimal, the default value is 0.0m 
●     For bool, the default value is false 

For an enum type, the default value is 0. For a struct type, the default value is 
obtained by setting all value type fields to their default values, as described 
above, and all reference type fields to null. 

Boxing and Unboxing

One of the strong features of C# is that is has a unified type system. Every type, 



including the simple built-in types such as int, derive from System.Object. In C# 
"everything is an object." 

A language such as Smalltalk also has such a feature but pays the price of 
inefficiency for simple types. Languages such as C++ and Java treat simple built-
in types differently from objects, thus obtaining efficiency but at the cost of a 
unified type system. 

C# enjoys the best of both worlds through a process known as boxing. Boxing 
converts a value type such as int or a struct to an object reference and is done 
implicitly. Unboxing converts a boxed value type (stored on the heap) back to an 
unboxed simple value (stored on the stack). Unboxing is done through a type cast. 

int x = 5; 
object o = x;      // boxing 
x = (int) o;       // unboxing 



Strings

Characters and strings are very important data types in practical programming. C# provides a 
string type, which is an alias for the String class in the System namespace. As a class type, 
string is a reference type. Much string functionality, available in all .NET languages, is 
provided by the String class. The C# compiler provides additional support to make working 
with strings more concise and intuitive. In this section we will first look at characters and 
then outline the main features of the String class. We will look at string input, at the 
additional support provided by C#, and at the issues of string equality. The section that 
follows surveys some of the useful methods of the String class. The section after that 
discusses the StringBuilder class. 

Characters

C# provides the primitive data type char to represent individual characters. A character 
literal is represented by a character enclosed in single quotes. 

char ch1 = 'a'; 

A C# char is represented internally as an unsigned two-byte integer. You can cast back and 
forth between char and integer data types. 

char ch1 = 'a'; 
int n = (int) ch1; 
n++; 
ch1 = (char) n;          // ch1 is now 'b' 

The relational operators ==, <, >, and so on apply to char. 

char ch1 = 'a'; 
char ch2 = 'b' 
if (ch1 < ch2)           // expression is true 
      ... 

ASCII and Unicode

Traditionally, a one-byte character code called ASCII has been used to represent characters. 
ASCII code is simple and compact. But ASCII cannot be employed to represent many 
different alphabets used throughout the world. 

Modern computer systems prefer to use a two-byte character code called Unicode. Most 
modern (and many ancient) alphabets can be represented by Unicode characters. ASCII is a 
subset of Unicode, corresponding to the first 255 Unicode character codes. For more 
information on Unicode, you can visit the Web site www.unicode.org. C# uses Unicode to 
represent characters. 

http://www.unicode.org/


Escape Sequences

You can represent any Unicode character in a C# program by using the special escape 
sequence beginning with \u followed by hexadecimal digits. 

char A = '\u0041'; // 41 (hex) is 65 (dec) or 'A' 

Special escape sequences are provided for a number of standard non-printing characters and 
for characters like quotation marks that would be difficult to represent otherwise. Table 3-4 
shows the standard escape sequences in C#. 

Table 3-4. Escape Characters in C#

 Escape Character Name Value 

\' Single quote 0x0027 
\" Double quote 0x0022 
\\ Backslash 0x005C 
\0 Null 0x0000 
\a Alert 0x0007 
\b Backspace 0x0008 
\f Form feed 0x000C 
\n New line 0x000A 
\r Carriage return 0x000D 
\t Horizontal tab 0x0009 
\v Vertical tab 0x000B 

String Class

The String class inherits directly from Object and is a sealed class, which means that you 
cannot further inherit from String. We will discuss inheritance and sealed classes in Chapter 
4. When a class is sealed, the compiler can perform certain optimizations to make methods 
in the class more efficient. 

Instances of String are immutable, which means that once a string object is created, it cannot 
be changed during its lifetime. Operations that appear to modify a string actually return a 
new string object. If, for the sake of efficiency, you need to modify a stringlike object 
directly, you can make use of the StringBuilder class, which we will discuss in a later 
section. 

A string has a zero-based index, which can be used to access individual characters in a 
string. That means that the first character of the string str is str[0], the second character is 



str[1], and so on. 

By default, comparison operations on strings are case-sensitive, although there is an 
overloaded version of the Compare method that permits case-insensitive comparisons. 

The empty string should be distinguished from null. If a string has not been assigned, it will 
be a null reference. Any string, including the empty string, compares greater than a null 
reference. Two null references compare equal to each other. 

Language Support

The C# language provides a number of features to make working with strings easier and 
more intuitive. 

String Literals and Initialization

You can define a string literal by enclosing a string of characters in double quotes. Special 
characters can be represented using an escape sequence, as discussed earlier in the chapter. 
You may also define a "verbatim" string literal using the @ symbol. In a verbatim string, 
escape sequences are not converted but are used exactly as they appear. If you want to 
represent a double quote inside a verbatim string, use two double quotes. 

The proper way to initialize a string variable with a literal value is to supply the literal after 
an equals sign. You do not need to use new as you do with other data types. Here are some 
examples of string literals and initializing string variables. 

string s1 = "bat"; 
string path1 = "c:\\OI\\NetCs\\Chap3\\Concat"; 
string path = @"c:\OI\NetCs\Chap3\Concat\"; 
string greeting = @"""Hello, world"""; 

Concatenation

The String class provides a method Concat for concatenating strings. In C# you can use the 
operators + and += to perform concatenation. The following program illustrates string 
literals and concatenation. 

// Concat.cs 

using System; 

public class Concat 
{ 
   public static void Main(string[] args) 
   { 
      str[0],string s1 = "bat"; 



      Console.WriteLine("s1 = {0}", s1); 
      string s2 = "man"; 
      Console.WriteLine("s2 = {0}", s2); 
      s1 += s2; 
      Console.WriteLine(s1); 
      string path1 = "c:\\OI\\NetCs\\Chap3\\Concat"; 
      Console.WriteLine("path1 = {0}", path1); 
      string path = @"c:\OI\NetCs\Chap3\Concat\"; 
      string file = "Concat.cs"; 
      path = path + file; 
      Console.WriteLine(path); 
      string greeting = @"""Hello, world"""; 
      Console.WriteLine(greeting); 
   } 
} 

Here is the output: 

s1 = bat 
s2 = man 
batman 
path1 = c:\OI\NetCs\Chap3\Concat 
c:\OI\NetCs\Chap3\Concat\Concat.cs 

"Hello, world" 

Index

You can extract an individual character from a string using a square bracket and a zero-
based index. 

string s1 = "bat"; 
char ch = s1[0];   // contains 'b' 

Relational Operators

In general, for reference types, the == and != operators check if the object references are the 
same, not whether the contents of the memory locations referred to are the same. However, 
the String class overloads these operators, so that the textual content of the strings is 
compared. The program StringRelation illustrates using these relational operators on 
strings. The inequality operators, such as <, are not available for strings; use the Compare 
method. 

String Equality

To fully understand issues of string equality, you should be aware of how the compiler stores 



strings. When string literals are encountered, they are entered into an internal table of string 
identities. If a second literal is encountered with the same string data, an object reference 
will be returned to the existing string in the table; no second copy will be made. As a result 
of this compiler optimization, the two object references will be the same, as represented in 
Figure 3-3. 

Figure 3-3. Object references to a string literal refer to the same storage.

 

You should not be misled by this fact to conclude that two object references to the same 
string data will always be the same. If the contents of the string get determined at runtime, 
for example, by the user inputting the data, the compiler has no way of knowing that the 
second string should have an identical object reference. Hence you will have two distinct 
object references, which happen to refer to the same data, as illustrated in Figure 3-4. 

Figure 3-4. Two distinct object references, which happen to refer to the same 
data.

 

As discussed, when strings are checked for equality, either through the relational operator == 
or through the Equals method, a comparison is made of the contents of the strings, not of the 
object references. So in both the previous cases the strings a and b will check out as equal. 
You have to be more careful with other reference types, where reference equality is not the 
same as content equality. 

String Comparison

The fundamental way to compare strings for equality is to use the Equals method of the 
String class. There are several overloaded versions of this function, including a static 
version that takes two string parameters and a nonstatic version that takes one string 
parameter that is compared with the current instance. These methods perform a case-
sensitive comparison of the contents of the strings. A bool value of true or false is returned. 

If you wish to perform a case-insensitive comparison, you may use the Compare method. 
This method has several overloaded versions, all of them static. Two strings, s1 and s2, are 
compared. An integer is returned expressing the lexical relationship between the two strings, 
as shown in Table 3-5. 



Table 3-5. Return Values of the Compare Method

Relationship Return Value 

s1 less than s2 negative integer 
s1 equal to s2 0 
s1 greater than s2 positive integer 

A third parameter allows you to control the case sensitivity of the comparison. If you use 
only two parameters, a case-sensitive comparison is performed. The third parameter is a 
bool. A value of false calls for a case-sensitive comparison, and a value of true calls for 
ignoring case. 

The program StringCompare illustrates a number of comparisons, using both the Equal 
and Compare methods. 

String Input

The Console class has methods for inputting characters and strings. The Read method reads 
in a single character (as an int). The ReadLine method reads in a line of input, terminated 
by a carriage return, line feed, or combination, and will return a string. In general, the 
ReadLine method is the easier to use and synchronizes nicely with Write and WriteLine. 
The program ReadStrings illustrates reading in a first name, a middle initial, and a last 
name. All input is done via ReadLine. The middle initial as a character is determined by 
extracting the character at position 0. 

Our InputWrapper class has a method getString, which provides a prompt and reads in a 
string. 

String Methods and Properties

In this section we will survey a few useful methods and properties of the String class. Many 
of the methods have various overloaded versions. We show a representative version. Consult 
the online documentation for details on these and other methods. The program 
StringMethods demonstrates all the examples that follow. 

Length

public int Length {get;} 

This property returns the length of a string. Notice the convenient shorthand notation that is 
used for declaring a property. 

string str = "hello"; 



int n = str.Length;                 // 5 

ToUpper

public string ToUpper (); 

This method returns a new string in which all characters of the original string have been 
converted to uppercase. 

str = "goodbye"; 
str = str.ToUpper();              // GOODBYE 

ToLower

public string ToLower (); 

This method returns a new string in which all characters of the original string have been 
converted to lowercase. 

str = str.ToLower();                  // goodbye 

Substring

public string Substring(int startIndex, int length); 

This method returns a substring that starts from a specified index position in the value and 
continues for a specified length. Remember that in C# the index of the first character in a 
string is 0. 

string sub = str.Substring(4,3);      // bye 

IndexOf

public int IndexOf(string value); 

This method returns the index of the first occurrence of the specified string. If the string is 
not found, -1 is returned. 

str = "goodbye"; 
int n1 = str.IndexOf("bye");    // 4 
int n2 = str.IndexOf("boo");    // -1 

StringBuilder Class

As we have discussed, instances of the String class are immutable. As a result, when you 



manipulate instances of String, you are frequently obtaining new String instances. 
Depending on your applications, creating all these instances may be expensive. The .NET 
library provides a special class StringBuilder (located in the System.Text namespace) in 
which you may directly manipulate the underlying string without creating a new instance. 
When you are done, you can create a String instance out of an instance of StringBuilder by 
using the ToString method. 

A StringBuilder instance has a capacity and a maximum capacity. These capacities can be 
specified in a constructor when the instance is created. By default, an empty StringBuilder 
instance starts out with a capacity of 16. As the stored string expands, the capacity will be 
increased automatically. The program StringBuilderDemo provides a simple demonstration 
of using the StringBuilder class. It shows the starting capacity and the capacity after strings 
are appended. At the end, a String is returned. 

// StringBuilderDemo.cs 

using System; 
using System.Text; 

public class StringBuilderDemo 
{ 
   public static void Main(string[] args) 
   { 
      StringBuilder build = new StringBuilder(); 
      Console.WriteLine("capacity = {0}", build.Capacity); 
      build.Append("This is the first sentence.\n"); 
      Console.WriteLine("capacity = {0}", build.Capacity); 
      build.Append("This is the second sentence.\n"); 
      Console.WriteLine("capacity = {0}", build.Capacity); 
      build.Append("This is the last sentence.\n"); 
      Console.WriteLine("capacity = {0}", build.Capacity); 
      string str = build.ToString(); 
      Console.Write(str); 
   } 
} 

Here is the output: 

capacity = 16 
capacity = 34 
capacity = 70 
capacity = 142 
This is the first sentence. 
This is the second sentence. 
This is the last sentence. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html




Arrays and Indexers

Arrays are another important data type in practical programming. In C# arrays are objects. 
They are a reference data type. They are based on the class System.Array and so inherit 
the properties and methods of this class. After examining one-dimensional arrays, we 
examine two higher-dimensional varieties. A "jagged" array is an array of arrays, and each 
row can have a different number of elements. In "rectangular" arrays, all rows have the 
same number of elements. Arrays are a special kind of collection, which means that the 
foreach loop can be used in C# for iterating through array elements. 

We conclude the section with a discussion of indexers, which provides a way to access 
encapsulated data in a class with an array notation. 

Arrays

An array is a collection of elements with the following characteristics. 

●     All array elements must be of the same type. The element type of an array can be 
any type, including an array type. An array of arrays is often referred to as a jagged 
array. 

●     An array may have one or more dimensions. For example, a two-dimensional array 
can be visualized as a table of values. The number of dimensions is known as the 
array's rank. 

●     Array elements are accessed using one or more computed integer values, each 
known as an index. A one-dimensional array has one index. 

●     In C# an array index starts at 0, as in other C family languages. 
●     The elements of an array are created when the array object is created. The elements 

are automatically destroyed when there are no longer any references to the array 
object. 

One-Dimensional Arrays

An array is declared using square brackets [] after the type, not after the variable. 

int [] a;                  // declares an array of int 

Note that the size of the array is not part of its type. The variable declared is a reference to 
the array. 

You create the array elements and establish the size of the array using the new operator. 

a = new int[10];    // creates 10 array elements 

The new array elements start out with the appropriate default values for the type (0 for int). 



You may both declare and initialize array elements using curly brackets, as in C/C++. 

int a[] = {2, 3, 5, 7, 11}; 

You can indicate you are done with the array elements by assigning the array reference to 
null. 

a = null; 

The garbage collector is now free to deallocate the elements. 

System.Array

Arrays are objects. System.Array is the abstract base class for all array types. 
Accordingly, you can use the properties and methods of System.Array for any array. Here 
are some examples: 

●     Length is a property that returns the number of elements currently in the array. 
●     Sort is a static method that will sort the elements of an array. 
●     BinarySearch is a static method that will search for an element in a sorted array, 

using a binary search algorithm. 

int [] array = {5, 2, 11, 7, 3}; 
Array.Sort(a);           // sorts the array 
for (int i = 0; i < a.Length; i++) 
    Console.Write("{0} ", a[i]); 
Console.WriteLine(); 
int target = 5; 
int index = Array.BinarySearch(a, target); 
if (index < 0) 
    Console.WriteLine("{0} not found", target); 
else 
    Console.WriteLine("{0} found at {1}", target, index); 

A complete program containing the code shown above can be found in ArrayMethods. 
Here is the output: 

2 3 5 7 11 
5 found at 2 

Sample Program

The program ArrayDemo is an interactive test program for arrays. A small array is created 
initially, and you can create new arrays. You can populate an array either with a sequence 
of square numbers or with random numbers. You can sort the array, reverse the array, and 



perform a binary search (which assumes that the array is sorted in ascending order). You 
can destroy the array by assigning the array reference to null. 

Interfaces for System.Array

If you look at the documentation for methods of System.Array, you will see many 
references to various interfaces, such as IComparable. By using such interfaces you can 
control the behavior of methods of System.Array. For example, if you want to sort an 
array of objects of a class that you define, you must implement the interface IComparable 
in your class so that the Sort method knows how to compare elements to carry out the sort. 
The .NET Framework provides an implementation of IComparable for all the primitive 
types. We will come back to this point after we discuss interfaces in Chapter 5. 

Random-Number Generation

The ArrayDemo program contains the following code for populating an array with 
random integers between 0 and 100. 

Random rand = new Random(); 
for (int i = 0; i < size; i++) 
{ 
   array[i] = rand.Next(100); 
} 

The .NET Framework provides a useful class, Random, in the System namespace that can 
be used for generating pseudorandom numbers for simulations. 

Constructors

There are two constructors: 

Random();          // uses default seed 
Random(int seed);  // seed is specified 

The default seed is based on date and time, resulting in a different stream of random 
numbers each time. By specifying a seed, you can produce a deterministic stream. 

Next Methods

There are three overloaded Next methods that return a random int. 

int Next(); 
int Next(int maxValue); 
int Next(int minValue, int maxValue); 



The first method returns an integer greater than or equal to zero and less than 
Int32.MaxValue. The second method returns an integer greater than or equal to zero and 
less than maxValue. The third method returns an integer greater than or equal to 
minValue and less than or equal to maxValue. 

NextDouble Method

The NextDouble method produces a random double between 0 and 1. 

double NextDouble(); 

The return value r is in the range: 0 <= r < 1. 

Jagged Arrays

You can declare an array of arrays, or a "jagged" array. Each row can have a different 
number of elements. 

int [][] binomial; 

You then create the array of rows, specifying how many rows there are (each row is itself 
an array). 

binomial = new int [rows][]; 

Next you create the individual rows. 

binomial[i] = new int [i+1]; 

Finally you can assign individual array elements. 

binomial[0][0] = 1; 

The example program Pascal creates and prints Pascal's triangle using a two-dimensional 
jagged array. Higher-dimensional jagged arrays can be created following the same 
principles. 

Rectangular Arrays

C# also permits you to define rectangular arrays, where all rows have the same number of 
elements. First you declare the array. 

int [,] MultTable; 

Then you create all the array elements, specifying the number of rows and columns. 



MultTable = new int[rows, columns]; 

Finally you can assign individual array elements. 

MultTable[i,j] = i * j; 

The example program RectangularArray creates and prints out a multiplication table. 

Higher-dimensional rectangular arrays can be created following the same principles. 

Arrays as Collections

The class System.Array supports the IEnumerable interface. Hence arrays can be treated 
as collections, a topic we will discuss in Chapter 5. This means that a foreach loop can be 
used to iterate through the elements of an array. 

The Pascal example code contains nested foreach loops to display the jagged array. The 
outer loop iterates through all the rows, and the inner loop iterates through all the elements 
within a row. 

// Pascal.cs 
... 
Console.WriteLine( 
   "Pascal triangle via nested foreach loop"); 
foreach (int[] row in binomial) 
{ 
   foreach (int x in row) 
   { 
      Console.Write("{0} ", x); 
   } 
   Console.WriteLine(); 
    } 

Indexers

C# provides various ways to help the user of a class access encapsulated data. Earlier in the 
chapter we saw how properties can provide access to a single piece of data associated with 
a class, making it appear like a public field. In this section we will see how indexers 
provide a similar capability for accessing a group of data items, using an array index 
notation. Indexers can be provided when there is a private array or other collection. 

The program TestHotel\Step3 provides an illustration. This version of the Hotel class adds 
the capability to make hotel reservations, and the private array reservations stores a list of 
reservations in the form of ReservationListItem structure instances. The Hotel class 



provides the readonly property NumberReservations for the number of reservations in 
this list, and it provides a read-write indexer for access to the elements in this list. Note use 
of the keywords this and value in the indexer, which has a general syntax similar to that of 
properties. 

// Hotel.cs - Step 3 

using System; 

public struct ReservationListItem 
{ 
   public int CustomerId; 
   public int ReservationId; 
   public string HotelName; 
   public string City; 
   public DateTime ArrivalDate; 
   public DateTime DepartureDate; 
   public int NumberDays; 
} 

... 

public class Hotel 
{ 
   private string city; 
   private string name; 
   private int number; 
   private decimal rate; 
   private const int MAXDAY = 366; 
   private int[] numGuests; 
   private int nextReservation = 0; 
   private int nextReservationId = 1; 
   private const int MAXRESERVATIONS = 100; 
   private ReservationListItem[] reservations; 
   ... 
   public int NumberReservations 
   { 
      get 
      { 
         return nextReservation; 
      } 
   } 
   public ReservationListItem this[int index] 
   { 
      get 



      { 
         return reservations[index]; 
      } 
      set 
      { 
         reservations[index] = value; 
      } 
   } 

The test program TestHotel.cs illustrates reading and writing individual array elements 
using the index notation. 

// Change the CustomerId of first reservation 
ReservationListItem item = ritz[0]; 
item.CustomerId = 99; 
ritz[0] = item; 
ShowReservations(ritz); 



More about Methods

In this section we look at several other topics pertaining to methods in C#: 

●     Parameter passing 
●     Variable-length parameter lists 
●     Method overloading 
●     Operator overloading 

Parameter Passing

Programming languages have different mechanisms for passing parameters. In the C family of 
languages the standard is "call by value." This means that the actual data values themselves 
are passed to the method. Typically, these values are pushed onto the stack, and the called 
function obtains its own independent copy of the values. Any changes made to these values 
will not be propagated back to the calling program. C# provides this mechanism of parameter 
passing as the default, but C# also supports "reference" parameters and "output" parameters. 

Some terminology will help us in the following discussion. Storage is allocated on the stack 
for method parameters. This storage area is known as the activation record. It is popped when 
the method is no longer active. The formal parameters of a method are the parameters as seen 
within the method. They are provided storage in the activation record. The actual parameters 
of a method are the expressions between commas in the parameter list of the method call. 

int sum = SimpleMath.Add(5, 7);      // actual parameters 
                                     //are 5 and 7 
... 
public static int Add(int x, int y) 
{                                    // formal parameters 
                                     //are x and y 
   ... 
} 

Value Parameters

Parameter passing is the process of initializing the storage of the formal parameters by the 
actual parameters. The default method of parameter passing in C# is call-by-value, in which 
the values of the actual parameters are copied into the storage of the formal parameters. Call-
by-value is "safe," because the method never directly accesses the actual parameters, only its 
own local copies. But there are drawbacks to call-by-value: 

●     There is no direct way to modify the value of an argument. You may use the return 
type of the method, but that allows you to pass only one value back to the calling 
program. 

●     There is overhead in copying a large object. 



The overhead in copying a large object is borne when you pass a struct instance. If you pass a 
class instance, or an instance of any other reference type, you are passing only a reference and 
not the actual data itself. This may sound like "call-by-reference," but what you are actually 
doing is passing a reference by value. 

Reference Parameters

Consider a situation in which you want to pass more than one value back to the calling 
program. C# provides a clean solution through reference parameters. You declare a reference 
parameter with the ref keyword, which is placed before both the formal parameter and the 
actual parameter. A reference parameter does not result in any copying of a value. Instead, the 
formal parameter and the actual parameter refer to the same storage location. Thus, changing 
the formal parameter will result in the actual parameter changing, as both are referring to 
exactly the same storage location. 

The program ReferenceMath illustrates using ref parameters. There is a single method, 
Calculate, which passes back two values as reference parameters. 

// ReferenceMath.cs 

public class ReferenceMath 
{ 
   public static void Calculate(int x, int y, 
                                ref int sum, ref int prod) 
   { 
      sum = x + y; 
       prod = x * y; 
   } 
} 

Notice the use of the ref keyword in front of the third and fourth parameters. Here is the test 
program: 

// TestReferenceMath.cs 

using System; 

public class TestReferenceMath 
{ 
   public static void Main(string[] args) 
   { 
      int sum = 0, product = 0; 
      MultipleMath.Calculate(5, 7, ref sum, ref product); 
      Console.WriteLine("sum = {0}", sum); 
      Console.WriteLine("product = {0}", product); 
   } 
} 



Again we need to have the ref keyword in front of the parameters. It is also necessary to 
initialize the variables before using them as reference parameters. 

Output Parameters

A reference parameter is really designed for two-way communication between the calling 
program and the called program, both passing data in and getting data out. Thus there is a 
requirement that reference parameters be initialized before their use. In the case we have just 
looked at, where we are only obtaining output, initializing the variables only for them to be 
assigned new values is rather pointless. C# provides for this case with output parameters. Use 
the keyword out wherever you would use the keyword ref. Then you do not have to initialize 
the variable before use. Within the method you must be sure to assign the out parameter, and 
you could not use it before such an assignment. The program OutputMath illustrates the use 
of output parameters. 

Method Overloading

In a traditional programming language such as C, you need to create unique names for all your 
methods. If methods do basically the same thing but apply only to different data types, it 
becomes tedious to create unique names. For example, suppose you have a FindMax method 
that can find the maximum of two int or two long or two string. If we need to come up with a 
unique name for each method, we would have to create method names such as FindMaxInt, 
FindMaxLong, and FindMaxString. 

In C#, as in other object-oriented languages such as C++ and Java, you may overload method 
names. That is, different methods can have different names, if they have different signatures. 
Two methods have the same signature if they have the same number of parameters, the 
parameters have the same data types, and the parameters have the same modifiers (none, ref, 
or out). The return type does not contribute to defining the signature of a method. 

At runtime the compiler will resolve a given invocation of the method by trying to match up 
the actual parameters with formal parameters. A match occurs if the parameters match exactly 
or if they can match through an implicit conversion. For the exact matching rules, consult the 
C# Language Specification. 

The program OverloadDemo illustrates method overloading. The method FindMax is 
overloaded to take either long or string parameters. The method is invoked three times, for 
int, long, and string parameters. There is an exact match for the case of long and string. The 
call with int actual parameters can resolve to the long version, because there is an implicit 
conversion of int into long. 

Modifiers as Part of the Signature

It is important to understand that if methods have identical types for their formal parameters, 
but differ in a modifier (none, ref, or out), then the methods have different signatures. The 
program OverloadHotel provides an illustration. We have two RaisePrice methods. In the 
first, the hotel is passed as a value parameter. In the second, the hotel is passed as a reference 



parameter. These methods have different signatures. 

// HotelTest.cs 

using System; 

public class HotelDemo 
{ 
   public static void Main() 
   { 
      Hotel ritz = new Hotel("Boston", "Ritz", 100, 
                             200.00m); 
      Hotel flop = new Hotel("Podunk", "Flop", 50, 20.00m); 
      // The Ritz before and after 
      Console.WriteLine("Before price hike"); 
      ritz.Show(); 
      RaisePrice(ritz, 50.00m); 
      Console.WriteLine("After price hike"); 
      ritz.Show(); 
      // The Flop before and after -- use ref version 
      Console.WriteLine("Before price hike"); 
      flop.Show(); 
      RaisePrice(ref flop, 50.00m); 
      Console.WriteLine("After price hike"); 
      flop.Show(); 
   } 
   private static void RaisePrice(Hotel hotel, 
                                  decimal delta) 
   { 
      hotel.cost += delta; 
      Console.WriteLine("new cost = {0:C}", hotel.cost); 
   } 
   private static void RaisePrice(ref Hotel hotel, 
                                 decimal delta) 
   { 
      hotel.cost += delta; 
      Console.WriteLine("new cost = {0:C}", hotel.cost); 
   } 
} 

Variable-Length Parameter Lists

Our FindMax methods in the previous section were very specific with respect to the number 
of parameters—there were always exactly two parameters. Sometimes you may want to be 
able to work with a variable number of parameters—for example, to find the maximum of 
two, three, four, or more numbers. C# provides a params keyword, which you can use to 



indicate that an array of parameters is provided. Sometimes you may want to provide both a 
general version of your method that takes a variable number of parameters and also one or 
more special versions that take an exact number of parameters. The special version will be 
called in preference, if there is an exact match. The special versions are more efficient. The 
program VariableMax illustrates a general FindMax method that takes a variable number of 
parameters. There is also a special version that takes two parameters. Each method prints out a 
line identifying itself, so you can see which method takes precedence. Here is the program: 

// VariableMax.cs 

using System; 

public class VariableMax 
{ 
   public static void Main() 
   { 
      Console.WriteLine("max of {0}, {1} = {2}", 
                        5,7,FindMax(5,7)); 
      Console.WriteLine("max of {0}, {1}, {2} = {3}", 
                        500,5,7,FindMax(500,5,7)); 
      Console.WriteLine("max of {0}, {1}, {2}, {3} = {4}", 
                        500,5,7,80,FindMax(500,5,7,80)); 
   } 
   static int FindMax(int a, int b) 
   { 
      Console.WriteLine("FindMax with Two Parameters"); 
      return a < b ? b : a; 
   } 
   static int FindMax(params int[] args) 
   { 
      Console.WriteLine( 
          "FindMax with Variable Number of Parameters"); 
      int imax = Int32.MinValue; 
      for (int i = 0; i < args.Length; i++) 
      { 
         if (args[i] > imax) 
            imax = args[i]; 
      } 
      return imax; 
   } 
} 

Here is the output: 

FindMax with Two Parameters 
max of 5, 7 = 7 
FindMax with Variable Number of Parameters 



max of 500, 5, 7 = 500 
FindMax with Variable Number of Parameters 
max of 500, 5, 7, 80 = 500 

Operator Overloading

C#, like C++ but unlike Java, supports operator overloading. The idea is that certain method 
invocations can be implemented more concisely using operators rather than method calls. 
Suppose we have a class Matrix that has static methods to add and multiply matrices. Using 
methods, we could write a matrix expression like this: 

Matrix a, b, c, d; 
// code to initialize the object references 
d = Matrix.Multiply(a, (Matrix.Add(b, c)); 

If we overload the operators + and *, we can write this code more succinctly: 

d = a * (b + c); 

You cannot create a brand new operator, but you can overload many of the existing C# 
operators to be an alias for a static method. For example, given the static method Add in the 
Matrix class: 

class Matrix 
{ 
... 
   public static Matrix Add(Matrix x, Matrix y) 
   { 

you can write instead: 

public static Matrix operator+(Matrix x, Matrix y) 

All of the rest of the class implementation code stays the same, and you can then use operator 
notation in client code. Operator declarations, such as operator+ shown above, must obey the 
following rules: 

●     Operators must be public and static and may not have any other modifiers. 
●     Operators take only value parameters and not reference or output parameters. 
●     Operators must have a signature that differs from the signatures of all other operators 

in the class. 

The program OperatorOverloadDemo provides a simple example of operator overloading. 
The + operator is overloaded in the HotelList class to add a hotel to an array of hotels. In C# 
if you overload a binary operator such as +, the corresponding compound assignment operator 
+= will be overloaded for you automatically by the compiler. Thus, in our test program, we 
add the hotel objects ritz and sheraton to the list of hotels using the + and += operators. 



// OperatorOverloadDemo.cs 

using System; 

public class OperatorOverloadDemo 
{ 
   public static void Main() 
   { 
      HotelList list = new HotelList(); 
      Hotel ritz = new Hotel("Atlanta", "Ritz"); 
      Hotel sheraton = new Hotel("Boston", "Sheraton"); 
      list = list + ritz; 
      list += sheraton; 
      list.ShowHotels(); 
   } 
} 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Exceptions

An inevitable part of programming is dealing with error conditions of various sorts. This 
section introduces the exception-handling mechanism of C#, beginning with a discussion of 
the fundamentals of error processing and various alternatives that are available. We then 
carefully go through the C# exception mechanism, which includes a try block, catch handlers, 
and a finally block. You can raise exceptions by means of a throw statement. The .NET class 
library provides an Exception class, which you can use to pass information about an 
exception that occurred. To further specify your exception and to pass additional information, 
you can derive your own class from Exception. When handling an exception you may want to 
throw a new exception. In such a case you can use the "inner exception" feature of the 
Exception class to pass the original exception on with your new exception. 

Exception Fundamentals

The traditional way to deal with runtime errors is to have the functions you call return a status 
code. The status code may have a particular value for a good return and other values to denote 
various error conditions. The calling function checks this status code, and if an error was 
encountered, it performs appropriate error handling. This function in return may pass an error 
code to its calling function, and so on up the call stack. 

Although straightforward, this mechanism has a number of drawbacks. The basic 
disadvantage is lack of robustness. The called function may have impeccable error-checking 
code and return appropriate error information, but all this information is useless if the calling 
function does not make use of it. The program may continue operation as if nothing were 
amiss and some time later crash for some mysterious reason. Also, status codes are non-
standard. A 0 may indicate success in one case but failure in another. And the caller and callee 
have to agree on return codes and their meaning. 

Another disadvantage is that every function in the call stack must participate in the process, or 
the chain of error information will be broken. Also, unusual flow control can leave memory 
hanging without being deallocated. 

Furthermore, in languages such as C# that have constructors and overloaded operators, there 
isn't a return value for some operations. 

.NET Exception Handling

C# provides an exception mechanism that can be used for reporting and handling errors. An 
error is reported by "throwing" an exception. The error is handled by "catching" the exception. 
This mechanism is similar in concept to that for exceptions in C++ and Java. 

Exceptions are implemented in .NET by the Common Language Runtime, so exceptions can 
be thrown in one .NET language and caught in another. The exception mechanism involves 
the following elements: 

●     Code that might encounter an exception should be enclosed in a try block. 



●     Exceptions are caught in a catch block. 
●     An Exception object is passed as a parameter to catch. The data type of the Exception 

object is System.Exception or a derived type. 
●     You may have multiple catch blocks. A match is made based on the data type of the 

Exception object. 
●     An optional finally clause contains code that will be executed whether or not an 

exception is encountered. 
●     In the called method, an exception is raised through a throw statement. 

Exception Flow of Control

The general structure of code which might encounter an exception is shown below: 

try 
{ 
      // code that might cause an exception to be thrown 
} 
catch (ExceptionClass1 e) 
{ 
      // code to handle this type of exception 
} 
catch (ExceptionClass2 e) 
{ 
      // code to handle this other type of exception 
} 
// possibly more catch handlers 
// optional finally clause (discussed later) 
// statements after try ... catch 
finally 
{ 

   // cleanup code that is executed whether or not 
   // an exception is caught or if catch handler itself 
   // throws an exception 
} 

Each catch handler has a parameter specifying the data type of exception that it can handle. 
The exception data type can be System.Exception or a class ultimately derived from it. If an 
exception is thrown, the first catch handler that matches the exception data type is executed, 
and then control passes to the statement just after the catch block(s). If no handler is found, the 
exception is thrown to the next higher "context" (e.g., the function that called the current one). 
If no exception is thrown inside the try block, all the catch handlers are skipped. 

Context and Stack Unwinding

As the flow of control of a program passes into nested blocks, local variables are pushed onto 
the stack and a new "context" is entered. Likewise a new context is entered on a method call, 



which also pushes a return address onto the stack. 

If an exception is not handled in the current context, it is passed to successively higher 
contexts until it is finally handled (or else is "uncaught" and is handled by a default system 
handler). 

When the higher context is entered, C# adjusts the stack properly, a process known as stack 
unwinding. In C# exception handling, stack unwinding involves both setting the program 
counter and cleaning up variables (popping stack variables and marking heap variables as free, 
so that the garbage collector can deallocate them). 

Example Program

Now let's look at some code that illustrates the principles we have discussed so far. We will 
use a simplified version of our Hotel class. This hotel accepts reservations for only a single 
date. There is a property Capacity and there are methods MakeReservation and 
CancelReservation. A reservation has an id, a customer name, and the number of rooms 
requested. (In this example we have added a feature. Previously, a customer could reserve 
only a single room. We are now allowing multiple room requests. This is to simplify 
exercising our program to bump against the exception condition of exceeding the capacity of 
the hotel.) There is a property, NumberReservations, and an indexer to allow the calling 
program to access the reservation list. 

There are several possible exceptions: 

●     User does not request a positive number of rooms. 
●     Room request exceeds the capacity of the hotel. 
●     Index out of range when attempting to store reservation in array of reservations. 

The first two exceptions are thrown explicitly by our Hotel class, and the index out-of-range 
exception is thrown by the .NET library. 

Our example program is in the directory HotelException\Step1. 

// HotelException.cs - Step 1 

using System; 

public struct ReservationListItem 
{ 
   public int ReservationId; 
   public string CustomerName; 
   public int NumberRooms; 
} 

public class Hotel 
{ 
   private int capacity; 



   private int numGuests; 
   private int nextReservation = 0; 
   private int nextReservationId = 1; 
   private const int MAXRESERVATIONS = 3; 
   private ReservationListItem[] reservations; 
   public Hotel(int capacity) 
   { 
      this.capacity = capacity; 
      reservations = 
         new ReservationListItem[MAXRESERVATIONS]; 
   } 
   public int MakeReservation(string cust, int rooms) 
   { 
      // Requested number of rooms should be positive 
      if (rooms <= 0) 
         throw new Exception( 
            "Please request a positive number of rooms"); 
      // Check if rooms are available 
      if (numGuests + rooms > capacity) 
         throw new Exception("Rooms not available"); 
      // Reserve the room for requested dates 
      numGuests += rooms; 
      // Fill in information for reservation 
      ReservationListItem item; 
      item.ReservationId = nextReservationId++; 
      item.CustomerName = cust; 
      item.NumberRooms = rooms; 
      // Add reservation to reservation list and return 
      // reservation id 
      reservations[nextReservation++] = item; 
      return item.ReservationId; 
   } 
   ... 

The next code fragment is the test program. Notice that we place the entire body of the 
command-processing loop inside a try block. The catch handler prints an error message that is 
passed within the exception object. Then, after either normal processing or displaying an error 
message, a new command is read in. This simple scheme provides reasonable error 
processing, as a bad command will not be acted upon, and the user will have an opportunity to 
enter a new command. 

// Test.cs 

using System; 

public class TestHotel 
{ 



   public static void Main() 
   { 
      InputWrapper iw = new InputWrapper(); 
      Hotel hotel = new Hotel(10); 
      ShowHotel(hotel); 
      string cmd; 
      Console.WriteLine("Enter command, quit to exit"); 
      cmd = iw.getString("H> "); 
      while (! cmd.Equals("quit")) 
      { 
         try 
         { 
            if (cmd.Equals("new")) 
            { 
               int capacity = iw.getInt("capacity: "); 
               hotel = new Hotel(capacity); 
               ShowHotel(hotel); 
            } 
            else if (cmd.Equals("book")) 
            { 
               string customer = 
                  iw.getString("customer name: "); 
               int rooms = iw.getInt("number of rooms: "); 
               int id = 
                  hotel.MakeReservation(customer, rooms); 
               Console.WriteLine( 
                  "Reservation has been booked"); 
               Console.WriteLine( 
                  "ReservationId = {0}", id); 
            } 
            else if (cmd.Equals("cancel")) 
            { 
               int id = iw.getInt("reservation id: "); 
               hotel.CancelReservation(id); 
            } 
            else if (cmd.Equals("show")) 
               ShowReservations(hotel); 
            else 
               hotelHelp(); 
         } 
         catch (Exception e) 
         { 
            Console.WriteLine("Exception: {0}", e.Message); 
         } 
      cmd = iw.getString("H> "); 
   } 



} 

Here is a transcript of a sample run. We try several kinds of errors. 

The hotel has 10 rooms 
Enter command, quit to exit 
H> book 
customer name: bob 
number of rooms: xxx 
Exception: Input string was not in a correct format. 
H> book 
customer name: bob 
number of rooms: -5 
Exception: Please request a positive number of rooms 
H> book 
customer name: bob 
number of rooms: 5 
Reservation has been booked 
ReservationId = 1 
H> book 
customer name: mary 
number of rooms: 6 
Exception: Rooms not available 
H> book 
customer name: mary 
number of rooms: 3 
Reservation has been booked 
ReservationId = 2 
H> book 
customer name: david 
number of rooms: 1 
Reservation has been booked 
ReservationId = 3 
H> show 
1      bob            5 
2      mary           3 
3      david          1 
H> book 
customer name: ellen 
number of rooms: 1 
Exception: Exception of type 
System.IndexOutOfRangeException was thrown. 
H> 

Notice that we threw two of the exceptions ourselves. A third (entering "xxx" for the number 
of rooms) was caught by the .NET library inside our InputWrapper class. A fourth (index 



out of range) was also caught by .NET, inside the Hotel class. Our catch handler deals with all 
these different exceptions in a simple, uniform manner. 

System.Exception

The System.Exception class provides a number of useful methods and properties for 
obtaining information about an exception. 

●     Message returns a text string providing information about the exception. This message 
is set when the exception object is constructed. If no message is specified, a generic 
message will be provided indicating the type of the exception. The Message property is 
read-only. (Hence, if you want to specify your own message, you must construct a new 
exception object, as done in the example above.) 

●     StackTrace returns a text string providing a stack trace at the place where the 
exception arose. 

●     InnerException holds a reference to another exception. When you throw a new 
exception, it is desirable not to lose the information about the original exception. The 
original exception can be passed as a parameter when constructing the new exception. 
The original exception object is then available through the InnerException property of 
the new exception. (We will provide an example of using inner exceptions later in this 
chapter.) 

User-Defined Exception Classes

You can do basic exception handling using only the base Exception class, as previously 
illustrated. In order to obtain finer-grained control over exceptions, it is frequently useful to 
define your own exception class, derived from Exception. You can then have a more specific 
catch handler that looks specifically for your exception type. You can also define other 
members in your derived exception class, so that you can pass additional information to the 
catch handler. 

We will illustrate by enhancing the MakeReservation method of our Hotel class. We want to 
distinguish between the two types of exceptions we throw. The one type is essentially bad 
input data (a nonpositive value). We will continue to handle this exception in the same manner 
as before (that is, bad input data gives rise to a format exception, thrown by .NET library 
code). We will define a new exception class RoomException to cover the case where the 
hotel does not have enough rooms to fulfill the request. (In this case we want to allow the user 
an opportunity to submit another reservation request with fewer rooms.) Our example program 
is HotelException\Step2. Here is the definition of our new exception class. This class is 
defined using inheritance, which we will discuss in Chapter 4, where we will explain the 
"base(message)" syntax. 

public class RoomException : Exception 
{ 
   private int available; 
   public RoomException(string message, int available) 
      : base(message) 
   { 



      this.available = available; 
   } 
   public int Available 
   { 
      get 
      { 
         return available; 
      } 
   } 
} 

Note that we define a property Available that can be used to retrieve the information about 
how many rooms are available. The constructor of our exception class takes two parameters. 
The first is an error message string, and the second is the number of rooms available. We pass 
the message string to the constructor of the base class. We must also modify the code of the 
Hotel class to throw our new type of exception when too many rooms are requested. 

// HotelException.cs - Step 2 

... 
public class Hotel 
{ 
... 
   public int MakeReservation(string cust, int rooms) 
   { 
      // Requested number of rooms should be positive 
      if (rooms <= 0) 
         throw new Exception( 
            "Please request a positive number of rooms"); 
      // Check if rooms are available 
      int available = capacity - numGuests; 
      if (rooms > available) 
         throw new RoomException( 
            "Rooms not available", available); 
      ... 

Finally we modify the code in our test program that processes the "book" command. We place 
the call to MakeReservation inside another try block, and we provide a catch handler for a 
RoomException. In this catch handler we allow the user an opportunity to request fewer 
rooms. Here is the code: 

... 
else if (cmd.Equals("book")) 
{ 
   string customer = iw.getString("customer name: "); 
   int rooms = iw.getInt("number of rooms: "); 



   int id; 
   try 
   { 
      id = hotel.MakeReservation(customer, rooms); 
   } 
   catch (RoomException e) 
   { 
      Console.WriteLine("Exception: {0}", e.Message); 
      Console.WriteLine( 
         "{0} rooms are available", e.Available); 
      // try again 
      rooms = iw.getInt("number of rooms: "); 
      id = hotel.MakeReservation(customer, rooms); 
   } 
   Console.WriteLine("Reservation has been booked"); 
   Console.WriteLine("ReservationId = {0}", id); 
   ... 

Here is a transcript of a sample run of our program: 

The hotel has 10 rooms 
Enter command, quit to exit 
H> book 
customer name: bob 
number of rooms: 11 
Exception: Rooms not available 
10 rooms are available 
number of rooms: 5 
Reservation has been booked 
ReservationId = 1 

Structured Exception Handling

One of the principles of structured programming is that a block of code should have a single 
entry point and a single exit point. The single exit point is convenient, because you can 
consolidate cleanup code in one place. The goto statement is usually bad, because it facilitates 
breaking this principle. But there are other ways to violate the principle of a single exit point, 
such as multiple return statements from a method. 

Multiple return statements may not be too bad, because these may be encountered during 
normal, anticipated flow of control. But exceptions can cause a particular difficulty, since they 
interrupt the normal flow of control. In a common scenario you can have at least three ways of 
exiting a method: 

●     No exception is encountered, and any catch handlers are skipped. 
●     An exception is caught, and control passes to a catch handler and then to the code after 



the catch handlers. 
●     An exception is caught, and the catch handler itself throws another exception. Then 

code after the catch handler will be bypassed. 

The first two cases do not present a problem, as control passes to the code after the catch 
handlers. But the third case is a source of difficulty. 

Finally Block

The structured exception handling mechanism in C# resolves this problem with a finally 
block. The finally block is optional, but if present must appear immediately after the catch 
handlers. It is guaranteed, in all three cases described above, that the code in the finally block 
will always execute before the method is exited. 

We illustrate use of finally in the "cancel" command of our Hotel example. See the directory 
HotelException\Step3. There are several ways to exit this block of code, and the user might 
become confused about whether a cancellation was actually made or not. We insert a finally 
block which will always display all the reservations. Here is the code: 

else if (cmd.Equals("cancel")) 
{ 
   int id; 
   id = iw.getInt("reservation id: "); 
   try 
   { 
      hotel.CancelReservation(id); 
   } 
   catch (Exception e) 
   { 
      Console.WriteLine("Exception: {0}", e.Message); 
      id = iw.getInt("reservation id: "); 
      hotel.CancelReservation(id); 
   } 
   finally 
   { 
      ShowReservations(hotel); 
   } 
} 

It is instructive to compare the "book" and "cancel" commands. In the "book" command there 
is code after the catch handler. This code will be executed if the catch handler is skipped (no 
exception). The code will also be executed if the catch handler exits normally (user enters a 
small enough number of rooms). But if an exception is thrown inside the catch handler, this 
code will be skipped. In the case of "cancel," there is a finally block. The code inside the 
finally block will always be executed, even if the catch handler throws an exception (user 
enters an invalid id a second time). 



Inner Exceptions

In general it is wise to handle exceptions, at least at some level, near their source, because you 
have the most information available about the context in which the exception occurred. A 
common pattern is to create a new exception object that captures more detailed information 
and throw this onto the calling program. So that information is not lost about the original 
exception, you may pass the original exception as a parameter when constructing the new 
exception. Then the calling program can gain access to both exceptions through the 
InnerException property of the exception object. 

The program HotelException\Step3 also illustrates using inner exceptions. In the 
MakeReservation method we explicitly check for an IndexOutOfRangeException. We 
throw a new exception, which we construct by passing the original exception as a parameter. 

// Add reservation to reservation list and return 
// reservation id 
try 
{ 
   reservations[nextReservation++] = item; 
} 
catch (IndexOutOfRangeException e) 
{ 
   throw new Exception( 
      "Reservation table size exceeded", e); 
} 

In the test program we make use of the InnerException property. 

catch (Exception e) 
{ 
   Console.WriteLine("Exception: {0}", e.Message); 
   if (e.InnerException != null) 
   { 
      Console.WriteLine( 
        "InnerException: {0}", e.InnerException.Message); 
   } 
} 

Multiple Catch Handlers

You may have several catch handlers for the same try block. Each catches a different type of 
exception. The first catch handler that matches the exception object will be executed. 

The program HotelException\Step3 also illustrates using multiple catch handlers. In the test 
program we have handlers for both FormatException and Exception. Note that you do not 
have to instantiate an exception object instance in the catch statement if you do not use it. The 



catch statement can be used without any parameters if you want to catch any exception and do 
not care about the exception object. 

catch (FormatException) 
{ 
   Console.WriteLine( 
      "Please enter your data in correct format"); 
} 
catch (Exception e) 
{ 
   Console.WriteLine("Exception: {0}", e.Message); 
   if (e.InnerException != null) 
   { 
      Console.WriteLine( 
         "InnerException: {0}", e.InnerException.Message); 
   } 
} 

Here is a sample run of the program. When we use an incorrect format, the first catch handler 
is invoked. When we use the correct format, but an illegal negative value for the number of 
rooms, we don't get a match for the first catch handler, but we do get a match for the second, 
since we are using the base Exception class. 

The hotel has 10 rooms 
Enter command, quit to exit 
H> book 
customer name: bob 
number of rooms: xxx 
Please enter your data in correct format 
H> book 
customer name: bob 
number of rooms: -1 
Exception: Please request a positive number of rooms 
H> 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Unsafe Code

The mainstream use of C# is to write managed code, which runs on the Common Language 
Runtime. As we shall see in Chapter 14, it is quite possible for a C# program to call unmanaged 
code, such as a legacy COM component, which runs directly on the operating system. This facility 
is important, because a tremendous amount of legacy code exists, which is all unmanaged. 

There is overhead in transitioning from a managed environment to an unmanaged one and back 
again. C# provides another facility, called unsafe code, which allows you to bypass the .NET 
memory management and get at memory directly, while still running on the CLR. In particular, in 
unsafe code you can work with pointers, which we will discuss later in this section. 

Unsafe Blocks

The most circumspect use of unsafe code is within a block, which is specified using the C# 
keyword unsafe. The program UnsafeBlock illustrates using the sizeof operator to determine the 
size in bytes of various data types. You will get a compiler error if you try to use the sizeof 
operator outside of unsafe code. 

// UnsafeBlock.cs 

using System; 

struct Account 
{ 
   private int id; 
   private decimal balance; 
} 

public class UnsafeBlock 
{ 
   public static void Main() 
   { 
      unsafe 
      { 
         Console.WriteLine("size of int = {0}", 
                           sizeof(int)); 
         Console.WriteLine("size of decimal = {0}", 
                           sizeof(decimal)); 
         Console.WriteLine("size of Account = {0}", 
                           sizeof(Account)); 
      } 
   } 
} 

To compile this program at the command line, open up a DOS window and navigate to the 
directory c:\OI\NetCs\Chap3\UnsafeBlock. You can then enter the following command to 
compile using the /unsafe compiler option. 



csc /unsafe UnsafeBlock.cs 

(You may ignore the warning messages, as our program does not attempt to use fields of 
Account. It applies only the sizeof operator.) To run the program, type unsafeblock at the 
command line, obtaining the output shown below: 

C:\OI\NetCs\Chap3\UnsafeBlock>unsafeblock 
size of int = 4 
size of decimal = 16 
size of Account = 20 

To set the unsafe option in Visual Studio, perform the following steps: 

1.  Right-click over the project in the Solution Explorer and choose Properties. 

2.  In the Property Pages window that comes up, click on Configuration Properties and then 
on Build. 

3.  In the dropdown for Allow unsafe code blocks choose True. See Figure 3-5. 

Figure 3-5. Configuring a project for unsafe mode in Visual Studio.

 

4.  Click OK. You can now compile your project in unsafe mode. 

Pointers

Earlier in this chapter we saw that C# has three kinds of data types: 



●     Value types, which directly contain their data 
●     Reference types, which refer to data contained somewhere else 
●     Pointer types 

Pointer types can be used only in unsafe code. A pointer is an address of an actual memory 
location. A pointer variable is declared using an asterisk after the data type. To refer to the data a 
pointer is pointing to, use the dereferencing operator, which is an asterisk before the variable. To 
obtain a pointer from a memory location, apply the address of operator, which is an ampersand in 
front of the variable. Here are some examples. 

int* p;           // p is a pointer to an int 
int a = 5;        // a is an int, with 5 stored 
p = &a;           // p now points to a 
*p = 12;          // 12 is now stored in location pointed 
                  // to by p. So a now has 12 stored 

Pointers were widely used in the C programming language, because functions in C pass data only 
by value. Thus, if you want a function to return data, you must pass a pointer rather than the data 
itself. The program UnsafePointer illustrates a Swap method, which is used to interchange two 
integer variables. Since the program is written in C#, we can pass data by reference. We illustrate 
with two overloaded versions of the Swap method, one using ref parameters and the other using 
pointers. Rather than using an unsafe block, this program uses unsafe methods, which are defined 
by including unsafe among the modifiers of the method. Both the Main method and the one 
Swap method are unsafe. 

// UnsafePointer.cs 

using System; 

public class UnsafePointer 
{ 
   public static unsafe void Main() 
   { 
      int x = 55; 
      int y = 777; 
      Show("Before swap", x, y); 
      Swap(ref x, ref y); 
      Show("After swap", x, y); 
      Swap(&x, &y); 
      Show("After unsafe swap", x, y); 
   } 
   private static void Show(string s, int x, int y) 
   { 
      Console.WriteLine("{0}: x = {1}, y = {2}", s, x, y); 
   } 
   private static void Swap(ref int x, ref int y) 
   { 
      int temp = x; 



      x = y; 
      y = temp; 
   } 
   private static unsafe void Swap(int* px, int* py) 
   { 
      int temp = *px; 
   *px = *py; 
   *py = temp; 
   } 
} 

Again you should compile the program using the unsafe option, either at the command line or in 
the Visual Studio project. Here is the output. The first swap interchanges the values. The second 
swap brings the values back to their original state. 

Before swap: x = 55, y = 777 
After swap: x = 777, y = 55 
After unsafe swap: x = 55, y = 777 

Fixed Memory

When working with pointers there is a pitfall. Suppose you have obtained a pointer to a region of 
memory that contains data you are working on. Since you have a pointer, you are accessing 
memory directly. But suppose the garbage collector collects garbage and moves data about in 
memory. Then your object may now reside at a different location, and your pointer may no longer 
be valid. 

To deal with such a situation, C# provides the keyword fixed, which declares that the memory in 
question is "pinned" and cannot be moved by the garbage collector. Note that you should use 
fixed only for temporary, local variables, and you should keep the scope as circumscribed as 
possible. If too much memory is pinned, the CLR memory-management system cannot manage 
memory efficiently. 

The program UnsafeAccount illustrates working with fixed memory. This program declares an 
array of five Account objects and then assigns them all the same value. The attempt to determine 
the size of this array is commented out, because you cannot apply the sizeof operator to a 
managed type such as Account[]. 

It also illustrates the arrow operator for dereferencing a field in a struct, when you have a pointer 
to the struct. For example, if p is a pointer to an instance of the struct Account shown below, the 
code that follows afterward will assign values to the account object pointed to by p. 

p->id = 101;            // assign the id field 
p->balance = 50.00m;    // assign the balance field 

Here is the code. 

// UnsafeAccount.cs 



using System; 

struct Account 
{ 
   public int id; 
   public decimal balance; 
   public Account(int id, decimal balance) 
   { 
      this.id = id; 
      this.balance = balance; 
   } 
} 

public class UnsafeAccount 
{ 
   public static unsafe void Main() 
   { 
      int id = 101; 
      decimal balance = 50.55m; 
      Account acc = new Account(id, balance); 
      ShowAccount(&acc); 
      Account[] array = new Account[5]; 
      //Console.WriteLine("size of Account[] = {0}", 
      //                  sizeof(Account[])); 
      ShowArray(array); 
      fixed (Account* pStart = array) 
      { 
         Account* pAcc = pStart; 
         for (int i = 0; i< array.Length; i++) 
            *pAcc++ = acc; 
      } 
      ShowArray(array); 
   } 
   private static unsafe void ShowAccount(Account* pAcc) 
   { 
      Console.WriteLine("id = {0}, balance = {1:C}", 
                        pAcc->id, pAcc->balance); 
   } 
   private static void ShowAccount(Account acc) 
   { 
      Console.WriteLine("id = {0}, balance = {1:C}", 
                        acc.id, acc.balance); 
   } 
   private static void ShowArray(Account[] array) 
   { 
      for (int i = 0; i < 5; i++) 
      { 



         ShowAccount(array[i]); 
      } 
   } 
} 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Summary

In this chapter we have covered the essentials of the C# language, which should 
equip you to start writing nontrivial programs in C#. We surveyed variables, 
operators, control structures, formatting, methods, and input/output. We 
examined classes in detail, and we looked at some convenience features, such as 
properties. We covered the essentials of data types in C#, which map to the 
Common Type System. We discussed the fundamental distinction between value 
and reference types, and saw how to convert between them using boxing and 
unboxing operations. We examined some standard types, such as string, 
StringBuilder, and Array. We covered some additional topics concerning 
methods, including parameter passing, variable length parameter lists, method 
overloading, and operator overloading. We discussed exception handling in C# in 
some detail, including the use of user defined exception classes and structured 
exception handling. We concluded the chapter by looking at how you can have 
"unsafe" sections of C# code, which can be used to work with pointers for 
efficiency or for interoperating with legacy code. 

A number of examples pertained to a hotel reservation system. In the next chapter 
we will study object-oriented programming in C#, and we will extend our hotel 
reservation example to a case study, which will be continued throughout the rest 
of the book. 



Chapter 4. Object-Oriented Programming in 
C #
In this chapter we study in detail the object-oriented aspects of C#, with an 
emphasis on inheritance. First we review the fundamentals of object-oriented 
programming. Next, the Acme Travel Agency case study is introduced. This case 
study is developed throughout the entire book, as we explain more about .NET. 
We consider some abstractions that will enable us to implement a reservation 
system for a variety of resources, and we provide an implementation of a hotel 
reservation system. The abstract base classes we define provide reusable code that 
enables us to easily implement other kinds of reservation systems. The key is 
finding the right abstractions. 

We will see how C# language features facilitate object-oriented programming. 
Certain details of C#, such as use of access control (public, private, and protected) 
and properties can help express abstractions in a way that is safe and easy to use. 
We will then look at other object-oriented features of C#, such as virtual methods, 
method hiding, method overriding, and polymorphism. A problem in languages 
supporting inheritance is the fragile base class problem, and we will see how C# 
helps in avoiding this pitfall. 

This chapter is very much driven by our case study. We introduce object-oriented 
features of C# as we elaborate the case study. At the end of the chapter we cover 
additional concepts not illustrated by the case study. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Review of Object-Oriented Concepts

In this preliminary section we review the fundamentals of object-oriented 
programming. If you are an experienced C++ or Java programmer, you may skim 
through this section as a refresher and begin your careful reading with the next 
section, where we introduce the case study. 

Objects

Objects have both a real-world and a software meaning. The object model 
describes a relationship between them. 

Objects in the Real World

The term object has an intuitive real-world meaning. There are concrete, tangible 
objects, such as a ball, an automobile, and an airplane. There are also more 
abstract objects that have a definite intellectual meaning, such as a committee, a 
patent, or an insurance contract. 

Objects have both attributes (or characteristics) and operations that can be 
performed upon them. A ball has a size, a weight, a color, and so on. Operations 
may be performed on the ball, such as throw, catch, and drop. 

There can be various types of relationships among classes of objects. One, for 
example, is a specialization relationship, such as an automobile is a special kind 
of vehicle. Another is a whole/part relationship, such as an automobile consists of 
an engine, a chassis, wheels, and other parts. 

Object Models

Objects can also be used in programs. Objects are useful in programming because 
you can set up a software model of a real-world system. Software objects abstract 
the parts of objects in the real world that are relevant to the problem being solved. 
The model can then be implemented as software using a programming language. 
A software system implemented in this way tends to be more faithful to the real 
system, and it can be changed more readily when the real system is changed. 

There are formal languages for describing object models. The most popular 
language is UML (Unified Modeling Language), which is a synthesis of several 
earlier modeling languages. Formal modeling languages are beyond the scope of 
this book, but we will find that informal models are useful. 

Reusable Software Components



Another advantage of objects in software is that they can facilitate reusable 
software components. Hardware has long enjoyed significant benefits from 
reusable hardware components. For example, computers can be created from 
power supplies, printed circuit boards, and other components. Printed circuit 
boards in turn can be created from chips. The same chip can be reused in many 
different computers, and new hardware designs do not have to be done from 
scratch. 

With appropriate software technology, similar reuse is feasible in software 
systems. Objects provide the foundation for software reuse. 

Objects in Software

An object is a software entity containing data (state) and related functions 
(behavior) as a self-contained module. For example, a HotelBroker may contain 
a list of hotels (the state) and provide operations to add a hotel and make a 
reservation (behavior). 

Abstraction

An abstraction captures the essential features of a real-world object, suppressing 
unnecessary details. All instances of an abstraction share these common features. 
Abstraction helps us deal with complexity. For example, consider the problem of 
booking a reservation. There are many different kinds of things you might want to 
reserve, such as a hotel, an airplane flight, or a conference room. Such 
"reservables" have many differences, but they have certain essentials in common., 
such as a capacity. 

Encapsulation

The implementation of an abstraction should be hidden from the rest of the 
system, or encapsulated. For example, the list of hotels may be contained in 
several different kinds of data structures, such as an array, a collection, or a 
database. The rest of the system should not need to know the details of the 
representation. 

Classes

A class groups all objects with common behavior and common structure. A class 
allows creation of new objects of the same type. An object is an instance of some 
class. We refer to the process of creating an individual object as instantiation. 

Classes can be related in various ways, such as by inheritance and by 



containment. 

Inheritance

Inheritance is a key feature of the object-oriented programming paradigm. You 
abstract out common features of your classes and put them in a highlevel base 
class. You can add or change features in more specialized derived classes, which 
"inherit" the standard behavior from the base class. Inheritance facilitates code 
reuse and extensibility. 

Consider Reservable as a base class, with derived classes Hotel and Flight. All 
reservables share some characteristics, such as a capacity. Different kinds of 
reservables differ in other respects. For example, a hotel has a city and a name, 
while a flight has an origin and a destination. Figure 4-1 illustrates the 
relationship among these different kinds of reservables. 

Figure 4-1. Inheritance relationship among different reservable 
classes.



 

Abstract Classes

Sometimes a class is not meant to be instantiated, but only to provide a template 
for derived classes. The Reservable class is an example—it is too abstract to 
actually instantiate. Only specific kinds of reservable classes, such as Hotel and 
Flight, may actually be instantiated. We call a class such as Reservable that 
cannot be instantiated an abstract class. A class that can be instantiated is called a 
concrete class. 

Relationships Among Classes



Classes may be related to each other in various ways. 

●     The inheritance (IS-A) relationship specifies how one class is a special 
case of another class. A Hotel (subclass or derived class) is a special kind 
of Reservable (superclass or base class). 

●     The composition (HAS-A) relationship specifies how one class (the 
whole) is made up of other classes (the parts). A HotelBroker (whole) has 
a list of Hotel objects. 

●     A weaker kind of relationship (USES-A) can be identified when one class 
merely makes use of some other class when carrying out its 
responsibilities. 

Polymorphism

Consider the problem of generating a payroll for various categories of employees. 
Different kinds of employees may have pay calculated in a different manner. A 
salaried employee receives a fixed salary. A wage employee is paid according to 
the number of hours worked. A sales employee is paid according to the 
commissions earned on sales that were made. 

A traditional approach is to maintain a type field in an employee structure and to 
perform processing in a switch statement, with cases for each type. Such use of 
switch statements is error prone and requires much maintenance when adding a 
new employee type. 

An alternative is to localize the intelligence to calculate pay in each employee 
class, which will support its own GetPay method. Generic payroll code can then 
be written that will handle different types of employees and will not have to be 
modified to support an additional employee type. Provide a GetPay method in 
the base class and an override of this method in each derived class. Call GetPay 
through an object reference to a general Employee object. Depending on the 
actual employee class referred to, the appropriate GetPay method will be called. 

The ability for the same method call to result in different behavior depending on 
the object through which the method is invoked is referred to as polymorphism. 
Polymorphism can greatly simplify complex systems and is an important part of 
the object-oriented paradigm. 

You should not try to coerce your design so that you can take advantage of 
polymorphism. We will see in our Acme Travel Agency case study that we have 
three different abstract base classes, but we do not need polymorphism to achieve 
quite general behavior. On the other hand, the .NET Framework classes use 
polymorphism heavily, as we shall see beginning in Chapter 5. Later in this 
chapter we will provide a small example of polymorphism using an employee 



class hierarchy, as outlined above. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Acme Travel Agency Case Study: Design

The Acme Travel Agency provides various services, including the booking of hotel, plane, 
and car rental reservations. We will use this simple theme of booking reservations to 
illustrate various features of .NET throughout the book. In this chapter we design the 
architecture of a general system for booking different kinds of reservations. We illustrate 
the reservation system with an implementation of a hotel broker system that supports the 
following basic features: 

●     Add a hotel to the list of hotels 
●     Show all the hotels 
●     Show all the hotels in a particular city 
●     Reserve a hotel room for a range of dates 
●     Show all the reservations 
●     Show all the reservations for a particular customer 

The system also maintains a list of customers. Customers may register by giving their 
name and email address, and they will be assigned a customer ID. The following features 
are supported in the basic customer management subsystem: 

●     Register as a customer 
●     Change the email address of a customer 
●     Show a single customer or all the customers 

In this chapter various lists, such as hotels, reservations, and customers, will be maintained 
as arrays. In the next chapter we will use .NET collections in place of arrays, and we will 
implement more features, such as the ability to delete a hotel, cancel a reservation, and the 
like. In later chapters we will extend the case study in various ways, such as providing a 
graphical user interface, storing all data in a database, deploying as a Web application, and 
so on. 

The code for our case study is in the CaseStudy folder for this chapter. 

Designing the Abstractions

Bearing in mind that eventually we want to implement not only a hotel reservation system, 
but also a system for other kinds of reservations, including plane and car rental, it behooves 
us at the beginning to look for appropriate abstractions. The more functionality we are able 
to put in base classes, the less work we will have to do in order to implement a particular 
kind of reservation system. On the other hand, having more functionality in the base 
classes can reduce the range of problems to which they are applicable. Good design is a 
balancing act. 

Another attribute of good abstractions is that they will survive major changes in 
implementation. As we shall see later in this book, our C# abstractions of the hotel 
reservation system remain intact as we implement the system on an SQL Server database. 



These abstractions will be represented in C# by abstract classes, defined in the file 
Broker.cs in the CaseStudy folder for this chapter. 

Reservable

Our first abstraction is the thing we are looking to reserve. We will denote this abstraction 
as simply Reservable. The basic issue in reservations is resource usage. There are a 
limited number of reservable resources. Hence the key attribute of a Reservable is 
capacity. For example, a hotel may have 100 rooms. A flight may have 250 seats. We will 
also want a unique identifier for a Reservable, which we will denote by unitid. (The 
shorter name unitid is used in preference to the longer, more awkward name reservableid. 
Later we will see other uses of the terminology "unit." For example, the method to add a 
reservable is called AddUnit.) 

For our applications we are going to introduce an additional attribute, cost. There is a room 
rate for a hotel, a ticket cost for a flight, and so on. Note that this attribute may not be 
applicable to all things that are being reserved. For example, a conference room within a 
company may not have a cost assigned to it. However, our applications are for commercial 
customers, so we choose to include cost in our model. 

Simplifications
Because our case study is designed to illustrate concepts in C# and .NET, we 
will choose many simplifications in our design, so that we do not become 
bogged down in too detailed coding. For example, in real life a hotel has several 
different kinds of rooms, each having a different rate. Similarly, an airplane 
flight will have different classes of seats. Here the situation in real life is even 
more complicated, because the price of a seat may vary wildly depending on 
when the reservation was made, travel restrictions, and so on. To make life 
simple for us, we are assuming that each instance of a particular reservable will 
have the same cost. 

In C# we will represent a Reservable by an abstract class. 

public abstract class Reservable 
{ 
   static private int nextid = 0; 
   protected int unitid; 
   internal protected int capacity; 
   internal protected decimal cost; 
   public Reservable(int capacity, decimal cost) 
   { 
      this.capacity = capacity; 
      this.cost = cost; 



      unitid = nextid++; 
   } 
} 

A constructor allows us to specify the capacity and cost when the object is created. The 
unitid is autogenerated by a static variable. This id starts out at 0, because it is also going 
to be used in our implementation as an index in a two-dimensional array to track the 
number of customers having a reservation at a given reservable on a given date. 

We will discuss the role of the private, internal, and protected access control specifiers 
later. 

Reservation

When a customer books a reservation of a reservable, a record of the reservation will be 
made. The Reservation class holds the information that will be stored. 

public abstract class Reservation 
{ 
   public int ReservationId; 
   public int UnitId; 
   public DateTime Date; 
   public int NumberDays; 
   static private int nextReservationId = 1; 
   public Reservation() 
   { 
      ReservationId = nextReservationId++; 
   } 
} 

The ReservationId is autogenerated. The UnitId identifies the reservable that was booked. 
Date is the starting date of the reservation, and NumberDays specifies the number of days 
for which the reservation was made. 

Broker

Our third abstraction, Broker, models a broker of any kind of reservable, and is also 
represented by an abstract class. It maintains a list of reservables, represented by the array 
units, and a list of reservations, represented by the array reservations. The two-
dimensional array numCust keeps track of the number of customers having a reservation 
at a given reservable on a given day. 

public abstract class Broker 
{ 
   private int MaxDay; 



   private const int MAXRESERVATION = 10; 
   private static int nextReservation = 0; 
   private static int nextUnit = 0; 
   private int[,] numCust; 
   protected Reservation[] reservations; 
   protected Reservable[] units; 
   public Broker(int MaxDay, int MaxUnit) 
   { 
      this.MaxDay = MaxDay; 
      numCust = new int[MaxDay, MaxUnit]; 
      units = new Reservable[MaxUnit]; 
      reservations = new Reservation[MAXRESERVATION]; 
   } 
   ... 

ReservationResult

A simple structure is used for returning the result from making a reservation. 

public struct ReservationResult 
{ 
   public int ReservationId; 
   public decimal ReservationCost; 
   public decimal Rate; 
   public string Comment; 
} 

The Rate is the cost for one day, and ReservationCost is the total cost, which is equal to 
the number of days multiplied by the cost for one day. The ReservationId is returned as -1 
if there was a problem, and an explanation of the problem is provided in the Comment 
field. This structure is created so that result information can be passed in distributed 
scenarios, such as Web Services, where you cannot throw exceptions. 

Base Class Logic

The base class Broker not only represents the abstraction of a broker of any kind of 
reservable. It also contains general logic for booking reservations and maintaining a list of 
reservations. Our ability to capture this logic abstractly gives the power to this base class 
and will make implementing reservations in a derived class relatively simple. 

Reserve

The core method of the Broker class is Reserve. 

protected ReservationResult Reserve(Reservation res) 



{ 
   int unitid = res.UnitId; 
   DateTime dt = res.Date; 
   int numDays = res.NumberDays; 
   ReservationResult result = new ReservationResult(); 
   // Check if dates are within supported range 
   int day = dt.DayOfYear - 1; 
   if (day + numDays > MaxDay) 
   { 
      result.ReservationId = -1; 
      result.Comment = "Dates out of range"; 
      return result; 
   } 
   // Check if rooms are available for all dates 
   for (int i = day; i < day + numDays; i++) 
   { 
      if (numCust[i, unitid] >= units[unitid].capacity) 
      { 
         result.ReservationId = -1; 
         result.Comment = "Room not available"; 
         return result; 
      } 
   } 
   // Reserve a room for requested dates 
   for (int i = day; i < day + numDays; i++) 
      numCust[i, unitid] += 1; 
   // Add reservation to reservation list and 
   // return result 
   AddReservation(res); 
   result.ReservationId = res.ReservationId; 
   result.ReservationCost = units[unitid].cost * numDays; 
   result.Rate = units[unitid].cost; 
   result.Comment = "OK"; 
   return result; 
} 

The Reserve method is designed to implement booking several different kinds of 
reservations. Thus the Reservation object, which will be stored in the list of reservations, 
is created in a more specialized class derived from Broker and is passed as a parameter to 
Reserve. For example, a HotelBroker will book a HotelReservation, and so on. The 
UnitId, Date, and NumberDays fields are extracted from the Reservation object, and a 
ReservationResult object is created to be returned. 

protected ReservationResult Reserve(Reservation res) 
{ 



   int unitid = res.UnitId; 
   DateTime dt = res.Date; 
   int numDays = res.NumberDays; 
   ReservationResult result = new ReservationResult(); 
... 

Next we check that all the dates requested for the reservation are within the supported 
range (which for simplicity we are taking as a single year). We make use of the DateTime 
structure from the System namespace. We return an error if a date lies out of range. 

// Check if dates are within supported range 
int day = dt.DayOfYear - 1; 
if (day + numDays > MaxDay) 
{ 
   result.ReservationId = -1; 
   result.Comment = "Dates out of range"; 
   return result; 
} 
... 

Now we check that space is available for each date, using the numCust array that tracks 
how many customers currently have reservations for each day and comparing against the 
capacity. The first dimension of this two-dimensional array indexes on days, and the 
second dimension indexes on the unit id. (Note that for simplicity we have given our fields 
and methods names suitable for our initial application, a HotelBroker.) 

// Check if rooms are available for all dates 
for (int i = day; i < day + numDays; i++) 
{ 
   if (numCust[i, unitid] >= units[unitid].capacity) 
   { 
      result.ReservationId = -1; 
      result.Comment = "Room not available"; 
      return result; 
   } 
} 
... 

Next we actually reserve the unit for the requested days, which is implemented by 
incrementing the customer count in numCust for each day. 

// Reserve a room for requested dates 
for (int i = day; i < day + numDays; i++) 
   numCust[i, unitid] += 1; 
... 



Finally, we add the reservation to the list of reservations and return the result. 

   // Add reservation to reservation list and 
   // return result 
   AddReservation(res); 
   result.ReservationId = res.ReservationId; 
   result.ReservationCost = 
      units[unitid].cost * numDays; 
   result.Rate = units[unitid].cost; 
   result.Comment = "OK"; 
   return result; 
} 

Lists of Reservations and Reservables

The Broker class also maintains lists of reservations and reservables. For our simple array 
implementation we only implement Add methods. In a later version we will provide logic 
to remove elements from lists. 

private void AddReservation(Reservation res) 
{ 
   reservations[nextReservation++] = res; 
} 
protected void AddUnit(Reservable unit) 
{ 
   units[nextUnit++] = unit; 
} 

Designing the Encapsulation

In our current implementation of Broker all lists are represented by arrays. Since this 
implementation may not (and in fact will not) be preserved in later versions, we do not 
want to expose the arrays themselves or the subscripts that are used for manipulating the 
arrays. We provide public properties NumberUnits and NumberReservations to provide 
read-only access to the private variables nextUnit and nextReservation. 

public int NumberUnits 
{ 
   get 
   { 
      return nextUnit; 
   } 
} 
public int NumberReservations 



{ 
   get 
   { 
      return nextReservation; 
   } 
} 

In our Reservation class the simple fields ReservationId, UnitId, Date, and 
NumberDays are not likely to undergo a change in representation, so we do not 
encapsulate them. Later, if necessary, we could change some of these to properties, without 
breaking client code. For now, and likely forever, we simply use public fields. 

public abstract class Reservation 
{ 
   public int ReservationId; 
   public int UnitId; 
   public DateTime Date; 
   public int NumberDays; 
   ... 



Inheritance in C#

C# supports a single inheritance model. Thus a class may derive from a single 
base class, and not from more than one. (In fact, as we saw in the previous 
chapter, every class in C# ultimately derives from the root class System.Object. 
In C# we may use the alias object for this root class.) This single inheritance 
model is simple and avoids the complexities and ambiguities associated with 
multiple inheritance in C++. Although a C# class can inherit only from a single 
base class, it may inherit from several interfaces, a topic we will discuss in the 
next chapter. 

In this section we discuss inheritance in connection with a further elaboration of 
our hotel reservation case study. In the following section we will cover additional 
features of inheritance in C#, illustrated by an employee class hierarchy. 

Inheritance Fundamentals

With inheritance, you factor the abstractions in your object model, and put the 
more reusable abstractions in a high-level base class. You can add or change 
features in more specialized derived classes, which "inherit" the standard 
behavior from the base class. Inheritance facilitates code reuse and extensibility. 
A derived class can also provide a more appropriate interface to existing members 
of the base class. 

Consider Reservable as a base class, with derived classes such as Hotel. All 
reservables share some characteristics, such as an id, a capacity, and a cost. 
Different kinds of reservables differ in other respects. For example, a hotel has a 
City and a HotelName. 

C# Inheritance Syntax

You implement inheritance in C# by specifying the derived class in the class 
statement with a colon followed by the base class. The file HotelBroker.cs in the 
CaseStudy folder illustrates deriving a new class Hotel from the class 
Reservable. 

// HotelBroker.cs 

namespace OI.NetCs.Acme[1] 
{ 
   using System; 

   public class Hotel : Reservable 



   { 
      public string City; 
      public string HotelName; 

      public Hotel(string city, string name, 
                   int number, decimal cost) 
         : base(number, cost) 
      { 
         City = city; 
         HotelName = name; 
      } 
      public int HotelId 
      { 
         get 
         { 
            return unitid; 
         } 
      } 
      public int NumberRooms 
      { 
         get 
         { 
            return capacity; 
         } 
      } 
      public decimal Rate 
      { 
         get 
         { 
            return cost; 
         } 
      } 
   } 

[1] We discuss creating a namespace with the namespace directive 
later in the chapter.

The class Hotel automatically has all the members of Reservable, and in addition 
has the fields City and HotelName. 

Changing the Interface to Existing Members

The base class Reservable has members unitid, capacity, and cost, which are 



designed for internal use and are not intended to be exposed as such to the outside 
world. In the Hotel class we provide public properties HotelId, NumberRooms, 
and Rate to give clients read-only access to these fields. When we implement a 
property in this way, we can choose a name that is meaningful, such as 
NumberRooms, in place of a more abstract name, such as capacity, used in the 
base class. 

Invoking Base Class Constructors

If your derived class has a constructor with parameters, you may wish to pass 
some of these parameters along to a base class constructor. In C# you can 
conveniently invoke a base class constructor by using a colon, followed by the 
base keyword and a parameter list. 

public Hotel(string city, string name, 
             int number, decimal cost) 
   : base(number, cost) 
{ 
   City = city; 
   HotelName = name; 
} 

Note that the syntax allows you to explicitly invoke a constructor only of an 
immediate base class. There is no notation that allows you to directly invoke a 
constructor higher up the inheritance hierarchy. 



Access Control

C# has two means for controlling accessibility of class members. Access can be 
controlled at both the class level and the member level. 

Class Accessibility

An access modifier can be placed in front of the class keyword to control who 
can get at the class at all. Access can be further restricted by member 
accessibility, discussed in the next subsection. 

Public

The most common access modifier of a class is public, which makes the class 
available to everyone. Whenever we are implementing a class that anyone can 
use, we want to make it public. 

Internal

The internal modifier makes a class available within the current assembly, which 
can be thought of as a logical EXE or DLL. (Assemblies were introduced in 
Chapter 2 and will be discussed in more detail in Chapter 7.) All of our projects 
so far have built a single assembly, with both the client test program and the 
class(es) in this assembly. That means that if we had used internal for the class 
modifier, the programs would have still worked. But later, if we put our classes 
into a DLL and tried to access them from a client program in a separate EXE, any 
internal classes would not be accessible. So using public for class accessibility is 
generally a good idea. 

A common use of the internal modifier is for helper classes that are intended to 
be used only within the current assembly, and not generally. 

Note that if you omit the access modifier in front of a class, internal will be the 
default used by the compiler. 

Member Accessibility

Access to individual class members can be controlled by placing an access 
modifier such as public or private in front of the member. Member access can 
only further restrict access to a class, not widen it. Thus if you have a class with 
internal accessibility, making a member public will not make it accessible from 
outside the assembly. 



Public

A public member can be accessed from outside the class. 

Private

A private member can be accessed only from within the class (but not from 
derived classes). 

Protected

Inheritance introduces a third kind of accessibility, protected. A protected 
member can be accessed from within the class and from within any derived 
classes. 

Internal

An internal member can be accessed from within classes in the same assembly 
but not from classes outside the assembly. 

Internal Protected

An internal protected member can be accessed from within the assembly and 
from outside the assembly by a derived class. 

Access Control in the Case Study

The Reservable class in the file broker.cs illustrates most of the member access-
control options that we have been discussing. 

public abstract class Reservable 
{ 
   static private int nextid = 0; 
   protected int unitid; 
   internal protected int capacity; 
   internal protected decimal cost; 
   public Reservable(int capacity, decimal cost) 
   { 
      this.capacity = capacity; 
      this.cost = cost; 
      unitid = nextid++; 
   } 
} 



The static member nextid is strictly private, because it is used for autogenerating 
an id and has no use outside the class. The member unitid is protected because it 
is used in derived classes, such as Hotel, but not elsewhere. The members 
capacity and cost are used both in derived classes (such as Hotel) and in the class 
Broker, which is not a derived class but is in the same assembly. The internal 
protected access-control specification is ideal for this case. Note that if we had 
used just internal, the program would have still compiled. But since later we may 
wish to implement derived classes in other assemblies, internal protected is 
more appropriate. Finally, the constructor is public. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Acme Travel Agency Case Study: Implementation

With the abstractions Reservable, Reservation, and Broker already in place, it now becomes 
very easy to implement a reservation system for a particular kind of reservable, such as a 
Hotel. Figure 4-2 illustrates our inheritance hierarchy. Hotel derives from Reservable, 
HotelReservation derives from Reservation, and HotelBroker derives from Broker. 

Figure 4-2. Class hierarchy for Acme hotel reservation system.

 

In this section we will examine key pieces of the implementation of the case study, which is in 
the CaseStudy folder for this chapter. 

Running the Case Study

Before proceeding with our code walkthrough, it would be a good idea to build and run the 
case study. The program TestBroker.exe is a console application. By typing "help" at the 
command prompt, you can obtain a list of commands: 

Enter command, quit to exit 
H> help 
The following commands are available: 
        hotels    shows all hotels in a city 
        all       shows all hotels 
        cities    shows all cities 
        add       adds a hotel 
        book      book a reservation 
        bookings  show all bookings 
        register  register a customer 
        email     change email address 
        show      show customers 
        quit      exit the program 
H> 



Experiment with this program until you have a clear understanding of its various features. 

HotelReservation

HotelReservation is a simple class derived from Reservation. The code is in the file 
hotelbroker.cs. It adds some additional public fields and provides the property ArrivalDate 
as a more meaningful wrapper around the generic Date field of the base class. 

public class HotelReservation : Reservation 
{ 
   public int CustomerId; 
   public string HotelName; 
   public string City; 
   public DateTime DepartureDate; 
   public DateTime ArrivalDate 
   { 
      get 
      { 
         return Date; 
      } 
      set 
      { 
         Date = value; 
      } 
   } 
} 

HotelBroker

The heart of the implementation is the HotelBroker class, derived from Broker. The code is 
also in the file hotelbroker.cs. 

public class HotelBroker : Broker 
{ 
   private const int MAXDAY = 366; 
   private const int MAXUNIT = 10; 
   private const int MAXCITY = 5; 
   static private int nextCity = 0; 
   private string[] cities; 
   public HotelBroker() : base(MAXDAY, MAXUNIT) 
   { 
      cities = new String[MAXCITY]; 
      AddHotel("Atlanta", "Dixie", 100, 115.00M); 
      AddHotel("Atlanta", "Marriott", 500, 
         70.00M); 
      AddHotel("Boston", "Sheraton", 250, 



         95.00M); 
   } 
   ... 

There are constants for various array definitions and a new array to hold the cities. The 
constructor passes some array definitions to the base class, initializes the cities array, and adds 
some starter hotels as test data. 

The next part of the code defines a NumberCity property and provides a method to add a 
hotel. 

public int NumberCity 
{ 
   get 
   { 
      return nextCity; 
   } 
} 
public string AddHotel(string city, string name, 
                       int number, decimal cost) 
{ 
   if (FindId(city, name) != -1) 
      return "Hotel is already on the list"; 
   Hotel hotel = new Hotel(city, name, number, cost); 
   AddUnit(hotel); 
   AddCity(city); 
   return "OK"; 
} 
... 

Private helper functions are provided to find the id of a hotel and to add a city to the list of 
cities. A city can be added only if it is not already on the list; duplicates are not permitted. 

private int FindId(string city, string name) 
{ 
   for (int i = 0; i < NumberUnits; i++) 
   { 
      Hotel hotel = (Hotel) units[i]; 
      if ((hotel.City == city) 
         && (hotel.HotelName == name)) 
         return hotel.Id; 
   } 
   return -1; 
} 
private void AddCity(string city) 
{ 



   // check if city already on list, add if not 
   if (!Contains(city)) 
      cities[nextCity++] = city; 
} 
private bool Contains(string city) 
{ 
   for (int i = 0; i < NumberCity; i++) 
   { 
      if (cities[i] == city) 
         return true; 
   } 
   return false; 
} 

Methods are provided to show all the hotels, all the hotels in a given city, and to show the 
cities. You may wish to examine this code for a review of formatting in C#. 

We finally come to the key method Reserve, which is used to book a hotel reservation. 

public ReservationResult Reserve(int customerId, 
   string city, string name, DateTime dt, int numDays) 
{ 
   int id = FindId(city, name); 
   if (id == -1) 
   { 
      ReservationResult result = 
         new ReservationResult(); 
      result.ReservationId = -1; 
      result.Comment = "Hotel not found"; 
      return result; 
   } 
   HotelReservation res = new HotelReservation(); 
   res.UnitId = id; 
   res.CustomerId = customerId; 
   res.HotelName = name; 
   res.City = city; 
   res.ArrivalDate = dt; 
   res.DepartureDate = dt + new TimeSpan(numDays, 0, 0, 0); 
   res.NumberDays = numDays; 
   return Reserve(res); 
} 

The code in this class is very simple, because it relies upon logic in the base class Broker. An 
error is returned if the hotel cannot be found on the list of hotels. Then a HotelReservation 
object is created, which is passed to the Reserve method of the base class. We create the 
reservation object in the derived class, because we are interested in all the fields of the derived 



HotelReservation class, not just the fields of the base Reservation class. We have previously 
used the DateTime structure, and we now use the TimeSpan structure in calculating the 
departure date by adding the number of days of the stay to the arrival date. This calculation 
relies on the fact that the + operator is overloaded in the DateTime structure. 

Customers

No reservation system can exist without modeling the customers that use it. The Customers 
class in the file customer.cs maintains a list of Customer objects. Again we use an array as 
our representation. This code has very similar structure to code dealing with hotels, and so we 
show it only in outline form, giving the data structures and the declarations of the public 
methods and properties. 

// Customer.cs 

namespace OI.NetCs.Acme 
{ 
  using System; 

  public class Customer 
  { 
     public int CustomerId; 
     public string FirstName; 
     public string LastName; 
    public string EmailAddress; 
    static private int nextCustId = 1; 
    public Customer(string first, string last, 
                    string email) 
    { 
      CustomerId = nextCustId++; 
      FirstName = first; 
      LastName = last; 
      EmailAddress = email; 
    } 
  } 

  public class Customers 
  { 
    private Customer[] customers; 
    static private int nextCust = 0; 
    public Customers(int MaxCust) 
    { 
      customers = new Customer[MaxCust]; 
      RegisterCustomer("Rocket","Squirrel", 
                      "rocky@frosbitefalls.com"); 
      RegisterCustomer("Bullwinkle", "Moose", 
                       "moose@wossamotta.edu"); 



    } 
    public int NumberCustomers 
    ... 
    public int RegisterCustomer(string firstName, 
       string lastName, string emailAddress) 
    ... 
    public void ShowCustomers(int customerId) 
    ... 
    public void ChangeEmailAddress(int id, 
       string emailAddress) 
    ... 

Namespace

All case study code is in the namespace OI.NetCs.Acme. All of the files defining classes 
begin with a namespace directive. There is a corresponding using directive, which you will 
see in the file TestHotel.cs. 

// Customer.cs 

namespace OI.NetCs.Acme 
{ 
... 

TestHotel

The TestHotel class in the file TestHotel.cs contains an interactive program to exercise the 
hotel and customer classes, supporting the commands shown previously where we suggested 
running the case study. There is a command loop to read in a command and then exercise it. 
There is a big try block around all the commands with a catch handler afterward. Note the 
using statement to gain access to the namespace. 

// TestHotel.cs 

using System; 
using OI.NetCs.Acme; 

public class TestHotel 
{ 
   public static void Main() 
   { 
      const int MAXCUST = 10; 
      HotelBroker hotelBroker = new HotelBroker(); 
      Customers customers = new Customers(MAXCUST); 
      InputWrapper iw = new InputWrapper(); 
      string cmd; 



      Console.WriteLine("Enter command, quit to exit"); 
      cmd = iw.getString("H> "); 
      while (! cmd.Equals("quit")) 
      { 
         try 
         { 
            if (cmd.Equals("hotels")) 
            { 
               string city = iw.getString("city:"); 
               hotelBroker.ShowHotels(city); 
            } 
            else if (cmd.Equals("all")) 
               hotelBroker.ShowHotels(); 
            ... 
            else 
               hotelhelp(); 
         } 
         catch (Exception e) 
         { 
            Console.WriteLine( 
               "Exception: {0}", e.Message); 
         } 
         cmd = iw.getString("H> "); 
      } 
   } 
   private static void hotelhelp() 
   { 
      Console.WriteLine( 
      "The following commands are available:"); 
   ... 
   } 
} 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


More about Inheritance

Our case study has illustrated many important features of object-oriented 
programming, but there is more to the story. Methods in a derived class may hide the 
corresponding method in the base class, possibly making use of the base class 
method in their implementation. Alternatively, the base class may have virtual 
methods, which are not bound to an object at compile time but are bound 
dynamically at runtime. A derived class may override a virtual method. This 
dynamic behavior enables polymorphic code, which is general code that applies to 
classes in a hierarchy, and the specific class that determines the behavior is 
determined at runtime. 

C# provides keywords virtual and override that precisely specify in base and 
derived classes, respectively, that the programmer is depending on dynamic binding. 
By providing a mechanism to specify polymorphic behavior in the language, C# 
helps programs deal with an issue known as the fragile base class problem, which 
can result in unexpected behavior in a program when a base class in a library is 
modified but the program itself is unchanged. 

Employee Class Hierarchy

In this section we will use a much simpler class hierarchy to illustrate the important 
concepts. The base class is Employee, which has a public field Name. There are two 
derived classes. The SalaryEmployee class has a salary field. The WageEmployee 
class has fields for an hourly rate of pay and for the number of hours worked. 
Figure 4-3 illustrates this simple class hierarchy. 

Figure 4-3. Employee class hierarchy.



 

Method Hiding

A derived class inherits the methods of its base class, and these inherited methods 
are automatically available "as is." Sometimes we may want the derived class to do 
something a little different for some of the methods of the base class. In this case we 
will put code for these changed methods in the derived class, and we say the derived 
class "hides" the corresponding methods in the base class. Note that hiding a method 
requires that the signatures match exactly. (As we discussed in Chapter 3, methods 
have the same signature if they have the same number of parameters, and these 
parameters have the same types and modifiers, such as ref or out. The return type 
does not contribute to defining the signature of a method.) 

In C#, if you declare a method in a derived class that has the same signature as a 
method in the base class, you will get a compiler warning message. In such a 



circumstance, there are two things you may wish to do. The first is to hide the base 
class method, which is what we discuss in this section. The second is to override the 
base class method, which we will discuss in the next section. 

To hide a base class method, place the keyword new in front of the method in the 
derived class. When you hide a method of the base class, you may want to call the 
base class method within your implementation of the new method. You can do this 
by using the keyword base, followed by a period, followed by the method name and 
actual parameters. 

The example program HideEmployee illustrates method hiding. This program has 
the Employee base class and the SalaryEmployee derived class. Each class has a 
Show method. The derived class's Show method hides the Show method of the base 
class. But the derived class can call the base class Show method through the base 
keyword. Here is the code: 

// Employee.cs 

using System; 

public class Employee 
{ 
   public string Name; 
   public Employee(string name) 
   { 
      Name = name; 
   } 
   public void Show() 
   { 
      Console.WriteLine("name = {0}", Name); 
   } 
} 

public class SalaryEmployee : Employee 
{ 
   private decimal salary; 
   public SalaryEmployee(string name, 
                         decimal salary) 
      : base(name) 
   { 
      this.salary = salary; 
   } 
   new public void Show() 
   { 



      base.Show(); 
      Console.WriteLine( 
         "salary = {0:C}", salary); 
   } 
} 

If you delete the new in the derived class Show method, you will get a compiler 
warning message: 

warning CS0108: The keyword new is required on 
'SalaryEmployee.Show()' because it hides 
inherited member 'Employee.Show()' 

Static Binding

In C# the normal way methods are tied to classes is through static binding. That 
means the object reference type is used at compile time to determine the class whose 
method is called. The HideEmployee program we just looked at illustrates static 
binding, using a simple Employee class and a derived SalaryEmployee class. Here 
is the test program: 

// TestEmployee.cs 

using System; 

public class TestEmployee 
{ 
   public static void Main(string[] args) 
   { 
      Employee emp = new Employee("Ellen"); 
      SalaryEmployee sal = 
         new SalaryEmployee("Sally", 100m); 
      emp.Show(); 
      sal.Show(); 
      //sal = emp; 
      emp = sal; 
      emp.Show(); 
   } 
} 

In this program emp is an object reference of type Employee. Calling Show through 
this object reference will always result in Employee.Show being called, no matter 
what kind of object emp may actually be referring to. Here is the output. Notice that 



the second time we call Show through emp we are still getting the Employee 
version of Show (only the name is displayed). 

name = Ellen 
name = Sally 
salary = $100.00 
name = Sally 
Press any key to continue 

Type Conversions in Inheritance

This program also illustrates another feature of inheritance, type conversions. After 
the objects emp and sal have been instantiated, the object references will be 
referring to different objects, one of type Employee and the other of type 
SalaryEmployee. Note that the SalaryEmployee object has an additional field, 
salary. 

The test program tries two type conversions: 

//sal = emp; 
emp = sal; 

The first assignment is illegal (as you can verify by uncommenting and trying to 
compile). Suppose the assignment were allowed. Then you would have an object 
reference of type SalaryEmployee referring to an Employee object. If the 
conversion "down the hierarchy" (from a base class to a derived class) were allowed, 
the program would be open to a bad failure at runtime. What would happen if the 
code tried to access a nonexistent member, such as sal accessing the member 
salary? 

The opposite assignment: 

emp = sal; 

is perfectly legal. We are converting "up the hierarchy." This is okay because of the 
IS-A relationship of inheritance. A salary employee "is" an employee. It is a special 
kind of employee. Everything that applies to an employee also applies to a salary 
employee. There is no "extra field" in the Employee class that is not also present in 
the SalaryEmployee class. 

Virtual Methods

In C# you can specify that a method in C# will be bound dynamically. Only at 



runtime will it be determined whether the base or derived class's method will be 
called. The program VirtualEmployee illustrates this behavior. The file 
VirtualEmployee.cs contains class definitions for a base class and a derived class, 
as before. But this time the Show method is declared as virtual in the base class. In 
the derived class the Show method is declared override (in place of new that we 
used before with method hiding). Now the Show method in the derived class does 
not hide the base class method but overrides it. 

// VirtualEmployee.cs 

using System; 

public class Employee 
{ 
   public string Name; 
   public Employee(string name) 
   { 
      Name = name; 
   } 
   virtual public void Show() 
   { 
      Console.WriteLine("name = {0}", Name); 
   } 
} 

public class SalaryEmployee : Employee 
{ 
   private decimal salary; 
   public SalaryEmployee(string name, 
                         decimal salary) 
      : base(name) 
   { 
      this.salary = salary; 
   } 
   override public void Show() 
   { 
      base.Show(); 
      Console.WriteLine( 
         "salary = {0:C}", salary); 
   } 
} 

We use the same test program. Here is the output. Now, the second time we call 



Show through sal, we will be getting the SalaryEmployee.Show method, showing 
the salary as well as the name. 

name = Ellen 
name = Sally 
salary = $100.00 
name = Sally 
salary = $100.00 
Press any key to continue 

Virtual Methods and Efficiency

Virtual method invocation (dynamic binding) is slightly less efficient than calling an 
ordinary nonvirtual method (static binding). With a virtual method call, there is 
some overhead at runtime associated with determining which class's method will be 
invoked. C# allows you to specify in a base class whether you want the flexibility of 
a virtual method or the slightly greater efficiency of a nonvirtual method. You 
simply decide whether or not to use the keyword virtual. (In some languages all 
methods are virtual, and you don't have this choice.) 

Method Overriding

The override keyword in C# is very useful for making programs clearer. In some 
languages, such as C++, there is no special notation for overriding a method in a 
derived class. You simply declare a method with the same signature as a method in 
the base class. If the base class method is virtual, the behavior is to override. If the 
base class method is not virtual, the behavior is to hide. In C# this behavior is made 
explicit. 

The Fragile Base Class Problem

One subtle pitfall in object-oriented programming is the fragile base class problem. 
Suppose the override keyword syntax did not exist. Suppose further that you derive 
a class from a third-party class library, and you have a method in the derived class 
that does not hide or override any method in the base class. 

Now a new version of the class library comes out, and the base class has a new 
virtual method whose signature happens to match one of the methods in your class. 
Now you can be in trouble! Classes that derive from your class may now behave in 
unexpected ways. Code that was "expected" to call the new method in the class 
library—or in code in a derived class that deliberately overrides this method—may 
now call your method that has nothing whatever to do with the method in the class 
library. 



This situation is rare, but if it occurs it can be extremely vicious. Fortunately, C# 
helps you avoid such situations by requiring you to use the override keyword if you 
are indeed going to perform an override. If you do not specify either override or 
new and a method in your derived class has the same signature as a method in a base 
class, you will get a compiler error or warning. Thus, if you build against a new 
version of the class library that introduces an accidental signature match with one of 
your methods, you will get warned by the compiler. 

COM and the Fragile Base Class 
Problem

There is no inheritance in Microsoft's Component Object Model (COM). 
Microsoft used the fragile base class problem as a rationale for not 
providing inheritance. The issue is much more important for binary 
components, such as COM objects, than for traditional class libraries 
distributed in source code, because if the problem arises and you have no 
source for the library, your options are limited. The real killer is for the 
problem not to reveal itself in the development lab, but to crop up only in 
the field after the application has been deployed. 

Microsoft .NET has similar aims to COM in providing binary components 
in multiple languages. The C# override concept uses a corresponding 
feature of .NET, so .NET is able to effectively utilize inheritance with less 
vulnerability than COM would have had. 

Polymorphism

Virtual functions make it easy to write polymorphic code in C#. Our employee 
example illustrates the concept of polymorphic code. Imagine a large system with a 
great many different kinds of employees. How will you write and maintain code that 
deals with all these different employee types? 

A traditional approach is to have a "type field" in an employee structure. Then code 
that manipulates an employee can key off this type field to determine the correct 
processing to perform, perhaps using a switch statement. Although straightforward, 
this approach can be quite tedious and error-prone. Introducing a new kind of 
employee can require substantial maintenance. 

Polymorphism can offer a cleaner solution. You organize the different kinds of 
employees in a class hierarchy, and you structure your program so that you write 
general-purpose methods that act upon an object reference whose type is that of the 
base class. Your code calls virtual methods of the base class. The call will be 
automatically dispatched to the appropriate class, depending on what kind of 



employee is actually being referenced. 

You trade off some slight degradation in runtime performance for more reliable code 
development. 

The program PolyEmployee\Step1 provides an illustration. The GetPay method is 
virtual, and methods in the derived class will override it. Here is the code for the 
base class: 

// Employee.cs 

public class Employee 
{ 
      public string Name; 
      public Employee(string name) 
      { 
            Name = name; 
      } 
      virtual public decimal GetPay() 
      { 
            return 1.0m; 
      } 
} 

Methods in the derived classes override the virtual method in the base class. Here is 
the code for SalaryEmployee: 

// SalaryEmployee.cs 

public class SalaryEmployee : Employee 
{ 
   private decimal salary; 
   public SalaryEmployee(string name, decimal salary) 
             : base(name) 
   { 
        this.salary = salary; 
   } 
   override public decimal GetPay() 
   { 
      return salary; 
   } 
} 



The WageEmployee class provides its own override of GetPay, where pay is 
calculated differently. 

// WageEmployee.cs 

using System; 

public class WageEmployee : Employee 
{ 
   private decimal rate; 
   private double hours; 
   public WageEmployee(string name, decimal rate, 
                       double hours) 
      : base(name) 
   { 
      this.rate = rate; 
      this.hours = hours; 
   } 
   override public decimal GetPay() 
   { 
      return rate * Convert.ToDecimal(hours); 
   } 
} 

The payoff comes in the client program, which can now call GetPay 
polymorphically. Here is the code for the test program: 

// TestPoly.cs 

using System; 

public class TestPoly 
{ 
   private static Employee[] employees; 
   private const int MAXEMPLOYEE = 10; 
   private static int nextEmp = 0; 
   public static void Main(string[] args) 
   { 
      employees = new Employee[MAXEMPLOYEE]; 
      AddSalaryEmployee("Amy", 500.00m); 
      AddWageEmployee("Bob", 15.00m, 40); 
      AddSalaryEmployee("Charlie", 900.00m); 
      PayReport(); 



   } 
   private static void AddSalaryEmployee( 
      string name, decimal salary) 
   { 
      employees[nextEmp++] = 
         new SalaryEmployee(name, salary); 
   } 
   private static void AddWageEmployee( 
      string name, decimal rate, double hours) 
   { 
      employees[nextEmp++] = 
         new WageEmployee(name, rate, hours); 
   } 
   private static void PayReport() 
   { 
      for (int i = 0; i < nextEmp; i++) 
      { 
         Employee emp = employees[i]; 
         string name = emp.Name.PadRight(10); 
         string pay = string.Format("{0:C}", 
emp.GetPay()); 
         string str = name + pay; 
         Console.WriteLine(str); 
      } 
   } 
} 

Here is the output: 

Amy       $500.00 
Bob       $600.00 
Charlie   $900.00 

Abstract Classes

Sometimes it does not make sense to instantiate a base class. Instead, the base class 
is used to define a standard template to be followed by the various derived classes. 
Such a base class is said to be abstract, and it cannot be instantiated. In C# you can 
designate a base class as abstract by using the keyword abstract. The compiler will 
then flag an error if you try to instantiate the class. 

An abstract class may have abstract methods, which are not implemented in the class 
but only in derived classes. The purpose of an abstract method is to provide a 



template for polymorphism. The method is called through an object reference to the 
abstract class, but at runtime the object reference will actually be referring to one of 
the concrete derived classes. The keyword abstract is also used to declare abstract 
methods. In place of curly brackets and implementation code, you simply provide a 
semicolon after the declaration of the abstract method. 

An abstract class can be used to provide a cleaner solution of our polymorhphic 
payroll example. In the Step 1 solution we discussed previously, there was a virtual 
function GetPay in the base class which returned an arbitrary amount of $1.00. We 
know that this method is going to be overridden, and in fact the Employee class will 
itself never be instantiated. Hence we make Employee an abstract class and GetPay 
an abstract method. This solution is illustrated in PolyEmployee\Step2. 

// Employee.cs 

using System; 

abstract public class Employee 
{ 
   public string Name; 
   public Employee(string name) 
   { 
      Name = name; 
   } 
   abstract public decimal GetPay(); 
} 

Sealed Classes

At the opposite end of the spectrum from abstract classes are sealed classes. While 
you must derive from an abstract class, you cannot derive from a sealed class. A 
sealed class provides functionality that you can use as is, but you cannot derive from 
the class and hide or override some of the methods. An example in the .NET 
Framework class library of a sealed class is System.String. 

Marking a class as sealed protects against unwarranted class derivations. It can also 
make the code a little more efficient, because any virtual functions inherited by the 
sealed class are automatically treated by the compiler as nonvirtual. 

In C# you use the sealed keyword to mark a class as sealed. 

Heterogeneous Collections



A class hierarchy can be used to implement heterogeneous collections that can be 
treated polymorphically. For example, you can create an array whose type is that of 
a base class. Then you can store within this array object references whose type is the 
base class, but which actually may refer to instances of various derived classes in the 
hierarchy. You may then iterate through the array and call a virtual method. The 
appropriate method will be called for each object in the array. 

The program PolyEmployee example illustrates a heterogeneous array of three 
employees, which are a mixture of salary and wage employees. 



Summary

In this chapter we studied, in detail, the object-oriented aspects of C#, with an 
emphasis on inheritance. After a review of the fundamentals of object-oriented 
programming, we introduced the Acme Travel Agency case study, which runs as 
a strand throughout the entire book. We examined the suitable abstractions that 
enable us to implement a reservation system for a variety of resources that must 
be reserved, and we provided an implementation of a hotel reservation system. 
The abstract base classes we defined provide reusable code that can enable us to 
easily implement other kinds of reservation systems. The key is finding the right 
abstractions. 

We saw how C# language features facilitate object-oriented programming. 
Certain details of C#, such as use of access control (public, private and protected) 
and properties can help express abstractions in a way that is safe and easy to use. 

We concluded the chapter by looking at other object-oriented features of C#, such 
as virtual methods, method hiding, method overriding, and polymorphism. A 
pitfall in languages supporting inheritance is the fragile base class problem, and 
we have seen how C# helps in avoiding this pitfall. 



Chapter 5. C# in the .NET Framework

C# as a language is elegant and powerful. To fully use its capabilities you need to 
understand how it works within the .NET Framework. We begin with the root 
class object. Collections are examined next, including the methods of the object 
class that should be overridden to tap into the functionality provided by the .NET 
Framework. We then introduce interfaces, which allow you to rigorously define a 
contract for a class or struct to implement. In C# a class can implement multiple 
interfaces, even though it can inherit from only one class. Interfaces allow for 
dynamic programming; you can query a class at runtime to see whether it 
supports a particular interface. 

The interfaces supporting collections are examined in detail. We investigate 
issues involved in copying objects, such as shallow copy and deep copy. Instead 
of using copy constructors as in C++, in C# you implement the ICloneable 
interface. We explore generic interfaces in the .NET Framework programming 
model and compare the .NET and COM component models. A further illustration 
of generic interfaces is provided by sorting in different orders with the 
IComparable interface. The examples offer insight into the workings of 
frameworks, which are more than class libraries. In a framework, you call the 
framework, and the framework calls you. Your code can be viewed as the middle 
layer of a sandwich. This key insight can help you grasp what makes .NET 
programming "tick." While callback functions have been used for years in 
programming, C# uses this concept in delegates and events. Two simple and 
intuitive examples are presented: a stock market simulation and an online chat 
room. The chapter concludes with a discussion of attributes, which are pervasive 
in the .NET Framework. 



System.Object

As we have already seen, every type in C#, whether it is a value type or a reference type, 
ultimately inherits from the root class System.Object. C# provides object as a keyword 
alias for this root class. The class ValueType inherits directly from object. ValueType is 
the root for all value types, such as structures and simple types like int and decimal. 

Public Instance Methods of object

There are four public instance methods of object, three of which are virtual and 
frequently overridden by classes. 

Equals

public virtual bool Equals(object obj); 

This method compares an object with the object passed as a parameter and returns true if 
they are equal. object implements this method to test for reference equality. ValueType 
overrides the method to test for content equality. Many classes override the method to 
make equality behave appropriately for the particular class. 

ToString

public virtual string ToString(); 

This method returns a human-readable string representation of the object. The default 
implementation returns the type name. Derived classes frequently override this method to 
return a meaningful string representation of the particular object. 

GetHashCode

public virtual int GetHashCode(); 

This method returns a hash value for an object, suitable for use in hashing algorithms and 
hash tables. You should normally override this method if you override ToString. (The 
C# compiler will give you a warning message if you override one and not the other.) 

GetType

public Type GetType(); 

This method returns type information for the object. This type information can be used to 
get the associated metadata through reflection, a topic we discuss in Chapter 8. 



Protected Instance Methods

There are two protected instance methods, which can be used only within derived classes. 

MemberWiseClone

protected object MemberwiseClone(); 

This method creates a shallow copy of the object. To perform a deep copy, you should 
implement the ICloneable interface We will discuss shallow and deep copy later in this 
chapter. 

Finalize

~Object(); 

This method allows an object to free resources and perform other cleanup operations 
before it is reclaimed by garbage collection. In C# the Finalize method is represented by 
"destructor" notation like that used in C++. But note that the semantics are totally 
different. In C++, destructors are invoked in a deterministic manner, which the 
programmer can depend upon. In C#, finalization is nondeterministic, dependent upon the 
garbage collector. We discuss finalization in Chapter 8. 

Generic Interfaces and Standard Behavior

If you are used to a language like Smalltalk, the set of behaviors specified in object may 
seem quite limited. Smalltalk, which introduced the concept of a class hierarchy rooted in 
a common base class, has a very rich set of methods defined in its Object class. I counted 
38 methods! [1] These additional methods support features such as comparing objects and 
copying objects. The .NET Framework class library has similar methods, and many more. 
But rather than putting them all in a common root class, .NET defines a number of 
standard interfaces, which classes can optionally support. This kind of organization, 
which is also present in Microsoft's Component Object Model (COM) and in Java, is very 
flexible. We will study interfaces later in this chapter, and we will discuss some of the 
generic interfaces of the .NET Framework. 

[1] The methods of Smalltalk's Object class are described in Chapters 6 and 14 
of Smalltalk-80: The Language and its Implementation, by Adele Goldberg and 
David Robson.

Using object Methods in the Customer Class

As a simple illustration of object methods, let's look at our Customer class before and 
after overriding the Equals, ToString, and GetHashCode methods. 



Default Methods of Object

If our class does not provide any overrides of the virtual instance methods of object, our 
class will inherit the standard behavior. This behavior is demonstrated in 
CustomerObject\Step1. 

// Customer.cs 

public class Customer 
{ 
   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
   public Customer(int id, string first, string last, 
                   string email) 
   { 
      CustomerId = id; 
      FirstName = first; 
      LastName = last; 
      EmailAddress = email; 
   } 
} 

Here is the test program: 

// TestCustomer.cs 

using System; 

public class TestCustomer 
{ 
   public static void Main() 
   { 
      Customer cust1, cust2; 
      cust1 = new Customer(99, "John", "Doe", 
                           "john@rocky.com"); 
      cust2 = new Customer(99, "John", "Doe", 
                           "john@rocky.com"); 
      ShowCustomerObject("cust1", cust1); 
      ShowCustomerObject("cust2", cust2); 
      CompareCustomerObjects(cust1, cust2); 
   } 
   private static void ShowCustomerObject(string label, 



                                          Customer cust) 
   { 
      Console.WriteLine("---- {0} ----", label); 
      Console.WriteLine("ToString() = {0}", 
                        cust.ToString()); 
      Console.WriteLine("GetHashCode() = {0}", 
                        cust.GetHashCode()); 
      Console.WriteLine("GetType() = {0}", 
           cust.GetType()); 
   } 
   private static void CompareCustomerObjects( 
      Customer cust1, Customer cust2) 
   { 
      Console.WriteLine("Equals() = {0}", 
                        cust1.Equals(cust2)); 
   } 
} 

Run the test program and you will see this output: 

---- cust1 ----
ToString() = Customer 
GetHashCode() = 4 
GetType() = Customer 
---- cust2 ----
ToString() = Customer 
GetHashCode() = 6 
GetType() = Customer 
Equals() = False 

The default implementation is not at all what we want for our Customer object. 
ToString returns the name of the class, not information about a particular customer. 
Equals checks for reference equality. In our example, we have two different references to 
Customer objects with the same content, and Equals return false. 

Overriding Methods of Object

The version of the project in CustomerObject\Step2 demonstrates overriding these 
virtual methods. Our override of Equals tests for content equality. 

// Customer.cs 

public class Customer 
{ 



   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
   public Customer(int id, string first, string last, 
                   string email) 
   { 
      CustomerId = id; 
      FirstName = first; 
      LastName = last; 
      EmailAddress = email; 
   } 
   public override bool Equals(object obj) 
   { 
      Customer cust = (Customer) obj; 
      return (cust.CustomerId == CustomerId); 
   } 
   public override int GetHashCode() 
   { 
      return CustomerId; 
   } 
   public override string ToString() 
   { 
      return FirstName + " " + LastName ; 
   } 
} 

The test program is identical. Here is the new output: 

---- cust1 ----
ToString() = John Doe 
GetHashCode() = 99 
GetType() = Customer 
---- cust2 ----
ToString() = John Doe 
GetHashCode() = 99 
GetType() = Customer 
Equals() = True 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Collections

The .NET Framework class library provides an extensive set of classes for working with 
collections of objects. These classes are all in the System.Collections namespace and 
implement a number of different kinds of collections, including lists, queues, stacks, arrays, 
and hashtables. The collections contain object instances. Since all types derive ultimately 
from object, any built-in or user-defined type may be stored in a collection. 

In this section we will look at a representative class in this namespace, ArrayList, and see 
how to use array lists in our programs. 

ArrayList Example

To get our bearings, let's begin with a simple example of using the ArrayList class. An 
array list, as the name suggests, is a list of items stored like an array. An array list can be 
dynamically sized and will grow as necessary to accommodate new elements being added. 

Collection classes are made up of instances of type object. We will create and manipulate a 
collection of Customer objects. We could just as easily create a collection of any other built-
in or user-defined type. If our type were a value type, such as int, the instance would be 
boxed before being stored in the collection. When the object is extracted from the collection, 
it will be unboxed back to int. 

Our example program is CustomerCollection. It initializes a list of customers and then lets 
the user show the customers, register a new customer, unregister a customer, and change an 
email address. A simple "help" method displays the commands that are available: 

Enter command, quit to exit 
H> help 
The following commands are available: 
        register   register a customer 
        unregister unregister a customer 
        email      change email address 
        show       show customers 
        quit       exit the program 

Before examining the code it would be a good idea to run the program to register a new 
customer, show the customers, change an email address, unregister a customer, and show the 
customers again. Here is a sample run of the program: 

H> show 
id (-1 for all): -1 
   1   Rocket       Squirrel    rocky@frosbitefalls.com 
   2   Bullwinkle   Moose       moose@wossamotta.edu 
H> register 
first name: Bob 



last name: Oberg 
email address: oberg@objectinnovations.com 
id = 3 
H> email 
customer id: 1 
email address: rocky@objectinnovations.com 
H> unregister 
id: 2 
H> show 
id (-1 for all): -1 
   1   Rocket       Squirrel 
rocky@objectinnovations.com 
   3   Bob          Oberg 
oberg@objectinnovations.com 

Customers Class

All the code for this project is in the folder CustomerCollection. The file customer.cs has 
code for the Customer and Customers classes. The code for Customer is almost identical 
to what we looked at previously. The only addition is a special constructor that instantiates a 
Customer object with a specified id. We use this constructor in the Customers class when 
we remove an element and when we check if an element is present in the collection. 

public class Customer 
{ 
... 
   public Customer(int id) 
   { 
      CustomerId = id; 
      FirstName = ""; 
      LastName = ""; 
      EmailAddress = ""; 
   } 
... 
} 

The Customers class contains a list of customers, represented by an ArrayList. 

public class Customers 
{ 
   private ArrayList customers; 
   public Customers() 
   { 
      customers = new ArrayList(); 
      RegisterCustomer("Rocket", "Squirrel", 



                       "rocky@frosbitefalls.com"); 
      RegisterCustomer("Bullwinkle", "Moose", 
                       "moose@wossamotta.edu"); 
   } 
   public int RegisterCustomer(string firstName, 
      string lastName, string emailAddress) 
   { 
      Customer cust = new Customer(firstName, lastName, 
                                   emailAddress); 
      customers.Add(cust); 
      return cust.CustomerId; 
   } 
   public void UnregisterCustomer(int id) 
   { 
      Customer cust = new Customer(id); 
      customers.Remove(cust); 
   } 
   public void ChangeEmailAddress(int id, 
                                  string emailAddress) 
   { 
      foreach (Customer cust in customers) 
      { 
         if (cust.CustomerId == id) 
         { 
            cust.EmailAddress = emailAddress; 
            return; 
         } 
      } 
      throw new Exception("id " + id + " not found"); 
   } 
   public void ShowCustomers(int id) 
   { 
      if (!CheckId(id) && id != -1) 
         return; 
      foreach (Customer cust in customers) 
      { 
         if (id == -1 || id == cust.CustomerId) 
         { 
            string sid = 
               cust.CustomerId.ToString().PadLeft(4); 
            string first = cust.FirstName.PadRight(12); 
            string last = cust.LastName.PadRight(12); 
            string email = cust.EmailAddress.PadRight(20); 
            string str = sid + "   " + first + "   " + 
               last + "   " + email; 



            Console.WriteLine(str); 
         } 
      } 
   } 
   private bool CheckId(int id) 
   { 
      Customer cust = new Customer(id); 
      return customers.Contains(cust); 
   } 
} 

The lines in the listing in bold show the places where we are using collection class features. 
In Chapter 3 we have already used foreach with arrays. The reason foreach can be used 
with arrays is that the Array class, like ArrayList, implements the IEnumerable interface 
that supports foreach syntax. We will discuss IEnumerable and the other collection 
interfaces later in this chapter. 

The Add and Remove methods, as their names suggest, are used for adding and removing 
elements from a collection. The Remove method searches for an object in the collection that 
Equals the object passed as a parameter. Our special constructor creates an object having the 
id of the element we want to remove. Since we provided an override of the Equals method 
that bases equality on CustomerId, the proper element will be removed. 

Similarly, the Contains method used in our CheckId helper method also relies on the 
override of the Equals method. 

Compare the code in this program with the use of arrays in the code in the previous chapter's 
case study. The collection code is much simpler. Using collections makes it easy to remove 
elements as well as add them. Using arrays, you would have to write special code to move 
array elements to fill in the space where an element was deleted. Also, collections are not 
declared to have a specific size, but can grow as required. 



Interfaces

Interface is a very fundamental concept in computer programming. A large system is inevitably 
decomposed into parts, and it is critical to precisely specify the interfaces between these parts. 
Interfaces should be quite stable, as changing an interface affects multiple parts of the system. 
In C# interface is a keyword and has a very precise meaning. An interface is a reference type, 
similar to an abstract class, that specifies behavior as a set of methods, properties, indexers, and 
events. [2] An interface is a contract. When a class or struct implements an interface, it must 
adhere to the contract. 

[2] We discuss events later in this chapter.

Interfaces are a useful way to partition functionality. You should first specify interfaces and 
then design appropriate classes to implement the interfaces. While a class in C# can inherit from 
only one other class, it can implement multiple interfaces. 

Interfaces facilitate dynamic programs—you can query a class at runtime to see whether it 
supports a particular interface, and take action accordingly. Interfaces in C# and .NET are 
conceptually very similar to interfaces in Microsoft's Component Object Model, but as we will 
see, they are much easier to work with. 

In this section we will study the fundamentals of interfaces and provide illustrations using some 
small sample programs. Then we will restructure our Acme case study to take advantage of 
interfaces and explore their use in detail. After that we will examine several important generic 
interfaces in the .NET library, which will help us gain an understanding of how C# and the 
.NET library support each other to help us develop powerful and useful programs. 

Interface Fundamentals

Object-oriented programming is a useful paradigm for helping to design and implement large 
systems. Using classes helps us to achieve abstraction and encapsulation. Classes are a natural 
decomposition of a large system into manageable parts. Inheritance adds another tool for 
structuring our system, enabling us to factor out common parts into base classes, helping us to 
accomplish greater code reuse. 

The main purpose of an interface is to specify a contract independently of implementation. It is 
important to understand that conceptually the interfaces come first. 

Interfaces in C#

In C# interface is a keyword, and you define an interface in a manner similar to defining a 
class. Like classes, interfaces are reference types. The big difference is that there is no 
implementation code in an interface; it is pure specification. Also note that an interface can 
have properties as well as methods (it could also have other members, such as indexers). As a 
naming convention, interface names usually begin with a capital I. 

The IAccount interface specifies operations to be performed on a bank account. 



interface IAccount 
{ 
   void Deposit(decimal amount); 
   void Withdraw(decimal amount); 
   decimal Balance {get;} 
   void Show(); 
} 

This interface illustrates the syntax for declaring the read-only Balance property—you specify 
the data type, the property name, and in curly brackets which of set and get apply (only get in 
this case, because the property is read-only). 

Implementing an Interface

In C# you specify that a class or struct implements an interface by using the colon notation that 
is employed for class inheritance. A class can also inherit both from a class and from an 
interface. In this case the base class should appear first in the derivation list after the colon. 

public class AccountC : Account, IAccount 
{ 

   public void Show()[3] 
   { 
      Console.WriteLine("balance = {0}", Balance); 
   } 
} 

[3] Note that we do not need the override keyword when our class implements the 
Show method of the IAccount interface. Unlike overriding a virtual method in a class, 
we are implementing a method which was only specified but not implemented in the 
interface definition. 

In our example the class AccountC inherits from the class Account, and it implements the 
interface IAccount. The methods of the interface must all be implemented by Account, either 
directly or in one of the base classes in its inheritance hierarchy. 

We will examine a full-blown example of interfaces with the reservation-broker inheritance 
hierarchy later in the chapter, when we implement Step 2 of the case study. 

As a small example, consider the program InterfaceDemo. The interface IAccount is defined, 
and two different classes, AccountC and AccountW, implement the interface. These 
implementations differ only in the Show method. The AccountC implementation performs 
console output to display the account balance, and AccountW uses a Windows message box. [4] 
The Deposit and Withdraw methods and the Balance property are all implemented in the 
Account base class. 

[4] We will discuss Windows programming in Chapter 6. The example program has all 
needed references to libraries, and all you need to do to display a message box is to 
call the Show method of the MessageBox class. 



// Account.cs 

using System; 
using System.Windows.Forms; 

interface IAccount 
{ 
   void Deposit(decimal amount); 
   void Withdraw(decimal amount); 
   decimal Balance {get;} 
   void Show(); 
} 

public class Account 
{ 
   private decimal balance; 
   public Account() 
   { 
      balance = 100; 
   } 
   public void Deposit(decimal amount) 
   { 
      balance += amount; 
   } 
   public void Withdraw(decimal amount) 
   { 
      balance -= amount; 
   } 
   public decimal Balance 
   { 
      get 
      { 
         return balance; 
      } 
   } 
} 

public class AccountC : Account, IAccount 
{ 
   public void Show() 
   { 
      Console.WriteLine("balance = {0}", Balance); 
   } 
} 

public class AccountW : Account, IAccount 
{ 



   public void Show() 
   { 
      MessageBox.Show("balance = " + Balance); 
   } 
} 

Using an Interface

You may call methods of an interface through an object reference to the class, or you may 
obtain an interface reference and call the methods through this interface reference. [5] The test 
program in the file InterfaceDemo.cs demonstrates both. We obtain the interface reference iacc 
by an implicit cast when we do the assignment to the object reference acc or accw. Note the 
polymorphic behavior of the call to Show, using console or Windows output depending on 
which object is being used. 

[5] As we will see later in the chapter when we discuss "explicit interface 
implementation," you can force a client program to use an interface reference and not 
a class reference.

// InterfaceDemo.cs 

using System; 

class InterfaceDemo 
{ 
   public static void Main() 
   { 
      // Use an object reference 
      AccountC acc = new AccountC(); 
      acc.Deposit(25); 
      acc.Show(); 
      // Use an interface reference 
      IAccount iacc = acc; 
      iacc.Withdraw(50); 
      iacc.Show(); 
      // Use interface reference for another class 
      // that implements IAccount 
      AccountW accw = new AccountW(); 
      iacc = accw; 
      iacc.Show(); 
   } 
} 

Multiple Interfaces

Our first example illustrated two classes providing different implementations of the same 
interface. Another common scenario is for a class to implement multiple interfaces, and in C# it 



is easy to test at runtime which interfaces are implemented by a class. 

Our example program is MultipleInterfaces, which also illustrates interface inheritance. The 
interfaces IBasicAccount, IDisplay, and IAccount are defined in the file AccountDefs.cs. 

// AccountDefs.cs 

interface IBasicAccount 
{ 
   void Deposit(decimal amount); 
   void Withdraw(decimal amount); 
   decimal Balance {get;} 
} 

interface IDisplay 
{ 
   void Show(); 
} 

interface IAccount : IBasicAccount, IDisplay 
{ 
} 

Interface Inheritance

Interfaces can inherit from other interfaces. Unlike classes in C#, for which there is only single 
inheritance, there can be multiple inheritance of interfaces. In our example, the interface 
IAccount is declared by inheriting from the two smaller interfaces, IBasicAccount and 
IDisplay. The advantage of factoring the original interface into two smaller interfaces is an 
increase in flexibility. For example, a class implementing IBasicAccount may run on a server, 
where it would not be appropriate to implement IDisplay. 

When declaring a new interface using interface inheritance, you can also introduce additional 
methods, as illustrated for IAccount2. 

interface IAccount2 : IBasicAccount, IDisplay 
{ 
   void NewMethod(); 
} 

Implementing Multiple Interfaces

A class implements multiple interfaces by mentioning each interface in its inheritance list and 
by providing code for the methods of each interface. A method may be implemented through 
inheritance from a base class. The file Account.cs in the MultipleInterfaces project illustrates 
two classes. BasicAccount implements only the interface IBasicAccount, and Account 
implements the two interfaces, IBasicAccount and IDisplay. 



// Account.cs 

using System; 

public class BasicAccount : IBasicAccount 
{ 
   private decimal balance; 
   public BasicAccount() 
   { 
      balance = 100; 
   } 
   public void Deposit(decimal amount) 
   { 
      balance += amount; 
   } 

   public void Withdraw(decimal amount) 
   { 
      balance -= amount; 
   } 
   public decimal Balance 
   { 
      get 
      { 
         return balance; 
      } 
   } 
} 

public class Account : BasicAccount, IBasicAccount, 
IDisplay 
{ 
   public void Show() 
   { 
      Console.WriteLine("balance = {0}", Balance); 
   } 
} 

Using Multiple Interfaces

The test program MultipleInterfaces.cs illustrates using (or trying to use) the two interfaces 
with an Account object and a BasicAccount object. Both interfaces can be used with Account, 
but we cannot use the IDisplay interface with BasicAccount. If we attempted to do an implicit 
cast from BasicAccount to IDisplay, the compiler would flag an error message. In our code we 
perform an explicit cast within a try block. The code compiles, but we get a runtime 
InvalidCast exception, which we catch. The program also illustrates that we can sometimes 
take a reasonable, alternative course of action if the desired interface is not available. In our 
case, we are able to perform the output ourselves, making use of the Balance property of the 



IBasicAccount interface. 

// MultipleInterfaces.cs 

using System; 

class MultipleInterfaces 
{ 
   public static void Main() 
   { 
      IBasicAccount iacc; 
      IDisplay idisp; 
      // Use an Account object, which has full functionality 
      Account acc = new Account(); 
      iacc = acc; 
      idisp = acc; 
      iacc.Deposit(25); 
      idisp.Show(); 
      // Use BasicAccount object, with reduced functionality 
      BasicAccount bacc = new BasicAccount(); 
      iacc = bacc; 
      iacc.Withdraw(50); 
      try 
      { 
         idisp = (IDisplay) bacc; 
         idisp.Show(); 
      } 
      catch (InvalidCastException e) 
      { 
         Console.WriteLine("IDisplay is not supported"); 
         Console.WriteLine(e.Message); 
         // Display the balance another way 
         Console.WriteLine("balance = {0}", iacc.Balance); 
      } 
   } 
} 

Here is the output from running the program: 

balance = 125 
IDisplay is not supported 
Exception of type System.InvalidCastException was thrown. 
balance = 50 

Dynamic Use of Interfaces

A powerful feature of interfaces is their use in dynamic scenarios, allowing us to write general 



code that can test whether an interface is supported by a class. If the interface is supported, our 
code can take advantage of it; otherwise our program can ignore the interface. We could in fact 
implement such dynamic behavior through exception handling, as illustrated previously. 
Although entirely feasible, this approach is very cumbersome and would lead to programs that 
are hard to read. C# provides two operators, as and is, that facilitate working with interfaces at 
runtime. 

As an example, consider the program DynamicInterfaces, which uses the interface definitions 
and class implementations from our previous example. The test program illustrates using each 
of the C# as and is operators to check whether the IDisplay interface is supported. 

// DynamicInterfaces.cs 

using System; 
class DynamicInterfaces 
{ 
   public static void Main() 
   { 
      IBasicAccount iacc; 
      IDisplay idisp; 
      BasicAccount bacc = new BasicAccount(); 
      iacc = bacc; 
      iacc.Withdraw(50); 
      // Check IDisplay via C# "as" operator 
      idisp = bacc as IDisplay; 
      if (idisp != null) 
         idisp.Show(); 
      else 
      { 
         Console.WriteLine("IDisplay is not supported"); 
         // Display the balance another way 
         Console.WriteLine("balance = {0}", iacc.Balance); 
      } 
      // Check IDisplay via C# "is" operator 
      if (bacc is IDisplay) 
      { 
         idisp = (IDisplay) bacc; 
         idisp.Show(); 
      } 
      else 
      { 
         Console.WriteLine("IDisplay is not supported"); 
         // Display the balance another way 
         Console.WriteLine("balance = {0}", iacc.Balance); 
      } 
   } 
} 



Here is the output from running the test program: 

IDisplay is not supported 
balance = 50 
IDisplay is not supported 
balance = 50 

As Operator [6]

[6] The C# as operator is similar to dynamic_cast in C++.

The as operator is used to convert one reference type to another reference type. A common 
application is to convert an object reference or an interface reference to another interface 
reference. Unlike performing the conversion by a cast operation, the as operator never throws 
an exception. If the conversion fails, the result value is null. 

idisp = bacc as IDisplay; 
if (idisp != null) 
   // idisp is a valid interface reference 

The as operator can also be used to explicitly convert a value type to a reference type by a 
boxing operation. Again, null is returned if the conversion fails. 

Is Operator [7]

[7] The C# is operator is similar to type_id in C++.

The is operator dynamically checks if the runtime type of an object is compatible with a given 
type. The result is a boolean value. The is operator can be used to check if an object refers to a 
class supporting a given interface, as illustrated in our DynamicInterfaces program. 

if (bacc is IDisplay) 
{ 
   idisp = (IDisplay) bacc; 
   idisp.Show(); 
} 

The is operator is not the most efficient solution, as a check of the type is made twice. The first 
time is when the is operator is invoked. But the check is made all over again when the cast 
operation is performed, because the runtime will throw an exception if the interface is not 
supported. For this situation, as is more efficient, since you obtain the interface reference 
directly. 

The is operator is useful if you want to check whether an interface is supported but you don't 
need to directly call a method of the interface. Later in the chapter we will see an example of 
this situation, when we discuss the IComparable interface. If the elements of a collection 
support IComparable, you will be able to call a Sort method on the collection. The Sort 



method calls the CompareTo method of IComparable, although your own code does not. 

Interfaces in C# and COM
There are many similarities between .NET and COM. In both, the concept of 
interface plays a fundamental role. Interfaces are useful for specifying contracts. 
Interfaces support a very dynamic style of programming. 

In COM you must yourself provide a very elaborate infrastructure in order to 
implement a COM component. You must implement a class factory for the creation 
of COM objects. You must implement the QueryInterface method of IUnknown for 
the dynamic checking of interfaces. You must implement AddRef and Release for 
proper memory management. 

With C# (and other .NET languages) the Common Language Runtime does all this 
for you automatically. You create an object via new. You check for an interface via 
is or as and obtain the interface by a cast. The garbage collector takes care of 
memory management for you. 

Explicit Interface Implementation

When working with interfaces, an ambiguity can arise if a class implements two interfaces and 
each has a method with the same name and signature. As an example, consider the following 
versions of the interfaces IAccount and IStatement. Each interface contains the method Show. 

interface IAccount 
{ 
   void Deposit(decimal amount); 
   void Withdraw(decimal amount); 
   decimal Balance {get;} 
   void Show(); 
} 

interface IStatement 
{ 
   int Transactions {get;} 
   void Show(); 
} 

How can the class specify implementations of these methods? The answer is to use the interface 
name to qualify the method, as illustrated in the program Ambiguous. The IAccount version 
IAccount.Show will display only the balance, and IStatement.Show will display both the 
number of transactions and the balance. 

// Account.cs (project "Ambiguous") 

... 



public class Account : IAccount, IStatement 
{ 
   private decimal balance; 
   int numXact = 0; 
   public Account(decimal balance) 
   { 
      this.balance = balance; 
   } 
   public void Deposit(decimal amount) 
   { 
      balance += amount; 
      ++numXact; 
   } 
   public void Withdraw(decimal amount) 
   { 
      balance -= amount; 
      ++numXact; 
   } 
   public decimal Balance 
   { 
      get 
      { 
         return balance; 
      } 
   } 
   void IAccount.Show() 
   { 
      Console.WriteLine("balance = {0}", balance); 
   } 
   public int Transactions 
   { 
      get 
      { 
         return numXact; 
      } 
   } 
   void IStatement.Show() 
   { 
      Console.WriteLine("{0} transactions, balance = {1}", 
                        numXact, balance); 
   } 
} 

You will notice that in the definition of the class Account, the qualified methods 
IAccount.Show and IStatement.Show do not have an access modifier such as public. Such 
qualified methods cannot be accessed through a reference to a class instance. They can only be 
accessed through an interface reference of the type explicitly shown in the method definition. 



The test program shows that we cannot call the IAccount.Show method through an Account 
object reference but only through an IAccount interface reference. 

By obtaining an IStatement interface reference, we can call IStatement.Show. 

// Ambiguous.cs 

using System; 

public class Ambiguous 
{ 
   public static void Main() 
   { 
      Account acc = new Account(100); 
      // acc.Show(); // illegal - MUST go through an 
                     // interface 
      IAccount iacc = (IAccount) acc; 
      IStatement istat = (IStatement) acc; 
      iacc.Show(); 
      istat.Show(); 
      iacc.Deposit(25); 
      iacc.Withdraw(10); 
      iacc.Show(); 
      istat.Show(); 
   } 
} 

Even when there is no ambiguity, you may wish to use explicit interface implementation, in 
order to force client programs to use interfaces to call the methods specified in the interfaces. 
This approach makes it very clear that the client code is programming against specific interfaces 
and not against a large amorphous collection of methods of a class. The code will be easily 
adaptable to using different classes that implement the same interfaces. 



Acme Travel Agency Case Study: Step 2

We will now apply our knowledge of interfaces to a little restructuring of the Acme case 
study. A major benefit of using interfaces is that they raise the level of abstraction 
somewhat, helping you to understand the system by way of the interface contacts, without 
worrying about how the system is implemented. 

As usual, our case study code is in the CaseStudy directory for this chapter. 

The Contracts

There are two main sets of contracts in the Acme Travel Agency Case Study. The first 
specifies operations on customers, and the second, operations involving hotels. 

Customer Contract

The ICustomer interface shown below specifies the methods to be used by clients in the 
Acme Travel Agency system. 

public interface ICustomer 
{ 
   int RegisterCustomer(string firstName, string lastName, 
                        string emailAddress); 
   void UnregisterCustomer(int id); 
   ArrayList GetCustomer(int id); 
   void ChangeEmailAddress(int id, string emailAddress); 
} 

The RegisterCustomer, UnregisterCustomer, and ChangeEmailAddress method 
definitions are exactly the same as the methods we implemented in the Customers class. 
The GetCustomer method is new. Previously, we had a ShowCustomers method, which 
displayed a list of customers to the console. This method was strictly temporary. For general 
use we want to return data and let the client decide what to do with it. The GetCustomer 
method returns information about one or all customers in an array list. If -1 is passed for the 
id, the list will contain all the registered customers. Otherwise, the list will contain the 
customer information for the customer with the given id. If no customer has that id, the list 
will be empty. 

Hotel Contracts

We next look at the functionality of the class HotelBroker. The methods divide fairly 
naturally into three groups. 

●     Hotel information, such as the cities where hotels are available and the hotels within a 
city 

●     Hotel administration, such as adding or deleting a hotel, or changing the number of 



rooms and rate of a hotel 
●     Hotel reservations, such as booking or canceling a reservation or obtaining a list of 

reservations 

Accordingly we create three interfaces for the HotelBroker. These interfaces are defined in 
AcmeDefinitions.cs. 

public interface IHotelInfo 
{ 
   ArrayList GetCities(); 
   ArrayList GetHotels(); 
   ArrayList GetHotels(string city); 
} 

public interface IHotelAdmin 
{ 
   string AddHotel(string city, string name, 
      int numberRooms, decimal rate); 
   string DeleteHotel(string city, string name); 
   string ChangeRooms(string city, string name, 
      int numberRooms, decimal rate); 
} 

public interface IHotelReservation 
{ 
   ReservationResult MakeReservation(int customerId, 
      string city, string hotel, DateTime checkinDate, 
      int numberDays); 
   void CancelReservation(int id); 
   ArrayList FindReservationsForCustomer(int customerId); 
} 

The Implementation

We examined the Step 1 implementation of the hotel brokerage system in detail in Chapter 
4. The Step 2 implementation uses collections in place of arrays, and it passes information to 
the client rather than displays information directly. 

Structures

One detail of our implementation concerns the data structures used to pass lists to the client. 
We use the ArrayList class. But what do we store in each array list? We could use 
Customer objects and Hotel objects. The problem here is that these classes have 
implementation-specific data in them, as well as the information fields that the client 
program cares about. To obtain implementation neutral representations, we introduce several 
structures. 



In Customers.cs we define the CustomerListItem structure for passing customer 
information. 

public struct CustomerListItem 
{ 
   public int CustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
} 

In AcmeDefinitions.cs we define structures for hotels, reservations, and reservation results. 

public struct HotelListItem 
{ 
   public string City; 
   public string HotelName; 
   public int NumberRooms; 
   public decimal Rate; 
} 

public struct ReservationListItem 
{ 
   public int CustomerId; 
   public int ReservationId; 
   public string HotelName; 
   public string City; 
   public DateTime ArrivalDate; 
   public DateTime DepartureDate; 
   public int NumberDays; 
} 

public struct ReservationResult 
{ 
   public int ReservationId; 
   public decimal ReservationCost; 
   public decimal Rate; 
   public string Comment; 
} 

The ReservationResult returns a ReservationId of -1 if there is a problem, giving an 
explanation of the problem in the Comment field. Otherwise "OK" is returned in the 
Comment field. 

We invite you to examine the code in the CaseStudy folder and to build and run the 



program. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Generic Interfaces in .NET

The .NET Framework exposes much standard functionality through generic interfaces, 
which are implemented in various combinations by classes in the Framework itself, and 
which can also be implemented by your own classes in order to tap into standard 
functionality defined by the Framework. In this section we will look at several categories of 
operations that are supported by these standard, generic interfaces, 

●     Collections 
●     Copying objects 
●     Comparing objects 

Our survey of generic interfaces is by no means exhaustive, but our sampling should give 
you a good understanding of how generic interfaces work in the .NET Framework. 

Collection Interfaces

Now that we understand the concept of interfaces, we are equipped to take a closer look at 
collections, and in particular the ArrayList class that we have used so heavily in the case 
study. If we look at the definition of ArrayList, we see that it implements four standard 
interfaces. 

public class ArrayList : IEnumerable, ICollection, 
                         IList, ICloneable 

The first three interfaces form a simple interface hierarchy, as shown in Figure 5-1. As you 
go down the hierarchy, additional methods are added, until IList specifies a fully featured 
list. 

Figure 5-1. Interface hierarchy for lists.



 

The fourth interface, ICloneable, is independent and is used to support deep copying. As a 
simple illustration of the collection interfaces we provide the program StringList. Here is 
the Main method. We'll look at the individual helper methods as we examine the various 
collection interfaces. 

// StringList.cs 

using System; 
using System.Collections; 

public class StringList 
{ 
   private static ArrayList list; 
   public static void Main() 
   { 
   // Initialize strings and show starting state 
   list = new ArrayList(4); 
      ShowCount(); 
   AddString("Amy"); 
   AddString("Bob"); 
   AddString("Charlie"); 
   ShowEnum(list);      // enumerator 
   ShowCount(); 
   // Add two more strings and show state again 
   AddString("David"); 



   AddString("Ellen"); 
   ShowList(list);      // foreach 
   ShowCount(); 
   // Remove two strings from list and show state 
   RemoveString("David"); 
   RemoveAt(0); 
   ShowArray(list);    // index notation 
   ShowCount(); 
   // Try to remove two strings not in list 
   RemoveString("Amy"); 
   RemoveAt(3); 
} 
... 

Here is the output: 

list.Count = 0 
list.Capacity = 4 
Amy 
Bob 
Charlie 
list.Count = 3 
list.Capacity = 4 
array[0] = Amy 
array[1] = Bob 
array[2] = Charlie 
array[3] = David 
array[4] = Ellen 
list.Count = 5 
list.Capacity = 8 
Bob 
Charlie 
Ellen 
list.Count = 3 
list.Capacity = 8 
List does not contain Amy 
No element at index 3 

Interface Documentation

Interfaces are documented in the online .NET Framework SDK Documentation. Figure 5-2 
illustrates the documentation of the IEnumerable interface. The right-hand pane has a 

language filter button  which we have used to show only C# versions. If you are using 
the interface in one of the .NET Framework classes that implement the interface, you do not 
need to implement any of the methods yourself. If you are creating your own class that 



supports an interface, you must provide implementations of all the methods of the interface. 
In either case, the documentation describes the methods for you. 

Figure 5-2. NET Framework SDK documentation for IEnumerable interface.

 

IEnumerable And IEnumerator

The basic interface that must be supported by collection classes is IEnumerable, which has 
a single method, GetEnumerator. 

interface IEnumerable 
{ 
   IEnumerator GetEnumerator(); 
} 

GetEnumerator returns an interface reference to IEnumerator, which is the interface used 
for iterating through a collection. This interface has the property Current and the methods 
MoveNext and Reset. 

interface IEnumerator 
{ 
   object Current {get;} 
   bool MoveNext(); 
   void Reset(); 
} 



The enumerator is initially positioned before the first element in the collection, and it must 
be advanced before it is used. The ShowEnum method (in the StringList example) 
illustrates using an enumerator to iterate through a list. 

private static void ShowEnum(ArrayList array) 
{ 
   IEnumerator iter = array.GetEnumerator(); 
   bool more = iter.MoveNext(); 
   while (more) 
   { 
      string str = (string) iter.Current; 
      Console.WriteLine(str); 
      more = iter.MoveNext(); 
   } 
} 

This pattern of using an enumerator to iterate through a list is so common that C# provides a 
special kind of loop, foreach, that can be used for iterating through the elements of any 
collection. Here is the comparable code using foreach. 

private static void ShowList(ArrayList array) 
{ 
   foreach (string str in array) 
   { 
      Console.WriteLine(str); 
   } 
} 

ICollection

The ICollection interface is derived from IEnumerable and adds a Count property and a 
CopyTo method. 

interface ICollection : IEnumerable 
{ 
   int Count {get;} 
   bool IsSynchronized {get;} 
   object SyncRoot {get;} 
   void CopyTo(Array array, int index); 
} 

There are also synchronization properties that can help you deal with thread safety issues. "Is 
it thread safe?" is a question frequently asked about library code. The short answer to this 
question for the .NET Framework class library is "No." This does not mean that the 



designers of the Framework did not think about thread safety issues. On the contrary, there 
are many mechanisms to help you write thread-safe code when you need to. The reason that 
collections are not automatically thread safe is that your code should not have to pay the 
performance penalty to enforce synchronization when it is not running in a multithreading 
scenario. If you do need thread safety, you may use the thread-safety properties to easily 
implement. We discuss the .NET mechanisms for thread synchronization in Chapter 8. 

Our StringList program illustrates use of the Count property of ICollection. 

private static void ShowCount() 
{ 
   Console.WriteLine("list.Count = {0}", list.Count); 
   Console.WriteLine("list.Capacity = {0}", 
list.Capacity); 
} 

IList

The IList interface is derived from ICollection and provides methods for adding an item to 
a list, removing an item, and so on. An indexer is provided that enables array notation to be 
used. (We discussed indexers in Chapter 3.) 

interface IList : ICollection 
{ 
   object this[int index] {get; set;} 
   int Add(object value); 
   void Clear(); 
   bool Contains(object value); 
   int IndexOf(object value); 
   void Insert(int index, object value); 
   void Remove(object value); 
   void RemoveAt(int index); 
} 

Our StringList sample code illustrates using the indexer and the Add, Contains, Remove, 
and RemoveAt methods. 

private static void ShowArray(ArrayList array) 
{ 
   for (int i = 0; i < array.Count; i++) 
   { 
      Console.WriteLine("array[{0}] = {1}", i, array[i]); 
   } 
} 
private static void AddString(string str) 
{ 



   if (list.Contains(str)) 
      throw new Exception("list contains " + str); 
   list.Add(str); 
} 
private static void RemoveString(string str) 
{ 
   if (list.Contains(str)) 
      list.Remove(str); 
   else 
      Console.WriteLine("List does not contain {0}", str); 
} 
private static void RemoveAt(int index) 
{ 
   try 
   { 
      list.RemoveAt(index); 
   } 
   catch (ArgumentOutOfRangeException) 
   { 
      Console.WriteLine("No element at index {0}", index); 
   } 
} 

Copy Semantics and ICloneable

Sometimes you have to make a copy of an object. When you copy objects that contain 
objects and object references, you have to be aware of. the copy semantics of C#. We will 
compare reference copy, shallow memberwise copy, and deep copy. We will see that by 
implementing the ICloneable interface in your class, you can make a deep copy. 

Recall that C# has value types and reference types. A value type contains all its own data, 
while a reference type refers to data stored somewhere else. If a reference variable gets 
copied to another reference variable, both will refer to the same object. If the object 
referenced by the second variable is changed, the first variable will also reflect the new 
value. Sometimes you want this behavior, but sometimes you do not. 

Shallow Copy and Deep Copy

A struct in C# automatically implements a "memberwise" copy, sometimes known as a 
"shallow copy." The object root class has a protected method, MemberwiseClone, which 
will perform a memberwise copy of members of a class. 

If one or more members of a class are of a reference type, this memberwise copy may not be 
good enough. The result will be two references to the same data, not two independent copies 
of the data. To actually copy the data itself and not merely the references, you will need to 
perform a "deep copy." Deep copy can be provided at either the language level or the library 



level. In C++ deep copy is provided at the language level through a copy constructor. In C# 
deep copy is provided by the .NET Framework through a special interface, ICloneable, 
which you can implement in your classes in order to enable them to perform deep copy. 

Example Program

We will illustrate all these ideas in the program CopyDemo. This program makes a copy of 
a Course instance. The Course class consists of a title and a collection of students. 

// Course.cs 

using System; 
using System.Collections; 

public class Course : ICloneable 
{ 
   public string Title; 
   public ArrayList Roster; 
   public Course(string title) 
   { 
      Title = title; 
      Roster = new ArrayList(); 
   } 
   public void AddStudent(string name) 
   { 
      Roster.Add(name); 
   } 
   public void Show(string caption) 
   { 
      Console.WriteLine("-----{0}-----", caption); 
      Console.WriteLine("Course : {0} with {1} students", 
         Title, Roster.Count); 
      foreach (string name in Roster) 
      { 
         Console.WriteLine(name); 
      } 
   } 
   public Course ShallowCopy() 
   { 
      return (Course) this.MemberwiseClone(); 
   } 
   public object Clone() 
   { 
      Course course = new Course(Title); 
      course.Roster = (ArrayList) Roster.Clone(); 
      return course; 



   } 
} 

The test program constructs a Course instance c1 and then makes a copy c2 by various 
methods. 

Reference Copy by Assignment

The first way the copy is performed is by the straight assignment c2 = c1. Now we get two 
references to the same object, and if we make any change through the first reference, we will 
see the same change through the second reference. The first part of the test program 
illustrates such an assignment. 

// CopyDemo.cs 

using System; 
using System.Collections; 

public class CopyDemo 
{ 
   private static Course c1, c2; 
   public static void Main() 
   { 
      Console.WriteLine("Copy is done via c2 = c1"); 
      InitializeCourse(); 
      c1.Show("original"); 
      c2 = c1; 
      c2.Title = ".NET Programming"; 
      c2.AddStudent("Charlie"); 
      c2.Show("copy with changed title and new student"); 
      c1.Show("original"); 

      ... 
   } 
   private static void InitializeCourse() 
   { 
      c1 = new Course("Intro to C#"); 
      c1.AddStudent("John"); 
      c1.AddStudent("Mary"); 
   } 
} 

We initialize with the title "Intro to C#" and two students. We make the assignment c2 = c1 
and then change the title and add another student for c2. We then show both c1 and c2, and 
we see that both reflect both of these changes. Here is the output from this first part of the 
program: 



Copy is done via c2 = c1 
-----original-----
Course : Intro to C# with 2 students 
John 
Mary 
-----copy-----
Course : Intro to C# with 2 students 
John 
Mary 
-----copy with changed title and new student-----
Course : .NET Programming with 3 students 
John 
Mary 
Charlie 
-----original-----
Course : .NET Programming with 3 students 
John 
Mary 
Charlie 

Memberwise Clone

Next we will illustrate doing a memberwise copy, which can be accomplished using the 
MemberwiseClone method of object. Since this method is protected, we cannot call it 
directly from outside our Course class. Instead, in Course we define a method, 
ShallowCopy, which is implemented using MemberwiseClone. 

// Course.cs 

using System; 
using System.Collections; 

public class Course : ICloneable 
{ 
   ... 
   public Course ShallowCopy() 
   { 
      return (Course) this.MemberwiseClone(); 
   } 
   ... 
} 

Here is the second part of the test program, which calls the ShallowCopy method. Again we 
change the title and a student in the second copy. 



// CopyDemo.cs 

using System; 
using System.Collections; 

public class CopyDemo 
{ 
      ... 
      Console.WriteLine( 
         "\nCopy is done via c2 = c1.ShallowCopy()"); 
      InitializeCourse(); 
      c2 = c1.ShallowCopy(); 
      c2.Title = ".NET Programming"; 
      c2.AddStudent("Charlie"); 
      c2.Show("copy with changed title and new student"); 
      c1.Show("original"); 
      ... 

Here is the output of this second part of the program. Now the Title field has its own 
independent copy, but the Roster collection is just copied by reference, so each copy refers 
to the same collection of students. 

Copy is done via c2 = c1.ShallowCopy() 
-----copy with changed title and new student-----
Course : .NET Programming with 3 students 
John 
Mary 
Charlie 
-----original-----
Course : Intro to C# with 3 students 
John 
Mary 
Charlie 

Using ICloneable

The final version of copy relies on the fact that our Course class supports the ICloneable 
interface and implements the Clone method. To clone the Roster collection we use the fact 
that ArrayList also implements the ICloneable interface, as discussed earlier in the chapter. 
Note that the Clone method returns an object, so we must cast to ArrayList before 
assigning to the Roster field. 

// Course.cs 

using System; 
using System.Collections; 



public class Course : ICloneable 
{ 
   ... 
   public object Clone() 
   { 
      Course course = new Course(Title); 
      course.Roster = (ArrayList) Roster.Clone(); 
      return course; 
   } 
} 

Here is the third part of the test program, which calls the Clone method. Again we change 
the title and a student in the second copy. 

// CopyDemo.cs 

using System; 
using System.Collections; 

public class CopyDemo 
{ 
      ... 
      Console.WriteLine( 
         "\nCopy is done via c2 = c1.Clone()"); 
      InitializeCourse(); 
      c2 = (Course) c1.Clone(); 
      c2.Title = ".NET Programming"; 
      c2.AddStudent("Charlie"); 
      c2.Show("copy with changed title and new student"); 
      c1.Show("original"); 
      ... 

Here is the output from the third part of the program. Now we have completely independent 
instances of Course. Each has its own title and set of students. 

Copy is done via c2 = c1.Clone() 
-----copy with changed title and new student-----
Course : .NET Programming with 3 students 
John 
Mary 
Charlie 
-----original-----
Course : Intro to C# with 2 students 
John 
Mary 



Comparing Objects

We have quite exhaustively studied copying objects. We now examine comparing objects. 
To compare objects, the .NET Framework uses the interface IComparable. In this section 
we use the interface IComparable to sort an array. 

Sorting an Array

The System.Array class provides a static method, Sort, that can be used for sorting an 
array. The program ArrayName illustrates applying this Sort method to an array of Name 
objects, where the Name class simply encapsulates a string through a read-only property 
Text. Here is the main program. 

// ArrayName.cs 
... 

public class ArrayName 
{ 
   public static void Main(string[] args) 
   { 
      Name[] array = new Name[10]; 
      array[0] = new Name("Michael"); 
      array[1] = new Name("Charlie"); 
      array[2] = new Name("Peter"); 
      array[3] = new Name("Dana"); 
      array[4] = new Name("Bob"); 
      if (array[0] is IComparable) 
         Array.Sort(array); 
      else 
         Console.WriteLine( 
            "Name does not implement IComparable"); 
      foreach (Name name in array) 
      { 
         if (name != null) 
            Console.WriteLine(name); 
      } 
   } 
} 

Implementing IComparable

In order for the Sort method to function, there must be a way of comparing the objects that 
are being sorted. This comparison is achieved through the CompareTo method of the 
interface IComparable. Thus to sort an array of a type you define, you must implement 
IComparable for your type. 



public interface IComparable 
{ 
      int CompareTo(object object); 
} 

Here is the implementation of the Name class, with its implementation of IComparable. 

public class Name : IComparable 
{ 
   private string text; 
   public Name(string text) 
   { 
      this.text = text; 
   } 
   public string Text 
   { 
      get 
      { 
         return text; 
      } 
   } 
   public int CompareTo(object obj) 
   { 
      string s1 = this.Text; 
      string s2 = ((Name) obj).Text; 
      return String.Compare(s1, s2); 
   } 
} 

Understanding Frameworks

Our example offers some insight into the workings of frameworks. A framework is more 
than a library. In a typical library, you are concerned with your code calling library 
functions. In a framework, you call into the framework and the framework might call you. 
Your program can be viewed as the middle layer of a sandwich. 

●     Your code calls the bottom layer. 
●     The top layer calls your code. 

The .NET Framework is an excellent example of such an architecture. There is rich 
functionality that you can call directly. There are many interfaces, which you can optionally 
implement to make your program behave appropriately when called by the framework, often 
on behalf of other objects. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Delegates

Interfaces facilitate writing code so that your program can be called into by some other code. 
This style of programming has been available for a long time, under the guise of "callback" 
functions. In this section we examine del-egates in C#, which can be thought of as type-safe 
and object-oriented callback functions. Delegates are the foundation for a design pattern, 
known as events, which we'll look at in the next section. 

A callback function is one which your program specifies and "registers" in some way, and 
which then gets called by another program. In C and C++ callback functions are implemented 
by function pointers. 

In C# you can encapsulate a reference to a method inside a delegate object. A delegate can 
refer to either a static method or an instance method. When a delegate refers to an instance 
method, it stores both an object instance and an entry point to the instance method. The 
instance method can then be called through this object instance. When a delegate object refers 
to a static method, it stores just the entry point of this static method. 

You can pass this delegate object to other code, which can then call your method. The code 
that calls your delegate method does not have to know at compile time which method is being 
called. 

In C# a delegate is considered a reference type that is similar to a class type. A new delegate 
instance is created just like any other class instance, using the new operator. In fact, C# 
delegates are implemented by the .NET Framework class library as a class, derived ultimately 
from System.Delegate. 

Delegates are object oriented and type safe, and they enjoy the safety of the managed code 
execution environment. 

Declaring a Delegate

You declare a delegate in C# using a special notation with the keyword delegate and the 
signature of the encapsulated method. A naming convention suggests that your name should 
end with "Callback." 

We illustrate delegates in the sample program DelegateAccount. Here is an example of a 
delegate declaration from the file DelegateAccount.cs. 

public delegate void NotifyCallback(decimal balance); 

Defining a Method

When you instantiate a delegate, you will need to specify a method, which must match the 
signature in the delegate declaration. The method may be either a static method or an instance 
method. Here are some examples of methods that can be hooked to the NotifyCallback 
delegate: 



private static void NotifyCustomer(decimal balance) 
{ 
   Console.WriteLine("Dear customer,"); 
   Console.WriteLine( 
      "   Account overdrawn, balance = {0}", balance); 
} 
private static void NotifyBank(decimal balance) 
{ 
   Console.WriteLine("Dear bank,"); 
   Console.WriteLine( 
      "   Account overdrawn, balance = {0}", balance); 
} 
private void NotifyInstance(decimal balance) 
{ 
   Console.WriteLine("Dear instance,"); 
   Console.WriteLine( 
      "   Account overdrawn, balance = {0}", balance); 
} 

Creating a Delegate Object

You instantiate a delegate object with the new operator, just as you would with any other 
class. The following code illustrates creating two delegate objects. The first one is hooked to a 
static method, and the second to an instance method. The second delegate object internally 
will store both a method entry point and an object instance that is used for invoking the 
method. 

NotifyCallback custDlg = 
   new NotifyCallback(NotifyCustomer); 
... 
DelegateAccount da = new DelegateAccount(); 
NotifyCallback instDlg = 
   new NotifyCallback(da.NotifyInstance); 

Calling a Delegate

You "call" a delegate just as you would a method. The delegate object is not a method, but it 
has an encapsulated method. The delegate object "delegates" the call to this encapsulated 
method, hence the name "delegate." In the following code the delegate object notifyDlg is 
called whenever a negative balance occurs on a withdrawal. In this example the notifyDlg 
delegate object is initialized in the method SetDelegate. 

private NotifyCallback notifyDlg; 
... 
public void SetDelegate(NotifyCallback dlg) 



{ 
   notifyDlg = dlg; 
} 
... 
public void Withdraw(decimal amount) 
{ 
   balance -= amount; 
   if (balance < 0) 
      notifyDlg(balance); 
} 

Combining Delegate Objects

A powerful feature of delegates is that you can combine them. Delegates are "multicast," in 
which they have an invocation list of methods. When such a delegate is called, all the methods 
on the invocation list will be called in the order they appear in the invocation list. The + 
operator can be used to combine the invocation methods of two delegate objects. The - 
operator can be used to remove methods. 

NotifyCallback custDlg = 
   new NotifyCallback(NotifyCustomer); 
NotifyCallback bankDlg = new NotifyCallback(NotifyBank); 
NotifyCallback currDlg = custDlg + bankDlg; 

In this example we construct two delegate objects, each with an associated method. We then 
create a new delegate object whose invocation list will consist of both the methods 
NotifyCustomer and NotifyBank. When currDlg is called, these two methods will be 
invoked. Later on in the code we may remove a method. 

currDlg -= bankDlg; 

Now NotifyBank has been removed from the delegate, and the next time currDlg is called, 
only NotifyCustomer will be invoked. 

Complete Example

The program DelegateAccount illustrates using delegates in our bank account scenario. The 
file DelegateAccount.cs declares the delegate NotifyCallback. The class DelegateAccount 
contains methods matching the signature of the delegate. The Main method instantiates 
delegate objects and combines them in various ways. The delegate objects are passed to the 
Account class, which uses its encapsulated delegate object to invoke suitable notifications 
when the account is overdrawn. 

Observe how this structure is dynamic and loosely coupled. The Account class does not know 
or care which notification methods will be invoked in the case of an overdraft. It simply calls 
the delegate, which in turn calls all the methods on its invocation list. These methods can be 
adjusted at runtime. 



Here is the code for the Account class: 

// Account.cs 

public class Account 
{ 
   private decimal balance; 
   private NotifyCallback notifyDlg; 
   public Account(decimal bal, NotifyCallback dlg) 
   { 
      balance = bal; 
      notifyDlg = dlg; 
   } 
   public void SetDelegate(NotifyCallback dlg) 
   { 
      notifyDlg = dlg; 
   } 
   public void Deposit(decimal amount) 
   { 
      balance += amount; 
   } 
   public void Withdraw(decimal amount) 
   { 
   balance -= amount; 
   if (balance < 0) 
      notifyDlg(balance); 
   } 
   public decimal Balance 
   { 
      get 
      { 
         return balance; 
      } 
   } 
} 

Here is the code declaring and testing the delegate: 

// DelegateAccount.cs 

using System; 

public delegate void NotifyCallback(decimal balance); 

public class DelegateAccount 
{ 



   public static void Main(string[] args) 
   { 
      NotifyCallback custDlg = 
         new NotifyCallback(NotifyCustomer); 
      NotifyCallback bankDlg = 
         new NotifyCallback(NotifyBank); 
      NotifyCallback currDlg = custDlg + bankDlg; 
      Account acc = new Account(100, currDlg); 
      Console.WriteLine("balance = {0}", acc.Balance); 
      acc.Withdraw(125); 
      Console.WriteLine("balance = {0}", acc.Balance); 
      acc.Deposit(200); 
      acc.Withdraw(125); 
      Console.WriteLine("balance = {0}", acc.Balance); 
      currDlg -= bankDlg; 
      acc.SetDelegate(currDlg); 
      acc.Withdraw(125); 
      DelegateAccount da = new DelegateAccount(); 
      NotifyCallback instDlg = 
         new NotifyCallback(da.NotifyInstance); 
      currDlg += instDlg; 
      acc.SetDelegate(currDlg); 
      acc.Withdraw(125); 
   } 
   private static void NotifyCustomer(decimal balance) 
   { 
      Console.WriteLine("Dear customer,"); 
      Console.WriteLine( 
         "   Account overdrawn, balance = {0}", balance); 
   } 
   private static void NotifyBank(decimal balance) 
   { 
      Console.WriteLine("Dear bank,"); 
      Console.WriteLine( 
         "   Account overdrawn, balance = {0}", balance); 
   } 
   private void NotifyInstance(decimal balance) 
   { 
      Console.WriteLine("Dear instance,"); 
      Console.WriteLine( 
         "   Account overdrawn, balance = {0}", balance); 
   } 
} 

Here is the output from running the program. Notice which notification methods get invoked, 
depending upon the operations that have been performed on the current delegate object. 



balance = 100 
Dear customer, 
   Account overdrawn, balance = -25 
Dear bank, 
   Account overdrawn, balance = -25 
balance = -25 
balance = 50 
Dear customer, 
   Account overdrawn, balance = -75 
Dear customer, 
   Account overdrawn, balance = -200 
Dear instance, 
   Account overdrawn, balance = -200 

Stock Market Simulation

As a further illustration of the use of delegates, consider the simple stock-market simulation, 
implemented in the directory StockMarket. The simulation consists of two modules: 

●     The Admin module provides a user interface for configuring and running the 
simulation. It also implements operations called by the simulation engine. 

●     The Engine module is the simulation engine. It maintains an internal clock and invokes 
randomly generated operations, based on the configuration parameters passed to it.

Figure 5-3 shows the high-level architecture of the simulation. The following 
operations are available: 

Figure 5-3. Architecture of stock-market simulation.

 

●     PrintTick: shows each clock tick. 
●     PrintTrade: shows each trade. 

The following configuration parameters can be specified: 

●     Ticks on/off 
●     Trades on/off 



●     Count of how many ticks to run the simulation 

Running the Simulation

Build and run the example program in StockMarket. Start with the default configuration: 
Ticks are OFF, Trades are ON, Run count is 100. (Note that the results are random and will be 
different each time you run the program.) 

Ticks are OFF 
Trades are ON 
Run count = 100 
Enter command, quit to exit 
: run 
   2  ACME    23   600 
  27  MSFT    63   400 
  27  IBM    114   600 
  38  MSFT    69   400 
  53  MSFT    75   900 
  62  INTC    27   800 
  64  MSFT    82   200 
  68  MSFT    90   300 
  81  MSFT    81   600 
  83  INTC    30   800 
  91  MSFT    73   700 
  99  IBM    119   400 
: 

The available commands are listed when you type "help" at the colon prompt. The commands 
are: 

count    set run count 
ticks    toggle ticks 
trades   toggle trades 
config   show configuration 
run      run the simulation 
quit     exit the program 

The output shows clock tick, stock, price, volume. 

Delegate Code

Two delegates are declared in the Admin.cs file. 

public delegate void TickCallback(int ticks); 
public delegate void TradeCallback(int ticks, string stock, 
                                   int price, int volume); 



As we saw in the previous section, a delegate is similar to a class, and a delegate object is 
instantiated by new. 

TickCallback tickDlg = new TickCallback(PrintTick); 
TradeCallback tradeDlg = new TradeCallback(PrintTrade); 

A method is passed as the parameter to the delegate constructor. The method signature must 
match that of the delegate. 

public static void PrintTick(int ticks) 
{ 
   Console.Write("{0} ", ticks); 
   if (++printcount == LINECOUNT) 
   { 
      Console.WriteLine(); 
      printcount = 0; 
   } 
} 

Passing the Delegates to the Engine

The Admin class passes the delegates to the Engine class in the constructor of the Engine 
class. 

Engine engine = new Engine(tickDlg, tradeDlg); 

Random-Number Generation

The heart of the simulation is the Run method of the Engine class. At the core of the Run 
method is assigning simulated data based on random numbers. We use the System.Random 
class, which we discussed in Chapter 3. 

double r = rangen.NextDouble(); 
if (r < tradeProb[i]) 
{ 
   int delta = (int) (price[i] * volatility[i]); 
   if (rangen.NextDouble() < .5) 
   { 
      delta = -delta; 
   } 
   price[i] += delta; 
   int volume = rangen.Next(minVolume, maxVolume) * 100; 
   tradeOp(tick, stocks[i], price[i], volume); 
} 

Using the Delegates



In the Engine class, delegate references are declared: 

TickCallback tickOp; 
TradeCallback tradeOp; 

The delegate references are initialized in the Engine constructor: 

public Engine(TickCallback tickOp, TradeCallback tradeOp) 
{ 
   this.tickOp = tickOp; 
   this.tradeOp = tradeOp; 
} 

The method that is wrapped by the delegate object can then be called through the delegate 
reference: 

if (showTicks) 
   tickOp(tick); 

Events

Delegates are the foundation for a design pattern known as events. Conceptually, servers 
implement incoming interfaces, which are called by clients. In a diagram, such an interface 
may be shown with a small bubble (a notation used in COM). Sometimes a client may wish to 
receive notifications from a server when certain "events" occur. In such a case the server will 
specify an outgoing interface. The server defines the interface and the client implements it. In 
a diagram, such an interface may be shown with an arrow (again, a notation used in COM). 
Figure 5-4 illustrates a server with one incoming and one outgoing interface. In the case of the 
outgoing interface, the client will implement an incoming interface, which the server will call. 

Figure 5-4. A server with an incoming interface and an outgoing interface.

 

A good example of a programming situation with events is a graphical user interface. An 



event is some external action, typically triggered by the user, to which the program must 
respond. Events include user actions such as clicking a mouse button or pressing a key on the 
keyboard. A GUI program must contain event handlers to respond to or "handle" these events. 
We will see many examples of GUI event handling in Chapter 6, where we discuss Windows 
Forms. 

Events in C# and .NET

The .NET Framework provides an easy-to-use implementation of the event paradigm built on 
delegates. C# simplifies working with .NET events by providing the keyword event and 
operators to hook up event handlers to events and to remove them. The Framework also 
defines a base class EventArgs to be used for passing arguments to event handlers. There are 
a number of derived classes defined by the Framework for specific types of events, such as 
MouseEventArgs, ListChangedEventArgs, and so forth. These derived classes define data 
members to hold appropriate argument information. 

An event handler is a delegate with a specific signature, 

public delegate void EventHandler( 
   object sender, 
   EventArgs e); 

The first argument represents the source of the event, and the second argument contains data 
associated with the event. 

We will examine this event architecture through salient code from the example program 
EventDemo, which illustrates a chat room. 

Server-Side Event Code

We begin with server-side code, in ChatServer.cs. The .NET event architecture uses 
delegates of a specific signature: 

public delegate void JoinHandler(object sender, 
                                 ChatEventArg e); 

The first parameter specifies the object that sent the event notification. The second parameter 
is used to pass data along with the notification. Typically, you will derive a class from 
EventArg to hold your specific data. 

public class ChatEventArg : EventArgs 
{ 
   public string Name; 
   public ChatEventArg(string name) 
   { 
      Name = name; 
   } 



} 

A delegate object reference is declared using the keyword event. 

public event JoinHandler Join; 

A helper method is typically provided to facilitate calling the delegate object(s) that have been 
hooked up to the event. 

protected void OnJoin(ChatEventArg e) 
{ 
   if (Join != null) 
   { 
      Join(this, e); 
   } 
} 

A test for null is made in case no delegate objects have been hooked up to the event. 
Typically, access is specified as protected, so that a derived class has access to this helper 
method. You can then "fire" the event by calling the helper method. 

public void JoinChat(string name) 
{ 
   members.Add(name); 
   OnJoin(new ChatEventArg(name)); 
} 

Client-Side Event Code

The client provides event handler functions. 

public static void OnJoinChat(object sender, 
   ChatEventArg e) 
{ 
   Console.WriteLine( 
      "sender = {0}, {1} has joined the chat", 
      sender, e.Name); 
} 

The client hooks the handler to the event, using the += operator. 

ChatServer chat = new ChatServer("OI Chat Room"); 
// Register to receive event notifications from the server 
chat.Join += new JoinHandler(OnJoinChat); 

The event starts out as null, and event handlers get added through +=. All of the registered 



handlers will get invoked when the event delegate is called. You may unregister a handler 
through -=. 

Chat Room Example

The chat room example in EventDemo illustrates the complete architecture on both the server 
and client sides. The server provides the following methods: 

●     JoinChat 
●     QuitChat 
●     ShowMembers 

Whenever a new member joins or quits, the server sends a notification to the client. The event 
handlers print out an appropriate message. Here is the output from running the program: 

sender = OI Chat Room, Michael has joined the chat 
sender = OI Chat Room, Bob has joined the chat 
sender = OI Chat Room, Sam has joined the chat 
--- After 3 have joined---
Michael 
Bob 
Sam 
sender = OI Chat Room, Bob has quit the chat 
--- After 1 has quit---
Michael 
Sam 

Client Code

The client program provides event handlers. It instantiates a server object and then hooks up 
its event handlers to the events. The client then calls methods on the server. These calls will 
trigger the server, firing events back to the client, which get handled by the event handlers. 

// ChatClient.cs 

using System; 

class ChatClient 
{ 
   public static void OnJoinChat(object sender, 
                                 ChatEventArg e) 
   { 
      Console.WriteLine( 
         "sender = {0}, {1} has joined the chat", 
         sender, e.Name); 
   } 
   public static void OnQuitChat(object sender, 



                                 ChatEventArg e) 
   { 
      Console.WriteLine( 
         "sender = {0}, {1} has quit the chat", 
         sender, e.Name); 
   } 
   public static void Main() 
   { 
      ChatServer chat = new ChatServer("OI Chat Room"); 
      // Register to receive event notifications from the 
      // server 
      chat.Join += new JoinHandler(OnJoinChat); 
      chat.Quit += new QuitHandler(OnQuitChat); 
      // Call methods on the server 
      chat.JoinChat("Michael"); 
      chat.JoinChat("Bob"); 
      chat.JoinChat("Sam"); 
      chat.ShowMembers("After 3 have joined"); 
      chat.QuitChat("Bob"); 
      chat.ShowMembers("After 1 has quit"); 
   } 
} 

Server Code

The server provides code to store in a collection the names of people who have joined the 
chat. When a person quits the chat, the name is removed from the collection. Joining and 
quitting the chat triggers firing an event back to the client. The server also contains the 
"plumbing" code for setting up the events, including declaration of the delegates, the events, 
and the event arguments. There are also helper methods for firing the events. 

// ChatServer.cs 

using System; 
using System.Collections; 

public class ChatEventArg : EventArgs 
{ 
   public string Name; 
   public ChatEventArg(string name) 
   { 
      Name = name; 
   } 
} 

public delegate void JoinHandler(object sender, 
                                 ChatEventArg e); 



public delegate void QuitHandler(object sender, 
                                 ChatEventArg e); 

public class ChatServer 
{ 
   private ArrayList members = new ArrayList(); 
   private string chatName; 
   public event JoinHandler Join; 
   public event QuitHandler Quit; 
   public ChatServer(string chatName) 
   { 
      this.chatName = chatName; 
   } 
   override public string ToString() 
   { 
      return chatName; 
   } 
   protected void OnJoin(ChatEventArg e) 
   { 
      if (Join != null) 
      { 
         Join(this, e); 
      } 
   } 
   protected void OnQuit(ChatEventArg e) 
   { 
      if (Quit != null) 
      { 
         Quit(this, e); 
      } 
   } 
   public void JoinChat(string name) 
   { 
      members.Add(name); 
      OnJoin(new ChatEventArg(name)); 
   } 
   public void QuitChat(string name) 
   { 
      members.Remove(name); 
      OnQuit(new ChatEventArg(name)); 
   } 
   public void ShowMembers(string msg) 
   { 
      Console.WriteLine("--- " + msg + "---"); 
      foreach (string member in members) 
      { 



         Console.WriteLine(member); 
      } 
   } 
} 

It may appear that there is a fair amount of such "plumbing" code, but it is much simpler than 
the previous connection-point mechanism used by COM for events. Also, in certain areas 
various wizards and other tools (such as the Forms designers) will generate the infrastructure 
for you automatically. We will see how easy it is to work with events in Windows 
programming in Chapter 6. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Attributes

A modern approach to implementing complex code is to let the system do it for you. There 
must be a way for the programmer to inform the system of what is desired. In the .NET 
Framework such cues can be given to the system by means of attributes. 

Microsoft introduced attribute-based programming in Microsoft Transaction Server. The 
concept was that MTS, not the programmer, would implement complex tasks such as 
distributed transactions. The programmer would "declare" the transaction requirements for 
a COM class, and MTS would implement it. This use of attributes was greatly extended in 
the next generation of MTS, known as COM+. In MTS and COM+ attributes are stored in 
a separate repository, distinct from the program itself. 

Attributes are also used in Interface Definition Language (IDL), which gives a precise 
specification of COM interfaces, including the methods and signatures. Part of the function 
of IDL is to make it possible for a tool to generate proxies and stubs for remoting a method 
call across a process boundary or even across a network. When parameters are passed 
remotely, it is necessary to give more information than when they are passed within the 
same process. For example, within a process, you can simply pass a reference to an array. 
But in passing an array across a process boundary, you must inform the tool of the size of 
the array. This information is communicated in IDL by means of attributes, which are 
specified using a square-bracket notation. Here is an example of IDL that shows the use of 
attributes. 

[ 
   object, 
   uuid(AAA19CDE-C091-47BF-8C96-C80A00989796), 
   dual, 
   pointer_default(unique) 
] 
interface IAccount : IDispatch 
{ 
   [id(1)] HRESULT Deposit([in] long id, [in] long 
amount); 
   [id(2)] HRESULT Withdraw([in] long id, [in] long 
amount); 
   [id(3)] HRESULT GetBalance([in] long id, 
              [out] long *pBal); 
   [id(4)] HRESULT GetAllBalances([in, out] long* pCount, 
              [out, size_is(*pCount)] long balances[]); 
}; 

If you are experienced with COM, such IDL will be familiar to you. If not, just notice the 
general structure of how attributes are used. Attributes such as object and uuid are applied 
to the interface, the id attribute is applied to methods, and the attributes in, out, and size_is 



are applied to parameters. 

A problem with attributes in both MTS/COM+ and IDL is that they are separate from the 
program source code. When the source code is modified, the attribute information may get 
out of sync with the code. 

Attributes in .NET

In .NET, attributes are declared with square brackets, as in IDL. But unlike IDL, the 
attributes are part of the program source code. When compiled into intermediate language, 
the attributes become part of the metadata. There are some predefined attributes in C#, 
there are many attributes associated with various .NET classes, and there is a mechanism to 
create custom attributes for your own classes. In this section we look at the general 
characteristics of how attributes are used, beginning with a simple example of using one of 
the predefined attributes in C#. In later chapters attributes associated with specific .NET 
classes will be used extensively, and in Chapter 8, after we've discussed Reflection, we 
will see how to create and use custom attributes. 

The AttributeDemo program provides a simple example of using the predefined C# 
attribute Conditional, which is used to mark a method to be executed only if a 
preprocessor symbol is defined. 

// AttributeDemo.cs 

#define LINUX 

using System; 
using System.Diagnostics; 

public class AttributeDemo 
{ 
   public static void Main(string[] args) 
   { 
      Notice(); 
      MultiNotice(); 
      Console.WriteLine("Goodbye"); 
   } 
   [ConditionalAttribute("UNIX")] 
   private static void Notice() 
   { 
      Console.WriteLine("Notice: Unix version"); 
   } 
   [Conditional("UNIX")] [Conditional("LINUX")] 
   private static void MultiNotice() 
   { 
      Console.WriteLine("Notice: Some version of Unix"); 



   } 
} 

Conditional is one of three predefined attributes in C#. [8] Its full name is 
ConditionalAttribute, but C# has the convenience feature that when an attribute's name 
ends with the Attribute suffix, you may drop the suffix. Conditional is used to mark a 
method with a symbol. If that symbol is defined by the preprocessor, calls to the method 
will be included, otherwise calls will be omitted. The Conditional attribute is multiuse, 
which means that it may be used several times in front of a method. For example, in the 
code above the MultiNotice method is conditioned on either "UNIX" or "LINUX," and 
calls to this method will be included if either symbol is defined. The preprocessor #define 
directive [9] defines cthe symbol "LINUX." The "UNIX" symbol is not defined (unless 
done via a compiler option, which we'll look at shortly). The Conditional attribute requires 
the namespace System.Diagnostics. (We will discuss .NET diagnostic support in detail in 
Chapter 13.) 

[8] The other two predefined attributes in C# are Obsolete and AttributeUsage. 
Obsolete is used to mark a program entity that should not be used, causing the 
compiler to issue a warning or error message if it is used. We will discuss 
AttributeUsage in Chapter 8 in connection with custom attributes.

[9] C#, unlike C and C++, does not allow use of preprocessor directives to define 
macros.

Running the program produces the following output: 

Notice: Some version of Unix 
Goodbye 

The call to Notice is omitted, but the call to MultiNotice is included. You may experiment 
with this program by defining no symbols, defining "UNIX," etc. 

Preprocessor Symbols Using Compiler Option

Besides using a #define preprocessor directive in your source code, you can also define 
preprocessor symbols using the /define command-line option of the C# compiler. For 
example, you can define the symbol "UNIX" using the following command: 

csc /define:UNIX AttributeDemo.cs 

You can also specify preprocessor directives in Visual Studio. In Solution Explorer right-
click on the solution. From the context menu choose Properties. Select Build from 
Configuration Properties, and enter your desired string in the Conditional Compilation 
Constant section, as illustrated in Figure 5-5. 

Figure 5-5. Specifying a preprocessor symbol in Visual Studio.



 

Using Attributes

The example program demonstrated an attribute with a single string parameter. Attributes 
can take multiple parameters, and there can also be named parameters. Named parameters 
are useful when there are many different parameters, and in a particular case you may use 
only some of them. Named parameters can appear in any order. 

As an example, the DllImport attribute takes a single positional parameter (the name of 
the DLL) and several positional parameters. Here is an example of using the DllImport 
attribute, with named parameters CharSet and CallingConvention: 

[DllImport("KERNEL32.DLL", CharSet=CharSet.Unicode, 
CallingConvention=CallingConvention.StdCall)] 

We will see examples of the use of DllImport in Chapter 14, when we discuss the 
Platform Invocation Service (or PInvoke), which enables you to call unmanaged code 
through functions implemented in a DLL. 

Attribute Targets

An attribute may be applicable to different kinds of entities. In the COM IDL example we 
saw examples of attributes for interfaces, methods, and parameters. In .NET attributes may 
be applied to many different kinds of entities, including 

●     assembly 



●     module 
●     class 
●     struct 
●     interface 
●     method 
●     parameter 

and many more. The specification of legal entities to which an attribute may be applied is 
part of the definition of an attribute, and you will get a compiler error message if you 
attempt to use an attribute on the wrong kind of entity. When we discuss custom attributes 
in Chapter 8, we will see how to specify the legal attribute targets for our own attributes. 



Summary

This chapter explored several important interactions between C# and the .NET 
Framework, beginning with the root class object. We examined collections, 
including the methods of the object class that should be overridden to tap into the 
functionality provided by the .NET Framework. We introduced interfaces, which 
allow you to rigorously define a contract for a class to implement. While a class 
in C# can inherit from only one other class, it can implement multiple interfaces. 
Another benefit of interfaces is that they facilitate very dynamic programs. C# 
provides convenient facilities to query a class at runtime to see whether it 
supports a particular interface. 

The interfaces supporting collections were examined in detail, and copy 
semantics were explored. While C++ relies on a language feature of a copy 
constructor, in C# you provide the capability by implementing a special interface, 
ICloneable. This led to an exploration of the role of generic interfaces in the 
.NET Framework programming model and to a comparison of the .NET and 
COM component models. A further illustration of programming with generic 
interfaces was provided by sorting in different orders with the IComparable 
interface. The examples offered insight into the workings of frameworks, which 
are more than class libraries. In a framework, you call the framework, and the 
framework calls you. Your code can be viewed as the middle layer of a sandwich. 
This key insight can help you grasp what makes .NET programming "tick." 

This behavior of being called into has been around for a long time in the form of 
callback functions. The chapter included a careful examination of delegates and 
events. Two simple and intuitive examples were presented: a stock market 
simulation and an online chat room. 

Finally, we covered attributes, which can be used to modify the behavior of 
entities of our program according to our specifications. 

This chapter concludes our exploration of the C# programming language. In the 
next chapter we begin our detailed examination of the .NET Framework with a 
study of user interface programming using Windows Forms. 



Chapter 6. User Interface Programming
A fundamental feature of modern user interaction with a computer is a graphical 
user interface or GUI. In this chapter we learn how to implement a GUI using the 
Windows Forms classes of the .NET Framework. Practical Windows 
programming involves extensive use of tools and wizards that greatly streamline 
the process. But all this automation can obscure the fundamentals of what is 
going on. Hence we begin with the basics, employing the .NET Framework SDK 
to create simple Windows applications from scratch, without use of any special 
tools. We describe the fundamentals of drawing in Windows Forms, using a font 
and a brush. We explain the principles of event handling in Windows Forms and 
implement handlers for mouse events. We implement menus in Windows Forms 
and corresponding event handlers. Controls are introduced. 

At this point we switch over to using Visual Studio.NET, which makes it easy to 
create a starter project, draw controls using a Forms Designer, create menus, add 
event handlers, and perform other useful tasks. Dialog boxes are covered, and the 
listbox control is introduced. We illustrate GUI programming by constructing a 
GUI for our Acme Travel Agency case study. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Windows Forms Hierarchy

Windows Forms is that part of the .NET Framework that supports building 
traditional GUI applications on the Windows platform. Windows Forms provides 
a large set of classes that make it easy to create sophisticated user interfaces. 
These classes are available to all .NET languages. 

Your application will typically have a main window implemented by deriving 
from the Form class. Figure 6-1 illustrates how your class derives from the 
Windows Forms hierarchy. 

Figure 6-1. Simplified Windows Forms class hierarchy.

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Simple Forms Using .NET SDK

To gain insight into the fundamentals of Windows Forms it will be helpful to build a simple 
application using only the .NET Framework SDK. See the program SimpleForm with several 
progressive steps. None of these steps has a Visual Studio project. There is a simple batch file 
build.bat that you should run at the command prompt. 

Step 0: A Simple Form

Here is a bare-bones Windows application. It is Step 0 of the example SimpleForm. 

using System; 
using System.Windows.Forms; 

public class Form1: Form 
{ 
   public Form1() 
   { 
      Size = new System.Drawing.Size(300,200); 
      Text = "Simple Form - Step 0"; 
   } 
   public static void Main(string[] args) 
   { 
      Application.Run(new Form1()); 
   } 
} 

Our Form1 class inherits from System.Windows.Forms. The class System.Application has 
static methods, such as Run and Exit, to control an application. The Main method instantiates 
a new form and runs it as the main window. 

The constructor of the form does initializations: The Size field sets the size of the new form in 
pixels. The Text field specifies the caption to be shown in the title bar of the new form. 

The key to Windows Forms programming is the Form base class. This class contains a great 
deal of functionality, which is inherited by form classes that we design. 

You can build the application at the command line using the batch file build.bat. To run the 
batch file, open up a DOS window and navigate to the SimpleForm\Step0 directory and type 
build. Remember that you must have the environment variables set up properly, which you 
can ensure by running the Visual Studio.NET Command Prompt. 

csc /target:winexe /r:System.dll /r:System.Drawing.dll 
/r:System.Windows.Forms.dll SimpleForm.cs 

The target is a Windows executable, and there are references to the required .NET libraries, 



System.dll, System.Drawing.dll, and System.Windows.Forms.dll. 

After you have built the application using the batch file, you can run it by typing SimpleForm 
at the command line. You can also double-click on the file SimpleForm.exe in Windows 
Explorer. Figure 6-2 shows this simple application. Although trivial, it already has a great deal 
of functionality, which is inherited from the Form base class. You can drag the window 
around, resize it, minimize it, maximize it, open the system menu (click in top left of the 
window), and so forth. 

Figure 6-2. A bare-bones Windows Forms application (Step 0).

 

Windows Messages

Visual Studio.NET supplies a tool called Spy++, which can be used to "spy" on windows, 
gaining some inkling of things taking place under the hood. Spy++ can be started from the 
Visual Studio Tools menu. With the Step 0 version of SimpleForm.exe running, start Spy++. 
Bring up the Find Window dialog from the menu Spy | Find Window. Click on the Messages 
radio button. See Figure 6-3. 

Figure 6-3. The Finder Tool lets you select a window to spy upon.



 

Using the left mouse button, drag the Finder Tool over the window of the SimpleForm 
application and release the button. Now. as you interact with the SimpleForm window, you 
will see windows messages displayed in a window of Spy++, as illustrated in Figure 6-4. 

Figure 6-4. The Finder Tool lets you select a window to spy upon.

 

Windows applications are structured to handle events. The Windows operating system sends 
messages to applications in response to user actions such as clicking a mouse button, selecting 
a menu, typing at the keyboard, and so on. A Windows application must be structured so that 
it can respond to such messages. 

The nice thing about Windows programming using the .NET Framework classes is that you 
program at a much higher level of abstraction. We have already seen how simple the Step 0 



application is. In the next several sections we will progressively implement some basic 
features, illustrating the fundamentals of GUI programming using the Windows Forms 
classes. 

Step 1: Drawing Text on a Form

Step 1 illustrates drawing text on a form. Figure 6-5 shows a run of the application. 

Figure 6-5. Drawing text on a simple form (Step 1).

 

Performing output in Windows programs is very different from outputting in console 
applications, where we simply use methods such as Console.WriteLine. Drawing output in a 
window is referred to as "painting." Painting is done in response to a special kind of message, 
a "paint" message WM_PAINT. This "on-demand" style of painting ensures that the output of 
a window will be shown correctly even if the window is covered up and uncovered again. 

Another difference in output in Windows programs is that you have to specify details, such as 
the coordinates at which it is drawn, a "brush" to draw with, a font for text, and so forth. Here 
is the code for Step 1. 

// SimpleForm.cs - Step 1 

using System; 
using System.Windows.Forms; 
using System.Drawing; 

public class Form1: Form 
{ 
   private float x, y; 
   private Brush stdBrush; 
   public Form1() 
   { 
      Size = new System.Drawing.Size(300,200); 
      Text = "Simple Form - Step 1"; 



      x = y = 10; 
      stdBrush = new SolidBrush(Color.Black); 
   } 
   protected override void OnPaint(PaintEventArgs e) 
   { 
      e.Graphics.DrawString("Hello, Window Forms", 
                            Font, stdBrush, x, y); 
   } 
} 
... 

To draw in Windows Forms, you must override the virtual method OnPaint. The class 
PaintEventArgs has a Graphics object as a read-only property. The Graphics class, part of 
the System.Drawing namespace, has methods for drawing. 

The DrawString method has parameters for: 

●     The string to be drawn 
●     The font (Font is a property of Form that gives the default font for the form) 
●     The brush to be used 
●     The pixel coordinates (as float numbers) 

A black SolidBrush is constructed as our standard brush. 

Windows Forms Event Handling

GUI applications are event-driven: The application executes code in response to user events, 
such as clicking the mouse, choosing a menu item, and so on. Each form or control has a 
predefined set of events. For example, every form has a MouseDown event. 

Windows Forms employs the .NET event model, [1] which uses delegates to bind events to the 
methods that handle them. The Windows Forms classes use multicast delegates. A multicast 
delegate maintains a list of the methods it is bound to. When an event occurs in an application, 
the control raises the event by calling the delegate for that event. The delegate then calls all 
the methods it is bound to. 

[1] You may wish to review the discussion of delegates and events in Chapter 5.

C# provides the overloaded += operator for adding a delegate to an event. The following code 
adds the Form1_MouseDown method to the MouseDown event. 

MouseDown += new MouseEventHandler (Form1_MouseDown); 

We will see this code in context shortly. 

Events Documentation



You can find all the events associated with a class in the .NET Framework Reference. The 
screen shot in Figure 6-6 shows the predefined events associated with the Form class. 

Figure 6-6. Documentation of events in the Form class.

 

MouseDown Event

One of the predefined events in the Control class, from which the Form class derives, is 
MouseDown. 

public event MouseEventHandler MouseDown; 

Here is the declaration of MouseEventHandler: 

public delegate void MouseEventHandler( 
   object sender, 
   MouseEventArgs e 
); 

The event handler receives a MouseEventArgs (derived from EventArgs), which has read-
only properties to provide information specific to this event: 



●     Button specifies which button (left, right, or the like) was pressed. 
●     Clicks indicates how many times the button was pressed and released. 
●     Delta provides a count of rotations of a mouse wheel. 
●     X and Y provide the coordinates where the mouse button was pressed. 

Step 2: Handling a Mouse Event

In Step 2 a mouse click (any button) will reposition the location of the greeting string. Figure 
6-7 shows the string relocated after we have clicked the mouse. 

Figure 6-7. Clicking the mouse repositions the text (Step 2).

 

// SimpleForm.cs - Step 2 

using System; 
using System.Windows.Forms; 
using System.Drawing; 

public class Form1: Form 
{ 
   private void InitializeComponent() 
   { 
      MouseDown += new MouseEventHandler (Form1_MouseDown); 
   } 

   private float x, y; 
private Brush stdBrush; 
public Form1() 
{ 
   InitializeComponent(); 
   Size = new System.Drawing.Size(300,200); 
   Text = "Simple Form - Step 2"; 
   x = y = 10; 
   stdBrush = new SolidBrush(Color.Black); 



} 
protected void Form1_MouseDown (object sender, 
                                MouseEventArgs e) 
{ 
   x = e.X; 
   y = e.Y; 
   Invalidate(); 
} 
... 

As part of its initialization, our program registers the Form1_MouseDown method with the 
MouseDown event. This method sets the x and y coordinates of our text to the location where 
the mouse was clicked. To understand the role of Invalidate, comment out the code and build 
again. Click the mouse to relocate the greeting string. What happens? The string is not 
relocated. Now cover the SimpleForm window with some other window and then uncover it. 
Now you should see the string relocated. 

The Invalidate method is defined in the Control base class. There are several overloaded 
versions of this method. Each invalidates some region of the control and causes a paint 
message to be sent to the control. The method with no parameters causes the entire control to 
be invalidated. To minimize the amount of redrawing done, a more sophisticated application 
might invalidate just a rectangle. 

Step 2M: Multiple Event Handlers

Step 2M illustrates tying two different event handlers to the MouseDown event. The second 
handler merely displays a message box. [2] 

[2] A message box is a special kind of dialog box and will be discussed later in this 
chapter. 

// SimpleForm.cs - Step 2M 
... 

public class Form1: Form 
{ 
   private void InitializeComponent() 
   { 
      MouseDown += new MouseEventHandler (Form1_MouseDown); 
      MouseDown += new MouseEventHandler (ShowClick); 
   } 
   ... 
   protected void Form1_MouseDown (object sender, 
                                   MouseEventArgs e) 
   { 
      x = e.X; 
      y = e.Y; 



      Invalidate(); 
   } 
   protected void ShowClick(object sender, 
                            MouseEventArgs e) 
   { 
      MessageBox.Show("Mouse clicked!!!"); 
   } 
   ... 
} 

Step 3: MouseDown and KeyPress Events

Step 3 of our demonstration illustrates handling an additional event, KeyPress, and also 
distinguishing between left and right buttons in MouseDown. 

HAndling Left and Right Buttons

We can distinguish between left and right buttons by using the Button property of the 
MouseEventArgs parameter. Right button down is used for clearing the message string, 
which is now stored in a StringBuilder data member str. 

protected void Form1_MouseDown (object sender, 
                                MouseEventArgs e) 
{ 
   if (e.Button == MouseButtons.Left) 
   { 
      x = e.X; 
      y = e.Y; 
   } 
   else if (e.Button == MouseButtons.Right) 
   { 
      str = new StringBuilder(); 
   } 
   Invalidate(); 
} 

KeyPress Event

Step 3 also illustrates handling a KeyPress event. Every time the user presses a key, the 
corresponding character is appended to the greeting string. Note use of the StringBuilder 
class, which is more efficient in this context than string. String is immutable, and hence 
string objects would be continually created and destroyed while we appended characters. 

private StringBuilder str; 
... 
protected void Form1_KeyPress (object sender, 



                               KeyPressEventArgs e) 
{ 
   str.Append(e.KeyChar); 
   Invalidate(); 
} 

As with Step 2 we call Invalidate to force a repaint after we have made a change in the data 
to be displayed. Figure 6-8 illustrates our SimpleForm window after the starting text has been 
cleared and some new text typed in. 

Figure 6-8. Exercising mouse and key press events (Step 3).

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Menus

As a user of Windows applications you should be acquainted with menus, which 
provide a simple mechanism for choosing commands. In .NET menus are 
implemented in code. There is no separate resource file. 

Step 4: A Menu to Exit the Program

Step 4 of our SimpleForm program illustrates adding a simple menu. File | Exit is 
used to exit the program. See Figure 6-9. 

Figure 6-9. A File | Exit menu is added to our form (Step 4).

 

Menu Code

// SimpleForm.cs - Step 4 
... 
private MenuItem menuExit; 
private MenuItem menuFile; 
private MainMenu mainMenu1; 
public Form1() 
{ 
   InitializeComponent(); 
   Size = new System.Drawing.Size(300,200); 
   Text = "Simple Form - Step 4"; 
   x = y = 10; 
   stdBrush = new SolidBrush(Color.Black); 
   str = new StringBuilder("Hello, Windows Forms"); 
} 



private void InitializeComponent() 
{ 
      mainMenu1 = new MainMenu (); 
      menuFile = new MenuItem (); 
      menuExit = new MenuItem (); 
      // mainMenu1 
      mainMenu1.MenuItems.Add(menuFile); 
      // menuFile 
   menuFile.Index = 0; 
   menuFile.MenuItems.Add(menuExit); 
   menuFile.Text = "File"; 
   // menuExit 
   menuExit.Index = 0; 
   menuExit.Text = "Exit"; 
   menuExit.Click += new EventHandler(menuExit_Click); 

   Menu = mainMenu1; 
... 

The code in InitializeComponent builds up the hierarchical menu structure, 
represented by an instance of the MainMenu class. A menu is composed of 
MenuItem objects that represent the individual menu commands in the menu 
structure. Each MenuItem can be a command for your application or a parent menu 
for other submenu items. You bind the MainMenu to the Form that will display it by 
assigning the MainMenu to the Menu property of the Form. 

When we discuss the Forms Designer later in the chapter, we will see that it is easy to 
create a menu by dragging a MainMenu control from the toolbox to the form. The 
Forms Designer will take care of generating appropriate boilerplate code. 

Menu Event Code

A delegate is hooked to the event, as with other Windows Forms events. Clicking on a 
menu item causes the corresponding command to be executed. 

private void InitializeComponent() 
{ 
  ... 
      menuExit.Click += 
      new EventHandler(this.menuExit_Click); 
  ... 
} 



private void menuExit_Click(object sender, 
                            EventArgs e) 
{ 
   Application.Exit(); 
} 
  ... 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Controls

In the program we have just discussed, mainMenu1 is an example of a control. It is an 
instance of the MainMenu class. A control is an object that is contained within a form and is 
used to add functionality to the form. A control can perform many tasks automatically on 
behalf of its parent form. It simplifies programming, as you do not have to be concerned 
with painting, invalidating, working with graphics elements, and so forth. The simple menu 
that we just illustrated would have required a substantial amount of code if we had to 
implement it from scratch. Controls provide rich reusable code—a big benefit from 
programming with objects. 

Step 5: Using a TextBox Control

Step 5 of our SimpleForm application illustrates using a TextBox control to display our 
greeting text. As with earlier versions of the application, you can reposition the greeting by 
clicking the left mouse button, and you can clear the greeting by clicking the right mouse 
button. You can also type in your own greeting text. Now you have full editing capability. 
You can insert characters wherever you wish in the control, cut and paste (Ctrl+X and 
Ctrl+V), and so forth. All of this editing capability is provided by the TextBox control. 
Figure 6-10 illustrates the application after the greeting has been repositioned and we have 
typed in some text of our own. 

Figure 6-10. The greeting text is now displayed using a control (Step 5).

 

Here is the new version of our program. Note that it has both greater simplicity and more 
functionality. We no longer need member variables for the coordinates or text of the greeting 
string (this information is now stored in the TextBox control txtGreeting). We do not need 
OnPaint any longer, either, because the text box knows how to paint itself. We can then also 
get rid of the brush. We don't need to handle KeyPress events, because this functionality is 
handled (in a much more full-blown way) by the TextBox control. 

// SimpleForm.cs - Step 5 
... 



public class Form1: Form 
{ 
   private TextBox txtGreeting; 
   private MenuItem menuExit; 
   private MenuItem menuFile; 
   private MainMenu mainMenu1; 
   public Form1() 
   { 
      InitializeComponent(); 
      Size = new System.Drawing.Size(300,200); 
      Text = "Simple Form - Step 5"; 
   } 
   private void InitializeComponent() 
   { 
      mainMenu1 = new MainMenu (); 
      menuFile = new MenuItem (); 
      menuExit = new MenuItem (); 
      // mainMenu1 
      mainMenu1.MenuItems.Add(menuFile); 
      // menuFile 
      menuFile.Index = 0; 
      menuFile.MenuItems.Add(menuExit); 
      menuFile.Text = "File"; 
      // menuExit 
      menuExit.Index = 0; 
      menuExit.Text = "Exit"; 
      menuExit.Click += new EventHandler(menuExit_Click); 

      Menu = mainMenu1; 

      // txtGreeting 
      txtGreeting = new TextBox(); 
      txtGreeting.Location = new Point(10, 10); 
      txtGreeting.Size = new Size(150, 20); 
      txtGreeting.Text = "Hello, Windows Forms"; 

      Controls.Add(txtGreeting); 

      this.MouseDown += 
         new MouseEventHandler (Form1_MouseDown); 
   } 
   protected void Form1_MouseDown (object sender, 
                                   MouseEventArgs e) 
   { 
      if (e.Button == MouseButtons.Left) 



      { 
         txtGreeting.Location = new Point(e.X, e.Y); 
      } 
      else if (e.Button == MouseButtons.Right) 
      { 
         txtGreeting.Text = ""; 
      } 
   } 
   private void menuExit_Click(object sender, EventArgs e) 
   { 
      Application.Exit(); 
   } 
   public static void Main(string[] args) 
   { 
      Application.Run(new Form1()); 
   } 
} 

Using the TextBox control is very easy. As part of the initialization we instantiate it and 
assign the Location, Size, and Text properties. We add our new control to the Controls 
collection of our form. In the mouse event handler we reposition the control by assigning the 
Location property. We clear the text by assigning the Text property. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Visual Studio.NET and Forms

Although it is perfectly feasible to create Windows Forms applications using only the 
command-line tools of the .NET Framework SDK, in practice it much easier to use Visual 
Studio.NET. You can get started by creating a Windows Application project, which provides 
starter code and sets up references to the required .NET libraries. You can then use the Forms 
Designer to drag and drop controls from a toolbox onto your forms. The Forms Designer 
inserts all the needed boilerplate code to make your controls work within your forms. There is 
a Properties window which makes it easy to set properties of your controls at design time. You 
can, of course, also set properties at runtime, which is what we did with our txtGreeting text 
box in the code shown previously. 

The same Forms Designer can be used in all .NET languages. A similar Designer is available 
for visually drawing Web Forms, which we will discuss in Chapter 10 on ASP.NET. 

Windows Forms Demonstration

The best way to become acquainted with using Visual Studio.NET to create Windows 
applications is to build a small application from scratch yourself. Our demonstration creates a 
Windows application to make deposits and withdrawals from a bank account. Do all your work 
in the Demos directory for this chapter. 

1.  Create a new C# project BankGui of type Windows Application in the Demos folder. 
See Figure 6-11. 

Figure 6-11. Creating a new Windows Application project.

 

2.  Open up the Toolbox by dragging the mouse over the vertical Toolbox tab on the left 



side of the main Visual Studio window. If the Toolbox tab does not show, you can open 
it from the menu View | Toolbox. You can make the Toolbox stay open by clicking on 
the "push-pin" next to the X on the title bar of the Toolbox. (The little yellow box will 
say "Auto Hide" when you pause the mouse over the push-pin.) 

3.  From the Toolbox, drag two labels, two textboxes, and two buttons to the form. See 
Figure 6-12. 

Figure 6-12. Dragging controls from the Toolbox onto a form.

 

4.  Click on label1 in the Forms Designer. This will select that control in the Properties 
window, just beneath the Solution Explorer. You can use the Properties window to 
make changes to properties of controls. Change the Text property to Amount. After 
you type the desired value, hit the carriage return. You will then see the new text shown 
on the form. Figure 6-13 shows the Properties window after you have changed the Text 
property of the first label. 

Figure 6-13. Changing property values in the Properties window.



 

5.  Similarly, change the text of label2 to Balance. 

6.  Enter property values for the textboxes and buttons, as shown in Table 6-1. 

Table 6-1. Property Values for Textboxes and Buttons

Name Text 

txtAmount (blank) 
txtBalance (blank) 
cmdDeposit Deposit 
cmdWithdraw Withdraw 

1.  Resize the form by dragging the sizing handles on the middle of each side. Reposition 
the controls as desired by dragging with the mouse, and resize the controls with the 
mouse, if you wish. When you are satisfied with the appearance of your form, save the 
project. Your form should now look similar to Figure 6-14.

Figure 6-14. Form for BankGui application.



 

2.  Add event handlers for the buttons by double-clicking on each button. 

3.  Add the following code:

public class Form1 : System.Windows.Forms.Form 
{ 
... 
   public Form1() 
   { 
      // 
      // Required for Windows Form Designer support 
      // 
      InitializeComponent(); 

      // 
      // TODO: Add any constructor code after 
      // InitializeComponent call 
      // 
      txtAmount.Text = "25"; 
      txtBalance.Text = "100"; 
   } 
  ... 
   /// <summary> 
   /// The main entry point for the application. 
   /// </summary> 
   [STAThread] 
   static void Main() 
   { 
      Application.Run(new Form1()); 
   } 

   private void cmdDeposit_Click(object sender, 
                                 System.EventArgs e) 



   { 
      int amount = Convert.ToInt32(txtAmount.Text); 
      int balance = Convert.ToInt32(txtBalance.Text); 
      balance += amount; 
      txtBalance.Text = Convert.ToString(balance); 
   } 

   private void cmdWithdraw_Click(object sender, 
                                  System.EventArgs e) 
   { 
      int amount = Convert.ToInt32(txtAmount.Text); 
      int balance = Convert.ToInt32(txtBalance.Text); 
      balance -= amount; 
      txtBalance.Text = Convert.ToString(balance); 
   } 

4.  Build and run the application. It should behave like a standard Windows application. 
You should be able to make deposits and withdrawals. Figure 6-15 illustrates the 
running application.

Figure 6-15. The BankGui Windows application.

 

Design Window and Code Window

The most important thing to understand about navigating Windows Forms projects in Visual 
Studio is switching between the Design window, where you work with controls on a form, and 
the Code window, where you work with source code. We can illustrate these two windows 
from the Demos\VsForm project, where we have provided starter code corresponding to 
VsForm\Step1 in the main directory for this chapter. The starter project simply displays a 
fixed greeting string. The state of the project at various points in the demonstration is captured 
in other numbered steps. 

If you double-click on VsForm.sln (Demos directory) in the Solution Explorer, you will bring 
up the Design window, as shown in Figure 6-16. 



Figure 6-16. The Design window in a Windows Forms project.

 

To bring up the Code window, click on the "View Code"  toolbar button in the Solution 
Explorer. This will open up the source code, and you will see horizontal tabs at the top of the 
principal window area, allowing you to select among the open windows. Now the Design 
window and the Code window for this one form are open. You may also go back to the Design 

window by clicking on the "View Designer"  toolbar button. Figure 6-17 shows the open 
Code window. 

Figure 6-17. The Code window in a Windows Forms project.



 

Adding an Event

1.  Build and run the starter program. This is a completely static application—it merely 
displays a greeting at a fixed location. 

2.  Open up the Design window of the form and click on the Events button  of the 
Properties window. 

3.  Find the MouseDown event. See Figure 6-18. 

Figure 6-18. Adding an event by using the Events button.



 

4.  Double-click. This will automatically generate code to register a delegate for the event 
and provide a skeleton for a method tied to the delegate. [3] 

[3] If you cannot see this Windows Form Designer generated code, click on 
the little "+" on the extreme left of the editor window to open up the hidden 
"region." 

private void InitializeComponent() 
{ 
... 
  this.MouseDown += 
     new System.WinForms.MouseEventHandler 
           (this.Form1_MouseDown); 
} 

  protected void Form1_MouseDown (object sender, 
    System.WinForms.MouseEventArgs e) 
  { 

  } 
  ... 

Code for Event Handler

5.  Add the highlighted code to the mouse down event handler to set the coordinates of the 
greeting message. Don't forget to call Invalidate! 

protected void Form1_MouseDown (object sender, 
System.WinForms.MouseEventArgs e) 
{ 
      x = e.X; 



      y = e.Y; 
      Invalidate(); 
} 

6.  Build and run. You should now be able to relocate the greeting by clicking the mouse 
button (either button will work). The project now corresponds to VsForm\Step2. 

Using the Menu Control

1.  Open up the Toolbox if not already open (click on the Toolbox vertical tab) and drag 

the MainMenu control  onto the form. 

2.  Type "File" and "Exit," creating a popup menu File with a menu item Exit. See Figure 6-
19. 

Figure 6-19. Use the Menu Control to add a menu to a form.

 

3.  In the Properties window change the names of your two menu items to "menuFile" and 
"menuExit." 

4.  Double-click on "Exit" to add code for a File | Exit event handler. 

5.  Add code to the handler to exit the application. 

protected void menuExit_Click (object sender, 
 System.EventArgs e) 
{ 
      Application.Exit(); 
} 



6.  Build and run. Your menu should be operational. The project now corresponds to 
VsForm\Step3. 

Closing a Form

As an interesting modification to our program, let us arrange it so that whenever the user 
attempts to close the application, the user will be queried on whether to really close. There are 
several ways a window can be closed: 

●     From the "X" at top right of the window 
●     From the system menu at the top left of the window 
●     By the keyboard Alt + F4 
●     In our application, by File | Exit 

When a form is about to close, the Closing event is raised. You may stop the closing by setting 
the Cancel property in the handler for this event. (First add a handler for the event Closing in 
the usual way.) Just type in the MessageBox code as shown. 

protected void Form1_Closing (object sender, 
      System.ComponentModel.CancelEventArgs e) 
{ 
      DialogResult status = MessageBox.Show( 
      "Do you want to close", 
        "Simple Form (VS)", MessageBoxButtons.YesNo); 
      if (status == DialogResult.No) 
      { 
            e.Cancel = true; 
      } 
} 

To tap into this behavior, in your handler for File | Exit you should not exit the application but 
instead close the main window by calling the Close method: 

protected void menuExit_Click (object sender, 
       System.EventArgs e) 
{ 
        //Application.Exit(); 
        Close(); 
} 

The project now corresponds to VSForm\Step4. Run your program and try closing in various 
ways. You should always see the dialog box shown in Figure 6-20. 

Figure 6-20. Dialog box that queries the user whether or not to close.



 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Dialog Boxes

Dialog boxes provide a more elaborate way for a user to interact with a Windows application. A dialog 
box can provide a number of controls to facilitate data input. The code in the previous section 
illustrated use of a simple message box dialog that allowed the user to answer a yes or no question. 
This kind of dialog can be created using the MessageBox class. You can implement more general 
dialog boxes by creating forms for them. 

We will illustrate a number of dialogs through a graphical user interface to our Acme Travel Agency 
case study. As usual, the case study code is in the CaseStudy folder for this chapter. Let's begin by 
examining a simple dialog that is used for adding a new hotel to our list of hotels. Build and run the 
case study. In the main form click the "Add..." button. [4] The "New Hotel" dialog is brought up, as 
illustrated in Figure 6-21. 

[4] The three dots are a Windows UI style that indicates the program will not carry out the 
action immediately but will prompt the user for additional input, typically through a dialog box.

Figure 6-21. Dialog box for adding a new hotel.

 

The user can now enter data. Clicking the OK button will cause the information to be accepted. 
Clicking the Cancel button will cause the new data to be ignored. This dialog box (like the message 
box in the previous section) is a modal dialog, which means that the user cannot work elsewhere in the 
application until the dialog is closed. If you try do something else on the main form while the "New 
Hotel" dialog is open—for example, click another button—you will hear a beep. The other kind of 
dialog is modeless, which will allow the user to work elsewhere in the application while the dialog is 
open. 

Dialog boxes normally have special characteristics as forms. For example, they typically do not have a 
system menu, they have no minimize or maximize buttons, and they have a border that does not permit 
them to be resized. You can examine these features with the "New Hotel" dialog. 

Continuing the demonstration, enter some data for a new hotel and click OK. You will now be brought 
back to the main form, and your new hotel will be shown in the list of hotels, as illustrated in Figure 6-
22. The main form also illustrates some additional GUI features, such as a list box for displaying a list 
of hotels and a multiline text box that can display text that is too long to fit on one line. 



Figure 6-22. Main form for hotel administration.

 

.NET Dialog Documentation

Dialogs are explained clearly in the Documentation in the .NET Framework. Look in "Dialog Boxes in 
Windows Forms" under "Introduction to Windows Forms." It is noteworthy that the principles of 
dialog boxes are the same in all .NET languages. This is in sharp contrast to the days before .NET, 
where, for example, dialogs in Visual Basic and in Microsoft Foundation Classes were totally 
different. Figure 6-23 shows the entry point to this documentation. 

Figure 6-23. Documentation on dialog boxes using the .NET Framework.



 

Dialog Box Demonstration

We will demonstrate the implementation details of a dialog box by creating a dialog to change hotel 
information in a simplified version of our case study. Do your work in the folder Demo\HotelAdmin. 
The starter code is backed up in the folder HotelAdmin\Step1 in the main folder for this chapter. The 
completed program is in HotelAdmin\Step3. You may run either the case study or the Step 3 solution 
to see what the completed dialog should look like. In the main form select a hotel by clicking in the list 
box of hotels. Then click on the "Change..." button. This brings up the "Change Hotel Information" 
dialog, as illustrated in Figure 6-24. Notice that the City and Hotel Name are grayed out. These items 
are read-only and cannot be changed. The user can enter new information for the Rooms and Rate. 

Figure 6-24. Dialog for changing hotel information.

 



Creating a Modal Dialog

The first part of our demonstration illustrates how to create a modal dialog box. We show how to set 
properties appropriately for the dialog and how to return a dialog result through use of OK and Cancel 
buttons. 

1.  Build and run the starter application. The "Add..." and "Delete" buttons work, but there is only 
a stub for "Change...", which brings up an empty form. This form is ordinary, with system 
menu, minimize and maximize buttons, resizability, and so on. 

2.  Open up ChangeHotelDialog.cs in Design mode. In the Properties window, change the 
FormBorderStyle property to FixedDialog. 

3.  Set the ControlBox, MinimizeBox, and MaximizeBox properties to False. If you like, you 
may build and run the application at this point. The dialog now is not resizable, and there is no 
system menu and no "X" in top right to close the window. [5] 

[5] You may use Alt+F4 to close the window.

4.  The next job is to enter labels and text boxes for the hotel information, plus OK and Cancel 
buttons. You may practice using the Toolbox to add these controls. Alternatively, you may copy 
and paste from NewHotelDialog.cs (open both files in Design mode). 

5.  If you used copy and paste, the controls will have proper Name and Text properties. Otherwise, 
assign values as shown in Table 6-2. 

Table 6-2. Property Values for Textboxes and Buttons for 
ChangeHotelDialog.cs

Name Text 

txtCity (blank) 

txtHotelName (blank) 

txtNumberRooms (blank) 

txtRate (blank) 

cmdOK OK 

cmdCancel Cancel 

6.  Change the ReadOnly property of txtCity and txtHotelName to true. 

7.  Resize the form to better fit the controls we have added. 

8.  Set the DialogResult property of the OK button to OK. Similarly set the property of the Cancel 
button to Cancel. Save ChangeHotelDialog.cs. 

9.  In MainAdminForm.cs, add temporary code to the cmdChange_Click handler to display 
"OK" or "Cancel" in the Messages text box, depending on whether the dialog was closed by 



clicking OK or Cancel. Notice that a dialog is brought up by the method ShowDialog in place 
of Show, which is used for ordinary forms. ShowDialog returns a result as an enum of type 
DialogResult. 

private void cmdChange_Click(object sender, 
                             System.EventArgs e) 
{ 
   ChangeHotelDialog dlg = new ChangeHotelDialog(); 
   DialogResult status = dlg.ShowDialog(); 
   if (status == DialogResult.OK) 
   { 
      txtMessages.Text = "OK"; 
   } 
   else 
   { 
      txtMessages.Text = "Cancel"; 
   } 
} 

10.  Build and test. You should now be able to bring up the dialog from the menu, and either the OK 
or Cancel button will close the dialog, and a corresponding message will be displayed. You can 
verify that the dialog is modal by trying to click elsewhere in the application. The program is 
now at Step 2. 

Passing Information Between Parent Form and a Dialog

The second part of our demonstration shows how to pass information to a dialog and how to retrieve 
information from a dialog. The .NET Framework classes do not provide a built-in mechanism for this 
purpose, but there is a design pattern you can follow. You create a property in the dialog class for each 
piece of information you wish to pass between the parent form and the dialog. 

In our example we implement write-only [6] properties for City and HotelName and read-write 
properties for Rate and NumberRooms. 

[6] The properties are write-only from the perspective of the dialog class, because we pass 
information a dialog instance. The corresponding controls are read-only, because the user is 
not allowed to enter new information. 

1.  Add code to ChangeHotelDialog.cs to implement these properties.

public string City 
{ 
   set 
   { 
      txtCity.Text = value; 
   } 
} 
public string HotelName 
{ 
   set 
   { 



      txtHotelName.Text = value; 
   } 
} 
public int NumberRooms 
{ 
   get 
   { 
      return Convert.ToInt32(txtNumberRooms.Text); 
   } 
   set 
   { 
   } 
} 
public decimal Rate 
{ 
   get 
   { 
      return Convert.ToDecimal(txtRate.Text); 
   } 
   set 
   { 
      txtRate.Text = value.ToString(); 
   } 
} 

2.  Now add code to the main form MainAdminForm.cs to set these properties prior to bringing 
up the dialog and to use the properties if the dialog box closes via an OK. Comment out or 
delete your previous test code that displays "OK" or "Cancel" in the Messages box. 

private void cmdChange_Click(object sender, 
                             System.EventArgs e) 
{ 
   ChangeHotelDialog dlg = new ChangeHotelDialog(); 
   if (currHotel.HotelName != "") 
   { 
      dlg.City = currHotel.City; 
      dlg.HotelName = currHotel.HotelName; 
      dlg.NumberRooms = currHotel.NumberRooms; 
      dlg.Rate = currHotel.Rate; 
   } 
   else 
   { 
      MessageBox.Show("Please select a hotel", 
         "Hotel Broker Administration", 
         MessageBoxButtons.OK, 
         MessageBoxIcon.Exclamation 
         ); 
      return; 
   } 
   DialogResult status = dlg.ShowDialog(); 



   if (status == DialogResult.OK) 
   { 
      string comment = hotelBroker.ChangeRooms( 
         currHotel.City, 
         currHotel.HotelName, 
         dlg.NumberRooms, 
         dlg.Rate); 
      if (comment == "OK") 
      { 
         ShowHotelList(hotelBroker.GetHotels()); 
         txtMessages.Text = "Hotel " + currHotel.HotelName 
            + " has been changed"; 
      } 
      else 
         txtMessages.Text = comment; 
   } 
} 

The structure currHotel holds the fields of the hotel that is currently selected in the list box. In 
the next section we will see how to extract information from a list box and how to populate a 
list box. 

3.  Build and test. Your dialog should now be fully operational. Your project should now 
correspond to HotelAdmin\Step3. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


ListBox Control

The .NET Framework provides a number of controls that you can use to display lists of items 
to the user. These controls also allow the user to select an item from the list, typically by 
clicking on the item to be selected. In this section we examine the ListBox control. 

Our example program is HotelAdmin\Step3. The main form in MainAdminForm.cs 
contains the listbox listHotels, which maintains a list of hotels. Each hotel is represented by a 
string with values separated by commas. 

Populating a ListBox

When the HotelAdmin program starts up, it populates the listbox listHotels with a list of 
hotels as part of the initialization in the MainAdminForm constructor. 

public MainAdminForm() 
{ 
   // 
   // Required for Windows Form Designer support 
   // 
   InitializeComponent(); 

   // 
   // TODO: Add any constructor code after 
   // InitializeComponent call 
   // 
   hotelBroker = new HotelBroker(); 
   ShowHotelList(hotelBroker.GetHotels()); 
} 

The ShowHotelList method displays an array list of hotels in a listbox. This array list is 
obtained by calling HotelBroker.GetHotels. Here is the code for ShowHotelList. 

private void ShowHotelList(ArrayList array) 
{ 
   listHotels.Items.Clear(); 
   if (array == null) 
   { 
      return; 
   } 
   for each(HotelListItem hotel in array) 
   { 
      string city = hotel.City.Trim(); 
      string name = hotel.HotelName.Trim(); 
      string rooms = hotel.NumberRooms.ToString(); 
      string rate = hotel.Rate.ToString(); 



      string str = city + "," + name + "," 
               + rooms + "," + rate; 
      listHotels.Items.Add(str); 
   } 
} 

A ListBox has a property Items which maintains a collection of object references. We first 
call Items.Clear to clear out the listbox of items currently being displayed. We then loop 
through the hotels in the array list and build up a string consisting of the fields of the hotel 
structure, separated by commas. This string is added to the listbox by calling Items.Add. 

Selecting an Item From a ListBox

An item in a listbox is selected by clicking on the item, generating a SelectedIndexChanged 
event. You can access the selected item through the SelectedIndex and SelectedItem 
properties. If no item is selected, SelectedIndex is -1. Here is the code for the event handler 
for SelectedIndexChanged. 

private void listHotels_SelectedIndexChanged(object sender, 
   System.EventArgs e) 
{ 
   if (listHotels.SelectedIndex != -1) 
   { 
      string selected = (string) listHotels.SelectedItem; 
      char[] sep = new char[] {','}; 
      string[] fields; 
      fields = selected.Split(sep); 
      currHotel = new HotelListItem(); 
      currHotel.City = fields[0]; 
      currHotel.HotelName = fields[1]; 
      currHotel.NumberRooms = Convert.ToInt32(fields[2]); 
      currHotel.Rate = Convert.ToDecimal(fields[3]); 
   } 
   else 
   { 
      currHotel.HotelName = ""; 
   } 
} 

Since the items in a listbox are stored as object references, we cast the selected item to a 
string. We use String.Split to extract the fields that are separated by commas and store them 
in the fields string array. The values are then moved from the array and stored in currHotel. 
In the previous section we saw currHotel used to initialize the "New Hotel" and "Change 
Hotel Information" dialog boxes. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Acme Travel Agency Case Study—Step 3

The Acme Travel Agency case study was introduced in Chapter 4, where we used 
arrays as our data structures for storing lists of hotels, customers, and reservations. In 
Chapter 5 we changed the implementation to use collections in place of arrays. We 
also specified a number of interfaces, and we passed lists as ArrayList object 
references. We provided a command-line user interface. In the CaseStudy folder of 
the present chapter we provide a graphical user interface, implemented by using 
Windows Forms. 

We have already looked at the main window (see Figure 6-22), which is the same as in 
the simplified HotelAdmin [7] program we used to illustrate dialog boxes. The 
"Add..." button lets us add a new hotel (Figure 6-21), and the "Change..." button 
(Figure 6-24) lets us change the number of rooms and the rate of a hotel. The "Delete" 
button will delete the currently selected hotel. 

[7] The HotelAdmin program provides only empty forms as stubs for the 
"Customers…" and "Reservations…" buttons.

The "Customers..." button brings up a "Customer Management" form, which shows a 
list of currently registered customers. You may select a customer by clicking in the 
listbox. Figure 6-25 shows this form after selecting a customer. 

Figure 6-25. Customer Management form.

 



The Id of the selected customer is shown in a textbox. You may unregister this 
customer by clicking "Unregister." You may change the email address of this customer 
by clicking "Change Email," which will bring up a dialog box. You may display the 
information for just this one customer by clicking "One Customer." The "All 
Customers" button will again show all the customers in the listbox. The "Register" 
button lets you add a new customer. 

The third major form of our user interface is "Hotel Reservations," which is brought 
up from the main administration form by clicking "Reservations...." To make a 
reservation, enter the Customer Id, Checkin Date, and Number of Days. You may 
specify the City and Hotel Name by selecting a hotel from the listbox. To make the 
reservation, you then simply click the "Make Reservation" button. To show all the 
reservations for a customer with a particular Customer Id, [8] click "Show 
Reservations." Figure 6-26 shows this form after the customer whose Id is 1 has made 
a reservation and we have shown the reservations for this customer. 

[8] A Customer Id of -1 will show the reservations for all customers.

Figure 6-26. Hotel Reservations form.



 

You may clear the reservations listbox by clicking the "Clear Reservations" button. 
The "Cancel Reservation" will cancel the reservation with a particular Reservation Id, 
which may either be typed in or selected by clicking in the Reservations listbox. 

The Acme Travel Agency case study is used extensively in the following chapters, so 
you may wish to experiment with it at this point. The graphical user interface makes 
exercising the case study much easier than our previous command-line interface. On 
the other hand, the command-line interface and a simple global try block around the 
whole command loop made it easy to check for all exceptions. Such an approach is not 
feasible for a GUI program. In an industrial-strength application you should check for 
exceptions wherever they may occur. Our case study is simplified for instructional 
purposes, and we have not attempted to be thorough in catching exceptions. Another 
simplification we made is not checking that a Customer Id used in making a 
reservation corresponds to a real, registered customer. The database implementation in 
Chapter 9 does provide such a check. 





Summary

In this chapter we learned how to implement a GUI using the Windows Forms 
classes of the .NET Framework. We began with first principles, using the .NET 
Framework SDK to create simple Windows applications from scratch, without 
use of any special tools. Drawing is done in an override of OnPaint using a font 
and a brush. The .NET event mechanism is used to handle user interaction such as 
mouse events and pressing keys. Controls simplify Windows programming. A 
menu control makes it easy to add menus to a Windows program. Visual 
Studio.NET greatly simplifies Windows programming. The Forms Designer lets 
you drag controls from the Toolbox onto your forms, and you can set properties 
of the controls at design time. You can also easily add event handlers. Dialog 
boxes are a special kind of form, and you can pass information between a parent 
form and a dialog through use of properties in the dialog. The listbox control 
makes it easy to display lists of information. 

We concluded the chapter by presenting a graphical user interface for our Acme 
Travel Agency Case Study. 



Chapter 7. Assemblies and Deployment
Deployment makes the programmer's hard work available to the customer. .NET 
assemblies make deployment much simpler and much more reliable than current 
Windows deployment. Private assembly deployment is as simple as copying the 
component assembly into the same directory as the client program. Alternatively, 
shared assembly deployment places the component with a unique name (known 
as a strong name) in the global assembly cache, which makes it available for 
general use. 

This chapter begins with a look at assemblies, which are the fundamental unit of 
deployment in .NET. Private assembly deployment and shared assembly 
deployment are described next. Versioning and digital signing of assemblies are 
discussed in the context of shared deployment. Finally, the Visual Studio.NET 
deployment and setup wizards are introduced. Throughout our discussion we 
illustrate a number of useful tools that are part of the .NET Framework SDK. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Assemblies

In .NET, Assemblies are components. Assemblies, which may be composed of one or more 
DLL or EXE files, are the unit of deployment. You do not deploy individual DLLs or EXEs. 
Security evidence and versioning are based on the assembly. Assemblies contain Microsoft 
Intermediate Language (MSIL) instructions, resource data, and metadata. Since metadata 
describes the content of the assembly, the assembly does not require any external 
description, such as in the system registry. .NET components are much simpler and less 
error prone to install and uninstall than traditional COM components, which had extensive 
registry entries. 

A digital signature is required before an assembly can be deployed in the global assembly 
cache. Digitally signed assemblies provide cryptographically generated verification 
information that can be used by the CLR to enforce crucial dependency rules when locating 
and loading assemblies. This is distinct from the security verification that is done to make 
sure that code is type safe. 

The identity of an unsigned assembly is defined simply as a human-readable name, along 
with a version number. The identity of a digitally signed assembly is defined by a unique 
cryptographic key pair. Optionally, an assembly's identity may also include a culture code 
for supporting culturally specific character sets and string formats. 

An assembly's version can be checked, so that the CLR can insure that the same assembly 
version with which the client was built and tested is loaded. This eliminates the infamous 
"DLL Hell" problem, where Windows applications could easily break when an older version 
was replaced with a newer version (or vice versa). A digitally signed assembly can be used 
to verify that the assembly contents were not altered after it was digitally signed. Not only 
will you not accidentally use the wrong version, but you will not be tricked into using a 
maliciously tampered component that could do serious harm. 

Although there is often a one-to-one correspondence between namespace and assembly, an 
assembly may contain multiple namespaces, and one namespace may be distributed among 
multiple assemblies. While there is often a one-to-one correspondence between assembly 
and binary code file (i.e., DLL or EXE), one assembly can span multiple binary code files. 
An assembly is the unit of deployment; an application is the unit of configuration. 

Contents of an Assembly

For our next step of the case study, we split our Hotel Administrator's program into three 
assemblies. The example CaseStudy directory for this chapter has an AcmeGui application 
program (EXE), and two component (DLL) assemblies: Customer and Hotel. The code 
associated with the customer and hotel classes has been moved to the appropriate 
assemblies. When we discuss configuration later in the chapter, it is the AcmeGui 
application that will be configured. 

We will use the Customer and Hotel assemblies to understand the issues associated with 
deployment. All public members of the Customer and Hotel assembly will be visible to 



code outside of their respective assemblies. Members marked as internal can be used only 
within the assembly. 

If you look at Figure 7-1, you will see that the Solution Explorer shows that the AcmeGui 
project has references to the Customer and Hotel dynamic link libraries. These references 
enable the compiler to find the Hotel and Customer types used by AcmeGui and then build 
the application. They do not dictate where the DLLs have to be when the project is 
deployed; we will explain how this works when we discuss deployment. You will also notice 
references made to system assemblies such as System.dll. Looking at the properties for the 
reference will show you where the assembly is located. [1] 

[1] Select the assembly in the Solution Explorer, right-mouse click, select Properties 
in the context menu.

Figure 7-1. AcmeGui's Solution Explorer showing references.

 

Creating a DLL is simple. Just select "Class Library" from the New Project Wizard in Visual 
Studio.NET, specify a location and name, and then start coding. To setup a reference to 
another DLL from your project you use the Add Reference menu item from the Visual 



Studio.NET Project menu. Navigate to the DLL you want, select it with the Select button, 
then click the OK button. [2] Every Assembly has a Manifest that describes the metadata 
information associated with the Assembly. A manifest provides the following information 
about an assembly: 

[2] It is straightforward to go from the monolithic program we had in the previous 
chapter to the componentized one we have now.

Create two new Class Library projects in the AcmeGui Solution for Customer and 
Hotel. In Visual Studio select File | New | Project. In the dialog box that comes up, 
select Visual C# projects in the left top pane, then select Class Library in the right 
top pane. Enter the name of the project (Customer or Hotel) and make sure the 
Add to Solution radio button is selected.

Remove the appropriate files from the AcmeGui project and add them to the 
appropriate project. In the Solution Explorer, select the file in the AcmeGui project, 
right-mouse click, select exclude from project. Then in the Solution Explorer select 
the appropriate project and right-mouse click, select Add, then Add Existing Item, 
navigate to the appropriate file and select it, and hit the open button. You can 
select more than one file at a time.

Build the two component projects by selecting their project name in the Solution 
Explorer and select the build option for the assembly in the Build menu. Since we 
no longer have a monolithic application, we have to indicate to the compiler how to 
resolve references to the Customer and Hotel classes. Select the AcmeGui project 
in the Solution Explorer, right-mouse click, then select Add Reference. Click on the 
Projects tab and you should see the Customer and Hotel dlls there. Select them 
both and then hit the select button. You should see both dynamic link libraries in 
the bottom list. Then click the OK button. Now when you rebuild the solution, the 
AcmeGui project will compile and run. You can click on the plus button next to 
References in any project to see what dependencies it has.

●     Assembly identity based on name, version, culture, and— optionally—a digital 
signature 

●     Files that contribute to the assembly contents 
●     Other assemblies on which the assembly is dependent 
●     Permissions required by the assembly 

Every assembly created by Visual Studio has a file, AssemblyInfo.cs, containing the 
following attributes that can be used to set the information associated with an assembly: 

[assembly: AssemblyTitle("")] 
[assembly: AssemblyDescription("")] 
[assembly: AssemblyConfiguration("")] 
[assembly: AssemblyCompany("")] 
[assembly: AssemblyProduct("")] 
[assembly: AssemblyCopyright("")] 
[assembly: AssemblyTrademark("")] 
[assembly: AssemblyCulture("")] 
[assembly: AssemblyVersion("1.0.*")] 



[assembly: AssemblyDelaySign(false)] 
[assembly: AssemblyKeyFile("")] 
[assembly: AssemblyKeyName("")] 

To explore how versioning, digital signing, and deployment work, we use the ILDASM tool 
introduced in Chapter 2 to view the appropriate metadata. Visual Studio.NET installs with 
ILDASM on the Tools menu. You can also find it in your \Program 
Files\Microsoft.Net\FrameworkSDK\Bin directory. 

Figure 7-2 shows the top level that you see when you open the Customer.dll assembly in 
ILDASM and double-click on the OI.NetCs.Acme namespace. You see entries for the 
MANIFEST, the Customers and Customer classes, the ICustomer interface, and the 
CustomerListItem value type. Clicking on the plus (+) button will expand an entry. 

Figure 7-2. Top-level ILDASM view of Customer component.

 

To view the manifest, double-click the MANIFEST node shown in Figure 7-2; the resulting 
manifest information is displayed in Figure 7-3. Some of the numbers will vary if you have 
rebuilt any of the samples, or you have a later version of .NET. 

Figure 7-3. ILDASM showing manifest of Customer.dll.

 

The manifest contains information about the dependencies and contents of the assembly. 
You can see that the manifest for Customer contains, among others, the following external 



dependency. [3] 

[3] If you have rebuilt any of the components, you will, of course, see different build 
and revision numbers.

.assembly extern mscorlib 
{ 
  .publickeytoken = (B7 7A 5C 56 19 34 E0 89 ) 
  .ver 1:0:2411:0 
} 

The .assembly extern mscorlib metadata statement indicates that the Customer assembly 
makes use of, and is therefore dependent on, the standard assembly mccorlib.dll, which is 
required by all managed code. When an assembly makes a reference to another assembly, 
you will see an .assembly extern metadata statement. If you open AcmeGui in ILDASM 
and look at the manifest, you will see dependencies on the Customer and Hotel assemblies 
as well as the System.Drawing assembly. 

.assembly extern Customer 
{ 
    .ver 1:0:592:25677 
} 
.assembly extern Hotel 
{ 
    .ver 1:0:592:25677 
} 
.assembly extern System.Drawing 
{ 
    .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A) 
    .ver 1:0:2411:0 
} 

The System.Drawing assembly is a shared assembly, which can be seen in the 
\WINNT\Assembly directory using Windows Explorer. Mscorlib, which is a shared 
assembly, is not deployed in the assembly cache. Microsoft made a single exception here: 
because mscorlib is so closely tied with the CLR engine (mscorwks [4]), it is installed in the 
appropriate install directory (\WINNT\Microsoft.NET\Framework) for the current .NET 
version. 

[4] Or mscorsvr.dll for servers.

In the System.Drawing shared assembly, the .publickeytoken = (B0 3F 5F 7F 11 D5 0A 
3A) metadata statement provides a public key token, which is the lowest 8 bytes of a hash of 
the public key that matches the corresponding private key owned by the System.Drawing 
assembly's author. This public key token cannot actually be used directly to authenticate the 
identity of the author of System.Drawing. However, the original public key specified in the 



System.Drawing manifest can be used to mathematically verify that the matching private 
key was actually used to digitally sign the System.Drawing assembly. Since Microsoft 
authored System.Drawing.dll, the public key token seen above is Microsoft specific. Of 
course, the matching private key is a closely guarded corporate secret, and it is believed by 
most security experts that such a private key is, in practice, virtually impossible to determine 
from the public key. However, there is no guarantee that some mathematical genius will not 
find a back door someday! 

The .publickeytoken declaration
The .publickeytoken declaration provides only the least significant 8 bytes of the 
SHA1 hash of the producer's public key (which is 128 bytes), which saves some 
space but can still be used to verify at runtime that the assembly being loaded 
comes from the same publisher as the one you compiled against. Alternatively, the 
.publickey declaration could be used, which provides the full public key. This 
would take up more space but makes it harder for villains to find a private key that 
matches the full public key. 

As we shall see shortly, the .publickeytoken statement is present in the client assembly's 
manifest only if the referenced assembly has been digitally signed, and all assemblies 
intended for shared deployment must be digitally signed. Microsoft has digitally signed the 
standard .NET assemblies, such as mscorlib.dll, and System.Windows.Forms.dll with 
private keys belonging to them. This is why the public key token for many of those shared 
assemblies, seen in the \WINNT\Assembly directory using Windows Explorer, has the same 
value repeated. Assemblies authored and digitally signed by other vendors are signed with 
their own distinct private keys, and they will therefore result in a different public key token 
in their client assembly's manifests. Later, we will look at how you can create your own 
private and public key pair and digitally sign your own assemblies for deployment into the 
global assembly cache. 

Nonetheless, while unique, none of these digital keys can identify who the author of a 
particular module is. A developer of assemblies can use the signcode utility to add a digital 
certificate that will identify the publisher of the assembly. 

The .ver 1:0:2411:0 metadata statement indicates the version of the System.Drawing 
assembly. While these numbers have no intrinsic meaning, the Microsoft suggested format 
of this version specification is Major:Minor:Build:Revision. Over time, as new versions of 
this assembly are released, existing clients that were built to use this version will continue 
using this version, assuming the conventional meaning of major and minor values. Newer 
client programs will, of course, be able to access newer versions of this assembly as they 
become available. The old and new versions can be deployed side-by-side in the global 
assembly cache and be simultaneously available to old and new client programs. 

Note that the version 1:0:2411:0 appearing in the client manifest belongs to the current 
version of the Acme.Gui assembly and is unrelated to the "1.0.*" version attribute specified 
in the AssemblyInfo.cs file in the AcmeGui source code. We will soon look more closely at 
the four fields that make up a version number, and how assembly versioning works with the 



suggested format. 

Now let us consider the information about the component itself in its manifest. 

ILDASM shows the assembly metadata in the Customer manifest: 

.assembly Customer 
{ 
  .custom instance void 
       [mscolib]System.Reflection.AssemblyKeyNameAttribute 
                     ::.ctor(string) = ( 01 00 00 00 00 ) 
... 
  // --- The following custom attribute is added 
                   automatically, do not uncomment -------
  //  .custom instance void 
           [mscolib]System.Diagnostics.DebuggableAttribute 
                                             ::.ctor(bool, 
  //                        bool) = ( 01 00 01 01 00 00 ) 
  .hash algorithm 0x00008004 
  .ver 1:0:592:25677 
} 

The .assembly Directive
The .assembly directive declares the manifest and specifies to which assembly the 
current module belongs. In this example, the .assembly directive specifies the 
name of the assembly to be Customer. It is this name (combined with the version 
number and optionally a public key) rather than the name of the DLL or EXE file 
that is used at runtime to resolve the identity of the assembly. Also note that if the 
assembly is signed, you will see the .publickey defined within the .assembly 
directive. It also indicates what custom attributes have been added to the metadata. 

The .assembly Customer metadata statement indicates that the assembly name is 
Customer. Note that this is not the name of a component class within the assembly, but 
rather the assembly itself. This assembly is not digitally signed, and therefore it does not 
contain a public key. 

In multifile assemblies (discussed in a later section) the manifest stores a hash of each file. 
The .hash algorithm 0x00008004 metadata statement indicates that SHA1 is the hash 
algorithm that is to produce this hash-code value. Many hash-code algorithms exist. Initially, 
however, only MD5 (0x000803) and SHA1 (0x000804) are supported by .NET. 



Hash Algorithms
A hash algorithm is a mathematical function that takes the original data of 
arbitrary size as input and generates a hash code, also known as a message digest, 
which is a fixed-sized binary output. An effective hash function is a one-way 
function that is highly collision free, with a result that is relatively small and fixed 
in size. Ideally, a hash function is efficient to calculate as well. A one-way 
function is a function that has no inverse, so that you cannot effectively reproduce 
the original data from the hash-code value. [5] The phrase "highly collision free" 
means that the probability that two distinct original input data samples generate 
the same hash code is very small, and it is unlikely to calculate two distinct input 
data samples that result in the same hash-code value. The well-known MD5 and 
SHA1 hash algorithms are considered to be excellent choices for use in digital 
signing, and they are both supported by .NET. 

[5] One-way encryption codes are used to store passwords in a passwords 
database. When you log in, the password you enter is encrypted and compared 
with what is stored in the database. If they match, you can log in. The password 
cannot be reconstructed from the encrypted value stored in the passwords 
database.

Versioning an Assembly

An assembly manifest contains the version of the assembly as well as the version of each of 
the assemblies that the assembly depends on. The version number of an assembly is 
composed of four numerical fields: Major, Minor, Build, and Revision. There are no 
semantics assigned to any of these fields by the CLR. Microsoft does suggest the following 
convention: 

●     Major— a change to this field indicates major incompatible changes. 
●     Minor— a change to this field indicates minor, but incompatible changes. 
●     Build number— a change to this field indicates a new backward-compatible release. 
●     Revision— a change to this field indicates a backward-compatible emergency bug 

fix. 

None of this is enforced by the CLR. You enforce this convention, or any other convention 
you choose, by testing assemblies for compatibility and specifying the version policy in a 
configuration file that we will discuss. 

In the metadata for the Customer assembly, the .ver 1:0:592:25677 gives us the assembly's 
version: Major Version 1, Minor Version 0, Build Number 592, Revision 25677. 

The version information for the manifest can be defined in the source code using the 
assembly attribute assembly::AssemblyVersion. This attribute (as with other global 
attributes) can appear in a source file after a using statement but before any namespace or 
class definitions. The AssemblyVersionAttribute class is defined in the 
System::Reflection namespace. If this attribute is not used, a default version number of 



0.0.0.0 is listed in the assembly manifest, which is generally not desirable. 

In a project created with the VisualStudio.NET project wizard, the source file 
AssemblyInfo.cs is automatically generated, with a version of 1.0.*, producing a major 
version of 1, and a minor version of 0 and automatically generated build and revision values. 
If you change the AssemblyVersionAttribute to, for example, "1.1.0.0", as shown below, 
the version number displayed in the manifest will be modified accordingly to 1:1:0:0. 

//AssemblyInfo.cs 
... 
[assembly: AssemblyVersion("1.1.0.0")]; 

If you specify any version number at all, you must at a minimum specify the major number. 
If you specify only the major number, the remaining values will default to zero. If you also 
specify the minor value, you can omit the remaining fields, which will then default to zero, 
or you can specify an asterisk, which will provide automatically generated values. The 
asterisk will cause the build value to equal the number of days since January 1, 2000, and the 
revision value will be set to the number of seconds since midnight, divided by 2. If you 
specify major, minor, and build values, and specify an asterisk for the revision value, then 
only the revision is defaulted to the number of seconds since midnight, divided by 2. If all 
four fields are explicitly specified, then all four values will be reflected in the manifest. The 
following examples show valid version specifications. 

Specified in source      Result in manifest 

None                   0:0:0:0 
1                      1:0:0:0 
1.1                    1:1:0:0 
1.1.*                  1:1:464:27461 
1.1.43                 1:1:43:0 
1.1.43.*               1:1:43:29832 
1.1.43.52              1:1:43:52 

If you use the asterisk, then the revision and possibly the build number will automatically 
change every time you rebuild the component. You must make an explicit change to the 
major and minor numbers if you wish to have their values changed. 

Strong Names

Before we can discuss version policy, we have to introduce the idea of a strong name. A 
strong name is guaranteed to be globally unique for any version of any assembly. Strong 
names are generated by digitally signing the assembly. This ensures that the strong name not 
only is unique, but can be generated only by an individual that owns a secret private key. 

A strong name is made up of a simple text name, a public key, and a hash code that has been 
encrypted with the matching private key. The hash code is known as a message digest and 
the encrypted hash code is known as a digital signature. The digital signature effectively 



identifies the assembly's author and ensures that the assembly has not been altered. Two 
assemblies that have the same strong name and version are considered to be identical 
assemblies. Two assemblies with different strong names are considered to be different. A 
strong name is also known as a cryptographically strong name, since, unlike a simple text 
name, a strong name is guaranteed to uniquely identify the assembly based on its contents 
and its author's private key. A strong name has the following useful properties: 

●     A strong name guarantees uniqueness based on encryption technology. 
●     A strong name establishes a unique namespace based on the use of a private key. [6] 

[6] Do not confuse this namespace with the one used by the compiler to 
disambiguate class names.

●     A strong name prevents unauthorized personnel from versioning the assembly. 
●     A strong name allows the CLR to find the right version of a shared assembly. 

Digital Signatures

Digital signatures are based on public key cryptographic techniques. In the world of 
cryptography, the two main cryptographic techniques are symmetric ciphers (shared key) 
and asymmetric ciphers (public key). Symmetric ciphers use one shared secret key for 
encryption as well as decryption. DES, Triple DES, and RC2 are examples of symmetric-
cipher algorithms. Symmetric ciphers can be very efficient and powerful for message 
privacy between two trusted cooperating individuals, but they are generally unsuitable for 
digital signatures. Digital signatures are not used for privacy but for identification and 
authentication. If you shared your symmetric key with everyone who would potentially want 
to identify or authenticate you, you would inevitably share it with people who would want to 
impersonate you. 

Asymmetric ciphers are used in digital signatures. Asymmetric ciphers, also known as public 
key ciphers, make use of a public/private key pair. The paired keys are mathematically 
related and are generated together. It is, however, exceedingly difficult to calculate one key 
from the other. The public key is typically exposed to everyone who would like to 
authenticate its owner. On the other hand, the owners keep the matching private signing key 
secret, so that no one can impersonate them. RSA is an example of a public key cipher 
system. 

Public key cryptography is based on a very interesting mathematical scheme that allows 
plain text to be encrypted with one key and decrypted only with the matching key. For 
example, if a public key is used to encrypt the original data (known as plain text), then only 
the matching private key is capable of decrypting it. Not even the encrypting key can decrypt 
it! This scenario is useful for sending secret messages to only the individual who knows the 
private key. 

The opposite scenario is where the individual who owns the private key uses that private key 
to encrypt the plain text. The resulting cipher text is by no means a secret, since everyone 
who is interested can obtain the public key to decrypt it. This scenario is useless for secrecy 



but very effective for authentication purposes. To improve performance, instead of 
encrypting the original data, a highly characteristic hash code is encrypted instead. 

If you use the matching public key to decrypt the encrypted hash code, you can recalculate 
the hash code on the original data and compare the two values. If they match, you can be 
certain that the owner of the private key was the digital signer. Of course, the owner of the 
private key has to make sure to keep the private key secret, otherwise you cannot prove that 
the data has not been tampered with from the time when it was digitally signed. Figure 7-4 
shows how a digital signature works. 

Figure 7-4. How a digital signature works.

 



SHA1 and RSA
To sign the assembly, the producer calculates a SHA1 hash of the assembly (with 
the bytes reserved for the signature preset to zero) and then encrypts the hash 
value with a public key using RSA encryption. The public key and the encrypted 
hash are then stored in the assembly's metadata. 

Digitally Signing an Assembly

The process of digitally signing an assembly involves generating a public/private key pair, 
calculating a hash code on the assembly, encrypting the hash code with the private key, and 
writing the encrypted hash code along with the public key into the assembly for all to see. 
The encrypted hash code and public key together comprise the entire digital signature. The 
digital signature is written into a reserved area within the assembly that is not included in the 
hash-code calculation. All these steps are performed with two simple tools— the Strong 
Name utility (Sn.exe) and the Assembly Linker (Al.exe). To build and digitally sign an 
assembly, the following steps are performed. 

1.  Develop and build the component. 

2.  Generate a public/private key pair. 

3.  Calculate a hash code on the contents of the assembly. 

4.  Encrypt the hash code using the private key. 

5.  Place the encrypted hash code into the manifest. 

6.  Place the public key into the manifest. 

Step 1 is, of course, usually performed using Visual Studio.NET. Steps 2 through 6 are 
known as digital signing. Step 2 is accomplished using the Strong Name utility Sn.exe. Steps 
3 through 6 are accomplished using either Visual Studio.NET or the Assembly Linking 
utility Al.exe (that's "A-el", not "A-one"). 

To illustrate this process we will develop a version of our Customer and Hotel assemblies 
that have strong names. They are located in the SignedCaseStudy directory. We generate 
key pairs for the assemblies using Sn.exe, known as the Strong Name utility. This tool 
generates a cryptographically strong name for the assembly. You generate a public/private 
key pair and place them into a file named KeyPair.snk as shown in the following command 
(which you can run from the source directory): 

sn -k KeyPair.snk 

The resulting KeyPair.snk file is a binary file and is not intended to be human readable. If 
you are curious, you can write these keys into a comma-delimited text file with the following 



command, then view it using Notepad.exe. This is not a required step. 

sn -o KeyPair.snk KeyPair.txt 

In the example you will finds these files in the Customer and Hotel subdirectories. 

The next step is to apply the private key to the assembly. For developing and testing it is 
convenient to do this at compilation time. When you release the assembly, however, you 
have to use the official private key of the company. For security reasons this key is probably 
known only to the corporate digital signing authority. The process of creating the strong 
name cannot be postponed until after the assembly is built, because the public key is part of 
the assembly's identity. Users of the assembly have to compile against the full identity of the 
assembly. Delay signing, which splits the process of assigning the strong name into two 
steps, is designed to solve this problem. 

If you just want to apply the digital signature automatically at compile time without delay 
signing, you simply use the AssemblyKeyFileAttribute— which, in the example, is in the 
file AssemblyInfo.cs of the Customer project. The KeyPair.snk file generated previously 
with the Sn.exe tool is specified in the attribute. The file path has to be relative to the project 
output directory. Once the KeyPair.snk file has been added to the 
AssemblyKeyFileAttribute the code must be recompiled. 

[assembly: AssemblyKeyFile(".\\Customer\\KeyPair.snk")] 

Delay signing requires a more complex procedure. When you build the assembly, the public 
key is supplied to the compiler so that it can be put into the PublicKey field in the assembly's 
manifest. Space is reserved in the file for the signature, but the signature is not generated. 
When the actual signature is generated, it is placed in the file with the -R option to the 
Strong Name utility (sn.exe). 

To indicate to the compiler that you want to use delay signing, you include 
AssemblyDelaySignAttribute in your source code. You also have to include the public key 
using the AssemblyKeyFileAttribute. 

Assuming you have generated the public/private key pair as described previously, you then 
use the -p option of the Strong Name utility to obtain just the public key without giving out 
the still secret private key. 

sn -p KeyPair.snk PublicKey.snk 

You then add the following two attributes to AssemblyInfo.cs: 

[assembly: AssemblyDelaySign(true)] 
[assembly: AssemblyKeyFile(".\\PublicKey.snk")] 

The assembly still does not have a valid signature. You will not be able to install it into the 
global assembly cache. You can disable signature verification of a particular assembly by 



using the -Vr option on the Strong Name utility. 

sn -Vr Customer.dll 

Before you ship the assembly you must supply the valid signature. You use the -R option on 
the Strong Name utility and supply the public/private key pair. 

sn - R customer.dll KeyPair.snk 

However you add the key, if you look at the manifest in ILDASM you will see that the 
.publickey entry has been added to the assembly's metadata. 

The .publickey attribute represents the originator's public key that resides in the 
KeyPair.snk file. This is the public key that can be used to decrypt the message digest to 
retrieve the original hash code. When the assembly is deployed into the global assembly 
cache, this decrypted hash code is compared with a fresh recalculation of the hash code from 
the actual assembly contents. This comparison is made to determine if the assembly is 
legitimate (i.e., identical to the original) or illegitimate (i.e., corrupt or tampered). Of course, 
when you use Sn.exe, it will produce a different key pair, and the public key shown below 
will be different in your case accordingly. 

If you use ILDASM to examine the manifest of the AcmeGui client program, you will see 
the following: 

.assembly extern Customer 
{ 
  .publickeytoken = (8B 0E 61 2D 60 BD E0 CA ) 
  .ver 1:0:0:0 
} 
.assembly extern Hotel 
{ 
  .publickeytoken = (CF 0B C2 2F 8E 2C 15 22 ) 
  .ver 1:0:0:0 
} 

Now that Customer and Hotel have strong names, references to them have a public key 
token, which is a hash of the public key that matches the corresponding private key for the 
assembly. Note that we generated different keys for each assembly. Usually, each company 
will use the same key pair for all its public components. 

Now that we have discussed strong names, we can discuss the two methods of deploying 
assemblies in .NET, and their associated default version policies. After this discussion we 
will show how the default policy can be overridden in a configuration file. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Private Assembly Deployment

For private assembly deployment, the assembly is copied to the same directory as the 
client program that references it. No registration is needed, and no fancy installation 
program is required. When the component is removed, no registry cleanup is needed, and 
no uninstall program is required. Just delete it from the hard drive. [7] 

[7] Of course this process does not put any icons on the desktop or entries on 
the Start menu. 

Of course, no self-respecting programmer would ever provide a commercial component 
that required the end user to manually copy or delete any files in this way, even if it is 
remarkably simple to do. Users have become accustomed to using a formal installation 
program, so it should be provided, even if its work is trivial. However, for testing 
purposes, manually copying and deleting an assembly is an ideal way to quickly and 
painlessly manage deployment issues for developing, debugging, or testing purposes. 
Recall that the deployment of COM components was never this simple, requiring at a 
minimum, a registry script file. Gone are the days where you have to configure the 
registry on installation, and then later carefully clean out the registry information when 
you want to discard the component. 

To privately deploy our componentized Hotel Administrator case study, create a directory 
on your hard drive. Copy to that directory the files in the CaseStudy\bin\Debug 
directory, AcmeGui.exe, Customer.dll, and Hotel.dll. Then run AcmeGui.exe. It will 
run. It is really just that simple! 

If you view the AcmeGui manifest in ILDASM, you will see the following dependency 
entries: 

.assembly extern Customer 
  { 
  .ver 1:0:593:19533 
} 
.assembly extern Hotel 
{ 
  .ver 1:0:593:19532 
} 

Here are the corresponding assembly definitions in the components: 

.assembly Customer 
{ 
  ... 
  .hash algorithm 0x00008004 
  .ver 1:0:593:19533  



} 

.assembly Hotel 
{ 
  ... 
  .hash algorithm 0x00008004 
  .ver 1:0:593:19532 
} 

From this you can see that the client program was built with Customer assembly version 
1.0.593.19533 and Hotel assembly version 1.0.593.19532. Since neither assembly has a 
strong name, however, the versions are not checked. If you were to build a Customer 
assembly with a different version, and replace the one that AcmeGui was built with, 
AcmeGui would still run. It does not matter whether you change the major build number 
or the revision number. 

If you were to use a version of the Customer component with a strong name (even if it 
had the same version number), you would get the following runtime exception: 

System.IO.FileLoadException: The located assembly's mani
fest definition with name 'Customer' does not match the 
assembly reference. 

If the Customer assembly has a strong name, even if the version numbers are the same, 
the assembly names no longer match. If the AcmeGui client program was built with an 
assembly that had a strong name, the CLR will bind only to an assembly that matches 
exactly with the strong name and version. Even a different revision number will cause the 
load to fail. 

The details on binding failures can be seen in the Assembly Binding Log Viewer 
(FUSLOGVW.exe). The sample log in Figure 7-5 resulted from an attempt to resolve 
AcmeGui's reference to a Customer assembly that had a strong name when it was built 
with a version of the assembly that did not have a strong name: 

Figure 7-5. Assembly binding log for customer load failure.



 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Shared Assembly Deployment

The Assembly Cache is a known directory where the CLR looks for shared, side-by-side 
assemblies. The term "side-by-side" means that multiple versions of the same 
component may reside within the assembly cache alongside one another. The global 
assembly cache contains shared assemblies that are globally accessible to all .NET 
applications on the machine. A download assembly cache is accessible to applications 
such as Internet Explorer that automatically download assemblies over the network. 

Deploying a Shared Assembly

Before an assembly can be deployed into the global assembly cache, you must digitally 
sign the assembly as discussed earlier. Developers can place the assembly into the global 
assembly cache by using either using the Global Assembly Cache Utility Gacutil.exe 
command-line utility, the Windows Explorer with the assembly cache viewer Windows 
shell extension, or the .NET Admin Tool. Deploying shared assemblies on a user's 
machine should be done with an installation program. 

To illustrate this process we will deploy in the GAC the version of our Customer and 
Hotel assemblies that are in the SignedCaseStudy directory. To deploy the components 
into the GAC, you can use the command-line utility, Gacutil.exe. 

Gacutil -i Customer.dll 

Note that the -i option is case sensitive. You should then see the console message 
"Assembly successfully added to the cache." The effect of this command is that a new 
global assembly cache node named Customer is created in the \WINNT\Assembly 
directory. As can be seen in Figure 7-6, the version number and originator (i.e., public 
key token) are displayed for the assembly in Windows Explorer. We changed the 
version of the component to 1.0.0.0 to distinguish it from the unsigned version. 

Figure 7-6. Windows Explorer showing the global assembly cache.



 

You can also can drag and drop a component into the Assembly directory to install it in 
the GAC. Alternatively, you can use the .NET Admin Tool to install an assembly into 
the GAC. The .NET Admin Tool is an MMC snap-in located at 
\WINNT\Microsoft.NET\Framework\v1.0.2914\ mscorcfg.msc. [8] The directory 
version number will be different in a later release of the .NET Framework. While it may 
seem overkill to introduce a third tool, this MMC snap-in is a very useful utility that 
simplifies many tasks. Figure 7-7 shows the top-level window of this tool. To use the 
tool to add an assembly to the GAC, just select Assembly Cache in the left pane, right-
mouse click, and select Add. Using the dialog box that pops up to navigate to the file, 
select the assembly you want to add, and click the Open button. 

[8] To run a snap-in, you can just double-click on the .msc file in Windows 
Explorer. Since we are going to use the .NET Admin Tool extensively, you may 
wish to add the tool to the Visual Studio Tools menu, which you can do 
through Tools | External Tools... . For the command enter mmc.exe and for 
the argument enter the complete path to mscorcfg.msc.

Figure 7-7. .NET Admin Tool supports many .NET administrative functions.



 

After you have installed the assemblies in the GAC, copy just the AcmeGui client 
program in the SignedCaseStudy directory to another directory. You can now run it 
without any assemblies in the same directory. 

What happens if we remove the version of Customer we installed in the GAC and place 
in the GAC a Customer assembly signed with the same key, but a different version? A 
FileNotfoundException is thrown by the CLR. We would get the same result if we 
replaced it with a Customer assembly that had the same version, but signed with a 
different key. The default binding policy for shared assemblies is an exact name match. 

Versioning Shared Components

What happens if you install two versions of the same assembly in the GAC that were 
signed with the same key? Place a Customer assembly with the version 1.1.0.0 in the 
GAC. Figure 7-8 displays both versions of the Customer assembly installed in the 
Global Assembly Cache with their respective version numbers and identical public key 
tokens. 

Figure 7-8. .NET Admin Tool with side-by-side components in the global 
assembly cache.



 

This is called by-side deployment. Both assemblies are available to client programs that 
require them. Programs can bind to either of them without fear of getting the wrong 
version. 



Assembly Configuration

The CLR binds to an assembly when either a static or dynamic reference is made to it at 
runtime. A static reference is defined permanently in the client assembly manifest when 
it is compiled. A dynamic reference is produced programmatically at runtime, for 
example, by calling the method System.Reflection.Assembly.Load. 

You can use a strongly named assembly to force a client to bind to a specific version of 
an assembly whether you have private or shared deployment. Suppose you want to allow 
several backward-compatible assemblies to match? You can use XML configuration file 
to specify some rules for the CLR to use when it tries to find an assembly that matches. 
The .NET Admin Tool can be used to create and maintain these files through a graphical 
interface. 

The name of the configuration file client program's name is appended with a .config 
extension. For our AcmeGui client the configuration file would be named 
AcmeGui.exe.config. It is placed in the same directory as the client executable. 

In addition to an application configuration file, there is an administration configuration 
file called Machine.config. It is found in the Config subdirectory under the directory 
where the .NET runtime is installed (\WINNT\Microsoft.NET\Framework\v1.0.2914\, 
where the version number reflects the current build of .NET). An administration version 
policy is defined with the same XML tags that an application configuration file uses. 
However, the administrator configuration file overrides any settings in the application 
configuration file. 

Resolving an Assembly Reference at Runtime

If the reference has a strong name, the configuration files are examined first to determine 
the correct assembly version(s) required. If the reference does not have a strong name, 
any version will satisfy the reference. [9] If the assembly reference has been previously 
resolved, that previously loaded assembly is used. The assembly cache is checked next 
and, if the assembly is found there, that assembly is loaded. If the assembly is not found 
in the assembly cache, the CLR probes for the assembly. We will discuss probing after 
we discuss specifying version policy in the configuration files. 

[9] There is also a publishers configuration file that we do not discuss. If you 
are using Internet Explorer, the configuration files might have to be 
downloaded from another computer. 

Specifying the Version Policy in a Configuration File

The <configuration> is the top-level tag for .NET configuration files. Assembly 
binding information is found in the <runtime> section. A sample AcmeGui.exe.config 
file might look like this: 



<?xml version="1.0"?> 
<configuration> 
  <runtime> 
    <assemblyBinding xmlns="urn:schemas-microsoft
com:asm.v1"> 
      <dependentAssembly> 
        <assemblyIdentity name="Customer" 
publicKeyToken="8b0e612d60bde0ca" /> 
        <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" 
newVersion="1.1.0.0" />  
      </dependentAssembly> 
    </assemblyBinding> 
  </runtime> 
</configuration> 

Rules defining version policy are found in the <assemblyBinding> section. The XML 
namespace specification is required. Each assembly whose version policy we want to set 
is placed in its own <dependentAssembly> section. The assemblyIdentity element has 
attributes that define the assembly this section refers to. The name attribute is required; 
the publicKeyToken and culture attributes are optional. [10] The bindingRedirect 
element's attributes define what versions can map to another version. The oldVersion 
attribute can be a range, the newVersion attribute can be set only to one version. In the 
above example, any references to versions 1.0.0.0 to 1.1.0.0 can be resolved by using 
version 1.1.0.0. In other words, 1.1.0.0 is backward compatible with all those versions. 
You can specify several bindingRedirect elements. 

[10] You may ask: Why is the publicKeyToken optional? After all, there is no 
version resolution without it. As we shall see shortly, other policies can be 
defined that do not require a public key.

You can use the .NET Admin Tool to specify this. To add an application to the tool first 
select Applications in the left pane. Right-mouse click and select Add from the context 
menu. Navigate to the application you want to configure. Select it and click the open 
button. Figure 7-9 shows the AcmeGui application added to the admin tool. 

Figure 7-9. AcmeGui added to the .NET admin tool.



 

To configure the Customer assembly, select Configured Assemblies in the left pane, 
right-mouse click, and select Add from the context menu. In the dialog box that comes 
up, select the radio button that has the text "Choose an assembly from the list of 
assemblies this application uses." Then click the "Choose Assembly" button. Select 
Customer from the list that pops up, and then click the Select button. The Assembly 
information for the Customer assembly should be entered in the "Configure an 
Assembly" dialog. Click the Finish button on that dialog. Select the "Binding Policy" 
tab. Figure 7-10 shows what you should see after the binding policy that was in the 
sample configuration file was recorded. 

Figure 7-10. Binding policy set for the Customer assembly.



 

After you select OK, you can navigate to the directory where the AcmeGui executable 
is, and you will see a configuration file that the tool has created for you. It should 
resemble our previous example. 

Finding the Assembly's Physical Location

At this point the CLR knows what versions of the assembly will satisfy the reference. 
The CLR does not yet know where the assembly resides on disk. If the assembly with 
the right version has been previously loaded because of another reference to that 
assembly earlier in the program, that assembly is used. If the assembly has a strong 
name, the assembly cache is checked; if the correct version is found there, that assembly 
is used. 

There are several elements you can specify in the configuration file to tell the CLR 
where to try and find the assembly. 

If the assembly has not yet been found, the runtime checks to see if a codebase has been 
specified in the configuration file. Under the <dependentAssembly> section you can 



specify a <codeBase> element. This element has two attributes, a version and a URI, to 
check for the assembly. The Codebases tab on the .NET Admin Tool's assembly 
properties dialog can be used to set them in the configuration file. Examples of this 
element are: 

        <codeBase version="1.1.1.1" 
href="http://www.abc.com/Customer.dll" /> 
        <codeBase version="1.1.1.2" 
href="file:///c:\AcmeGui\Customer.dll" /> 

To use a Codebase element outside the application's directory or subdirectories, a strong 
name is required. At this point, whether or not the required assembly is found, the 
binding process stops. If the assembly is not found, an exception is generated at this 
point. 

If a CodeBase element was not found in the configuration file, the runtime continues to 
probe for the assembly. At this point all searching is relative to the directory in which 
the application runs, which is referred to as the application base. 

The runtime first looks in the application base. It then looks in any subdirectories of the 
application base that have the same name as the assembly. If a culture is specified in the 
request, the runtime only looks for the assembly subdirectory under a subdirectory with 
the name of the culture requested. 

Finally, you can specify in the assemblyBinding section of the configuration file a 
privatePath, which is a semicolon-delimited list of subdirectories of the application base 
to look in. 

<probing privatePath="\bin;\assemb" /> 

You can also set the privatePath on the properties tab for the application in the .NET 
Admin Tool. 

Assembly Location and Visual Studio.NET

Building an assembly within Visual Studio.NET requires a reference to a specific 
assembly at a specific disk location. The rules just described apply when the application 
is run, not built. 

Within VS.NET you cannot browse to the GAC (\Winnt\Assembly) and add a 
reference. The referenced component must be located somewhere else on disk. One of 
the properties of a referenced component is the CopyLocal property. If set to true, the 
referenced component is copied to the local project directory. While that copy would be 
used for the compilation reference, whether it is the one linked to depends on the 
configuration file settings. 





Multimodule Assemblies

An assembly can be made up of multiple modules. A module is a DLL (or EXE) that 
contains managed code plus metadata, but not necessarily a manifest. However, an 
assembly must have one and only one manifest. Hence an assembly can contain multiple 
modules, but only one of them can have a manifest that provides information on the 
contents of all the modules in the assembly. The module with the manifest may have just 
the manifest, or it can contain other code or resources. 

The main advantage of breaking an assembly into multiple modules is that each module 
is contained in a separate DLL file. This allows Web downloads to be performed on 
demand, on a per-module basis. This can improve performance and memory 
consumption. Even in a local scenario, the CLR loads classes on the local machine with 
module granularity, which can improve efficiency. Another reason for constructing an 
assembly with multiple modules is that you may have written each part of an assembly 
in a different .NET language. To build an assembly that contains multiple modules, you 
need to build each module separately, and then combine them with the Al.exe utility. 

There are two ways to go about creating a multimodule assembly. One way is to create 
all the modules without any manifest, and then create one additional module that 
contains only a manifest for the entire assembly, but no actual code. The other technique 
is to have just one module in the assembly that contains both code and a manifest for the 
entire assembly, and to have all other modules in the assembly contain only code, with 
no manifest. We will describe the first alternative, since it is more symmetric and easier 
to visualize. The second alternative is not described here, however, it is done in a similar 
way, with the same tools. 

Visual Studio.NET does not allow you to do this for C# projects. The MultiModule 
example illustrates the mechanics of how to create a multiple-module assembly. The 
example directory contains three files. Add.cs and Sub.cs will be built into separate 
modules and then combined together in an assembly. Compute.cs uses this assembly. 
Add.cs has one class with one method; Add. Sub.cs has another class that has one 
method, Sub. 

public class MyCalc 
{ 
      public int Add(int a, int b) 
      { 
            return a + b; 
      } 

} 
public class MyCalcSub 
{ 
      public int Sub(int a, int b) 



      { 
            return a - b; 
      } 
} 

We create two modules with no assembly manifest by running build.bat, which has two 
commands: 

csc /target:module /out:add.dll add.cs 
csc /target:module /out:sub.dll sub.cs 

If you look at add.dll in ILDASM, you will see that there is a .module add.dll statement 
but no .assembly statement. We now can build an assembly with a manifest using the 
Assembly Linker tool Al.exe by running link.bat, which has one command: 

Al add.dll, sub.dll /out:arith.dll 

As Figure 7-11 shows, arith.dll contains only a manifest. The manifest shows that the 
assembly is made up of two separate, distinct files, and the types in those files are listed 
in the manifest. 

Figure 7-11. Manifest for a multimodule assembly.

 

We have a simple client program, compute.cs, that uses the types in arith.dll. 

public class Compute 
{ 
      public static void Main(string[] args) 
      { 
            MyCalc x = new MyCalc(); 
            int y = x.Add(1, 3); 



            Console.WriteLine("y = " + y.ToString()); 

            MyCalcSub z = new MyCalcSub(); 
            y = z.Sub(1, 3); 
            Console.WriteLine("y = " + y.ToString()); 

            return; 
      } 
} 

We can build it with the command: 

csc /r:arith.dll compute.cs 

This will produce compute.exe, which we can run. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Setup and Deployment Projects

Assemblies may be deployed as regular stand-alone binary code files (i.e., DLL or EXE 
files), or they may be deployed using CAB, MSI, or MSM files. A CAB file is a cabinet 
file with the .cab file-name extension. A CAB file is used to compress and combine other 
files into one convenient manageable file. Although CAB files can be used for general 
purposes, they have traditionally been used for CD-based and Web-based installation 
purposes. MSI and MSM files are Microsoft Windows Installer files, with the .msi and 
.msm file-name extensions. MSI files (and indirectly, MSM files) are used with the 
Msiexec.exe Windows Installer program to deploy stand-alone applications and reusable 
components. 

MSI files are Microsoft Windows Installer installation packages that have the .msi file-
name extension. MSM files are merge modules that have the .msm file-name extension. 
Windows Installer supports software installation, repair, upgrade, and removal. Windows 
Installer packages are self-contained database files that provide installation information to 
the Windows Installer service. An MSM file has an internal structure similar to that of an 
MSI file, but it is somewhat simplified. Unfortunately, an MSM file cannot be used 
directly by Windows Installer, since it lacks certain important database tables. Instead, 
the MSM file must be merged into an MSI file to be used in an actual installation session. 
However, MSM files are useful for separating out shared installation information into an 
independent package that can then be merged into many other MSI packages. 

Installation may be accomplished using the Windows Installer, Internet Explorer, or 
simply by manually copying assemblies and associated files. To help the programmer 
develop setup and deployment solutions, Visual Studio.NET provides several templates 
and wizards for generating starter setup projects. These tools are available by way of the 
New Project dialog box under the Setup and Deployment Projects node, as shown in 
Figure 7-12. As you can see, the following templates are provided for generating starter 
setup and deployment projects. 

Figure 7-12. Setup and deployment project templates.



 

●     Cab Project 
●     Setup Project 
●     Setup Wizard 
●     Merge Module Project 
●     Web Setup Project 

CAB Project

A CAB project creates a cabinet file containing any number of other files that can be used 
for traditional deployment purposes. CAB files have been used to package legacy COM 
components deployed over the Internet, and they have also been used in traditional CD-
based installation programs. CAB files may now also be used for packaging managed 
code. However, for .NET deployment, a CAB file can contain only one assembly, and the 
CAB file must be assigned the same name as the contained assembly, but with the .cab 
extension. For example, an assembly named SomeComponent.dll would have to be 
contained in a cabinet file named SomeComponent.cab. 

Setup Project

The Setup project template creates a Windows Installer .msi file for a desktop or 
distributed application. A Setup project is not intended for deployment of Web-based 
applications, since a specialized Web Setup project is used for that purpose. A Setup 
project produces a program that installs an application onto a target machine. You may 
create Setup projects within the same solution that contains the other projects to be 
deployed. In a multitier solution, you can create one setup project for each project that is 
to be deployed to a particular target computer. For example, in a simple three-tier 
solution, you would probably have three deployment projects. Two simple deployment 
projects would set up the client and server. A third deployment project would then look 



after the more complex middle-tier business logic. Additional deployment projects may 
come into play if the solution was highly complex, or if merge modules were 
incorporated into the deployment strategy. 

To create a Setup project, select File | New, then select Project. In the New Project dialog 
box, select Setup and Deployment Projects as the Project Type. Finally, select Setup 
Project as the Template, specify name and location, and then click OK. The result of this 
is shown in Figure 7-13, showing Solution Explorer and the File System Editor. 

Figure 7-13. Solution Explorer and the File System Editor in a Setup 
project.

 

Once the initial Setup project has been created with the Setup Project template, it can be 
further developed using the File System Editor. The File System Editor allows you to 
drag and drop, or copy and paste, files to be deployed by the Setup deployment project, 
and control their destinations on the target machine. Initially, the File System Editor 
shows an initial list of destination folders that you can deploy into, and you can also add 
your own folders to this list. 

Once you have an MSI file created, you can use Windows Installer, as shown in the 
following command line: 

Msiexec /i SomeSetup.msi 



The Windows Installer program then starts up and displays a series of installation dialogs. 
After Windows Installer has completed the deployment, you can try running the installed 
application to verify that the installation was successful. If you run the same command 
Msiexec /i SomeSetup.msi, it will detect that it already exists, so it gives you the choice 
to either repair the installation or uninstall it. 

Merge Module Project

A Merge Module project packages reusable setup information that can be independently 
maintained and then merged as a shared installation package into other installation 
packages. A Merge Module project produces a merge module .msm file that can be 
merged into .msi files. This allows you to share common assemblies, associated files, 
registry values, and setup functionality among multiple applications. 

To start the Merge Module Project Wizard, select File | New, then select Project. In the 
New Project dialog box, select Setup and Deployment Projects as the Project Type. 
Finally, select Merge Module Project Wizard as the Template, specify name and location, 
and then click OK. 

Typically, an MSI file is intended for use by the end user for installing a complete 
solution in one simple deployment session. In contrast, an MSM file is typically intended 
for use by other developers who want to use components that you have developed in their 
setup projects. Those other developers can merge your MSM file into their own MSI file 
for deploying your components into their test and development environments, as well as 
for their ultimate end user. End users should not be provided any MSM files, since they 
are not directly installable using Windows Installer, and they are not very friendly to 
work with. 

To add an existing merge module project to a Setup project, create or open the Setup 
project, select File | Add Project, and then select Existing Project. In the Add Existing 
Project dialog box, browse to the location of the desired merge module project, select the 
associated .vdp deployment project file, and then click Open. 

We have just added the merge module project to the solution. We now have to add it to 
the Setup project itself. Select the Setup project and invoke "Add:Project Output," then 
select the merge module project in the dialog that appears. 

Web-based Deployment

Web-based deployment uses Internet Explorer on the client to automatically download 
assemblies packaged as EXE, DLL, or CAB files on demand from a .NET Web server. 
HTML files can dynamically deploy assemblies as well as configuration files to control 
the binding process. Web-based deployment results in assemblies being downloaded into 
the client's assembly download cache on demand. 



The Xml <object> tag is used to download and install assemblies, using either a relative 
or an absolute URL. The following shows a relative URL example, where the assembly is 
located relative to the directory of the containing HTML file on the Web server. 

<object 
   id="SomeComponent" 
   classid="./SomeDirectory/MyComponent.dll#SomeClass"> 
</object> 

The following shows an absolute URL example, where the assembly is located on a 
specified Web server. 

<object 
   id="SomeComponent" 
classid="http://www.acme.com/MyComponent.dll#SomeClass"> 
</object> 

By default, IE creates a separate application domain for each Web site that it encounters. 
An application domain is a .NET feature that can be thought of as a scalable lightweight 
process. An application domain efficiently provides fault isolation without the overhead 
of running multiple processes. Each application domain may optionally have its own 
configuration file to control binding and security. Also, a configuration file may specify 
an isolated application domain for individual applications on the same Web server. Each 
HTML file that specifies the same configuration file will be placed into the same 
application domain. Application domains are discussed in the next chapter. 



Summary

Deployment is very important, constituting one of the major phases in software 
development. If it is not done properly, the entire development effort becomes a 
waste of time and money. Fortunately, with assemblies, which are the 
fundamental units of .NET deployment, many of the complexities and problems 
relating to deployment are conveniently solved. 

By simply building dynamic link libraries you can have reusable components 
without all the difficulties associated with building and installing COM 
components. 

Private assembly deployment can be simply copying the assembly to the same 
directory as the client application. Public assembly deployment involves the 
creation of a strong name for the assembly, followed by deployment into the 
global assembly cache. The Strong Name Utility (Sn.exe) can be used to create 
the strong name for an assembly. The Global Assembly Cache utility 
Gacutil.exe, or the .NET Admin Tool can then be used to deploy the shared 
assembly into the global assembly cache. It is also possible to combine multiple 
modules into a single assembly. The Visual Studio.NET CAB and setup wizards 
are very useful for creating starter setup and deployment projects, which can save 
a great deal of development time. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Chapter 8. .NET Framework Classes
It is impossible to cover in one chapter or one book all of the .NET Framework 
classes. The .NET classes cover a large fraction of the Win32 API, as well as 
much else. While a lot of attention has been focused on changes in Internet-
related functionality, the development model for Windows applications has 
changed as well. 

This chapter focuses on classes illustrating the key concepts and patterns that 
appear throughout the .NET Framework. Over the long run, experienced 
programmers will find this approach more fruitful than attempting to explain a 
little about every class that you might need without giving you much insight. 
Other chapters go into more depth about other parts of the Framework such as 
Windows Forms, ASP.NET, ADO.NET, security, and Web Services. 

We start out by exploring the concept of reflection and metadata. Metadata 
appears everywhere in .NET and is critical to understanding how the CLR can 
provide services for your applications. Next we explore file input/output—for 
several reasons. First, it introduces the important topic of serialization. Second, 
the Path class exemplifies how some Framework classes provide some or all of 
their functionality through static methods. Third, the formatter classes are used in 
several places in .NET. 

Understanding serialization will give you a concrete idea of how the Framework 
can handle objects transparently for you. Serialization also appears in a 
supporting role wherever objects have to be moved or transported. Our discussion 
of the ISerializable interface demonstrates how much easier it is to implement an 
interface in .NET than with COM. 

To develop an understanding of the .NET model for applications, we introduce 
programming with threads under .NET and several .NET synchronization 
techniques to handle multithreading issues. The various synchronization 
techniques illustrate the trade-offs of using attributes supplied by the Framework 
versus doing it yourself. 

To further your understanding of the .NET programming model, we introduce 
context and the use of proxies and stubs. Application domains can achieve 
application isolation with less performance penalty than a Win32 processes. [1] 

[1] Win32 process isolation uses the processor's MMU. .NET's 
application domain isolation is done in software and requires verifiable 
code.

The asynchronous design pattern appears throughout .NET and is discussed in 



some detail. We give some examples of remoting because it is a key technology 
and it summarizes many of the concepts developed in this chapter. The chapter 
uses several attributes provided by the .NET Framework, and we show how to 
implement and use custom attributes. We discuss garbage collection, finalization, 
and the dispose pattern, so that you can understand how to make sure resources 
are properly freed in your applications. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Metadata and Reflection

The Serialization example in Chapter 2 demonstrates how metadata makes possible many of 
the services of the Common Language Runtime. Many of the technologies we cover in the 
rest of the book rely on metadata, although we will not always stop and point this out. 

Metadata is information about the assemblies, modules and types that constitute .NET 
programs. If you have ever had to create IDL to generate a type library so that your C++ 
COM objects could be called by Visual Basic, or to create proxies and stubs, you will 
appreciate how useful metadata is and will be grateful that it comes "for free." 

Compilers emit metadata, and the CLR, the .NET Framework, or your own programs can 
use it. Since we want to give you an understanding of how metadata works, we will focus on 
the use, not the creation, of metadata. Metadata is read using classes in the 
System.Reflection namespace. [2] 

[2] There is a lower-level set of unmanaged COM interfaces for accessing metadata 
but we will not discuss them here. See "Metadata in .NET" by Matt Pietrek in the 
October 2000 MSDN Magazine.

When you load an assembly and its associated modules and types, the metadata is loaded 
along with it. You can then query the assembly to get those associated types. You can also 
call GetType on any CLR type and get its metadata. GetType is a method on 
System.Object from which every CLR type inherits. After you get the Type associated with 
an object, you can use the reflection methods to get the related metadata. 

The Reflection sample program takes the case study's Customer assembly and prints out 
some of the metadata available. You should examine the output and source code as you read 
the next sections. You should especially compare the output of the program with the source 
code in the file customer.cs. 

The program clearly shows that it is possible to retrieve all of the types in an assembly and 
reconstruct the structures, interfaces, properties, events, and methods associated with those 
types. 

First we load the assembly into memory and write out its name. 

Assembly a = Assembly.Load(assemblyName); 
Console.WriteLine("Assembly {0} found.", a.FullName); 

The output for this statement is appropriate for an unsigned assembly: 

Assembly Customer, Version=1.0.583.29038, Culture=neutral, 
PublicKeyToken=null found. 

One of the properties of the Assembly class is the CodeBase, discussed in Chapter 7 on 



Deployment. The security Evidence associated with this assembly is another property. The 
Evidence class is discussed in Chapter 12 on Security. 

The following code tries to get the entry point for the assembly: 

MethodInfo entryMethodInfo = a.EntryPoint; 

Since this is a dynamic linked library (DLL), there is no entry. If it were an executable 
program we could use the Invoke method on the MethodInfo class to run the startup code in 
the assembly. [3] 

[3] You can also load and execute the assembly from the AppDomain, as we 
discuss later in this chapter.

The sample uses the Assembly's GetModules method to find the modules associated with 
this assembly. In this case we have only one, "customer.dll." We could next find the types 
associated with the module by using the GetTypes method on each Module instance 
returned by GetModules. Since there is only one module, we use the Assembly's GetTypes 
method to return an array of the assembly's types. Even if we had several modules, we would 
use Assembly.GetTypes if we did not care about the association of types and modules. 

Type

The abstract class Type in the System namespace defines .NET types. Since there are no 
functions outside of classes or global variables in C#, [4] getting all the types in an assembly 
will allow us to get all the metadata about the code in that assembly. Type represents all the 
types present in .NET: classes, interfaces, values, arrays, and enumerations. 

[4] Although they are permitted by the CTS and are legal in managed C++.

The Type class is also returned by the GetType method on the System.Object class and the 
static GetType method on the Type class itself. The latter method can be used with types 
that can be resolved statically. 

One of Type's properties is the Assembly to which it belongs. You can get all the types in 
the containing assembly once you have the Type of one object. Type is an abstract class; at 
runtime an instance of System.RuntimeType is returned. 

If you examine the program's output you will see that each type in the assembly, 
CustomerListItem, ICustomer, Customer, Customers is found and its metadata is printed 
out. We can find out the standard attributes and the type from which the class derives for 
each type through the Attributes and BaseType properties. 

The methods associated with the Type class enable you to get the associated fields, 
properties, interfaces, events, and methods. For example, the Customer type has no 
interfaces, properties, or events, four fields, three constructors, and the methods inherited 
from its BaseType System.Object: 



      Interfaces: 
      Fields: 
         CustomerId 
         FirstName 
         LastName 
         EmailAddress 
      Properties: 
      Events: 
      Constructors: 
          public .ctor(System.String first, System.String 
last, System.String email) 
          public .ctor() 
          public .ctor(System.Int32 id) 
      Methods: 
         public Int32 GetHashCode() 
         public Boolean Equals(System.Object obj) 
         public String ToString() 
         public Type GetType() 

The type Customers inherits from one interface and has one constructor and four of its own 
methods in addition to the four it inherited from its BaseType System.Object: 

      Interfaces: 
         ICustomer 
      Fields: 
      Properties: 
      Events: 
      Constructors: 
          public .ctor() 
      Methods: 
         public Void ChangeEmailAddress(System.Int32 id, 
System.String emailAddress) 
         public ArrayList GetCustomer(System.Int32 id) 
         public Void UnregisterCustomer(System.Int32 id)  
         public Int32 RegisterCustomer(System.String 
firstName, System.String lastName, System.String 
emailAddress) 
         public Int32 GetHashCode() 
         public Boolean Equals(System.Object obj) 
         public String ToString() 
         public Type GetType() 

These were obtained with the GetInterfaces, GetFields, GetProperties, GetEvents 
GetConstructors, and GetMethods methods on the Type class. Since an interface is a type, 



GetInterfaces returns an array of Types representing the interfaces inherited or 
implemented by the Type queried. Since fields, properties, events, and methods are not 
types, their accessor methods do not return Types. Each of their accessor methods returns an 
appropriate class: FieldInfo, PropertyInfo, EventInfo, ConstructorInfo, and MethodInfo. 
All these classes, as well as the Type class, inherit from the MemberInfo class that is the 
abstract base class for member metadata. 

Let us examine some of the metadata associated with a class method. Using the reflection 
methods, we were able to reconstruct the signatures for all the classes and interfaces in the 
Customer assembly. Here is the output for the methods of the Customers class: 

   public Void ChangeEmailAddress(System.Int32 id, 
System.String emailAddress) 
   public ArrayList GetCustomer(System.Int32 id) 
   public Void UnregisterCustomer(System.Int32 id) 
   public Int32 RegisterCustomer(System.String firstName, 
System.String lastName, System.String emailAddress) 
   public Int32 GetHashCode() 
   public Boolean Equals(System.Object obj) 
   public String ToString() 
   public Type GetType() 

Here is the code from the example that produced the output: 

for (int j = 0; j < methodInfo.Length; j++) 
{ 
  if (methodInfo[j].IsStatic) 
    Console.Write("          static "); 
  if (methodInfo[j].IsPublic) 
    Console.Write("          public "); 
  if (methodInfo[j].IsFamily) 
    Console.Write("          protected "); 
  if (methodInfo[j].IsAssembly) 
    Console.Write("          internal "); 
  if (methodInfo[j].IsPrivate) 
    Console.Write("          private "); 
  Console.Write("{0} ", methodInfo[j].ReturnType.Name);  
  Console.Write("{0}(", methodInfo[j].Name); 
  ParameterInfo[] paramInfo = 
methodInfo[j].GetParameters(); 
  long last = paramInfo.Length - 1; 
  for (int k = 0; k < paramInfo.Length; k++) 
  { 
    Console.Write("{0} {1}", paramInfo[k].ParameterType, 
      paramInfo[k].Name); 
    if (k != last) 



      Console.Write(", "); 
  } 
Console.WriteLine(")"); 
} 

Except for the fact that a constructor does not have a return type, the exact same code 
reconstitutes the calling sequences for the class's constructors. 

The MethodInfo class has properties that help us determine if the method is static, public, 
protected, internal, or private as well as the return type and method name. The method 
parameters are stored in a property array of type ParameterInfo. 

This example should also make clear that types are assembly relative. The same type name 
and layout in two different assemblies is treated by the runtime as two separate types. When 
versioning assemblies, one has to be careful when mixing versioned types, or the same types 
in two different assemblies. 

All this metadata allows the Common Language Runtime and the Framework to provide 
services to your applications because it can understand the structure of your types. 

Late Binding

Reflection can also be used to implement late binding. In late binding the method to be 
called is determined during execution rather than compilation. It is one example of how 
metadata can be used to provide functionality. As the previous example demonstrates, you 
can extract the signature of a method associated with a type. The MethodInfo object has all 
the needed metadata for a class method. The DynamicInvocation sample demonstrates a 
very simple example of late binding. 

We dynamically load an assembly and get the metadata for a method of a particular type: 

Assembly a = Assembly.Load("Customer"); 
Type t = a.GetType("OI.NetCs.Acme.Customers"); 
MethodInfo mi = t.GetMethod("GetCustomer"); 

Using the reflection classes, we could have made this completely dynamic by arbitrarily 
picking types, methods, and constructors from the Customer assembly using the techniques 
of the last example, but we wanted to keep the DynamicInvocation example simple. 

The System namespace has an Activator class that has overloaded CreateInstance methods 
to create an instance of any .NET type using the appropriate constructor. The Activator 
class is discussed in this chapter's section on Remoting. We invoke a constructor with no 
arguments to create an instance of the Customers object. 

Object customerInstance = Activator.CreateInstance(t); 



We then build an argument list and use the Invoke method of the MethodInfo instance to 
call the GetCustomer method. 

object[] arguments = new Object[1]; 
int customerId = -1; 
arguments[0] = customerId; 
object returnType = mi.Invoke(customerInstance, 
arguments); 

Using the reflection methods, we get the type information for each field in a return structure. 
Note the GetValue method that gets the data for a particular field in a structure. This is 
necessary because we cannot do pointer arithmetic to access an offset into a structure. 

if (returnType.GetType() == 
Type.GetType("System.Collections.ArrayList")) 
{ 
  System.Collections.ArrayList arrayList = 
    (System.Collections.ArrayList)returnType; 
  for (int i = 0; i < arrayList.Count; i++) 
  { 
    Type itemType = arrayList[i].GetType(); 
    FieldInfo[] fi = itemType.GetFields(); 
    for (int j = 0; j < fi.Length; j++) 
    { 
      object fieldValue = fi[j].GetValue(arrayList[i]); 
      Console.Write("{0, -10} = {1, -15}", fi[j].Name, 
        fieldValue); 
    } 
  Console.WriteLine(); 
  } 
} 

This code did not use any specific objects or types from the Customer assembly. We did use 
some knowledge about the assembly to keep the code simple in order to illustrate the main 
points. It should be clear, however, how to make this completely general. 

You can go one step further and use the classes that emit metadata (in 
System.Reflection.Emit). You can dynamically create an assembly and then load and run it. 



Input and Output in .NET

To make a crude generalization, the input/output functions in the .NET Framework can be 
divided into two broad categories, irrespective of the data storage (disk, memory, and so on) 
that is being written to, or read from. 

Data can be treated as a stream of bytes or characters. We can read a block of bytes from a 
file to a memory buffer. Data can also be treated as a set of objects. Reading and writing the 
objects is referred to as deserializing and serializing the objects. We can serialize (write) the 
list of Customer objects to disk. We can then deserialize (read) the list of Customer objects 
back into memory. 

The System.IO namespace has several classes for reading and writing to various types of 
storage while treating the data as bytes or characters. Serialization functionality can be found 
in various places in the .NET framework. The System.Runtime.Serialization namespace 
handles serialization of the Common Type System. The System.Xml.Serialization 
namespace handles XML serialization. 

Streams

Stream is an abstract class that is the basis for reading from and writing bytes to some 
storage such as a file. It supports both synchronous and asynchronous reading and writing. 
Asynchronous methods are discussed later in this chapter. The Stream class has the typical 
methods that you would expect: Read, Write, Seek, Flush, and Close. 

The FileStream class is derived from Stream to represent the reading and writing of files as 
a series of bytes. The FileStream constructor builds the actual stream instance. The 
overridden Stream methods implement the reading and writing to the file. 

Other classes derived from Stream include MemoryStream, BufferedStream, and 
NetworkStream (in System.Net.Sockets). 

The FileStream example (in the FileIO directory, as are all the IO examples) illustrates how 
to use the Stream classes. If the file does not exist, a new file is created and the numbers 
from 0 to 9 are written to it. If the file already exists, the code starts reading 5 bytes from the 
end of the file and then writes them out. (You should run the example twice. The first time 
creates and writes the file, and the second time reads the file.) 

byte[] data = new Byte[10]; 
FileStream fs = new FileStream("FileStreamTest.txt",  
  FileMode.OpenOrCreate); 
if (fs.Length == 0) 
{ 
  Console.WriteLine("Writing Data..."); 
  for (short i = 0; i < 10; i++) 
    data[i] = (byte)i; 



  fs.Write(data, 0, 10); 
} 
else 
{ 
  fs.Seek(-5, SeekOrigin.End); 
  int count = fs.Read(data, 0, 10); 
  for (int i = 0; i < count; i++) 
  { 
    Console.WriteLine(data[i]); 
  } 
} 
fs.Close(); 

Primitive Datatypes and Streams

The stream derived classes will work if you are reading and writing bytes of data as a block. 
If you need to read and write the primitive common types (Boolean, String, Int32, and so 
on) in and out of a stream, use the BinaryReader and the BinaryWriter classes. The 
Binary example shows how to use these classes. You create the appropriate stream 
(FileStream in the example) and pass it to the BinaryReader or BinaryWriter constructor. 
You can then use one of the overloaded Read or Write methods to read or write a datatype 
to or from the stream. (Again, you should run the example twice.) 

FileStream fs = new FileStream("BinaryTest.bin", 
FileMode.OpenOrCreate); 
if (fs.Length == 0) 
{ 
  Console.WriteLine("Writing Data..."); 
  BinaryWriter w = new BinaryWriter(fs); 
  for (short i = 0; i < 10; i++) 
    w.Write(i); 
  w.Close(); 
} 
else 
{ 
  BinaryReader r = new BinaryReader(fs); 
  for (int i = 0; i < 10; i++) 
    Console.WriteLine(r.ReadInt16()); 
  r.Close(); 
} 
fs.Close(); 

TextReader and TextWriter

The TextReader and TextWriter abstract classes treat the data as a sequential stream of 



characters (i.e., as text). TextReader has methods such as Close, Peek, Read, ReadBlock, 
ReadLine, and ReadToEnd. TextWriter has methods such as Close, Flush, Write, and 
WriteLine. The overloaded Read methods read characters from the stream. The overloaded 
Write and WriteLine methods write various types to the stream. If an object is written to 
the stream, the object's ToString method is used. 

StringReader and StringWriter are derived from TextReader and TextWriter. These 
classes read and write characters from a string. The StringWriter's constructor uses a 
StringBuilder object. The StringBuilder class was discussed in Chapter 3. StreamReader 
and StreamWriter are also derived from TextReader and TextWriter. They read and write 
text to and from a Stream object. As with the BinaryReader and BinaryWriter class you 
create a stream and pass it to the constructor. Hence, these classes can use any Stream 
derived class data storage. The Text example uses the StreamWriter and StreamReader 
classes. 

FileStream fs = new FileStream("TextTest.txt", 
FileMode.OpenOrCreate); 
if (fs.Length == 0) 
{ 
  Console.WriteLine("Writing Data..."); 
  StreamWriter sw = new StreamWriter(fs); 
  sw.Write(100); 
  sw.WriteLine(" One Hundred"); 
  sw.WriteLine("End of File"); 
  sw.Close(); 
} 
else 
{ 
  string text; 
  StreamReader sr = new StreamReader(fs); 
  text = sr.ReadLine(); 
  while (text != null) 
  { 
    Console.WriteLine(text); 
    text = sr.ReadLine(); 
  } 
  sr.Close(); 
} 
fs.Close(); 

File Manipulation

The framework has two classes that are very useful for working with files. 

If you need to manipulate the file in addition to reading and writing to it, the File class 
provides the basic functionality. Since the File class has only static members, you have to 



provide the name of the file as an argument. The FileInfo class has a constructor that creates 
an object that represents a file. You then use the methods to manipulate that particular file. 

The File class methods always perform a security check. If you are going to continually 
access a particular file, you may want to use the FileInfo class, because the security check is 
made only once in the constructor. Security is discussed in more detail in Chapter 12. 

File Class

The File class has methods for creating and opening files that return FileStream, 
StreamWriter, or StreamReader objects that do the actual reading and writing. The 
overloaded Create methods return a FileStream object. The CreateText method returns a 
StreamWriter. The overloaded Open method can either create a new file or open an 
existing one for reading or writing, depending on the method parameters. The object 
returned is a FileStream object. The OpenText method returns a StreamReader. The 
OpenRead method returns a FileStream object. The OpenWrite method returns a 
FileStream. 

The File class also has methods for copying, deleting, and moving files. You can test for the 
existence of a file. File attributes can be read or modified, such as: 

●     creation time 
●     last access time 
●     last write time 
●     archive, hidden, normal, system, or temporary 
●     compressed, encrypted 
●     read-only 
●     whether the file is a directory 

Path Class

Many of the file names needed for input arguments have to be full paths. Or you might only 
want to manipulate parts of the path. The Path class has static methods that make this easier. 
The Path class has static fields that indicate various platform-specific aspects of pathnames 
such as the separator characters for directories, paths, and volumes, and the illegal characters 
for pathnames. 

Its static methods let you change the extension of a file, or find the directory where 
temporary files reside. The GetFullPath method is particularly useful. You can pass it a 
relative path such as ".\foo.txt" and it will return the full path of the file. This is very useful 
for the File or security classes that require the full file path. 

FileInfo Class

The FileInfo constructor creates an object that represents a disk file. The constructor takes 
one argument, a string representing the name of the file. The class has properties that 
represent file properties such as the creation time, full pathname, and size of the file. It has 



creation and open methods that are analogous to the File class methods but operate on this 
file instance and therefore do not need a file-name parameter. The FileInfo class also has 
methods to move and copy the file. 

File Example

The File example illustrates the use of the File and FileInfo classes. 

The static Delete method of the File class is used to remove a previous version of a file if it 
is present. The static CreateText method creates a new file and returns a StreamWriter 
instance which is used to write some text to the file. The stream is then closed. The static 
Move method then renames the file. 

A FileInfo instance is constructed to represent this renamed file. The complete file name, 
size, and creation date for the file are written to the console. The file is opened as text and a 
StreamReader instance is used to read and write out the contents of the file. 

File.Delete("file2.txt"); 
  StreamWriter sw = File.CreateText("file.txt"); 
sw.WriteLine("The time has come the Walrus said, to talk 
of many things"); 
sw.WriteLine("Of shoes, and ships, and sealing wax, of 
cabbages and kings"); 
sw.WriteLine("And why the sea is boiling hot, and whether 
pigs have wings."); 
sw.Close(); 

File.Move("file.txt", "file2.txt"); 
FileInfo fileInfo = new FileInfo("file2.txt"); 
Console.WriteLine("File {0} is {1} bytes in length and was 
created on {2}", fileInfo.FullName, fileInfo.Length, 
fileInfo.CreationTime); 
Console.WriteLine(""); 

StreamReader sr = fileInfo.OpenText(); 
String s = sr.ReadLine();  
while (s != null) 
{ 
  Console.WriteLine(s); 
  s = sr.ReadLine(); 
 } 
sr.Close(); 
Console.WriteLine(""); 



Serialization

Using the File and Stream classes can be quite cumbersome if you have to save a 
complicated data structure with linked objects. You have to save the individual fields to disk, 
remembering which field belongs to which object, and which object instance was linked to 
another object instance. When restoring the data structure you have to reconstitute that 
arrangement of fields and object references. 

The serialization technology provided by the .NET Framework does this for you. 
Serialization converts managed data structures to a byte stream. Deserialization converts the 
byte stream back to managed data structures. Serializing and deserializing can be done on 
different machines so long as they both host the CLR. 

Objects can be serialized without writing special code because, as we have seen, the runtime 
can query the object's metadata and the serialized stream tags each value with the name of 
the field to which it applies. 

To inform the framework that a class can be serialized, mark the class with the 
System.Serializable attribute. Any field or property that should not be serialized can be 
marked with the System.NonSerialized attribute. For example, fields that represent 
calculated values need not be serialized. All you have to do is mark the class with the 
attribute; you need write no other code to save the class's fields. Only instance fields are 
saved; the static fields of a class are never saved. 

The Serialization example shows how to apply serialization to the case study's 
HotelBroker class in the Hotel assembly. The Serializable attribute has been applied to the 
HotelBroker class definition. The Serializable attribute has also been applied to all the 
classes that are used by HotelBroker or that HotelBroker derives from—Broker, Hotel, 
HotelReservation, Reservable, and Reservation—because in order for HotelBroker to be 
serializable, those classes must be as well. If any of those classes were not marked, a runtime 
exception would be thrown when the framework tried to serialize an object of that type. 

 [Serializable] 
public class HotelBroker : Broker, IHotelInfo, 
IHotelAdmin, IHotelReservation  
{ 
private const int MAXDAY = 366; 
private const int MAXUNIT = 10; 
[NonSerialized] private ArrayList cities; 
. . . 
[Serializable] public class Hotel : Reservable 
. . . 
[Serializable] public class HotelReservation : Reservation 
. . . 
[Serializable] public abstract class Reservable 
. . . 



[Serializable] public abstract class Reservation 
. . . 
[Serializable] public abstract class Broker 
. . . 

The cities field has been marked as NonSerialized, since the hotel's city is saved with the 
serialized hotels and therefore can be restored, as the modified AddCity method 
demonstrates. The cities field would be null if the HotelBroker class had been deserialized, 
because the cities field was not saved. [5] 

[5] Of course we could have serialized the cities field and not have to deal with the 
case where cities could be null, but we wanted to demonstrate the NonSerialized 
attribute.

private void AddCity(string city) 
{ 
  if (cities == null) 
    { 
    cities = new ArrayList(); 
    foreach(Hotel h in units) 
      AddCity(h.City); 
  } 
  if (!cities.Contains(city)) 
  cities.Add(city); 
} 

Serialization Objects

Although the framework knows how to save an object marked with the Serializable 
attribute, you still have to specify the format in which the object is saved (i.e., store the data 
as binary, XML, or some custom format), and the storage medium. To specify the format in 
which an object is saved, you use an instance of an object that supports the IFormatter 
interface. [6] 

[6] How does the runtime know whether a class supports the IFormatter interface? 
Query the metadata!

The Framework ships with two such classes, System.Runtime. 
Serialization.Formatters.Binary.BinaryFormatter and System.Runtime. 
Serialization.Formatters.Soap.SoapFormatter. The BinaryFormatter uses a binary, 
compact format for serializing and deserializing on platforms that support the Common 
Language Runtime. The SoapFormatter uses the industry-standard SOAP protocol that is 
discussed in Chapter 11 on Web Services. Since it is an XML-, and therefore text-based 
protocol, it can be used to communicate with a non-CLR-based platform. The binary format 
is faster when serializing and deserializing data. 



You can, of course, implement your own formatter classes. You might do this if you had to 
talk to a system with its own legacy byte format. 

The Serialization example has code to demonstrate saving and restoring both binary and 
SOAP formats using a FileStream. Of course, you could use any Stream-based class 
representing some data medium. 

private static void Save(HotelBroker broker, 
  string formatter) 
{ 
  FileStream s; 
  if (formatter == "b") 
  { 
    s = new FileStream("hotels.bin", FileMode.Create); 
    BinaryFormatter b = new BinaryFormatter(); 
    b.Serialize(s, broker); 
  } 
  else 
  { 
    s = new FileStream("hotels.txt", FileMode.Create); 
    SoapFormatter sf = new SoapFormatter(); 
    sf.Serialize(s, broker); 
  } 
  s.Close(); 
} 
private static void Load(ref HotelBroker broker, 
  string formatter) 
{ 
  FileStream s; 
  if (formatter == "b") 
  { 
    s = new FileStream("hotels.bin", FileMode.Open); 
    BinaryFormatter b = new BinaryFormatter(); 
    broker = (HotelBroker) b.Deserialize(s); 
  } 
  else 
  { 
    s = new FileStream("hotels.txt", FileMode.Open); 
    SoapFormatter sf = new SoapFormatter(); 
    broker = (HotelBroker)sf.Deserialize(s); 
  } 
s.Close(); 

Here is some sample output from the Serialization example. First we add a hotel and save it 
with the SOAP formatter. We then exit the program. 



Enter command: cities 
Atlanta 
Boston 
Commands: quit, cities, list, add, fetch, save 

Enter command: list 
City            Name                 Rooms      Rate 
Atlanta         Dixie                100        115 
Atlanta         Marriott             500        70 
Boston          Sheraton             250        95 
Commands: quit, cities, list, add, fetch, save 

Enter command: add 
Hotel City: Philadelphia 
Hotel Name: Franklin 
Number Rooms: 100 
Room Rate: 200 
Commands: quit, cities, list, add, fetch, save 

Enter command: save 
Formatter: b(inary), s(oap)s 
Commands: quit, cities, list, add, fetch, save 

Enter command: cities 
Atlanta 
Boston 
Philadelphia 
Commands: quit, cities, list, add, fetch, save 

Enter command: list 
City            Name                 Rooms      Rate 
Atlanta         Dixie                100        115 
Atlanta         Marriott             500        70 
Boston          Sheraton             250        95 
Philadelphia    Franklin             100        200 
Commands: quit, cities, list, add, fetch, save 

Enter command: quit 

We then run the program again and restore what we saved [7] in the first run. 

[7] If you look at the hotels.txt file you will see a huge file, with a lot of "empty" 
entries. This stems from the simplistic array data structure we used for 
reservations, which is a very sparse matrix. 

Enter command: cities 
Atlanta 



Boston 
Commands: quit, cities, list, add, fetch, save  
Enter command: list 
City            Name                 Rooms      Rate 
Atlanta         Dixie                100        115 
Atlanta         Marriott             500        70 
Boston          Sheraton             250        95 
Commands: quit, cities, list, add, fetch, save 

Enter command: fetch 
Formatter: b(inary), s(oap)s 
City            Name                 Rooms      Rate 
Atlanta         Dixie                100        115 
Atlanta         Marriott             500        70 
Boston          Sheraton             250        95 
Philadelphia    Franklin             100        200 
Commands: quit, cities, list, add, fetch, save 

Enter command: cities 
Atlanta 
Boston 
Philadelphia 

ISerializable

Sometimes the serialization provided by the Framework is not satisfactory. You can provide 
custom serialization for a class by implementing the ISerializable interface and adding a 
constructor to the class. The ISerializable interface has one member: GetObjectData. This 
method is used when data is serialized. 

The ISerializable example demonstrates how this is done. As before, the class has to be 
marked as Serializable. 

[Serializable] 
public class HotelBroker : Broker, IHotelInfo, 
IHotelAdmin, IHotelReservation, ISerializable 
{ 
  private const int MAXDAY = 366; 
  private const int MAXUNIT = 10; 
  private ArrayList cities; 
... 

The SerializationInfo class is used to store all the data that needs to be saved. This class's 
AddValue method is overloaded to handle the saving of various types, including object. [8] 
When you save the type you provide a name that is used to recall the object when 
deserializing the data. The StreamingContext class gives you information about the stream 



being used in the serialization. For example, you can find out if the stream being used is a 
file or is being remoted to another computer. 

[8] Some of the AddValue overloads are not CLS compliant when the types being 
saved are not CLS-compliant types such as unsigned integers. Be careful not to 
use those types where .NET language interoperability is required. You have to 
watch for this in other places in the Framework such as the Convert class or the 
Parse methods of the various CTS types, or any other place where data is 
formatted, converted, read, or written out (such as the TextWriter classes).

public void GetObjectData(SerializationInfo info, 
  StreamingContext context) 
{ 
  long numberHotels = units.Count; 
  info.AddValue("NumberHotels", numberHotels); 
  info.AddValue("Hotels", units); 
} 

You also have to implement a special constructor that is used by the framework to recreate 
the object when it is deserialized. It has the same arguments as does GetObjectData. Here 
you use the various Get methods on SerializationInfo to restore the data. Note that since we 
did not save the cities field, we had to manually restore it. The constructor is private because 
only the Framework uses it. If you forget to add the constructor, you will get a 
SerializationException when you try to restore the object. 

private HotelBroker(SerializationInfo info, 
  StreamingContext context) : base(MAXDAY, MAXUNIT) 
{ 
  long numberHotels = info.GetInt32("NumberHotels"); 
  units = (ArrayList)info.GetValue("Hotels", 
    typeof(ArrayList)); 
  if (numberHotels == units.Count) 
    Console.WriteLine("All hotels deserialized."); 
  else 
    Console.WriteLine("Error in deserialization."); 

  cities = new ArrayList(); 
  foreach(Hotel h in units) 
    AddCity(h.City); 

} 

In this example we only did custom serialization for the HotelBroker object. For all the 
other objects we still relied on the Framework's serialization. This example works the same 
way that the Serialization example did. The sample output would look the same. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


.NET Application Model

Serialization gave you a concrete example of the flexible environment the .NET Framework 
provides for writing code. Now let us take a look at the model in which .NET applications run. 
The Win32 environment in which a program runs is called its process. This environment 
consists of 

●     the address space in which the code and data of the program reside 
●     one or more threads 
●     a set of environmental variables that is associated with the program 
●     a current drive and directory 

Threads

A thread is the actual execution path of a program's code. One or more threads run inside a 
process to allow for multiple execution paths inside a process. With multiple threads, for 
example, a program can update the user interface with partial results on one thread as a 
calculation proceeds on another thread. All threads in the same process share the process 
environment, so that they can all access process memory. 

Threads are scheduled by the operating system; processes and application domains [9] are not 
scheduled. Threads are given a limited timeslice in which to run, so that they can share the 
processor with other threads. Higher-priority threads will get to run more often than lower-
priority threads. After some time elapses, a thread will get another chance to run. When a thread 
is restarted, it resumes running from where it was stopped. 

[9] Application domains are discussed later in this chapter.

Threads maintain a context, which has to be saved and restored when the operating system's 
scheduler switches from one thread to another. A thread's context includes the machine registers 
and stack that contain the state of the executing code. 

The System.Threading.Thread class models an executing thread. The Thread object that 
represents the current executing thread can be found from the static property 
System.Threading.Thread.CurrentThread. 

Unless your code runs on a multiprocessor machine, or you are trying to use time while a 
uniprocessor waits for some event such as an I/O event, using multiple threads does not save 
any time on your computing tasks. It does, however, allow making the system seem more 
responsive to tasks requiring user interaction. Using too many threads can decrease 
performance as contention between the threads for the CPU increases. 

To help you understand threads we provide a four-part Threading example that uses the 
Customer and Hotel assemblies from the case study to make reservations. Let us look first at 
Step 0. The code is found in the file Threading.cs. 

.NET threads run as delegates defined by the System.Threading. ThreadStart class. The 
delegate returns void and takes no parameters. 



public delegate void ThreadStart(); 

The NewReservation class has a public member function MakeReservation that will define 
the thread function. Since the thread function takes no parameters, any data that this function 
uses is assigned to fields in the NewReservation instance. 

ThreadStart threadStart1 = new 
    ThreadStart(reserve1.MakeReservation); 

The thread delegate is created and passed as a parameter to the constructor that creates the 
System.Threading.Thread instance. The Start method on the Thread instance is invoked to 
begin the thread's execution. When we discuss the asynchronous programming model, we will 
show you how to pass parameters to a thread delegate. The program now has two threads—the 
original one that executed the code to start the program, and the thread we have just created that 
attempts to make a hotel reservation. 

public class NewReservation 
  { 
  . . . 
  public void MakeReservation() 
  { 
    . . . 
      Console.WriteLine("Thread {0} starting.", 
        Thread.CurrentThread.GetHashCode()); 
    . . . 
      ReservationResult result = 
        hotelBroker.MakeReservation(customerId, city, hotel, 
        date, numberDays); 
    . . . 
  } 
} 
  . . . 
  NewReservation reserve1 = new NewReservation(customers, 
      hotelBroker); 
  reserve1.customerId = 1; 
  reserve1.city = "Boston"; 
  reserve1.hotel = "Presidential"; 
  reserve1.sdate = "12/12/2001";  
reserve1.numberDays = 3; 

ThreadStart threadStart1 = new 
    ThreadStart(reserve1.MakeReservation); 
Thread thread1 = new Thread(threadStart1); 
Console.WriteLine("Thread {0} starting a new thread.", 
    Thread.CurrentThread.GetHashCode()); 
thread1.Start(); 



To cause the original thread to wait until the second thread is done, the Join method on the 
System.Threading.Thread instance is called. The original thread now blocks (waits) until the 
reservation thread is complete. The results of the reservation request are written to the console 
by the reservation thread. 

thread1.Join(); 
Console.WriteLine("Done!"); 

Thread Synchronization

An application can create multiple threads. Look at the code in Step 1 of the Threading 
example. Now multiple reservation requests are being made simultaneously. 

NewReservation reserve1 = new NewReservation(customers, 
                          hotelBroker); 
. . . 
NewReservation reserve2 = new NewReservation(customers, 
                          hotelBroker); 
. . . 
ThreadStart threadStart1 = new 
                  ThreadStart(reserve1.MakeReservation); 
ThreadStart threadStart2 = new 
                  ThreadStart(reserve2.MakeReservation); 

Thread thread1 = new Thread(threadStart1); 
Thread thread2 = new Thread(threadStart2); 

thread1.Start(); 
thread2.Start(); 

thread1.Join(); 
thread2.Join(); 

The problem with our reservation systems is that there is no guarantee that one thread will not 
interfere with the work being done with the other thread. Threads run only for a brief period 
before they are interrupted and another thread is scheduled to run on the processor. They may 
not be finished with whatever operation they were working on when their timeslice is up. 

For example, they might be in the middle of updating a data structure. If another thread tries to 
use the information in that data structure, or update the data structure, the results of operations 
will be at best inconsistent and incorrect, and at worst a system crash (i.e., if references to 
obsolete structures were not yet updated). 

Let us look at one of several places in the customer and reservation code where we could have a 
problem. Examine the code for the Reserve method in the file broker.cs. First a check is made 
of the existing bookings for a given hotel for a given date to see if rooms are available. If there 
are, the booking is made. 



. . . 
// Check if rooms are available for all dates 
for (int i = day; i < day + numDays; i++) 
{ 
  if (numCust[i, unitid] >= unit.capacity) 
  { 
    result.ReservationId = -1; 
    result.Comment = "Room not available"; 
    return result; 
  } 
} 
. . . 
// Reserve a room for requested dates 
for (int i = day; i < day + numDays; i++) 
  numCust[i, unitid] += 1; 
. . . 

This code can produce inconsistent results! One thread could be rescheduled after it finds that 
the last room is available, but before it gets a chance to make the booking. The other thread 
could run, find the same available room, and make the booking. When the second thread runs 
again, starting from where it left off, it will also book the last room at the hotel. 

To simulate this occurrence, this step of the threading example puts a 
System.Threading.Thread.Sleep call between the code that checks for availability and the 
code that makes the booking. The Sleep(0) call will cause the thread to stop executing and give 
up the remainder of its timeslice. We then setup our program so that the two threads try to 
reserve the only room at a hotel for the same time. Examine the code in the Main routine that 
sets this up: 

hotelBroker.AddHotel("Boston", "Presidential", 1, 
                    (decimal) 10000); 
. . . 
NewReservation reserve1 = new NewReservation(customers, 
                          hotelBroker);  
reserve1.customerId = 1; 
reserve1.city = "Boston"; 
reserve1.hotel = "Presidential"; 
reserve1.sdate = "12/12/2001"; 
reserve1.numberDays = 3; 

NewReservation reserve2 = new NewReservation(customers, 
                          hotelBroker); 

reserve2.customerId = 2; 
reserve2.city = "Boston"; 
reserve2.hotel = "Presidential"; 
reserve2.sdate = "12/13/2001"; 
reserve2.numberDays = 1; 



Running the program will give results something like this: 

Added Boston Presidential Hotel with one room. 
Thread 3 starting  new threads. 
Thread 5 starting. 
Reserving for Customer 1 at the Boston Presidential Hotel 
on 12/12/2001 12:00:00 AM for 3 days 
Thread 5 entered Broker::Reserve 
Thread 5 sleeping in Broker::Reserve 
Thread 6 starting. 
Reserving for Customer 2 at the Boston Presidential Hotel 
on 12/13/2001 12:00:00 AM for 1 days 
Thread 6 entered Broker::Reserve 
Thread 6 sleeping in Broker::Reserve 
Thread 5 left Broker::Reserve 
Reservation for Customer 1 has been booked 
ReservationId = 1 
ReservationRate = 10000 
ReservationCost = 30000 
Comment = OK 
Thread 6 left Broker::Reserve 
Reservation for Customer 2 has been booked 
ReservationId = 2 
ReservationRate = 10000 
ReservationCost = 10000 
Comment = OK 
Done! 

Both customers get to reserve the last room on December 13! Note how Thread 5 enters the 
Reserve method and finds the room is available before it gets rescheduled. Thread 6 enters 
Reserve and also finds the room is available before it gets rescheduled. Thread 5 then books the 
room, and Thread 6 does as well. 

Operating systems provide means for synchronizing the operation of multiple threads, or 
multiple processes accessing shared resources. The .NET Framework provides several 
mechanisms to prevent threading conflicts. 

Every object in the .NET framework can be used to provide a synchronized section of code 
(critical section). Only one thread at a time can execute within such a section. If one thread is 
already executing inside that synchronized code section, any threads that attempt to access that 
section will block (wait) until the executing thread leaves it. 

Synchronization with Monitors

The System.Threading.Monitor class allows you to create a critical section by synchronizing 
on an object to avoid race conditions or incorrect answers. Step 2 of the Threading example 



demonstrates the use of the Monitor class with the this pointer of the HotelBroker instance. 

public ReservationResult Reserve(Reservation res) 
{ 
  . . . 
  Monitor.Enter(this); 
  . . . 
  Monitor.Exit(this); 
  return result; 
} 

The thread that first calls the Monitor.Enter(this) method will be allowed to execute the code 
of the Reserve method because it will acquire the Monitor lock based on the this pointer. 
Subsequent threads that try to execute will be forced to wait until the first thread releases the 
lock with Monitor.Exit(this). At that point they will be able to call Monitor.Enter(this) and 
acquire the lock. 

A thread can call Monitor.Enter several times, but each call must be balanced by a call to 
Monitor.Exit. If a thread wants to try to acquire a lock, but does not want to block so that it can 
do some work and try again, it can use the Monitor.TryEnter method. 

In C# you can use the lock keyword in place of Monitor.Enter/Exit. With the lock keyword, 
the above fragment would be: 

public ReservationResult Reserve(Reservation res) 
{ 
  lock(this); 
  { 
    . . . 
  } 
  return result; 
} 

Now that we have provided synchronization, the identical case tried in Step 1 does not result in 
one reservation too many for the hotel. Notice how the second thread cannot enter the Reserve 
method until the first thread that entered has left. 

Added Boston Presidential Hotel with one room. 
Thread 3 launching 2 threads. 
Thread 5 starting. 
Reserving for Customer 1 at the Boston Presidential Hotel 
on 12/12/2001 12:00:00 AM for 3 days 
Thread 5 trying to enter Broker::Reserve 
Thread 5 entered Broker::Reserve 
Thread 6 starting. 
Reserving for Customer 2 at the Boston Presidential Hotel 
on 12/13/2001 12:00:00 AM for 1 days 



Thread 6 trying to enter Broker::Reserve 
Thread 5 left Broker::Reserve 
Thread 6 entered Broker::Reserve 
Thread 6 left Broker::Reserve 
Reservation for Customer 2 could not be booked 
Room not available 
Reservation for Customer 1 has been booked 
ReservationId = 1 
ReservationRate = 10000 
ReservationCost = 30000 
Comment = OK 
Done! 

Notification with Monitors

A thread that has acquired a Monitor lock can wait for a signal from another thread that is 
synchronizing on that same object without leaving the synchronization block. The thread 
invokes the Monitor.Wait method and relinquishes the lock. When notified by another thread, 
it reacquires the synchronization lock. 

A thread that has acquired a Monitor lock can send notification to another thread waiting on the 
same object with the Pulse or the PulseAll methods. It is important that the receiving thread be 
waiting when the pulse is sent; otherwise, if the pulse is sent before the wait, the other thread 
will wait forever and will never see the notification. This is unlike the reset events discussed 
later in this chapter. If multiple threads are waiting, the Pulse method will put only one thread 
on the ready queue to run. The PulseAll will put all of them on the ready queue. 

The pulsing thread no longer has the monitor lock but is not blocked from running. Since it is 
no longer blocked, but does not have the lock, to avoid a deadlock or race condition this thread 
should try to reacquire the lock (through a Monitor.Enter or Wait) before doing any 
potentially damaging work. 

The PulseAll example illustrates the Pulse and PulseAll methods. Running the example 
produces the following output: 

First thread: 2 started. 
Thread: 5 started. 
Thread: 6 started. 
Thread: 6 waiting. 
Thread: 5 waiting. 
Thread 6 sleeping. 
Done. 
Thread 6 awake. 
Thread: 6 exited. 
Thread 5 sleeping. 
Thread 5 awake. 
Thread: 5 exited. 



The class X has a field "o" of type object that will be used for a synchronization lock. 

The class also has a method Test that will be used as a thread delegate. The method acquires the 
synchronization lock and then waits for a notification. When it gets the notification, it sleeps for 
half a second and then relinquishes the lock. 

The main method creates two threads that use Test method of class X as their thread delegate 
and share the same object to use for synchronization. It then sleeps for 2 seconds to allow the 
threads to issue their wait requests and relinquish their locks. Next it calls PulseAll to notify 
both waiting threads and relinquishes its hold on the locks. Eventually each thread will 
reacquire the lock, write a message to the console, and relinquish the lock for the last time. 

class X 
{ 
  object o; 

  public X(object o) 
  { 
    this.o = o; 
  } 
  public void Test() 
  { 
    try 
      { 
        long threadId =Thread.CurrentThread.GetHashCode(); 
        Console.WriteLine("Thread:{0} started.",threadId); 
        Monitor.Enter(o); 
        Console.WriteLine("Thread:{0} waiting.",threadId); 
        Monitor.Wait(o); 
        Console.WriteLine("Thread {0} sleeping",threadId); 
        Thread.Sleep(500);  
        Console.WriteLine("Thread {0} awake.", threadId); 
        Monitor.Exit(o); 
        Console.WriteLine("Thread: {0} exited.",threadId); 
      } 
    catch(Exception e) 
        { 
        long threadId =Thread.CurrentThread.GetHashCode(); 
        Console.WriteLine("Thread: {0} Exception: {1}", 
                           threadId, e.Message); 
        Monitor.Exit(o); 
      } 
  } 
} 

class Class1 
{ 



  static public object o = new object(); 

  static void Main(string[] args) 
  { 
    Console.WriteLine("First thread: {0} started.", 
                     Thread.CurrentThread.GetHashCode()); 
    X a = new X(o); 
    X b = new X(o); 

    ThreadStart ats = new ThreadStart(a.Test); 
    ThreadStart bts = new ThreadStart(b.Test); 

    Thread at = new Thread(ats); 
    Thread bt = new Thread(bts); 

    at.Start(); 
    bt.Start(); 

    Thread.Sleep(2000); 
    Monitor.Enter(o); 

    Monitor.PulseAll(o); 
    // Monitor.Pulse(o); 

    Monitor.Exit(o); 

    Console.WriteLine("Done."); 
  } 
} 

Comment out the PulseAll call, uncomment the Pulse call, and only one thread completes 
because the other thread is never put on the ready queue. Remove the Sleep(2000) from the 
main routine and the other threads block forever, because the pulse occurs before the threads get 
a chance to call the Wait method and hence they will never be notified. 

These methods can be used to coordinate several threads' use of synchronization locks. 

The Thread.Sleep method causes the current thread to stop execution (block) for a given time 
period. Calling Thread.Suspend will cause the thread to block until Thread.Resume is called 
on that same thread. Threads can also block because they are waiting for another thread to 
finish (Thread.Join). This method was used in the Threading examples so that the main thread 
could wait until the reservation requests were completed. Threads can also block because they 
are waiting on a synchronization lock. 

A blocked thread can be awakened by calling Thread.Interrupt on the blocked thread. The 
thread will receive a ThreadInterruptedException. If it does not catch this exception, the 
runtime will catch it and kill the thread. 

If, as a last resort, you have to kill a thread outright, call the Thread.Abort method on the 



thread. Thread.Abort causes the ThreadAbortException to be thrown. This exception cannot 
be caught, but it will cause all the finally blocks to be executed. In addition, Thread.Abort 
does not cause the thread to wake up from a wait. 

Since finally blocks may take a while to execute, or the thread might be waiting, aborted 
threads may not terminate immediately. If you need to be sure that the thread has finished, you 
should wait on the thread's termination using Thread.Join. 

Synchronization Classes

The .NET Framework has classes that represent the standard Win32 synchronization objects. 
These classes all derive from the abstract WaitHandle class. This class has static methods, 
WaitAll and WaitAny, that allow you to wait for all of a set of synchronization objects being 
signaled or on just one of a set of synchronization objects being signaled. It also has an instance 
method, WaitOne, that allows you to wait for this instance to be signaled. How the object gets 
signaled depends on the particular type of synchronization object that is derived from 
WaitHandle. 

A Mutex object is used for interprocess synchronization. Monitors and synchronized code 
sections work only within one process. An AutoResetEvent and ManualResetEvent are used 
to signal whether an event has occurred. An AutoResetEvent remains signaled until a waiting 
thread is released. A ManualResetEvent remains signaled until its state is set to unsignaled 
with the Reset method. Hence many threads could be signaled by this event. Unlike Monitors, 
code does not have to be waiting for the signal before the pulse is set for the reset events to 
signal a thread. 

The Framework has provided classes to solve some standard threading problems. The 
Interlocked class methods allow atomic operations on shared values such as increment, 
decrement, comparison, and exchange. ReaderWriterLock is used to allow single-writer, 
multiple-reader access to data structures. The ThreadPool class can be used to manage a pool 
of worker threads. 

Automatic Synchronization

You can use attributes to synchronize the access to instance methods and fields of a class. 
Access to static fields and methods is not synchronized. To do this, you derive the class from 
the class System.ContextBoundObject and apply a Synchronization attribute to the class. 
This attribute cannot be applied to an individual method or field. 

The attribute is found in the System.Runtime.Remoting.Contexts namespace. It describes the 
synchronization requirements of an instance of the class to which it is applied. You can pass 
one of four values which are static fields of the SynchronizationAttribute class to the 
SynchronizatonAttribute constructor: NOT_SUPPORTED, SUPPORTED, REQUIRED, 
REQUIRES_NEW. The Threading example Step 3 illustrates how to do this. 

Synchronization(SynchronizationAttribute.REQUIRED)] 
public abstract class Broker : ContextBoundObject 
{ 
. . . 



In order for the CLR to make sure that the thread in which this object runs on is synchronized 
properly, the CLR has to track the threading requirements of this object. This state is referred to 
as the context of the object. If one object needs to be synchronized, and another does not, they 
are in two separate contexts. The CLR has to acquire a synchronization lock on behalf of the 
code when a thread that is executing a method on the object that does not need to be 
synchronized starts executing a method on an object that does. The CLR knows that this has to 
be done because it can compare the threading requirements of the first object with the threading 
requirements of the second object by comparing their contexts. 

Objects that share the same state are said to live in the same context. For example, two objects 
that do not need to be synchronized can share the same context. ContextBoundObject and 
Contexts are discussed in more detail in the section on Contexts. 

With this intuitive understanding of contexts we can now explain the meaning of the various 
Synchronization attributes. NOT_SUPPORTED means that the class cannot support 
synchronization of its instance methods and fields and therefore must not be created in a 
synchronized context. REQUIRED means that the class requires synchronization of access to its 
instance methods and fields. If a thread is already being synchronized, however, it can use the 
same synchronization lock and live in an existing synchronization context. REQUIRES_NEW 
means that not only is synchronization required, but access to its instance methods and fields 
must be with a unique synchronization lock and context. SUPPORTED means that the class 
does not require synchronization of access to its instance methods and fields, but a new context 
does not have to be created for it. 

You can also pass a Boolean flag to the constructor to indicate if reentrancy is required. If 
required, call-outs from methods are synchronized. Otherwise, only calls into methods are 
synchronized. 

With this attribute there is no need for Monitor.Enter and Monitor.Exit in the 
Broker::Reserve method. 

Just as in Step 2, this example attempts to make two reservations for the last room in a Hotel. In 
addition, a third thread attempts to cancel a reservation. Here is the output from running this 
example: 

Added Boston Presidential Hotel with one room. 
Thread 13 launching 3 threads. 
MakeReservation: Thread 28 starting. 
Reserving for Customer 1 at the Boston Presidential Hotel 
on 12/12/2001 12:00:00 AM for 3 days 
Thread 28 entered Reserve. 
MakeReservation: Thread 29 starting. 
Reserving for Customer 2 at the Boston Presidential Hotel 
on 12/13/2001 12:00:00 AM for 1 days 
CancelReservation: Thread 30 starting. 
Cancelling Reservation 10 
Thread 28 left Reserve. 



Thread 29 entered Reserve. 
Thread 29 left Reserve. 
Reservation for Customer 2 could not be booked 
Room not available 
Thread 30 entered CancelReservation. 
Thread 30 left CancelReservation. 
Reservation for Customer 1 has been booked 
ReservationId = 1 
ReservationRate = 10000 
ReservationCost = 30000 
Comment = OK 
Done! 

As in the previous case the second thread could not enter the Reserve method until the thread 
that entered first finished. Only one reservation is made. 

What is different about using the automatic approach is that you get the synchronization in all 
the methods of the class whether you need it or not. Accessing any data in the class is also 
singly threaded. 

Note how only one thread can be in any method of the class; a thread using CancelReservation 
blocks threads from using MakeReservation. With a reservation system this is the behavior 
you want, since you do not want the MakeReservation to attempt to use a data structure that 
might be in the middle of being modified. In situations where a method on the object does not 
require synchronization, however, you will be synchronized anyway and the interactivity of the 
application will be reduced. 

The other drawback to this approach is that it can increase contention and interfere with 
scalability since you are not just locking around the specific areas that need synchronizing. 

The attribute approach is simpler than using critical sections. You do not have to worry about 
the details of the getting the synchronization correct. On the other hand, you get behavior that 
reduces interactivity and scalability. Different applications, or different parts of the same 
application, will choose the approach that makes the most sense. 

Thread Isolation

An exception generated by one thread will not cause another thread to fail. The 
ThreadIsolation example demonstrates this. 

class tm 
{ 
public void m() 
{ 
  Console.WriteLine("Thread {0} started", 
                      Thread.CurrentThread.GetHashCode()); 
  Thread.Sleep(1000); 



  for(int i = 0; i < 10; i++) 
    Console.WriteLine(i); 
} 
class te 
{ 
  public void tue() 
  { 
    Console.WriteLine("Thread {0} started", 
                      Thread.CurrentThread.GetHashCode()); 
    Exception e = new Exception("Thread Exception"); 
    throw e; 
  } 
} 
class ThreadIsolation 
{ 
  static void Main(string[] args) 
  { 
    tm tt = new tm(); 
    te tex = new te(); 
    ThreadStart ts1 = new ThreadStart(tt.m); 
    ThreadStart ts2 = new ThreadStart(tex.tue); 
    Thread thread1 = new Thread(ts1);  
    Thread thread2 = new Thread(ts2); 
    Console.WriteLine("Thread {0} starting new threads.", 
    Thread.CurrentThread.GetHashCode()); 
    thread1.Start(); 
    thread2.Start(); 
    Console.WriteLine("Thread {0} done.", 
                      Thread.CurrentThread.GetHashCode()); 
  } 
} 

The following output is generated. Note how the second thread can continue to write out the 
numbers even though the first thread has aborted from the unhandled exception. Note also how 
the "main" thread that spawned the other two threads can finish without causing the others to 
terminate. 

Thread 2 starting new threads. 
Thread 2 done. 
Thread 5 started 
Thread 6 started 

Unhandled Exception: System.Exception: Thread Exception 
at te.tue() in F:\Work\ThreadIsolation.cs:line 23 
0 
1 
2 



3 
4 
5 
6 
7 
8 
9 

The AppDomain class (discussed later in the chapter) allows you to set up a handler to catch an 
UnhandledException event. 

Synchronization of Collections

Some lists, such as TraceListeners, are thread safe. When this collection is modified, a copy is 
modified and the reference is set to the copy. Most collections, like ArrayList, are not thread 
safe. Making them automatically thread safe would decrease the performance of the collection 
even when thread safety was not an issue. 

An ArrayList has a static Synchronized method to return a thread-safe version of the 
ArrayList. The IsSynchronized property allows you to test whether the ArrayList you are 
using is the thread-safe version. The SyncRoot property can return an object that can be used to 
synchronize access to a collection. This allows other threads that might be using the ArrayList 
to be synchronized with the same object. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Context

In order for us to understand how the runtime is able to enforce a threading requirement 
based on an attribute, we have to introduce the concept of context. Step 4 of the Threading 
example is the same code as Step 3, but with some additional output: 

Is the customer object a proxy? False 
Is the bookings object a proxy? True 
Added Boston Presidential Hotel with one room. 
Thread 13 ContextId 0 launching 3 threads. 
MakeReservation: Thread 28 ContextId 0 starting. 
Reserving for Customer 1 at the Boston Presidential Hotel 
                      on 12/12/2001 12:00:00 AM for 3 days 
Thread 28 ContextId 1 entered Reserve. 
MakeReservation: Thread 29 ContextId 0 starting. 
Reserving for Customer 2 at the Boston Presidential Hotel 
                      on 12/13/2001 12:00:00 AM for 1 days 
CancelReservation: Thread 30 ContextId 0 starting. 
Cancelling Reservation 10 
Thread 28 ContextId 1 left Reserve. 
Thread 29 ContextId 1 entered Reserve. 
Thread 29 ContextId 1 left Reserve. 
Reservation for Customer 2 could not be booked 
Room not available 
Thread 30 ContextId 1 entered CancelReservation. 
Thread 30 ContextId 1 left CancelReservation. 
Reservation for Customer 1 has been booked 
ReservationId = 1 
ReservationRate = 10000 
ReservationCost = 30000 
Comment = OK 

In the last step of the Threading example we see that when a thread enters a method of the 
Broker class, it has a different ContextId than when it runs outside of the Broker class. It 
runs in a different context. 

MakeReservation: Thread 28 ContextId 0 starting. 
... 
    Thread 28 ContextId 1 entered Reserve. 

Objects derived from Broker have different runtime requirements (such as different 
synchronization requirements) than the other objects in the program, since access to Broker 
objects must be synchronized and access to other objects need not be synchronized. The 
environment that represents an object's runtime requirements that the CLR needs to be aware 
of is called a context. There are two contexts in the Threading Step 3 example—Context 1 



where the Broker object lives and Context 0 where all other objects live. Every thread in the 
program runs in Context 1 when executing inside a Broker object, Context 0 everywhere 
else. Contexts are independent of threads. 

A context is a collection of one or more objects that have identical runtime requirements. 
The .NET concept of a context is identical to the COM+ concept of a context. [10] In general 
you cannot say what the runtime must do to in a given context because it depends on exactly 
what the runtime requirements are. A context that has transactional requirements requires 
different action than one that does not. Or a context that has to maintain a REQUIRED 
synchronization requirement is different from one that has to maintain a REQUIRES_NEW 
synchronization requirement. 

[10] At this point in time, though, COM+ contexts and .NET contexts are different. 
For a discussion of contexts in COM+ see Understanding and Programming COM+ 
by Robert J. Oberg. 

You can get the Context class instance that represents the current context from the static 
property Thread.CurrentContext. ContextId is a property of that class. 

Proxies and Stubs

How does the runtime enforce the different requirements of different contexts? When an 
object resides in another context (such as the HotelBroker object in the NewReservation 
instance), an object reference to a proxy object is returned instead of a reference to the object 
itself. The actual object resides in its original, or home, context. The proxy is an object that 
represents the original object in a different context. The static method 
RemotingServices.IsTransparentProxy determines whether an object reference points to a 
real object instance or a proxy. Look at the code in the Threading Step 4 example main 
routine: 

hotelBroker = new HotelBroker(); 
customers = new Customers(); 

bool bTrans; 
bTrans = RemotingServices.IsTransparentProxy(customers); 
Console.WriteLine("Is the customer object a proxy? {0}", 
                                                bTrans); 

bTrans = RemotingServices.IsTransparentProxy(hotelBroker);  
Console.WriteLine("Is the bookings object a proxy? {0}", 
                                                bTrans); 

which causes the following output: 

Is the customer object a proxy? False 
Is the bookings object a proxy? True 



When a program starts up it is given a default context. [11] All objects, like the Customers 
object, that do not have any special requirements are created inside that context (context 0). 
An object, such as the HotelBroker object, that has a different set of requirements 
(synchronization) is created in a different context (context 1), and a proxy is returned to the 
creating context (context 0). 

[11] As will be clear in the next section, the sentence should really read, "When a 
new application domain starts up, it is given a new default context." Contexts are 
application-domain relative. Two different application domains will have two 
separate default contexts, each with id 0.

Now when you access the MakeReservation method in the HotelBroker object, you are 
actually accessing a method on the proxy. The proxy method can apply the synchronization 
lock and then delegate to the actual HotelBroker object's method. When the actual object's 
method returns, it returns to the proxy. The proxy can then remove the synchronization lock 
and return to the caller. This technique, where the runtime uses a proxy to intercept method 
calls to the actual object, is called interception. 

ContextBoundObject

The Broker class has to derive from the class ContextBoundObject so that the runtime 
knows to setup a different context if one is required. If you remove the derivation of Broker 
from ContextBoundObject, you will once again get the unsynchronized access, and both 
customers will be able to reserve the last room at the hotel, even though the class is still 
marked with the Synchronization attribute. Objects that do not derive from 
ContextBoundObject can run in any context (agile objects). 

Since other contexts work with a proxy, or a reference to the actual object, the runtime must 
translate (marshal) the call from one context to another. Hence, ContextBoundObject 
inherits from MarshalByRefObject. MarshalByRefObject is the base class for objects that 
want to be able to be marshaled by reference. Otherwise, as we will discuss in the section on 
application domains, by default, objects are marshaled by value (i.e., copied). 

One advantage of using synchronization techniques such as a Monitor is that a Monitor can 
be called from any context. Another potential disadvantage of using automatic 
synchronization is the performance hit from marshaling and using proxies rather than the 
actual object. 

As will be clear when we discuss Application Domains, since the customer object has no 
dependency on context, it is the actual object, not a proxy. It can be copied to any context 
within the same application domain. 



Application Isolation

When writing applications it is often necessary to isolate parts of them so that a failure of 
one part does not cause a failure in another. In Windows, application isolation has been at 
the process level. In other words, if a process is stopped or crashes, other processes will be 
unaffected. Unless shared memory is used, one process cannot directly address memory in 
another process's address space. 

For an application to use separate processes to achieve isolation is expensive. To switch 
from one process to another, the contents of the machine registers must be saved and 
restored. This includes a thread and process switch. A thread switch requires saving 
registers, such as the instruction pointer, and loading the information for a new thread, as 
well as updating the scheduling information for the threads. A process switch includes, 
accounting information and processor rights that have to be saved for the old process and 
restored for the new one. 

Application Domain

The .NET Application Domain is a more lightweight unit for application isolation, fault 
tolerance, and security. Multiple application domains can run in one process. Since the .NET 
code can be checked for type safety and security, the CLR can guarantee that one App 
Domain can run without interference from another App Domain in the same process. No 
process switch is required to achieve application isolation. 

Application Domains can have multiple contexts, but a context exists in only one 
AppDomain. Although a thread runs in one context of one application domain at a time, the 
Threading example Step 3 demonstrates that a thread can execute in more than one context. 
One or more threads can run in an App Domain at the same time. An object lives in only one 
context. 

Each AppDomain starts with a single thread and one context. Additional threads and 
contexts are added as needed. 

There is no relationship between the number of application domains and threads. A Web 
server might require an application domain for each hosted application that runs in its 
process. The number of threads in that process would be far fewer, depending on how much 
actual concurrency the process can support. 

To enforce application isolation, code in one application domain cannot make direct calls 
into the code (or even reference resources) in another application domain. They must use 
proxies. 

Application Domains and Assemblies

Applications are built from one or more assemblies, but each assembly is loaded into a 
particular application domain. Each application domain can be unloaded independently of 



the others, but you cannot unload an individual assembly from an App Domain. The 
assembly will be unloaded when the App Domain is unloaded. Unloading an App Domain 
also frees all resources associated with that App Domain. 

Each process has a default application domain that is created when the process is started. 
This default domain can be unloaded only when the process shuts down. 

Applications such as ASP.NET or Internet Explorer critically depend on preventing the 
various applications that run under it from interfering with each other. By never loading 
application code into the default domain, they can ensure that a crashing program will not 
bring down a host. 

AppDomain Class

The AppDomain class abstracts application domains. The AppDomain sample illustrates 
the use of application domains. 

This class has static methods for creating and unloading application domains: 

AppDomain domain = AppDmain.CreateDomain("CreatedDomain2", 
                                              null, null); 
. . . 
AppDomain.Unload(domain); 

While the CreateDomain method is overloaded, one signature illustrates application-
domain isolation: 

AppDomain CreateDomain(string Name, Evidence securityInfo, 
                       AppDomainSetup info) 

The Evidence parameter is a collection of the security constraints on the application domain. 
While we will discuss this in greater detail in the Security chapter, the domain's creator can 
modify this collection to control the permissions that the executing app domain can have. 
The AppDomainSetup parameter specifies setup information about the domain. Among the 
information specified is the location of the App Domain's configuration file and where 
private assemblies are loaded. Hence, each App Domain can be configured independently of 
every other. Code isolation, setup isolation, and control over security combine to ensure that 
application domains are independent of each other. 

App Domain Events

To help in maintaining application isolation, the AppDomain class allows you to set up 
event handlers for: 

●     when a domain unloads 
●     when the process exits 



●     when an unhandled exception occurs 
●     when attempts to resolve assemblies, types, and resources fail 

AppDomain Example

The AppDomain example lets us examine various aspects of application domains. If you 
run the example you will get the output in Figure 8-1. 

Figure 8-1. Output of AppDomain example.

 

First, the name, thread, and context of the default domain are written out. 

AppDomain currentDomain = AppDomain.CurrentDomain; 
Console.WriteLine("At startup, Default AppDomain is {0} 
                      ThreadId: {1} ContextId {2}\n", 
                      currentDomain.FriendlyName, 
                      Thread.CurrentThread.GetHashCode(), 
                      Thread.CurrentContext.ContextID); 

We then load and execute an assembly. The code in this assembly just prints out a string and 
its domain's name, thread, and context. Notice that it executes in the default domain. 

int val = currentDomain.ExecuteAssembly("TestApp.exe"); 

We then create an instance of the Customers type from the Customer assembly in the 
default domain. The CreateInstance method of the AppDomain class returns an 
ObjectHandle instance. You can pass this ObjectHandle between application domains 



without loading the metadata associated with the wrapped type. When you want to use the 
object as its actual type instead of as an opaque object instance, you must unwrap it by 
calling the Unwrap method on the ObjectHandle instance. 

ObjectHandle oh = currentDomain.CreateInstance("Customer", 
                               "OI.NetCs.Acme.Customers"); 
. . . 
Customers custs = (Customers)oh.Unwrap(); 

We add a new customer and then list all the existing customers. Notice that both the 
constructor of this type and the methods execute in the same thread and context that the 
default domain does. 

We then create a new domain and create an instance of the same type as before in that new 
domain. 

AppDomain domain = AppDmain.CreateDomain("CreatedDomain1", 
                               null, null); 
. . . 
oh = domain.CreateInstance("Customer", 
                               "OI.NetCs.Acme.Customers"); 
. . . 
Customers custs2 = (Customers)oh.Unwrap(); 

Note that the constructor call that results from the CreateInstance method executes in the 
new domain and is therefore in a different context from where the CreateInstance call was 
made, but it is executing on the same thread that made the CreateInstance call. 

When we list the customers in this new object, we get a different list of customers. This is 
not surprising, since it is a different Customers object. Nonetheless, the customer list 
method executes in the default domain! 

Using RemotingServices.IsTransparentProxy, we see that the ObjectHandle is a proxy to 
the Customers object that lives in the newly created AppDomain. However, when you 
unwrap the object to get an instance handle, you do not get a proxy, but you get an actual 
object reference. By default, objects are marshaled by value (copied) from one AppDomain 
to another. 

If the Customers object is not serializable, you will get an exception when you try to copy it 
because the runtime will not know how to make the copy. This exception would be thrown 
when you do the Unwrap, not the CreateInstance. The latter returns a reference; the copy 
is made only when the ObjectHandle is unwrapped. If the object cannot be serialized, it 
cannot be copied from one AppDomain to another. 

Next we create a new thread, and that thread creates a new application domain, loads, and 
executes an assembly. The assembly starts executing at its entry point, the Main routine of 
the AppDomainTest class. 



AppDomain domain = AppDmain.CreateDomain("CreatedDomain2", 
                                              null, null); 
. . . 
string[] args = new String[1]; 
args[0] = "MakeReservation"; 
int val = domain.ExecuteAssembly("TestApp.exe", null, 
                                                    args); 
. . . 
AppDomain.Unload(domain); 

The Main routine loads the Hotel assembly into the newly created App Domain. It then 
queries the metadata of the assembly for the HotelBroker type information. It uses that type 
information to create a HotelBroker object. The HotelBroker class is marked with a 
synchronization attribute. As a result, the HotelBroker constructor and the 
MakeReservation method run in a different context than the default context. 

Assembly a = AppDomain.CurrentDomain.Load("Hotel"); 
Type typeHotelBroker = 
   a.GetType("OI.NetCs.Acme.HotelBroker"); 
HotelBroker hotelBroker = 
(HotelBroker)Activator.CreateInstance(typeHotelBroker); 
DateTime date = DateTime.Parse("12/2/2001"); 
ReservationResult rr = hotelBroker.MakeReservation(1, 
                           "Boston", "Sheraton", date, 3); 
Console.WriteLine("\tReservation Id: {0}", 
                                        rr.ReservationId); 

Marshaling, AppDomains, and Contexts

By default, objects are copied from one App Domain to another (marshal by value). The 
Remoting section will show how to marshal by reference between App Domains. This 
ensures that code in one application domain is isolated from another. 

Objects are marshaled by reference between contexts. This allows the CLR to enforce the 
requirements (such as synchronization or transactions) of different objects. This is true 
whether the client of the object is in the same application domain or not. 

Since most objects do not derive from ContextBoundObject, they can reside or move from 
one context to another as required. Threads can cross application domain and context 
boundaries within the same Win32 process. 



Asynchronous Programming

.NET supports a design pattern for asynchronous programming. This pattern is present in 
many places in .NET (including I/O operations, as noted earlier, and as we will see in Chapter 
11 for Web services). Asynchronous programming provides a way for you to provide a 
method call without blocking the method caller. From the perspective of the client, the 
asynchronous model is easier to use than threading. It offers much less control over the 
synchronization than using synchronization objects, however, and the class designer would 
probably find threading much easier to use. 

The Asynchronous Design Pattern

This design pattern is composed of two parts, a set of methods and an interface IAsyncResult. 
The methods of the pattern are: 

IAsyncResult BeginXXX(inputParams, AsyncCallback cb, 
                                  Object AsyncObject) 
ReturnValue EndXXX(outputParams, IAsyncResult ar); 

As a design pattern, the XXX represents the actual method being called asynchronously (i.e., 
BeginRead/EndRead for the System.IO.FileStream class). The BeginXXX should pass all 
input parameters of the synchronous version (in, in/out, and ref) as well as the 
AsyncCallback and AsyncObject parameters. The EndXXX should have all the output 
parameters of the synchronous version (ref ,out, and in/out) parameters in its signature. It 
should return whatever object or value the synchronous version of the method would return. It 
should also have an IAsyncResult parameter. A CancelXXX can be provided if it makes 
sense. 

The AsyncCallback is a delegate that represents a callback function. 

public delegate void AsyncCallback(IAsyncResult ar); 

The AsyncObject is available from IAsyncResult. It is provided so that in the callback 
function you can distinguish which asynchronous read the callback was generated by. 

The Framework uses this pattern so that the FileStream synchronous Read 

int Read(byte[] array, int offset, int count); 

becomes in the asynchronous version: 

IAsyncResult BeginRead(byte[] array, int offset, 
                 int numBytes, AsyncCallback userCallback,  
                                      object stateObject); 
int EndRead(IAsyncResult asyncResult); 



Any exception thrown from BeginXXX should be thrown before the asynchronous operation 
starts. Any exceptions from the asynchronous operation should be thrown from the EndXXX 
method. 

IAsyncResult

IAsyncResult is returned by a BeginXXX method (such as BeginRead). This interface has 
four elements: 

interface IAsyncResult 
{ 
   public boolean IsCompleted(); 
   public boolean CompletedSynchronously; 
   public WaitHandle AsyncWaitHandle; 
   public Object AsyncState; 
} 

IsCompleted is set to true after the server has processed the call. The client can then destroy 
all resources. If BeginXXX completed synchronously, CompletedSynchronously is set to 
true. Most of the time this is ignored, and CompletedSynchronously is set to the default 
value of false. In general, a client never knows whether the BeginXXX method executed 
asynchronously or asynchronously. If the asynchronous operation is not yet finished, the 
EndXXX method will block until it is. 

The AsyncWaitHandle returns a WaitHandle that can be used for synchronization. As 
discussed previously, this handle can be signaled, so that the client can wait on it. Since you 
can specify a wait time period, you do not have to block forever if the operation is not yet 
complete. 

The AsyncState is the object provided as the last argument in the BeginXXX call. Since it is 
contained in the IAsyncResult passed to the callback function, examining its value would 
allow you to determine which BeginXXX caused this particular instance of the callback. 

Using Delegates for Asynchronous Programming

Any developer of .NET objects who wants to provide an asynchronous interface should follow 
this pattern. Nonetheless, there is no need for most developers to develop a custom 
asynchronous solution for their objects. Delegates provide a very easy way to support 
asynchronous operations on any method without any action on the class developer's part. Of 
course, this has to be done with care, because the object was written with certain assumptions 
about the thread it is running on and its synchronization requirements. 

The two Asynch examples use the Customers object from our case study Customer 
assembly. The first example registers new customers asynchronously and does some 
processing while waiting for each registration to finish. The second example uses a callback 
function with the asynchronous processing. In addition to allowing the program to do 
processing while waiting for the registrations to finish, the callback allows the system to take 



some asynchronous action for each individual registration. 

In the examples, we just print out to the console to show where work could be done. To 
increase the waiting time to simulate longer processing times we have put calls to 
Thread.Sleep() in Customers:: RegisterCustomer as well as in the sample programs. Now 
let us look at the code within the examples. 

Suppose the client wants to call the RegisterCustomer method asynchronously. The caller 
simply declares a delegate with the same signature as the method. 

public delegate int RegisterCustomerCbk(string firstName, 
                    string LastName, string EmailAddress); 

You then make the actual method the callback function: 

RegisterCustomerCbk rcc = new 
          RegisterCustomerCbk(customers.RegisterCustomer); 

Begin/End Invoke

When you declare a delegate, the compiler generates a class with a constructor and three 
methods: BeginInvoke, EndInvoke, and Invoke. The BeginInvoke and EndInvoke are type-
safe methods that correspond to the BeginXXX and EndXXX methods and allow you to call 
the delegate asynchronously. The Invoke method is what the compiler implicitly uses when 
you call a delegate. [12] To call RegisterCustomer asynchronously just use the BeginInvoke 
and EndInvoke methods. 

[12] If you open the executable from the DelegateAccount example in Chapter 5 in 
ILDASM, you can observe this. The NotifyCallback class has the BeginInvoke, 
EndInvoke, and Invoke methods defined. If you look at the Withdraw method for 
Account, you will notice that the C# line notifyDlg(balance) has been transformed 
to instance void NotifyCallback::Invoke(valuetype [mscorlib]System.Decimal). 

RegisterCustomerCbk rcc = new 
           RegisterCustomerCbk(customers.RegisterCustomer); 

for(int i = 1; i < 5; i++) 
{ 
  firstName = "FirstName" + i.ToString(); 
  lastName = "SecondName" + (i * 2).ToString(); 
  emailAddress = i.ToString() + ".biz"; 

  IAsyncResult ar = rcc.BeginInvoke(firstName, lastName, 
                                emailAddress, null, null);  
  while(!ar.IsCompleted) 
  { 
    Console.WriteLine("Could do some work here while wait
ing for customer registration to complete."); 



  ar.AsyncWaitHandle.WaitOne(1, false); 
  } 
  customerId = rcc.EndInvoke(ar); 
  Console.WriteLine("    Added CustomerId: " + 
                        customerId.ToString()); 
} 

The program waits on the AsyncWaitHandle periodically to see if the registration has 
finished. If it has not, some work could be done in the interim. If EndInvoke is called before 
RegisterCustomer is complete, EndInvoke will block until RegisterCustomer is finished. 

Asynchronous Callback

Instead of waiting on a handle, you could pass a callback function to BeginInvoke (or a 
BeginXXX method). 

RegisterCustomerCbk rcc = new 
          RegisterCustomerCbk(customers.RegisterCustomer); 
AsyncCallback cb = new AsyncCallback(CustomerCallback); 
object objectState; 
IAsyncResult ar; 

for(int i = 5; i < 10; i++) 
{ 
  firstName = "FirstName" + i.ToString(); 
  lastName = "SecondName" + (i * 2).ToString(); 
  emailAddress = i.ToString() + ".biz"; 
  objectState = i; 
  ar = rcc.BeginInvoke(firstName, lastName, 
                     emailAddress, cb, objectState); 
} 

Console.WriteLine 
    ("Finished registrations...could some do work here."); 
Thread.Sleep(25); 
Console.WriteLine( 
 "Finished work..waiting to let registrations complete."); 
Thread.Sleep(1000); 

You then get the results in the callback function: 

public void CustomerCallback(IAsyncResult ar) 
{ 
  int customerId;  
  AsyncResult asyncResult = (AsyncResult)ar; 
  RegisterCustomerCbk rcc = 



           (RegisterCustomerCbk)asyncResult.AsyncDelegate; 

  customerId = rcc.EndInvoke(ar); 
    Console.WriteLine("    AsyncState: {0} CustomerId {1} 
added.", ar.AsyncState, customerId); 
    Console.WriteLine("      Could do processing here."); 
  return; 
} 

You could do some work when each customer registration was finished. 

Threading with Parameters

The asynchronous callback runs on a different thread from the one on which BeginInvoke 
was called. If your threading needs are simple and you want to pass parameters to your thread 
functions, you can use asynchronous delegates to do this. You do not need any reference to 
the Threading namespace. The reference to that namespace in the AsynchThreading 
example is just for the Thread.Sleep method needed for demo purposes. 

PrintNumbers sums the numbers from the starting integer passed to it as an argument to 10 
greater than the starting integer. It returns that sum to the caller. PrintNumbers can be used 
for the delegate defined by Print. 

public delegate int Print(int i); 

public class Numbers 
{ 
  public int PrintNumbers(int start) 
  { 
    int threadId = Thread.CurrentThread.GetHashCode(); 
    Console.WriteLine("PrintNumbers Id: " + 
                                     threadId.ToString()); 

    int sum = 0; 
    for (int i = start; i < start + 10; i++) 
    { 
      Console.WriteLine(i.ToString()); 
      Thread.Sleep(500); 
      sum += i; 
    } 

  return sum; 
  } 
} 

The Main routine then defines two callbacks and invokes them explicitly with different 
starting integers. It waits until the both of the synchronization handles are signaled. 



EndInvoke is called on both, and the results are written to the console. 

Numbers n = new Numbers(); 

Print pfn1 = new Print(n.PrintNumbers); 
Print pfn2 = new Print(n.PrintNumbers); 

IAsyncResult ar1 = pfn1.BeginInvoke(0, null, null); 
IAsyncResult ar2 = pfn2.BeginInvoke(100, null, null); 

WaitHandle[] wh = new WaitHandle[2]; 
wh[0] = ar1.AsyncWaitHandle; 
wh[1] = ar2.AsyncWaitHandle; 

// make sure everything is done before ending 
WaitHandle.WaitAll(wh); 

int sum1 = pfn1.EndInvoke(ar1); 
int sum2 = pfn2.EndInvoke(ar2); 

Console.WriteLine("Sum1 = " + sum1.ToString() + 
                            " Sum2 = " + sum2.ToString()); 

Here is the program's output: 

MainThread Id: 2 
PrintNumbers Id: 13 
0 
PrintNumbers Id: 17 
100 
1 
101 
2 
102 
3 
103 
4 
104 
5 
105 
6 
106 
7 
107 
8 
108 
9 



109 
Sum1 = 45 Sum2 = 1045 



Remoting

While a complete discussion of remoting is beyond the scope of this book, a brief 
introduction provides a powerful example of how metadata and marshal by reference (MBR) 
work. Remoting also provides a mechanism for having executable servers. 

Unlike remoting in Microsoft's COM technology, it requires a minimal amount of 
infrastructure programming. The small amount that is required allows programmers either a 
degree of flexibility or the ability to customize remoting for their particular applications. 

The .NET framework provides two ways to provide connections between two applications 
on different computers. Web Services, discussed in Chapter 11, enable computers that do not 
host the Common Language Runtime to communicate with computers that do. The remoting 
technology discussed here builds distributed applications between computers that host the 
CLR. 

Remoting Overview

The key parts of Remoting are: 

●     Communication channels for transport of messages. 
●     Interception to allow for message generation for communication over the channels. 
●     Formatters to put the messages into a byte stream that is sent over the channel. These 

are the same formatters that were discussed in the section on serialization. 

Interception

Proxies and stubs (referred to in .NET as dispatchers) transform the function calls on the 
client or server side into messages that are sent over the network. This is called interception, 
because the proxies and dispatchers intercept a method call to send it to its remote 
destination. Unlike COM, metadata provides the information so the CLR can generate the 
proxies and stubs for you. 

A proxy takes the function call off the stackframe of the caller and transforms it into a 
message. The message is then sent to its destination. A dispatcher takes the message and 
transforms it into a stackframe so that a call can be made to the object. 

For example, assume the UnregisterCustomer method from the Customer assembly runs 
in one App Domain and is called from another. It makes no difference whether the App 
Domains are in the same process or on the same machine. 

The proxy would take the integer id argument on the stackframe of the client making the call 
and put it in a message that encoded the call and its argument. On the server side, the 
dispatcher would take that message and create a function call on the server's stack for the 
call UnregisterCustomer (int id) and make that call into the object. The client and server 
codes do not know that they are being remoted. 



Channels And Formatters

The formatter converts the message into a byte stream. The .NET framework comes with 
two formatters, binary and SOAP (text-based XML discussed in Chapter 11 on Web 
Services). The byte stream is then sent over a communication channel. 

The .NET framework comes with two channels, although you can write your own. The 
HTTP channel uses the HTTP protocol and is good for communicating over the Internet or 
through firewalls. The TCP channel uses the TCP (sockets) protocol and is designed for high-
speed communication. You have four permutations of formatters and transport: binary over 
TCP, binary over HTTP, SOAP over HTTP, and SOAP over TCP. 

Remote Objects

Clients obtain a proxy by activating a remote object. Remote objects must derive from 
MarshalByRefObject, because you work with a proxy to the object reference, not with the 
object reference itself. This is the same concept discussed in the section on contexts, where 
marshal by reference is also used to access context bound objects. 

Local objects passed as method parameters from one application domain to another can be 
passed by value (copied) or by reference. 

To be passed by value, they must be serializable. The object is serialized, sent across the 
transport layer, and recreated on the other side. We have already seen this in the AppDomain 
example. 

To be passed by reference, the class must derive from MarshalByRefObject. The Remoting 
example illustrates pass by reference. 

Remote objects can be either server or client activated. Server-activated objects are not 
created until the first method call on the object. Server-activated objects come in two flavors. 
SingleCall objects are stateless. Each method cause a new object to be created. Singleton 
objects can be used by multiple client activation requests. Singleton objects can maintain 
state. SingleCall objects will scale better than Singleton objects because they do not retain 
state and can be load balanced. 

Client-activated objects are activated when the client requests them. While they can last for 
multiple calls and hold state, they cannot store information from different client activations. 
This is similar to calling CoCreateInstanceEx in DCOM. 

Activation

Objects are activated on the client side in one of three ways by using the Activator class. 

●     Activator.GetObject is used to get a reference to a server-activated object. 
●     Activator.CreateInstance is used to create a client-activated object. You can pass 



parameters to the object's constructor using the overloaded CreateInstance method 
that takes an array of objects to be passed to the constructor. 

●     The C# new syntax can be used to create a server- or client-activated object. A 
configuration file is used to describe how new should be used. 

Sample Remotable Object

For our Remoting example, we remote our Customers object from the Customer assembly. 

In the remoting example directory there are two solutions. One represents the client 
program, the other the server program. Each can be built independently of the other. Start the 
server program first. Notice that it waits for a client request. You can then run the client 
program, which will run against objects that live inside the server. We will discuss the 
details of the client and server code and output in the next few sections. 

Notice that we had to make only two simple changes to our object. The Customers class in 
the server project had to be made remotable by inheriting from MarshalByRefObject. 

public class Customers : MarshalByRefObject, ICustomer 

The CustomerListItem that was going to be transferred by value had to be made 
serializable. 

[Serializable] 
public struct CustomerListItem 
{ 
  public int CustomerId; 
  public string FirstName; 
  public string LastName; 
  public string EmailAddress; 
} 

Sample Remoting Program

In the Remoting example the client accesses a server-activated object. The server is the 
TcpServerChannel class that uses using a binary format with the TCP protocol. The 
channel will use port 8085. The server registers the type being remoted, the endpoint name 
to refer to this object, and the type of activation. The server then waits for client requests. 

TcpServerChannel chan = new TcpServerChannel(8085); 
ChannelServices.RegisterChannel(chan); 
RemotingConfiguration.RegisterWellKnownServiceType( 
                  typeof(Customers), "AcmeCustomer", 
                  WellKnownObjectMode.Singleton); 
. . . 



The server has to be started before the client program can access the object. 

The client sets up a TcpClientChannel object and then connects to the object. In the 
Activator.GetObject method call it specifies the type of the object it wants, and the 
endpoint where the server is listening to for object requests. If you want to run the client and 
server on separate machines, substitute the server machine name for localhost in the 
endpoint. Unlike COM location transparency, the client has to specify a specific endpoint; 
there is no redirection through an opaque registry entry. 

TcpClientChannel chan = new TcpClientChannel(); 
ChannelServices.RegisterChannel(chan); 
Customers obj = (Customers)Activator.GetObject( 
                  typeof(Customers), 
                  "tcp://localhost:8085/AcmeCustomer"); 
if (obj == null) System.Console.WriteLine( 
                            "Could not locate server"); 
else 
. . . 

The client then uses the proxy to make calls on the object as if it were a local instance. 

bool bRet = RemotingServices.IsTransparentProxy(obj); 
. . . 
ArrayList ar; 
ar = obj.GetCustomer(-1); 
ShowCustomerArray(ar); 

obj.RegisterCustomer("Boris", "Badenough", 
                                "boris@no-goodnicks.com"); 
Console.WriteLine(); 

ar = obj.GetCustomer(-1); 
ShowCustomerArray(ar); 

To run the program, start the server program in one console window, then run the client 
program from another console window. 

The output depends on what kind of server-activated object is being activated. [13] If the 
server activation type is Singleton, which supports the maintaining state, you get the 
behavior you would expect from the nonremoted case. A new customer is added, and you 
find that new customer in the list when you ask for all the existing customers. As you would 
expect, the initial activate call results in the Customers constructor being called once for 
each server invocation, no matter how many times the client program is run. 

[13] In the example, you can try out both Singleton and SingleCall activation by 
commenting out the appropriate line in the code in server.cs.



Object reference is a proxy?: True 
Client: AppDomain Client.exe Thread 19 Context 0 
1   Rocket         Squirrel       rocky@frosbitefalls.com 
2   Bullwinkle     Moose          moose@wossamotta.edu 

1   Rocket         Squirrel       rocky@frosbitefalls.com 
2   Bullwinkle     Moose          moose@wossamotta.edu 
3   Boris          Badenough      boris@no-goodnicks.com 

If the activation type is SingleCall, which creates a new object instance for every method 
call, the results are quite different. Four different objects are created. The first is created by 
the initial activate request. The second is created by the initial call to GetCustomer. The 
third is created by the RegisterCustomer call. The fourth is created by the second call to 
GetCustomer. The last object created never sees the new customer, because no state is 
saved. Note that the static nextCustId member of the Customer class is treated as a static 
with respect to the new object instances of the Customer class, just as you would expect. 
Same client code, different results! Since the object is already activated, if you run the client 
program a second time for the same server invocation, the Customers constructor will be 
called only three times. 

Object reference a proxy?: True 
Client: AppDomain Client.exe Thread 19 Context 0 
3   Rocket         Squirrel       rocky@frosbitefalls.com 
4   Bullwinkle     Moose          moose@wossamotta.edu 

8   Rocket         Squirrel       rocky@frosbitefalls.com 
9   Bullwinkle     Moose          moose@wossamotta.edu 

Since the client uses a proxy, the object executes inside the server's application domain, but 
on a different thread than the main server thread. The object's constructor is not called until 
the first method call on the object. Notice how in both cases we have remoted an ArrayList 
of types without any special work aside from making the type serializable. The presence of 
metadata makes the programmer's work much easier. 

Metadata and Remoting

In order for the client to request an object of a specific type, metadata about the type has to 
be available to the client. For some applications, a reference can be made to the actual 
assembly where the object is stored. 

For many applications, however, you do not want to give the client access to your source 
code. For the metadata that the client needs, a reference need only be made to an object 
without the implementation details. 

One way to do this is to build a version of the object that has methods with no 
implementation. This interface class can then be built into an assembly that can be given to 
the client. You can throw the System. NotSupportedException in the methods if you wish 



to make sure that it is never used by mistake for the real object. 

[System.Serializable] 
public struct CustomerListItem 
{ 
  public int CustomerId; 
  public string FirstName; 
  public string LastName; 
  public string EmailAddress; 
} 
. . . 
public class Customers : MarshalByRefObject, ICustomer 
{ 
  public int RegisterCustomer(string firstName, 
                     string lastName, string emailAddress) 
  { 
    throw new NotSupportedException(); 
  } 
  public void UnregisterCustomer(int id) 
  { 
    throw new NotSupportedException(); 
  } 
  public void ChangeEmailAddress(int id, 
                                      string emailAddress) 
  { 
    throw new NotSupportedException(); 
  } 
  public ArrayList GetCustomer(int id) 
  { 
    throw new NotSupportedException(); 
  } 
} 

For Web Services you use the SOAPSUDS tool to extract the metadata from the service, and 
then generate an assembly that has the required metadata. You can then build a proxy DLL 
and have the client program refer to it. This is conceptually equivalent to the first approach. 

The server, of course, has to reference the real object's assembly. 

Unlike the COM model, there is no reference counting, interface negotiation, building and 
registering separate proxies and stubs, worrying about global identifiers, or use of the 
registry. Because of metadata, all you have to do is inherit from MarshalByRefObject to 
make an object remotable. 

Remoting Configuration Files



You use configuration files to define where the object is activated. The client can then use 
the new operator to create the object. The big advantage here is that as the object location 
changes (such as a URL or TCP channel), or the formatter you want to use changes, the 
client does not have to be rebuilt. 

Multiple classes can be configured on the client. Configuration files are loaded into the 
client using the RemotingConfiguration. Configure method. 



Custom Attributes

Chapter 5 introduced the concept of attributes, which have already appeared in several 
examples. In this chapter we used the Serializable and Synchronization attributes, which 
are provided by .NET Framework classes. The .NET Framework makes the attribute 
mechanism entirely extensible, allowing you to define custom attributes, which be added to 
the class's metadata. This custom metadata is available through reflection and can be used 
at runtime. To simplify the use of custom attributes, you may declare a base class to do the 
work of invoking the reflection API to obtain the metadata information. 

The example AttributeCustom illustrates the custom attribute InitialDirectory. 
InitialDirectory controls the initial current directory where the program runs. By default 
the current directory is the directory containing the program's executable. In the case of a 
Visual Studio C# project, built in Debug mode, this directory is bin\Debug, relative to the 
project source code directory. 

Using a Custom Attribute

Before we discuss implementing the custom attribute, let us look at how the 
InitialDirectory attribute is used. To be able to control the initial directory for a class, we 
derive the class from the base class DirectoryContext. We may then apply to the class the 
attribute InitialDirectory, which takes a string parameter giving a path to what the initial 
directory should be. The property DirectoryPath extracts the path from the metadata. If 
our class does not have the attribute applied, this path will be the default. Here is the code 
for our test program. 

When you run this sample on your system, change the directory in the attribute to one that 
exists on your machine. 

// AttributeCustom.cs 

using System; 
using System.IO; 

class Normal : DirectoryContext 
{ 
} 

[InitialDirectory(@"\OI\NetCs\Chap08")] 
class Special : DirectoryContext 
{ 
} 

public class AttributeCustom 
{ 
   public static void Main() 



   { 
      Normal objNormal = new Normal(); 
      Console.WriteLine("path = {0}", 
                        objNormal.DirectoryPath); 
      ShowDirectoryContents(objNormal.DirectoryPath); 
      Special objSpecial = new Special(); 
      Console.WriteLine("path = {0}", 
                        objSpecial.DirectoryPath); 
      ShowDirectoryContents(objSpecial.DirectoryPath); 
   } 
   private static void ShowDirectoryContents(string path) 
   { 
      DirectoryInfo dir = new DirectoryInfo(path); 
      FileInfo[] files = dir.GetFiles(); 
      Console.WriteLine("Files:"); 
      foreach (FileInfo f in files) 
         Console.WriteLine("   {0}", f.Name);  
      DirectoryInfo[] dirs = dir.GetDirectories(); 
      Console.WriteLine("Directories:"); 
      foreach (DirectoryInfo d in dirs) 
         Console.WriteLine("   {0}", d.Name);   } 
} 

Here is the output: 

path = C:\OI\NetCs\Chap08\AttributeCustom\bin\Debug 
Files: 
   AttributeDemo.exe 
   AttributeDemo.pdb 
Directories: 
path = c:\OI\NetCs\Chap8 
Files: 
Directories: 
   AppDomain 
   Asynch 
   AsynchThreading 
   AttributeCustom 
   DynamicInvocation 
   FileIO 
   ISerializable 
   MarshalByReference 
   PulseAll 
   Reflection 
   Remoting 



   Serialization 
   Threading 
   ThreadIsolation 

Defining an Attribute Class

To create a custom attribute, you must define an attribute class, derived from the base class 
Attribute. By convention give your class a name ending in "Attribute." The name of your 
class without the "Attribute" suffix will be the name of the custom attribute. In our 
example the class name is InitialDirectoryAttribute, so the attribute's name is 
InitialDirectory. 

You may provide one or more constructors for your attribute class. The constructors define 
how to pass positional parameters to the attribute (provide a parameter list, separated by 
commas). It is also possible to provide "named parameters" for a custom attribute, where 
the parameter information will be passed using syntax name = value. 

You may also provide properties to read the parameter information. In our example, we 
have a property Path, which is initialized in the constructor. 

// DirectoryAttribute.cs 

using System; 

public class InitialDirectoryAttribute : Attribute 
{ 
   private string path; 
   public InitialDirectoryAttribute(string path) 
   { 
      this.path = path; 
   } 
   public string Path 
   { 
      get 
      { 
         return path; 
      } 
   } 
} 

Defining a Base Class

The last step in working with custom attributes is to provide a means to extract the custom 
attribute information from the metadata using the reflection classes. You can obtain the 
Type of any object by calling the method GetType, which is provided in the root class 



object. Using the class's method GetCustomAttributes you can read the custom attribute 
information. 

To make the coding of the client program as simple as possible, it is often useful to provide 
a base class that does the work of reading the custom attribute information. [14] We 
provide a base class DirectoryContext, which is used by a class wishing to take advantage 
of the InitialDirectory attribute. This base class provides the property DirectoryPath to 
return the path information stored in the metadata. Here is the code for the base class: 

[14] With single implementation inheritance there is a cost to providing a base 
class. If you need to derive from another class such as ContextBoundObject, 
the base class has to derive from that class. 

// DirectoryContext.cs 

using System; 
using System.Reflection; 
using System.IO; 

public class DirectoryContext 
{ 
   virtual public string DirectoryPath 
   { 
      get  
      { 
         Type t = this.GetType(); 
         foreach (Attribute a 
            in t.GetCustomAttributes(true)) 
         { 
            InitialDirectoryAttribute da = 
               a as InitialDirectoryAttribute; 
            if (da != null) 
            { 
               return da.Path; 
            } 
         } 
         return Directory.GetCurrentDirectory(); 
      } 
   } 
} 

We must import the System.Reflection namespace because GetType returns the current 
Type of the object. GetCustomAttributes method can then obtain a collection of 
Attribute objects from the metadata. Since this collection is heterogeneous, consisting of 
different types, the C# as operator is used to test whether a given collection element is of 
the type InitialDirectoryAttribute. If we find such an element, we return the Path 



property. Otherwise, we return the default current directory, obtained from 
GetCurrentDirectory. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Garbage Collection and Finalization

Memory management is a critical aspect of programming and can be the source of many 
errors. Whenever a resource is created, memory must be provided for it. And when the 
resource is no longer needed, the memory should be reclaimed. If the memory is not 
reclaimed, the amount of memory available is reduced. If such "memory leaks" recur often 
enough (which can happen in long-running server programs), the program can crash. 
Another potential bug is to reclaim memory while it is still required by another part of the 
program. 

.NET greatly simplifies the programming of memory management through an automatic 
garbage collection facility. The CLR tracks the use of memory that is allocated on the 
managed heap, and any memory that is no longer referenced is marked as "garbage." When 
memory is low, the CLR traverses its data structure of tracked memory and reclaims all the 
memory marked as garbage. Thus the programmer is relieved of this responsibility. 

Although a good foundation for resource management, garbage collection by itself does not 
address all issues. Memory allocated from the managed heap is not the only kind of resource 
needed in programs. Other resources, such as file handles and database connections, are not 
automatically deallocated, and the programmer may need to write explicit code to perform 
cleanup. The .NET Framework provides a Finalize method in the Object base class for this 
purpose. The CLR calls Finalize when the memory allocated for an object is reclaimed. 

Another concern with garbage collection is performance. Is there a big penalty from the 
automated garbage collection? The CLR provides a very efficient multigenerational garbage 
collection algorithm. In this section we examine garbage collection and finalization in the 
.NET Framework, and we provide several code examples. 

Finalize

System.Object has a protected method Finalize, which is automatically called by the CLR 
after an object becomes inaccessible. (As we shall see, finalization for an object may be 
suppressed by a call to the method SuppressFinalize of the System.GC class.) Since 
Finalize is protected, it can only be called through the class or a derived class. The default 
implementation of Finalize does nothing. For any cleanup to be performed, a class must 
override Finalize. Also, a class's Finalize implementation should call the Finalize of its base 
class. 

C# Destructor Notation

The C# language provides a special tilde notation ~SomeClass to represent the overridden 
Finalize method, and this special method is called a destructor. The C# destructor 
automatically calls the base class Finalize. Thus the following C# code 

~SomeClass() 
  { 



    // perform cleanup 
  } 

generates code that could be expressed 

protected override void Finalize() 
{ 
   // perform cleanup 
   base.Finalize(); 
} 

The second code fragment is actually not legal C# syntax, and you must use the destructor 
notation. 

Although C# uses the same notation and terminology for destructor as C++, the two are very 
different. The C++ destructor is called deterministically when a C++ object goes out of 
scope or is deleted. The C# destructor is called during the process of garbage collection, a 
process which is not deterministic, as discussed below. 

Limitations of Finalization

Finalization is nondeterministic. Finalize for a particular object may run at any time during 
the garbage collection process, and the order of running finalizers for different objects 
cannot be predicted. Moreover, under exceptional circumstances a finalizer may not run at 
all (for example one finalizer goes into an infinite loop, or a process aborts without giving 
the runtime a chance to clean up). 

Also, the thread on which a finalizer runs is not specified. 

Another issue with finalization is its effect on performance. There is significantly more 
overhead associated with managing memory for objects with finalizers, both on the 
allocation side and on the deallocation side. [15] 

[15] Finalization internals and other details of garbage collection are discussed in 
depth in the two-part article "Garbage Collection" by Jeffrey Richter, MSDN 
Magazine, November and December 2000.

Thus you should not implement a finalizer for a class unless you have very good reason for 
doing do. And if you do provide a finalizer, you should probably provide an alternate, 
deterministic mechanism for a class to perform necessary cleanup. The .NET Framework 
provides a Dispose design pattern for deterministic cleanup. 

Unmanaged Resources and Dispose

The classic case for a finalizer is a class that contains some unmanaged resource, such as a 
file handle or a database connection. If they are not released when no longer need, the 
scalability of your application can be affected. As a simple illustration, consider a class that 



wraps a file object. We want to make sure that a file that is opened will eventually be closed. 
The object itself will be destroyed by garbage collection, but the unmanaged file will remain 
open, unless explicitly closed. Hence we provide a finalizer to close the wrapped file. 

But as we discussed, finalization is nondeterministic, so a file for a deleted object might 
hang around open for a long time. We would like to have a deterministic mechanism for a 
client program to clean up the wrapper object when it is done with it. The .NET Framework 
provides the generic IDisposable interface for this purpose. 

public interface IDisposable 
{ 
   void Dispose(); 
}; 

The design pattern specifies that a client program should call Dispose on the object when it 
is done with it. In the Dispose method implementation, the class does the appropriate 
cleanup. As backup assurance, the class should also implement a finalizer, in case Dispose 
never gets called, perhaps due to an exception being thrown. [16] Since both Dispose and 
Finalize perform the cleanup, cleanup code can be placed in Dispose, and Finalize can be 
implemented by calling Dispose. One detail is that once Dispose has been called, the object 
should not be finalized, because that would involve cleanup being performed twice. The 
object can be removed from the finalization queue by calling GC.SuppressFinalize. Also, it 
is a good idea for the class to maintain a boolean flag such as disposedCalled, so that if 
Dispose is called twice, cleanup will not be performed a second time. 

[16] One of the virtues of the exception handling mechanism is that as the call stack 
is unwound in handling the exception, local objects go out of scope and so can get 
marked for finalization. We provide a small demo later in this section. 

The example program DisposeDemo provides an illustration of finalization and the dispose 
pattern. The class SimpleLog implements logging to a file, making use of the 
StreamWriter class (discussed earlier in this chapter). 

// SimpleLog.cs 

using System; 
using System.IO; 

public class SimpleLog : IDisposable 
{ 
   private StreamWriter writer; 
   private string name; 
   private bool disposeCalled = false; 
   public SimpleLog(string fileName) 
   { 
      name = fileName; 
      writer = new StreamWriter(fileName, false); 



      writer.AutoFlush = true; 
      Console.WriteLine("logfile " + name + " created"); 
   } 
   public void WriteLine(string str) 
   { 
      writer.WriteLine(str); 
      Console.WriteLine(str); 
   } 
   public void Dispose() 
   {  
      if(disposeCalled) 
         return; 
      writer.Close(); 
      GC.SuppressFinalize(this); 
      Console.WriteLine("logfile " + name + " disposed"); 
      disposeCalled = true; 
   } 
   ~SimpleLog() 
   { 
      Console.WriteLine("logfile " + name + " finalized"); 
      Dispose(); 
   } 
} 

The class SimpleLog supports the IDisposable interface, and thus implements Dispose. The 
cleanup code simply closes the StreamWriter object. To make sure that a disposed object 
will not also be finalized, GC.SuppressFinalize is called. The finalizer simply delegates to 
Dispose. To help monitor object lifetime, a message is written to the console in the 
constructor, in Dispose, and in the finalizer. [17] 

[17] The Console.WriteLine in the finalizer is provided purely for didactic purposes 
and should not be done in production code, for reasons we shall discuss shortly. 

Here is the code for the test program: 

// DisposeDemo.cs 

using System; 
using System.Threading; 

public class DisposeDemo 
{ 
   public static void Main() 
   { 
      SimpleLog log = new SimpleLog(@"log1.txt"); 
      log.WriteLine("First line"); 



      Pause(); 
      log.Dispose(); 
      log.Dispose(); 
      log = new SimpleLog(@"log2.txt"); 
      log.WriteLine("Second line"); 
      Pause(); 
      log = new SimpleLog(@"log3.txt"); 
      log.WriteLine("Third line"); 
      Pause(); 
      log = null; 
      GC.Collect(); 
      Thread.Sleep(100); 
   } 
   private static void Pause() 
   {  
      Console.Write("Press enter to continue"); 
      string str = Console.ReadLine(); 
   } 
} 

The SimpleLog object reference log is assigned in turn to three different object instances. 
The first time, it is properly disposed. The second time, log is reassigned to refer to a third 
object, before the second object is disposed, resulting in the second object becoming 
"garbage." The Pause method provides an easy way to pause the execution of this console 
application, allowing us to investigate the condition of the files log1.txt, log2.txt, and 
log3.txt at various points in the execution of the program. 

Running the program results in the following output: 

logfile log1.txt created 
First line 
Press enter to continue 
logfile log1.txt disposed 
logfile log2.txt created 
Second line 
Press enter to continue 
logfile log3.txt created 
Third line 
Press enter to continue 
logfile log3.txt finalized 
logfile log3.txt disposed 
logfile log2.txt finalized 
logfile log2.txt disposed 

After the first pause, the file log1.txt has been created, and you can examine its contents in 



Notepad. If you try to delete the file, you will get a sharing violation, as illustrated in Figure 
8-2. 

Figure 8-2. Trying to delete an open file results in a sharing violation.

 

At the second pause point, log1.txt has been disposed, and you will be allowed to delete it. 
log2.txt has been created (and is open). At the third pause point, log3.txt has been created. 
But the object reference to log2.txt has been reassigned, and so there is now no way for the 
client program to dispose of the second object. [18] If Dispose were the only mechanism to 
cleanup the second object, we would be out of luck. Fortunately, the SimpleObject class has 
implemented a finalizer, so the next time garbage is collected, the second object will be 
disposed of properly. We can see the effect of finalization by running the program through to 
completion. The second object is indeed finalized, and thence disposed. In fact, as the app 
domain shuts down, Finalize is called on all objects not exempt from finalization, even on 
objects that are still accessible. 

[18] This example illustrates that it is the client's responsibility to help the scalability 
of the server by cleaning up objects (using Dispose) before reassigning them. 
Once an object has been reassigned, there is no way to call Dispose, and the 
object will hang around for an indeterminate period of time until garbage is 
collected. Effective memory management involves both the server and client.

In our code we explicitly make the third object inaccessible by the assignment log = null, 
and we then force a garbage collection by a call to GC.Collect. Finally we sleep briefly, to 
give the garbage collector a chance to run through to completion, before the application 
domain shuts down. Coding our test program in this way is a workaround for the fact that the 
order of finalization is nondeterministic. The garbage collector will be called automatically 
when the program exits and the application domain is shut down. However, at that point, 
system objects, such as Console, are also being closed. Since you cannot rely on the order of 
finalizations, you may get an exception from the WriteLine statement within the finalizer. 
The explicit call to GC.Collect forces a garbage collection while the system objects are still 
open. If we omitted the last three lines of the Main method, we might well get identical 
output, but we might also take an exception. 

We provide similar code at the end of the Main methods of our other test programs, so that 
our print statements in finalizers work properly without randomly throwing exceptions. 

Alternate Name for Dispose



The standard name for the method that performs cleanup is Dispose. The convention is that 
once an object is disposed, it is finished. In some cases, the same object instance may be 
reused, as in the case of a file. A file may be opened, closed, and then opened again. In such 
a case, an additional cleanup method should be called Close. In other cases some other 
natural name may be used. 

Our SimpleLog class could plausibly have provided an Open method, and then it would 
have made sense to name our cleanup method Close. For simplicity, we did not provide an 
Open method, and so we stuck to the name Dispose. 

Garbage Collection and Generations

Using the dispose pattern we can mitigate the issue of nondeterministic finalization, but what 
about the performance of the garbage collector? It turns out that the overall memory 
management efficiency of .NET is quite good, thanks to two main points: 

●     Allocation is very fast. Space on the managed heap is always contiguous, so 
allocating a new object is equivalent to incrementing a pointer. (By contrast, an 
allocation on an unmanaged heap is relatively slow, because a list of data structures 
must be walked to find a block that is large enough.) 

●     The CLR uses generations during garbage collecting, reducing the number of objects 
that are typically checked for being garbage. 

Generations

As an optimization, every object on the managed heap is assigned to a generation. A new 
object is in generation 0 and is considered a prime candidate for garbage collection. Older 
objects are in generation 1. Since such an older object has survived for a while, the odds 
favor its having a longer lifetime than a generation 0 object. Still older objects are assigned 
to generation 2 and are considered even more likely to survive a garbage collection. The 
maximum generation number in the current implementation of .NET is 2, as can be 
confirmed from the GC.MaxGeneration property. 

In a normal sweep of the garbage collector, only generation 0 will be examined. It is here 
that the most likely candidates are for memory to be reclaimed. All surviving generation 0 
objects are promoted to generation 1. If not enough memory is reclaimed, a sweep will next 
be performed on generation 1 objects, and the survivors will be promoted. Then, if 
necessary, a sweep of generation 2 will be performed, and so on up until MaxGeneration. 

Finalization and Stack Unwinding

As mentioned earlier, one of the virtues of the exception handling mechanism is that as the 
call stack is unwound in handling the exception, local objects go out of scope and so can get 
marked for finalization. The program FinalizeStackUnwind provides a simple illustration. 
It uses the SimpleLog class discussed previously, which implements finalization. 

// FinalizeStackUnwind.cs 



using System; 

public class FinalizeStackUnwind 
{ 
   public static void Main() 
   { 
      try 
      { 
         SomeMethod(); 
      } 
      catch(Exception e) 
      { 
         Console.WriteLine(e.Message); 
      } 
      GC.Collect(); 
   } 
   private static void SomeMethod() 
   { 
      // local variable 
      SimpleLog alpha = new SimpleLog("alpha.txt"); 
      // force an exception 
      throw new Exception("error!!"); 
   } 
} 

A local variable alpha of type SimpleLog is allocated in SomeMethod. Before the method 
exits normally, an exception is thrown. The stack unwinding mechanism of exception 
handling detects that alpha is no longer accessible, and so is marked for garbage collection. 
The call to GC.Collect forces a garbage collection, and we see from the output of the 
program that finalize is indeed called. 

logfile alpha.txt created 
error!! 
logfile alpha.txt finalized 
logfile alpha.txt disposed 

Controlling Garbage Collection with the GC Class

Normally it is the best practice simply to let the garbage collector perform its work behind 
the scenes. Sometimes, however, it may be advantageous for the program to intervene. The 
System namespace contains the class GC, which enables a program to affect the behavior of 
the garbage collector. We summarize a few of the important methods of the class. 

SuppressFinalize



This method requests the system to not call Finalize for the specified object. As we saw 
previously, you should call this method in your implementation of Dispose, to prevent a 
disposed object from also being finalized. [19] 

[19] You should be careful in the case of an object that might be "closed" (like a file) 
and later reopened again. In such a case it might be better not to suppress 
finalization. Once finalization is suppressed, it can be made eligible for finalization 
again by calling GC. ReRegisterForFinalize. For a discussion of advanced issues 
in garbage collection and finalization, refer to the Jeffrey Richter article previously 
cited.

Collect

You can force a garbage collection by calling the Collect method. An optional parameter 
lets you specify which generations should be collected. Use this method sparingly, since 
normally the CLR has better information on the current state of memory. A possible use 
would be a case when your program has just released a number of large objects, and you 
would like to see all this memory reclaimed right away. Another example was provided in 
the previous section, where a call to Collect forced a collection while system objects were 
still valid. 

MaxGeneration

This property returns the maximum number of generations that are supported. 

GetGeneration

This method returns the current generation number of an object. 

GetTotalMemory

This method returns the number of bytes currently allocated. A parameter lets you specify 
whether the system should perform a garbage collection before returning. If no garbage 
collection is done, the indicated number of bytes is probably larger than the actual number of 
bytes actually being used by live objects. 

Sample Program

The program GarbageCollection illustrates using these methods of the GC class. The 
example is artificial, simply illustrating object lifetime, and the effect of the various GC 
methods. The class of objects that are allocated is called Member. This class has a string 
property called Name. Write statements are provided in the constructor, Dispose, and in the 
destructor. A Committee class maintains an array list of Member instances. The 
RemoveMember method simply removes the member from the array list. The 
DisposeMember method also calls Dispose on the member being expunged from the 
committee. The ShowGenerations method displays the generation number of each Member 
object. GarbageCollection.cs is a test program to exercise these classes, showing the results 
of various allocations and deallocations and the use of methods of the GC class. The code 



and output should be quite easy to understand. 

All the memory is allocated locally in a method Demonstrate Generations. After this 
method returns and its local memory has become inaccessible, we make an explicit call to 
GC.Collect. This forces the finalizers to be called before the app domain shuts down, and so 
we avoid a possible random exception of a stream being closed when a WriteLine method is 
called in a finalizer. This is the same point mentioned previously for the earlier examples. 



Summary

This chapter introduced the .NET application model. Through metadata, the 
framework can understand enough about your application to provide many 
services that you do not have to implement. On the other hand, we have seen how 
the framework is structured so that you can substitute your own objects and 
implementations where needed. 

Type safety enables application domains to provide a robust, yet cheap, form of 
application isolation. Contexts, proxies, and interception allow the runtime to 
transparently provide services to parts of applications that require them. 

Another aspect of the .NET application model is the pervasive use of attributes, 
which can be easily added to source code and are stored with the metadata. We 
saw examples of the use of attributes for serialization and for synchronization, 
and we demonstrated how to implement and use custom attributes. 

NET simplifies the programming of memory management through an efficient 
generational automatic garbage collection facility. Finalization is 
nondeterministic, but you can support deterministic cleanup by implementing the 
dispose pattern. 



Chapter 9. Programming with ADO.NET
The framework database programming classes are referred to as ADO.NET. 
ADO.NET introduces the DataSet class that works with relational data in a 
relational manner while you are disconnected from any data source. You need not 
connect and update or query the database unless you have a specific reason for 
doing so. You can, of course, work in the traditional connected manner if you 
choose. 

ADO.NET data providers [1] allow you to execute commands directly against the 
data source. Functionality is exposed directly without intermediary objects such 
as OLEDB, which stands between ADO and the data source. The .NET 
DataAdapter class models a data source as a set of database commands and a 
connection to that data source. Differences between data sources are not hidden 
by generic interfaces. The OLEDB data provider allows for nested transactions 
with data sources that support that functionality; the SqlServer data provider does 
not. [2] 

[1] .NET Data Providers are what used to be called in the beta literature 
managed providers. You may still see them referred to by that term.

[2] There is a Begin method on the OleDbTransaction class; the 
SqlTransaction class does not have such a method.

.NET Data Providers supply data to a dataset or a data reader. A dataset is a 
memory-resident, lightweight relational database that is not connected to any 
database. You can also obtain a dataset from an XML document or create an 
XML document from a dataset. This allows you to work, if it makes sense, with 
your data as relational data, or as hierarchical XML data. [3] Data readers model 
the traditional method of working with a database. 

[3] The many-to-many relations that you can have in a relational 
database do not automatically map to XML hierarchies. But this is no 
different from working with the classic object-relational model clash.

The data access classes that currently ship with the framework are found in the 
namespaces: System.Data, System.Data.SqlClient, System.Data.OleDb, 
System.Data.Common, and System.Data.SqlTypes. The Sql and OleDb 
namespaces reflect the SqlServer and OleDb .NET Data Providers. An ODBC 
.NET Data Provider has been written, and additional ones will be written in the 
future. 

This chapter changes the implementation of the Customer and Hotel assemblies 
of the Case Study to use SQL Server. An air travel service that the Acme Travel 



Agency can use to make air travel reservations is added to illustrate the use of 
XML. 

To make our examples concrete we use SQL Server 2000 and the SQL Server 
data provider. [4] Nonetheless, much of the basic functionality discussed in this 
chapter applies to the OleDb data provider as well. 

[4] If you do not have an SQL Server available you can go to the 
Microsoft site and download the MSDE, which is a scaled down version 
of SQL Server. As of this writing MSDE is available for free. Microsoft 
suggests using MSDE in the future instead of Access. Since we use 
vanilla functionality you should be able to use the OleDb data provider 
against the Access version of the Northwind traders by changing the 
Sql classes to the corresponding OleDb classes. We have not yet 
tested this scenario, however.

This chapter assumes you have some understanding of database concepts. 

Setting Up the Example Databases
This chapter assumes that SQL Server 2000 has been installed using the 
Local System account, with authentication mode set to Mixed Mode. 
The user is assumed to be sa, with a blank password. 

Several examples in this chapter make use of the Northwind Traders 
sample database, which is installed along with SQL Server. In addition, 
there are other example programs that use the HotelBroker and 
AirlineBroker databases, which are supplied specifically for use with 
this book. 

Some of the example programs make changes to these databases, and 
other examples assume a freshly installed database. This means that 
some of the examples will not always work as expected unless you 
reinstall them again. You can reinstall each of these databases by 
running the SQL scripts that are provided. 

Please refer to the readme.txt file in the sample code directory for this 
chapter for more information about database setup. 



.NET Data Providers

The prefix on the database classes and methods indicates the data provider used 
to access the data source. For example, the OleDb prefix applies to the OleDb 
data provider. The Sql prefix applies to the SqlServer data provider. 

The SqlServer data provider uses the native SQL Server wire protocol. The 
OleDb data provider goes through the COM interop layer to talk to the various 
OleDb providers. For example, you could talk to SqlServer through the OleDb 
data provider to the OLEDB provider for SQL Server. Nonetheless, the 
performance of going through the SqlServer data provider will be superior. The 
advantage of the OleDb and the ODBC data providers is that you can work with 
ADO.NET against most data sources that you work with today. 

There are some interfaces that define common functionality, and some base 
classes that can be used to provide common functionality, but there is no 
requirement for a data provider to fit a specification that does not correspond to 
the way the underlying data source works. 

For example, the SqlDataAdapter class and the OleDbDataAdapter class both 
use the abstract base classes DbDataAdapter and DataAdapter that are found in 
the System.Data.Common namespace. SqlTransaction and the 
OleDbTransaction classes both implement the IDbTransaction interface. The 
OleDbError class and the SqlError class do not resemble each other at all. 
Server-side cursors are not in the ADO.NET model because some databases (such 
as Oracle and DB2) do not have native support for them. Any support for them in 
the SQL Server data provider would be as an extension. [5] 

[5] Besides, server-side cursors are rarely appropriate so it is not 
surprising that databases do not support them. Scrolling through the 
output is usually the result of a user interaction. Holding state on the 
server while the user interacts with the data is not the way to build a 
scalable application.

As Table 9-1 shows, the Connection, Command, DataReader, DataAdapter, 
and DataParameter classes of the data providers do have some parallels that are 
defined by the IDbConnection, IDbCommand, IDataReader, 
IDbDataAdapter, and IDataParameter interfaces. Nothing, of course, prevents 
an implementation of these classes from having additional methods beyond those 
specified in the interfaces. 

Table 9-1. Comparison of Parallel Classes in the OleDb and SQL 
Server Data Providers



Interface OleDb SQL Server 

IDbConnection OleDbConnection SqlConnection 
IDbCommand OleDbCommand SqlCommand 
IDataReader OleDbDataReader SqlDataReader 
IDbDataAdatpter OleDbDataAdapter SqlDataAdapter 
IDbTransaction OleDbTransaction SqlTransaction 
IDataParameter OleDbDataParameter SqlDataParameter 

Classes such as the DataSet or the DataTable, which are independent of any data 
provider, do not have any prefix. 

If database scalability is important, it is important to suppress finalization on any 
of your classes that do not require it. You will get vastly improved performance 
because you will reduce the amount of time the finalizer thread runs. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


The Visual Studio.NET Server Explorer

Visual Studio.NET Server Explorer is a very useful tool for working with 
databases. While not as powerful as the SQL Server Enterprise Manager, it can 
give you the basic functionality you need when writing or debugging database 
applications. It will be very useful when we work with the examples in this 
chapter. 

To access the Server Explorer, use the View | Server Explorer menu item. The 
Server Explorer is a dockable window that can be moved around as required. 
Figure 9-1 illustrates the Server Explorer. 

Figure 9-1. Visual Studio.NET Server Explorer window.

 

You can find information about all the fields in a table, or look at and edit the 
data in the tables. You can create or edit stored procedures and design tables. We 



will use the Server Explorer in the first few examples to show a little bit of how it 
can be used. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Data Readers

To make these concepts concrete, let us use some of these classes to access a database. This 
example is found in this chapter's Connected subdirectory. 

We will need a connection to the database, a command to issue against the database, and a 
reader to retrieve the data, so we declare three objects: [6] 

[6] The objects are declared outside of the try/catch block so that they can be used 
in the finally block. They are set to null because their use in the finally block could 
theoretically occur before they are initialized inside the try block (and so the 
compiler indicates with a warning).

SqlConnection conn = null; 
SqlCommand command = null; 
SqlDataReader reader = null; 

The connection string that is used to connect to the database is set next. You will have to 
replace the server element with the appropriate value for your machine. You will also have 
to specify the appropriate user and password for the database. [7] You can also set the 
connect string as an SqlConnection property. A simple select statement will be the 
command run against the database. 

[7] For Northwind the usual uid=sa;pwd=; will probably work.

String ConnString = 
    "server=localhost;uid=sa;pwd=;database=Northwind"; 
string cmd = "select CustomerId, CompanyName from 

                                       Customers";[8]

[8] Here and several other places long SQL statement strings are broken up and 
placed on multiple lines to allow for book formatting.

Figure 9-2 shows the tables and stored procedures for the Northwind database. 

Figure 9-2. Server Explorer showing Northwind database tables and stored 
procedures.



 

We create an SqlConnection object and then a create an SqlCommand object that is 
attached to the connection just created. A connection to the database must be opened before 
any command can be executed. 

conn = new SqlConnection(ConnString); 
command = new SqlCommand(cmd, conn); 
conn.Open(); 

When the command is executed using the ExecuteReader method on the SqlCommand 
object, an SqlDataReader instance is returned. This reader can be used to iterate through the 
result set. The column names can be used to fetch the data elements from the current result 
set row. 

reader = command.ExecuteReader(); 



if (reader != null) 
{ 
   Console.WriteLine("CustomerId\tCompanyName"); 
   while (reader.Read()) 
    Console.WriteLine("{0}\t\t{1}", reader["CustomerId"], 
                                  reader["CompanyName"]); 
} 

The reader and the connection are closed in the finally block. 

if (reader != null) reader.Close(); 
if (conn.State == ConnectionState.Open) conn.Close(); 

If the connection is not closed explicitly, the finalizer on the SqlConnection object will 
eventually get called and the connection will be closed. Since the garbage collector is not 
deterministic, there is no way to know when this will happen. Therefore always close your 
connections. If you do not, you will use more connections than you need (even with 
connection pooling), and this could interfere with your applications scalability. You could 
also run out of connections. 

Here is the output the program produces: 

CustomerId      CompanyName 
ALFKI           Alfreds Futterkiste 
ANATR           Ana Trujillo Emparedados y helados 
ANTON           Antonio Moreno Taquería 
AROUT           Around the Horn 
BERGS           Berglunds snabbköp 
BLAUS           Blauer See Delikatessen 
BLONP           Blondesddsl père et fils 
BOLID           Bólido Comidas preparadas 
BONAP           Bon app' 
BOTTM           Bottom-Dollar Markets 
BSBEV           B's Beverages 
... 

You use the Visual Studio.NET Server Explorer to check the results of the program. Select 
the Customers table under the Northwind database explorer and right-click to get a context 
menu. Select "Retrieve Data from Table," and you can retrieve the data associated with the 
table and compare it with the results of the program. You will see that they are the same. 
Figure 9-3 shows this. 

Figure 9-3. Server Explorer showing Customers table, fields, and data.



 

The Connected Database Scenario

This scenario of working with a database is referred to as connected. The program connects 
to the database, does the work it needs to do, and then disconnects. You can run through the 
returned data only in the forward direction. This corresponds to the classic ADO forward-
only cursor/recordset. In the connected mode you must open and close the database 
connection explicitly. 

Keeping a connection continually open is not the best way to work in an environment where 
you want to minimize the resources consumed (connections are expensive) to allow for 
scalability. A DataSet allows you to work disconnected from a data source. Nonetheless, as 
will be discussed later, depending on your concurrency assumptions, using a DataReader 
instead of a DataSet might still be the right approach. 

As will be discussed later, the SqlConnection is used with the DataAdapter to establish 
connections with the database in the same way as illustrated here with the SqlCommand. 
SqlConnection also controls database properties such as transactions and isolation levels. A 
root transaction is issued by invoking the BeginTransaction method on the SqlConnection 
class. [9] If in the previous example we connected SQL Server through the 
OleDbConnection class, the connection string would be: 

[9] Since OLEDB allows for nested transactions, nested transactions can be started 
by invoking the Begin method on the OleDbTransaction class.

"Provider=SQLOLEDB.1;server=localhost;uid=sa;pwd=; 
                                    database=Northwind"; 

You would have to provide the correct server, user, and password. While the SqlCommand 
executes a command against a database in the same way whether you use a DataAdapter or 
an SqlDataReader, the mechanics of doing so is different. This will become clearer when 



we discuss the SqlDataAdapter class. 

You specify the type of SqlCommand with the CommandType property. For the Sql data 
provider this can be either Text (the default) or StoredProcedure. The CommandText can 
also be specified as a property. We will soon show how parameters can be applied to 
database commands. 

An SqlDataReader instance is returned by the ExecuteReader method on an 
SqlCommand instance. If you wanted to program in a way that was independent of a data 
provider, you could use the IDataReader interface instead. You could then invoke methods 
on the interface instead of an object. 

IDataReader idr = command.ExecuteReader(); 

Similar techniques can be used with the other data-provider classes that implement interfaces 
used by multiple data providers. Until the SqlDataReader instance is closed, the 
SqlCommand object cannot be used for any purpose other than for executing its Close 
method. 

Executing SQL Statements

The ExecuteReader method on the SqlCommand returns a DataReader instance. Data is 
returned when the command is a select statement or a stored procedure that returns results. 
When you know there will be no results returned it is more efficient to use the 
ExecuteNonQuery method. The SqlCommand.ExecuteReader method uses the stored 
procedure sp_executesql. Some commands that use "SET" statements may not work 
properly. Other providers might have different restrictions when their ExecuteReader 
method is used. 

In general, for commands that do not return data, use the SqlCommand.ExecuteNonQuery 
method. The NonQuery example shows how this works. For illustrative purposes this 
example connects to SQL Server through the OleDb data provider. 

string cmd = "update Customers set CompanyName = 
         'Maria Inc' where ContactName = 'Maria Anders'"; 
... 
command = new OleDbCommand(cmd, conn); 
int NumberRows = command.ExecuteNonQuery(); 

The number of rows returned should be 1. Figure 9-4 shows the results of the change to the 
first row. 

Figure 9-4. Rows in Customers table in the Server Explorer showing the 
changed ContactName. Compare with Figure 9-3 to see the original value of 

the first row.



 

For insert, update, and delete statements, the number of rows affected is returned. SQL 
Server returns -1 for all other statements (Native or OLEDB provider). Other providers 
might return 0 or -1. 

To fetch a single value (such as an aggregate computation) use the ExecuteScalar method. 
Against SQL Server 2000 you can use the SqlCommand.ExecuteXmlReader to retrieve 
XML results directly from the server. 

DataReader

When created, the SqlDataReader is positioned before the first record returned of the first 
result set. You must invoke the Read method before accessing any data. As the DataReader 
example demonstrates, the item property can be used to access the individual fields or 
column values in the current row: 

All the fields in a row can be accessed with the GetValues method. 

object[] fields = new object[NumberFields]; 
... 
int NumberFields = reader.GetValues(fields); 

GetValue returns the column value in its native format. You can also access the column 
values as particular datatypes: GetBoolean, GetDecimal, GetString, etc. The GetName 
method returns the column name of a particular column. 

To reinforce what was mentioned earlier, only one record at a time is accessible with a 
DataReader. Make sure you close the DataReader when you are done with it. 



Multiple Result Sets

The SqlDataReader class can handle multiple result sets, as the DataReader example 
demonstrates. Two queries separated by a semicolon represent two SQL statements that will 
cause two results sets to be generated, one for each statement. 

string ConnString = 
    "server=localhost;uid=sa;pwd=;database=Northwind"; 
string cmd = "select CustomerId, CompanyName from 
               Customers where CustomerId like 'T%';select 
               CustomerId, CompanyName from Customers 
               where CustomerId like 'W%'"; 
... 
int ResultSetCounter = -1; 
int NumberFields = 0; 
... 
reader = command.ExecuteReader(); 
if (reader != null) 
{ 
 NumberFields = reader.FieldCount; 
 object[] fields = new object[NumberFields]; 
 Console.WriteLine("Result Set\tCustomerId\tCompanyName"); 
 do 
 { 
   ResultSetCounter++; 
   while(reader.Read()) 
   {  
     NumberFields = reader.GetValues(fields); 
     Console.Write("\t{0}", ResultSetCounter); 
       for (int i = 0; i < NumberFields; i++) 
       { 
         Console.Write("\t\t{0}", fields[i]); 
       } 
     Console.Write("\n"); 
     } 
   }while(reader.NextResult()); 
} 
... 

The FieldCount method returns the number of columns in the result set. Since the 
GetValues method returns the native format of the data, an array of objects is passed to it. 
The NextResult method navigates to the next result set. 



Parameters Collection

Sometimes you have to parameterize a SQL statement. You also might have to associate the 
input and output arguments of a stored procedure with variables in your program. 

To do this you build the SqlCommand class's Parameters property, which is a collection of 
SqlParameter instances. The installation procedure added the get_customers stored 
procedure to the Northwind database to illustrate the use of a simple stored procedure, which 
takes one input argument that is the company name and returns the customer id for that 
customer. 

CREATE PROCEDURE get_customers 
(@companyname nvarchar(40), @customerid nchar(5) OUTPUT) 
AS 
select @customerid = CustomerID from Customers where 
  CompanyName = @companyname 
RETURN 

GO 

The StoredProcedure example shows how to do this. 

command = new SqlCommand("get_customers", conn); 
command.CommandType = CommandType.StoredProcedure; 

SqlParameter p = null; 
p = new SqlParameter("@companyname", SqlDbType.NVarChar, 
                       40); 
p.Direction = ParameterDirection.Input; 
p.Value = "Ernst Handel"; 
command.Parameters.Add(p);  
p = new SqlParameter("@customerid", SqlDbType.NChar, 5); 
p.Direction = ParameterDirection.Output; 
command.Parameters.Add(p); 
command.ExecuteNonQuery(); 
Console.WriteLine("{0} CustomerId = {1}", 
                 command.Parameters["@companyname"].Value, 
                 command.Parameters["@customerid"].Value); 

Each individual SqlParameter member of the Parameters collection represents one 
parameter of an SQL statement or stored procedure. As this example illustrates, the 
parameters need not have any relationship to any particular table or column in the database. 

At a minimum you have to specify—either through the constructor or by setting 
properties—the name and database type of the parameter. If the parameter is of variable 
length, you have to specify the size. 



In this example two parameters are added to the parameters collection. The first represents 
the input argument to the stored procedure, the second the return value from the stored 
procedure. 

The name of the parameter corresponds to the name of the argument in the stored procedure 
get_customers. The other values to the SqlParameter constructor define the data type of 
the parameter. The first is a variable Unicode string up to 40 characters in length. The 
second variable is a 5-character fixed-length Unicode string. If this was an OLEDB .NET 
Data Provider you would bind to the parameters by position since only the SQL Server .NET 
Data Provider binds parameters by name. 

The Value property is used to set or get the value of the parameter. It is used to initialize the 
@companyname parameter for input to the stored procedure. It is also used to obtain the 
value that the stored procedure set for the @customerid parameter. 

Output parameters must be specified as such with the Direction property. In this example 
the @companyname parameter is set as an input parameter with the value 
ParameterDirection.Input. The @customerid parameter is set as an output parameter with 
the value ParameterDirection. Output. Output parameters must be specified, since input 
parameters are the default. To bind to the return value of a stored procedure use 
ParameterDirection.ReturnValue. For bidirectional parameters use 
ParameterDirection.InputOutput. 

You can use the parameter names to access individual parameters in the SqlCommand 
parameters collection. 

Parameterized commands work with both SqlDataReader and DataAdapter classes. When 
the DataSet class is discussed, you will see how to specify the Source property of the 
parameter, which indicates which column in the DataSet the parameter represents. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


SqlDataAdapter and the DataSet Class

The DataSet class is a memory-resident, lightweight relational database class. It has 
properties that reflect the tables (Tables) and relationships between tables (Relations) 
within the data set. You can control whether corresponding constraints are enforced with the 
EnforceConstraints property. You can name the data set with the DataSetName property. 
You can also set the name of the data set in the DataSet constructor. 

The SqlDataAdapter class is used to get data from the database into the DataSet. The 
constructor of the HotelBroker class shows how to use a data adapter class to populate a 
data set. The code is found in the Hotel subdirectory of the HotelBrokerAdmin directory of 
the case study for this chapter. 

conn = new SqlConnection(connString); 
citiesAdapter =  new SqlDataAdapter(); 
citiesAdapter.SelectCommand = new SqlCommand( 
                "select distinct City from Hotels", conn); 
citiesDataset = new DataSet(); 
citiesAdapter.Fill(citiesDataset, "Cities"); 

The SqlDataAdapter class has properties associated with it for selecting, inserting, 
updating, and deleting data from a data source. Here the SqlCommand instance is 
associated with the SelectCommand property of the SqlDataAdapter instead of being 
executed independently through one of its own execute methods. 

The Fill method of the SqlDataAdapter is then used to execute the select command and fill 
the DataSet with information to be put in a table whose name is supplied as an argument. If 
the database connection was closed when the Fill method was executed, it will be opened. 
When finished, the Fill method will leave the connection in the same state as it was when it 
was first called. 

At this point the connection to the database could be closed. You now can work with the 
DataSet and its contained data independently of the connection to the database. 

SqlDataAdapter is implemented with the SqlDataReader class, so you can expect better 
performance with the latter. The SqlDataReader might also be more memory efficient 
depending on how your application is structured. If you do not need the features of the 
DataSet, there is no point incurring the overhead. If you are doing expensive processing you 
can free up the database connection by using a DataSet. You may get better scalability by 
loading the data into the DataSet, freeing the associated database resources, and doing the 
processing against the DataSet. 

Disconnected Mode

This scenario of working with a database is referred to as disconnected. Connected mode 
represents a tightly coupled, connected environment where state and connections can be 



maintained. Client-server environments are examples where this is true. ADO and OLEDB 
were designed for this world. In a connected-mode environment data readers can be used. If 
necessary, ADO can be used through the COM interop facility. In fact ADO was not 
rewritten for .NET so that absolute backward compatibility could be maintained, bugs and 
all. 

Connections, however, are expensive to maintain in environments where you want to be able 
to scale to a large number of users. In this environment there is often no need to hold locks 
on database tables. This aids scalability because it reduces contention on database tables. 
The DataTable objects in the DataSet's Tables collection with their associated constraints 
can mimic the tables and relationships in the original database. For applications that are 
implemented completely with .NET, DataSet instances can be passed around or remoted to 
the various parts of an application. For applications that can make optimistic assumptions 
about concurrency this can produce large gains in scalability and performance. This is true 
of many types of Internet- or intranet-based applications. 

In the disconnected mode, a connection is made in the same way as with the connected mode 
of operation. Data is retrieved using the data provider's data adapter class. The 
SelectCommand property specifies the SQL statement used to place data into the data set. 
Unlike the data reader, which is related to a particular database connection, the data set has 
no relationship to any database, including the one from which the data originally came. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


DataSet Collections

When data is placed into a DataSet, the related tables and columns are also 
retrieved. Each data set has collections that represent all the tables, columns and 
data rows associated with it. 

The HotelBroker class in the Case Study has a method called PrintHotels that 
illustrates how to retrieve this information and write it to a Console. The 
hotelsDataset is a data set that has already been filled with the data from the 
HotelBroker database. 

DataTable t = hotelsDataset.Tables["Hotels"]; 
if (t == null) 
  return; 
foreach(DataColumn c in t.Columns) 
  Console.Write("{0, -20}", c.ColumnName);  
Console.WriteLine(""); 

foreach (DataRow r in t.Rows) 
{ 
  for (int i = 0; i < t.Columns.Count; i++) 
    { 
      Type type = r[i].GetType(); 
      if (type.FullName == "System.Int32") 
        Console.Write("{0, -20}", r[i]); 
      else 
      { 
        string s = r[i].ToString(); 
        s = s.Trim(); 
        Console.Write("{0, -20}", s); 
      } 
    } 
  Console.WriteLine(""); 
} 
Console.WriteLine(""); 

The Tables collection includes all the DataTable instances in the DataSet. In 
this particular case there is only one, so there is no need to iterate through that 
collection. The program then iterates through all the columns in the table and sets 
them up as headers for the data that will be printed out. After the headers have 
been set up, all the rows in the table are iterated through. For each column in the 
row, we ascertain its type and print out the value appropriately. The program 
checks only for the types that are in the Hotels database table. Checking for types 



instead of printing out the row values as object enables us to format the data 
appropriately. 

As we will show later, you can populate the dataset through these collections 
without having to obtain it from a data source. You can just add tables, columns, 
and rows to the appropriate collections. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


DataSet Fundamentals

You can also fetch a subset of the data in the DataSet. The Select method on a DataTable 
uses the same syntax as an SQL statement where clause. Column names are used to access 
the data for a particular row. This example comes for the HotelBroker class, where it is 
used to get the hotels for a particular city. 

public ArrayList GetHotels(string city) 
... 
  DataTable t = hotelsDataset.Tables["Hotels"]; 
  DataRow[] rows = t.Select("City = '" + city + "'"); 
  HotelListItem hl;  
ArrayList hotels = new ArrayList(); 
for (int i = 0; i < rows.Length; i++) 
{ 
  hl.HotelName = rows[i]["HotelName"].ToString(); 
  hl.City = rows[i]["City"].ToString().Trim(); 
  hl.NumberRooms = (int) rows[i]["NumberRooms"]; 
  hl.Rate = (decimal) rows[i]["RoomRate"]; 
  hotels.Add(hl); 
} 
return hotels; 

The AddHotel method of the HotelBroker class demonstrates how to add a new row to a 
DataSet. A new DataRow instance is created, and the column names are used to add the 
data to the columns in the row. 

To propagate your new row back to a database, you have to add it to the row collection of 
the table, and then use the Update method on the SqlDataAdapter class to do so. It is the 
data adapter that mediates between the DataSet and the database. We will discuss later how 
to do perform edits on the dataset in order to accept or reject changes before propagating 
them back to the database. 

public string AddHotel(string city, string name, 
                                 int number, decimal rate) 
    ... 
DataTable t = hotelsDataset.Tables["Hotels"]; 
DataRow r = t.NewRow(); 

r["HotelName"] = name; 
r["City"] = city; 
r["NumberRooms"] = number; 
r["RoomRate"] = rate; 
t.Rows.Add(r); 

    hotelsAdapter.Update(hotelsDataset, "Hotels"); 



To delete rows from the DataSet, you first find the particular row or rows you want to delete 
and then invoke the Delete method on each DataRow instance. When the Update method 
on the data adapter is called, it will be deleted from the database. 

The Remove method removes the DataRow from the collection. It is not marked as deleted, 
since it is no longer in the DataSet. When the Update method on the data adapter is called, 
it will not be deleted from the database. 

The DeleteHotel method in the HotelBroker class illustrates deleting rows from a DataSet. 

public string DeleteHotel(string city, string name) 
  ... 
  t = hotelsDataset.Tables["Hotels"];  
r = t.Select("City = '" + city + "' and HotelName = '" 
                                          + name + "'"); 
... 
for (i = 0; i < r.Length; i++) 
  r[i].Delete(); 
... 

To update a row in a dataset, you just find it and modify the appropriate columns. This 
example comes from the ChangeRooms method in the HotelBroker class. When the 
Update method on the data adapter is called, the modification will be propagated back to the 
database. 

public string ChangeRooms(string city, string name, 
                           int numberRooms, decimal rate) 
  ... 
  DataTable t = hotelsDataset.Tables["Hotels"]; 
  DataRow[] r = t.Select( 
  "City = '" + city + "' and HotelName = '" + name + "'"); 
  ... 
  for (int i = 0; i < r.Length; i++) 
  { 
    r[i]["NumberRooms"] = numberRooms; 
    r[i]["RoomRate"] = rate; 
  } 
  ... 

Updating the Data Source

How does the SqlDataAdapter.Update method propagate changes back to the data source? 
Changes to the DataSet are placed back based on the InsertCommand, UpdateCommand, 
and DeleteCommand properties of the SqlDataAdapter class. Each of these properties 
takes an SqlCommand instance that can be parameterized to relate the variables in the 



program to the parts of the related SQL statement. The code fragment we use to show this 
comes from the HotelBroker constructor. 

A SqlCommand instance is created to represent the parameterized SQL statement that will 
be used when the SqlDataAdapter.Update command is invoked to add a new row to the 
database. At that point, the actual values will be substituted for the parameters. 

SqlCommand cmd = new SqlCommand("insert Hotels(City, 
      HotelName, NumberRooms, RoomRate) 
      values(@City, @Name, @NumRooms, @RoomRate)", conn); 

The parameters have to be associated with the appropriate columns in a DataRow. In the 
AddHotel method code fragment discussed previously, columns were referenced by the 
column names: "HotelName," "City," "NumberRooms," and "RoomRate." Notice how they 
are related to the SQL statement parameters @Name, @City, @NumRooms, @RoomRate in 
the SqlParameter constructor This last argument sets the Source property of the 
SqlParameter. The Source property sets the DataSet column to which the parameter 
corresponds. The Add method places the parameter in the Parameters collection associated 
with the SqlCommand instance. 

SqlParameter param = new SqlParameter("@City", 
                             SqlDbType.Char, 20, "City"); 
cmd.Parameters.Add(param); 

cmd.Parameters.Add(new SqlParameter("@Name", 
                       SqlDbType.Char, 20, "HotelName")); 
cmd.Parameters.Add(new SqlParameter("@NumRooms", 
                       SqlDbType.Int, 4, "NumberRooms")); 
cmd.Parameters.Add(new SqlParameter("@RoomRate", 
                       SqlDbType.Money, 8, "RoomRate")); 

Finally the SqlDataAdapters' InsertCommand property is set to the SqlCommand 
instance. Now this command will be used whenever the adapter has to insert a new row in 
the database. 

hotelsAdapter.InsertCommand = cmd; 

Similar code appears in the HotelBroker constructor for the UpdateCommand and 
DeleteCommand properties to be used whenever a row has to be updated or deleted. 

hotelsAdapter.UpdateCommand = new SqlCommand( 
    "update Hotels set NumberRooms = @NumRooms, RoomRate = 
       @RoomRate where City = @City and HotelName = 
       @Name", conn); 
hotelsAdapter.UpdateCommand.Parameters.Add(new 
     SqlParameter("@City", SqlDbType.Char, 20, "City")); 



hotelsAdapter.UpdateCommand.Parameters.Add(new 
     SqlParameter("@Name", SqlDbType.Char, 20, 
             "HotelName")); 
hotelsAdapter.UpdateCommand.Parameters.Add(new 
     SqlParameter("@NumRooms", SqlDbType.Int, 4, 
              "NumberRooms")); 
hotelsAdapter.UpdateCommand.Parameters.Add(new 
     SqlParameter("@RoomRate", SqlDbType.Money, 8, 
              "RoomRate")); 

hotelsAdapter.DeleteCommand = new SqlCommand( 
"delete from Hotels where City = @City and HotelName = 
              @Name", conn); 
hotelsAdapter.DeleteCommand.Parameters.Add(new 
     SqlParameter("@City", SqlDbType.Char, 20, "City")); 
hotelsAdapter.DeleteCommand.Parameters.Add(new 
     SqlParameter("@Name", SqlDbType.Char, 20, 
              "HotelName")); 

Whatever changes you have made to the rows in the DataSet will be propagated to the 
database when SqlDataAdapter.Update is executed. How to accept and reject changes 
made to the rows before issuing the SqlDataAdapter.Update command is discussed in a 
later section. 

Auto Generated Command Properties

The SqlCommandBuilder class can be used to automatically generate any 
InsertCommand, UpdateCommand, and DeleteCommand properties that have not been 
defined. Since the SqlCommandBuilder needs to derive the necessary information to build 
those properties dynamically, it requires an extra round trip to the database and more 
processing at runtime. Therefore, if you know your database layout in the design phase, you 
should explicitly set the InsertCommand, UpdateCommand, and DeleteCommand 
properties to avoid the performance hit. If the database layout is not known in advance, and a 
query is specified by the user, the SqlCommandBuilder can be used if the user 
subsequently wants to update the results. 

This technique works for DataTable instances that correspond to single tables. If the data in 
the DataTable is generated by a query that uses a join, then the autogeneration mechanism 
cannot generate the logic to update multiple tables. The SqlCommandBuilder uses the 
SelectCommand property to generate the command properties. 

A primary key or unique column must exist on the table in the DataSet. This column must 
be returned by the SQL statement set in the SelectCommand property. The unique columns 
are used in a where clause for update and delete. 

Column names cannot contain special characters such as spaces, commas, periods, quotation 



marks, or nonalphanumeric characters. This is true even if the name is delimited by brackets. 
You can specify a fully qualified table name such as 
SchemaName.OwnerName.TableName. 

A simple way to use the SqlCommandBuilder class is to pass the SqlDataAdapter 
instance to its constructor. The SqlCommandBuilder then registers itself as a listener for 
RowUpdating events. It can then generate the needed InsertCommand, 
UpdateCommand, or DeleteCommand properties before the row update occurs. 

The CommandBuilder example demonstrates how to use the SqlCommandBuilder class. 



Database Transactions and Updates

When the data adapter updates the data source, it is NOT done as a single 
transaction. If you want all the inserts, updates, and deletes done in one 
transaction, you must handle the transaction programmatically. 

The SqlConnection object has a BeginTransaction method that returns a 
SqlTransaction object. When you invoke the BeginTransaction method, you 
can optionally specify the isolation level. If you know what you are doing, and 
understand the trade-offs, you can improve the performance and scalability of 
your application by setting the appropriate isolation level. If you set the isolation 
level incorrectly or inappropriately, you can have inconsistent or incorrect data 
results. [10] 

[10] Discussing isolation levels in detail would remove our focus from 
.NET to database programming. Any good intermediate to advanced 
book on database programming would discuss the concept of isolation 
levels and locking. For specific information about the SQL Server 
locking mechanism you can read the Microsoft Press Inside SQL 
Server books, among others. Tim Ewald's book Transactional COM+ 
has a good chapter on the issue of isolation and its relation to building 
scalable applications.

The SqlTransaction class has Commit and Rollback methods to commit or 
abort the transaction. You open the SqlConnection, invoke the 
BeginTransaction method, use the SqlDataAdapter as normal, and then call 
SqlTransaction.Commit or SqlTransaction.Rollback as appropriate. Then 
close the connection. The Save method on SqlTransaction can be used to set a 
savepoint in the transaction. 

In order to minimize the database resources you hold, and therefore increase the 
scalability of your application, you want to minimize the time between calling 
BeginTransaction and the call to Commit or Rollback. 

Here is some code from the Transactions example. It uses the AirlineBroker 
database introduced later in the chapter. Note that we only open the connection 
right before the Fill, and the transaction statements bracket the Update. 

conn = new SqlConnection(ConnString); 
da = new SqlDataAdapter(); 
ds = new DataSet(); 
da.SelectCommand = new SqlCommand(selectCmd, conn); 
da.InsertCommand = new SqlCommand(insertCmd, conn); 
... 



conn.Open(); 
da.Fill(ds, "Airlines"); 
... 
trans = conn.BeginTransaction(); 
da.InsertCommand.Transaction = trans; 
da.Update(ds, "Airlines"); 
trans.Commit(); 
... 

To ensure that the SQL Server data provider operates properly, you should use 
the Commit and Rollback methods on the SqlTransaction object to commit or 
roll back the transactions started with SqlConnection.BeginTransaction. Do not 
use the SQL Server transaction statements. 

If you use stored procedures for your database work, you can certainly issue SQL 
Server transaction statements inside the stored procedures instead of using the 
SqlTransaction object. Stored procedures can be used to encapsulate 
transactional changes. The MakeReservation stored procedure in the 
HotelBroker database does just that. 



Optimistic vs. Pessimistic Locking and the 
DataSet

Transactions help preserve database consistency. When you move money from 
your savings to your checking account to pay your phone bill, transaction 
processing ensures that the credit and withdrawal will both happen, or neither will 
happen. You will not wind up with a situation where the money goes into your 
checking account but is not withdrawn from the savings (good for you, and bad 
for the bank) or the reverse (bad for you, but good for the bank). Nothing about 
that transaction prevents your spouse from using that same money to eat out at a 
fancy restaurant. [11] 

[11] The failure to distinguish between these two leads to the apparently 
common problem (as related to me by a bank vice president) of people 
wondering why their checks bounce when their ATM balance said they 
had enough money to withdraw some cash.

Under an optimistic locking strategy, you assume this will not happen, but you 
have to be prepared to deal with it when does. [12] A pessimistic locking strategy 
requires coordination among all the users of a database table so that this never 
happens. Of course, the fewer locks you hold on database rows to prevent use by 
more than one user, the more scalable your application will be. 

[12] This is the database equivalent of overdraft protection.

An understanding of how this affects your application applies to both reads and 
actual updates. For example, suppose your spouse sees that money is available in 
the checking account and makes plans based on that fact. This could be as much 
of a problem as the actual withdrawal of money from the joint checking account. 

While a discussion of how to solve these problems is beyond the scope of this 
chapter, it is important to realize that the issue arises because no locks are held on 
the database records held within a DataSet. Just using the DataSet with 
SqlDataAdapter.Update assumes an optimistic locking strategy. 

Why does this matter? It matters because the performance and scalability of your 
application depend on it. Why is it so complicated? Because there is no answer 
that applies to all applications in all situations. If users do not share the same set 
of data, optimistic concurrency is an excellent assumption. If you have to lock 
records for a long period of time, this increases the wait to use these resources, 
thus decreasing performance and scalability. 

You have to understand transaction isolation levels, the database's Lock Manager, 
the probability of contention for particular rows, and the probability that this 



contention results in deadlock in your application. You have to understand how 
much time and resources you can spend reconciling divergent operations, and 
how much tolerance for inconsistent or incorrect results your application can 
stand, in order to decide under what circumstances you want to avoid deadlock at 
all costs, or can deal with the consequences of conflicting operations. [13] 

[13] Tim Ewald's book is worth reading to understand this topic. Philip 
Bernstein and Eric Newcomer's Principles of Transaction Processing is 
another good reference.

You might have to use the DataSet with additional logic to test whether the 
records in the DataSet have been changed since the last time they were fetched or 
modified. Or you might just decide to use the SqlDataReader and refetch the 
data. It all depends. 

For example, when making a reservation in our HotelBroker case study you 
cannot make an optimistic assumption about the availability of rooms. It is not 
acceptable to assume an infinite supply of rooms at a hotel and let the 
reservations clerk deal with what happens when more people show up then there 
are rooms for. [14] We use the MakeReservation stored procedure to check on 
the availability of a room before we make the reservation. [15] 

[14] Of course, airlines and hotels overbook. This is a conscious 
strategy to deal with passengers or guests not making explicit 
cancellations, not a database concurrency strategy.

[15] In fact, the transaction in MakeReservation includes the checking 
of the availability of the room as well as the actual making of the 
reservation in order to maintain consistency. It also breaks up what 
could be one multiple table join into several queries in order to return 
better error information.

Sometimes, even without concurrency issues, the DataSet cannot be used to add 
new rows in isolation from the database. Sometimes, as in our HotelBroker 
application, an arbitrary primary key cannot be used. [16] Many users will be 
making reservations at the same time. Reservation ids cannot be assigned locally; 
some central logic on the database has to be employed to issue them. [17] The 
MakeReservation stored procedure does this as well. 

[16] For instance, a GUID. Well, theoretically GUIDs could be used in 
our case, but when was the last time you got a reservation number 
from a hotel or airline that was composed of 32 identifiers? Many times 
a primary key has meaning to an organization—for example, a part 
number whose subsections indicate various categories.

[17] Of course, if performance were critical, instances of the HotelBroker 



could be preassigned ranges of reservation ids to give out. But this 
would have to be done by some central authority as well (the database, 
some singleton object?). But then this raises the issue of state 
management in the middle tier. This just reinforces my previous point 
about the dependency of any solution on the specific requirements of 
your program. It also reinforces the maxim that any programming 
problem can be solved either by trading memory against time, or 
adding another level of indirection.

The degree of disconnected operation that your application can tolerate has to be 
understood before you can decide how to use SqlDataReader or the DataSet in 
your applications. 

Why bother to use the DataSet at all in our HotelBroker application? In fact, the 
code for the Customer object does not use the DataSet at all. The HotelBroker 
object does—for two reasons. The first is pedagogical. We wanted to show you 
how a complete application might use the features of the DataSet, rather than just 
isolated sample programs. Second, in the Web version of the application which is 
developed in subsequent chapters, it is convenient to cache certain pieces of 
information. For example, it is probably reasonable to assume that a user can 
work with their own local copy of reservations. On the other hand, the 
information about a customer such as their email address can be obtained just 
once when they log in. There is no need for an elaborate mechanism to cache 
customer information, so the Customer object uses methods on the 
SqlCommand object. 



Working with DataSets

Figure 9-5 depicts the hierarchy of classes that exist within the DataSet class. It will be 
helpful to glance at this diagram over the next few sections that discuss these classes. 

Figure 9-5. DataSet class hierarchy.

 

Multiple Tables in a DataSet

Each DataSet has a collection of one or more DataTable objects. Each DataTable object 
represents one table. 

With a SelectCommand that contains a join you can place data from multiple database tables 
into one DataTable. If you want to update the multiple tables, you will have to specify the 
update commands, because all relationship of the data to the original tables is lost. The 
SqlDataAdapter for the HotelBroker object has the following SelectCommand property: 

string cmd = "select CustomerId, HotelName, City, 
             ArrivalDate, DepartureDate, ReservationId 
             from Reservations, Hotels where 
             Reservations.HotelId = Hotels.HotelId"; 
adapter.SelectCommand = new SqlCommand(cmd, conn); 
dataset = new DataSet(); 



adapter.Fill(dataset, "Reservations"); 

The DataSet will only have one DataTable called Reservations. The fact that some of the 
data came from the Hotels table is lost. 

You can also load more than one table into a dataset. The DataSchema example does just 
this: 

adapter.SelectCommand = new SqlCommand( 
  "select * from [Order Details] where ProductId = 1", 
      conn); 
adapter.FillSchema(dataset, SchemaType.Source, 
     "Order Details"); 
adapter.Fill(dataset, "Order Details"); 

adapter.SelectCommand = new SqlCommand("select * from 
     Shippers", conn); 
adapter.FillSchema(dataset, SchemaType.Source, 
     "Shippers"); 
adapter.Fill(dataset, "Shippers"); 

There will be two tables, OrderDetails and Shippers, in the DataSet. The method 
SqlDataAdapter.FillSchema fills the DataSet with the primary key information associated 
with the tables. The code can now iterate through the tables and print out both the data and the 
primary keys of the tables. The Columns collection on the DataTable enables you to find the 
DataColumns for the DataTable. 

foreach(DataTable t in dataset.Tables) 
{ 
  Console.WriteLine(t.TableName); 
  DataColumn[] dc = t.PrimaryKey; 
  for (int i = 0; i < dc.Length; i++) 
  {  
    Console.WriteLine("\tPrimary Key Field {0} = {1}", i, 
                      dc[i].ColumnName); 
  } 

  Console.Write("\t"); 
  foreach(DataColumn c in t.Columns) 
    Console.Write("{0, -20}", c.ColumnName); 
    Console.WriteLine(); 

  foreach(DataRow r in t.Rows) 
  { 
    Console.Write("\t"); 
    foreach(DataColumn c in t.Columns) 
      Console.Write("{0, -20}", r[c].ToString().Trim()); 



    Console.WriteLine(); 
  } 
} 

The example output shows the tables, primary keys, columns, and data: 

Order Details 
        Primary Key Field 0 = OrderID 
        Primary Key Field 1 = ProductID 
OrderID     ProductID  UnitPrice Quantity Discount 
10285       1          14.4      45       0.2 
10294       1          14.4      18       0 
... 
Shippers 
        Primary Key Field 0 = ShipperID 
        ShipperID   CompanyName         Phone 
        1           Speedy Express      (503) 555-9831 
        2           United Package      (503) 555-3199 
        3           Federal Shipping    (503) 555-9931 

Table Creation without a Data Source

One can use a DataSet as a memory-resident relational database not based on any database. In 
fact, we will explore various features of the DataSet in the DataEditing example by adding 
the data and relationships directly to the data set without extracting them from a database. 

First we create a new DataSet and turn on constraint checking. We then add four DataTables 
to the DataSet: Books, Categories, Authors, and BookCategories. Even though it is set in the 
example code for pedagogical reasons, EnforceConstraints by default is true. 

DataSet ds = new DataSet(); 
ds.EnforceConstraints = true; 

DataTable categories = ds.Tables.Add("Categories");  
DataTable bookcategories = ds.Tables.Add("BookCategories"); 
DataTable authors = ds.Tables.Add("Authors"); 
DataTable books = ds.Tables.Add("Books"); 

Each DataTable object has a collection of DataColumn objects. Each object represents one 
column of the table. We then add columns to the table definition. 

Type stringType = System.Type.GetType("System.String"); 
Type intType = System.Type.GetType("System.Int32"); 

DataColumn categoryname = 
         categories.Columns.Add("Category",stringType); 



DataColumn cn = bookcategories.Columns.Add 
                           ("CategoryName", stringType); 
DataColumn loc = 
                 bookcategories.Columns.Add( 
                  "LibraryofCongressNumber", stringType); 

DataColumn auid = authors.Columns.Add("AuthorId", 
                                                 intType); 
authors.Columns.Add("AuthorLastName", stringType); 
authors.Columns.Add("AuthorFirstName", stringType); 

DataColumn ISBN = books.Columns.Add("ISBN", stringType); 
DataColumn booksauid = books.Columns.Add("AuthorId", 
                                                 intType); 
books.Columns.Add("Title", stringType); 
DataColumn bloc = 
 books.Columns.Add("LibraryofCongressNumber", stringType); 

Constraints and Relations

Each DataTable object has a collection of DataRow objects. Each object represents one row 
of the table. When you add a DataRow, it is subject to the constraints on the DataTable 
objects (assuming the DataSet's EnforceConstraints property has been set to true). 

Primary Keys

There are several constraints on a table. The Primary Key constraint is the unique identifier 
for the table. Other unique constraints force the values in various column(s) to which they are 
applied to be unique. A Foreign Key constraint forces the values in the column(s) to which it 
applies to be a primary key in another table in the DataSet. 

The DataTable's primary key is a property: 

DataColumn[] bookcategoriesPK = new DataColumn[2];  
bookcategoriesPK[0] = cn; 
bookcategoriesPK[1] = loc; 
bookcategories.PrimaryKey = bookcategoriesPK; 

DataColumn[] authorsPK = new DataColumn[1]; 
authorsPK[0] = auid; 
authors.PrimaryKey = authorsPK; 

DataColumn[] booksPK = new DataColumn[1]; 
booksprimarykey[0] = ISBN; 
books.PrimaryKey = booksPK; 



Constraints

The other constraints on the Table are represented by the abstract base class Constraint and 
its derived classes: UniqueConstraint and ForeignKeyConstraint. The base class enables 
the constraints to be placed in the table's constraint collection. Primary Keys also appear in the 
table's constraint collection as a unique constraint with a system-generated name. The 
UniqueConstraint.IsPrimaryKey property can be used to detect primary keys. 

We constrain the Category column in the Categories table to be unique. Since the last 
argument to the Add method is false, this is not a primary key of the table. We do not define a 
primary key for this table, only a unique constraint. In fact, we do not even have to define any 
constraint on the table. Although that would violate the rules of relational integrity, you are 
not forced to use the DataSet in a relational manner. If you wish you can add a name to the 
constraint. 

categories.Constraints.Add("Unique CategoryName 
                        Constraint", categoryname, false); 

Foreign Keys can specify what action should be taken when the primary key on which it is 
based is changed. Your choices are the standard database choices: None, Cascade, SetNull. 
You can also use SetDefault to set the new value to the DataColumn's DefaultValue 
property. These operations can be specified for both update and delete conditions. 

In this example, a foreign key constraint is set so that all author ids in the Books table have to 
be found in the Authors table. In other words, when a new book row is inserted, it must have 
an author. We give this constraint a name: "Authors->Books." If the author id is changed, the 
update rule forces the DataSet to change all the author ids in the related rows to the new 
author id. If the author id is deleted, the DataSet will set the deleted author ids in the Book 
rows to null. If we had set the DeleteRule to Cascade, a cascading delete would be applied to 
all those rows in the Books table. The AcceptRejectRule applies to editing of the DataSet, 
which we will cover in a future section. This rule dictates what happens when the 
AcceptChanges method is invoked on a DataSet, DataRow, or DataTable. In this case all 
changes are cascaded. The alternative rule would be to take no action (None). 

DataColumn[] bookauthorFK = new DataColumn[1]; 
bookauthorFK[0] = booksauid; 
ForeignKeyConstraint fk = new 
               ForeignKeyConstraint("Authors->Books", 
               authorsPK, bookauthorFK); 
fk.AcceptRejectRule = AcceptRejectRule.Cascade; 
fk.DeleteRule = Rule.SetNull; 
fk.UpdateRule = Rule.Cascade; 
books.Constraints.Add(fk); 

Data Relations

Besides constraints you can add a relation to the DataSet's DataRelation collection. A 
relation connects two tables so that you can navigate between the parent and the child or the 



child and the parent. When you add the relation you can optionally create and add the 
equivalent unique and foreign key constraints to the parent and child tables' constraint 
collections. [18] 

[18] Use the optional boolean createConstraints argument when you add a relation 
to indicate whether the associated constraint should be added. If this argument is not 
specified, the default is to add the associated constraint.

The Categories table is made the parent of the BookCategories table through the Categories 
and CategoryName columns. In a relation both columns have to be of the same type (string). 
You can use this relation to navigate by finding all the rows in the child table that have the 
same value as in the parent table, or finding the row in the parent table that is the parent of a 
row in the child table. Similarly the Library of Congress number associated with a book has to 
be found in the Library of Congress field in the BookCategory's Library of Congress field. 

ds.Relations.Add("Category->BookCategories Relation", 
                                       categoryname, cn); 
ds.Relations.Add("Book Category LOC->Book LOC Relation", 
                                               loc, bloc); 

Examining the Schema Information about a DataTable

You can examine the information about a DataTable. Here is how to examine the constraint 
and key information. A previous example has already shown you how to find the 
DataColumns for a DataTable. Note the use of the IsPrimaryKey property on the 
UniqueConstraint to detect a primary key. 

foreach(DataTable t in ds.Tables) 
{ 
  Console.WriteLine(t.TableName); 
  Console.WriteLine("\tPrimary Key:"); 
  for (int i = 0; i < t.PrimaryKey.Length; i++) 
  { 
    DataColumn c = t.PrimaryKey[i]; 
    Console.WriteLine("\t\t{0}", c.ColumnName); 
  } 

  Console.WriteLine("\tConstraints:"); 
  foreach(Constraint c in t.Constraints) 
  { 
    string constraintName; 
    if (c is ForeignKeyConstraint) 
      constraintName = "Foreign Key:" + c.ConstraintName; 
    else if (c is UniqueConstraint) 
    { 
      UniqueConstraint u = (UniqueConstraint)c; 
      if (u.IsPrimaryKey) 



        constraintName = "Primary Key"; 
      else 
        constraintName = u.ConstraintName; 
    } 
    else 
      constraintName = "Unknown Name"; 

    Console.WriteLine("\t\t{0, -40}", constraintName); 
  } 
} 

This produces the following output. Note how the relations defined as a DataRelation appear 
in the table's constraint collection as a ForeignKeyConstraint instance. PrimaryKeys appear 
in the constraint collection as a UniqueConstraint instance. Constraints defined as unique 
constraints or foreign keys appear as you would expect in the collection. 

Categories 
   Primary Key: 
   Constraints: 
          Unique CategoryName Constraint 
BookCategories 
   Primary Key: 
          CategoryName 
          LibraryofCongressNumber 
   Constraints: 
          Primary Key 
          Foreign Key:Category->BookCategories Relation 
          Constraint2  
Authors 
   Primary Key: 
          AuthorId 
   Constraints: 
          Primary Key 
Books 
   Primary Key: 
          ISBN 
   Constraints: 
          Primary Key 
          Foreign Key:Authors->Books 
          Foreign Key:Book Category LOC->Book LOC Relation 

Note the BookCategories constraint with the system-generated name. If you examine the code 
carefully, you will see we never added this constraint. Where did it come from? If you were to 
look at the columns in that constraint, you would find the Library of Congress field. The 
system realized that, since the CategoryName is a foreign key in another table, the Library of 
Congress field should be unique. 



You can also examine the relations collection on the DataSet. You can examine the parent 
table and the columns in the parent table involved in the relationship. You can also examine 
the child table in the relationship and its columns. 

foreach(DataRelation dr in ds.Relations) 
{ 
  DataTable parentTable = dr.ParentTable; 
  DataTable childTable = dr.ChildTable; 
  Console.WriteLine("   Relation: {0} ", dr.RelationName); 
  Console.WriteLine("       ParentTable: {0, -10}", 
                                            parentTable); 
  Console.Write("           Columns: "); 
  for(int j = 0; j < dr.ParentColumns.Length; j++) 
    Console.Write("               {0, -10}", 
                          dr.ParentColumns[j].ColumnName); 
  Console.WriteLine(); 
  Console.WriteLine("       ChildTable:  {0, -10}", 
                          childTable); 
  Console.Write("           Columns: "); 
  for(int j = 0; j < dr.ChildColumns.Length; j++) 
    Console.Write("               {0, -10}", 
                          dr.ChildColumns[j].ColumnName); 
  Console.WriteLine(); 
} 

Here is the resulting output: 

Output Relations between tables in the DataSet... 
   Relation: Category->BookCategories Relation 
       ParentTable: Categories  
        Columns:                Category 
    ChildTable:  BookCategories 
        Columns:                CategoryName 
Relation: Book Category LOC->Book LOC Relation 
    ParentTable: BookCategories 
        Columns:                LibraryofCongressNumber 
    ChildTable:  Books 
        Columns:                LibraryofCongressNumber 

Database Events

Several ADO.NET classes generate events. 

The SqlConnection class generates the StateChange and InfoMessage events. The 
SqlDataAdapter generates the RowUpdated and RowUpdating events. The DataTable 
class generates the ColumnChanging, ColumnChanged, RowChanged, RowChanging, 



RowDeleted, and RowDeleting events. 

For example, the RowChanged event occurs after an action has been performed on a row. 
Continuing with our DataEditing example, it defines a handler for the RowChanged event in 
the Books table. Every time a row changes in the Books table, the event handler will run. 

books.RowChanged+=new 
                   DataRowChangeEventHandler(Row_Changed); 

private static void Row_Changed(object sender, 
                     System.Data.DataRowChangeEventArgs e) 
{ 
  DataTable table = (DataTable)sender; 
  DataColumn[] primaryKey = table.PrimaryKey; 
  string keyName = primaryKey[0].ColumnName; 

  Console.WriteLine("Table " + table.TableName + " " + 
           e.Action.ToString() + "Row with Primary Key " + 
           e.Row[keyName]); 

  return; 
  } 

So when the code adds some rows, including some to the Books table: 

DataRow row 
row = categories.NewRow(); 
row["Category"] = "UnitedStates:PoliticalHistory"; 
categories.Rows.Add(row); 
... 

row = authors.NewRow();  
row["AuthorId"] = 1; 
row["AuthorLastName"] = "Burns"; 
row["AuthorFirstName"] = "James M."; 
authors.Rows.Add(row); 
... 
row = books.NewRow(); 
row["ISBN"] = "0-201-62000-0"; 
row["Title"] = "The Deadlock of Democracy"; 
row["AuthorId"] = 1; 
row["LibraryofCongressNumber"] = "E183.1"; 
books.Rows.Add(row); 

row = books.NewRow(); 
row["ISBN"] = "0-201-62000-3"; 



row["Title"] = "Freedom and Order"; 
row["AuthorId"] = 2; 
row["LibraryofCongressNumber"] = "E183.1"; 
books.Rows.Add(row); 

We get one output line for each book added, printed by the event handler: 

Table Books AddRow with Primary Key 0-201-62000-0 
Table Books AddRow with Primary Key 0-201-62000-3 

If we were to change the ISBN numbers of the two books that were added to the same value, a 
ConstraintException would be thrown. If we changed the DataSet.EnforceConstraints 
property to false, however, no exception would be thrown. 

Navigating Relationships

Using the schema information, we can navigate from parent table to child table and print out 
the results. This cannot be done with relationships defined as ForeignKeyConstraint, only as 
a DataRelation in the relations collection of the DataSet. 

We previously printed out the schema information associated with the relationships. Now we 
use this information to print out the parent and child rows in the relationships. By using 
relationships appropriately, you can walk through the data without using relational queries. 
This can be quite useful for finding all the books in a certain category, or all order items in an 
order. 

Note the use of the DataRow methods GetChildRows and GetParentRows to do the 
navigation. For a given relation, first we navigate from parent to children, then from the 
children to their parent. We also show how you can use different constructs to access the items 
in the various collections. 

foreach (DataRelation dr in ds.Relations) 
{  
  Console.WriteLine(dr.RelationName); 
  DataTable parentTable = dr.ParentTable; 
  foreach(DataRow parentRow in parentTable.Rows) 
  { 
    Console.Write("      Parent Row: "); 
    foreach(DataColumn pc in parentTable.Columns) 
      Console.Write("  {0} ", parentRow[pc]); 
    Console.WriteLine(); 

    DataRow[] childRows = parentRow.GetChildRows(dr); 
    for(int k = 0; k < childRows.Length; k++) 
    { 
      Console.Write("        Child Row: "); 
      foreach(DataColumn cc in childTable.Columns) 



        Console.Write("  {0} ", childRows[k][cc]); 
      Console.WriteLine(); 
    } 
  } 
Console.WriteLine(); 

  foreach(DataRow childRow in childTable.Rows) 
  { 
    Console.Write("      Child Row: "); 
    for(int m = 0; m < childTable.Columns.Count; m++) 
      Console.Write("  {0} ", childRow[childTable. 
           Columns[m].ColumnName].ToString().Trim()); 
    Console.WriteLine(); 

    foreach(DataRow pRow in childRow.GetParentRows(dr)) 
    { 
      Console.Write("        Parent Row: "); 
      for(int p = 0; p < parentTable.Columns.Count; p++) 
        Console.Write("  {0} ", pRow[parentTable. 
              Columns[p].ColumnName].ToString().Trim()); 
      Console.WriteLine(); 
    } 
  } 
  Console.WriteLine(); 
} 

Next let us look at the output that this code produces. Note how we loop through each relation. 
For each relation we first loop through the parent table and output each row of the parent table 
with its corresponding child rows. We then loop through the child table and output each row 
of the child table with its corresponding parent rows. 

... 
Category->BookCategories Relation 
  Parent Row:UnitedStates:PoliticalHistory 
    Child Row:UnitedStates:PoliticalHistory   E183 
  Parent Row:UnitedStates:PoliticalHistory:Opinion  
    Child Row:UnitedStates:PoliticalHistory:Opinion E183.1 
    Child Row:UnitedStates:PoliticalHistory:Opinion E183.2 
  Parent Row:UnitedStates:PoliticalHistory:Predictions 
    Child Row:UnitedStates:PoliticalHistory:Predictions 
                                                 E183.3 

  Child Row:UnitedStates:PoliticalHistory   E183 
    Parent Row:UnitedStates:PoliticalHistory 
  Child Row:UnitedStates:PoliticalHistory:Opinion  E183.1 
    Parent Row:UnitedStates:PoliticalHistory:Opinion 
  Child Row:UnitedStates:PoliticalHistory:Opinion E183.2 



    Parent Row:UnitedStates:PoliticalHistory:Opinion 
  Child Row:UnitedStates:PoliticalHistory:Predictions 
                                                   E183.3 
    Parent Row:UnitedStates:PoliticalHistory:Predictions 

Book Category LOC->Book LOC Relation 
  Parent Row:UnitedStates:PoliticalHistory   E183 
  Parent Row:UnitedStates:PoliticalHistory:Opinion E183.1 
    Child Row:0-201-62000-0   1 
                   The Deadlock of Democracy   E183.1 
    Child Row:0-201-62000-3   2 
                   Freedom and Order   E183.1 
  Parent Row:UnitedStates:PoliticalHistory:Opinion  E183.2 
  Parent Row:UnitedStates:PoliticalHistory:Predictions 
                   E183.3 

  Child Row:0-201-62000-0   1 
                    The Deadlock of Democracy   E183.1 
    Parent Row:UnitedStates:PoliticalHistory:Opinion 
                                                E183.1 
  Child Row:0-201-62000-3   2   Freedom and Order   E183.1 
  Parent Row:UnitedStates:PoliticalHistory:Opinion 
                   E183.1 

DataRow Editing

BeginEdit, EndEdit, CancelEdit

If you want to make multiple edits to a DataSet, and postpone the checking of constraints and 
events, you can enter a dataset editing mode. You enter this mode by invoking the BeginEdit 
method on the row. You leave it by invoking the EndEdit or CancelEdit row methods. 

In the DataEditing example, we violate the foreign-key constraint by adding a row with a 
nonexistent author id. The foreign-key constraint exception will not be raised until the 
EndEdit method is called. 

Since we have called BeginEdit in the following code fragment, there is no exception caught. 

DataRow rowToEdit = books.Rows[0]; 
rowToEdit.BeginEdit(); 
try 
{ 
  rowToEdit["AuthorId"] = 21; 
    ... 
  } 
catch(Exception e) 



{ 
  Console.WriteLine("\n" + e.Message +  " while editing a 
                                                row."); 
  Console.WriteLine(); 
} 

However, when we invoke the EndEdit method on the row, the exception is raised. 

try 
{ 
  rowToEdit.EndEdit(); 
 } 
catch(Exception e) 
{ 
  Console.WriteLine(); 
  Console.WriteLine("\n" + e.Message + " on EndEdit"); 
  Console.WriteLine(); 
} 

The following message is printed out because the illegal value was still present when the 
editing session was finished. 

ForeignKeyConstraint Authors->Books requires the child key 
      values (21) to exist in the parent table. on EndEdit 

DataRow Versions

Before the row changes have been accepted, both the original and the changed row data are 
available. The item property [19] of the row can take a DataRowVersion to specify which 
value you want. The version field can be Original, Default, Current, or Proposed. 

[19] The item property of the DataRow is the indexer for the class. 

Console.WriteLine("BeginEdit called for Book AuthorId."); 
rowToEdit.BeginEdit(); 
rowToEdit["AuthorId"] = 2;  
Console.WriteLine("Current Value {0}", 
   rowToEdit["AuthorId", DataRowVersion.Current]); 
Console.WriteLine("Proposed Value {0}", 
   rowToEdit["AuthorId", DataRowVersion.Proposed]); 
Console.WriteLine("Default Value {0}", 
   rowToEdit["AuthorId", DataRowVersion.Default]); 

rowToEdit.EndEdit(); 

Console.WriteLine("Current Value {0}", 



   rowToEdit["AuthorId", DataRowVersion.Current]); 
Console.WriteLine("Default Value {0}", 
   rowToEdit["AuthorId", DataRowVersion.Default]); 

Console.WriteLine("EndEdit called."); 
  ... 

This code caused the following output to be printed out: 

BeginEdit called for Book AuthorId. 
Current Value 1 
Proposed Value 2 
Default Value 2 
... 
EndEdit called. 
Current Value 2 
Default Value 2 

During editing the Current and Proposed item values are available. After CancelEdit, the 
Proposed value is no longer available. After EndEdit, the Proposed value becomes the 
Current value, and the Proposed value is no longer available. 

DataRow RowState Property

In addition to the Current and Proposed values of a field, the DataRow itself has a property 
that indicates the state of the particular row. The values can be Added, Deleted, Detached, 
Modified, or Unchanged. 

A row is in the Detached state when it has been created, but has not been added to any 
DataRow collection, or it has been removed from a collection. 

The Default DataRowVersion of a field returns the appropriate row version depending on the 
RowState property. 

Accepting and Rejecting Changes

Calling EndEdit on a DataRow does not cause the changes to be made to the row. Calling the 
AcceptChanges or RejectChanges method on the DataSet, DataTable, or DataRow ends 
editing on all the contained rows of the appropriate scope. If EndEdit or CancelEdit has not 
been called, these methods do it implicitly for all rows within its scope. 

After the AcceptChanges method, the Current value becomes the Original value. If 
EndEdit has not been called the Proposed value becomes the new Current and Original 
values. If the RowState was Added, Modified, or Deleted it becomes Unchanged and the 
changes are accepted. 

After the RejectChanges method, the Proposed value is deleted. If the RowState was 



Deleted or Modified, the values revert to their previous values, and the RowState becomes 
Unchanged. If the RowState was Added, the row is removed from the Rows collection. 

Since the RowState after AcceptChanges is Unchanged, calling the DataAdapter's Update 
method at this point will not cause any changes to made on the data source. Therefore, you 
should call the Update method on the DataAdapter to update changes to the data source 
before calling AcceptChanges on any row, table, or DataSet. 

Here is the code from the case study's HotelBroker object's CancelReservation method. 
Note how AcceptChanges on the DataSet is called if the SqlDataAdapter.Update method 
succeeds. If an exception is thrown, or the update fails, RejectChanges is called. 

public void CancelReservation(int id) 
{ 
 DataTable t = null; 
 try 
 { 
   t = dataset.Tables["Reservations"]; 
   DataRow[] rc = t.Select("ReservationId = " + id + " "); 

   for (int i = 0; i < rc.Length; i++) 
     rc[i].Delete(); 

     int NumberRows = adapter.Update(dataset, 
                                      "Reservations"); 
   if (NumberRows > 0) 
    t.AcceptChanges(); 
   else 
    t.RejectChanges(); 
} 
catch(Exception e) 
{ 
  t.RejectChanges(); 
  throw e; 
  } 

  return; 
} 

If you do not reject the changes on failure, the rows will still be in the DataSet. The next time 
an update is requested, the update will be rejected again, because the rows are still waiting to 
be updated. Since the DataSet is independent of a database, the fact that an update occurs on 
the database has nothing to do with accepting or rejecting the changed rows in the DataSet. 

DataRow Errors

If there have been any data editing errors on a row, the HasErrors property on the DataSet, 



DataTable, or DataRow will be set to true. To get the error, use the DataRow's 
GetColumnError or the GetColunmsInError methods. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Acme Travel Agency Case Study

At this point we have covered more than enough material for you to understand 
the database version of the Customer and HotelBroker objects in the case study. 
As usual, the code is in the CaseStudy directory for this chapter. 

Since there will never be any reason for the Customer object to hold any state, 
the Customer object methods use SqlDataReader to access the database and 
return the results. Any state that a program might need (i.e., a list of customers) 
could easily be maintained in the client program and not in a middle-tier object. 

The HotelBroker and HotelBookings objects are a little more complicated. As 
mentioned earlier, for pedagogical reasons alone these objects would have been 
implemented using a DataSet to show you how that technology would work in an 
application. 

Nonetheless, we will see that with Web applications there might be a reason to 
keep some state in the middle tier. In that scenario, the DataSet can serve as an 
intelligent cache. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


XML Data Access

As we will discuss in the Web Services chapter, XML has many advantages for 
describing data that must move between heterogeneous systems and data sources. 
Since you can validate your XML against an XML schema description, you can 
pass it in many situations where passing a DataSet makes no sense. [20] Since 
XML is text, it can pass through firewall ports that are normally open, unlike the 
DCOM or RMI protocols that require special ports to be open. 

[20] When you remote a DataSet it is remoted as XML, nonetheless, if 
you have to interact with an unmanaged program you can convert the 
data in the DataSet to XML and send it. As discussed in the Web 
Services chapter, the XML protocol used by remoting and Web 
Services is not identical.

The thrust of these next sections is not to discuss XML in any great detail. We 
just want to demonstrate how you can move back and forth between looking at 
data in XML and looking at data with a DataSet. 

XML Schema and Data

XML does not dictate how data is organized or what the meaning of XML 
documents are. It only describes the rules on how the documents are put together. 
[21] An XML schema describes the metadata of how the data is organized inside 
an XML document. XML schemas are written in XML. 

[21] Technically speaking, XML documents in the sense that we speak 
of are defined by the XML Infoset and consist of documents, elements, 
and attributes.

For example, XML can be used to describe data in a relational database, but an 
XML schema can be used to describe relationships such as primary and foreign 
keys. Having the XML schema and the data in one document or text stream is 
vastly simpler than having to download each table into a dataset and then 
programmatically set up the relations between the tables. 

XmlDataDocument

Documents can include database output within them. For example, a sales report 
has an explanation as well as the sales data that was pulled from a data source. 
The XmlDataDocument class can be used to represent data in the form of an 
XML document. 

The XmlDataDocument class inherits from XmlDocument which represents an 



XML document for the .NET XML Framework classes. What makes the 
XmlDataDocument particularly interesting is that you can construct an 
XmlDataDocument from a DataSet by passing the DataSet instance to the 
XmlDataDocument constructor. The XmlDataDocument has a read-only 
DataSet property so that you can work with the XML document as relational data 
if that makes sense. 

DataSet and XML

The DataSet has methods, WriteXml and WriteXmlSchema, that can write out 
the data and schema associated with the dataset. The XML schema that the 
DataSet writes out is deduced from the current set of tables, columns, constraints, 
and relations. Unless you explicitly add the constraints to the DataSet, such as 
primary- or foreign-key relationships, they will not be part of the schema. 

The DataSet also has methods to read XML: ReadXml and ReadXmlSchema. 
ReadXml can read both the data and the schema into the dataset. If a schema is 
not present, it will try to infer one from the data. If it cannot infer a schema, it 
will throw an exception. ReadXmlSchema will read in a schema document. 

If there is no schema in an XML document, the DataSet extracts elements that 
would be defined as tables according to a set of rules. The remaining elements, 
along with the attributes, are then assigned as columns to the tables. 

You can use the ColumnMapping property of the DataColumn class to control 
whether you want columns written as XML elements or attributes. Elements that 
are not scalar values become tables; attributes and scalar values are columns. The 
exact procedure is described in the .NET documentation. 



AirlineBrokers Database

The AirlineBrokers database will be used to study XML data access. This database can be 
created using the SqlServer Enterprise Manager and the airlinebroker.sql script found in the 
AcmeDatabaseScripts subdirectory of the case study. The AirlineBrokers database represents 
another service that the Acme reservation system uses. Acme customers can make airline 
reservations to the places they wish to go. 

The database has several tables: 

●     Airlines: information about the various airlines in the database 
●     PlaneType: the various planes that the airlines use 
●     Flights: information about the various airlines' flights 
●     Customers: information about customers 
●     Reservations: information about the customers' reservations 

Although in real life the Airline Broker and the Hotel Broker would not have the same 
Customers table, for simplicity we use the same table structure, and we use the same 
component to access it. 

DataSet and XML

To illustrate the relationship between the relation model of the DataSet and the XML model 
we will first fetch some information from the database. The DataSetXml example uses the 
same commands and techniques we have studied in this chapter to extract the data. 

First the connection, DataSet, and the SqlDataAdapters for the various tables are created. 

SqlConnection conn = new SqlConnection(connectString); 
DataSet d = new DataSet("AirlineBroker"); 
SqlDataAdapter  airlinesAdapter = new SqlDataAdapter(); 
SqlDataAdapter  flightsAdapter = new SqlDataAdapter(); 
SqlDataAdapter  planetypeAdapter = new SqlDataAdapter(); 
SqlDataAdapter  customersAdapter = new SqlDataAdapter(); 
SqlDataAdapter  reservationsAdapter = new SqlDataAdapter(); 

Then the various select commands to fetch the data are created and the dataset is filled with 
the data from those tables: 

airlinesAdapter.SelectCommand = new SqlCommand( 
                          "select * from Airlines", conn); 
airlinesAdapter.Fill(d, "Airlines"); 

flightsAdapter.SelectCommand = new SqlCommand( 
                           "select * from Flights", conn); 
flightsAdapter.Fill(d, "Flights"); 



planetypeAdapter.SelectCommand = new SqlCommand( 
                         "select * from PlaneType", conn); 
planetypeAdapter.Fill(d, "PlaneType"); 

customersAdapter.SelectCommand = new SqlCommand( 
                         "select * from Customers", conn); 
customersAdapter.Fill(d, "Customers"); 

reservationsAdapter.SelectCommand = new SqlCommand( 
                      "select * from Reservations", conn); 
reservationsAdapter.Fill(d, "Reservations"); 

We now have the data for the Airlines, Flights, PlaneType, Customers, and Reservations 
tables in the data set. 

Next we have the DataSet written out as an XML schema, the schema it infers from the data. 
Then the DataSet writes out the data as XML. 

d.WriteXmlSchema("Airlines.xsd"); 
d.WriteXml("Airlines.xml"); 

Here are some of the data that were written to the file Airlines.xml. The main element is 
Airline Broker, which was the name of the DataSet. Elements at the next lower level 
correspond to the various tables that were added to the database: Airlines, Flights, 
PlaneType, and Customers. There were no reservations in the database. There is one set for 
each row in the table. The elements under each of these tables correspond to the fields for that 
particular row. 

<AirlineBroker> 
  <Airlines> 
    <Name>America West</Name> 
    <Abbreviation>AW</Abbreviation> 
    <WebSite>www.americawest.com</WebSite> 
    <ReservationNumber>555-555-1212</ReservationNumber> 
  </Airlines> 
  <Airlines> 
    <Name>Delta</Name> 
    <Abbreviation>DL</Abbreviation> 
    <WebSite>www.delta.com</WebSite>  
    <ReservationNumber>800-456-7890</ReservationNumber> 
  </Airlines> 
... 
  <Flights> 
    <Airline>DL</Airline> 
    <FlightNumber>987</FlightNumber> 
    <StartCity>Atlanta</StartCity> 



    <EndCity>New Orleans</EndCity> 
    <Departure>2001-10-05T20:15:00.0000000-04:00 
              </Departure> 
    <Arrival>2001-10-05T22:30:00.0000000-04:00</Arrival> 
    <PlaneType>737</PlaneType> 
    <FirstCost>1300</FirstCost> 
    <BusinessCost>0</BusinessCost> 
    <EconomyCost>450</EconomyCost> 
  </Flights> 
... 
  <Flights> 
  <PlaneType> 
    <PlaneType>737</PlaneType> 
    <FirstClass>10</FirstClass> 
    <BusinessClass>0</BusinessClass> 
    <EconomyClass>200</EconomyClass> 
  </PlaneType> 
... 
  <Customers> 
    <LastName>Adams</LastName> 
    <FirstName>John</FirstName> 
    <EmailAddress>adams@presidents.org</EmailAddress> 
    <CustomerId>1</CustomerId> 
 </Customers> 
</AirlineBroker> 

From the structure of the data, the DataSet deduces a schema that was written to Airlines.xsd. 
We discuss here an excerpt from that file. There are no relationships or primary keys defined 
between any of the tables such as Airlines and Flights as in the database, because none were 
defined in the DataSet. If you look at the actual generated file, you will see that schema 
information was inferred for Reservations even though there were no data in the table. 

The schema preamble in the first line, reproduced here, defines the name of the schema as 
AirlineBroker, and we are using two namespaces in this schema document. One, abbreviated 
xsd, contains the XML Schema standard definitions. The other, abbreviated msdata, contains 
Microsoft definitions. 

... 
<xsd:schema id="AirlineBroker" targetNamespace="" xmlns="" 
      xmlns:xsd=http://www.w3.org/2001/XMLSchema 
      xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"> 

The next line defines an element called AirlineBroker which has an attribute that indicates this 
schema came from a DataSet. That is a Microsoft defined attribute, not one defined by the 
W3C Schema namespace. This element AirlineBroker is a complex type. which means it is a 
structure composed of other types. This structure can have an unlimited number of any (or 
even none) of the types defined in the rest of the schema. 



<xsd:element name="AirlineBroker" msdata:IsDataSet="true"> 
  <xsd:complexType> 
  <xsd:choice maxOccurs="unbounded"> 

The Airlines element is defined next. It, too, is a structure, or complex type, whose elements, 
if present, appear in the structure in the order in which they were defined. Those elements, 
which correspond to the columns in the database table, are all defined to be strings that are 
optional. No primary keys were defined, and these strings are certainly not optional in the 
database, but that was what the DataSet deduced from the set of tables, constraints and 
relationships currently defined in the DataSet. 

<xsd:element name="Airlines"> 
  <xsd:complexType> 
  <xsd:sequence> 
    <xsd:element name="Name" type="xsd:string" 
                               minOccurs="0" /> 
    <xsd:element name="Abbreviation" 
             type="xsd:string" minOccurs="0" /> 
    <xsd:element name="WebSite" type="xsd:string" 
                                  minOccurs="0" /> 
    <xsd:element name="ReservationNumber" 
                type="xsd:string" minOccurs="0" /> 
  </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 

The table, Flights, is defined similarly to Airlines. In addition to there being no primary key 
here, there is no foreign key defined for Airline or PlaneType. 

<xsd:element name="Flights"> 
  <xsd:complexType> 
  <xsd:sequence> 
    <xsd:element name="Airline" type="xsd:string" 
                                   minOccurs="0" /> 
    <xsd:element name="FlightNumber" type="xsd:int" 
                                   minOccurs="0" /> 
    <xsd:element name="StartCity" type="xsd:string" 
                                   minOccurs="0" /> 
    <xsd:element name="EndCity" type="xsd:string" 
                                   minOccurs="0" /> 
     <xsd:element name="Departure" type="xsd:dateTime"  
                                          minOccurs="0" /> 
         <xsd:element name="Arrival" type="xsd:dateTime" 
                                          minOccurs="0" /> 
         <xsd:element name="PlaneType" type="xsd:string" 



                                          minOccurs="0" /> 
         <xsd:element name="FirstCost" type="xsd:decimal" 
                                          minOccurs="0" /> 
         <xsd:element name="BusinessCost" 
                       type="xsd:decimal" minOccurs="0" /> 
         <xsd:element name="EconomyCost" 
                       type="xsd:decimal" minOccurs="0" /> 
       </xsd:sequence> 
       </xsd:complexType> 
     </xsd:element> 
... 
  </xsd:choice> 
  </xsd:complexType> 
</xsd:element> 
</xsd:schema> 

We will come back to this schema definition, but for the moment let us continue to work with 
this example. 

Creating an XML Doc from a Dataset

We create a new XML document from the DataSet. Using an XPath query to get the top of 
the document, we set up an XmlNodeReader to read through it. We can then print out the 
contents of the document to the console. The XmlNodeReader class knows how to navigate 
through the document. 

XmlDataDocument xmlDataDoc = new XmlDataDocument(d); 

XmlNodeReader xmlNodeReader = null; 
try 
{ 
  XmlNode node = xmlDataDoc.SelectSingleNode("/"); 
  xmlNodeReader = new XmlNodeReader (node); 
  FormatXml (xmlNodeReader); 
} 
catch (Exception e) 
{ 
  Console.WriteLine ("Exception: {0}", e.ToString()); 
} 
finally 
{ 
  if (xmlNodeReader != null) 
    xmlNodeReader.Close(); 
} 

...  



private static void FormatXml (XmlReader reader) 
{ 
while (reader.Read()) 
{ 
  switch (reader.NodeType) 
 { 
    ... 
    case XmlNodeType.Element: 
      Format (reader, "Element"); 
      while(reader.MoveToNextAttribute()) 
        Format (reader, "Attribute"); 
      break; 
    case XmlNodeType.Text: 
      Format (reader, "Text"); 
      break; 
... 
static      string lastNodeType = ""; 

private static void Format(XmlReader reader, string 
                                           nodeType) 
{ 
  if (nodeType == "Element") 
  { 
    if (lastNodeType == "Element") 
    { 
      Console.WriteLine(); 
    } 
    for (int i=0; i < reader.Depth; i++) 
    { 
      Console.Write("  "); 
    } 
    Console.Write(reader.Name); 
  } 
  else if (nodeType == "Text") 
    Console.WriteLine("={0}", reader.Value); 
  else 
  { 
    Console.Write(nodeType + "<" + reader.Name + ">" + 
                                         reader.Value); 
    Console.WriteLine(); 
  } 

  lastNodeType = nodeType; 
} 

The results resemble the XML that the DataSet wrote to a file. 



AirlineBroker 
  Airlines 
    Name=America West  
    Abbreviation=AW 
    WebSite=www.americawest.com 
    ReservationNumber=555-555-1212 
  Airlines 
    Name=Delta 
    Abbreviation=DL 
    WebSite=www.delta.com 
    ReservationNumber=800-456-7890 
  Airlines 
    Name=Northwest 
    Abbreviation=NW 
    WebSite=www.northwest.com 
    ReservationNumber=888-111-2222 
  Airlines 
    Name=Piedmont 
    Abbreviation=P 
    WebSite=www.piedmont.com 
    ReservationNumber=888-222-333 
  Airlines 
    Name=Southwest 
    Abbreviation=S 
    WebSite=www.southwest.com 
    ReservationNumber=1-800-111-222 
  Airlines 
    Name=United 
    Abbreviation=UAL 
    WebSite=www.ual.com 
    ReservationNumber=800-123-4568 
  Flights 
    Airline=DL 
    FlightNumber=987 
    StartCity=Atlanta 
    EndCity=New Orleans 
    Departure=2001-10-05T20:15:00.0000000-04:00 
    Arrival=2001-10-05T22:30:00.0000000-04:00 
    FirstCost=1300 
    PlaneType=737 
    BusinessCost=0 
    EconomyCost=450 
  Flights 
    Airline=UAL 
    FlightNumber=54 
    EndCity=Los Angeles 



    StartCity=Boston 
    Departure=2001-10-01T10:00:00.0000000-04:00 
    Arrival=2001-10-01T13:00:00.0000000-04:00 
    PlaneType=767 
    FirstCost=1500 
    BusinessCost=1000 
    EconomyCost=300  
  PlaneType 
    PlaneType=737 
    FirstClass=10 
    BusinessClass=0 
    EconomyClass=200 
  PlaneType 
    PlaneType=767 
    FirstClass=10 
    BusinessClass=30 
    EconomyClass=300 
  Customers 
    LastName=Adams 
    FirstName=John 
    EmailAddress=adams@presidents.org 
    CustomerId=1 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Schema with Relationships

If we add relationships to the schema we just created, we can use the schema to create a 
typed data class to work with our database. 

We could do that programmatically by adding constraints and relationships to the dataset, as 
discussed earlier in the chapter, and then writing out the schema. The DataSchemaXml 
example does just that. You could also create a schema document by hand, or edit the one 
we generated in the previous example. 

The XSD Tool directory has a schema which has been revised to add the relationships 
between the tables in the AirlineBroker database. The first part of the file, 
AirlineBroker.xsd, looks like the previous version except that the minOccurs=0 attribute 
has been removed from all the fields because we do not allow nulls in any of them. 

... 
 <xsd:element name="Airlines"> 
    <xsd:complexType> 
    <xsd:sequence> 
       <xsd:element name="Name" type="xsd:string" /> 
        <xsd:element name="Abbreviation" 
                        type="xsd:string" /> 
        <xsd:element name="ReservationNumber" 
                        type="xsd:string" /> 
        <xsd:element name="WebSite" type="xsd:string" /> 
    </xsd:sequence> 
    </xsd:complexType> 
 </xsd:element> 
... 

The last section defines the relationships. Here is the definition for the Airlines table primary 
key. Note the use of attributes in the msdata namespace. These attributes are defined by 
Microsoft using the W3C Schema standard to express additional semantic information about 
the DataSet. These extensions themselves are not a W3C standard. The Schema standard 
can express constraints with the unique, key, or keyref constructs. Nonetheless, they do not 
specify which unique key is the primary key. 

XPath, which is used to specify relationships to other tables and fields is a W3C standard for 
locating elements within an XML file. It is used when an XML constraint has to specify to 
which other element it refers to. 

The primary key definition states that the Airlines_PrimaryKey is a primary key defined 
for the Airlines element, consisting of the sub element, Name. Note how the 
msdata:PrimaryKey attribute is used in conjunction with the standard unique construct. 

    <xsd:unique name="Airlines_PrimaryKey" 



                                 msdata:PrimaryKey="true"> 
  <xsd:selector xpath=".//Airlines" /> 
  <xsd:field xpath="Name" /> 
</xsd:unique> 

The next section constrains the Abbreviation column in an Airlines row to be unique. 

<xsd:unique name="Unique_Airline_Abbreviation"> 
  <xsd:selector xpath=".//Airlines" /> 
  <xsd:field xpath="Abbreviation" /> 
</xsd:unique> 
... 

Reservations_x0020_CustomerId is defined to be a foreign key. The CustomerId field in the 
Reservations table must be found in the CustomerId field of some row in the Customer table. 

    <xsd:keyref name="Reservations_x0020_CustomerId" 
                              refer="Customers_PrimaryKey" 

  <xsd:selector xpath=".//Reservations" /> 
  <xsd:field xpath="CustomerId" /> 
</xsd:keyref> 

The foreign key Flights_x0020_Abbrev has some rules defined for it. 

<xsd:keyref name="Flights_x0020_Abbrev" 
                   refer="Unique_Airline_Abbreviation" 

                   msdata:AcceptRejectRule="Cascade" 
                   msdata:DeleteRule="SetNull"> 
  <xsd:selector xpath=".//Flights" /> 
  <xsd:field xpath="Airline" /> 
</xsd:keyref> 
... 



Typed DataSet

An XML schema can be used to generate a dataset that is "typed." Instead of using the index 
property of a collection to access an element of the dataset, you can use the name of a column. 
Here is a fragment from the TypedDataSet example: 

AirlineBroker.AirlinesRow UAL = a.FindByName("United"); 
Console.WriteLine("{0}({1}) ReservationNumber:{2} 
   WebSite:{3}", UAL.Name.Trim(), UAL.Abbreviation.Trim(), 
   UAL.ReservationNumber.Trim(), UAL.WebSite.Trim()); 

You can assign a meaningful name to rows as well as use strong typing to make sure you are 
working with the data element you want to. If you try to set the field 
UAL.ReservationNumber to an integer, the compiler will detect the mistake. 

A typed DataSet inherits from the DataSet class, so that everything that is available in a 
DataSet is available in a typed DataSet. If the schema of the database changes, however, the 
typed dataset class must be regenerated. 

Generating Typed DataSets

The XML Schema Definition Tool (Xsd.exe) is used to transform an XML schema (XSD) to a 
typed data set. The syntax for doing this is: 

Xsd.exe /d /l:C# filename.xsd 

The /d switch indicates that a DataSet should be generated. The /l switch indicates that a C# 
class should be generated. 

The XSD Tool directory has a batch file that can be used to take the revised AirlineBroker 
XSD and generate a typed dataset AirlineBroker.cs. 

Fetching Data with a Typed DataSet

The TypedDataSet example shows how to use a typed dataset to access the Airline Brokers 
database. You define your SqlConnection as usual and create an SqlDataAdapter instance 
for each table you want to use. You create whatever SqlCommands you need to work with 
the data. A typed DataSet is independent of a database, just like the untyped DataSet, so it 
needs SqlDataAdapter to handle the database operations. 

SqlConnection  conn = new SqlConnection(connectString); 

SqlDataAdapter  airlinesAdapter = new SqlDataAdapter(); 
SqlDataAdapter  flightsAdapter = new SqlDataAdapter(); 
SqlDataAdapter  planetypeAdapter = new SqlDataAdapter(); 
SqlDataAdapter  customersAdapter = new SqlDataAdapter(); 



SqlDataAdapter  reservationsAdapter = new SqlDataAdapter(); 

AirlineBroker airlineBrokerDataset = new AirlineBroker(); 

Next the select commands are defined to fetch the data, just as for use with a regular DataSet. 
For illustrative purposes, constraint checking is enabled even though it is on by default. 

airlinesAdapter.SelectCommand = new SqlCommand( 
                          "select * from Airlines", conn); 
airlinesAdapter.InsertCommand = new SqlCommand( 
           "insert Airlines(Name, Abbreviation, WebSite, 
           ReservationNumber) values(@Name, @Abbrev, @Web, 
           @Reserve)", conn); 
airlinesAdapter.InsertCommand.CommandType = 
           CommandType.Text; 

SqlParameter param = new SqlParameter("@Name", 
           SqlDbType.NChar, 40); 
airlinesAdapter.InsertCommand.Parameters.Add(param); 
airlinesAdapter.InsertCommand.Parameters["@Name"]. 
            SourceColumn = "Name"; 
... 
  airlineBrokerDataset.EnforceConstraints = true; 
... 

Now you can fetch the data. The order is which you do this is important. If Flights data are 
fetched before PlaneType data, a constraint violation exception will occur, because the 
PlaneType field in the Flights table does not exist. 

airlinesAdapter.Fill(airlineBrokerDataset, "Airlines"); 
planetypeAdapter.Fill(airlineBrokerDataset, "PlaneType"); 
flightsAdapter.Fill(airlineBrokerDataset, "Flights"); 
customersAdapter.Fill(airlineBrokerDataset, "Customers"); 
reservationsAdapter.Fill(airlineBrokerDataset, 
                                         "Reservations"); 

Displaying Data with a Typed Dataset

The strong typing makes it straightforward to display the data: 

AirlineBroker.AirlinesDataTable a = 
                   airlineBrokerDataset.Airlines;  
Console.WriteLine(a.TableName); 
Console.WriteLine("    {0, -18} {1, -20} {2, -20} 
           {3, -15}", "Name", "Abbreviation", "Web Site", 
          "Reservation Numbers"); 



for (int i = 0; i < a.Count; i++) 
  Console.WriteLine("    {0, -18} {1, -20} {2, -20} 
    {3, -15}", a[i].Name.Trim(), a[i].Abbreviation.Trim(), 
    a[i].WebSite.Trim(), a[i].ReservationNumber.Trim()); 
... 

It is easy to locate the data: 

AirlineBroker.AirlinesRow UAL = a.FindByName("United"); 
Console.WriteLine("{0}({1}) ReservationNumber:{2} 
   WebSite:{3}", UAL.Name.Trim(), UAL.Abbreviation.Trim(), 
   UAL.ReservationNumber.Trim(), UAL.WebSite.Trim()); 
... 

Modify Data with a Typed Dataset

You modify and update the database with a typed dataset just like a regular dataset. Make sure 
the correct table is specified in the Update method. 

airlineBrokerDataset.Airlines.AddAirlinesRow("Southwest", 
              "S", "1-800-111-222", "www.southwest.com"); 
NumberRows = airlinesAdapter.Update(airlineBrokerDataset, 
              "Airlines"); 
if (NumberRows == 1) 
  Console.WriteLine("Southwest added."); 
else 
  Console.WriteLine("Southwest not added"); 



Summary

ADO.NET provides classes that enable you to design and build a distributed data 
architecture. You can access databases in a connected or disconnected mode 
depending on your concurrency requirements. The DataSet enables you to work 
with data in a relational manner without being connected to any data source. 
XML can be used to model relational data inside an XML document that contains 
nonrelational information. A typed DataSet gives you the ability to work in a 
much easier, type-safe fashion with a DataSet, provided you have an XML 
Schema that defines your data. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Chapter 10. ASP.NET and Web Forms
An important part of .NET is its use in creating Web applications through a 
technology known as ASP.NET. Far more than an incremental enhancement to 
Active Server Pages (ASP), the new technology is a unified Web development 
platform that greatly simplifies the implementation of sophisticated Web 
applications. In this chapter we introduce the fundamentals of ASP.NET and 
cover Web Forms, which make it easy to develop interactive Web sites. In 
Chapter 11 we cover Web Services, which enable the development of 
collaborative Web applications that span heterogeneous systems. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


What Is ASP.NET?

We begin our exploration of ASP.NET by looking at a very simple Web application. Along 
the way we will establish a test bed for ASP.NET programming, and we will review some of 
the fundamentals of Web processing. Our little example will reveal some of the challenges in 
developing Web applications, and we can then appreciate the features and benefits of 
ASP.NET, which we will elaborate in the rest of the chapter. 

Web Application Fundamentals

A Web application consists of document and code pages in various formats. The simplest kind 
of document is a static HTML page, which contains information that will be formatted and 
displayed by a Web browser. An HTML page may also contain hyperlinks to other HTML 
pages. A hyperlink (or just "link") contains an address, or a Uniform Resource Locator (URL), 
specifying where the target document is located. The resulting combination of content and 
links is sometimes called "hypertext" and provides easy navigation to a vast amount of 
information on the World Wide Web. 

Setting up the Web Examples

As usual, all the example programs for this chapter are in the chapter folder. To run the 
examples, you will need to have Internet Information Services (IIS) installed on your system. 
IIS is installed by default with Windows 2000 Server. You will have to explicitly install it 
with Windows 2000 Workstation. Once installed, you can access the documentation on IIS 
through Internet Explorer via the URL http://localhost, which will redirect you to the starting 
IIS documentation page, as illustrated in Figure 10-1. 

Figure 10-1. Internet Information Services documentation.



 

The management tool for IIS is a Microsoft Management Console (MMC) "snap-in," the 
Internet Services Manager, which you can find under Administrative Tools in the Control 
Panel. Figure 10-2 shows the main window of the Internet Services Manager. You can Start 
and Stop the Web server and perform other tasks by right-clicking on Default Web Site. 
Choosing Properties from the context menu will let you perform a number of configurations 
on the Web server. 

Figure 10-2. Internet Services Manager.

 

The default home directory for publishing Web files is \Inetpub\ wwwroot on the drive 
where Windows is installed. You can change this home directory using Internet Services 



Manager. You can access Web pages stored at any location on your hard drive by creating a 
"virtual directory." The easiest way to create one is from Windows Explorer. Right-click over 
the desired directory, choose Sharing..., select the Web Sharing tab, click on the Add button, 
and enter the desired alias, which will be the name of the virtual directory. Figure 10-3 
illustrates creating an alias NetCs, or virtual directory, for the folder \OI\NetCs\Chap10. You 
should perform this operation now on your own system in order that you may follow along as 
the chapter's examples are discussed. 

Figure 10-3. Creating a virtual directory.

 

Once a virtual directory has been created, you can access files in it by including the virtual 
directory in the path of the URL. In particular, you can access the file default.htm using the 
URL http://localhost/NetCs/. The file default.htm contains a home page for all 
the ASP.NET example programs for this chapter. See Figure 10-4. 

Figure 10-4. Home page for ASP.NET example programs.



 

An Echo Program

The first example program for this chapter is Hello.aspx, shown as a link on the home page. 
The example is complete in one file and contains embedded server code. Here is the source 
code, which consists of HTML along with some C# script code. There are also some special 
tags for "server controls," recognized by ASP.NET. 

<!-- Hello.aspx --> 
<%@ Page Language="C#" %> 
<HTML> 
<HEAD> 
    <SCRIPT RUNAT="SERVER"> 
   protected void cmdEcho_Click(object Source, EventArgs e) 
   { 
      lblGreeting.Text="Hello, " + txtName.Text;  
   } 
    </SCRIPT> 
</HEAD> 



<BODY> 
<FORM RUNAT="SERVER">Your name:&nbsp; 
<asp:textbox id=txtName Runat="server"></asp:textbox> 
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo" 
runat="server" tooltip="Click to echo your name"> 
</asp:button></p> 
<asp:label id=lblGreeting runat="server"></asp:label> 
<P></P> 
</FORM> 
</BODY> 
</HTML> 

You can run the program using the URL http://localhost/ 
NetCs/Hello.aspx or by clicking on the link Hello.aspx in the home page of the 
examples programs. The page shows a text box where you can type in your name, and there is 
an "Echo" button. Clicking the button will echo your name back, with a "Hello" greeting. The 
simple form is again displayed, so you could try out other names. If you slide the browser's 
mouse cursor over the button, you will see the tool tip "Click to echo your name" displayed in 
a yellow box. Figure 10-5 illustrates a run of this example. 

Figure 10-5. Running the Hello.aspx echo program.

 

This little program would not be completely trivial to implement with other Web application 
tools, including ASP. The key user-interface feature of such an application is its thoroughly 
forms-based nature. The user is presented with a form and interacts with the form. The server 
does some processing, and the user continues to see the same form. This UI model is second 
nature in desktop applications but is not so common in Web applications. Typically the Web 
server will send back a different page. 



This kind of application could certainly be implemented using a technology like ASP, but the 
code would be a little ugly. The server would need to synthesize a new page that looked like 
the old page, creating the HTML tags for the original page, plus extra information sent back 
(such as the greeting shown at the bottom in our echo example). A mechanism is needed to 
remember the current data that is displayed in the controls in the form. 

Another feature of this Web application is that it does some client-side processing too—the 
"tooltip" displayed in the yellow box is performed by the browser. Such rich client-side 
processing can be performed by some browsers, such as Internet Explorer, but not others. 

As can be seen by the example code, with ASP.NET it is very easy to implement this kind of 
Web application. We will study the code in detail later. For now, just observe how easy it is! 

ASP.NET Features

ASP.NET provides a programming model and infrastructure that facilitates developing new 
classes of Web applications. Part of this infrastructure is the .NET runtime and framework. 
Server-side code is written in .NET compiled languages. Two main programming models are 
supported by ASP.NET. 

●     Web Forms helps you build form-based Web pages. A WYSIWYG development 
environment enables you to drag controls onto Web pages. Special "server-side" 
controls present the programmer with an event model similar to what is provided by 
controls in ordinary Windows programming. This chapter discusses Web Forms in 
detail. 

●     Web Services make it possible for a Web site to expose functionality via an API that 
can be called remotely by other applications. Data is exchanged using standard Web 
protocols and formats such as HTTP and XML, which will cross firewalls. We will 
discuss Web Services in the next chapter. 

Both Web Forms and Web Services can take advantage of the facilities provided by .NET, 
such as the compiled code and .NET runtime. In addition, ASP.NET itself provides a number 
of infrastructure services, including state management, security, configuration, caching, and 
tracing. 

Compiled Code

Web Forms (and Web Services) can be written in any .NET language that runs on top of the 
CLR, including C#, VB.NET, and C++ with Managed Extensions. This code is compiled, and 
thus offers better performance than ASP pages with code written in an interpreted scripting 
language such as VBScript. All of the benefits, such as a managed execution environment, are 
available to this code, and of course the entire .NET Framework Class Library is available. 
Legacy unmanaged code can be called through the .NET interoperability services, which are 
discussed in Chapter 14. 

Server Controls



ASP.NET provides a significant innovation known as "server controls." These controls have 
special tags such as <asp:textbox>. Server-side code interacts with these controls, and the 
ASP.NET runtime generates straight HTML that is sent to the Web browser. The result is a 
programming model that is easy to use and yet produces standard HTML that can run in any 
browser. 

Browser Independence

Although the World Wide Web is built on standards, the unfortunate fact of life is that 
browsers are not compatible and have special features. A Web page designer then has the 
unattractive options of either writing to a lowest common denominator of browser, or else 
writing special code for different browsers. Server controls help remove some of this pain. 
ASP.NET takes care of browser compatibility issues when it generates code for a server 
control. If the requesting browser is upscale, the generated HTML can take advantage of these 
features, otherwise the generated code will be vanilla HTML. ASP.NET takes care of 
detecting the type of browser. 

Separation of Code and Content

Typical ASP pages have a mixture of scripting code interspersed with HTML elements. In 
ASP.NET there is a clean separation between code and presentation content. The server code 
can be isolated within a single <SCRIPT RUNAT="SERVER"> ... /SCRIPT> block or, even 
better, placed within a "code behind" page. We will discuss "code behind" pages later in this 
chapter. If you would like to see an example right away, you can examine the second example 
program HelloCodebehind.aspx, with code in the file HelloCodebehind. aspx.cs. (These 
files are in the top-level chapter directory.) 

State Management

HTTP is a stateless protocol. Thus, if a user enters information in various controls on a form, 
and sends this filled-out form to the server, the information will be lost if the form is displayed 
again, unless the Web application provides special code to preserve this state. ASP.NET 
makes this kind of state preservation totally transparent. There are also convenient facilities 
for managing other types of session and application state. 



Web Forms Architecture

A Web Form consists of two parts: 

●     The visual content or presentation, typically specified by HTML elements 
●     Code that contains the logic for interacting with the visual elements. 

A Web Form is physically expressed by a file with the extension .aspx. Any HTML page could be 
renamed to have this extension and could be accessed using the new extension with identical results to the 
original. Thus Web Forms are upwardly compatible with HTML pages. 

The way code can be separated from the form is what makes a Web Form special. This code can be either 
in a separate file (having an extension corresponding to a .NET language, such as .cs for C#) or in the 
.aspx file, within a <SCRIPT RUNAT="SERVER"> ... /SCRIPT> block. When your page is run in the 
Web server, the user interface code runs and dynamically generates the output for the page. 

We can understand the architecture of a Web Form most clearly by looking at the code-behind version of 
our "echo" example. The visual content is specified by the .aspx file HelloCodebehind.aspx. 

<!-- HelloCodebehind.aspx --> 
<%@ Page Language="C#" Src="HelloCodebehind.aspx.cs" 
Inherits= MyWebPage %> 
<HTML> 
  <HEAD> 
  </HEAD> 
<BODY> 
<FORM RUNAT="SERVER">YOUR NAME:&nbsp; 
<asp:textbox id=txtName Runat="server"></asp:textbox> 
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo" 
runat="server" tooltip="Click to echo your name"> 
</asp:button></p> 
   <asp:label id=lblGreeting runat="server"></asp:label> 
<P></P> 
</FORM> 
</BODY> 
</HTML> 

The user interface code is in the file HelloCodebehind.aspx.cs, 

// HelloCodebehind.aspx.cs 

using System; 
using System.Web; 
using System.Web.UI; 
using System.Web.UI.WebControls; 

public class MyWebPage : System.Web.UI.Page 
{ 
   protected TextBox txtName; 
   protected Button cmdEcho; 
   protected Label lblGreeting; 



   protected void cmdEcho_Click(object Source, EventArgs e) 
   { 
      lblGreeting.Text="Hello, " + txtName.Text; 
   } 
} 

Page Class

The key namespace for Web Forms and Web Services is System.Web. Support for Web Forms is in the 
namespace System.Web.UI. Support for server controls such as text boxes and buttons is in the 
namespace System.Web.UI.WebControls. The class that dynamically generates the output for an .aspx 
page is the Page class, in the System.Web.UI namespace, and classes derived from Page, as illustrated in 
the code behind page in this last example. 

Inheriting from Page Class

The elements in the .aspx file, the code in the code-behind file (or script block), and the base Page class 
work together to generate the page output. This cooperation is achieved by ASP.NET's dynamically 
creating a class for the .aspx file, which is derived from the "code-behind" class, which in turn is derived 
from Page. This relationship is created by the "Inherits" attribute in the .aspx file. Figure 10-6 illustrates 
the inheritance hierarchy. Here MyWebPage is a class we implement, derived from Page. 

Figure 10-6. Hierarchy of page classes.

 

The most derived page class, shown as "My .aspx Page" in Figure 10-6, is dynamically created by the 
ASP.NET runtime. This class extends the page class, shown as "MyWebPage" in the figure, to incorporate 
the controls and HTML text on the Web Form. This class is compiled into an executable, which is run 
when the page is requested from a browser. The executable code creates the HTML that is sent to the 
browser. 

Web Forms Page Life Cycle

We can get a good high-level understanding of the Web Forms architecture by following the life cycle of 
our simple Echo application. We will use the code-behind version (the second example), 
HelloCodebehind.aspx. 



1.  User requests the HelloCodebehind.aspx Web page in the browser. 

2.  Web server compiles the page class from the .aspx file and its associated code behind page. The 
Web server executes the code, creating HTML, which is sent to the browser. (In Internet Explorer 
you can see the HTML code from the menu View | Source.) Note that the server controls are 
replaced by straight HTML. The following code is what arrives at the browser, not the original 
code on the server.

<!-- HelloCodebehind.aspx --> 

<HTML> 
  <HEAD> 
  </HEAD> 
<BODY> 
<form name="ctrl0" method="post" 
action="HelloCodebehind.aspx" id="ctrl0">  
<input type="hidden" name="__VIEWSTATE" 
value="dDwxMzc4MDMwNTk1Ozs+" /> 
YOUR NAME:&nbsp; <input name="txtName" type="text" 
id="txtName" /> 
<p><input type="submit" name="cmdEcho" value="Echo" 
id="cmdEcho" title="Click to echo your name" /></p> 
   <span id="lblGreeting"></span> 
<P></P> 
</form> 
</BODY> 
</HTML> 

3.  The browser renders the HTML, displaying the simple form shown in Figure 10-7. To distinguish 
this example from the first one, we show "YOUR NAME" in all capitals. Since this is the first time 
the form is displayed, the text box is empty, and no greeting message is displayed.

Figure 10-7. The form for the "Echo" application is displayed for the first time.

 



4.  The user types in a name (e.g., "Mary Smith") and clicks the "Echo" button. The browser 
recognizes that a Submit button has been clicked. The method for the form is "post" [1] and the 
action is "HelloCodebehind.aspx." We thus have what is called a "post back" to the original .aspx 
file. 

[1] The HTTP POST method sends form results separately as part of the data body, rather 
than by concatenating it onto the URL, as is done in the GET method.

5.  The server now performs processing for this page. An event was raised when the user clicked the 
"Echo" button, and an event handler in the MyWebPage class is invoked. 

protected void cmdEcho_Click(object Source, EventArgs e) 
{ 
   lblGreeting.Text="Hello, " + txtName.Text; 
} 

6.  The Text property of the TextBox server control txtName is used to read the name submitted by 
the user. A greeting string is composed and assigned to the Label control lblGreeting, again using 
property notation. 

7.  The server again generates straight HTML for the server controls and sends the whole response to 
the browser. Here is the HTML. 

... 
<form name="ctrl0" method="post" 
action="HelloCodebehind.aspx" id="ctrl0"> 
<input type="hidden" name="__VIEWSTATE" 
value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47b 
Dx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoOz4+Oz47Oz47P 
j47Pj47Pg==" /> 
YOUR NAME:&nbsp; <input name="txtName" type="text" 
value="Mary Smith" id="txtName" /> 
<p><input type="submit" name="cmdEcho" value="Echo" 
id="cmdEcho" title="Click to echo your name" /></p> 
   <span id="lblGreeting">Hello, Mary Smith</span> 
... 

8.  The browser renders the page, as shown in Figure 10-8. Now a greeting message is displayed.

Figure 10-8. After a round trip a greeting message is displayed.



 

View State

An important characteristic of Web Forms is that all information on forms is "remembered" by the Web 
server. Since HTTP is a stateless protocol, this preservation of state does not happen automatically but 
must be programmed. A nice feature of ASP.NET is that this state information, referred to as "view state," 
is preserved automatically by the Framework, using a "hidden" control. 

... 
<input type="hidden" name="__VIEWSTATE" 
value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47b 
Dx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoOz4+Oz47Oz47P 
j47Pj47Pg==" /> 
... 

Later in the chapter we will examine other facilities provided by ASP.NET for managing session state and 
application state. 

Web Forms Event Model

From the standpoint of the programmer, the event model for Web Forms is very similar to the event 
model for Windows Forms. Indeed, this similarity is what makes programming with Web Forms so easy. 
What is actually happening in the case of Web Forms, though, is rather different. The big difference is 
that events get raised on the client and processed on the server. [2] 

[2] Some controls, such as the Calendar control, raise some events on the server. Also, the Page 
itself raises events on the server.

Our simple form with one text box and one button is not rich enough to illustrate event processing very 
thoroughly. Let's imagine a more elaborate form with several text boxes, list boxes, check boxes, buttons, 
and the like. Because round trips to the server are expensive, events do not automatically cause a postback 
to the server. Server controls have what is known as an intrinsic event set of events that automatically 
cause a postback to the server. The most common such intrinsic event is a button click. Other events, such 
as selecting an item in a list box, do not cause an immediate postback to the server. Instead, these events 
are cached, until a button click causes a post to the server. Then, on the server the various change events 
are processed, in no particular order, and the button-click event that caused the post is processed. 



Page Processing

Processing a page is a cooperative endeavor between the Web server, the ASP.NET runtime, and your 
own code. The Page class provides a number of events, which you can handle to hook into page 
processing. The Page class also has properties and methods that you can use. We cover some of the major 
ones here. For a complete description, consult the .NET Framework documentation. The example 
programs in this chapter will illustrate features of the Page class. 

Page Events

A number of events are raised on the server as part of the normal processing of a page. These events are 
actually defined in the Control base class and so are available to server controls also. The most important 
ones are listed below. 

●     Init is the first step in the page's life cycle and occurs when the page is initialized. There is no view-
state information for any of the controls at this point. 

●     Load occurs when the controls are loaded into the page. View-state information for the controls is 
now available. 

●     PreRender occurs just before the controls are rendered to the output stream. Normally this event is 
not handled by a page but is important for implementing your own server controls. 

●     Unload occurs when the controls are unloaded from the page. At this point it is too late to write 
your own data to the output stream. 

Page Properties

The Page class has a number of important properties. Some of the most useful are listed below. 

●     EnableViewState indicates whether the page maintains view state for itself and its controls. You 
can get or set this property. The default is true, view state is maintained. 

●     ErrorPage specifies the error page to which the browser should be redirected in case an unhandled 
exception occurs. 

●     IsPostBack indicates whether the page is being loaded in response to a postback from the client or 
is being loaded for the first time. 

●     IsValid indicates whether page validation succeeded. [3] 

[3] We discuss validation later in the chapter, in the section on Server Controls. 

●     Request gets the HTTP Request object, which allows you to access data from incoming HTTP 
requests. 

●     Response gets the HTTP Response object, which allows you to send response data to a browser. 
●     Session gets the current Session object, which is provided by ASP.NET for storing session state. 
●     Trace gets a TraceContext object for the page, which you can use to write out trace information. 

Sample Program

We can illustrate some of these features of page processing with a simple extension to our Echo program. 
The page HelloPage.aspx (located in the top-level chapter directory) provides handlers for a number of 
page events, and we write simple text to the output stream, using the Response property. For each event 
we show the current text in the txtName and lblGreeting server controls. In the handler for Load we also 
show the current value of IsPostBack, which should be false the first time the page is accessed, and 
subsequently true. 



<!-- HelloPage.aspx --> 
<%@ Page Language="C#" Debug="true" %> 
<HTML> 
<HEAD> 
 <SCRIPT RUNAT="SERVER"> 
protected void cmdEcho_Click(object Source, EventArgs e) 
{ 
   lblGreeting.Text="Hello, " + txtName.Text; 
} 
protected void Page_Init(Object sender, EventArgs E) 
{ 
   Response.Write("Page_Init<br>"); 
   Response.Write("txtName = " + txtName.Text + "<br>"); 
   Response.Write("lblGreeting = " + lblGreeting.Text + 
                  "<br>"); 
} 
protected void Page_Load(Object sender, EventArgs E) 
{ 
   Response.Write("Page_Load<br>"); 
   Response.Write("IsPostBack = " + IsPostBack + "<br>");  
   Response.Write("txtName = " + txtName.Text + "<br>"); 
   Response.Write("lblGreeting = " + lblGreeting.Text + 
                  "<br>"); 
} 
protected void Page_PreRender(Object sender, EventArgs E) 
{ 
   Response.Write("Page_PreRender<br>"); 
   Response.Write("txtName = " + txtName.Text + "<br>"); 
   Response.Write("lblGreeting = " + lblGreeting.Text + 
                  "<br>"); 
} 
protected void Page_Unload(Object sender, EventArgs E) 
{ 
   //Response not available in this context 
   //Response.Write("Page_Unload<br>"); 
} 
</SCRIPT> 
</HEAD> 
<BODY> 
<FORM RUNAT="SERVER">Your name:&nbsp; 
<asp:textbox id=txtName Runat="server"></asp:textbox> 
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo" 
runat="server" tooltip="Click to echo your name"> 
</asp:button></p> 
<asp:label id=lblGreeting runat="server"></asp:label> 
<P></P> 
</FORM> 
</BODY> 
</HTML> 

When we display the page the first time the output reflects the fact that both the text box and the label are 



empty, since we have entered no information. IsPostBack is false. 

Now enter a name and click the "Echo" button. We obtain the following output from our handlers for the 
page events: 

Page_Init 
txtName = 
lblGreeting = 
Page_Load 
IsPostBack = True 
txtName = Robert 
lblGreeting = 
Page_PreRender 
txtName = Robert 
lblGreeting = Hello, Robert 

In Page_Init there is no information for either control, since view state is not available at page 
initialization. In Page_Load the text box has data, but the label does not, since the click-event handler has 
not yet been invoked. IsPostBack is now true. In Page_PreRender both controls now have data. 

Click "Echo" a second time. Again, the controls have no data in Page_Init. This time, however, in 
Page_Load the view state provides data for both controls. Figure 10-9 shows the browser output after 
"Echo" has been clicked a second time. 

Figure 10-9. Browser output after "Echo" has been clicked a second time.

 



Page Directive

An .aspx file may contain a page directive defining various attributes that can control how ASP.NET 
processes the page. A page directive contains one or more attribute/value pairs of the form 

attribute="value" 

within the page directive syntax 

<@ Page ... @> 

Our example program HelloCodebehind.aspx illustrates an .aspx page that does not have any code 
within it. The "code-behind" file HelloCodebehind.aspx.cs that has the code is specified using the Src 
attribute. 

<!-- HelloCodebehind.aspx --> 
<%@ Page Language="C#" Src="HelloCodebehind.aspx.cs" 
Inherits=MyWebPage %> 
... 

Src

The Src attribute identifies the code-behind file. 

Language

The Language attribute specifies the language used for the page. The code in this language may be in 
either a code-behind file or a SCRIPT block within the same file. Values can be any .NET-supported 
language, including C# and VB.NET. 

Inherits

The Inherits directive specifies the page class from which the .aspx page class will inherit. 

Debug

The Debug attribute indicates whether the page should be compiled with debug information. If true, 
debug information is enabled, and the browser can provide detailed information about compile errors. The 
default is false. 

ErrorPage

The ErrorPage attribute specifies a target URL to which the browser will be redirected in the event that 
an unhandled exception occurs on the page. 

Trace

The Trace attribute indicates whether tracing is enabled. A value of true turns tracing on. The default is 
false. 

Tracing



ASP.NET provides extensive tracing capabilities. Merely setting the Trace attribute for a page to true 
will cause trace output generated by ASP.NET to be sent to the browser. In addition, you can output your 
own trace information using the Write method of the TraceContext object, which is obtained from the 
Trace property of the Page. 

The page HelloTrace.aspx illustrates using tracing in place of writing to the Response object. 

<!-- HelloTrace.aspx --> 
<%@ Page Language="C#" Debug="true" Trace = "true" %> 
<HTML> 
<HEAD> 
 <SCRIPT RUNAT="SERVER"> 
protected void cmdEcho_Click(object Source, EventArgs e) 
{ 
   lblGreeting.Text="Hello, " + txtName.Text; 
} 
protected void Page_Init(Object sender, EventArgs E) 
{ 
   Trace.Write("Page_Init<br>"); 
   Trace.Write("txtName = " + txtName.Text + "<br>"); 
   Trace.Write("lblGreeting = " + lblGreeting.Text + 
               "<br>"); 
} 
... 

Figure 10-10 shows the browser output after the initial request for the page. Notice that the trace output is 
shown after the form, along with trace information that is generated by ASP.NET itself. 

Figure 10-10. Browser output showing trace information.

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html




Request/Response Programming

The server control architecture is built on top of a more fundamental processing 
architecture, which may be called "request/response." Understanding request/response 
is important to solidify our overall grasp of ASP.NET. Also, in certain programming 
situations request/response is the natural approach. 

HttpRequest Class

The System.Web namespace contains a useful class HttpRequest that can be used to 
read the various HTTP values sent by a client during a Web request. These HTTP 
values would be used by a classical CGI program in acting upon a Web request, and 
they are the foundation upon which higherlevel processing is built. Table 10-1 shows 
some of the public instance properties of HttpRequest. If you are familiar with HTTP, 
the meaning of these various properties should be largely self-explanatory. Refer to the 
.NET Framework documentation of the HttpRequest class for full details about these 
and other properties. 

Table 10-1. Public Instance Properties of HttpRequest

Property Meaning 

AcceptTypes String array of client-supported MIME accept types 
Browser Information about client's browser capabilities 
ContentLength Length in bytes of content sent by the client 
Cookies Collection of cookies sent by the client 
Form Collection of form variables 
Headers Collection of HTTP headers 
HttpMethod HTTP transfer method used by client (e.g., GET or POST) 
Params Combined collection of QueryString, Form, ServerVariables, and 

Cookies items 
Path Virtual request of the current path 
QueryString Collection of HTTP query string variables 
ServerVariables Collection of Web server variables 

The Request property of the Page class returns a HttpRequest object. You may then 
extract whatever information you need, using the properties of HttpRequest. For 
example, the following code determines the length in bytes of content sent by the client 
and writes that information to the Response object. 



int length = Request.ContentLength; 
Response.Write("ContentLength = " + length + "<br>"); 

Collections

A number of useful collections are exposed as properties of HttpRequest. The 
collections are of type NamedValueCollection (in System. Collections.Specialized 
namespace). You can access a value from a string key. For example, the following 
code extracts values for the QUERY_STRING and HTTP_USER_AGENT server 
variables using the ServerVariables collection. 

string strQuery = 
   Request.ServerVariables["QUERY_STRING"]; 
string strAgent = 
   Request.ServerVariables["HTTP_USER_AGENT"]; 

Server variables such as these are at the heart of classical Common Gateway Interface 
(CGI) Web server programming. The Web server passes information to a CGI script or 
program by using environment variables. ASP.NET makes this low-level information 
available to you, in case you need it. 

A common task is to extract information from controls on forms. In HTML, controls 
are identified by a name attribute, which can be used by the server to determine the 
corresponding value. The way in which form data is passed to the server depends on 
whether the form uses the HTTP GET method or the POST method. 

With GET, the form data is encoded as part of the query string. The QueryString 
collection can then be used to retrieve the values. With POST, the form data is passed 
as content after the HTTP header. The Forms collection can then be used to extract the 
control values. You could use the value of the REQUEST_METHOD server variable 
(GET or POST) to determine which collection to use (the QueryString collection in 
the case of GET and the Forms collection in case of POST). 

With ASP.NET you don't have to worry about which HTTP method was used in the 
request. ASP.NET provides a Params collection, which is a combination (union in the 
mathematical sense) of the ServerVariables, QueryString, Forms, and Cookies 
collections. 

Example Program

We illustrate all these ideas with a simple page Squares.aspx that displays a column of 
squares. How many squares to display is determined by a number submitted on a form. 
The page GetSquares.aspx submits the request using GET, and PostSquares.aspx 
submits the request using POST. These two pages have the same user interface, 



illustrated in Figure 10-11. 

Figure 10-11. Form for requesting a column of squares.

 

Here is the HTML for GetSquares.aspx. Notice that we are using straight HTML. 
Except for the Page directive, which turns tracing on, no features of ASP.NET are 
used. 

<!-- GetSquares.aspx  --> 
<%@ Page Trace = "true" %> 
<html> 
<head> 
</head> 
<body> 
<P>This program will print a column of squares</P> 
<form method="get" action = Squares.aspx> 
How many: 
<INPUT type=text size=2 value=5 name=txtCount> 
<P></P>  
<INPUT type=submit value=Squares name=cmdSquares> 
</form> 
</body> 
</html> 

The form tag has attributes specifying the method (GET or POST) and the action 
(target page). The controls have a name attribute, which will be used by server code to 



retrieve the value. 

Run GetSquares.aspx and click "Squares." You will see some HTTP information 
displayed, followed by the column of squares. Tracing is turned on, so details about the 
request are displayed by ASP.NET. Figure 10-12 illustrates the output from this GET 
request. 

Figure 10-12. Output from a GET request.

 

You can see that form data is encoded in the query string, and the content length is 0. If 
you scroll down on the trace output, you will see much information. For example, the 
QueryString collection is shown. 

Now run PostSquares.aspx and click "Squares." Again you will then see some HTTP 
information displayed, followed by the column of squares. Tracing is turned on, so 
details about the request are displayed by ASP.NET. Figure 10-13 illustrates the output 
from this POST request. 

Figure 10-13. Output from a POST request.



 

You can see that now the query string is empty, and the content length is 29. The form 
data is passed as part of the content, following the HTTP header information. If you 
scroll down on the trace output, you will see that now there is a Form collection, 
which is used by ASP.NET to provide access to the form data in the case of a POST 
method. 

By comparing the output of these two examples, you can clearly see the difference 
between GET and POST, and you can also see the data structures used by ASP.NET to 
make it easy for you to extract data from HTTP requests. 

HttpResponse Class

The HttpResponse class encapsulates HTTP response information that is built as part 
of an ASP.NET operation. The Framework uses this class when it is creating a 
response that includes writing server controls back to the client. Your own server code 
may also use the Write method of the Response object to write data to the output 
stream that will be sent to the client. We have already seen many illustrations of 
Response.Write. 

Redirect

The HttpResponse class has a useful method, Redirect, that enables server code to 



redirect an HTTP request to a different URL. A simple redirection without passing any 
data is trivial—you need only call the Redirect method and pass the URL. An example 
of such usage would be a reorganization of a Web site, where a certain page is no 
longer valid and the content has been moved to a new location. You can keep the old 
page live by simply redirecting traffic to the new location. 

It should be noted that redirection always involves an HTTP GET request, like 
following a simple link to a URL. (POST arises as an option when submitting form 
data, where the action can be specified as GET or POST.) 

A more interesting case involves passing data to the new page. One way to pass data is 
to encode it in the query string. You must preserve standard HTTP conventions for the 
encoding of the query string. The class HttpUtility provides a method UrlEncode, 
which will properly encode an individual item of a query string. You must yourself 
provide code to separate the URL from the query string with a "?" and to separate 
items of the query string with "&." 

The folder Hotel provides an example of a simple Web application that illustrates this 
method of passing data in redirection. The file default.aspx provides a form for 
collecting information to be used in making a hotel reservation. The reservation itself 
is made on the page Reservation1.aspx. You may access the starting default.aspx 
page through the URL http://localhost/NetCs/Hotel/ 

As usual, we provide a link to this page in our home page of example programs. Figure 
10-14 illustrates the starting page of our simple hotel reservation example. 

Figure 10-14. Starting page for making a hotel reservation.



 

Here is the script code that is executed when the "Make Reservation" button is clicked. 

private void cmdMakeReservation_Click( 
   object sender, System.EventArgs e) 
{ 
   string query = "City=" + 
      HttpUtility.UrlEncode(txtCity.Text); 
   query += "&Hotel=" + 
      HttpUtility.UrlEncode(txtHotel.Text); 
   query += "&Date=" + 
      HttpUtility.UrlEncode(txtDate.Text); 
   query += "&NumberDays=" + 
      HttpUtility.UrlEncode(txtNumberDays.Text); 
   Response.Redirect("Reservation1.aspx?" + query); 
} 

We build a query string, which gets appended to the Reservation1.aspx URL, 
separated by a "?". Note the ampersand that is used as a separator of items in the query 
string. We use the HttpUtility.UrlEncode method to encode the individual items. 
Special encoding is required for the slashes in the date and for the space in the name 



"San Jose." Clicking the button brings up the reservation page. You can see the query 
string in the address window of the browser. Figure 10-15 illustrates the output shown 
by the browser. (Our program does not actually make the reservation; it simply prints 
out the parameters passed to it.) 

Figure 10-15. Browser output from making a hotel reservation.

 

You can turn on tracing, and the trace output should serve to reinforce the ideas we 
have been discussing about request/response Web programming. In particular, you 
should examine the QueryString collection, as illustrated in Figure 10-16. 

Figure 10-16. The query string is used for passing parameters in 
redirection.

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Web Applications Using Visual Studio.NET

We have examined the fundamentals of ASP.NET and have created some simple Web pages. To 
carry the story further it will be very helpful to start using Visual Studio.NET. Everything we do 
could also be accomplished using only the .NET Framework SDK, but our work will be much 
easier using the facilities of Visual Studio. A special kind of project, an "ASP.NET Web 
Application," creates the boilerplate code. The Forms Designer makes it very easy to create Web 
forms by dragging controls from a palette. We can add event handlers for controls in a manner 
very similar to the way event handlers are added in Windows Forms. In fact, the whole Web 
application development process takes on many of the rapid application development (RAD) 
characteristics typical of Visual Basic. 

In this section we will introduce the Web application development features of Visual Studio by 
creating the first step of our Acme Travel Web site. We will elaborate on specific features of 
ASP.NET in later sections. 

Form Designers for Windows and Web 
Applications

The basic look and feel of the Form Designers for Windows and Web applications is 
the same. You drag controls from a toolbox. You set properties in a Property window. 
You navigate between a code view and a designer view with toolbar buttons. In the 
following discussion we assume you have a basic familiarity with this visual 
paradigm. You may find it helpful to refer back to Chapter 6. 

Hotel Information Web Page (Step 0)

We begin by creating a simple Web page that will display information about hotels. Dropdown 
listboxes are provided to show cities and hotels. Selecting a city from the first dropdown will 
cause the hotels in that city to be shown in the second dropdown. We obtain the hotel 
information from the Hotel.dll component, and we use data binding to populate the listboxes. As 
a source for the Hotel.dll and Customer.dll components used later, we provide a copy of the 
GUI application from Chapter 6, AcmeGui. The Hotel.dll component we need in the following 
demonstration is in the folder AcmeGui\Hotel\bin\Debug. 

If you would like to follow along hands-on with Visual Studio, do your work in the Demos 
folder for this chapter. The completed project is in CaseStudy\Step0. 

Configuring Web Server Connection

Before getting started you may wish to check, and possibly change, your Visual Studio Web 
Server Connection setting. The two options are File share and FrontPage. If you are doing all 
your development on a local computer, you might find File share to be faster and more 
convenient. To access this setting, select the Visual Studio menu Tools | Options.… Choose 
Web Settings underneath Projects. You can then set the Preferred Access Method by using a 
radio button, as illustrated in Figure 10-17. 



Figure 10-17. Configuring Web server connection preferred access method.

 

Creating an ASP.NET Web Application

1.  In Visual Studio select the menu File | New | Project.… 

2.  In the New Project dialog box choose "Visual C# Projects" as the Project Type and 
"ASP.NET Web Application" as the Template. 

3.  Enter "AcmeWeb" as the name of your project. For the location enter an HTTP path to a 
folder on your server machine. The default will be the IIS home directory 
\Inetpub\wwwroot. If you have made \OI\NetCs\Chap10 into a virtual directory with 
alias "NetCs", you can enter for the path http://localhost/NetCs/Demos, as 
illustrated in Figure 10-18. 

Figure 10-18. Creating a Visual Studio ASP.NET Web Application project.



 

4.  Click OK. The project files will then be created in \OI\NetCs\ Chap10\Demos. The 
VS.NET solution AcmeWeb.sln will then be created under MyDocuments\Visual 
Studio Projects\AcmeWeb. 

Using the Form Designer

1.  Bring up the Toolbox from the View menu, if not already showing. Make sure the Web 
Forms tab is selected. 

2.  Drag two Label controls and two DropDownList controls onto the form. 

3.  Change the Text property of the Labels to "City" and "Hotel." Resize the DropDownList 
controls to look as shown in Figure 10-19. 

Figure 10-19. Using the Form Designer to add controls to the form.



 

4.  Change the (ID) of the DropDownList controls to listCities and listHotels. 

Initializing the HotelBroker

1.  Copy Hotel.dll from AcmeGui\Hotel\bin\Debug to Demos\ AcmeWeb\bin. 

2.  In your AcmeWeb, project add a reference to Hotel.dll. 

3.  As shown in the following code fragment, in Global.asax, add the following line near the 

top of the file. (Use the View Code button  to show the code.) 

using OI.NetCs.Acme; 

4.  Add a public static variable hotelBroker of type HotelBroker. 

5.  Add code to Application_Start to instantiate HotelBroker. 

// Global.asax 
using System;  
using System.Collections; 
using System.ComponentModel; 
using System.Web; 
using System.Web.SessionState; 
using OI.NetCs.Acme; 

namespace AcmeWeb 
{ 
   /// <summary> 
   /// Summary description for Global. 
   /// </summary> 
   public class Global : System.Web.HttpApplication 



   { 
      public static HotelBroker hotelBroker; 
      protected void Application_Start(Object sender, 
                                       EventArgs e) 
      { 
         hotelBroker = new HotelBroker(); 
      } 
      ... 

6.  In WebForm1.aspx.cs add a using OI.NetCs.Acme; statement, and declare a static 
variable hotelBroker of type HotelBroker. 

... 
using OI.NetCs.Acme; 

namespace AcmeWeb 
{ 
   /// <summary> 
   /// Summary description for WebForm1. 
   /// </summary> 
   public class WebForm1 : System.Web.UI.Page 
   { 
      ... 
      private static HotelBroker hotelBroker; 
      ... 

Data Binding

Next we will populate the first DropDownList with the city data, which can be obtained by the 
GetCities method of HotelBroker. We make use of the data binding capability of the 
DropDownList control. You might think data binding is only used with a database. However, in 
.NET data binding is much more general, and can be applied to other data sources besides 
databases. Binding a control to a database is very useful for two-tier, client/server applications. 
However, we are implementing a three-tier application, in which the presentation logic, whether 
implemented using Windows Forms or Web Forms, talks to a business logic component and not 
directly to the database. So we will bind the control to an ArrayList. 

The .NET Framework provides a number of data binding options, which can facilitate binding to 
data obtained through a middle-tier component. A very simple option is binding to an 
ArrayList. This option works perfectly in our example, because we need to populate the 
DropDownList of cities with strings, and the GetCities method returns an array list of strings. 

The bottom line is that all we need to do to populate the listCities DropDownList is to add the 
following code to the Page_Load method of the WebForm1 class. 

private void Page_Load(object sender, System.EventArgs e) 
{ 
   if (!IsPostBack) 



   { 
      hotelBroker = Global.hotelBroker; 
      ArrayList cities = hotelBroker.GetCities(); 
      listCities.DataSource = cities; 
      DataBind(); 
   } 
} 

The call to DataBind( ) binds all the server controls on the form to their data source, which 
results in the controls being populated with data from the data source. The DataBind method 
can also be invoked on the server controls individually. DataBind is a method of the Control 
class, and is inherited by the Page class and by specific server control classes. 

You can now build and run the project. Running a Web application under Visual Studio will 
bring up Internet Explorer to access the application over HTTP. Figure 10-20 shows the running 
application. When you drop down the list of cities, you will indeed see the cities returned by the 
HotelBroker component. 

Figure 10-20. Running the Web page to show information about cities.

 

Initializing the Hotels

We can populate the second DropDownList with hotel data using a similar procedure. It is a 
little bit more involved, because GetHotels returns an array list of HotelListItem structures 
rather than strings. We want to populate the listHotels DropDownList with the names of the 
hotels. The helper method BindHotels loops through the array list of hotels and creates an array 
list of hotel names, which is bound to listHotels. Here is the complete code, which adds the 
logic for initializing the hotels for the first city (which has index 0). 



private void Page_Load(object sender, System.EventArgs e) 
{ 
   if (!IsPostBack) 
   { 
      hotelBroker = Global.hotelBroker; 
      ArrayList cities = hotelBroker.GetCities(); 
      listCities.DataSource = cities; 
      ArrayList hotels = 
         hotelBroker.GetHotels((string)cities[0]); 
      BindHotels(hotels); 
      DataBind(); 
   } 
} 
private void BindHotels(ArrayList hotels) 
{ 
   ArrayList hotelNames = new ArrayList(hotels.Count); 
   foreach(HotelListItem hotel in hotels)  
   { 
      hotelNames.Add(hotel.HotelName.Trim()); 
   } 
   listHotels.DataSource = hotelNames; 

} 

Selecting a City

Finally, we implement the feature that selecting a city causes the hotels for the selected city to 
be displayed. We can add an event handler for selecting a city by double-clicking on the 
listCities DropDownList control. The is a shortcut for adding a handler for the primary event for 

the control. In the Properties window you can click on the  button to see all the events for 
the control. You can then double-click on the event. The second method allows you to add a 
handler for any event of the control. Here is the code for the SelectedIndexChanged event. 

private void listCities_SelectedIndexChanged(object 
sender, 
   System.EventArgs e) 
{ 
   string city = listCities.SelectedItem.Text; 
   ArrayList hotels = hotelBroker.GetHotels(city); 
   BindHotels(hotels); 
   DataBind(); 
} 

Build and run the project. Unfortunately, the event does not seem to be recognized by the server. 
What do you suppose the problem is? 

AutoPostBack



For an event to be recognized by the server, you must have a postback to the server. Such a 
postback happens automatically for a button click, but not for other events. Once this problem is 
recognized, the remedy is simple. In the Properties window for the cities DropDownList control, 
change the AutoPostBack property to true. (You can get back to a display of properties from a 

display of events by clicking the  button.) Figure 10-21 illustrates setting the AutoPostBack 
property. 

Figure 10-21. Setting the AutoPostBack property of a DropDownList control.

 

Debugging

One advantage of using Visual Studio for developing your ASP.NET applications is the ease of 
debugging. You can set breakpoints, single-step, examine the values of variables, and so forth, 
in your code-behind files just as you would with any other Visual Studio program. All you have 
to do is build your project in Debug mode (the default) and start the program from within Visual 

Studio using Debug | Start (or F5 at the keyboard or the toolbar button ). 

As an example, set a breakpoint on the first line of the SelectedIndexChanged event handler for 
listCities. Assuming you have set the AutoPostBack property to true, as we have discussed, 
you should hit the breakpoint, as illustrated in Figure 10-22. 

Figure 10-22. Debugging a code-behind file in Visual Studio.



 

Deploying a Web Application Created Using Visual Studio

Developing a Web application using Visual Studio is quite straightforward. You can do all your 
work within Visual Studio, including testing your application. When you start a Web application 
within Visual Studio, Internet Explorer will be brought up automatically. And it is easy to 
debug, as we have just seen. 

Deploying a Web application created using Visual Studio is also easy, but you need to be aware 
of a few things. [4] 

[4] This part of the Visual Studio development environment has been the most 
problematical in working with beta software. A technique we have found useful in the 
beta is to edit the .csproj.webinfo file to provide an HTTP path to a new location 
where the project has been moved. Then double-clicking on the .csproj file will create 
a new Visual Studio solution, which you can work with. Be sure to consult the 
readme.txt file for this chapter in the code distribution.

1.  The Project | Copy Project... menu can be used to deploy a Web project from Visual 
Studio. 

2.  Visual Studio precompiles Web pages, storing the executable in the bin folder. 

3.  The Src attribute in the Page directive is not used. Instead, the Inherits attribute is used 
to specify the Page class. 

4.  The directory containing the Web pages must be marked as a Web application. This 
marking is performed automatically by Visual Studio when you deploy the application. If 
you copy the files to another directory, possibly on another system, you must perform the 
marking as an application yourself, which you can do using Internet Services Manager. 

Using Project | Copy Project...

To illustrate using Visual Studio to deploy a Web project, let's deploy the Acme Hotel 
Information page we have created. We will deploy it to a new directory AcmeWeb0 in the 
Deploy directory for Chapter 10. 



1.  Using Windows Explorer, create a new directory AcmeWeb0 underneath Deploy. 

2.  Bring up the Copy Project dialog from the menu Project | Copy Project.… 

3.  Enter the following information (see Figure 10-23). 

❍     http://localhost/NetCs/Deploy/AcmeWeb0 for Destination project folder 

❍     File share for Web access method 

❍     \OI\NetCs\Chap10\Deploy\AcmeWeb0 for Path 

❍     "Only files needed to run this application" for Copy 

Figure 10-23. Copying Web project files using Visual Studio.

 

4.  You can test the deployment by using Internet Explorer. Enter the following URL: 
http://localhost/netcs/deploy/AcmeWeb0/WebForm1.aspx. You 
should then see the hotel information Web page displayed, and you should be able to 
select a city from the City dropdown and see the corresponding hotels displayed in the 
Hotel dropdown.

Precompiled Web Page

Examining the files in the folder Deploy\AcmeWeb0, you will see no code-behind file 



WebForm1.aspx.cs. Instead, in the bin folder you will see the DLL AcmeWeb.dll. 

Inherits Attribute in Page Directive

Examining the file WebForm1.aspx, we see there is no Src attribute. Instead, the Inherits 
attribute specifies the Page class WebForm1, which is implemented in the assembly 
AcmeWeb.dll. 

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" 
AutoEventWireup="false" Inherits="AcmeWeb.WebForm1" %> 

Configuring a Virtual Directory as an Application

The identical files you copied to Deploy\AcmeWeb0 are also provided in the directory 
AcmeRun\Step0. Try the URL http://localhost/ 
netcs/AcmeRun/Step0/WebForm1.aspx in Internet Explorer. You will obtain a 
configuration error, as illustrated in Figure 10-24. 

Figure 10-24. Error message when virtual directory is not configured as an 
application.



 

The key sentence in the error message is: "This error can be caused by a virtual directory not 
being configured as an application in IIS." The remedy is simple. Use Internet Services Manager 
to perform the following steps. 

1.  Find the folder Step0 underneath AcmeRun in the virtual directory NetCs. 

2.  Right-click and choose properties. See Figure 10-25. Click "Create." 

Figure 10-25. Configuring a virtual directory as an application in IIS.

 

3.  You will then see "Step0" suggested as the application name. Accept all the suggested 
settings and click OK. 

4.  Now again try http://localhost/netcs/AcmeRun/Step0/ 
WebForm1.aspx in Internet Explorer. You should be successful in bringing up the 



application. 

Moving a Visual Studio ASP.NET Web Application Project

At the time of writing there appeared to be no really clean way to move an entire ASP.NET Web 
Application project so that you could continue development under Visual Studio. The simplest 
approach we have found involves copying the source and bin files and editing the 
.csproj.webinfo file. A "brute force" approach is outlined in the readme.txt file for this chapter. 

Our illustration will create a copy of the AcmeWeb Web application that we have been creating 
in the Demos directory. Our copy will be in a directory called AcmeWeb0 on the same 
machine. [5] 

[5] The detailed steps outlined worked on Beta 2. Please consult the readme.txt file for 
this chapter to check for any changes in behavior in the released product.

1.  In Windows Explorer create a new folder AcmeWeb0 in the Demos directory. 

2.  Close Visual Studio and copy all the source files, except the .sln and .suo files, from the 
AcmeWeb directory to AcmeWeb0. Copy the whole bin folder. 

3.  Edit the file AcmeWeb.csproj.webinfo to rename Web URLPath to: 

"http://localhost/NetCs/Demos/AcmeWeb0/AcmeWeb.csproj" 

4.  Double-click on the file AcmeWeb.csproj. This should bring up Visual Studio and 
create a new solution with a project AcmeWeb. 

5.  Remove the (broken) reference to Hotel and add this reference back in, navigating to 
bin\Hotel.dll. 

6.  Build the solution. When presented with a Save As dialog, save the solution by the 
suggested name AcmeWeb.sln. You should get a clean build. 

7.  Try to run the project. You will be asked to set a start page. Set the start page as 
WebForm1.aspx. 

8.  Build and run. If you get a configuration error, use Internet Services Manager to 
configure the virtual directory as an application in IIS, as previously discussed. You 
should now be able to run the application at its new location. 

You can view what we have done as establishing a snapshot of Step0. You can go back to new 
development in the main directory Demo\AcmeWeb, and if you want to compare with the 
original version, you have Demo\AcmeWeb0 available. 



Acme Travel Agency Case Study

Throughout this book we have been using the "Acme Travel Agency" as a case study to 
illustrate many concepts of .NET. In this section we look at a Web site for the Acme 
Travel Agency. The code for the Web site is in the CaseStudy directory in three 
progressive steps: Step0, Step1, and Step2. Step0 corresponds to our Visual Studio.NET 
demonstration from the preceding section. (A final Step3, discussed later in the chapter, 
is a database version of the case study.) 

In this section we will give an overview of the case study, and in the next we will 
discuss some more details about Web applications, using the case study as an 
illustration. 

Configuring the Case Study

Links are provided to the three steps of the case study on the ASP.NET example 
programs "home page" for this chapter, which you can access through the URL 
http://localhost/netcs/. To be able to run the Web applications, you must 
use IIS to configure the directories CaseStudy/Step0, CaseStudy/Step1, and 
CaseStudy/Step2 as Web applications. Follow the instructions provided in the previous 
section. If you want to experiment with any of the steps in Visual Studio, you can 
double-click on the .csproj file to create a Visual Studio solution. 

Acme Web Site Step 1

In Step 1 we provide a simple two-page Web site. In the first page you can make 
reservations, and in the second you can manage your reservations. We have hard-coded 
the customer as "Rocket Squirrel," who has a CustomerId of 1. 

HotelReservations.Aspx

The start page for the application is HotelReservations.aspx. Figure 10-26 shows this 
page in Internet Explorer, after a reservation has been booked at the Hotel Dixie in 
Atlanta. 

Figure 10-26. Hotel reservations page of Acme Web site.



 

The code for initializing the DropDownList controls is the same as for Step 0, as is the 
code for handling the SelectedIndexChanged event for the City dropdown. The key 
new code is making a reservation. This code should have no surprises for you. It makes 
use of the HotelBroker class, which we already have instantiated for displaying the 
hotels. 

The design of the Web page enables a user to quickly make a number of reservations 
without leaving the page. We are relying on the postback mechanism of ASP.NET. 
When done making reservations, the user can follow the link "Manage My 
Reservations." 

ManageReservations.Aspx

The second page for the application is ManageReservations.aspx. Figure 10-27 shows 
this page in Internet Explorer, after reservations have been booked for Atlanta, Boston, 
and Chicago. 

Figure 10-27. Manage reservations page of Acme Web site.



 

The user can cancel a reservation by selecting a reservation in the listbox and clicking 
the "Cancel Selected Reservation" button. A link is provided to the hotel reservations 
page. The code for this page is quite straightforward, making use of the capability to 
provide event handlers in a server-side control. Here is the code for a helper method to 
show the reservations in the listbox. This code is very similar to the Windows Forms 
code that we looked at in Chapter 6. 

private void ShowReservations() 
{ 
   int id = Convert.ToInt32(lblHotelCustomerId.Text); 
   ArrayList array = 
      hotelBroker.FindReservationsForCustomer(id); 
   if (array == null) 
   { 
      return; 
   } 
   ClearReservations(); 



   foreach (ReservationListItem item in array) 
   { 
      string rid = item.ReservationId.ToString(); 
      string hotel = item.HotelName; 
      string city = item.City; 
      string arrive = item.ArrivalDate.ToString("d"); 
      string depart = item.DepartureDate.ToString("d"); 
      string number = item.NumberDays.ToString(); 
      string str = id + "," + rid + "," + hotel + "," + 
         city + " ," + arrive + "," + depart + "," + 
         number; 
      listReservations.Items.Add(str); 
   } 
} 

Acme Web Site Step 2

Step 2 is the full-blown implementation of our Web site case study. Acme customers do 
not interact with the Hotel Broker directly. Instead, they go through Acme's Web site. 
In order to use the Web site, a customer must register, providing a user ID, name, and 
email address. Subsequently, the user can log in by just providing the user ID. 

AcmeLib Component

Internally, Acme maintains a database of user IDs and corresponding Hotel Customer 
IDs. [6] The interface IAcmeUser encapsulates this database maintained by Acme. The 
class library project AcmeLib contains a collection-based implementation of such a 
database. The file AcmeTravelDefs.cs contains the definitions of interfaces and of a 
structure. 

[6] The Web site is Acme's, and Acme maintains user IDs for its own 
customers. Acme connects to various brokers (such as hotel and airline), and 
each broker will have its own customer ID.

// AcmeTravelDefs.cs 

using System; 
using System.Collections; 
using OI.NetCs.Acme; 

public interface IAcmeUser 
{ 
   bool Login(string userid); 
   bool Register(string userid, string firstName, 



      string lastName, string emailAddress); 
   bool Unregister(string userid); 
   bool ChangeEmailAddress(string userid, 
      string emailAddress); 
   bool GetUserInfo(string userid, out UserInfo info); 
} 

public interface IAcmeAdmin 
{ 
   ArrayList GetUsers(); 
} 

public struct UserInfo 
{ 
   public int HotelCustomerId; 
   public string FirstName; 
   public string LastName; 
   public string EmailAddress; 
} 

Login will return true if userid is found. Register will register a new user with the 
Hotel Broker. Methods are also provided to unregister and change email address. These 
methods will call the corresponding methods of the ICustomer interface. GetUserInfo 
will return a UserInfo struct as an out parameter. This struct defines an Acme user. The 
method GetUsers of the IAcmeAdmin interface returns an array list of UserInfo 
structs. 

The class Acme wraps access to the Customers class, whose methods get invoked 
indirectly through methods of IAcmeUser. The class Acme also contains a public 
member hotelBroker of type HotelBroker. Thus to gain complete access to the Hotel 
Broker system, a client program or Web page simply has to instantiate an instance of 
Acme. Here is the start of the definition of Acme. 

public class Acme : IAcmeUser, IAcmeAdmin 
{ 
   public HotelBroker hotelBroker; 
   private Customers customers; 
   private ArrayList users; 
   private UserInfo currentUser;  
public Acme() 
{ 
   users = new ArrayList(); 
   hotelBroker = new HotelBroker(); 
   customers = new Customers(); 



   InitializeUsers(); 
} 
// Initialize users with data from Customers list 
private void InitializeUsers() 
{ 
   ArrayList array = customers.GetCustomer(-1); 
   foreach (CustomerListItem cust in array) 
{ 
      string userid = cust.FirstName; 
      int custid = cust.CustomerId; 
      User user = new User(userid, custid); 
      users.Add(user); 
   } 
} 
... 

The class Acme also implements the interface IAcmeAdmin. 

public interface IAcmeAdmin 
{ 
   ArrayList GetUsers(); 
} 

The method GetUsers returns an array list of UserInfo. 

Login.Aspx

To get a good feel for how this Web application works, it would be a good idea for you 
to register and make a few reservations. You could then try logging in as another user. 
[7] You can start up the application through the ASP.NET Example programs home 
page, link to Acme (Step 2), or else direct enter the URL: 

[7] We are ignoring security considerations in this chapter. Security in 
ASP.NET will be discussed in Chapter 12.

http://localhost/netcs/CaseStudy/Step2/Main.aspx 

The start page for the application is Main.aspx. If there is no currently logged-in user, 
the new user will be redirected to Login.aspx. We will examine the logic in Main.aspx 
shortly. For now, let's do the experiment of registering and logging in. Figure 10-28 
shows the login page. In our implementation we offer "Rocket" as a possible user ID. 
Later you can quickly log in as "Rocket Squirrel" by simply clicking "Login." But now 
click "Register." 



Figure 10-28. Login page of Acme Web site.

 

RegisterNewUser.Aspx

The "Register New User" page allows the user to pick a User ID and enter some 
identifying information (first name, last name, and email address). Figure 10-29 shows 
this page after "John Smith" has entered information for himself. When done entering 
information, the user should click "Register," which will directly bring up the Acme 
Travel Agency home page, bypassing a need for a separate login. 

Figure 10-29. Register new user page of Acme Web site.



 

Main.Aspx

The home page of the Acme Web Site is Main.aspx. Figure 10-30 shows this home 
page for the user "John Smith" who has just registered. A link is provided to "Login" as 
a different user, if desired. There are links for "Make a Hotel Reservation" and "Manage 
Your Reservations." These pages are the same as shown previously for Step 1. 

Figure 10-30. Home page of the Acme Web site.



 



ASP.NET Applications

An ASP.NET application consists of all the Web pages and code files that can be invoked 
from a virtual directory and its subdirectories on a Web server. Besides .aspx files and code-
behind files such as those we have already examined, an application can also have a 
global.asax file and a configuration file config.web. In this section we examine the features 
of ASP.NET applications. We then investigate the mechanisms for working with application 
state and session state and for configuring Web applications. Our illustration will be our 
Acme Case Study (Step 2). 

Sessions

To appreciate the Web application support provided by ASP.NET, we need to understand 
the concept of a Web session. HTTP is a stateless protocol. This means that there is no direct 
way for a Web browser to know whether a sequence of requests is from the same client or 
from different clients. A Web server such as IIS can provide a mechanism to classify 
requests coming from a single client into a logical session. ASP.NET makes it very easy to 
work with sessions. 

Global.asax

An ASP.NET application can optionally contain a file Global.asax, which contains code for 
responding to application-level events raised by ASP.NET. This file resides in the root 
directory of the application. Visual Studio will automatically create a Global.asax file for 
you when you create an ASP.NET Web Application project. If you do not have a 
Global.asax file in your application, ASP.NET will assume you have not defined any 
handlers for application-level events. 

Global.asax is compiled into a dynamically generated .NET Framework class derived from 
HttpApplication. 

Here is the Global.asax file for our Case Study Step 2. 

using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Web; 
using System.Web.SessionState; 
using OI.NetCs.Acme; 

namespace AcmeWeb 
{ 
   public class Global : System.Web.HttpApplication 
   { 
      protected void Application_Start(Object sender, 
         EventArgs e) 



      { 
         HotelState.acme = new Acme(); 
      } 
      protected void Session_Start(Object sender, 
         EventArgs e) 
      { 
         Session["UserId"] = ""; 
      } 
      protected void Application_BeginRequest( 
         Object sender, EventArgs e) 
      { 
      } 
      protected void Application_EndRequest(Object sender, 
         EventArgs e) 
      { 
      } 
      protected void Session_End(Object sender, 
         EventArgs e) 
      { 
      }  
      protected void Application_End(Object sender, 
         EventArgs e) 
      { 
      } 
   } 
} 

The most common application-level events are shown in this code. The typical life cycle of a 
Web application would consist of these events: 

●     Application_Start is raised only once during an application's lifetime, on the first 
instance of HttpApplication. An application starts the first time it is run by IIS for 
the first user. In your event handler you can initialize a state that is shared by the 
entire application. 

●     Session_Start is raised at the start of each session. Here you can initialize session 
variables. 

●     Application_BeginRequest is raised at the start of an individual request. Normally 
you can do your request processing in the Page class. 

●     Application_EndRequest is raised at the end of a request. 
●     Session_End is raised at the end of each session. Normally you do not need to do 

cleanup of data initialized in Session_Start, because garbage collection will take care 
of normal cleanup for you. However, if you have opened an expensive resource, such 
as a database connection, you may wish to call the Dispose method here. 

●     Application_End is raised at the very end of an application's lifetime, when the last 
instance of HttpApplication is torn down. 



In addition to these events, there are other events concerned with security, such as 
AuthenticateRequest and AuthorizeRequest. We will discuss ASP.NET security in 
Chapter 12. 

In the Case Study, we instantiate a single global Acme object instance in 
Application_OnStart. This single instance is stored as a static data member of HotelState. 

class HotelState 
{ 
   static public Acme acme; 
} 

In the Session_Start event handler we initialize the session variable UserId to be a blank 
string. We discuss session variables later in this section. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


State in ASP.NET Applications

Preserving state across HTTP requests is a major problem in Web programming, and 
ASP.NET provides several facilities that are convenient to use. There are two main types 
of state to be preserved. 

●     Application state is global information that is shared across all users of a Web 
application. 

●     Session state is used to store data for a particular user across multiple requests to a 
Web application. 

Static Data Members

Static data members of a class are shared across all instances of a class. Hence static data 
members can be used to hold application state. 

In our case study the class HotelState has a single static member acme of the class Acme. 

class HotelState 
{ 
   static public Acme acme; 
} 

Thus the hotelBroker and customers objects within acme will hold shared data that is the 
same for all users of the application. Each user will see the same list of hotels. 

If you like, you may perform a small experiment at this stage. The directory HotelAdmin 
contains a special version of the Acme Web site that makes available the hotel 
administration interface IHotelAdmin to the special user with user ID of "admin." When 
this privileged user logins, a special home page will be displayed that provides a link to 
"Administer Hotels," as illustrated in Figure 10-31. 

Figure 10-31. Home page of the Acme Web site tailored for administrators.



 

Run this Web application, either from the "Hotel Admin" link on the example programs 
home page or else via the URL http://localhost/ 
netcs/HotelAdmin/Main.aspx. Log in as "admin" and follow the link to 
"Administer Hotels." You will be brought to a page showing a list of all the hotels. Select 
the first hotel (Dixie) on the list and click the "Delete Selected Hotel" button and then the 
"Refresh" button. You will now see an updated list of hotels, as shown in Figure 10-32. 

Figure 10-32. Hotel administration page after deleting the Hotel Dixie.



 

If your Web server is on a network, you can now try running the same Web application 
from a different client. Use the URL http://<server-
name>/netcs/HotelAdmin/Main.aspx where "<server-name>" is the name of 
your server machine. [8] Again log in as "admin" and go to the "Hotel Admin" page. You 
should see the same list of hotels seen by the other client, with Hotel Dixie not on the list. 
[9] 

[8] On a local machine you can use either the machine name or "localhost."

[9] Remember that at this point we are not using a database. Thus our example 
illustrates application state preserved in memory.

Application Object

You can store global application information in the built-in Application object, an instance 
of the class HttpApplicationState. You can conveniently access this object through the 
Application property of the Page class. The HttpApplicationState class provides a key-
value dictionary that you can use for storing both objects and scalar values. 



For example, as an alternative to using the class HotelState with the static member acme 
that we previously used, we could instead use the Application object. We make up a string 
name for the key—for example, "HotelState." In Global.asax we can then instantiate an 
Acme object and store it in the Application object using the following code. 

protected void Application_Start(Object sender, 
   EventArgs e) 
{ 
   Application["HotelState"] = new Acme(); 
} 

You can then retrieve the Acme object associated with "HotelState" by using the index 
expression on the right-hand side and casting to Acme, as illustrated in the code, 

Acme acme = (Acme) Application["HotelState"]; 
string name = acme.CurrentUser.FirstName; 

As a little exercise in employing this technique, you may wish to modify the Step 2 case 
study to use the Application object in place of a static data member. The solution to this 
exercise can be found in the directory ApplicationObject. [10] 

[10] In our current example of a Web application that is precompiled by Visual 
Studio, it is quite feasible to use a static variable, that can be shared across 
pages. But if your application is not precompiled, each page will be compiled 
individually at runtime, and sharing a static variable is no longer feasible. Hence 
you will have to use the Application object to share data.

Session Object

You can store session information for individual users in the built-in Session object, an 
instance of the class HttpSessionState. You can conveniently access this object through 
the Session property of the Page class. The HttpSessionState class provides a key-value 
dictionary that you can use for storing both objects and scalar values, in exactly the same 
manner employed by HttpApplicationState. 

Our case study provides an example of the use of a session variable "UserId" for storing a 
string representing the user ID. The session variable is created and initialized in 
Global.asax. 

protected void Session_Start(Object sender, EventArgs e) 
{ 
   Session["UserId"] = ""; 
} 

We use this session variable in the Page_Load event of our home page Main.aspx to 
detect whether we have a returning user or a new user. A new user is redirected to the login 



page. (Note that "returning" means coming back to the home page during the same 
session.) 

private void Page_Load(object sender, System.EventArgs e) 
{ 
   // Put user code to initialize the page here 
   string userid = (string)Session["UserId"]; 
   if (userid == "") 
      Response.Redirect("Login.aspx"); 
   if (!IsPostBack) 
   { 
      Acme acme = (Acme) Application["HotelState"]; 
      string name = acme.CurrentUser.FirstName; 
      lblUserName.Text = "Welcome, " + name; 
      lblLogin.Text = "(If you are not " + name + 
         ", please login)"; 
   } 
} 

There are some interesting issues in the implementation of session variables. 

●     Typically cookies are used to identify which requests belong to a particular session. 
What if the browser does not support cookies, or the user has disabled cookies? 

●     There is overhead in maintaining session state for many users. Will session state 
"expire" after a certain time period? 

●     A common scenario in high-performance Web sites is to use a server farm. How 
can your application access its data if a second request for a page is serviced on a 
different machine from that on which the first request was serviced? 

Session State and Cookies

Although by default ASP.NET uses cookies to identify which requests belong to a 
particular session, it is easy to configure ASP.NET to run cookieless. In this mode the 
Session ID, normally stored within a cookie, is instead embedded within the URL. We will 
discuss cookieless configuration in the next section. 

Session State Timeout

By default session state times out after 20 minutes. This means that if a given user is idle 
for that period of time, the session is torn down; a request from the client will now be 
treated as a request from a new user, and a new session will be created. Again, it is easy to 
configure the timeout period, as we will discuss in the section on Configuration. 

Session State Store

ASP.NET cleanly solves the Web farm problem, and many other issues, through a session 



state model that separates storage from the application's use of the stored information. Thus 
different storage scenarios can be implemented without affecting application code. The 
.NET state server does not maintain "live" objects across requests. Instead, at the end of 
each Web request, all objects in the Session collection are serialized to the session state 
store. When the same client returns to the page, the session objects are deserialized. 

By default, the session state store is an in-memory cache. It can be configured to be 
memory on a specific machine, or to be stored in an SQL Server database. In these cases 
the data is not tied to a specific server, and so session data can be safely used with Web 
farms. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


ASP.NET Configuration

In our discussion of session state we have seen a number of cases where it is desirable to be 
able to configure ASP.NET. There are two types of configurations: 

●     Server configuration specifies default settings that apply to all ASP.NET applications. 
●     Application configuration specifies settings specific to a particular ASP.NET 

application. 

Configuration Files

Configuration is specified in files with an XML format, which is easy to read and to modify. 

Server Configuration File

The configuration file is machine.config. This file is located within a version-specific folder 
under \WINNT\Microsoft..NET\Framework. Because there are separate files for each 
version of .NET, it is perfectly possible to run different versions of ASP.NET side-by-side. 
Thus if you have working Web applications running under one version of .NET, you can 
continue to run them, while you develop new applications using a later version. 

Application Configuration Files

Optionally, you may provide a file web.config at the root of the virtual directory for a Web 
application. If the file is absent, the default configuration settings in machine.config will be 
used. If the file is present, any settings in web.config will override the default settings. 

Configuration File Format

Both machine.config and web.config files have the same XML-based format. There are 
sections that group related configuration items together, and individual items within the 
sections. As an easy way to get a feel both for the format of web.config and also for some of 
the important settings you may wish to adjust, just look at the web.config file that is created 
by Visual Studio when you create a new ASP.NET Web Application project. 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 

  <system.web> 

    <!--  DYNAMIC DEBUG COMPILATION 
          Set compilation debug="true" to enable ASPX 
          debugging.  Otherwise, setting this value to 
          false will improve runtime performance of this 
          application. 
          ... 
    --> 



    <compilation 
         defaultLanguage="c#" 
         debug="true" 
    /> 

    <!--  CUSTOM ERROR MESSAGES 
          Set mode="on" or "remoteonly" to enable custom 
          error messages, "off" to disable. Add 
          <error> tags for each of the errors you want to 
          handle. 
    --> 
    <customErrors 
    mode="Off" 
    /> 

    <!--  AUTHENTICATION 
          This section sets the authentication policies of 
          the application. Possible modes are "Windows", 
          "Forms", "Passport" and "None" 
    -->  
      <authentication mode="None" /> 

      ... 

  </system.web> 
  </configuration> 

Application Tracing

Earlier in the chapter we examined page-level tracing, which can be enabled with the 
Trace="true" attribute in the Page directive. Page-level tracing is useful during development 
but is rather intrusive, because the page trace is sent back to the browser along with the 
regular response. Application tracing, which is specified in web.config, writes the trace 
information to a log file, which can be viewed via a special URL. 

As a demonstration of the use of web.config, let's add application tracing to our original 
Hello.aspx application. The folder HelloConfig contains Hello.aspx and web.config. We 
have added a trace statement in Hello.aspx. 

<!-- Hello.aspx --> 
<%@ Page Language="C#" %> 
<HTML> 
<HEAD> 
    <SCRIPT RUNAT="SERVER"> 
   protected void cmdEcho_Click(object Source, EventArgs e) 
   { 
      lblGreeting.Text="Hello, " + txtName.Text; 



      Trace.Write("cmdEcho_Click called"); 
   } 
    </SCRIPT> 
</HEAD> 
<BODY> 
<FORM RUNAT="SERVER">Your name:&nbsp; 
<asp:textbox id=txtName Runat="server"></asp:textbox> 
<p><asp:button id=cmdEcho onclick=cmdEcho_Click 
Text="Echo" runat="server" tooltip="Click to echo your 
name"> 
</asp:button></p> 
<asp:label id=lblGreeting runat="server"></asp:label> 
<P></P> 
</FORM> 
</BODY> 
</HTML> 

We have provided a trace section in web.config to enable tracing. 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration>  
  <system.web> 
    <trace 
        enabled="true" 
    /> 
 </system.web> 
</configuration> 

You can run this application from Internet Explorer by simply providing the URL 
http://localhost/netcs/helloconfig/hello.aspx. [11] Enter a name 
and click the "Echo" button a couple of times. The application should run normally, without 
any trace information included in the normal page returned to the browser. 

[11] If you get a configuration error, try configuring the directory in IIS as an 
application. See "Configuring a Virtual Directory as an Application" in the section 
"Deploying a Web Application Created Using Visual Studio."

Now enter the following URL: http://localhost/netcs/helloconfig/ 
trace.axd (specifying trace.axd in place of hello.aspx), and you will see top-level trace 
information, with a line for each trip to the server, as shown in Figure 10-33. If you click on 
the "View Details" link, you will see a detailed page trace, as we saw earlier in the chapter. 

Figure 10-33. Viewing the application trace log through the browser.



 

Session Configuration

As another example of configuration, modify the web.config file for Step 2 of the case study 
to change the timeout value to be 1 minute. 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <system.web> 
... 
    <!--  SESSION STATE SETTINGS 
          By default ASP.NET uses cookies to identify which 
          requests belong to a particular session. If 
          cookies are not available, a session can be 
          tracked by adding a session identifier to the 
          URL. To disable cookies, set sessionState 
          cookieless="true". 
    --> 
    <sessionState 
            mode="InProc" 
            stateConnectionString="tcpip=127.0.0.1:42424" 
            sqlConnectionString= 
               "data source=127.0.0.1;user id=sa;password=" 
            cookieless="false" 
            timeout="1" 
    /> 
... 



 </system.web> 
</configuration> 

Now run the application, log in, do some work, and return to the home page. You should be 
welcomed by your name without having to log in again. Now do some more work, wait more 
than a minute, and return to the home page. Now the session will have timed out, and you will 
be redirected to log in again. 



Server Controls

An important innovation in ASP.NET is server controls. They provide an event 
model that is startlingly similar to Windows GUI programming, and they 
encapsulate browser dependencies. They integrate seamlessly into the Visual 
Studio development environment. The end result is an extremely powerful tool 
for Web development. 

We have been using server controls from the very beginning of the chapter, where 
we presented our "Hello" program. In this section we will look at server controls 
more systematically, and we will see a number of examples of interesting 
controls. 

Web Controls

The most important kind of control in ASP.NET is the Web Forms server control 
or just Web control. These are new controls provided by the .NET Framework, 
with special tags such as <asp:textbox>. These controls run at the server, and they 
generate HTML code that is sent back to the browser. They are easy to work 
with, because they behave consistently. For example, you can determine the value 
returned by a control by using simple property notation. 

string name = txtName.Text; 

All of our previous examples of server controls in this chapter have been Web 
controls. In this section, we will look at several additional kinds of Web controls, 
including validation controls, list controls, and rich controls such as the Calendar 
control. But first we will look at HTML server controls. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


HTML Server Controls

HTML server controls provide equivalent functionality to standard HTML controls, except 
that they run on the server, not on the client. In fact, the only way to distinguish an HTML 
server control from an ordinary HTML control on a Web page is the presence of the 
runat="server" attribute. 

Here are two controls. Both are INPUT controls. The first is a server control. The second is 
of type password and is a regular HTML control. 

<INPUT id=txtUserId 
style="WIDTH: 135px; HEIGHT: 22px" type=text size=17 
runat="server"></P> 
<INPUT id="" 
style="WIDTH: 138px; HEIGHT: 22px" type=password size=17 
name=txtPassword> 

Working with HTML server controls is much like working with the Web Forms server 
controls we've used already. In server-side code you access the control through a control 
variable that has the same name as the id attribute. However, we are dealing with HTML 
controls, so there are some differences. You access the string value of the control not 
through the Text property but through the Value property. Here is some code that uses the 
value entered by the user for the txtUserId control. 

lblMessage.Text = "Welcome," + txtUserId.Value; 

The advantage of HTML server controls for the experienced Web programmer is that they 
match ordinary HTML controls exactly, so that your knowledge of the details of HTML 
control properties and behavior carries over to the ASP.NET world. However, this similarity 
means they carry over all the quirks and inconsistencies of HTML. For example, rather than 
having two different controls for the somewhat different behaviors of a textbox and a 
password control, HTML uses in both cases the INPUT control, distinguishing between the 
two by the type=password attribute. Web Forms controls, in contrast, are a fresh design and 
have an internal consistency. Also, as we shall soon see, there is a much greater variety to 
Web Forms controls. 

Html Controls Example

Let's look at an example of HTML controls. All of our server control examples in this 
section can be accessed from the page ServerControls\WebForms1.aspx. (As usual, you 
should use IIS to configure the folder ServerControls as an application.) The top-level page 
gives you a choice of three examples, 

●     HTML Controls 
●     Validation 
●     Calendar 



Follow the link to HTML Controls, and you will come to a login page, as illustrated in 
Figure 10-34. 

Figure 10-34. A login page illustrating HTML server controls.

 

There is a textbox for entering a user ID and a password control for entering a password. 
Both of these controls are HTML INPUT controls, as shown previously. The textbox runs at 
the server, and the password is an ordinary HTML control. Clicking the Login button 
(implemented as a Windows Forms Button control) results in very simple action. There is 
one legal password, hardcoded at "77." The button event handler checks for this password. If 
legal, it displays a welcome message, otherwise an error message. 

private void Login_Click(object sender, EventArgs e) 
{ 
   if (Request.Params["txtPassword"] == "77") 
      lblMessage.Text = "Welcome, " + txtUserId.Value; 
   else 
      lblMessage.Text = "Illegal password"; 
} 



Since the password control is not a server control, no server control variable is available for 
accessing the value. Instead, we must rely on a more fundamental technique, such as using 
the Params collection. [12] 

[12] We described the various collections earlier in the chapter in the section 
"Request/Response Programming." The collections are included in Table 10-1.

HTML Controls in Visual Studio

It is easy to work with HTML controls in Visual Studio. [13] The Toolbox has a palette of 
HTML controls, which you can access through the HTML tab. Figure 10-35 shows some of 
the HTML controls in the Visual Studio Toolbox. 

[13] But it is also confusing, because there is only one palette for HTML controls, 
and you distinguish between classical HTML controls and server HTML controls by 
runat="server." The Forms Designer UI for setting this attribute is described 
below.

Figure 10-35. HTML controls in the Visual Studio Toolbox.

 

You can drag HTML controls onto a form, just as we have done with Web Forms controls. 
You have the option of using FlowLayout or GridLayout. The default is GridLayout, which 
enables absolute positioning of controls on a form. FlowLayout is the simplest layout, 
resulting in elements positioned in a linear fashion. You can set the layout mode through the 
pageLayout property of the form. In our example we used FlowLayout for the two INPUT 
controls and their associated labels. 



The default choice for HTML controls is not to run at the server. To make an HTML control 
into a server control, right-click on it in the Form Designer. Clicking on "Run As Server 
Control" toggles back and forth between running on the server and not running on the server. 
You can inspect the runat property in the Properties panel, but you cannot change it there. 

Validation Controls

The rest of our discussion of server controls will focus on Web controls. A very convenient 
category of control is the group of validation controls. The basic idea of a validation control 
is very simple. You associate a validation control with a server control whose input you want 
to validate. Various kinds of validations can be performed by different kinds of validation 
controls. The validation control can display an error message if the validation is not passed. 
Alternatively, you can check the IsValid property of the validation control. If one of the 
standard validation controls does not do the job for you, you can implement a custom 
validation control. The following validation controls are available: 

●     RequiredFieldValidator 
●     RangeValidator 
●     CompareValidator 
●     RegularExpressionValidator 
●     CustomValidator 

There is also a ValidationSummaryControl that can give a summary of all the validation 
results in one place. 

An interesting feature of validation controls is that they can run on either the client or the 
server, depending on the capabilities of the browser. With an upscale browser such as 
Internet Explorer, ASP.NET will emit HTML code containing JavaScript to do validation on 
the client. [14] If the browser does not support client-side validation, the validation will be 
done only on the server. 

[14] Validation will also be done on the server, to prevent "spoofing."

Required Field Validation

A very simple and useful kind of validation is to check that the user has entered information 
in required fields. Our second server control demonstration page provides an illustration. 
Back on the top-level ServerControls\WebForms1.aspx page, follow the link to 
"Validation" (or click the Register button from the Login page). You will be brought to the 
page RegisterNewUser.aspx, as illustrated in Figure 10-36. The screenshot shows the result 
of clicking the Register button after entering a UserId, a Password, and a First Name, but 
leaving Last Name blank. You will see an error message displayed next to the Last Name 
textbox, because that is where the validator control is on the form. 

Figure 10-36. Register New User page illustrates ASP.NET validation controls.



 

The textboxes for First Name and Last Name both have an associated 
RequiredFieldValidator control. In Visual Studio you can simply drag the control to a 
position next to the associated control. You have to set two properties of the validator 
control: 

●     ControlToValidate must be set to the ID of the control that is to be validated. 
●     ErrorMessage must be specified. 

Then, when you try to submit the form, the validator control will check whether information 
has been entered in its associated control. If there is no data in the control, the designated 
error message will be displayed. 

Internet Explorer supports client-side validation using JavaScript. You can verify that 
ASP.NET generates suitable JavaScript by looking at the generated source code in the 
browser (View | Source). 

This form also requires that the UserId field not be blank. Since the primary validation of 
this field is done by a regular expression validator, as discussed shortly, we will use another 
technique for the required field validation. Figure 10-37 shows the location of the various 



validator controls in the Visual Studio Form Designer. 

Figure 10-37. Layout of validation controls for Register New User page.

 

We assign the id vldUserId to the required field validator control associated with the UserId 
control, and we clear the error message. We also set the EnableClientScript property to 
False, to force a postback to the server for the validation. The event handler for the Register 
button then checks the IsValid property of vldUserId. 

private void cmdRegister_Click(object sender, 
                               System.EventArgs e) 
{ 
   if (vldUserId.IsValid) 
      lblMessage.Text = "Welcome, " + txtFirstName.Text; 
   else 
      lblMessage.Text = "UserId must not be blank"; 
} 

If the control is valid, we display the welcome message, otherwise an error message. Note 
that we won't even reach this handler if other validation is false. 

Regular Expression Validation

The RegularExpressionValidator control provides a very flexible mechanism for 
validating string input. It checks whether the string is a legal match against a designated 
regular expression. Our example illustrates performing a regular expression validation of 



UserId. The requirement is that the id consist only of letters and digits, which can be 
specified by the regular expression [A-Za-z0-9]+ 

The following properties should normally be assigned for a RegularExpressionValidator 
control: 

●     ValidationExpression (the regular expression, not surrounded by quotes) 
●     ControlToValidate 
●     ErrorMessage 

You can try this validation out on our Register New User page by entering a string for 
UserId that contains a nonalphanumeric character. 

Rich Controls

Another category of Web Forms controls consists of "rich controls," which can have quite 
elaborate functionality. The Calendar control provides an easy-to-use mechanism for 
entering dates on a Web page. Our third sample server control page provides an illustration, 
as shown in Figure 10-38. 

Figure 10-38. Using the Calendar control to select a date.

 

The user can select a date on the Calendar control. The SelectedDate property then contains 
the selected date as an instance of the DateTime structure. You can work with this date by 
handling the SelectionChanged event. In our example page, the event handler displays the 
date as a string in a textbox. 



private void Calendar1_SelectionChanged(object sender, 
                                       System.EventArgs e) 
{ 
   txtDate.Text = 
      Calendar1.SelectedDate.ToShortDateString(); 
} 



Database Access in ASP.NET

A great deal of practical Web application development involves accessing data in various 
kinds of databases. A great thing about the .NET Framework is that it is very easy to 
encapsulate a database, allowing the rest of the program to work with data in a very generic 
way, without worrying about where it came from. In this section we discuss data binding in 
Web Forms controls, and we then present a database version of our Acme Travel Agency Web 
site. 

Data Binding in ASP.NET

ASP.NET makes it easy to display data from various data sources by permitting a Web Forms 
control to be bound to data source. The data source can be specified in a variety of ways—for 
example, by directly giving a connection string to a database. This form of data binding is 
quite convenient in a two-tier type of application, where the presentation layer talks directly to 
the database. In three-tier applications it is more convenient to bind to some data structure that 
is returned by a middle-tier component, which does the actual connection to the database. Our 
Acme case study illustrates this approach. The Hotel.dll and Customer.dll components 
encapsulate access to a SQL Server database through the HotelBroker and Customers 
classes. Methods such as GetCities return an ArrayList, and the array list can be bound to a 
Web Forms control. [15] 

[15] The component could be hidden behind a Web Service, which will be illustrated 
in Chapter 11. We can still use data binding in such a scenario, by binding to an 
array list.

We will look at two examples of data binding. The first, mentioned earlier in the chapter, 
illustrates binding to an ArrayList. The second illustrates binding to a DataTable through a 
DataView. 

Binding to an Arraylist

It is extremely simple to bind to an array list. The case study code, beginning with Step 1, 
provides an illustration. You may wish to bring up Step 1 of the case study and examine the 
code in CaseStudy\Step1\ MakeReservations.aspx.cs. When the page is loaded, the 
DropDownList control listCities is initialized to display all the cities in the database of the 
hotel broker. The GetCities method returns the cities as strings in an array list. The following 
code will then cause the cities to be displayed in the dropdown. 

ArrayList cities = hotelBroker.GetCities(); 
listCities.DataSource = cities; 
DataBind(); 

The DataBind method of the Page class causes all the Web Forms controls on the page to be 
bound to their data sources, which will cause the controls to be populated with data from the 
data sources. You could also call the DataBind method of a particular control. 



Binding to a Datatable

As we saw in Chapter 9, ADO.NET defines a very useful class, the DataTable, which can be 
used to hold data from a variety of data sources. Once created, a data table can be passed 
around and used in a variety of contexts. One very useful thing you can do with a data table is 
to bind it to a Web Forms control. Since a data table is self-describing, the control can 
automatically display additional information, such as the names of the columns. We illustrate 
with the DataGrid control. 

To run this example, you need to have SQL Server or MSDE installed on your system, and 
you should also have set up the Acme database, as described in Chapter 9. The example Web 
page is DataGridControl/ShowHotels.aspx. As usual, you should use IIS to configure the 
folder DataGridControl as an application. This page will display all the hotels in the Acme 
database in a data grid, with appropriate headings, as illustrated in Figure 10-39. When you 
work with Web Forms controls you can easily change styles, such as fonts and colors, by 
setting properties appropriately. 

Figure 10-39. Displaying hotels in the Acme database using a DataGrid control.

 

The relevant C# code is in the files Global.asax.cs and ShowHotels. aspx.cs. The first thing 
we need to do is to create an instance of the HotelBroker class. We create a single instance, 
once, when the application starts up. 

// Global.asax.cs 
using System; 
using System.Collections; 



using System.ComponentModel; 
using System.Web; 
using System.Web.SessionState; 
using OI.NetCs.Acme; 

namespace DataGridControl 
{ 
   public class Global : System.Web.HttpApplication 
   { 
      public static HotelBroker hotelBroker; 
      protected void Application_Start(Object sender, 
                                       EventArgs e) 
      { 
         hotelBroker = new HotelBroker(); 
      } 
      ... 

In the Page_Load method we get the hotels from the Hotel Broker, call a helper method, 
CreateDataSource, to obtain an ICollection interface reference (the data binding is very 
general, and any collection can be used), assign the data source, and bind. We are using the 
DataTable to hold data obtained from the middle-tier component. 

private void Page_Load(object sender, System.EventArgs e) 
{ 
   if (!IsPostBack) 
   { 
      // Need to load this data only once. 
      ArrayList array = Global.hotelBroker.GetHotels(); 
      dgHotels.DataSource= CreateDataSource(array); 
      dgHotels.DataBind(); 
   } 
} 

It is in the helper method CreateDataSource that the interesting work is done. A data table is 
created and populated with hotel data obtained from the Hotel Broker. 

private ICollection CreateDataSource(ArrayList array) 
{ 
   if (array == null) 
   { 
      return null; 
   } 
   DataTable dt = new DataTable(); 
   DataRow dr; 
   dt.Columns.Add(new DataColumn("City", typeof(string))); 
   dt.Columns.Add(new DataColumn("Hotel", typeof(string))); 



   dt.Columns.Add(new DataColumn("Rooms", typeof(int))); 
   dt.Columns.Add(new DataColumn("Rate", typeof(decimal))); 
   foreach(HotelListItem hotel in array) 
   { 
      dr = dt.NewRow(); 

      dr[0] = hotel.City.Trim(); 
      dr[1] = hotel.HotelName.Trim(); 
      dr[2] = hotel.NumberRooms; 
      dr[3] = hotel.Rate; 

      dt.Rows.Add(dr); 
   } 

Acme Travel Agency Case Study (Database Version)

We have illustrated many concepts of ASP.NET with our Acme Travel Agency case study. 
For simplicity we used a version of the case study that stored all data as collections in 
memory. This way you did not have to worry about having a database set up properly on your 
system, so you could focus on just ASP.NET. Also, the results are always deterministic, since 
sample data is hardcoded. 

Now, however, we would like to look at the "real" case study, based upon our HotelBroker 
database, and the database version of the Hotel.dll and Customer.dll components created in 
Chapter 9. 

AcmeCustomerDatabase

The Acme Travel Agency maintains its own database of customers. Customers register with 
Acme through the Web site. The following information is stored in Acme's database: 

●     LoginName 
●     Password 
●     HotelBrokerCustomerId 
●     AirlineBrokerCustomerId 

Currently we use LoginName (corresponding to what we called "UserId" earlier in the 
chapter) and HotelBrokerCustomerId. The AirlineBrokerCustomerId field will facilitate Acme 
adding an airplane reservation system later. A Password field is also provided for possible 
future use. 

To set up the database, all you need to do is to run the script acmedb.sql, which is located in 
the directory AcmeScript. This script assumes you have SQL Server installed on partition c:. 
If your installation is in a different partition, edit the script accordingly. 

AcmeLibDb Component



The directory AcmeLibDb contains a class library project for building an AcmeLib 
component that encapsulates access to the AcmeCustomerDatabase. This component also 
wraps access to HotelBroker and Customers, providing the Web pages with a very easy 
programming model. 

Acme Web Site (Step 3)

The Step 3 version of the Acme Web site is in CaseStudy\Step3. As usual, you will need to 
use IIS to configure this directory as an application. You can start it from the URL 
http://localhost/netcs/CaseStudy/Step3/Login.aspx 

You should find the code very easy to understand, because it relies on the same interfaces as 
the implementation we used earlier based on collections. 



Summary

ASP.NET is a unified Web development platform that greatly simplifies the 
implementation of sophisticated Web applications. In this chapter we introduced 
the fundamentals of ASP.NET and Web Forms, which make it easy to develop 
interactive Web sites. Server controls present the programmer with an event 
model similar to what is provided by controls in ordinary Windows programming. 
This high-level programming model rests on a lower-level request/response 
programming model that is common to earlier approaches to Web programming 
and is still accessible to the ASP.NET programmer. 

The Visual Studio.NET development environment includes a Form Designer, 
which makes it very easy to visually lay out Web forms, and with a click you can 
add event handlers. ASP.NET makes it very easy to handle state management. 
Configuration is based on XML files and is very flexible. There are a great 
variety of server controls, including wrappers around HTML controls, validation 
controls, and rich controls such as a Calendar. Data binding makes it easy to 
display data from a variety of data sources. 

In the next chapter we cover Web Services, which enable the development of 
collaborative Web applications that span heterogeneous systems. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Chapter 11. Web Services
Distributing functionality and data beyond the enterprise in which they were 
developed is the next step in component technology. Developers can integrate 
into their applications a much more extensive set of services than they could ever 
hope to develop on their own. Our Acme Reservation System case study is a 
simple example. The Acme Travel Agency, by using the reservation systems of 
the airlines and hotels, can provide a wider range of services to their clients. 

One vendor will not be able to supply the necessary distributed technology 
infrastructure. At the very minimum, the worlds of Java, .NET, mobile 
computers, and legacy systems will continue. Fortunately, TCP/IP and HTTP 
have established themselves as industry standard networking protocols and can be 
the basis for any attempt to interconnect heterogeneous systems. HTTP is a text-
based protocol, so using the industry standard XML to describe the interactions of 
these systems makes sense. Web Services use XML- and HTTP-based protocols 
to provide an industry standard to allow diverse systems to interconnect. 

Web Services is the second part of the .NET distributed computing story. If all 
the applications and services that need to interconnect are all based on the 
Common Language Runtime, .NET remoting can be used. Its advantage is that 
you can remote any .NET data structure through the remoting serialization. 
Environments that do not run .NET, however, cannot handle the full range of 
.NET data types. Hence, Web Services transmit only a much more limited set of 
data structures that can be expressed in the XML-based protocols that Web 
Services use today. The versions of the SOAP protocol used by Web Services and 
by .NET remoting have different programming models. The latter offers full CLR 
fidelity. The former is constrained by interoperability standards. 

Besides the ability of heterogeneous systems to interconnect, Web Services allow 
business partners to share information or integrate with legacy systems without 
having to write specialized interconnection applications. Even within a single 
enterprise you will be able to integrate information from internal and external 
sources. If Web Services are to be more than just distributed application 
development, however, the necessary financial, reliability, security, and legal 
infrastructure have to be developed. 



Protocols

Behind the Web Services technology are several protocols: XML, XML Namespaces, XML 
Schema, SOAP, and WSDL. Some of these are formal W3C industry standards. Some, like 
WSDL, are just gaining widespread use without yet being codified in a standard. 

XML

XML is a W3C industry standard [1] that provides a way to structure documents to provide 
relationships between the basic elements of the document. Elements can also have 
descriptive information called attributes. Elements can be composed of other elements, so 
they can have complex structure. Since such documents can be represented as text, [2] XML 
can provide a platform-neutral way to represent data that are transmitted over a network. In 
particular, as text it can go safely through a firewall because HTTP port 80 will invariably be 
open. Here is an example of an XML document that describes a CustomerList composed of 
several customers. 

[1] Technically, W3C final documents are called recommendations. However, we 
will refer to them as standards or specifications. W3C documents that have not 
reached recommendations status are referred to by their W3C names: proposed 
recommendations, candidate recommendations, last call working drafts, working 
drafts, and notes. 

[2] But they do not have to be text. You can build programs using the abstractions 
defined in the W3C proposed recommendation Information Set. Using these 
abstractions, such as document, namespace, element, character, and attribute, to 
represent the hierarchy of an XML document, you are independent of the particular 
format in which the XML is stored. Mobile solutions will probably use a more 
efficient binary format for XML encoding rather than text. The XML Schema 
Recommendation is written based on the Infoset, not the angle-bracket syntax. The 
Information Set assumes the existence of XML namespaces. 

<CustomerList> 
  <Customer> 
      <FirstName>John</FirstName> 
      <LastName>Smith</LastName> 
      <EmailAddress>smith@smith.org</EmailAddress>  
  </Customer> 
  <Customer> 
    <FirstName>Mary</FirstName> 
    <LastName>Jones</LastName> 
    <EmailAddress>mary@jones.org</EmailAddress> 
  </Customer> 
</CustomerList> 

XML Namespaces



A set of elements and attributes in an XML document can be referred to as a vocabulary. 
This is particularly useful if this vocabulary can model information that might be reused. For 
example, we could have vocabularies for financial or chemical information. Namespaces not 
only allow these vocabularies to be uniquely named in order to prevent conflicts, but allow 
them to be reused. 

The following example XML document uses a namespace attribute to uniquely identify the 
elements <FirstName>, <LastName>, and <EmailAddress> from any other definitions that 
might use the same tag names with a different meaning or context. The example also shows 
that abbreviations can be used with namespaces. This is very convenient if multiple 
namespaces are used in a document. 

<Customer xmlns:c= 
          "urn:uuid 28833F1C-CBE4-4042-9B35-BF641DFB35DC"> 
  <c:FirstName>John</c:FirstName> 
  <c:LastName>Smith</c:LastName> 
  <c:EmailAddress>smith@smith.org</c:EmailAddress> 
</Customer> 

A Uniform Resource Identifier (URI) is used to identify a particular XML namespace. A 
URI can either be a Uniform Resource Locator (URL) or a Uniform Resource Name (URN). 
Both represent a unique name. URLs are the familiar Web site addresses, which are unique 
because they are given out by a central naming authority. A URN is just a unique string. For 
example, you could use a URN defined by a GUID [3] such as urn:uuid:28833F1C-CBE4-
4042-9B35-BF641DFB35DC. [4] URIs used for namespaces do not have to resolve to any 
location on the Web. 

[3] A GUID, or Globally Unique Identifier, is a 128-bit identifier that is guaranteed to 
be unique. GUIDs are widely used in COM. You can generate your own GUIDs 
using the tool guidgen.exe (Windows UI) or uuidgen.exe (command-line UI). 
These tools are in the directory …\Microsoft Visual Studio.NET\Common7\Tools.

[4] GUIDs are used in the examples for simplicity and to reinforce the idea that 
uniqueness, but not existence, is required for a namespace identifier. In real 
systems URL-based names are used whether or not the URLs actually exist.

XML Schema

XML with namespaces, however, does not assign any semantics to the data. The XML 
Schema specification (XSD) defines a basic set of data types and the means to define new 
data types. In other words, an XML Schema can assign meaning to the structure of a 
document. The schema itself is written in XML. The CustomerList document described 
previously could be defined by the following schema: 

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
       xmlns:c="http://www.acme.com/Customer" 
       targetNamespace="http://www.acme.com/CustomerList"> 



  <xsd:complexType name="Customer"> 
    <xsd:sequence> 
      <xsd:element name="FirstName" type="xsd:string" /> 
      <xsd:element name="LastName" type="xsd:string" /> 
      <xsd:element name="EmailAddress" type="xsd:string"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</schema> 

The targetNamespace element defines the name of the schema being defined. This particular 
string uses the XSD defined element "string." Using XSD, we can restrict the range of 
values, specify how often particular instances occur, as well as provide attributes to the 
elements. The schema itself is written in XML. Both the document and its associated schema 
can be validated and managed as XML documents. The same document, interpreted by two 
different schemas, will have two different meanings. 

SOAP

While XML schemas can define the types used by the data, you need a set of conventions to 
describe how the data and their associated type definitions are transmitted. SOAP, the 
Simple Object Access Protocol, uses XML as a wire protocol to do just this. 

While SOAP can use XML schema types to describe the transmitted types, it was designed 
before the XML Schema specification was finished, so there are some divergences between 
the two. The reason is that XML Schema describes a hierarchy or tree structure. SOAP 
wants to be able to represent objects, and objects can have far more complicated 
relationships than a hierarchy. Classes, for example, can have multiple parent classes. As we 
will discuss later, this has some implications for Web Services. The W3C is currently 
working on reconciling SOAP with XML Schema. 

SOAP 1.1 can be used with several transport protocols, not just HTTP. 

The use of SOAP for Web Services on Microsoft platforms is not unique to .NET. Microsoft 
has released the SOAP Toolkit that has allowed Windows-based platforms to develop Web 
Services. The support for SOAP, however, is built into .NET. The SOAP Toolkit does 
contain, however, the SOAP Trace Utility, which is useful for tracking raw and formatted 
SOAP messages. 

WSDL

Objects contain both state and behavior. Schemas define the data. WSDL, the Web Services 
Description Language, defines the methods and the data associated with a Web Service. As 
the simple example we shall describe shortly demonstrates, WSDL is not necessary for 
writing Web Services. It is important, however, if you want to be able to automatically 
generate classes that can call Web Services, or do anything that requires automatic machine 
intervention with Web Services. [5] Otherwise, you would have to craft and send the SOAP 



messages by hand. 

[5] This is similar to VB 6's use of type libraries to make COM programming simpler. 
Of course, WSDL is a complete description of the Web Service, unlike a type 
library's incomplete description of a COM object and interfaces.

As you will see in the following example, the SOAP that is used to describe the Web 
Service's transport format is defined in the WSDL. WSDL is a W3C note. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Web Service Architecture

Besides handling ASP.NET, Microsoft's Internet Information Server (IIS) can handle Web 
Services, since they come in as HTTP requests. These requests are encoded in the URL or as 
XML. IIS then creates the required object to fulfill the Web Service request. IIS then calls the 
object's method that is associated with the request. Any returned values are converted to XML 
and returned to the client, using the HTTP protocol. 

The Add Web Service Example

To illustrate how this works under Microsoft .NET, we will build a simple Web Service to 
illustrate this architecture and how the associated protocols are used. Our Web Service will 
simply add two numbers. To make things clear we will build the Web Service, Add, in the 
simplest possible way. 

By writing code in a file with the suffix asmx and placing it in a subdirectory of the IIS root 
directory we can have a simple Web Service. [6] IIS has the concept of virtual directories, so 
that the actual directory does not have to physically be under the IIS root directory. The 
easiest way to do this is to enable WebSharing on the file folder. Select the folder in the NT 
Explorer, right-click on the folder, and select Sharing on the context menu. Use the Web 
Sharing tab to make the directory a virtual directory for IIS. 

[6] By default this directory is \inetpub\wwwroot.

The file add.asmx first defines the language used to write the Web Service, and the class that 
has the definitions. That class inherits from the WebService class in the namespace 
System.Web.Services. Note the use of the WebService attribute to define a namespace for 
the service. This file is found in the WebService subdirectory of the SimpleWebService 
directory for this chapter. You should make WebService a virtual directory with alias 
SimpleWebService, as described in the previous paragraph. 

A method of that class can be used as a Web Service if the attribute WebMethod is applied to 
it. 

<%@ WebService language="C#" class="Test" %> 

using System; 
using System.Web; 
using System.Web.Services; 

[WebService(Namespace= 
         "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E")] 
public class Test: WebService 
{ 
  [WebMethod] 
  public long Add(long x, long y) 
  { 



    return x + y; 
  } 
} 

We will put this file in a directory called SimpleWebService. [7] 

[7] You can use a code-behind page here if you wish. WebServices created with 
VS.NET do reference a code-behind page in the asmx file.

A Client Program for the Add Web Service

Internet Explorer can be used as a simple client program that uses the HTTP GET protocol's 
URL encoding of a Web Service request. Using http:// 
localhost/SimpleWebService/Add.asmx as the address, Figure 11-1 shows the 
result. 

Figure 11-1. Web Service request in Internet Explorer.

 

By clicking on the Add link you will get a form enabling you to submit a request to the Add 
Service. In addition, the form describes the various HTTP protocols that can be used for 
submitting the request. For our purposes, two protocols are worth mentioning: HTTP GET and 
SOAP. 

The HTTP GET protocol is worth exploring because the form that appears in IE uses it. The 
protocol has boldfaced placeholders for data that has to be entered: 

GET /SimpleWebService/add.asmx/Add?x=string&y=string 
 HTTP/1.1 
... 

The data entered into the form is added to the URL in the standard way that any HTTP GET 



request is made. Data are returned as: 

... 
<long xmlns="urn:uuid:10C14FCF-BF4A-477a-BFE7-
                                 41B9F2A4514E">long</long> 

Figure 11-2 shows values entered into the form. By pressing the Invoke button, you can call 
the Web Service. 

Figure 11-2. Values entered on the Internet Explorer form.

 

An IE window will appear with the part of the HTTP response data generated by the Web 
Service that contains the actual returned value: 

... 
<long xmlns= 
  "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E">9</long> 

This is exactly the format that appeared in the description of the protocol with the answer (9) 
substituted for the placeholder. HTTP GET, however, can handle only simple types. 

The more interesting protocol is SOAP. Both the SOAP HTTP POST request and response are 
described with placeholders for information that has to be provided in the actual call. Those 
placeholders are in boldface type. 

First, let us look at the SOAP HTTP POST request. The first part is a set of HTTP headers. 



The XML for the SOAP protocol is in the data (entity-body) section of the HTTP request, 
which is always separated from the headers by a blank line. The content-length header is the 
length of the data, which is dependent on the size of the parameters in the data section. 

The method header identifies the file to which the request is directed. It could also name an 
object that is to handle the request (endpoint). The SOAPAction header indicates the name of 
the method, qualified by a namespace, to be invoked for the Web Service. [8] 

[8] For those with a COM background, you can think of the namespace for the 
method as equivalent to the GUID that identifies and interface (IID). 

SOAP uses XML to specify the parameters of the method. [9] The SOAP body contains the 
parameters for the method call. In a real method call, the long placeholders would be replaced 
by the actual parameters to be passed to the Web Service method. 

[9] The parallel to IDL is WSDL, which we will discuss shortly. SOAP is analogous to 
NDR, the wire format used for DCOM calls. All these parallels to COM appear in Don 
Box's March 2000 MSDN article "A Young Person's Guide to The Simple Object 
Access Protocol." 

POST /SimpleWebService/Add.asmx HTTP/1.1 
Host: localhost 
Content-Type: text/xml; charset=utf-8 
Content-Length: length 
SOAPAction: 
       "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E/Add" 

<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
   xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <Add xmlns= 
          "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E"> 
      <x>long</x> 
      <y>long</y> 
    </Add> 
  </soap:Body> 
</soap:Envelope> 

Next the HTTP response is described. The long placeholder will be replaced by the actual 
value returned. 

HTTP/1.1 200 OK 
Content-Type: text/xml; charset=utf-8 
Content-Length: length 



<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <AddResponse xmlns= 
          "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E"> 
      <AddResult>long</AddResult>  
    </AddResponse> 
  </soap:Body> 
</soap:Envelope> 

WSDL

SOAP does not describe the Web Service interface. While you could encode the SOAP 
yourself, it would be nice to be able to generate proxy classes for the client to use. Otherwise 
you would have to understand all the details of the SOAP specification and how to parse the 
returned XML. 

WSDL provides a description of the Web Service interface. Here is the WSDL description for 
our SimpleWebService which has one method, Add. We have omitted the WSDL for 
invocations of the Web Service that do not use SOAP. The <types> section defines the types: 

●     Add is used in when SOAP invokes the Web Service. 
●     AddResponse is used when the SOAP Web Service invocation returns. 

Add has two elements, each occurring exactly once. Both are defined with the XSD type long, 
and they have the names x and y. The return parameter, whose name is AddResponse, has 
one element which occurs once named AddResult defined with the XSD type long. Note how 
these types were used in the SOAP definitions we looked at previously. 

... 
<types> 
... 
  <s:element name="Add"> 
    <s:complexType> 
      <s:sequence> 
        <s:element minOccurs="1" maxOccurs="1" name="x" 
                                          type="s:long" /> 
        <s:element minOccurs="1" maxOccurs="1" name="y" 
                                          type="s:long" /> 
      </s:sequence> 
    </s:complexType> 
  </s:element> 
  <s:element name="AddResponse"> 
    <s:complexType> 



      <s:sequence> 
        <s:element minOccurs="1" maxOccurs="1" 
                         name="AddResult" type="s:long" /> 
      </s:sequence> 
    </s:complexType> 
  </s:element> 
  ... 
</types> 

The <message> section relates the types to their use as parameters. 

<message name="AddSoapIn"> 
  <part name="parameters" element="s0:Add" /> 
</message> 
<message name="AddSoapOut"> 
  <part name="parameters" element="s0:AddResponse" /> 
</message> 
... 

The <portType> section relates the Web Service to the individual Web methods defined by 
the <operation> elements. If there had been more Web methods in the Web Service, there 
would have been more operation elements associated with the portType. [10] Each method's 
input and output operation is associated with the appropriate message defined previously. 

[10] For those of you keeping score, this is analogous to a COM interface. 

<portType name="TestSoap"> 
  <operation name="Add"> 
    <input message="s0:AddSoapIn" /> 
    <output message="s0:AddSoapOut" /> 
  </operation> 
</portType> 
... 

The <binding> section defines the encodings and protocols to be used for each operation. 

<binding name="TestSoap" type="s0:TestSoap"> 
  <soap:binding 
          transport="http://schemas.xmlsoap.org/soap/http" 
          style="document" /> 
  <operation name="Add"> 
    <soap:operation soapAction= 
       "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E/Add" 
       style="document" /> 
    <input> 
      <soap:body use="literal" /> 



    </input> 
    <output> 
      <soap:body use="literal" /> 
    </output> 
  </operation> 
</binding> 
... 

The <service> section relates the Web Service to its port and how it is invoked. 

<service name="Test"> 
  <port name="TestSoap" binding="s0:TestSoap"> 
    <soap:address location= 
           "http://localhost/SimpleWebService/Add.asmx" />  
  </port> 
... 
</service> 
... 

Proxy Classes

The wsdl tool can be used to read the WSDL description and generate a proxy class that will 
make the SOAP calls for you. Since C# is the default language, and SOAP the default 
protocol, the following command will generate a proxy class file with the name addproxy.cs: 

wsdl /out:addproxy.cs 
           http://localhost/SimpleWebService/Add.asmx?WSDL 

The generated proxy defines a constructor and three methods. The constructor sets the URL 
which this Web Service uses. One of the methods represents a synchronous, blocking call on 
the Web Service. The other two methods correspond to the asynchronous design pattern 
discussed in Chapter 8. If you want to call the Web Service asynchronously you can use the 
BeginXXX and the EndXXX methods associated with the proxy. [11] The proxy class has the 
same name as the WebService class. 

[11] Of course in this particular case XXX=Add. 

The Invoke method of the SoapHttpClientProtocol class will make the HTTP request and 
process the HTTP response associated with the transmitted and received SOAP packets. This 
example is found in the SimpleAddClient subdirectory under the SimpleWebService 
directory. 

... 
public class Test : 
    System.Web.Services.Protocols.SoapHttpClientProtocol 
{ 



  ... 
  public Test() 
  { 
    this.Url ="http://localhost/SimpleWebService/Add.asmx"; 
  } 

  ... 
  public long Add(long x, long y) 
  { 
    object[] results = this.Invoke("Add", 
                                     new object[] {x, y}); 
    return ((long)(results[0])); 
  } 
   ... 
  public System.IAsyncResult BeginAdd(long x, long y,  
         System.AsyncCallback callback, object asyncState) 
  { 
        return this.BeginInvoke("Add", 
               new object[] {x, y}, callback, asyncState); 
  } 

  ... 
  public long EndAdd(System.IAsyncResult asyncResult) 
  { 
        object[] results = this.EndInvoke(asyncResult); 
        return ((long)(results[0])); 
  } 
} 

You can then write a program to use the proxy classes to issue a Web Service request. 

public class AddClient 
{ 
  public static void Main(string[] args) 
  { 
    Test z = new Test(); 
    long f = z.Add(1, 2); 
    Console.WriteLine(f); 
    return; 
  } 
} 

Web Service Client with Raw SOAP and HTTP

To show you what the SoapHttpClientProtocol class does, the final client program for this 
example uses sockets to send both the HTTP headers and the SOAP directly and to receive the 



response from the Web Service. This example is the RawAddClient subdirectory of the 
SimpleWebService. 

The main routine first reads in a file that has the SOAP headers for the service to be called. It 
returns the length of the content, which will have to be placed in one of the HTTP POST 
headers. 

long contentLength; 
StringBuilder contentData = BuildContent("SoapAdd.txt", 
                                      out contentLength); 
StringBuilder requestHeader = BuildHeader(contentLength); 

It then connects to the server, sends the data, and receives the response, which it writes out to 
the console. 

IPEndPoint endPoint = new 
        IPEndPoint(Dns.Resolve(httpServer).AddressList[0], 
                                                httpPort); 
Socket sock = new Socket(AddressFamily.InterNetwork,  
                     SocketType.Stream, ProtocolType.Tcp); 
sock.Connect(endPoint); 
... 
sock.Send(header, header.Length, 0); 
sock.Send(content, content.Length, 0); 
... 
bytes = sock.Receive(receivedData, receivedData.Length, 
                                                    0); 
Console.WriteLine(ASCII.GetString(receivedData, 0, 
                                               bytes)); 
sock.Close(); 
... 

The routine BuildHeader just builds a standard HTTP POST request with the addition of the 
SOAPAction header. 

StringBuilder sb = new StringBuilder(1024); 
sb.Append("POST /SimpleWebService/Add.asmx HTTP/1.1\r\n"); 
sb.Append("Host: localhost\r\n "); 
sb.Append("Content-Type: text/xml; charset=utf-8 \r\n"); 
string line = "Content-Length: " + 
                         contentLength.ToString() + "\r\n" 
sb.Append(line); 
sb.Append("SOAPAction: \"urn:uuid: 
        10C14FCF-BF4A-477a-BFE7-41B9F2A4514E/Add\"\r\n "); 
sb.Append("\r\n"); 
... 



BuildContent just reads a file to a buffer and calculates the size of the buffer in bytes. 

contentLength = 0; 

String line; 
while ((line = fileStream.ReadLine()) != null) 
{ 
  sb.Append(line); 
  sb.Append("\r\n"); 
  contentLength += line.Length + 2; 
} 
fileStream.Close(); 
... 

Based on our previous discussion, the SOAP file, SoapAdd.txt, looks as we would expect it 
to. The input parameters "9" and "3" appear as the WSDL would dictate. 

<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
   xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">  
  <soap:Body> 
    <Add xmlns= 
          "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E"> 
      <x>9</x> 
      <y>3</y> 
    </Add> 
  </soap:Body> 
</soap:Envelope> 

The program first writes out the HTTP POST request. First come the standard HTTP headers 
with a special SOAPAction header, then the SOAP encoding of the request. 

POST /SimpleWebService/Add.asmx HTTP/1.1 
Host: localhost 
Content-Type: text/xml; charset=utf-8 
Content-Length: 393 
SOAPAction: 
       "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E/Add" 

<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 



   xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <Add xmlns= 
          "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E"> 
      <x>9</x> 
      <y>3</y> 
    </Add> 
  </soap:Body> 
</soap:Envelope> 

The program then writes out the response. Again, the HTTP headers come first, then the 
SOAP encoding of the result, "12." 

... 
HTTP/1.1 200 OK 
Server: Microsoft-IIS/5.0 
Date: Mon, 17 Sep 2001 02:11:30 GMT 
Cache-Control: private, max-age=0 
Content-Type: text/xml; charset=utf-8 
Content-Length: 383 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope 
    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  <soap:Body> 
    <AddResponse xmlns=  
          "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E"> 
      <AddResult>12</AddResult> 
    </AddResponse> 
  </soap:Body> 
</soap:Envelope> 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


SOAP Differences

Before we finish our basic examination of SOAP and WSDL, a more detailed look at the relationship 
of SOAP, WSDL, and the XML Schema specification is in order. As mentioned earlier, the SOAP 
encodings used by .NET remoting differ from those used by Web Services and the XML serializer. 

To illustrate the differences between the two, we will take the same program and serialize it to disk and 
use it as a Web Service. The program builds a circular list of two customer items. The two programs 
are found in the SOAP Differences directory. 

The first program, SOAP Formatter, creates a circular list and then serializes it to disk using the .NET 
SOAP formatter. Although it is superfluous to do so, we derive the Test class from the WebService 
class to demonstrate that what makes the difference is the way SOAP is serialized, not the basic idea of 
Web Services. 

using System.Web.Services; 
using System; 
using System.IO; 
using System.Runtime.Serialization.Formatters.Soap; 

[Serializable] 
public class Customer 
{ 
  public string name; 
  public long   id; 
  public Customer next; 
} 

public class Test: WebService 
{ 

static void Main() 
{ 
  Test test = new Test(); 
  Customer list = test.GetList(); 
  FileStream s = new FileStream("cust.xml", 
                                         FileMode.Create); 
  SoapFormatter f = new SoapFormatter(); 
  f.Serialize(s, list);  
s.Close(); 
} 

public Customer GetList() 
{ 
  Customer cust1 = new Customer(); 
  cust1.name = "John Smith"; 
  cust1.id = 1; 

  Customer cust2 = new Customer(); 
  cust2.name = "Mary Smith"; 
  cust2.id = 2; 



  cust2.next = cust1; 

  cust1.next = cust2; 
  return cust1; 
} 

This program produces the file cust.xml that has the following SOAP encoding. Note the use of the id 
attribute to identify objects and fields, and the href attribute that serves as an object reference. 

... 
<SOAP-ENV:Body> 
<a1:Customer id="ref-1"> 
<name id="ref-3">John Smith</name> 
<id>1</id> 
<next href="#ref-4"/> 
</a1:Customer> 
<a1:Customer id="ref-4"> 
<name id="ref-5">Mary Smith</name> 
<id>2</id> 
<next href="#ref-1"/> 
</a1:Customer> 
</SOAP-ENV:Body> 
... 

The second version of the program, WebService, as its name suggests, is a Web Service: 

<%@ WebService language="C#" class="Test" %> 

using System; 
using System.Web; 
using System.Web.Services; 

public class Customer 
{ 
  public string name; 
  public long   id; 
  public Customer next; 
}  
public class Test: WebService 
{ 
  [WebMethod] 
  public Customer GetList() 
  { 
    Customer cust1 = new Customer(); 
    cust1.name = "John Smith"; 
    cust1.id = 1; 

    Customer cust2 = new Customer(); 
    cust2.name = "Mary Smith"; 
    cust2.id = 2; 



    cust2.next = cust1; 

    cust1.next = cust2; 
  return cust1; 
  } 
} 

If you try to run this Web Service from the Internet Explorer using the URL: 
http://localhost/SOAPWebServiceTest/CustomerList.asmx?op=GetList, 
[12] Internet Explorer will indeed recognize it as a Web Service. See Figure 11-3. 

[12] This URL assumes that you have made the directory SOAP Difference\WebService into 
a virtual directory with alias SOAPWebServiceTest.

Figure 11-3. Internet Explorer recognizes CustomerList.asmx as a Web Service.

 

However, if you go on to Invoke the Web Service, you will get the following error: 



System.Exception: There was an error generating the XML 
   document. --> System.Exception: A circular reference 
   was detected while serializing an object of type 
   Customer. 
 at System.Xml.Serialization.XmlSerializationWriter. 
   WriteStartElement(String name, String ns, Object o, 
   Boolean writePrefixed) 
... 
   at System.Xml.Serialization.XmlSerializer.Serialize 
    (XmlWriter xmlWriter, Object o, 
     XmlSerializerNamespaces namespaces) 
... 

The XML Serializer used to produce the SOAP for Web Services cannot handle the circular reference. 
If you comment out the line of code: cust2.next = cust1, the Web Service will be able to respond with: 

... 
  <name>John Smith</name> 
  <id>1</id> 
  <next> 
    <name>Mary Smith</name> 
    <id>2</id> 
    <next xsi:nil="true" /> 
  </next> 
... 

There is no notion, however, of any real relationship between the items, as there was in the remoting 
case. Why can the SOAP in .NET remoting handle the relationships while the SOAP in Web Services 
cannot? 

SOAP handles the complicated relationships (multiple parents, graphs, etc.) that exist in an object 
model. XML Schema still reflects the XML heritage of document processing where you can model a 
document as a tree with a single root, each node having one parent. Since SOAP was being developed 
before XML Schema was finished, SOAP has some extensions to handle those cases. Since they are in 
Section 5 of the SOAP specification, they are often referred to as the Section 5 encoding rules. 

Those parts of the Section 5 encoding rules that are extensions cannot be incorporated in any XML 
document that has to be validated against a schema. Hence, the .NET XML serialization classes do not 
use them. On the other hand, the .NET remoting serializer does not care about schema validation; it 
cares about the ability to remote full object fidelity and hence uses all the Section 5 rules. In order to 
maximize interoperability, Web Services implementations tend to use only XML Schema compliant 
forms that can be validated against a schema. [13] The counterargument can be made that schema 
validation is not as important when machines are generating the XML, but the industry has not yet 
taken that approach. [14] 

[13] Although we will not discuss them here, there are attributes you can set on your Web 
Service class and methods to have them use the Section 5 rules.

[14] There is no intent here to slight the security issues associated with Web Services, but if 
you cannot get the object models to work together in some fashion, security becomes 
irrelevant because there is nothing to make secure.



If you want applications and Web Services that reside on different operating system platforms to 
interoperate, define your Web Services with XML Schema first, then develop the associated WSDL. 
You can then create an abstract class that can be the basis for an .asmx file by using the /server option 
on the Wsdl tool. 

Starting with an object model and then modeling it with XML Schema might result in incompatible 
systems. Of course, if only simple types and structures are involved, you are not going to have 
problems. If you have existing object models, you may need a wrapper layer that translates the Web 
Services layer and moves it into your existing object model. This is the major technological challenge 
of Web Services—getting the object models on different platforms to work together. [15] 

[15] If you have a COM background, think of the work the proxy has to do to handle pointer 
aliasing if the pointer_default(unique) attribute is not used.



Web Service Class

As we have previously demonstrated, a Web Service is nothing but an HTTP request. As 
such, a Web Service can access the intrinsic objects associated with its HTTP request. These 
are the same intrinsic objects discussed in the section "State in ASP.NET Applications" in 
the previous chapter. The WebService class has properties that access these intrinsic objects. 

You need not derive your Web Service class from the framework WebService class. You 
can derive your Web Service class from a different base class if necessary. In this case you 
can use the current HttpContext to access the intrinsic objects. The WebService class 
inherits from MarshalByRefObject, however, so if you want your Web Service class to be 
remotable, and you do inherit from a different base class, make sure that class also inherits 
from MarshalByRefObject. The HttpContext enables you to get information about an 
HTTP request. By using the static Current property, you can get access to the current 
request. 

We will now build a Web Service inside Visual Studio.NET that will illustrate the use of 
these intrinsic objects inside a Web Service. As Figure 11-4 demonstrates, choose ASP.NET 
Web Service from the New Project dialog box in Visual Studio.NET. 

Figure 11-4. Visual Studio.NET New Project dialog with ASP.NET Web Service 
project selected.

 

When you click the OK button, VS.NET will setup a Web Service project for you. By 
default, the Web Service files are placed in a subdirectory of the IIS directory on your hard 
drive. By default, projects are placed in a VSWebCache\MachineName subdirectory under 



the Documents and Settings directory for the logged in user. Figure 11-5 shows the 
resulting VS.NET project. 

Figure 11-5. Visual Studio.NET Web Services project.

 

Our Web Service will have several methods that demonstrate how to use the intrinsic 
objects. As you will see, this is really no different from their use in ASP.NET. Two of the 
methods will illustrate the use of application and session state by calculating a cumulative 
sum of numbers. 

In the global.asax file we initialize our sum to zero in the appropriate event handlers. 
Global.asax has the same function in Web Services as it does for ASP.NET, as discussed in 
the previous chapter in the section "ASP.NET Applications." Since the Global class inherits 
from System.Web.HttpApplication, it can access the Application and Session intrinsic 
objects. 

public class Global : System.Web.HttpApplication 
{  
protected void Application_Start(Object sender, 
                                            EventArgs e) 
{ 
  Application["TotalSum"] = 0.0; 
} 



protected void Session_Start(Object sender, EventArgs e) 
{ 
  Session["SessionSum"] = 0.0; 
} 
... 

Renaming the Service1.asmx file to arithmetic.asmx. we define several Web methods. By 
setting the EnableSession argument to the WebMethod constructor to true, we turn on 
session state for the SessionSum method. Every time a new session is started, the sum is 
reset to zero. On the other hand, for the CumulativeSum Web method, EnableSession is set 
to its default value or false, so that the sum is reset to zero only when the Web Service 
application is restarted. The Application intrinsic object is used from the HttpContext 
object to show how that class is used. 

It should be clear from this code that HttpApplication, WebService, and HttpContext all 
reference the same intrinsic objects. If you need to save state for the application or session of 
a Web Service, you can use the collections associated with HttpApplicationState and 
HttpSessionState to do so. 

... 
[WebMethod(EnableSession = true)] 
public double SessionSum(double x) 
{ 
  Session["SessionSum"] = (double)Session["SessionSum"]+x; 
  return (double)Session["SessionSum"]; 
} 

[WebMethod] 
public double CumulativeSum(double x) 
{ 
  double sum = (double) Application["TotalSum"]; 
  sum = sum + x; 
  Application["TotalSum"] = sum; 
  return (double)HttpContext.Current.Application 
                                             ["TotalSum"]; 
} 
... 

The GetUserAgent method show how to use the Context object to access information about 
the request. We return what kind of application is accessing the Web Service. The 
GetServerInfo method accesses the Server intrinsic object. 

[WebMethod] 
public string GetUserAgent() 
{ 
  return Context.Request.UserAgent; 



} 

[WebMethod] 
public string GetServerInfo() 
{ 
  string msg = "Timeout for " + Server.MachineName + " = " 
               + Server.ScriptTimeout + "; Located at " + 
               Server.MapPath(""); 
  return msg; 
} 

The ArithmeticClient console program demonstrates the use of the Web Service. We can 
create a proxy class from within VisualStudio.NET. On the Project Menu, select Add Web 
Reference and type in the address of the Web Service in the Address edit box, followed by a 
carriage return. Information about the Arithmetic Web Service will appear as in Figure 11-6. 

Figure 11-6. Visual Studio.NET display of Arithmetic Web Service information.

 

Click on the Add Reference button to add the Web reference. This will add a 
WebReferences set of subdirectories below the current project that will contain the proxy 
class and the wsdl file for the Web Service. To the client program we will have to reference 
the proxy class's namespace: 

using ArithmeticClient.localhost; 



We then calculate a sum using the total held by the Application intrinsic object. Next we 
calculate a sum for the total held by the Session intrinsic object. 

Arithmetic a = new Arithmetic(); 
double sum; 
for (int i = 0; i < 5; i++) 
{ 
  sum = a.CumulativeSum(i); 
  Console.WriteLine("Adding {0}, 
                  Application sum is now {1}", i, sum); 
} 

double sessionSum; 
for (int i = 0; i < 5; i++) 
{ 
  sessionSum = a.SessionSum(i); 
  Console.WriteLine("Adding {0}, 
                  Session sum is now {1}", i, sessionSum); 
} 

This will give us the following output. The exact numbers for the application-based sum will 
depend on how many times you have run the application. 

Adding 0, Application sum is now 90 
Adding 1, Application sum is now 91 
Adding 2, Application sum is now 93 
Adding 3, Application sum is now 96 
Adding 4, Application sum is now 100 
Adding 0, Session sum is now 0 
Adding 1, Session sum is now 1 
Adding 2, Session sum is now 2 
Adding 3, Session sum is now 3 
Adding 4, Session sum is now 4 

We now create another instance of the proxy class and make the same method calls. 

Arithmetic a2 = new Arithmetic(); 
for (int i = 0; i < 5; i++) 
{ 
  sum = a2.CumulativeSum(i); 
  Console.WriteLine("Adding {0}, 
                     Application sum is now {1}", i, sum);  
} 

for (int i = 0; i < 5; i++) 



{ 
  sum = a2.SessionSum(i); 
  Console.WriteLine("Adding {0}, 
                         Session sum is now {1}", i, sum); 
} 

We get the following output. Notice how the application sum continues to increase, while 
the session bases sum starts again from zero. A new browser session is not the only way to 
start a new Web Service session. 

Adding 0, Application sum is now 100 
Adding 1, Application sum is now 101 
Adding 2, Application sum is now 103 
Adding 3, Application sum is now 106 
Adding 4, Application sum is now 110 
Adding 0, Session sum is now 0 
Adding 1, Session sum is now 1 
Adding 2, Session sum is now 2 
Adding 3, Session sum is now 3 
Adding 4, Session sum is now 4 

Finally we call the GetUserAgent and GetServerInfo Web methods. 

Console.WriteLine(a2.GetUserAgent()); 
Console.WriteLine(a2.GetServerInfo()); 

The output will look something like this: 

Mozilla/4.0 (compatible; MSIE 6.0; MS Web Services 
                              Client Protocol 1.0.2914.16) 
Timeout for MICAH = 90; Located at 
f:\inetpub\wwwroot\Arithmetic 



Hotel Broker Web Service

The next step in the case study is to make the Customer and Hotel components of the Hotel 
Broker available as a Web Service. This Web Service is found in the 
HotelBrokerWebService subdirectory of the case study for this chapter. This Web Service 
will be used both by Acme's customers to make reservations as well as by administrators for 
maintenance tasks associated with the Hotel Broker. 

The proxy classes themselves are built into a proxies assembly. Two batch files that can be 
used to create the proxy classes and build the assembly are located in the 
WebServiceProxies subdirectory of the case study. 

In the HotelBrokerAdministration subdirectory you will find a version of the admin 
program that uses the proxies assembly instead of the Customer and Hotel assemblies. In 
the AcmeWeb2 subdirectory for the case study you will find a version of AcmeLib that 
references the proxies assembly instead of the Customer and Hotel assemblies. All 
references to the Customer and Hotel components in the Acme reservation Web page and 
HotelBrokerAdministration programs have been removed. 

Since at this stage in the book you have a lot of experience with .NET, we do not spell out 
the details of building the various pieces of the case study. Please consult the file readme.txt 
in the CaseStudy directory if you would like some pointers. 

Customer Web Service

To implement the customer Web service we created a file, CustomerWebService.asmx, 
that uses the Customer component to implement the details of the Web Service: 

[WebService(Namespace= 
         "urn:uuid:10C14FCF-BF4A-477a-BFE7-41B9F2A4514E")] 
class CustomerWebService 
{ 
  private Customers customers; 
  public CustomerWebService() 
  { 
    customers = new Customers("HotelBroker"); 
  } 

  [WebMethod] 
  public int RegisterCustomer(string firstName, 
                     string lastName, string emailAddress) 
  { 
    int customerId; 
    customerId = customers.RegisterCustomer(firstName, 
                                  lastName, emailAddress); 
    return customerId; 



  } 

  [WebMethod] 
  public void UnregisterCustomer(int customerId) 
  { 
    customers.UnregisterCustomer(customerId); 
  } 

  [WebMethod] 
  [XmlInclude(typeof(CustomerListItem))] 
  public ArrayList GetCustomer(int customerId) 
  { 
    ArrayList ar;  
    ar = customers.GetCustomer(customerId); 
    return ar; 
  } 

  [WebMethod] 
  public void ChangeEmailAddress(int customerId, 
                                      string emailAddress) 
  { 
    customers.ChangeEmailAddress(customerId, 
                                            emailAddress); 
  } 
} 

The only new attribute is XmlInclude, which allows the XmlSerializer used to create the 
SOAP protocol to serialize a custom type, in this case CustomerListItem. This attribute is 
found in the System.Xml.Serialization namespace. Nonetheless, if you examine the proxy 
class for this Web Service, which is found in the WebServiceProxies directory, you will see 
that GetCustomer proxy (customerproxy.cs) returns only an array of objects. 

public object[] GetCustomer(int customerId) 

Although the attribute instructs the serializer to save the custom type, the SOAP protocol 
understands only how to transmit a generic object type. So the AcmeLib code (Acme.cs) has 
to treat the return type as an object and then extract the custom type from it. 

object[] al = customers.GetCustomer 
                               (hotelCustomerId); 
foreach(CustomerListItem cust in al) 
{ 
  currentUser.HotelCustomerId = hotelCustomerId; 
  currentUser.FirstName = cust.FirstName; 
  currentUser.LastName = cust.LastName; 
  currentUser.EmailAddress = cust.EmailAddress; 



} 

All the other ArrayLists in the Customer and Hotel Web Services are treated as arrays of 
objects where the appropriate type has to be extracted. Arrays that use types such as strings 
and integers, however, need no special treatment by the XmlSerializer. 

Hotel Broker Web Service

For the HotelBroker Web Service, the Hotel assembly itself was modified to be a Web 
Service. The HotelWebService.asmx file has to make reference only to the HotelBroker 
class in the Hotel assembly, which is located in the bin subdirectory of the Web Service. 

<%@ WebService Language="C#" 
              class ="OI.NetCs.Acme.HotelBroker, Hotel" %> 

The code is the same as the previous version of the component except for addition of the 
necessary attributes to convert the code to a Web Service. Since Web Service names have to 
be unique, we had to use the MessageName property of the WebMethod attribute to give 
one of the overloaded GetHotels methods a unique name. 

[WebMethod(MessageName="GetAllHotels")] 
[XmlInclude(typeof(HotelListItem))] 
public ArrayList GetHotels() 

The code in Acme.cs is modified where necessary to handle the generic object[] arrays that 
are returned instead of the CLR specific ArrayList type. 

Design Considerations

Network latency is a major performance consideration. Hence, the number of requests made 
over the network to a Web Service or a database should be minimized. In the HotelBroker 
Web Service, the reservations for a customer are kept in the dataset as a cache, so that only 
for database modifications does a database request have to be made. The same is true for 
tracking the hotels and cities, although there is a trade-off here, since an administrator might 
add a new hotel. However, that operation is not likely to occur during the relatively short 
time a customer is making a reservation. Of course, these types of data could be cached 
inside the Web form itself, so a call to the Web Service would be unnecessary. 

HTTP is a stateless protocol and therefore so is SOAP. Minimizing state will help your 
applications and Web Services to scale better, because objects (such as database 
connections) can be pooled or reused much more easily, and less memory is required so that 
more resources are available to handle more requests. This means treating your Web Service 
objects as endpoints of communication, not as full-fledged objects. Our case study has not 
really done this, because we wanted to illustrate the use of certain technologies, and the 
proper way to partition functionality really depends on the details of your actual application 
and network latencies. 



You can also use the CacheDuration property on a Web method or the Cache property of 
the HttpContext class to cache information to avoid network overhead. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Summary

Web Services provide a means to extend component functionality across the 
network between platforms and languages from different vendors. Unlike .NET 
remoting, however, the types that can be used are much more limited. 

Nonetheless, if you start your design from the point of view of the XML Schema 
specification and then build your WSDL and Web Service classes, you will have 
a much greater chance of being able to interoperate. 



Chapter 12. Security
While Security considerations are fundamental to application design and should 
not be left for last, pedagogically it is easier to talk about security once the .NET 
application model, ASP.NET, and Web Services have already been introduced. 
This chapter introduces to you the fundamentals of .NET security. [1] 

[1] Pedagogical reasons also dictate the form of the sample code. It is 
easier to demonstrate security by starting with an open environment 
and then showing you how to restrict operations. Real systems should 
start with the most restrictive security and then open up only as 
needed.

Security prevents a user or code from doing things it should not be allowed to do. 
Traditionally, security has focused on restricting user actions. .NET allows 
restrictions to be placed on executing code. For example, you can prevent certain 
sections of code from accessing certain files. This is particularly useful when you 
have public Web sites or services where it is impractical to create user accounts, 
and lock down files or other resources, for an unknown number of users. It is 
critical when you are executing code that was created by third parties. 

It is important to realize that .NET security sits on top of the underlying operating 
system's security system. For the purposes of this chapter, the underlying 
operating system is assumed to be Windows 2000. While we will discuss some 
security issues associated with the underlying infrastructure, including 
Microsoft's Internet Information Server (IIS), we will go into some detail only 
with those parts of the security story that are relevant to .NET. [2] 

[2] For more information about secure Web-based applications, read 
Designing Secure Web-Based Applications for Microsoft Windows 2000 
by Michael Howard.

To give an example of the interaction of .NET security and the operating system, 
code always runs under some identity, or in other words, as some user id. 
Irrespective of the file creation .NET security permissions, if the file Access 
Control List (ACL) denies you the right to create a file, you will be unable to 
create a file. 

What makes the security story so difficult to tell is that it often seems that you 
have to understand everything before you can do anything. For this reason, we 
will tell the security story several times, each time with a little more detail. At the 
end you will be able to understand the whole story. 

The security story starts with an attempt to answer to two questions. The first is 



the authentication question: Who are you? The second is the authorization 
question: Do you have the right to do what you want? Under .NET this story 
takes two branches, because the "you" can be either a user identity or an identity 
associated with an assembly. 

We start with a brief telling of the security story by showing how both these types 
of security exist in .NET. Although it is not needed immediately, a brief 
excursion into Internet security follows, so that we can use that information when 
we need it. Then we start the detailed narrative with role-based security in .NET. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


User-Based Security

From the perspective of traditional user-based security, the authentication 
question is: Who is the identity attempting to do the action? An identity is 
typically a user or account name. Credentials are what you present to prove who 
you are; they are evidence presented for verification. A credential might be your 
password, a smart card, or a biometric device. The user's credentials must be 
verified with some security authority. An example of this is verifying a user's 
password against their login name based on a database of user names and 
encrypted passwords. Systems that allow unverified access are said to allow 
anonymous access. In security lingo the identity that can be authenticated is 
referred to as the principal. 

The authorization question is: Can the identity perform the action they want? The 
principal is then compared to some list of rights to determine whether access is 
allowed. For example, when you access a file, your user name is compared with 
an Access Control List for the action you want to do in order to determine 
whether you can access the file. Of course, access is not always all or nothing. 
You might have read, but not modify rights to a file. 

In a multitier architecture, the identity under which the server executes is often 
very powerful, and you want to restrict the ability of the client that makes a 
request to some subset of privileges the server has. In other cases, such as 
anonymous access, the server may not know who the client really is. The server 
then impersonates the client. Code executes under the identity of the client, 
instead of the server. In the case of anonymous access, the server runs under the 
identity of some preset user account. 

Windows security under .NET, and ASP.NET security, are based on the concepts 
of user-based security. 

http://10.3.0.18/safari/html/new/0-13-093383-X/24981533.html


Code Access Security

One of the challenges of the software world of third-party components and 
downloadable code is that you open your system to damage from executing code 
from unknown sources. You might want to restrict Word macros from accessing 
anything other than the document that contains them. You want to stop 
potentially malicious Web scripts. You even want to shield your system from 
bugs of software from known vendors. To handle these situations, .NET security 
includes Code Access Security (CAS). 

Code Access Security can be applied to verifiable code only. During JIT 
compilation, the verification process examines the MSIL to verify its type safety. 
As discussed previously, type-safe code can only access memory locations it is 
supposed to. Pointer operations are not allowed, so that methods can be entered or 
left only from well-defined entry points and exit points. You cannot calculate an 
address and enter code at an arbitrary point. Disallowing pointer operations 
means that random memory access cannot happen; code can behave only in a 
restricted manner. [3] 

[3] Of course, bugs are still possible, but bugs cannot overwrite the 
stack, overrun a buffer, or do anything that could be exploited to cause 
the program to do anything that it does not have the security rights to 
do. If you give your code unlimited rights, then you do have potential 
problems. This is especially true of the unmanaged code permission 
that we will discuss later on.

Security Policy

Code Access Security is based on the idea that you can assign levels of trust to 
assemblies and restrict the operation of the code within those assemblies to a 
certain set of operations. Code-based security is also referred to as evidence-
based security. The name evidence stems from the fact that a set of information 
(or evidence) is used by the CLR to make decisions about what this code is 
allowed to do. A piece of evidence might be the location from which the code 
was downloaded, or its digital signature. Security policy is the configurable set of 
rules that the CLR uses to make those decisions. Security policy is set by the 
machine administrators. Security policy can be set at the enterprise, machine, 
user, or application domain level. 

Permissions

Security policy is defined in terms of permissions. Permissions are objects that 
are used to describe the rights and privileges of assemblies to access other objects 
or undertake certain actions. Assemblies request to be granted certain 



permissions. Security Policy dictates what permissions will be granted to an 
assembly. 

Examples of the classes that model permissions include: 

●     SecurityPermission that controls access to the security system. This 
includes the right to call unmanaged code, control threads, control 
principals, app domain, evidence and the like. 

●     FileIOPermission that controls access to the file system. 
●     ReflectionPermission that controls access to nonpublic metadata and the 

dynamic generation of modules, types, and members. 

All the permission classes inherit from the CodeAccessPermission base class, so 
they all behave in the same way. 

Attributes can be applied to the assembly to represent a request for certain 
permissions. The CLR will use metadata to determine what permissions are being 
requested. Based on the code's identity and trust level, the CLR will use security 
policy to determine whether it can grant those permissions. 

Code can programmatically demand (request) that its callers have certain 
permissions before it will execute certain code paths. If the demand fails, the 
CLR will throw a System.Security.SecurityException. Whenever you demand a 
permission, you have to be prepared to catch that exception and handle the case 
where the permission was not granted. Most programmers will not have to 
demand permissions, because the .NET framework libraries will do that for you 
on your behalf. You still have to be prepared, though, to handle the exceptions. 

Code can also request that permissions it has been granted be restricted or denied. 
This is important for code that uses third-party components or relies on third-
party Web scripts. Since such code may have a lower level of trust than your own 
code, you might want to restrict the available rights while that code is running. 
When it is finished running, you can restore the level of permissions back. 

Determining the identity of the code is equivalent to the authentication question 
of traditional security. The authorization question is based on the security 
permissions that are given or taken away from an assembly. 

Many of the classes that support permissions are found in the 
System.Security.Permissions namespace. Some are found in the System. Net 
and System.Data namespaces. 

http://10.3.0.18/safari/html/new/0-13-093383-X/24981533.html


Internet Security

You can use the Internet Protocol Security (IPSec) to restrict access to your 
computer to certain IP addresses. Of course, you need to know the IP addresses of 
your clients. The advantage is that you do not have to change your client 
application, ASP.NET code, or Web Service code to use it. This is impractical for 
public Web sites or services where you do not know who your clients are. 

Internet Information Server

While the focus of this chapter is .NET security, some knowledge of IIS Security 
is important. Since both Web Services and ASP.NET use IIS, your IIS settings do 
affect .NET security. 

In the previous chapters on ASP.NET and Web Services, we have used the 
default settings of Anonymous access. Anonymous access does not require a user 
name or password to access an account. You run under some default user 
account. Anonymous access is useful for public Web sites and services that do 
their own authentication by asking for a user name or password or by some other 
means. In such a scenario you could use ASP.NET forms-based authentication. 
You can build forms to get the user name and password and then validate them 
against a configuration file or database. 

Internet Information Services supports the major HTTP authentication schemes. 
These schemes require you to configure IIS appropriately. These schemes are 
listed in Table 12-1. In each of these scenarios IIS authenticates the user if the 
credentials match an existing user account. Secure Sockets Layer (SSL) is used 
whenever you need to encrypt the HTTP communication channel. SSL can 
degrade performance. We do not discuss SSL in this chapter. 

Table 12-1. llS Authentication Schemes

Scheme Type of Authentication 

Basic User and password information is effectively sent 
as plain text. This is standard HTTP authentication 
and is not secure. 

Basic over SSL Basic authentication, but the communication 
channel is encoded, so that the user name and 
password are protected. 



Digest Uses secure hashing to transmit user name and 
password. This is not a completely secure method 
because the hash codes stored on the server are 
reversible.[4] It was introduced in HTTP 1.1 to 
replace Basic authentication. 

Windows Integrated Security Traditional Windows security using NTLM or 
Kerberos protocols. IIS authenticates if credentials 
match a user account. Cannot be used across 
proxies and firewalls. NTLM is the legacy 
Windows security protocol. 

Certificates over SSL Client obtains a certificate that is mapped to a user 
account. 

[4] See the discussion of hash codes in Chapter 7. A message digest is 
another name for the result of applying a hash code to a message.

You will also have to adjust access to the necessary files (graphics, data store 
files, etc.) and other resources (i.e., databases) to those user accounts 
(authorization). For public Web sites and Web services this approach is not useful 
because users will not have user accounts. 

Microsoft has introduced the Passport authentication scheme. While ASP.NET 
does have support for Passport (System.Web.Security. PassportIdentity class) 
on the server side, as of this writing developer tools to handle the client side for 
Passport authentication do not yet exist. Passport avoids the problem of requiring 
specific accounts on specific machines. We will not discuss Passport in this 
chapter. 

The security specification for SOAP is being worked on by the W3C. You could 
create your own custom authentication using SOAP messages. Since XML is 
transmitted as text, you want to run using Secure Sockets Layer to encrypt the 
messages (especially if you use tags such as <user> and <password>. In general, 
secure data has to be encrypted when using SOAP. 



Role-Based Security in .NET 
[5] The discussion in this section is relevant for intranets or other scenarios where 
users will have Windows user accounts on the servers or domains. See the later 
section "Forms-Based Authentication" for a discussion of security appropriate to 
the scenario of a public Web site. 

Most people have at least an intuitive understanding of users and passwords. MTS and 
COM+ have provided an easy-to-understand security system based on roles. The best place 
to start a more detailed look at .NET security is with identities and roles. We will look at this 
from the point of view first of a Windows application and then of ASP.NET. 

Principals and Identities

Each thread has associated with it a CLR principal. The principal contains an identity 
representing the user id that is running that thread. The static property 
Thread.CurrentPrincipal will return the current principal associated with the thread. 

Principal objects implement the IPrincipal interface. IPrincipal has one method and one 
property. The Identity property returns the current identity object, and the method IsInRole 
is used to determine whether a given user is in a specific role. The RoleBasedSecurity 
example illustrates the use of principals, identities, and roles. 

Currently there are two principal classes in the .NET framework: WindowsPrincipal and 
GenericPrincipal. The GenericPrincipal class is useful if you need to implement your own 
custom principal. The WindowsPrincipal represents a Windows user and its associated 
roles. 

Since the RoleBasedSecurity example is a Windows (console) application, we will have a 
WindowsPrincipal associated with the CurrentPrincipal property. 

...[6] 
IPrincipal ip = Thread.CurrentPrincipal; 
WindowsPrincipal wp = ip as WindowsPrincipal; 
if (wp == null) 
  Console.WriteLine("Thread.CurrentPrincipal is NOT a 
                                     WindowsPrincipal");  
else 
  Console.WriteLine("Thread.CurrentPrincipal is a 
                                     WindowsPrincipal"); 
... 

[6] The program starts out with a demand for a SecurityPermission and then 
proceeds to set the AppDomain principal policy. While the reasons for this will be 
discussed later, the quick answer is to make sure that the example functions 
properly on your machine. If you get an exception, you will have to set the policy on 
your local machine to allow you to run the example. On a vanilla system with a 



standard install, this should not happen. What to do if it does happen is discussed 
later in the chapter.

An identity object implements the IIdentity interface. The IIdentity interface has three 
properties: 

●     Name is the string associated with the identity. This is given to the CLR by either the 
underlying operating system or the authentication provider. ASP.NET is an example 
of an authentication provider. 

●     IsAuthenticated is a Boolean value indicating whether the user was authenticated or 
not. 

●     AuthenticationType is a string that indicates which authentication was used by the 
underlying operating system or authentication provider. Examples of authentication 
types are: Basic, NTLM, Kerberos, Forms, or Passport. 

Substitute Name of Your Machine in the 
Examples

In several of the examples the machine name MICAH is used. You should 
substitute the appropriate machine or domain name when you run the samples on 
your computer. 

There are several types of identity objects. Since this is a Windows program, we will have a 
WindowsIdentity object associated with the WindowsPrincipal. The example next prints 
out the property information associated with the identity object. 

IIdentity ii = ip.Identity; 
Console.WriteLine("Thread.CurrentPrincipal Name: {0} 
               Type: {1} IsAuthenticated: {2}", ii.Name, 
              ii.AuthenticationType, ii.IsAuthenticated); 

On my machine this is printed out: 

Thread.CurrentPrincipal Name: MICAH\mds Type: NTLM 
                                     IsAuthenticated: True 

The operating system on the machine MICAH using the NTLM protocol has authenticated 
the user running this program to be "mds." The sample then validates that this is indeed a 
WindowsIdentity object. The WindowsIdentity object has additional properties and 
methods besides those of the IIdentity interface. One of them is the Win32 account token id 
associated with the currently running user. 

WindowsIdentity wi = wp.Identity as WindowsIdentity; 
if (wi != null) 
  Console.WriteLine("WindowsPrincipal.Identity Name: {0}  



   Type: {1} Authenticated: {2} Token: {3}", wi.Name, 
wi.AuthenticationType, wi.IsAuthenticated, wi.Token); 

You can use the name of the user to decide (authorize) whether the user has the rights to 
undertake certain actions by refusing to execute certain code paths. 

.NET Windows Roles

Instead of checking each individual user name, you can assign users to roles. You can then 
check to see if a user belongs to a certain role. The standard administrators group is an 
example of how a role works. You do not have to individually assign a user identity all the 
privileges that an administrator has and then check to see if individual users have certain 
privileges. Instead, you just assign the user to the administrators group. Code then checks to 
see if a user is in the administrators group before attempting actions such as creating a new 
user. .NET roles are separate from COM+ roles. 

You define roles by defining groups in NT4 or Windows2000. Each group represents one 
role. Go to the Control Panel and select Administrative Tools. From the Administrative 
Tools list select Computer Management. In the Computer Management MMC snap-in 
expand the Local Users and Groups node. As Figure 12-1 shows, if you select Groups you 
will see all the Groups defined on your machine. 

Figure 12-1. Groups defined on a machine.

 

Some groups, such as Administrators and Guests, are "built in" because they are predefined 



for you. CustomerAdmin is a user-defined group that represents administrators who have the 
right to modify Acme customer information. 

To add a new group to the local machine, right-mouse-click on the Groups node and select 
"New Group." A dialog box you can fill in pops up. Figure 12-2 shows this dialog box filled 
for a new group entitled "HotelAdmin" which is designed to have all users on the machine 
who can add or modify information about hotels in the HotelBroker system. Clicking the 
Create button will add the group to the system. You can use the Add and Remove buttons to 
add or remove users from the group. 

Figure 12-2. Dialog to create a HotelAdmin group.

 

To modify an existing group, select that group, right-mouse-click, and select Properties. 
Clicking the Add button will bring up a dialog of all users on the system. You can then 
select users and add them to the group. Figure 12-3 shows a user about to be added to the 
HotelAdmin group. The Remove button is used to remove users from the group. 

Figure 12-3. User JaneAdmin about to be added to the HotelAdmin group. 
User mds has already been added.



 

In addition to creating a HotelAdmin group, you should also create a CustomerAdmin group 
with JaneAdmin as a member using the same procedure we just described. Note that the 
JaneAdmin user need not, and in fact should not, be a member of the Administrators group. 
Users should run with the minimum privilege required. Within code you qualify the name 
using the domain or machine name. The CustomerAdmin role is referred to as 
"MICAH\\CustomerAdmin." For groups that are preinstalled, such as the Administrators 
group, you use the "BUILTIN" prefix—for example, "BUILTIN\\Administrators." To avoid 
translation and internationalization problems, the 
System.Security.Principal.WindowsBuiltInRole enumeration can be used to refer to built-
in roles. Instead of using the "BUILTIN\\Administrators" string you can refer to the 
Administrators group as WindowsBuiltInRole.Administrator. 

The RoleBasedSecurity example now checks to see if the current user is in a role. You can 
either pass the role as a string or use the WindowsBuiltInRole enumeration. Remember to 
modify the programs to use the name of your machine when you run the book samples on 
your computer. 

string adminRole = "MICAH\\CustomerAdmin"; 
bool inRole = wp.IsInRole(adminRole); 
Console.WriteLine("In CustomerAdmin role?: {0}", inRole); 
inRole = wp.IsInRole(WindowsBuiltInRole.Administrator); 
Console.WriteLine("Is in Administrators group: {0}", 
  inRole); 

inRole = wp.IsInRole(WindowsBuiltInRole.Guest); 
Console.WriteLine("Is in Guests group: {0}", inRole); 



inRole = wp.IsInRole(WindowsBuiltInRole.User); 
Console.WriteLine("Is in Users group: {0}", inRole); 

Other Identity Classes

Now let us look in more detail at the other Identity classes. Currently there are four in the 
.NET Framework: 

●     FormsIdentity is used by the FormsAuthenticationModule class. We will discuss 
this class when we discuss ASP.NET forms authentication. 

●     GenericIdentity can represent any user. This class is used with the 
GenericPrincipal for generic or custom identities and principals. 

●     PassportIdentity is used with Passport authentication. Since we do not discuss 
Passport, we will not discuss this class. 

●     WindowsIdentity represents a Windows user. A Windows Principal instance will 
have a WindowsIdentity instance as its Identity property. For authenticated users, 
the type of authentication used (NTLM, Kerberos, etc.) is available. 

Note that the properties of the IIdentity interface are read-only and therefore cannot be 
modified. 

Even if your users are unauthenticated, you can get the WindowsIdentity for any thread 
using the static method WindowsIdentity.GetCurrent to get the WindowsIdentity 
instance of the current user. [7] You can then use the WindowsPrincipal constructor to build 
a WindowsPrincipal instance from this WindowsIdentity. 

[7] We discuss what this represents in the next section. 

The HotelBrokerAdminstration program has been modified so that you cannot run it if you 
are not in the HotelBrokerAdmin role. See the file MainAdminForm.cs in the directory 
HotelBrokerAdministration Roles. 

static void Main() 
{ 
  ... 
  IPrincipal ip; 
  ip = Thread.CurrentPrincipal;  
  string hotelAdminRole = "MICAH\\HotelAdmin"; 
  bool inRole = ip.IsInRole(hotelAdminRole); 
  if (inRole == false) 
  { 
    MessageBox.Show("You cannot run this program since you 
                          are not a Hotel Administrator.", 
                        "Acme Customer Management System", 
                         MessageBoxButtons.OK, 
                         MessageBoxIcon.Exclamation); 



    return; 
  } 

  Application.Run(new MainAdminForm()); 
} 

ASP.NET Roles

Now that we have a fundamental understanding about principals, identities and roles, we can 
apply it to our AcmeReservationSystem Web site. The Web site has been modified so that 
you can choose to link to a HotelAdministration page where you can add, modify, or delete 
the hotels that are part of the HotelBroker system. This example is found in the Step0 
subdirectory of the ASP.NET Roles directory. To run this example, make sure that the 
Step0 directory is a virtual directory with the name AcmeWebSecurityStep0. Figures 12-4 
and 12-5 show the new Web pages. 

Figure 12-4. The new Acme Home Page with the link to the administration 
page.

 

Figure 12-5. The administration page for the AcmeReservation system.



 

Since at this stage in the book you have a lot of experience with .NET, we do not spell out 
the details of building the various ASP.NET examples. Please consult the file readme.txt in 
the current chapter directory if you would like some pointers. 

At this point there is no security associated with these pages. Anyone who can log into the 
Web site can access the administration page and modify the hotel information. We have also 
modified the login page to print out the current principal and identity information associated 
with the application as well as the information associated with the current 
WindowsIndentity. 

string text; 

IPrincipal ip; 
ip = Thread.CurrentPrincipal; 
string principalText = "CurrentPrincipal is of type " + 
                                ip.GetType().ToString(); 

IIdentity ii = ip.Identity; 
principalText = principalText + "\n   " + 
                            "Is user authenticated?: " + 
                           ii.IsAuthenticated.ToString(); 



text = principalText; 

WindowsIdentity wi = WindowsIdentity.GetCurrent(); 
string identityText = "Current Windows Identity: " + "\n 
     " + "Name: " + wi.Name + "\n   IsAuthenticated?:" + 
      wi.IsAuthenticated + "\n   AuthenticationType:" + 
      wi.AuthenticationType; 
text = text + "\n" + identityText; 
IdentityInfo.Text = text; 

As Figure 12-6 illustrates, looking at the information on the login page we find that we have 
an unauthenticated generic principal for the thread, yet the current WindowsIdentity 
indicates that we are running as the authenticated SYSTEM account. What does this mean? 
In the previous examples we used the IsInRole method associated with the 
CurrentPrincipal. But that user is now not authenticated, so that method will always return 
false! 

Figure 12-6. Principal and identity information about the Step0 
AcmeWebSecurity Web site.

 

Operating System Identity and CLR Identity

As we mentioned at the start of the chapter, .NET security sits on top of the underlying 
operating-system security. The identity associated with the thread by the CLR and the 
identity associated with the thread by the underlying operating system are not the same. The 
identity of the thread from the operating-system perspective is reflected by the setting of the 
WindowsIdentity object returned by the static Windows.Identity.GetCurrent method. The 



CLR identity is reflected by the value of the Thread.CurrentPrincipal object. [8] To go 
back to the example mentioned at the start of the chapter, if you access a file from within 
.NET, both the managed and unmanaged identities must have rights to the file within their 
respective environments. 

[8] The reason why these were identical in the RoleBasedSecurity example is that 
we set the application domain principal policy in the example to be 
PrincipalPolicy.WindowsPrincipal. With the default ASP.NET settings in the 
config.web, the PrincipalPolicy.UnauthenticatedPrincipal policy is used. For 
that policy, Thread.CurrentPrincipal returns an unauthenticated 
GenericPrincipal object. We will discuss principal policy later.

What values the current WindowsIdentity and Thread.CurrentPrincipal have are set in 
two places: IIS Settings and the ASP.NET configuration files. 

Unauthenticated Users

Every machine that runs .NET has a machine.config file that has the default configuration 
for the computer. This file is found in the 
\WINNT\Microsoft.NET\Framework\v1.0.2914\CONFIG directory, where v1.0.2914 
would be replaced by the version of Microsoft.NET that is running on your machine. A Web 
or Web Service application may have a config.web file that has the configuration settings 
for that application. The settings for config.web affect all applications in the directory where 
it lives and all its subdirectories. Config.web files in the subdirectories override the settings 
in the higher-level directories. 

If you look in the settings in config.web for the Step0 project, you will see the following 
settings: 

<identity impersonate="false" /> 
<authentication mode="None" /> 

The first value sets the unmanaged identity returned by the current WindowsIdentity. Since 
it is set to false, the default operating system identity that ASP.NET runs as will be the 
SYSTEM account. Since this has broad privileges on the local machine, the Web application 
can run unimpeded, but this is undesirable from a security perspective, as we will discuss 
later. The second sets the managed, CLR-based identity returned by 
Thread.CurrentPrincipal. Setting it to "None" means use the default or GenericPrincipal. 
The login page displays the current security configurations, as was shown in Figure 12-6. 
Here is the relevant output. 

CurrentPrincipal is of type 
System.Security.Principal.GenericPrincipal 
   Is user authenticated?: False 
   Name: 
Current Windows Identity: 
   Name: NT AUTHORITY\SYSTEM 



   IsAuthenticated?:True 
   AuthenticationType:NTLM 

If you do not have a config.web file, the authentication mode set in machine.config is 
"Windows." Now if we set the authentication mode in our local config.web to "Windows," 
we see the following output: 

CurrentPrincipal is of type 
System.Security.Principal.WindowsPrincipal 
   Is user authenticated?: False 
   Name: 
Current Windows Identity: 
   Name: NT AUTHORITY\SYSTEM 
   IsAuthenticated?:True 
   AuthenticationType:NTLM 

Thread.CurrentPrincipal now returns a WindowsPrincipal, but it is still unauthenticated 
and has no name associated with it. Other values for the authentication mode are Forms and 
Passport. 

Let us set the authentication mode back to "None." But now let us set the identity 
impersonate to "true": 

<identity impersonate="true" /> 
<authentication mode="None" /> 

Here are the results: 

CurrentPrincipal is of type 
System.Security.Principal.GenericPrincipal 
   Is user authenticated?: False 
   Name: 
Current Windows Identity: 
   Name: MICAH\IUSR_MICAH 
   IsAuthenticated?:True 
   AuthenticationType:NTLM 

Where does the identity MICAH\IUSR_MICAH [9] come from? This user is the identity that 
is set in the properties for this Web application for anonymous access. Select this Web 
application in the Internet Services Manager, right-mouse-click, and select Properties. 
Navigate to the Directory Security tab. Click on the Edit button associated with Anonymous 
access and authentication control. Note that the Anonymous access checkbox is checked. 
Click the Edit button associated with Account used for anonymous access and you will see 
this user account listed. Figure 12-7 shows the related dialog boxes. You could change this 
setting to some other account, but this is the default value set when IIS is installed. 



[9] As usual, MICAH is the name of my machine. Yours will be different.

Figure 12-7. Internet Services Manager settings for anonymous access.

 

Reset the authentication mode back to "Windows" and run again. [10] We still do not see an 
authenticated principal for the managed Thread.CurrentPrincipal identity. 

[10] To duplicate the results in the next section make sure you reset the 
authentication mode back to "Windows" now.

Authenticated Users

Now let us use the Internet Services Manager to set our Web application to use Windows 
Integrated Security instead of anonymous access, as shown in Figure 12-8. Right-click over 
"AcmeWebSecurityStep0" in the left pane and choose Properties from the context menu. We 
uncheck the anonymous access box and check the Integrated Windows authentication box. 

Figure 12-8. Internet Services Manager settings for authenticated access.



 

Running our application gets the following results: 

CurrentPrincipal is of type 
System.Security.Principal.WindowsPrincipal 
   Is user authenticated?: True 
   Name: MICAH\Administrator 
Current Windows Identity: 
   Name: MICAH\Administrator 
   IsAuthenticated?:True 
   AuthenticationType:NTLM 

We now have an authenticated Thread.CurrentPrincipal whose identity is the same as the 
current WindowsIdentity. They are associated with whatever user account is currently 
logged in. Both the managed and unmanaged principals are the same. Now uncheck the 
Integrated Windows authentication box and check the Basic authentication box in the 
Internet Services Manager dialog, as shown in Figure 12-9. 

Figure 12-9. Internet Services Manager settings for Basic authentication.



 

If you run the application now, you will have a user and password dialog appear when your 
run the Web application, as shown in Figure 12-10. 

Figure 12-10. Dialog for entering a Windows user name and password.

 

You now have to enter the user name and password associated with an account on the 
system. Again, when the login page appears, both the Thread.CurrentPrincipal and current 
WindowsIdentity identities are the same, but they are associated with whichever user 
account you entered into the dialog box, as shown: 



CurrentPrincipal is of type 
System.Security.Principal.WindowsPrincipal 
   Is user authenticated?: True 
   Name: MICAH\JaneAdmin 
Current Windows Identity: 
   Name: MICAH\JaneAdmin 
   IsAuthenticated?:True 
   AuthenticationType:NTLM 

How did the identity associated with the CurrentPrincipal get set to be the same as the 
WindowsIdentity? ASP.NET sets the CurrentPrincipal to match the HttpContext.User 
property. In a Windows application you have no choice but to use the 
Thread.CurrentPrincipal. Within ASP.NET it is safer to use the HttpContext.User 
property. Within ASP.NET you can access the HttpContext.User property through the 
User object. Step 1 of ASP.NET Roles adds the following code to the Page_Load method 
of main.aspx.cs: 

if (User.IsInRole("MICAH\\HotelAdmin")) 
  HotelAdminLink.Visible = true; 
else 
  HotelAdminLink.Visible = false; 

The Internet Services Manager security should be set to at Windows Integrated security. The 
following settings are still in web.config: 

<identity impersonate="true" /> 
<authentication mode="Windows" />. 

Therefore, any user logged into Windows who is a member of the HotelAdmin group, will 
see the Administration link, otherwise the link will not appear. Of course, what name you 
enter into the login page has nothing to do with what you see. It is the identity associated 
with the thread that matters. 

If you want to test your Web application as a different user, you do not have to log out and 
log in as that user. Navigate to Internet Explorer on the Start Menu, and right-mouse-click 
while holding down the shift key. You will see a menu item "Run As..." (see Figure 12-11). 
Select it, and in the dialog box that comes in, log in as the user you want to use. That 
particular instance of Internet Explorer will be running under that user identity. 

Figure 12-11. RunAs Menu item to run as a different user.



 

Problems with Impersonation

It would seem that we need only make sure that the user id the thread impersonates is a 
member of the HotelAdmin group and does not have any more privileges than are needed 
(i.e., is not System or an administrator, with no ACL rights to any unnecessary files on the 
server) and then everything will be just fine. 

Unfortunately, life is not so simple. Impersonation was designed to be used by a server to 
alter its rights by running a thread as another user. When the server is done impersonating a 
user, however, it can revert to its original set of rights by calling the RevertToSelf Win32 
API. If you call out to a third party or any unmanaged code DLL running in your process, 
and it made a call to RevertToSelf, it would be running as SYSTEM. As SYSTEM this 
DLL could cause havoc on your system if it were malicious or just buggy. 

Step 2 of ASP.NET Roles uses the following code to do this: [11] 

[11] You use the PInvoke interop facility to access the Win32 function. D11Import 
and PInvoke are discussed in Chapter 14. 

using System.Runtime.InteropServices; 
... 
[DllImport("Advapi32.dll")] 
  public static extern bool RevertToSelf(); 
... 
string text;  
text = "Windows Identity: " + 
               WindowsIdentity.GetCurrent().Name + "\n"; 
text = text + "CLR Identity: " + User.Identity.Name + 
                                                   "\n"; 



text = text + "Calling RevertToSelf()...\n"; 
bool bRet = RevertToSelf(); 
text = text + "Windows Identity: " + 
               WindowsIdentity.GetCurrent().Name + ``\n´´; 
text = text + "CLR Identity: " + User.Identity.Name + 
                                                   "\n"; 
txtInfo.Text = text; 

On the Acme Home Page, calling RevertToSelf changes the identity of the thread from the 
point of view of unmanaged code. The identity from the CLR perspective is unchanged. The 
HotelAdmin link will be visible or not, depending on the original impersonated identity. 
Figure 12-12 shows the results. 

Figure 12-12. Acme Home page showing changes in Thread Identities.

 

To avoid running as the SYSTEM account, you can set the identity of the process that your 
Web application runs under. [12], [13] If you look in machine.config under the 
<processModel> tag, you will find the enable, userName, and password attributes. 

[12] SYSTEM is the identity of the Process Token for your application. Unless 
impersonating, all threads in the process would use that token. Calling 
RevertToSelf removes the impersonation from the thread and reverts back to 
whatever identity the Process Token had.

[13] On IIS 5, the identity is inherited from inetinfo.exe. If you configure inetinfo and 
iisadmin to run with a different identity, that will be the identity of the aspnet_wp 
process. On IIS 6 with Windows.NET server, ASP.NET does not run its own 
process model and inherits identity from the IIS worker process. This worker 
process is configurable and defaults to Network.Service. This is a much better 
default then SYSTEM.



<processModel enable="true" 
... 
userName="SYSTEM" password="AutoGenerate" 
... 
/> 

By default, your application process runs under the SYSTEM account. You can modify this 
value in the machine.config file only. We could change the value to be a specific user name: 
[14] 

[14] You will have to stop and start the WWW service on your machine to make the 
changes to machine.config effective.

<processModel enable="true" 
... 
userName="JaneAdmin" password="xyz" 
... 
/> 

Figure 12-13 shows the results. [15] As you can see, the password for this user is written in 
plain text inside machine.config. By default, machine.config is readable by everyone, so if 
you use this approach, rights to that file should be restricted. 

[15] If you have problems running with a user id you supply here, that id will 
probably need ACL rights to various system directories on your machine, such as 
the ASP.NET temporary file directory.

Figure 12-13. Results of using RevertToSelf when a specific user is set in 
<processModel>.



 

You can also use a setting called MACHINE which uses an account called ASPNET, which 
is a member of the guest group only and therefore has limited access rights. The ASP.NET 
setup does add access rights for that user to system directories to enable it to run, such as the 
\WINNT\Microsoft.NET\Framework\vx.xxx directory. Figure 12-14 shows the results of 
this setting. 

Figure 12-14. Results of using RevertToSelf when generic ASP.NET account is 
used in <processModel>.

 



<processModel enable="true" 
... 
userName="machine" password="AutoGenerate" 
... 
/> 

To summarize, if impersonation is turned off, as Figure 12-15 shows, then you would run as 
whatever identity is specified in the process model. If you use anonymous access, then 
Figure 12-16 shows the results you would expect, that the CLR thread identity is 
unauthenticated. 

Figure 12-15. Impersonation turned off, MACHINE specified in 
<processModel>.

 

Figure 12-16. Impersonation turned off, anonymous access, MACHINE 
specified in <processModel>.



 

This discussion also makes clear that the ACLs on machine.config and web.config should 
be set so that only administrators can modify the file. Who can read the files should be 
restricted appropriately. You also have to guard against someone browsing and downloading 
from those files. 

Specifying Users and Groups for Access in Web.Config

ASP.NET allows you to specify groups and users who are allowed to access the Web site. 
Inside the <authorization> section of web.config you can use the <allow> and <deny> 
elements with user accounts or groups. To specify groups you use the roles attribute; to 
specify users you use the users attribute. The asterisk (*) symbol used with one of those 
elements means all. A question mark (?) used with a user attribute means "anonymous 
access." 

<allow roles="MICAH\HotelAdmin" users="MICAH\Peter"> 
<deny users="MICAH\John"> 

A reference to a specific user overrides their membership in a group or a wildcard. Deny 
references take precedence over allow references. These settings do not help you assign 
users to particular roles or prevent access to different areas of the Web site. Only access to 
the entire Web site is controlled. 



Forms-Based Authentication

The previous discussion is relevant for intranets or other scenarios where users will have 
Windows user accounts on the servers or domains. Furthermore, Windows Integrated 
Security does not work across firewalls or proxies. For public Web sites we need another 
approach. 

The alternative approach is to bring up a login form to authenticate the user. We will look at 
two of the several approaches to login forms that are possible within .NET. Step 0 of the 
FormsBasedAuthentication example uses the .NET FormsAuthentication class and the 
config.web file. Step 1 of the example uses a database login to illustrate using an external 
database. 

Forms Authentication and Authorization

.NET Forms-based authentication uses web.config, login form, and a cookie to authenticate 
the user. [16] Typically in this scenario you will set up the Web site for anonymous access so 
that no users will be screened out by IIS. Here is the web.config file section for the Step 0 
example: 

[16] You do not have to use a cookie, but it is used for automatic authentication.

<authentication mode="Forms"> 
     <forms name = "HotelBrokerCookie" path="/" 
                    loginUrl="Login.aspx" 
                    protection="All" timeout="10"> 
       <credentials passwordFormat=´´Clear´´> 
         <user name="Natasha" password="Natasha" /> 
         <user name="Adams" password="Adams" /> 
         <user name="peter" password="peter" /> 
       </credentials> 
     </forms> 
  </authentication> 

  <authorization> 
    <allow users="Natasha,peter" /> 
    <deny users="*" /> 
  </authorization> 

The authentication mode is set to Forms. This means that the User.Identity object will be a 
FormsIdentity instance if the user is authenticated. The forms element has several attributes 
that define how the authentication is set up. The name attribute is the name of the cookie. 
The path attribute indicates where on the site the cookie is valid; "/" indicates the entire site. 
The loginUrl indicates where the login form resides. The protection attribute indicates how 
the cookie should be encrypted. "All" indicates that the cookie should be validated and 
encrypted. Other options are None, Encryption, and Validation. Timeout indicates the 



number of minutes before the cookie becomes invalid (expires). 

The credential elements indicate how the password should be stored in the configuration file. 
For simplicity we have used clear text. You could also specify SHA1 or MD5 to encrypt the 
passwords. [17] If passwords are stored in web.config, it should be secured against download 
(which is the default). Passwords for the configuration file can be encrypted with the static 
FormsAuthentication method HashPasswordForStoringInConfigFile. [18] 

[17] These encryption formats are discussed in Chapter 7.

[18] Storing passwords in a configuration file is convenient for development and 
testing work. If you do your own validation, as we do with the database example, 
you do not need to use the web.config file.

The user elements indicate the user names and passwords. The authorization section, as 
discussed earlier, determines which authenticated users are authorized to access the Web 
site. 

Since this example uses redirection and cookie validation, a user should attempt to access 
the main page, http://localhost/ 
FormsBasedAuthenticationStep0/default.aspx, instead of the 
login.aspx file. If a valid cookie does not exist on the system, the user will be sent to the 
login page. If a valid cookie exists, it will be used to validate the user. If the user is 
validated, they will go straight to the default.aspx page. If users went straight to the login 
page, they would have to log in every time, even with a valid cookie. 

Here is the code for handling the Login button event: 

private void Login_Click(object sender, EventArgs e) 
{ 
  if (FormsAuthentication.Authenticate(txtUserId.Text, 
    txtPassword.Text)) 
  { 
    FormsAuthentication.RedirectFromLoginPage( 
                                 txtUserId.Text, true); 
  } 
  else 
  { 
    lblErrorMessage.Text = "Could not authenticate user."; 
  } 

For simplicity, the Password text box does not hide the password. A password text box that 
hides the password was discussed in Chapter 10. 

The FormsAuthentication class's Authenticate method validates the user name and 
password from the web.config file. If a valid cookie was on the system, the user is not 



redirected to the login page. RedirectFromLoginPage creates a cookie, and redirects the 
user to the default.aspx page. If the second argument is true, a persistent cookie is placed on 
the user's system. Persistent cookies are a security risk, because the cookie can be stolen as it 
is transmitted (hijacked). You should use SSL to protect the cookie. You can remove the 
session or persistent cookie with the SignOut method. The check of the authorization 
section of web.config to see if the user has the rights to access the page is done on each 
request. 

If you run the Step 0 example only Natasha, peter, and Adams will be authenticated. 
However, only Natasha and Peter will be authorized to use the site. Of course, only Natasha 
will be found in the database of Acme customers. That test has been moved to default.aspx 
to distinguish it from the forms authentication done in login.aspx. 

Default.aspx can refer to the name of the user through the User object. The type of identity 
object is FormsIdentity. 

bool ok = HotelState.acme.Login(User.Identity.Name); 

If you succeed and log in as Natasha once, subsequent tries will succeed without the login 
page because we have created a persistent cookie. To avoid persistent cookies, set the second 
argument to RedirectFrom LoginPage to false. 

The application, however, runs under the identity of the system process or thread, not the 
identity of the user name that is logged in. Hence, if you want to use role-based security in 
ASP.NET with Forms authentication, you will have to create your own roles by using a 
GenericPrincipal. 

Database Login Validation

It is fairly straightforward to add password validation against a database as in Step 1 of the 
FormsBasedAuthentication example. When a user is registered, the password is hashed 
and is stored in the Acme database. [19] 

[19] This assumes that you do not have to mail the password to a user that has 
forgotten it. Then you have to use two-way encryption.

string password = 
   FormsAuthentication.HashPasswordForStoringInConfigFile 
          (txtPassword.Text, "MD5"); 
bool ok = HotelState.acme.Register(txtUserId.Text, 
          password, txtFirstName.Text, txtLastName.Text, 
          txtEmailAddress.Text); 

Before logging in, the password is again hashed and compared with the version stored in the 
database. 



string password = 
   FormsAuthentication.HashPasswordForStoringInConfigFile 
           (txtPassword.Text, "MD5"); 
bool ok = HotelState.acme.Login(txtUserId.Text, password); 

With this approach you would have to maintain your own data store to track who is or is not 
a hotel administrator in order to decide who can see the hotel administration page. 



Code Access Permissions

Code needs permissions in order to access a resource such as a file, or perform some 
operation. Security Policy (discussed later in the chapter) will give certain permissions to 
each assembly. Code access permissions can be requested by code. The CLR will decide 
which permissions to grant based on the security policy for that assembly. We will not 
discuss how to write a custom permission. 

Here are some examples of Code access permissions: 

●     DNSPermission controls access to Domain Name servers on the network. 
●     EnvironmentPermission controls read or write access to environment variables. 
●     FileIOPermission controls access to files and directories. 
●     FileDialogPermission allows files selected in an Open dialog box to be read. This is 

useful if FileIOPermission has not been granted. 
●     ReflectionPermission controls the ability to access nonpublic metadata and emit 

metadata. 
●     RegistryPermission controls the ability to access and modify the registry. 
●     SecurityPermission controls the use of the security subsystem. 
●     SocketPermission controls the ability to make or accept connections on a transport 

address. 
●     UIPermission controls the user of various user-interface features including the 

clipboard. 
●     WebPermission controls making or accepting connections on a Web address. 

The use of these permissions is referred to as Code Access Security because this permission 
is based not on the identity of the user running the code, but on whether the code itself has 
the right to take some action. 

Simple Permission Code Request

The SimplePermissionCodeRequest example first requests permission to access a file. If 
the CLR does not grant that request, the CLR will throw a SecurityException inside the file 
constructor. However, this code first tests to see if it has that permission. If it does not, it just 
returns instead of trying to access the file. [20] 

[20] We have not yet discussed how you set security policy so you do not yet know 
how to grant or revoke this permission. By default, however, code running on the 
same machine that it resides on has this permission. This is another example of 
how difficult it is to talk about security without knowing the whole picture.

This step is generally superfluous because the CLR will do the demand inside the 
constructor, but often you want to check permissions before you execute some code to 
ascertain whether you have the rights you need. 

The FileIOPermission class models the CLR file permissions. A full path must be supplied 
to its constructor, and we use the Path class we discussed in Chapter 8 to get the full path. 



We are asking for read, write, and append file access. Other possible access rights are 
NoAccess or PathDiscovery. The latter is required to access information about the file path 
itself. You might want to allow access to the file, but you may want to hide information in 
the path such as directory structure or user names. 

The demand request checks to see if we have the required permission. The Demand method 
checks all the callers on the stack to see if they have this permission. In other words, we 
want to make sure not only that the assembly this code is running in has this right, but that 
all the assemblies this code is running on behalf of have this permission. If an exception was 
generated, we do not have the right we demanded, so we exit the program. 

string filename = ".\\read.txt"; 
string fileWithFullPath = Path.GetFullPath(filename); 
try 
{ 
  FileIOPermission fileIOPerm = new 
        FileIOPermission(FileIOPermissionAccess.AllAccess, 
                                      fileWithFullPath); 
  fileIOPerm.Demand(); 
} 
catch(Exception e) 
{ 
  Console.WriteLine(e.Message); 
  return 1; 
} 

try 
{ 
  FileInfo file = new FileInfo(filename); 
  StreamReader sr = file.OpenText(); 
  string text; 
  text = sr.ReadLine(); 
  while (text != null) 
  { 
    Console.WriteLine(text); 
    text = sr.ReadLine(); 
  } 
  sr.Close(); 
} 
catch(Exception e) 
{ 
  Console.WriteLine(e.Message); 
} 

Even if the code has the CLR read permission, the user must have read permission from the 
file system. If the user does not, an UnauthorizedAccessException will be thrown when the 



OpenText method is called. 

You have to be careful in passing objects that have passed a security check in their 
constructor to code in other assemblies. Since the check was made in the constructor, no 
other check is made by the CLR to ascertain access rights. The assembly you pass the object 
to may not have the same rights as your assembly. If you were to pass this FileInfo object to 
another assembly that did not have the CLR read permission, it would not be prevented from 
accessing the file by the CLR, because no additional security check would be made. This is a 
design compromise for performance reasons to avoid making security checks for every 
operation. This is true for other code access permissions as well. 

How a Permission Request Works

To determine whether code is authorized to access a resource or perform an operation, the 
CLR checks all the callers on the stack frame, making sure that each assembly that has a 
method on the stack can be granted the requested permission. If any caller in the stack does 
not have the permission that was demanded, a SecurityException is thrown. 

Less trusted code cannot use trusted code to perform an unauthorized action ("luring 
attack"). The procedures on the stack could come from different assemblies that have 
different sets of permissions. For example, an assembly that you build might have all rights, 
but it might be called by a downloaded component that you would want to have restricted 
rights (so it doesn't open your email address book). 

As discussed in the next sections, you can modify the results of the stack walk by using 
Deny or Assert methods on the CodeAccessPermission base class. 

Strategy for Requesting Permissions

Code should request permissions that it needs before it uses them, so that it is easier to 
recover if the permission request is denied. For example, if you need to access several key 
files, it is much easier to check to see if you have the permissions when the code starts up 
rather than when you are halfway through a delicate operation and then have to recover. 
Users could be told up front that certain functions will not be available to them. Or, as we 
will discuss later, you could use assembly permission requests, and then fail to load if the 
required permissions are not present. The problem is that you may not know what 
permissions request will succeed because you do not know what assemblies will have callers 
on the stack when the request is made. 

You should not request permissions that you do not need. This will minimize the chances 
that your code will do damaging things from bugs or malicious third-party code and 
components. In fact you can restrict the permissions you have to the minimum necessary to 
prevent such damage. For example, if you do not want a program to read and write the files 
on your disk, you can deny it the right to do so. 

Denying Permissions



One can apply the Deny method to the permission. Even though security policy would 
permit access to the file, any attempt to access the file will fail. The 
SimplePermissionCodeDenial example demonstrates this. Instead of demanding the 
permission, we invoke the Deny method on the FileIOPermission object. 

... 
try 
{ 
  fileIOPerm.Deny(); 
  Console.WriteLine("File Access Permission Removed"); 
} 
catch(SecurityException se) 
{ 
  Console.WriteLine(se.Message); 
} 

We then try to read the file using the ReadFile method. Why we do this inside another 
method will be explained shortly. Since the permission was denied, the FileInfo constructor 
will throw a SecurityException. 

... 
try 
{ 
  FileInfo file = new FileInfo(filename); 
  StreamReader sr = file.OpenText(); 
  string text; 
  text = sr.ReadLine(); 

  while (text != null) 
  { 
    Console.WriteLine(""+ text); 
    text = sr.ReadLine(); 
  } 
  sr.Close(); 
} 
catch(SecurityException se) 
{ 
  Console.WriteLine("Could not read file: " + 
se.Message); 
} 

We then call the static RevertDeny method on the FileIOPermission class to remove the 
permission denial, and we attempt to read the file again. This time the file can be read. The 
call to Deny is good until the containing code returns to its caller or a subsequent call to 
Deny. RevertDeny removes all current Deny requests. 



... 
FileIOPermission.RevertDeny(); 
... 
ReadFile(); 

We then invoke the Deny method to once again remove the permission. 

Asserting Permissions

The Assert method allows you to demand a permission even though you do not have access 
rights to do so. You might also want to assert a permission because other calls in the call 
chain do not have the right, even though your assembly does. You can only assert 
permissions that your assembly has been granted. If this were otherwise, it would be trivial 
to circumvent CLR security. [21] 

[21] You also need the permission to assert. 

The test program code now asserts the FileIOPermission and then attempts to read the file. 

... 

... 
fileIOPerm.Deny(); 
... 
fileIOPerm.Assert(); 
... 
ReadFile(); 
ReadFileWithAssert(fileIOPerm); 
... 
ReadFile(); 

But the file read fails! The assertion is good only within the method that called. The 
ReadFileWithAssert method can read the file because it asserts the permission within the 
method and then attempts the read. Assert stops the permission stack walk from checking 
permissions higher in the stack frame and allows the action to proceed, but it does not cause 
a grant of the permission. Therefore, if code further down the stack frame (like ReadFile) 
tries to demand the denied permission (as the FileInfo constructor does), a 
SecurityException will be thrown. [22] Similarly, Deny prevents callers higher in the stack 
frame from an action, but not on the current level. 

[22] This is true as well for code above you on the stack frame. 

 public static void ReadFileWithAssert(FileIOPermission f) 
{ 
  ... 
   f.Assert(); 
   ... 



   FileInfo file = new FileInfo(filename); 
   StreamReader sr = file.OpenText(); 
   string text; 
   text = sr.ReadLine(); 

   while (text != null) 
   { 
     Console.WriteLine(""+ text); 
     text = sr.ReadLine();  
   } 
   sr.Close(); 
 ... 
} 

Remember that the assert applies only to IO operations done in this routine for the specific 
file that was passed the FileIOPermission constructor. The call to Assert is good until the 
containing code returns. Hence, ReadFile fails again when it is attempted after 
ReadFileWithAssert returns. RevertAssert removes all current Assert requests. 

Assert opens up security holes, because some caller in the stack frame might be able to use 
the routine that calls assert to violate security. Any use of Assert should be subject to a 
security review. 

Other Permission Methods

PermitOnly specifies the permissions that should succeed. You specify what resources you 
want to access. The call to PermitOnly is good until the containing code returns, or a 
subsequent call to PermitOnly. RevertPermitOnly removes all current PermitOnly 
requests. RevertAll removes the effect of Deny, PermitOnly, and Assert. 

SecurityPermission Class

The SecurityPermission class controls "metapermissions" that govern the CLR security 
subsystem. Let us look again at the RoleBasedSecurity example from earlier in the chapter. 
It used the AppDomain.SetPrincipalPolicy method to set the application domain's principal 
policy: 

AppDomain ap = AppDomain.CurrentDomain; 
ap.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal); 

The type of principal returned by Thread.CurrentPrincipal will depend on the Application 
Domain's Principal Policy. An Application Domain can have one of three authentication 
policies as defined by the System.Security.PrincipalPolicy enumeration: 

●     WindowsPrincipal uses the current user associated with the thread. 
Thread.CurrentPrincipal returns a WindowsPrincipal object. 



●     UnauthenticatedPrincipal uses an unauthenticated user. Thread.CurrentPrincipal 
returns a GenericPrincipal object. This is the default. 

●     NoPrincipal returns null for Thread.CurrentPrincipal. 

You set the policy with the SetPrincipalPolicy method on the AppDomain instance for the 
current application domain. The static method AppDomain.CurrentDomain will return the 
current instance. This method should be called before any call to Thread.CurrentPrincipal, 
because the principal object is not created until the first attempt to access that property. 

In order for the RoleBasedSecurity example to set the principal policy it needs to have the 
ControlPrincipal right. To ascertain if the executing code has that right, you can demand 
that SecurityPermission before you change the policy. A SecurityException will be thrown 
if you do not have that permission. 

... 
SecurityPermission sp = new SecurityPermision( 
SecurityPermissionFlag.ControlPrincipal); 
  try 
{ 
  sp.Demand(); 
} 
catch(SecurityException se) 
{ 
  Console.WriteLine(se.Message); 
  return 1; 
} 

We first construct a new SecurityPermission instance, passing to the constructor the 
security permission we want to see whether we have the right to use. 
SecurityPermissionFlag is an enumeration of permissions used by the SecurityPermission 
class. The ControlPolicy permission represents the right to change policy. Obviously, this 
should be granted only to trusted code. We then demand (request) the permission. 

As mentioned earlier, you can only assert permissions that your assembly actually has. So 
rogue components cannot just assert permissions when running within your code. You can 
either set security policy or use the SecurityPermission class to prevent components from 
calling Assert. Construct an instance of the class with the 
SecurityPermissionFlag.Assertion value and then Deny the permission. Other actions you 
can control with the SecurityPermission class include the ability to create and manipulate 
application domains, specify policy, allow or disallow execution, control whether 
verification is performed, or access unmanaged code. 

Unmanaged Code

Asserts are necessary for controlling access to unmanaged code, since managed code should 
not call unmanaged code directly. 



In order to call unmanaged code you need the unmanaged code permission. [23] Since the 
CLR performs a stack walk to check whether all the callers have unmanaged code 
permission, you would have to grant all code the unmanaged code permission. Hence, 
assemblies other than your own trusted ones could perform operations through the Win32 
API calls and subvert the framework's security system. [24] 

[23] As with all the other "security permissions" this is technically a flag on the 
SecurityPermission class, but the common parlance is to call them permissions.

[24] The underlying operating system identity that is running the program must have 
the rights to perform the operating system function.

Better would be to make calls through wrapper classes that are contained in an assembly that 
has the managed-code right. The code in the wrapper class would first ascertain that the 
caller has the proper CLR rights by demanding the minimal set of permissions necessary to 
accomplish the task (such as writing to a file). If the demand succeeds, then the wrapper 
code can assert the right to managed code. [25] No other assembly in the call chain then 
needs to have the managed-code right. 

[25] By demanding first, then asserting, you ensure that a luring attack is not in 
progress.

For example, if you ask the .NET file classes to delete a file, they first demand the delete 
permission on the file. If that permission is granted, then the code asserts the managed code 
permission and calls the Win32 API to perform the delete. 

Attribute-Based Permissions

The SimplePermissionAttributeRequest example shows how you can use attributes to 
make permission requests. This example uses an attribute to put in the metadata for the 
assembly that you need to have the ControlPrincipal permission to run. This enables you to 
query in advance which components conflict with security policy. 

[assembly:SecurityPermission( 
     SecurityAction.RequestMinimum,ControlPrincipal=true)] 
public class pp 
{ 
    public static int Main(string[] args) 
... 

The SecurityAction enumeration has several values, some that can be applied to a class or 
method and some that can be applied to an assembly as in this example. For assemblies these 
are RequestMinimum, RequestOptional, and RequestRefuse. RequestMinimum 
indicates to the metadata those permissions the assembly requires to run. RequestOptional 
indicates to the metadata permissions that the assembly would like to have, but can run 
without. RequestRefuse indicates permissions that the assembly would like to be denied. 
[26] 



[26] An assembly would do this to prevent code from another assembly executing 
on its behalf from having this permission.

If you change the attribute in this example to RequestRefuse and run it, you will find that 
the assembly will load, but you will get a SecurityException when you attempt to change 
the policy. 

Other values apply to classes and methods. LinkDemand is acted upon when a link is made 
to some type. It requires your immediate caller to have a permission. The other values apply 
at runtime. InheritanceDemand requires a derived class to have a permission. Assert, 
Deny, PermitOnly, and Demand do what you would expect. 

Here is an example of a FileIOPermission demand being applied to a class through an 
attribute. AllAccess is being demanded of the file. A full file path is required. 

[FileIOPermission(SecurityAction.Demand, 
                             All = "c:\\foo\\read.txt")] 
public class Simple 
... 

Principal Permission

Role-based security is controlled by the PrincipalPermission class. The 
PrincipalPermission example uses this class to make sure that the user identity under which 
the program is being run is an administrator. We do that by passing the identity name and a 
string representing the role to the constructor. Once again, we use the Demand method on 
the permission to check the validity of our permission request. 

PrincipalPermission PrincipalPerm = new 
                PrincipalPermission(wi.Name, adminRole); 
try 
{ 
  PrincipalPerm.Demand(); 
  Console.WriteLine("Code demand for an administrator 
                                           succeeded."); 
} 
catch(SecurityException) 
{ 
  Console.WriteLine("Demand for Administrator failed."); 
} 

If the running user were an administrator the demand would succeed; otherwise it would fail 
with an exception being thrown. The code then checks to see if the user with the name 
JaneAdmin (not a system administrator, but part of the CustomerAdmin group) and the 
designated role is running. 



string customerAdminRole = "MICAH\\CustomerAdmin"; 
PrincipalPermission pp; 
pp = new PrincipalPermission("MICAH\\JaneAdmin", 
                                     customerAdminRole); 
try 
{ 
  pp.Demand(); 
  Console.WriteLine("Demand for Customer Administrator 
                                           succeeded."); 
} 
catch(SecurityException) 
{ 
  Console.WriteLine("Demand for Customer Administrator 
                                               failed."); 
} 

The CodeAccessPermission base class has methods for creating permissions that are the 
union or the intersection of several permissions. PrincipalPermission does not derive from 
CodeAccessPermission because it is based on the identity associated with the code, not on 
the rights of the code itself. Nonetheless, it shares the same idioms with the 
CodeAccessPermission derived classes. 

Next the example code sees if either of these two administrators is the identity of the running 
code. 

string id1 = "MICAH\\Administrator"; 
string id2 = "MICAH\\mds"; 

PrincipalPermission pp1 = new PrincipalPermission(id1, 
                                             adminRole); 
PrincipalPermission pp2 = new PrincipalPermission(id2, 
                                             adminRole); 

IPermission ipermission = pp2.Union(pp1); 
try 
{ 
  ipermission.Demand(); 
  Console.WriteLine("Demand for either administrator 
                                           succeeded."); 
} 
catch(SecurityException) 
{  
  Console.WriteLine("Demand for either administrator 
                                              failed."); 
} 



The code then sees whether any administrator is the identity of the running code. [27] 

[27] A null user and a role as arguments to mean anyone in that role is not an 
intuitive use of null. 

PrincipalPermission pp3 = new PrincipalPermission(null, 
                                             adminRole); 
try 
{ 
  pp3.Demand(); 
  Console.WriteLine("Demand for any administrator 
                                           succeeded."); 
} 
catch(SecurityException) 
{ 
  Console.WriteLine("Demand for any administrator 
                                              failed."); 
} 

If the users are unauthenticated, even if they do belong to the appropriate roles, the Demand 
will fail. 

PermissionSet

You can deal with a set of permissions through the PermissionSet class. The 
AddPermission and RemovePermission methods allow you to add instances of a 
CodeAccessPermission derived class to the set. You can then Deny, PermitOnly, or Assert 
sets of permissions instead of individual ones. This makes it easier to restrict what third-
party components and scripts might be able to do. The PermissionSet example demonstrates 
how this is done. 

We first define an interface IUserCode that our "trusted" code will use to access some "third-
party" code. While in reality this third-party code would be in a separate assembly, to keep 
the example simple we put everything in the same assembly. 

public interface IUserCode 
{ 
      int PotentialRogueCode(); 
} 

public class ThirdParty : IUserCode 
{ 
   public int PotentialRogueCode() 
   {  
      try 
      { 



         string filename = ".\\read.txt"; 

         FileInfo file = new FileInfo(filename); 
         StreamReader sr = file.OpenText(); 
         string text; 
         text = sr.ReadLine(); 

         while (text != null) 
         { 
            Console.WriteLine(text); 
            text = sr.ReadLine(); 
         } 

         sr.Close(); 
      } 
      catch(Exception e) 
      { 
         Console.WriteLine(e.Message); 
      } 
      return 0; 
   } 
} 

Our code will create a new instance of the "third party" which would cause the code to be 
loaded into our assembly. We then invoke the OurCode method passing it the "third-party" 
code. 

... 
public static int Main(string[] args) 
{ 
  ThirdParty thirdParty = new ThirdParty(); 
  OurClass ourClass = new OurClass(); 

  ourClass.OurCode(thirdParty); 

  return 0; 
} 

Now let us look at the OurCode method. It creates a permission set consisting of 
unrestricted user interface and file access permissions. It then denies the permissions in the 
permission set. 

... 
public void OurCode(IUserCode code) 
{ 
UIPermission uiPerm = new 



             UIPermission(PermissionState.Unrestricted);  
FileIOPermission fileIOPerm = new 
         FileIOPermission(PermissionState.Unrestricted); 

PermissionSet ps = new 
                    PermissionSet(PermissionState.None); 
ps.AddPermission(uiPerm); 
ps.AddPermission(fileIOPerm); 
ps.Deny(); 
... 

The "third-party" code is then called. After it returns, the permission denial is revoked and 
the "third-party" code is called again. 

int v = code.PotentialRogueCode(); 
CodeAccessPermission.RevertDeny(); 
... 
v = code.PotentialRogueCode(); 

The first time, the code execution fails; the second time it succeeds. Each stack frame can 
only have one permission set for denial of permissions. If you call Deny on a permission set, 
it overrides any other calls to Deny on a permission set in that stack frame. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Code Identity

The characteristics by which a particular assembly can be identified are its identity 
permissions. An example would be an assembly's strong name or the Web site that generated 
the code. Based on the evidence provided by the loader or trusted host, identity permissions 
are granted by the CLR. 

Identity Permission Classes

To identity running code, there are several identity permission classes. 

●     PublisherIdentityPermission models the software publisher's digital signature. 
●     SiteIdentityPermission models the Web site where code originated. 
●     StrongNameIdentityPermission models the strong name of an assembly. 
●     ZoneIdentityPermission models the zone where the code originated. 
●     URLIdentityPermission models the URL and the protocol where the code originated. 

These permissions represent evidence that can be used to determine security policy. Identity 
permissions are not code access permissions. 

Evidence

Security policy is based on a set of rules that administrators can set. The .NET security system 
can use those rules to enforce the policy. The evidence, represented by the identity 
permissions, is used to determine which policy to apply. 

The AppDomain class has a function ExecuteAssembly which causes an assembly to run. 
One argument to the method is an Evidence instance argument. This Evidence class is a 
collection of objects that represent the identity of the assembly. This class is a collection of 
objects that represent evidence. 

The Evidence example illustrates this. This example gets the collection of evidence associated 
with a strongly named assembly and prints out the associated values. 

Evidence ev = AppDomain.CurrentDomain.Evidence; 
IEnumerator iEnum = ev.GetEnumerator(); 
bool bNext; 

Console.WriteLine("Evidence Enumerator has {0} members", 
                                                 ev.Count); 
bNext = iEnum.MoveNext(); 
while (bNext == true) 
{ 
  object x = iEnum.Current; 
  Type t = x.GetType(); 
  Console.WriteLine(t.ToString()); 



  if (t == typeof(System.Security.Policy.Zone)) 
  { 
    Zone zone = x as Zone; 
    Console.WriteLine("   " + 
                          zone.SecurityZone.ToString()); 
} 
else if (t == typeof(System.Security.Policy.Url)) 
{ 
  Url url = x as Url; 
  Console.WriteLine("   " + url.Value.ToString()); 
} 
else if (t == typeof(System.Security.Policy.Hash)) 
{ 
  Hash hash = x as Hash; 
  byte[] md5Hash = hash.MD5; 
  byte[] sha1Hash = hash.SHA1; 
  Console.WriteLine("    MD5 Hash of Assembly:"); 
      Console.Write("      "); 
  for(int i = 0; i < md5Hash.Length; i++)  
      Console.Write(md5Hash[i]); 
    Console.WriteLine(); 
    Console.WriteLine("    SHA1 Hash of Assembly:"); 
    Console.Write("      "); 
    for(int i = 0; i < sha1Hash.Length; i++) 
      Console.Write(sha1Hash[i]); 
    Console.WriteLine(); 
  } 
else if (t == typeof(System.Security.Policy.StrongName)) 
{ 
    StrongName sn = x as StrongName; 
    Console.WriteLine("    StrongName of Assembly is: {0} 
                    version: {1}", sn.Name, sn.Version); 
    Console.WriteLine("    Assembly public key:"); 
    Console.Write("        "); 
    Console.WriteLine(sn.PublicKey.ToString()); 
  } 
  bNext = iEnum.MoveNext(); 
} 

The example's output would look something like this: 

Evidence Enumerator has 3 members 
System.Security.Policy.Zone 
   MyComputer 
System.Security.Policy.Url 
  file:///F:/Book/Chap12/Evidence/bin/Debug/Evidence.exe 



System.Security.Policy.StrongName 
    StrongName of Assembly is: Evidence version: 1.0.0.0 
    Assembly public key: 
        0024000004800000940... 
        ...D4E1C67A3509E6C9B385EA897BA 
System.Security.Policy.Hash 
    MD5 Hash of Assembly: 
      14332230461041081341241322151846823019516744 
    SHA1 Hash of Assembly: 
     821331711844749119991571111431431822382322311431771 
      39171 

The evidence associated with the Zone for this assembly is MyComputer. The Url evidence is 
the location on disk of the assembly. The Hash evidence can give us the MD5 and SHA1 
hashes of the assembly. The StrongName evidence tells us information about the unique 
assembly name. 

Some of this evidence is convertible to the associated identity permissions. For example, the 
Zone class has a CreateIdentityPermission method which returns an IPermission interface 
that represents the ZoneIdentityPermission instance associated with this piece of evidence. 
The Url and StrongName classes have similar methods. 

Another way of looking at the identity permissions is that they answer a series of questions: 

●     Who published (signed) it? 
●     What is the name of the assembly? 
●     What Web site or URL did it come from? 
●     What zone did the code originate from? 

The creator of the application domain (host) can also provide evidence by passing in an 
Evidence collection when the ExecuteAssembly method is called. Of course, that code must 
have the ControlEvidence permission. The CLR is also trusted to add evidence, since after 
all, it enforces the security policy. Evidence is extensible; you can define evidence types and 
use it in security policy. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Security Policy

Now that we understand evidence, and how the evidence about an assembly is gathered, 
we can discuss security policy. Based on the evidence for an assembly, the assembly is 
assigned to a code group. Associated with each code group is a set of permissions that 
represent what code associated with that code group can do. 

Security Policy Levels

Security policy is set at several levels. The permissions allowed are defined by the 
intersection of the policy levels. These levels are enterprise, machine, application 
domain, and user. If there is a conflict between permissions assigned from a particular 
level, the more restrictive version overrides. So enterprise policy can override all the 
machines in the enterprise, and machine policy can override all policies for a application 
domain or a particular user. 

Code Groups

The enterprise, machine, and user policy levels are a hierarchy of code groups. 
Associated with each code group is a set of permissions. Code that meets a specified set 
of conditions belongs to a particular code group. 

The root node is referred to as "All_Code." Below this level is a set of child nodes, and 
each of these children can have children. Each node represents a code group. If code 
belongs to a code group, it might be a member of one of its children. If it does not 
belong to a given code group it cannot belong to any of its children. 

By evaluating the evidence you assign code a group. By assignment to a group you get 
an associated set of permissions. This set of conditions corresponds to a named 
permission set. Since code can belong to more than one group, the set of permissions 
which can be granted to code is the union of all the permission sets from the all groups it 
belongs to. 

Therefore code policy is determined in two steps. For each level, the permissions for an 
assembly are determined by the union of all the permission sets to which it belongs. 
Each level then effectively has one permission set. Then each of these permission sets is 
intersected so that the most restrictive of each permission setting is the final value. For 
example, if the machine level gives all access to an assembly, but the user level restricts 
the file IO permissions to just read, the assembly will have unlimited permissions for 
everything but file IO, where it will just have the read permission. 

Code groups can have two attributes. The exclusive attribute dictates that code will 
never be allowed more permissions than associated with the exclusive group. Obviously, 
code can belong to only one group marked exclusive. The level final attribute indicates 



that no policy levels below this one are considered when calculating code group 
membership. The order of levels is enterprise, machine, user, application domain. 

Named Permission Sets

A named permission set consists of one or more code access permissions that have a 
name. An administrator can associate a code group with this permission set by means of 
this name. More than one code group can be associated with a named permission set. 
Administrators can define their own named permission sets, but several are built in: 

●     Nothing: no permissions (cannot run). 
●     Execution: only permission to run, but no permissions that allow use of 

protected resources. 
●     Internet: the default policy permission set suitable for content from unknown 

origin. 
●     LocalIntranet: the default policy permission set for within an enterprise. 
●     Everything: all standard (i.e., built-in) permissions except permission to skip 

verification. 
●     FullTrust: full access to all resources protected by permissions. 

Of the built-in named permission sets only the Everything set can be modified. You can 
define custom permission sets. 

Altering Security Policy

Security policy is stored in several XML-based configuration files. Machine security 
configuration is in the security.config file that is stored in the 
\WINNT\Microsoft.NET\Framework\vx.x.xxxx\CONFIG directory. User security 
configuration is in the security.config file that is stored in the \Documents and 
Settings\UserName\Application Data\Microsoft\CLR Security Config\vx.x.xxxx 
directory. 

It is not recommended that you edit these XML files directly. The Code Access Security 
Policy tool (caspol.exe) is a command-line tool that can be used to modify enterprise, 
machine, and user policy levels. 

The .NET Admin Tool introduced in Chapter 7 provides a more friendly interface to 
changing policy. Figure 12-17 shows the code groups and permission sets defined for 
the machine and the current user security policy levels as they appear in the left pane in 
the .NET Admin Tool. 

Figure 12-17. Permission sets and groups for machine and user policy.



 

Let us use this tool to examine the current policies in the machine level. First let us look 
at the named permission sets. As you can see from Figure 12-18, on the machine level 
no new named permission sets have been created; only the default ones are present. If 
you select the Internet permission set and in the right pane select view permissions, you 
can then select any permission and look at its settings. Figure 12-18 shows the settings 
for User Interface permission in the Internet named permission set. 



Figure 12-18. Permissions for User Interface permission in machine-level 
Internet named permission set.

 

Figure 12-19 shows the properties for the Internet Zone code group on the machine 
policy level. You can see that Zone identity permission is chosen for this group, and the 
value associated with it is the Internet zone. On the permission set tab, you can view or 
select the named permission set associated with the Internet zone. 

Figure 12-19. Properties dialog for Internet zone, machine policy level.



 

To illustrate how security policy affects running code we use a slightly modified version 
of the Evidence example. Besides writing out the associated evidence, the Policy 
example also prints out the contents of a file. 

string filename = ".\\read.txt"; 
try 
{ 
  string fileWithFullPath = Path.GetFullPath(filename); 
  FileInfo file = new FileInfo(filename); 
  StreamReader sr = file.OpenText(); 
  string text; 
  text = sr.ReadLine(); 

  while (text != null) 
  { 
    Console.WriteLine(text); 
    text = sr.ReadLine(); 



  } 
  sr.Close(); 
}  
catch(Exception e) 
{ 
  Console.WriteLine(e.Message); 
} 

Figure 12-20 shows the two new code groups and the one permission set we will define 
at the user policy level to control security policy for this assembly. 

Figure 12-20. Revised user policy level for Policy example.

 

We will define a new permission set called TestStrongName and two new code groups, 
TestStrongNameGroup and My_Computer_Zone. The new permission set definition is 
in Figure 12-21. 

Figure 12-21. TestStrongName permission set definition.



 

This new permission set is created by selecting the Permission Sets node below the level 
in which you want to create it (in this case User). Right-mouse-click and select New. 
The initial Create Permission Set dialog comes up and can be filled in as in Figure 12-
22. 

Figure 12-22. Initial Create Permission Set dialog.



 

Clicking the Next button brings up the dialog in Figure 12-23. Use the Add and Remove 
buttons to define the permissions you want to include in this permission set. 

Figure 12-23. PermissionSet definition dialog.



 

To define the permission itself, select the permission, click the properties dialog, and 
make the appropriate choices. Figure 12-24 shows the dialog that appears for the User 
Interface permission. To modify an existing permission set, select it, right-mouse-click, 
and select the Change Permissions item. A dialog similar to Figure 12-24 will appear. 

Figure 12-24. Permission modification dialog.



 

Now this permission has to be associated with a code group. How do assemblies get 
assigned to code groups? We have already explained that each code group maps to one 
piece of evidence. Figure 12-25 is a diagram of the User Code Level with its three 
groups. 

Figure 12-25. Diagram of user-level policy groups.

 

Figure 12-26 shows that the TestStrongNameGroup is defined to be the strong name 
associated with the policy.exe assembly. Figure 12-27 shows the TestStrongName 
permission set associated with the TestStrongNameGroup. Note that there is no 
FileIOPermission. This code group was created by selecting the parent group (in this 
case All_Code) and selecting New from its context menu and filling in the information 



asked for by the wizard. Dialogs similar to Figures 12-26 and 12-27 will appear. 

Figure 12-26. Membership condition for TestStrongNameGroup.

 

Figure 12-27. Permissions associated with TestStrongNameGroup from 
TestStrongName permission set.



 

The My_Computer_Zone group is defined to encompass all code on this computer. It is 
defined in a similar fashion as the TestStrongNameGroup. The membership condition is 
Zone, and the MyComputer zone is picked as the associated value. FullTrust is selected 
for its associated permission set. The All_Code group encompasses all code on the 
machine. It grants no rights to any code. It already existed by default, and we changed its 
permission set to Nothing. It grants no rights. 

To find out how an assembly matches the code groups, its evidence its compared with 
the membership conditions for the group. All code that resides on the current machine 
(as opposed to another machine on the network or the Internet) matches the All_Code 
and My_Computer_Zone group. Only policy.exe matches the membership condition for 
the TestStrongNameGroup. The tree is walked from parent to child node; if a parent 
node does not match, no further navigation down the tree is done. On a given level the 
rights assigned to the assembly are the union of all the groups that it matches. In this 
case, even though policy.exe matches a group that does not give it the FileIOPermission, 
it gets that permission from the My_Computer_Zone group which grants FullTrust to 
code. 



A similar analysis of the enterprise and machine levels reveals that they also grant code 
from this machine FullTrust. So if you run policy.exe, it will run. 

Now modify the TestStrongNameGroup on its General tab to be exclusive, as indicated 
in Figure 12-28. This will cause any code that belongs to this group to get its rights from 
only this group. Since policy is determined by the intersection of all the three levels, 
policy.exe will not have the FileIOPermission. If you try to run it, you will see that it 
cannot read the file. 

Figure 12-28. Making TestStrongNameGroup.

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Summary

In this chapter we have attempted to explain the basics of .NET security. .NET 
security comes in two flavors: user identity security and code access security. The 
former determines which identity is executing code. The latter determines what 
rights the executing code has. Between the two you have the basic tools to 
provide robust applications. 

What is missing from .NET security right now is distributed identity and 
distributed code access security. Remote code cannot use policy information to 
make decisions, and identity is not automatically transferred through remote calls. 



Chapter 13. Tracing and Debugging in .NET
Complicated applications cannot be put under the debugger to find out what went 
wrong. Duplicating, or even understanding, what conditions are needed to 
replicate the problem is often difficult. The System.Diagnostics namespace has 
several classes that help you instrument your application. [1] 

[1] The security of your Web Site or Web Service is enhanced by using 
tracing and debugging output. You do not want to give out information 
in an error message that could be used to compromise your system. 
Capturing that information in a trace or debug log allows the program to 
generate a generic error message for the user. You could also assign 
an identifier to the user message that is also recorded with the log 
message. If necessary that id could be used to help the user diagnose 
any problems with their system.

Instrumenting your application for debugging and tracing will enable you to make 
your applications more robust. It also illustrates the common pattern of how the 
framework divides classes into separate tasks (writing the output, controlling the 
output, and the output destination) so that you can customize parts and still rely 
on the Framework classes for the rest. The mechanics of instrumenting your 
application has three aspects. 

The Trace and Debug classes are used to generate the debug or trace output. 
These classes have identical methods and properties that allow you to write 
diagnostic output. They do not, however, specify the destination of the output. 

The Listeners classes are used to direct the output to various destinations, 
although a default destination does exist. 

Finally, there are mechanisms for turning on or off the instrumentation. You can 
set the DEBUG and TRACE compilation flags to have different tracing for debug 
or release builds. You can have the output of the Trace and Debug classes 
depend on the conditional evaluation of expressions. Or you can control the 
verbosity of the output, depending on your need for information, using the 
BooleanSwitch and TraceSwitch classes. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


The TraceDemo Example

The TraceDemo example illustrates the use of the diagnostic functionality. If you run the 
example, you will get the following output: 

Trace Listeners: 
        Default 

This was compiled with a DEBUG directive! 
This was compiled with a TRACE directive! 
               Debug Boolean Switch disabled at startup. 
               Debug Boolean Switch enabled! 
Trace Switch Startup Value = Warning 
          TraceError! 
          TraceWarning! 

Trace Listeners: 
        Console.Out Listener 
        Output File Listener 

Refer to this output in the ensuing discussion. You will also find a file called output.txt 
on your computer in the directory where this program ran. 



Enabling Debug and Trace Output

To use the Debug class, the DEBUG flag must be defined or else the methods of this 
class will not be compiled into the executable or library. Similarly, to use the Trace 
class the TRACE flag must be defined. This way you can have different diagnostics for 
release and debug builds. These constants can be set in the Visual Studio.NET Project | 
Properties | Configuration Properties | Build Window's conditional compilation constants 
shown in Figure 13-1. 

Figure 13-1. Visual Studio window for setting conditional compilation 
constants.

 

You can also define the constants in your source files or supply the definition to the 
compiler's command line. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Using the Debug and Trace Classes

The useful methods and properties are static. The overloaded WriteLine and Write are used 
to write debug or trace output. The overloaded WriteLineIf and WriteIf write output if the 
condition in their first argument is true. 

Debug.WriteLine("This was compiled with a DEBUG 
                                             directive!"); 
Trace.WriteLine("This was compiled with a TRACE 
                                             directive!"); 
... 
Debug.WriteLineIf(DebugBooleanSwitch.Enabled, "Debug 
                     Boolean Switch enabled at startup."); 
Debug.WriteLineIf(!DebugBooleanSwitch.Enabled, 
             "Debug Boolean Switch disabled at startup."); 

Output is indented with the Indent and Unindent methods. The indentation size is 
controlled with the IndentSize property. 

Trace.Indent(); 
... 
Trace.IndentSize = 10; 

You can also set the indentation size in the application configuration file. 

<?xml version="1.0"?> 
<configuration> 
    <system.diagnostics> 
       <trace indentsize="15" /> 
    </system.diagnostics> 
</configuration> 

The Assert method can check an assertion. The AutoFlush property and the Flush method 
control the flushing of the output buffer. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Using Switches to Enable Diagnostics

Switches give you finer grain control over the diagnostic output. You can use the 
BooleanSwitch class to turn output on or off based on the value of its Enabled property. 

The TraceSwitch class gives you five hierarchical levels of control for its Level property: 
TraceError, TraceWarning, TraceInfo, TraceVerbose, and Off. These values are part of 
the TraceLevelEnumeration. Setting a lower Trace level means that the higher ones are set 
as well. For example, if the TraceWarning level is set, both the TraceError and 
TraceWarning levels are enabled. 

DebugBooleanSwitch.Enabled = true; 
Debug.WriteLineIf(DebugBooleanSwitch.Enabled, "Debug 
                                Boolean Switch enabled!"); 
... 
Trace.WriteLineIf(TraceLevelSwitch.TraceError, 
                                           "TraceError!"); 

The constructors for these switches take two parameters. The first is the name of the switch, 
the second is a text description of the switch. Both BooleanSwitch and TraceSwitch classes 
inherit from the abstract class Switch. You can write your own customized switch classes by 
inheriting from the Switch class. Note that the Enabled property of the BooleanSwitch and 
the Level and named level properties of the TraceSwitch are not part of the Switch class. 



Enabling or Disabling Switches

You can use settings in your application configuration file to enable or disable a switch at 
startup. This can also be done programmatically. 

Configuration File Switch Settings

You can set the switch's initial setting in the application's configuration file. 

<configuration> 
  <system.diagnostics 
    <switches> 
      <add name="DebugSwitch" value = "0" /> 
      <add name="TraceSwitch" value = "2" /> 
    </switches> 
  </system.diagnostics> 
</ configuation> 

If no values are found, the initial value of the Enabled property of the BooleanSwitch with 
the name DebugSwitch is set to false and the TraceSwitch's Level property is set to 
TraceOff. 

Programmatic Switch Settings

The Enabled property of the BooleanSwitch can be set to true or false. The Level property 
of the TraceSwitch can be set to one of the options of the TraceLevel enumeration: 
TraceOff, TraceError, TraceWarning, TraceInfo, TraceVerbose. You can get the level 
of the TraceSwitch's setting by examining the TraceError, TraceWarning, TraceInfo, 
TraceVerbose properties. 

Using Switches to Control Output

You can test the value of the switch before you write, debug, or trace output. You can do this 
with an if statement, or as an argument to one of the Trace or Debug classes' methods. 

Trace.WriteLineIf(TraceLevelSwitch.TraceError, 
                                           "TraceError!"); 
Trace.WriteLineIf(TraceLevelSwitch.TraceWarning, 
                                         "TraceWarning!"); 
Trace.WriteLineIf(TraceLevelSwitch.TraceInfo, 
                                          "InfoMessage!"); 
Trace.WriteLineIf(TraceLevelSwitch.TraceVerbose, 
                                       "VerboseMessage!"); 

Since you can set these values outside of your program's code, you can select the 



circumstances under which you get a particular level of debug or trace output. For example, 
you can turn on TraceVerbose output if you really need a high level of diagnostics, but turn 
it off after you have found the problem. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


TraceListener

Classes derived from the abstract class TraceListener represent destinations for 
the diagnostic output. The TextWriterTraceListener is designed to direct output 
to a TextWriter, Stream, or FileStream. Console.Out is an example of a 
commonly used output stream. The EventLogTraceListener class allows you to 
send output to an EventLog. You can create your own event logs with the 
EventLog's static method CreateEventSource method. The 
DefaultTraceListener sends output to the debugging output window. Default 
Debug output can be viewed in Visual Studio.NET's Output window or with 
utilities (such as DBMon, which is included with this project). You can customize 
where output appears by implementing your own class derived from 
TraceListener. 



Listeners Collection

Both the Debug and Trace classes have a static Listeners collection. This collection of 
TraceListeners represents a list of TraceListener objects that want to receive the output 
from the Debug or Trace class. Listeners are added to or removed from the collection just as 
with any other .NET collection. 

TextWriterTraceListener ConsoleOutput = new 
                      TextWriterTraceListener(Console.Out, 
                      "Console.Out Listener"); 
Trace.Listeners.Add(ConsoleOutput); 

Stream OutputFile = File.Create("output.txt"); 
TextWriterTraceListener OutputFileListener = new 
                       TextWriterTraceListener(OutputFile, 
                                  "Output File Listener"); 
Trace.Listeners.Add(OutputFileListener); 

Trace.Listeners.Remove("Default"); 

In this code extract, the OutputFileListener in the example will send the Trace output to a 
file called output.txt. The DefaultTraceListener is added automatically to the Listener 
collections. Any of the listeners, including the default listener, can be removed from the 
collection by invoking the collection's Remove method. To list all listeners in the collection: 

foreach(TraceListener tr in Trace.Listeners) 
{  
  Console.WriteLine("\t" + tr.Name); 
} 



Summary

Instrumenting your application for degrees of debugging and diagnostic output is 
a common program task. The diagnostic classes exemplify the way .NET 
provides classes to handle standard programming tasks so you can concentrate on 
developing the business logic of your programming, not on building 
infrastructure. On the other hand, they also exemplify how the .NET classes are 
partitioned so that you can customize the infrastructure using as much or as little 
of the other classes as you require. 



Chapter 14. Interoperability
Microsoft .NET is a powerful platform, and there are many advantages in writing 
a new application within the .NET Framework. However, a typical application is 
not a world unto itself, but is built from legacy components as well as new 
components, and interoperability is very important. We discussed one kind of 
interoperability in Chapter 11 in connection with Web Services. Using the SOAP 
protocol it is possible for .NET applications to call Web Services on other 
platforms, including Unix, mainframes, and mobile devices. 

In this chapter we will look at another kind of interoperability, the interfacing of 
managed and unmanaged code running under Windows. The dominant 
programming model in modern Windows systems is the Component Object 
Model, or COM. There exist a great many legacy COM components, and so it is 
desirable for a .NET program, running as managed code, to be able to call 
unmanaged COM components. The converse situation, in which a COM client 
needs to call a .NET server, can also arise. [1] Apart from COM, we may also 
have need for a .NET program to call any unmanaged code that is exposed as a 
DLL, including the Win32 API. The .NET Framework supports all these 
interoperability scenarios through COM Interoperability and the Platform 
Invocation Services or PInvoke. 

[1] COM interop is the only mechanism provided for unmanaged code to 
call managed code.

In this chapter we assume that you understand the concepts behind the legacy 
technologies. 



Calling COM Components from Managed Code

The first interoperability scenario we will look at is managed code calling COM components. 
The .NET Framework makes it easy to create a Runtime Callable Wrapper (RCW), which acts 
as a bridge between managed and unmanaged code. The RCW is illustrated in Figure 14-1. 

Figure 14-1. A Runtime Callable Wrapper between managed and unmanaged 
code.

 

You could implement an RCW assembly yourself, using the PInvoke facility (described in a 
later section) to call into the necessary APIs, such as CoCreateInstance and the IUnknown 
methods directly. But that is not necessary, because the Tlbimp.exe tool can read type library 
information, and automatically generate the appropriate RCW for you. Visual Studio.NET 
makes it even easier when you add a reference to a COM object in Solution Explorer. We will 
examine both of these facilities, as we look at some examples of COM components and .NET 
clients. 

The Tlbimp.exe Utility

The Tlbimp.exe utility (Type Library to .NET Assembly Converter) program is provided in the 
\Program Files\Microsoft.NET\FrameworkSDK\Bin directory. It is used to generate 
managed classes that wrap unmanaged COM classes. The resulting RCW is a .NET component 
(i.e., a managed DLL assembly) that managed client code can use to access the COM interface 
methods that are implemented in the COM component. The Tlbimp tool is a command line 
program that reads COM type library information, and generates a managed wrapper class 
along with the associated metadata, and places the result into the RCW assembly. You can view 
the resulting contents in this assembly using the Ildasm tool. The command line syntax for 
Tlbimp is shown below. 

Tlbimp TypeLibName [options] 
Where options may contain the following: 
    /out:FileName            Assembly file name 
    /namespace:Namespace     Assembly Namespace 
    /asmversion:Version      Assembly version number 
    /reference:FileName      Reference assembly 



    /publickey:FileName      Public key file 
    /keyfile:FileName        Key pair file 
    /keycontainer:FileName   Key pair key container 
    /delaysign               Delay digital signing 
    /unsafe                  Suppress security checks 
    /nologo                  Suppress displaying logo 
    /silent                  Suppress output except errors 
    /verbose                 Display extra information 
    /primary                 Make primary interop assembly 
    /sysarray                SAFEARRAY as System.Array 
    /strictref               Only /reference assemblies 
    /? or /help              Display help information 

When the Tlbimp tool imports a COM type library, it creates a .NET namespace with the same 
name as the library defined in the type library (that is the name of the actual library, not the 
name of the type library file that contains it). Tlbimp converts each COM coclass defined in the 
type library into a managed .NET wrapper class in the resulting .NET assembly that has one 
constructor with no parameters. Each COM interface defined in the type library is converted 
into a .NET interface in the resulting .NET assembly. 

Consider the typical COM IDL file library statement shown below that would be used to create 
a type library using Midl.exe. The resulting type library (TLB) or DLL file would cause 
Tlbimp.exe to generate an assembly containing metadata, including the namespace 
BANKDUALLib, a managed wrapper class named Account2, and a managed interface named 
IAccount2. 

library BANKDUALLib 
{ 
   importlib("stdole32.tlb"); 
   importlib("stdole2.tlb"); 
   [ 
      uuid(04519632-39C5-4A7E-AA3C-3A7D814AC91C), 
      helpstring("Account2 Class") 
   ] 
   coclass Account2 
   { 
      [default] interface IAccount2; 
   }; 
}; 

Once you have used Tlbimp.exe to generate the wrapper assembly, you can view its contents 
using the Ildasm tool, as shown in Figure 14-2. Note that the namespace shown by Ildasm.exe 
is BANKDUALLib, the name of the interface is IAccount2, and the wrapper class is named 
Account2. 

Figure 14-2. Ildasm.exe showing contents of a COM wrapper assembly.



 

Demonstration: Wrapping a Legacy COM Server

The best way to get a feel for how this wrapping process works is to perform the operations 
yourself. The .NET client program is in the directory NetClient. The directory 
LegacyComServer contains the following files: 

BankDual.dll         COM server DLL 
BankDual.tlb         Type library 
reg_bankdual.bat     Batch file to register the server 
unreg_bankdual.bat   Batch file to unregister the server 
BankConsole.exe      Client executable file 

The source code for the client and server are in the directories ClientSource and ServerSource 
respectively. Both programs are written in Visual C++, and project files are provided for Visual 
C++ 6.0. Unless you have Visual C++ 6.0 installed on your system in addition to Visual 
Studio.NET, you will not be able to build these projects, but that will not prevent you from 
running the program and creating an .NET client. 

This COM server implements a simple bank account class that has Deposit and Withdraw 
methods and a Balance property. The simple code [2] is shown in Account2.cpp in the 
ServerSource directory. 

[2] We will not discuss the somewhat intricate infrastructure code provided by this 
ATLbased COM server. Such "plumbing" is much easier with .NET. Our focus is on 
calling COM components, not implementing them.



STDMETHODIMP CAccount2::get_Balance(long *pVal) 
{ 
      *pVal = m_nBalance; 
      return S_OK; 
} 
STDMETHODIMP CAccount2::Deposit(long amount) 
{ 
      m_nBalance += amount; 
      return S_OK; 
} 
STDMETHODIMP CAccount2::Withdraw(long amount) 
{ 
      m_nBalance -= amount; 
      return S_OK; 
} 

Register the COM Server

The first step is to register the COM server. You can do that by running the batch file 
reg_bankdual.bat, which executes the command, 

regsvr32 bankdual.dll 

You can now see the registration entries using the Registry Editor (regedit.exe) or the 
OLE/COM Object Viewer (oleview.exe). The latter program is provided on the Tools menu of 
Visual Studio.NET. It groups related registry entries together, providing a convenient display. 
You can also perform other operations, such as instantiating objects. Figure 14-3 shows the 
entries for the Account2 class that is implemented by this server. We have clicked the little "+" 
in the left-hand pane, which instantiates an object and queries for the standard interfaces. You 
can release the object by right-clicking over the class and choosing Release Instance from the 
context menu. 

Figure 14-3. OLE/COM Object Viewer showing registry entries.



 

Run the COM Client

You can now run the COM client by double-clicking on BankConsole.exe in Windows 
Explorer. The starting balance is shown, followed by a withdrawal of 25, and the balance is 
shown again. Here is the source code, in the file BankConsole.cpp in ClientSource: 

// BankConsole.cpp 

#include <stdio.h> 
#include <stdlib.h> 
#include <objbase.h> 
#include "bankdual.h" 
#include "bankdual_i.c" 

IAccount2* g_pAccount; 

void ShowBalance() 
{  
       long balance; 
       HRESULT hr = g_pAccount->get_Balance(&balance); 
       printf("balance = %d\n", balance); 
} 

int main(int argc, char* argv[]) 
{ 
       // Initialize COM 
       HRESULT hr = CoInitializeEx(NULL, 



          COINIT_APARTMENTTHREADED); 
       // Instantiate Account object, obtaining interface 
       // pointer 
       hr = CoCreateInstance(CLSID_Account2, NULL, 
       CLSCTX_SERVER, IID_IAccount2, (void **) &g_pAccount); 
       // First obtain and display initial balance 
       ShowBalance(); 
       // Deposit 25 and show balance 
       hr = g_pAccount->Deposit(25); 
       ShowBalance(); 
       // Clean up 
       g_pAccount->Release(); 
       CoUninitialize(); 
       printf("Press enter to quit: "); 
       char buf[10]; 
       gets(buf); 
       return 0; 
} 

For simplicity, no error checking is done. Robust code should check the HRESULT that is 
returned from each of the COM calls. Here is the output from running the client program: 

balance = 150 
balance = 125 
Press Enter to quit: 

Import the Type Library (TlbImp.exe)

In order to call the COM component from managed code, we must create an RCW. We can do 
that by running the TlbImp.exe utility that we have discussed. We will run this utility from the 
command line, in the directory NetClient, where we want the RCW assembly to wind up. We 
provide a relative path to the type library file [3] BankDual.tlb in the directory 
LegacyComServer. What we have to type is shown in bold. 

[3] The file BankDual.dll also contains the type library and could have been used in 
place of BankDual.tlb.

tlbimp ..\legacycomserver\bankdual.tlb 
TlbImp - Type Library to .NET Assembly Converter Version 
1.0.2914.16 
Copyright (C) Microsoft Corp. 2001.  All rights reserved. 

Type library imported to BANKDUALLib.dll 

The RCW assembly that is created is BANKDUALLib.dll, taking its name from the name of 
the type library, as discussed earlier. 



Implement the .NET Client Program

It is now easy to implement the .NET client program. The code is in the file NetClient.cs in the 
directory NetClient. 

// NetClient.cs 

using System; 
using BANKDUALLib; 

class NetClient 
{ 
   public static void Main() 
   { 
      Account2 acc; 
      acc = new Account2(); 
      Console.WriteLine("balance = {0}", acc.Balance); 
      acc.Withdraw(25); 
      Console.WriteLine("balance = {0}", acc.Balance); 
   } 
} 

As with the COM client program, for simplicity we do no error checking. In the .NET version 
we should use exception handling to check for errors. The RCW uses the namespace 
BANKDUALLib, based on the name of the type library. 

You must add a reference to BANKDUALLib.dll. In the Visual Studio Solution Explorer you 
can right-click over References, choose "Add Reference," and use the ordinary .NET tab of the 
Add Reference dialog. 

Build and run the project inside of Visual Studio. You should see the following output: 

balance = 150 
balance = 125 
Press any key to continue 

Once you have added a reference to a RCW, you have all the features of the IDE available for 
.NET assemblies, including Intellisense and the Object Browser. You can bring up the Object 
Browser from View | Other Windows | Object Browser. Figure 14-4 illustrates the information 
shown. 

Figure 14-4. Object Browser showing information about the RCW.



 

Import a Type Library Using Visual Studio

When you are using Visual Studio you can import a COM type library directly, without first 
running TlbImp.exe. To see how to do this, use Solution Explorer to delete the reference to 
BANKDUALLib.dll. In fact, delete the file itself, and delete the bin and obj directories of 
NetClient. Now right-click over References, choose "Add Reference," and this time select the 
COM tab from the Add Reference dialog. The listbox will show all the COM components with 
a registered type library. Select "BankDual 1.0 Type Library," as illustrated in Figure 14-5. 

Figure 14-5. Add a reference to a COM component in Visual Studio.



 

Now click OK. You will see a message telling you that a "primary interop assembly" is not 
registered for this type library. You will be invited to have a wrapper generated for you, as 
illustrated in Figure 14-6. Click "Yes." The generated RCW is the file 
Interop.BANKDUALLib_1_0.dll in the directory bin\Debug. You should be able to build and 
run the .NET client program. 

Figure 14-6. Visual Studio will create a primary interop assembly.

 

The primary interop assembly that was created by Visual Studio is normally created by the 
publisher of the COM component. This can be done using the TlbImp.exe utility with the 
/primary option. 

Wrapping a COM Component with a Pure Vtable Interface

Dual Interfaces

Our example legacy COM component BankDual.dll had a dual interface IAccount2. This 
means that the interface could be called by both an early-binding COM client using the vtable 
and also by a late-binding client using IDispatch. The IDL file BankDual.idl specifies the 



interface IAccount2 as dual. 

[ 
   object, 
   uuid(AAA19CDE-C091-47BF-8C96-C80A00989796), 
   dual, 
   helpstring("IAccount2 Interface"), 
   pointer_default(unique) 
] 
interface IAccount2 : IDispatch 
{ 
   [propget, id(1), helpstring("property Balance")] HRESULT 
Balance([out, retval] long *pVal); 
   [id(2), helpstring("method Deposit")] HRESULT 
Deposit([in] long amount); 
   [id(3), helpstring("method Withdraw")] HRESULT 
Withdraw([in] long amount); 
}; 

An example of late-binding is VBSCript code for client-side scripting on a Web page. The 
directory BankHtml contains the file Bank.htm with an HTML form and VBScript code to 
exercise our bank account server. 

<!-- bank.htm --> 
<HTML> 
<HEAD> 
<TITLE>Bank test page for Account object</TITLE> 

<SCRIPT LANGUAGE="VBScript"> 
<!--

dim account 

Sub btnCreate_OnClick 
      set account = createobject("BankDual.Account2.1") 
      Document.Form1.txtAmount.Value = 25 
      Document.Form1.txtBalance.Value = account.Balance 
End Sub 

Sub btnDestroy_OnClick 
      set account = Nothing 
      Document.Form1.txtAmount.Value = ""  
      Document.Form1.txtBalance.Value = "" 
End Sub 

Sub btnDeposit_OnClick 
      account.Deposit(Document.Form1.txtAmount.Value) 
      Document.Form1.txtBalance.Value = account.Balance 



End Sub 

Sub btnWithdraw_OnClick 
      account.Withdraw(Document.Form1.txtAmount.Value) 
      Document.Form1.txtBalance.Value = account.Balance 
End Sub 

--> 
</SCRIPT> 

<FORM NAME = "Form1" > 
Amount <INPUT NAME="txtAmount" VALUE="" SIZE=8> 
<P> 
Balance <INPUT NAME="txtBalance" VALUE="" SIZE=8> 
<P> 
<INPUT NAME="btnCreate" TYPE=BUTTON VALUE="Create"> 
 <INPUT NAME="btnDestroy" TYPE=BUTTON VALUE="Destroy"> 
 <INPUT NAME="btnDeposit" TYPE=BUTTON VALUE="Deposit"> 
 <INPUT NAME="btnWithdraw" TYPE=BUTTON VALUE="Withdraw"> 
</FORM> 

</BODY> 
</HTML> 

The createobject function instantiates a COM object using late binding, referencing a program 
ID rather than a CLSID. This is perfectly legitimate, because BankDual.dll implements a dual 
interface on the Account2 object. Since this is client-side script, we can exercise it locally in 
Internet Explorer, simply double-clicking on bank.htm in Windows Explorer. This will bring 
up Internet Explorer and show the form. You can click the Create button and instantiate an 
object, [4] as shown in Figure 14-7. The starting balance of 150 is shown. You can then exercise 
Deposit and Withdraw, and when you are done, you can click Destroy. 

[4] Depending on your security settings, you may get a warning message about an 
ActiveX control on the page. Click Yes to allow the interaction. If you have trouble 
running the ActiveX control at all, check your security settings in Internet Explorer.

Figure 14-7. Accessing a late-bound COM object in Internet Explorer.



 

Pure Vtable Interface

Dual interfaces are very common. The default in an ATL wizard generated COM component is 
dual interface. Visual Basic 6.0 also creates COM components with dual interfaces. However, if 
there is no occasion for a COM component to be called by a late-binding client, it is more 
efficient to implement only a pure vtable interface. 

There is a slight issue in generating wrappers for COM components with a pure vtable interface. 
To see the problem, consider the COM component in VtableComServer. As with our 
LegacyComServer example, the top-level directory contains the DLL, the type library file, 
batch files to register and unregister the server, and a client test program. Source code for the 
COM server and client is provided in ServerSource and ClientSource respectively. We want 
to implement a managed client program VtableNetClient. 

First, verify that the COM client and server work. All you have to do is run the batch file 
reg_bank.bat to register the server, and you can double-click on BankConsole.exe in 
Windows Explorer to run the client. 

Next, open up the solution VtableNetClient.sln in Visual Studio. Add a reference to the COM 
type library "Bank 1.0 Type Library." You should get a clean build. But when you run the 
program, you get an exception: 

Unhandled Exception: System.InvalidCastException: 

QueryInterface for interface BANKLib.IAccount failed. 
   at BANKLib.Account.GetBalance(Int32& pBalance) 
   at VtableNetClient.ShowBalance() in  
C:\OI\NetCs\Chap14\VtableNetClient\Vtable 
NetClient.cs:line 14 
   at VtableNetClient.Main() in 



C:\OI\NetCs\Chap14\VtableNetClient\ 
VtableNetClient.cs:line 33 

The problem is that the .NET client is in a separate apartment, and it needs marshaling. You can 
use any of the following solutions: 

1.  Mark the IDL for the interface as dual. 

2.  Mark the IDL for the interface as oleautomation, and limit types used to oleautomation 
friendly types. 

3.  Build and register the proxy/stub DLL for the interface. 

4.  Mark the Main method in the C# client with the [STAThread] or [MTAThread] 
attribute (appropriate to the situation), to place it into the same threading model as the 
COM server. 

Examining the source code for VtableNetClient.cs, we see that we commented out the attribute 
[STAThread] in front of Main. Uncomment, build, and run again. This time it should work! 

As an alternate solution, comment out [STAThread] again. Now in the server directory 
VtableComServer run the batch file reg_bankps.bat to register the proxy/stub DLL. Build and 
run the .NET client. Again, it should work! 

Notice another feature of this .NET client program. Rather than calling methods on a class 
object, we go through interface references. We obtain the interface references using the C# as 
operator, as we discussed in Chapter 5. This use of the as operator is the analog in .NET of 
QueryInterface in COM. 



Calling Managed Components from COM Client

Obviously, it is much more likely that you will want to write new .NET applications that 
make use of legacy COM components, however, there may be times when you need to go 
in the opposite direction. For example, you may have an existing application that makes 
use of one or more COM components, and you would like to eventually rewrite several of 
those COM components as .NET components. However, in the mean time, you may want 
to make use of those new .NET components in your existing COM client applications as 
well. 

COM client programs may use early binding (vtable interface) or late binding (IDispatch 
interface) to access managed .NET components. Early binding requires that type library 
information is available at compile time. Late binding does not require any type library 
information at compile time, since binding takes place at runtime via the IDispatch 
interface methods. 

However, regardless of whether the client uses early or late binding, a bridge is required 
between the unmanaged native execution environment of the COM client and the managed 
execution environment of the .NET component. This bridge is known as the COM Callable 
Wrapper (CCW), which acts as a proxy for the managed object as shown in Figure 14-8. 
Only one CCW object is created for any given managed object created for a COM client. 
The CCW manages object lifetime according to the reference counting rules of IUnknown, 
and it also manages marshaling for the method calls made on the object. 

Figure 14-8. A COM callable wrapper between unmanaged and managed 
code.

 

While the RCW assembly is explicitly created as a file, the CCW is created dynamically at 
runtime by the Common Language Runtime. The CLR creates exactly one CCW for a 
managed object, regardless of the number of COM clients that request its services, and 
both COM and .NET clients can make requests on the same .NET object simultaneously. 

A Late Binding COM Client



There are many variations of a COM client calling an .NET component. We will illustrate 
with just one scenario, a late binding COM client calling a managed component. We will 
create an .NET component that can be called through VBScript on the bank.htm Web 
page. 

Looking at the VBScript code used in createobject on bank.htm, we see that the ProgId 
of the COM object is "BankDual.Account2.1." We wish to create an .NET object that can 
be used in place of this COM object, and that has the same ProgId. To avoid confusion 
with the COM object, unregister it running the batch file unreg_bankdual.bat in the 
directory LegacyComServer. Now if you access bank.htm in Internet Explorer and click 
the "Create" button, you will get an error. 

C# code for implementing a compatible bank account object is in the file Account.cs in the 
directory NetServer. 

// Account.cs 

using System; 
using System.Runtime.InteropServices; 

namespace NetServer 
{ 
   [ProgId("BankDual.Account2.1")] 
   public class Account 
   { 
      static private int balance; 
      public Account() 
      { 
         balance = 1000; 
      } 
      public void Deposit(int amount) 
      { 
         balance += amount; 
      } 
      public void Withdraw(int amount) 
      { 
         balance -= amount; 
      } 
      public int Balance 
      { 
         get 
         { 
            return balance; 
         } 
      } 



   } 
} 

The code shown in bold enables us to assign "BankDual.Account2.1" as the ProgId, 
making it compatible with the COM object we are replacing. If we left these lines out, we 
would still be able to call the object through COM. The ProgId would be created from the 
namespace and the class name, or "NetServer.Account." Other attributes would let us 
assign various GUIDs, which would be useful in an early binding scenario. Note that to 
distinguish our .NET component from the COM component it is replacing, we have 
assigned the starting balance to be 1000. 

We are going to deploy our component in the Global Assembly Cache, so we need to 
create a strong name, as discussed in Chapter 7. We generate a public-private key pair and 
place them in a file keypair.snk, using the command, 

sn -k keypair.snk 

In our Visual Studio project we reference this key file in AssemblyInfo.cs, 

[assembly: AssemblyDelaySign(false)] 
[assembly: AssemblyKeyFile("keypair.snk")] 
[assembly: AssemblyKeyName("")] 

Our project creates the target assembly NetServer.dll in the top-level source directory, 
where we also have the keypair.snk file. We can run all the command-line programs from 
the directory c:\OI\NetCs\Chap14\NetServer. We can then place our assembly in the 
GAC using the command, 

gacutil -i netserver.dll 

You can use the .NET Admin Tool discussed in Chapter 7 to inspect the contents of the 
GAC, verifying that NetServer has indeed been deployed there. See Figure 14-9. 

Figure 14-9. Inspecting the GAC using the .NET Admin Tool.



 

In order to make our .NET component available to COM clients, we must provide suitable 
entries in the Registry. This will enable the COM runtime to locate the appropriate server 
path and so on. The Assembly Registration Utility, Regasm.exe, reads the metadata within 
an assembly and adds these necessary entries to the Registry, which allows COM clients to 
use the .NET assembly's components as if they were just old-fashioned registered COM 
components (via the CCW proxy). 

The syntax for using Regasm.exe is shown next. This allows COM client programs to 
create instances of managed classes defined by in the assembly. 

Regasm AssemblyPath [options] 
Where the options may be any of the following. 
/unregister          Unregister types 
/tlb[:FileName]      Specified typelib 
/regfile[:FileName]  Specified output reg file name 
/codebase            Sets the code base in the registry 
/registered          Only refer to preregistered typelibs 
/nologo              Prevents displaying logo 
/silent              Prevents displaying of messages 
/verbose             Displays extra information 
/? or /help          Display usage help message 

We run this utility on NetServer using the command shown in bold, 

C:\OI\NetCs\Chap14\NetServer>regasm netserver.dll 
RegAsm - .NET Assembly Registration Utility Version 
1.0.2914.16 
Copyright (C) Microsoft Corp. 2001.  All rights reserved. 

Types registered successfully 



We can use the OLE/COM Object Viewer to inspect the entries made in the Registry. Note 
that there is a special category of COM objects called ".NET Category." Figure 14-10 
shows the Registry entries for our "NetServer.Account" object. Note that the ProgId is 
"BankDual.Account2.1," as specified by the attribute in our C# source code. Note also that 
the InprocServer32 is mscoree.dll, which is the DLL implementing the CLR. As 
previously mentioned, there is no file created for the CCW. Instead, when the wrapped 
component is to be instantiated, the CLR creates the CCW on the fly. 

Figure 14-10. OLE/COM Object Viewer shows Registry entries for an .NET 
object.

 

A late-binding COM client can now call our .NET component. That is all there is to it! You 
can double-click on bank.htm, and Internet Explorer will run the VBScript we looked at 
before. Only this time, the .NET component NetServer.Account is invoked, as you can 
tell by noticing that the starting balance is 1000, as shown in Figure 14-11. 

Figure 14-11. Accessing an .NET object in Internet Explorer.



 



Platform Invocation Services (PInvoke)

Platform Invocation Services, also known as "PInvoke," makes unmanaged exported 
DLL functions available to managed client code. PInvoke allows this to be done from 
managed code written in any .NET programming language. Notice that PInvoke is not the 
name of a class, or a method, but is just a nickname for Platform Invocation Services. 
PInvoke allows marshaling between CLR data types and native data types, and bridges 
other differences between the managed and unmanaged runtime environments. Although 
PInvoke is primarily used to access the Win32 APIs, it can be used to call into your own 
legacy DLLs that you may find are still useful. Unfortunately, PInvoke is in most 
circumstances a one-way street. You can use it to call from managed code into 
unmanaged DLL code and of course return back into managed code. PInvoke is used to 
access global exported DLL functions, so even though it is possible for DLLs to export 
class methods, they are currently not accessible via PInvoke. 

If you are an experienced Windows programmer and have a good knowledge of the 
Win32 API, you may be tempted, after learning about PInvoke, to call a familiar Win32 
API function to perform a task. A secure .NET environment, however, will not give most 
assemblies permission to call unmanaged code. Usually there will be a native .NET 
Framework class method that can accomplish your aim, and you should use .NET 
Framework classes whenever possible. Occasionally it will be necessary to drop down to 
the underlying platform, and then PInvoke is invaluable. 

A Simple Example

Let's begin with a very simple example of the use of PInvoke, to call the Windows 
MessageBox function. Our sample program is in the directory SimplePInvoke. 

// SimplePInvoke.cs 

using System; 
using System.Runtime.InteropServices; 

class SimplePInvoke 
{ 
   [DllImport("user32.dll", EntryPoint="MessageBoxA")] 
   public static extern int ShowMessage(int hWnd, 
      string text, string caption, int type); 

   public static void Main(string[] args) 
   { 
      ShowMessage(0, "Hello, World", "From PInvoke", 0); 
   } 
} 



The key step is to place a DllImport attribute before the prototype of the function we 
want to call. The function must take ordinary C# data types as parameters, which have 
natural mappings to the C data types of the native function. The function will be treated 
as a static method in the class where it is defined. The one required parameter to the 
DllImport attribute is the name of the DLL exporting the function. There are various 
optional, named parameters, that can be used with DllImport. For a complete list, consult 
the documentation of the DllImportAttribut class in the 
System.Runtime.InteropServices namespace. In our example, we use the EntryPoint 
attribute to specify the name by which the function is exported in the DLL. The name of 
the static method in the class can then be different, and will be the name to be used in the 
C# code that calls the method. In our example, the Win32 function has the name 
MessageBoxA and our C# code calls the method under the name ShowMessage. Figure 
14-12 shows the output from this little program. 

Figure 14-12. Calling the Win32 MessageBox function through PInvoke.

 

Marshaling out Parameters

The previous PInvoke example did not demonstrate how PInvoke automatically marshals 
out parameters for you where there is a clear mapping between Win32 and the CLR 
types. This is because the MessageBox takes only in parameters. The next example calls 
the GetComputerName and GetLastError APIs via PInvoke. The code for this 
example is in the directory PInvoke. 

// PInvoke.cs 

using System; 
using System.Text; 
using System.Runtime.InteropServices; 

public class Test 
{ 
   [DllImport("kernel32.dll", CharSet=CharSet.Ansi)] 
   public static extern bool GetComputerName( 
      StringBuilder name, out uint buffer); 
   [DllImport("kernel32.dll")] 
   public static extern uint GetLastError(); 



   public static int Main(string[] args) 
   { 
      bool result = true; 
      uint error = 0; 
      StringBuilder name = new StringBuilder(128); 
      uint length = 128; 
      result = GetComputerName(name, out length); 

      if (result == true) 
         Console.WriteLine(name); 
      else 
      { 
         error = GetLastError(); 
         Console.WriteLine("Error: {0:x}", error); 
      }  
      return 0; 
   } 
} 

Translating Types

Since GetComputerName returns a name, StringBuilder was used instead of string. [5] 
For input only arguments you can use string. An out attribute was placed on the length 
attribute because the second argument to GetComputerName is a pointer. Unsigned 
types were used because DWORD is an unsigned 32 bit quantity. For comparison, here 
are the prototypes of the corresponding Win32 functions: 

[5] Instances of string are immutable, so we use the StringBuilder class, which 
was discussed in Chapter 3.

BOOL GetComputerName( 
  LPTSTR lpBuffer,  // computer name 
  LPDWORD lpnSize   // size of name buffer 
); 

DWORD GetLastError(VOID); 

Some CLR types do not map directly into unmanaged types. You have to tell the 
Execution Engine (mscoree.dll) how to translate to a BSTR. You do that by annotating 
the declaration with the MarshalAs attribute: 

[MarshalAs(UnmanagedType.BStr)] public string foo 

The UnmanagedType enumeration lists all the translatable types. 





Summary

In this chapter we studied mixing managed and unmanaged code running under 
Windows. We saw how to call legacy COM components from within the 
managed .NET environment using a Runtime Callable Wrapper or RCW. We also 
looked at the use of a COM Callable Wrapper (CCW) to enable a COM client to 
call a .NET component. Finally, we looked at using Platform Invocation Services 
(PInvoke), and saw how automatic marshaling is provided for both in and out 
parameters. 

We have come to the end of a long journey, which we hope will be the first of 
many journeys in the world of .NET. We hope you enjoyed the trip. Good luck on 
your .NET programming projects! 



Appendix A. Visual Studio.NET

Although it is possible to program .NET using only the command line compiler, it 
is much easier and more enjoyable to use Visual Studio.NET. In this chapter we 
cover the basics of using Visual Studio to edit, compile, run, and debug programs. 
You will then be equipped to use Visual Studio in the rest of the book. This 
chapter covers the basics to get you up and running using Visual Studio. We will 
introduce additional features of Visual Studio later in the book as we encounter a 
need. This book was developed using beta software, and in the final released 
product you may encounter some changes to the information presented here. 
Also, Visual Studio is a very elaborate Windows application that is highly 
configurable, and you may encounter variations in the exact layout of windows, 
what is shown by default, and so on. As you work with Visual Studio, a good 
attitude is to see yourself as an explorer discovering a rich and varied new 
country. 



Overview of Visual Studio.NET

Open up Microsoft Visual Studio.NET 7.0 and you will see a starting window similar to 
what is shown in Figure A-1. 

Figure A-1. Visual Studio.NET main window.

 

What you see on default startup is the main window with an HTML page that can help 
you navigate among various resources, open or create projects, and change your profile 
information. (If you close the start page, you can get it back anytime from the menu 
Help | Show Start Page.) Clicking on My Profile will bring up a profile page on which 
you can change various settings. There is a standard profile for "typical" work in Visual 
Studio ("Visual Studio Developer" profile), and special ones for various languages. 
Since Visual Studio.NET is the unification of many development environments, 
programmers used to one particular previous environment may prefer a particular 
keyboard scheme, window layout, and so on. For example, if you choose the profile 
"Visual Basic Developer," you will get the Visual Basic 6 keyboard scheme. In this 
book we will use all the defaults, so go back to the profile "Visual Studio Developer" if 
you made any changes. See Figure A-2. 



Figure A-2. Visual Studio.NET profile page.

 

To gain an appreciation of some of the diverse features in Visual Studio.NET, open up 
the Bank console solution in the AppA directory for this Appendix (File | Open 
Solution..., navigate to the Bank directory, and open the file Bank.sln). You will see 
quite an elaborate set of windows. See Figure A-3. 

Figure A-3. A console project in Visual Studio.NET.



 

Starting from the left are icons for the Server Explorer and the Toolbox, followed by the 
main window area, which currently is just a gray area. Underneath the main window is 
the Output Window, which shows the results of builds and so on. Continuing our tour, 
on the top right is the Solution Explorer, which enables you to conveniently see all the 
files in a "solution," which may consist of several "projects." On the bottom right is the 
Properties window, which lets you conveniently edit properties on forms for Windows 
applications. The Properties window is very similar to the Properties Window in Visual 
Basic. 

From the Solution Explorer you can navigate to files in the projects. In turn, double-
click on each of Account.cs and Bank.cs, the two source files in the Bank project. Text 
editor windows will be brought up in the main window area. Across the top of the main 
window are horizontal tabs to quickly select any of the open windows. Visual 
Studio.NET allows you to select the window to show from the Windows menu. Figure 
A-4 shows the open source files with the horizontal tabs. 

Figure A-4. Horizontal tabs for open source files.



 

Toolbars

Visual Studio comes with many different toolbars. You can configure which toolbars 
you wish displayed, and you can drag toolbars to position them to where you find them 
most convenient. You can also customize toolbars by adding or deleting buttons that 
correspond to different commands. 

To specify which toolbars are displayed, bring up the menu View | Toolbars. You can 
also right-click in any empty area of a toolbar. There will be a check mark next to the 
toolbars which are currently displayed. By clicking on an item on this menu you can 
make the corresponding toolbar button appear or disappear. For your work in this book 
add the toolbars, 

●     Build 
●     Debug 

Customizing a Toolbar

We want to make sure that the "Start Without Debugging" command is available on the 
Debug toolbar. If it is not already on your Debug toolbar (it is a red exclamation point), 



you can add it by the following procedure, which can be used to add other commands to 
toolbars. 

1.  Select menu Tools | Customize... to bring up the Customize dialog. 

2.  Select the Commands tab. 

3.  In Categories, select Debug, and in Commands select Start Without Debugging. 
See Figure A-5. 

Figure A-5. Adding a new command to a toolbar.

 

4.  Drag the selected command onto the Debug toolbar, positioning it where you 

desire. Place it to the immediate right of the wedge-shaped Start  button. 

5.  Close the Customize dialog. 



Creating a Console Application

As our first exercise in using Visual Studio, we will create a simple console 
application. Our program Bytes will attempt to calculate how many bytes there are in a 
kilobyte, a megabyte, a gigabyte, and a terabyte. If you want to follow along on your 
PC as you read, you can use the Demos directory for this chapter. The first version is 
in Bytes\Step1. A final version can be found in Bytes\Step3. 

Creating a C# Project

1.  From Visual Studio main menu choose File | New | Project.... This will bring up 
the New Project dialog. 

2.  For Project Types choose "Visual C# Projects" and for Templates choose 
"Empty Project." 

3.  Click the Browse button, navigate to Demos, and click Open. 

4.  In the Name field, type Bytes. See Figure A-6. Click OK. 

Figure A-6. Creating an empty C# project.

 



Adding a C# File

At this point you will have an empty C# project. We are now going to add a file 
Bytes.cs, which contains the text of our program. 

1.  In Solution Explorer right-click over Bytes and choose Add | Add New Item.... 
This will bring up the Add New Item dialog. 

2.  For Categories choose "Local Project Items" and for Templates choose "Code 
File." 

3.  For Name type Bytes.cs. See Figure A-7. Click Open. 

Figure A-7. Adding an empty C# file to a C# project.

 

Using the Visual Studio Text Editor

In the Solution Explorer double-click on Bytes.cs. This will open up the empty file 
Bytes.cs in the Visual Studio text editor. Type in the following program, and notice 
things like color syntax highlighting to indicate reserved words as you type. 



// Bytes.cs 

using System; 
public class Bytes  
{ 
    public static int Main(string[] args) 
    { 
       int bytes = 1024; 
       Console.WriteLine("kilo = {0}", bytes); 
       bytes = bytes * 1024; 
       Console.WriteLine("mega = {0}", bytes); 
       bytes = bytes * 1024; 
       Console.WriteLine("giga = {0}", bytes); 
       bytes = bytes * 1024; 
       Console.WriteLine("tera = {0}", bytes); 
       return 0; 
  } 
} 

Besides the color syntax highlighting, other features include automatic indenting. All 
in all, you should find the Visual Studio editor friendly and easy to use. 

Building the Project

You can build the project by using one of the following: 

●     Menu Build | Build 

●     Toolbar  
●     Keyboard shortcut Ctrl + Shift + B 

Running the Program

You can run the program by using one of the following: 

●     Menu Debug | Start Without Debugging 

●     Toolbar  
●     Keyboard shortcut Ctrl + F5 

You will see the following output in a console window that opens up: 

kilo = 1024 
mega = 1048576 



giga = 1073741824 
tera = 0 
Press any key to continue 

We will investigate the reason for the strange output later. If you press any key, as 
indicated, the console window will close. 

Running the Program in the Debugger

You can run the program in the debugger by using one of the following: 

●     Menu Debug | Start 

●     Toolbar  
●     Keyboard shortcut F5 

A console window will briefly open up and then immediately close. If you want the 
window to stay open, you must explicitly program for it, for example, by asking for 
input. You can set a breakpoint to stop execution before the program exits. We will 
outline features of the debugger later in the chapter. 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Project Configurations

A project configuration specifies build settings for a project. You can have several different 
configurations, and each configuration will be built in its own directory, so you can exercise the 
different configurations independently. Every project in a Visual Studio solution has two default 
configurations, Debug and Release. As the names suggest, the Debug configuration will build a 
debug version of the project, where you can do source level debugging by setting breakpoints, and 
so on. The bin\Debug directory will then contain a program database file with a .pdb extension 
that holds debugging and project state information. 

You can choose the configuration from the main toolbar . You can also 
choose the configuration using the menu Build | Configuration Manager..., which will bring up the 
Configuration Manager dialog. From the Active Solution Configuration dropdown, choose 
Release. See Figure A-8. 

Figure A-8. Choosing Release in the Configuration Manager.

 

Build the project again. Now a second version of the IL language file Bytes.exe is created, this 
time in the bin\Release directory. There will be no .pdb file in this directory. 

Creating a New Configuration

Sometimes it is useful to create additional configurations, which can save alternate build settings. 
As an example, let's create a configuration for a "checked" build. If you build with the /checked 
compiler switch, the compiler will generate IL code to check for integer underflow and overflow. 
In Visual Studio you set compiler options through dialog boxes. The following steps will guide 
you through creating a new configuration called CheckedDebug that will build a checked version 
of the program. 



1.  Bring up the Configuration Manager dialog. 

2.  From the Active Solution Configuration: dropdown, choose <New...>. The New Solution 
Configuration dialog will come up. 

3.  Type CheckedDebug as the configuration name. Choose Copy Settings from Debug. 
Check "Also create new project configuration(s)." See Figure A-9. Click OK. 

Figure A-9. Creating a new configuration.

 

Setting Build Settings for a Configuration

Next we will set the build settings for the new configuration. (You could also set build settings for 
one of the standard configurations, if you wanted to make any changes from the defaults provided.) 
Check the toolbar to verify that the new CheckedDebug is the currently active configuration. 

1.  Right-click over Bytes in the Solution Explorer and choose Properties. The "Bytes Property 
Pages" dialog comes up. 

2.  In Configuration Properties, select Build. Change the setting for "Check for overflow 
underflow" to True (see Figure A-10). Click OK. 

Figure A-10. Changing the build settings for a configuration.



 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Debugging

In this section we will discuss some of the debugging facilities in Visual Studio. To be 
able to benefit from debugging at the source code level, you should have built your 
executable using a Debug configuration, as discussed previously. There are two ways to 
enter the debugger: 

1.  Just-in-Time Debugging. You run normally, and if an exception occurs you will 
be allowed to enter the debugger. The program has crashed, so you will not be 
able to run further from here to single step, set breakpoints, and so on. But you 
will be able to see the value of variables, and you will see the point at which the 
program failed. 

2.  Standard Debugging. You start the program under the debugger. You may set 
breakpoints, single step, and so on. 

Just-in-Time Debugging

Build and run (without debugging) the Bytes program from the previous section, 
making sure to use the CheckedDebug configuration. This time the program will not 
run through smoothly to completion, but an exception will be thrown. A "Just-In-Time 
Debugging" dialog will be shown (see Figure A-11). Click Yes to debug. 

Figure A-11. Just-In-Time Debugging dialog is displayed in response to an 
exception.



 

Click OK in the "Attach to Process" dialog and then click Break in the "Microsoft 
Development Environment" dialog. You will now be brought into a window showing 
the source code where the problem arose, with an arrow pinpointing the location. 

To stop debugging you can use the  toolbar button or the menu Debug | Stop 
Debugging. 

Standard Debugging

Breakpoints

The way you typically do standard debugging is to set a breakpoint and then run using 
the debugger. As an example, set a breakpoint at the first line: 

bytes = bytes * 1024; 

The easiest way to set a breakpoint is by clicking in the gray bar to the left of the source 



code window. You can also set the cursor on the desired line and click the "hand" 

toolbar button  to toggle a breakpoint (set if not set, and remove if a breakpoint is 
set). Now you can run under the debugger, and the breakpoint should be hit. A yellow 
arrow over the red dot of the breakpoint shows where the breakpoint has been hit. See 
Figure A-12. 

Figure A-12. A breakpoint has been hit.

 

When you are done with a breakpoint, you can remove it by clicking again in the gray 
bar or by toggling with the hand toolbar button. If you want to remove all breakpoints, 
you can use the menu Debug | Clear All Breakpoints, or you can use the toolbar button 

. 

Watching Variables

At this point you can inspect variables. The easiest way is to slide the mouse over the 
variable you are interested in, and the value will be shown as a yellow tool tip. You can 
also right-click over a variable and choose Quick Watch (or use the eyeglasses toolbar 

button ). Figure A-13 shows a typical Quick Watch window. You can also change 



the value of a variable from this window. 

Figure A-13. Quick Watch window shows variable, and you can change it.

 

When you are stopped in the debugger, you can add a variable to the Watch window by 
right-clicking over it and choosing Add Watch. The Watch window can show a number 
of variables, and the Watch window stays open as the program executes. When a 
variable changes value, the new value is shown in red. Figure A-14 shows the Watch 
window (note that the display has been changed to hex, as described in the next 
section). 

Figure A-14. Visual Studio Watch window.

 

Debugger Options

You can change debugger options from the menu Tools | Options, and select Debugging 
from the list. Figure A-15 illustrates setting a hexadecimal display. If you then go back 
to a Watch window, you will see a hex value such as 0x400 displayed. 



Figure A-15. Setting hexadecimal display in Debugging Options.

 

Single Stepping

When you are stopped in the debugger, you can single step. You can also begin 

execution by single stepping. There are a number of single step buttons.  
The most common are (in the order shown on the toolbar): 

●     Step Into 
●     Step Over 
●     Step Out 

There is also a Run to Cursor button . 

With Step Into you will step into a function, if the cursor is positioned on a call to a 
function. With Step Over you will step to the next line (or statement or instruction, 

depending on the selection in the dropdown next to the step buttons ). To 
illustrate Step Into, build the Bytes\Step2 project, where the multiplication by 1,024 has 
been replaced by a function call to the static method OneK. Set a breakpoint at the first 
function call, and then Step Into. The result is illustrated in Figure A-16. Note the red 
dot at the breakpoint and the yellow arrow in the function. 

Figure A-16. Stepping into a function.



 

When debugging, Visual Studio maintains a Call Stack. In our simple example the Call 
Stack is just two deep. See Figure A-17. 

Figure A-17. The call stack.

 

http://10.3.0.18/safari/html/new/0-13-093383-X/23981533.html


Summary

Visual Studio.NET is a very rich integrated development environment (IDE), 
with many features to make programming more enjoyable. In this appendix we 
covered the basics of using Visual Studio to edit, compile, run, and debug 
programs, so that you will be equipped to use Visual Studio in the rest of the 
book. Nonetheless, it is worth spending time to become familiar with many more 
of the Visual Studio features, because understanding how to use them will make 
your development work much easier. A project can be built in different 
configurations, such as Debug and Release. Visual Studio.NET has a vast array of 
features for building database applications, Web applications, components, and 
many other kinds of projects. We discuss some of these additional features in the 
chapters where they are pertinent. 


	O'Reilly
	Application Development Using C# and .NET
	Dedication
	The Integrated .NET Series From Object Innovations
	Preface
	Organization
	Sample Programs
	Caveat
	Web Sites
	Acknowledgments
	The Integrated .NET Series from Object Innovations and Prentice Hall PTR
	Introduction
	Introductory .NET Language Books
	Introduction to C# Using .NET
	Introduction to Programming Visual Basic Using .NET
	Programming Perl in the .NET Environment
	Intermediate .NET Framework Books
	Application Development Using C# and .NET
	Application Development Using Visual Basic .NET
	.NET Architecture and Programming Using Visual C++
	Fundamentals of Web Applications Using .NET and XML
	Chapter 1. What Is Microsoft .NET?
	Microsoft and the Web
	Windows on the Desktop
	A New Programming Platform
	The Role of XML
	Summary
	Chapter 2. .NET Fundamentals
	Problems of Windows Development
	Applications of the Future
	.NET Overview
	Summary
	Chapter 3. C# Overview for Sophisticated Programmers
	Hello World in C#
	Performing Calculations in C#
	Classes
	C# Type System
	Strings
	Arrays and Indexers
	More about Methods
	Exceptions
	Unsafe Code
	Summary
	Chapter 4. Object-Oriented Programming in C #
	Review of Object-Oriented Concepts
	Acme Travel Agency Case Study: Design
	Inheritance in C#
	Access Control
	Acme Travel Agency Case Study: Implementation
	More about Inheritance
	Summary
	Chapter 5. C# in the .NET Framework
	System.Object
	Collections
	Interfaces
	Acme Travel Agency Case Study: Step 2
	Generic Interfaces in .NET
	Delegates
	Attributes
	Summary
	Chapter 6. User Interface Programming
	Windows Forms Hierarchy
	Simple Forms Using .NET SDK
	Menus
	Controls
	Visual Studio.NET and Forms
	Dialog Boxes
	ListBox Control
	Acme Travel Agency Case Study—Step 3
	Summary
	Chapter 7. Assemblies and Deployment
	Assemblies
	Private Assembly Deployment
	Shared Assembly Deployment
	Assembly Configuration
	Multimodule Assemblies
	Setup and Deployment Projects
	Summary
	Chapter 8. .NET Framework Classes
	Metadata and Reflection
	Input and Output in .NET
	Serialization
	.NET Application Model
	Context
	Application Isolation
	Asynchronous Programming
	Remoting
	Custom Attributes
	Garbage Collection and Finalization
	Summary
	Chapter 9. Programming with ADO.NET
	.NET Data Providers
	The Visual Studio.NET Server Explorer
	Data Readers
	Parameters Collection
	SqlDataAdapter and the DataSet Class
	DataSet Collections
	DataSet Fundamentals
	Database Transactions and Updates
	Optimistic vs. Pessimistic Locking and the DataSet
	Working with DataSets
	Acme Travel Agency Case Study
	XML Data Access
	AirlineBrokers Database
	Schema with Relationships
	Typed DataSet
	Summary
	Chapter 10. ASP.NET and Web Forms
	What Is ASP.NET?
	Web Forms Architecture
	Request/Response Programming
	Web Applications Using Visual Studio.NET
	Acme Travel Agency Case Study
	ASP.NET Applications
	State in ASP.NET Applications
	ASP.NET Configuration
	Server Controls
	HTML Server Controls
	Database Access in ASP.NET
	Summary
	Chapter 11. Web Services
	Protocols
	Web Service Architecture
	SOAP Differences
	Web Service Class
	Hotel Broker Web Service
	Summary
	Chapter 12. Security
	User-Based Security
	Code Access Security
	Internet Security
	Role-Based Security in .NET
	Forms-Based Authentication
	Code Access Permissions
	Code Identity
	Security Policy
	Summary
	Chapter 13. Tracing and Debugging in .NET
	The TraceDemo Example
	Enabling Debug and Trace Output
	Using the Debug and Trace Classes
	Using Switches to Enable Diagnostics
	Enabling or Disabling Switches
	TraceListener
	Listeners Collection
	Summary
	Chapter 14. Interoperability
	Calling COM Components from Managed Code
	Calling Managed Components from COM Client
	Platform Invocation Services (PInvoke)
	Summary
	Appendix A. Visual Studio.NET
	Overview of Visual Studio.NET
	Creating a Console Application
	Project Configurations
	Debugging
	Summary


	LEEFCLKOOOEDNKMPNDPIFMDAIBDGEOIIEM: 
	form1: 
	x: 
	f1: 
	f2: 1
	f3: 1
	f4: 1
	f5: 1
	f6: 1
	f7: 1
	f8: 
	f9: 1





